WO2020224614A1 - 用于转子静平衡的剖分式可调摆角的静压气体轴承装置及旋转圈形零件静平衡的气浮支承装置 - Google Patents

用于转子静平衡的剖分式可调摆角的静压气体轴承装置及旋转圈形零件静平衡的气浮支承装置 Download PDF

Info

Publication number
WO2020224614A1
WO2020224614A1 PCT/CN2020/088949 CN2020088949W WO2020224614A1 WO 2020224614 A1 WO2020224614 A1 WO 2020224614A1 CN 2020088949 W CN2020088949 W CN 2020088949W WO 2020224614 A1 WO2020224614 A1 WO 2020224614A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
bearing
semi
cylindrical
working
Prior art date
Application number
PCT/CN2020/088949
Other languages
English (en)
French (fr)
Inventor
刘占生
于树博
张广辉
孙原理
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to JP2021565959A priority Critical patent/JP7417803B2/ja
Priority to DE112020001877.6T priority patent/DE112020001877T5/de
Publication of WO2020224614A1 publication Critical patent/WO2020224614A1/zh
Priority to US17/519,632 priority patent/US11988252B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/02Details of balancing machines or devices
    • G01M1/04Adaptation of bearing support assemblies for receiving the body to be tested
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0625Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via supply slits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/0666Details of hydrostatic bearings independent of fluid supply or direction of load of bearing pads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/067Details of hydrostatic bearings independent of fluid supply or direction of load of bearings adjustable for aligning, positioning, wear or play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0685Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for radial load only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Definitions

  • the invention relates to a static pressure gas bearing device for a bearing or a rotating ring-shaped part, in particular to a split type static pressure gas bearing device with adjustable swing angle for the static balance of a rotor and an air floating support for the rotating ring-shaped part
  • the device relates to the field of static balance of rotors or rotating ring-shaped parts, the field of static balance detection of rotors or rotating ring-shaped parts, and the technical field of static pressure gas support or air floating support.
  • rotor static balance detection devices usually use rotor static balance devices.
  • the existing rotor static balance device is provided with two upper and lower adjustable sliding plates, and each sliding plate is provided with two rolling bearings with a certain gap. The rotor is placed on the rolling bearing of each sliding plate, and the two ends of the rotor are respectively A rolling bearing is provided for axial positioning.
  • the static balance of the rotor is mainly the guide rail type and the swing frame method.
  • the guide rail static balance device is mainly composed of two high-precision parallel guide rails and a fixed bracket. Its working principle is that the rotor is placed on the guide rail and the center of gravity of the rotor naturally faces downward under the action of gravity. The weight is reduced by rotating the rotor repeatedly, and finally The rotor reaches static balance;
  • the swing frame static balance device is composed of two swing frames, each of which includes a skateboard, a roller, an axial positioner, etc., and its working principle is similar to the guide rail static balance device.
  • the current rotor static balancing device has disadvantages such as large volume and weight, poor portability, and low balance accuracy. Therefore, a rotor static balancing device with wide application range, convenience and high precision is needed.
  • the existing static balance device of the rotor adopts rolling bearings as support, due to the large frictional resistance, long-term use will cause ball wear and reduce the measurement accuracy of the rotor.
  • the existing static pressure gas bearings are mostly manufactured as a whole. It cannot be applied to the problems of the existing rotor static balance device, but provides a split type adjustable swing angle static pressure gas bearing device for the rotor static balance.
  • the present invention further provides two other split type adjustable swing angle static pressure gas bearing devices for rotor static balance ,
  • the two static pressure gas bearing devices are portable high-precision rotor static balancing devices.
  • the present invention further provides an air floating support device for the rotating ring-shaped part.
  • a split type hydrostatic gas bearing device with adjustable swing angle for the static balance of the rotor including a shaft seat, an upper support, a lower support, a base and an air inlet channel; the shaft seat is processed inward The concave first semi-cylindrical surface, and the first semi-cylindrical surface is arranged upward, a plurality of air holes are machined on the first semi-cylindrical surface, the shaft seat is fixed on the upper support, and the shaft seat and the upper support are provided There is a sealed air cavity, a plurality of air holes communicate with the sealed air cavity, the sealed air cavity is connected with an external air supply device through an air inlet channel, the upper support and the lower support can be hinged to make the axis of the semi-cylindrical surface swing in the vertical direction to a certain extent Angle, the support and the base are connected together.
  • a split-type adjustable swing angle static pressure gas bearing device for rotor static balance including a bearing, a bearing seat, a sealed working air cavity, an upper base, a lower base, and a pillar;
  • the bearing is provided with a semi-cylinder
  • the working surface is provided with a number of micro-pores of a certain depth
  • the bearing is provided with a second semi-cylindrical surface
  • the second semi-cylindrical surface is designed with a number of small-sized pores with a certain depth.
  • the small air holes are connected, and the bearing 1 is fixed on the bearing seat to form a sealed working air cavity.
  • a number of small air holes communicate with the sealed working air cavity.
  • the sealed working air cavity is filled with medium-pressure gas through the air inlet channel.
  • the base is contacted by the spherical surfaces of the two pillars and can swing at a certain angle in the vertical direction, and the upper base and the lower base can rotate at a certain angle in the circumferential direction of themselves through the
  • a split-type hydrostatic gas bearing device with adjustable swing angle for static balance of the rotor comprising a bearing seat, an air bearing cover, an upper base, a pillar and a lower base; the bearing seat is mounted on it There is a sealed air cavity between the bearings, the sealed air cavity is connected to the external air supply device through the air inlet channel on the bearing seat, and a plurality of air holes on the bearing communicate with the sealed air cavity; the bottom of the bearing seat is provided with the The through hole communicating with the sealed air cavity, the air bearing cover is placed under the bearing housing and its opening is sealed to the bottom end surface of the bearing housing so that the air bearing cover and the bearing housing form a gas working air cavity, and the sealed air cavity passes through the through hole Connected to the gas working chamber; the multiple air holes on the air flotation support cover communicate with the gas working air chamber; the upper base is provided with a concave surface that matches the outer contour of the air support cover, and the concave surface is connected to the outer surface of the air support cover The surface clearance
  • the gas in the working air cavity can pass through multiple air holes on the air support cover to form between the outer surface of the air support cover and the concave surface
  • An inflatable model with a certain bearing capacity to float the bearing seat, the bearing seat can swing freely to realize the automatic centering of the rotor static balance device; the upper base is connected with the lower base through the pillar, and the distance between the upper base and the lower base can be passed through the pillar Make adjustments to adjust the elevation of the bearing seat.
  • An air bearing device for static balance of rotating ring-shaped parts comprising an air bearing structure, an axial sealing pressure plate, a radial sealing pressure plate, a connecting pillar, a base and two axial positioning devices;
  • the floating support structure is used to support the semi-cylindrical structure less than or equal to the rotating ring-shaped parts.
  • One end wall of the air floating support structure is provided with an air inlet hole, which communicates with the working air cavity in the air float support structure.
  • the angle between the two side walls in the circumferential direction on the working surface of the supporting structure is 30° ⁇ 180°, that is, the central angle corresponding to the arc on the cross section of the air bearing structure is 30° ⁇ 180°.
  • the curved side wall of the support structure is provided with a plurality of through holes communicating with the working air chamber.
  • the open end surface of the other end of the air bearing structure is sealed and connected by an axial sealing pressure plate, and the longitudinal section end of the air bearing structure is sealed with the radial sealing pressure plate.
  • the radial sealing pressure plate is connected to the base through the connecting pillar; the two ends of the working surface of the air bearing structure are respectively installed with axial positioning devices, and the gas can pass through the air inlet hole to work in the air bearing structure under working condition
  • an air film with a certain load is formed between the cylindrical surface of the rotating ring-shaped part to be tested for static balance, and the rotating ring to be tested for static balance
  • the parts float.
  • the first three of the above four technical solutions are all used for static balancing of the rotor or shaft, and the fourth solution is to statically balance cylindrical rotating ring-shaped parts (hollow parts), such as tooth sleeves or shaft sleeves.
  • the principles of the above-mentioned technical solutions are the same, and the four technical solutions have many phases or corresponding specific technical features, and are unitary.
  • the present invention has the following beneficial effects:
  • the shaft seat of the present invention is a semi-cylindrical surface and is matched with the rotor. It is inflated from the air inlet channel through an external air pressure device to generate a positive pressure in the sealed air cavity, and blow air into the contact between the rotor and the shaft seat through multiple air holes
  • the surface plays a supporting role, and can also support the long rotors with thick ends and thin middles, avoiding the problem that the integral static pressure gas bearing cannot pass through the long rotors.
  • the upper support and the lower support of the invention are hinged so that the shaft seat can swing at a certain angle, and the shaft seat is prevented from being worn when the rotor in the shaft seat is inclined.
  • the bearing of the present invention is split and fits the rotor gap to facilitate the placement of the rotor.
  • Medium-pressure gas is introduced into the working air cavity through the air inlet, and the gas forms a gas film with a certain bearing capacity on the working surface of the bearing through the air hole. Float the rotor, after the rotor is suspended, the rotor can be statically balanced.
  • the device of the invention is small in size, light in weight, and easy to carry; the invention uses the principle of air flotation to balance the rotor statically after floating, and the balance accuracy is high; the bearing and the bearing seat of the invention can rotate at a certain angle along their own axial direction, and can The rotor shaft swings at a certain angle to avoid collision and friction with the rotor, and has a strong adaptive ability.
  • the bearing of the present invention is provided with a semi-cylindrical working surface, which is in clearance fit with the rotor to be statically balanced. The working surface is provided with a plurality of miniature air holes.
  • the bearing is fixed on the bearing seat through the upper pressure plate and the side pressure plate, and the bearing is formed between the bearing and the bearing seat.
  • Sealed working air cavity multiple miniature air holes are connected with the sealed working air cavity
  • the bearing seat and the upper base are connected by two pillars
  • the bearing seat and the pillars are designed as spherical contact connection
  • the bearing seat can swing in the vertical direction to a certain extent Angle
  • a rotating device is designed between the upper base and the lower base
  • the bearing base and the upper base can rotate at a certain angle along the circumferential direction.
  • the invention is used in high-precision rotor static balance occasions.
  • This solution forms an air mold with a certain bearing capacity between the outer surface of the air bearing cover under the bearing seat and the concave surface of the upper base, and the bearing seat is floated so that the bearing seat can swing freely to realize a static rotor balance device Automatic alignment, simpler knots.
  • the invention is used in high-precision rotor static balance occasions.
  • Fig. 1 is a schematic diagram of the first technical solution of the present invention
  • Fig. 2 is a side view of Fig. 1
  • Fig. 3 is a top view of Fig. 1
  • Fig. 4 is a cross-sectional view of Fig. 2 AA
  • Fig. 5 is a schematic diagram of the shaft seat 1 (side view enlarged view );
  • Figure 6 is a plan view of the shaft seat 1;
  • Figure 7 is a plan view of the upper support 2;
  • Figure 8 is a front view of the upper support 2;
  • Figure 9 is a side view of the upper support 2;
  • Figure 10 is the CC of Figure 9 Sectional view.
  • FIG. 12 is a side view of FIG. 11;
  • FIG. 13 is a top view of FIG. 11;
  • FIG. 14 is a cross-sectional view of FIG. 12 AA;
  • FIG. 15 is a front view of the bearing 1;
  • Fig. 17 is a side view of the bearing 1;
  • Fig. 18 is a front view of the bearing housing 2;
  • Fig. 19 is a plan view of the bearing housing 2;
  • Fig. 20 is a schematic view of the lower base;
  • Fig. 21 is a plan view of the lower base; It is the front view of the lateral pressing plate;
  • Fig. 23 is a top view of the lateral pressing plate;
  • Fig. 24 is a perspective view of the second technical solution of the present invention.
  • Figure 25 is a front view of the assembly of the third technical solution of the present invention
  • Figure 26 is a cross-sectional view of the assembly
  • Figure 27 is a top view of the bearing housing
  • Figure 28 is a cross-sectional view of the bearing housing
  • Figure 29 is a top view of the air support pillar
  • Figure 30 is the air support
  • Fig. 31 is a sectional view of the air-floating pillar
  • Fig. 32 is a top view of the upper base
  • Fig. 33 is a sectional view of the upper base
  • Fig. 34 is a perspective view of the third technical solution of the present invention.
  • FIG. 35 is a front view of the assembly of the fourth technical solution of the present invention
  • FIG. 36 is a side view of the assembly
  • FIG. 37 is a cross-sectional view of the assembly
  • FIG. 38 is a front view of the air support structure
  • FIG. 39 is a cross-sectional view of the air support structure
  • Figure 40 It is the top view of the air bearing structure;
  • Figure 41 is the front view of the axial sealing pressure plate,
  • Figure 42 is the top view of the axial sealing pressure plate;
  • Figure 43 is the front view of the radial sealing pressure plate,
  • Figure 44 is the top view of the radial sealing pressure plate;
  • Figure 45 is the axial
  • Figure 46 is a sectional view of the axial positioning thrust,
  • Figure 47 is a top view of the bottom plate,
  • Figure 48 is a perspective view of the fourth technical solution of the present invention (the air bearing structure 2 is smaller than a semi-cylindrical structure),
  • Figure 49 It is a perspective view of another structure of the fourth technical solution of the present invention (the air bearing structure 2 is a semi-cylindrical structure).
  • Figure 50 is a schematic diagram of the static balance of the rotor (corresponding to the first three solutions of the present invention), and Figure 51 is a schematic diagram of the static balance of a rotating ring-shaped part (corresponding to the fourth solution of the present invention).
  • This embodiment will be described with reference to Figure 1, Figure 2, Figure 3, Figure 4 and Figure 10.
  • This embodiment includes a shaft base 1, an upper support 2, a lower support 3, a base 4 and an air intake Channel 5;
  • a first semi-cylindrical surface that is concave inward is machined on the shaft seat 1, and the first semi-cylindrical surface is arranged upward, and a plurality of air holes 1-1 are machined on the first semi-cylindrical surface, and the shaft seat 1 is fixed on the upper support On the seat 2, and between the shaft seat 1 and the upper support 2, a sealed air cavity 6 is provided.
  • a plurality of air holes 1-1 communicate with the sealed air cavity 6, and the sealed air cavity 6 is connected to an external air supply device through an air inlet channel 5 ,
  • the upper support 2 and the lower support 3 are hinged to make the axis of the semi-cylindrical surface swing at a certain angle along the vertical direction, and the support 3 and the base 4 are connected together.
  • the rotor to be supported When in use, the rotor to be supported is set in the shaft seat 1, inflated from the air inlet channel 5 through an external air pressure device, so that the sealed air cavity 6 generates a positive pressure, and air is blown into the rotor and the shaft through a plurality of air holes 1-1
  • the contact surface of the seat 1 forms a thin gas film to play a supporting role.
  • This embodiment will be described with reference to Figures 2 and 3.
  • This embodiment also includes an axial positioning device 7.
  • the axial positioning device includes a baffle 7-1, two guide rods 7-2 and an axial Limit axis 7-3;
  • Two guide rods 7-2 are slidably arranged on the shaft seat 1, the baffle plate 7-1 is fixed on the two guide rods 7-2, and the side of the baffle plate 7-1 facing the shaft seat 1 is machined with a bearing hole.
  • the hole is provided with an axial limit shaft 7-3, a conical surface is machined on the axial limit shaft 7-3, the axis of the conical surface on the axial limit shaft 7-3, and the semi-cylindrical shaft of the shaft seat 1
  • the axis of the surface and the axis of the two guide rods 7-2 are parallel to each other, and the conical surface on the axial limiting shaft 7-3 is concentric with the semi-cylindrical surface on the shaft seat 1, and the shaft seat 1
  • Two threaded holes are also machined on the upper surface, each threaded hole is provided with a top wire, and each top wire is pressed on each guide rod 7-2.
  • the rotor to be supported can be axially positioned.
  • Two guide rods 7-2 are provided, and the position of the axial limit shaft 7-3 can be adjusted according to the distance between the supported position and the end of the rotor. , In order to play the role of axis positioning, and then fix each guide rod 7-2 through the top wire.
  • composition and connection relationship are the same as in the first embodiment.
  • the supporting height of the shaft base 1 can be adjusted, and the axis of the shaft base 1 can be kept horizontal, which is convenient for installation.
  • composition and connection relationship are the same as in the first embodiment.
  • the purpose of providing four extension springs 8 is to keep the axis of the shaft seat 1 horizontal.
  • composition and connection relationship are the same as in the first embodiment.
  • Embodiment 5 This embodiment will be described with reference to FIGS. 2, 9 and 10.
  • the swing angle of the upper support 2 and the lower support 3 in this embodiment is 2°-4°.
  • the bottom of the upper support 2 is processed with a first boss 2-3 and a through hole
  • the top of the lower support 3 is processed with a second boss 3-1 and a connecting hole
  • the connecting holes of the support 3 are concentric and connected by a connecting shaft
  • the first boss 2-3 of the upper support 2 and the second boss 3-1 of the lower support 3 are arranged oppositely
  • the angle between the plane of the platform 2-3 and the plane of the second boss 3-1 of the lower support 3 is 2° ⁇ 4°.
  • the first boss 2 -3 and the second boss 3-1 are used to define the swing angle of the upper support 2 and the lower support 3.
  • composition and connection relationship are the same as in the first embodiment.
  • Embodiment 6 This embodiment will be described with reference to FIGS. 4-10.
  • the shaft seat 1 of this embodiment is also processed with a second semi-cylindrical surface that protrudes outwards.
  • There are semi-circular protrusions 1-5 the second semi-cylindrical surface convex outward and the first semi-cylindrical surface concave inward on the shaft seat 1 are arranged concentrically, and the second semi-cylindrical surface convex outward is processed with groove 1- 3 and two parallel first semi-annular sealing grooves 1-2, the grooves 1-3 are arranged between the two semi-annular sealing grooves 1-2, and each first semi-annular sealing groove 1-2 is provided with rubber Sealing strip, the upper support 2 is processed with a third semi-cylindrical surface that is concave inward, and the end of the third semi-cylindrical surface is processed with two parallel semicircular ring grooves 2-2, each semicircular protrusion 1- 5 Cooperate with
  • the shaft seat 1 is also machined with two second semi-annular sealing grooves 1-4.
  • the two second semi-annular sealing grooves 1-4 are arranged on both sides of the axis of the concave first semi-cylindrical surface.
  • the upper support 2 Two third semi-annular sealing grooves 2-1 are also processed on the upper surface.
  • the two third semi-annular sealing grooves 2-1 are arranged on both sides of the axis of the second semi-cylindrical surface, and each third semi-annular sealing groove 2- 1 It is matched with each semi-annular sealing groove 1-4 to form a complete O-ring groove.
  • Each O-ring groove is provided with an O-shaped rubber sealing ring, and each O-shaped rubber sealing ring is pressed by a pressure plate 9 ,
  • the shaft base 1 and the upper support 2 are respectively connected with the pressing plate 9 by screws.
  • the screw on the shaft seat 1 passes through the pressure plate and the shaft seat 1 itself is connected with the upper support 2 so that the rubber sealing strip in the first semi-annular sealing groove 1-2 is in close contact with the second semi-cylindrical surface on the upper support 2 .
  • composition and connection relationship are the same as in the first embodiment.
  • Embodiment 7 This embodiment will be described with reference to FIG. 5.
  • the arrangement of the multiple air holes 1-1 in this embodiment is denser and denser from both sides of the axis of the first semi-cylindrical surface to the center of the axis of the first semi-cylindrical surface. .
  • the pores 1-1 at the bottom of the first semi-cylindrical surface in contact with the rotor are more distributed, which can improve the carrying capacity of the present invention.
  • composition and connection relationship are the same as in the first embodiment.
  • the base 4 of the present invention is fixed on the installation equipment, the shaft seat 1 is in contact with the rotor to be supported, and the air pump on the external air pressure device is used to inflate the sealed air cavity 6 to generate positive pressure in the sealed air cavity 6
  • the multiple air holes 1-1 on the shaft base 1 enter the contact surface of the rotor and the shaft base 1 to form a gas film.
  • the shaft base 1 deflects at a certain angle relative to the base 4 to adapt to the deflection of the rotor.
  • the split-type adjustable swing angle static pressure gas bearing device for rotor static balance described in this embodiment is a portable high-precision rotor static balance device, which includes a bearing 1, a bearing seat 2, Seal the working air cavity, the upper base 3, the pillar 9, the lower base 4; the bearing 1 is designed with a semi-cylindrical working surface, and the working surface is designed with a certain depth of multiple micro air holes 1-3, and the bearing 1 is designed with a second semi-cylindrical The second semi-cylindrical surface is designed with a number of small air holes 1-4 with a certain depth.
  • the multiple micro air holes 1-3 are connected with the multiple small air holes 1-4.
  • the bearing 1 is fixed on the bearing seat 2 to form a seal Working air cavity, a number of small air holes 1-4 are connected to the sealed working air cavity.
  • the sealed working air cavity is filled with medium pressure gas through the air inlet channel 2-6.
  • the bearing seat 2 and the lower base 3 are in spherical contact with the support 9 and can be moved along Swing at a certain angle in the vertical direction, the upper base 3 and the lower base 4 can be rotated by a certain angle in their circumferential direction through the rotating device 10.
  • the rotor When the rotor is statically balanced, the rotor is placed on the working surface of the bearing, and the external air supply device supplies air in the 2-6 phase sealed working air chamber through the air inlet.
  • the gas is blown out from the micro air holes on the working surface of the bearing, and the working surface A gas film with a certain load is formed between the rotors, which floats the rotors and balances them statically.
  • the sealed working air chamber of this embodiment is composed of a bearing 1, a bearing seat 2, a vertical pressure plate 6 and a transverse pressure plate 7; both sides of the bearing 1 are designed with a first half O-ring groove 1-1, so The two sides of the bearing seat 2 are designed with second half O-ring grooves 2-3, the transverse pressure plate 7 is designed with a gap 7-2, the first half O-ring groove 1-1, the second half O-ring groove 2- 3 and the gap 7-2 form two O-ring grooves, each O-ring groove is designed with an O-shaped silicone seal ring, and each O-ring groove is pressed by the vertical pressure plate 6, which is connected by bolts
  • the front and rear sides of the bearing 1 are designed with first semi-annular seal grooves 1-6
  • the front and rear sides of the bearing seat 2 are designed with second semi-annular seal grooves 2-7
  • the first semi-annular seal grooves 1-6 and the second semi-annular seal groove form a third semi-ann
  • Bearing 1 is designed with cylindrical projections 1-2 that closely fit the third cylindrical surface of bearing seat 2.
  • Bearing seat 2 is designed with axial positioning projection structure 2-5 of bearing 1 and bearing 1 is designed with lateral
  • the positioning notch 1-5 of the pressing plate 7 is provided with positioning protrusions 7-3 on the transverse pressing plate 7, and the positioning protrusions 7-3 are matched with the positioning notches 1-5.
  • the lower surface of the vertical pressing plate 5 is designed with an O-shaped annular protrusion 5-1 that matches the O-ring groove.
  • the height is smaller than the depth of the O-ring groove, and the vertical pressure plate 5 is designed with a certain gradient of cuts 5-2 near the semi-cylindrical working surface to prevent the vertical pressure plate from colliding with the rotor.
  • the upper end of the pillar 9 is designed as a spherical surface
  • the middle is designed with a platform 9-1
  • the lower bottom surface of the bearing housing 2 is designed with a hemispherical surface 2-2, which matches with the spherical surface of the pillar 9.
  • a certain angle of swing limit cut surface 2-1 is designed on both sides of the bottom end of the bearing seat 2 (when the bearing seat swings, the swing limit platform is in contact with the platform 9-1 to prevent the bearing seat from falling), the support 9 Threaded connection with the upper bottom surface 3.
  • Embodiment 5 The rotating device 10 of this embodiment includes a plurality of rolling bearing shafts 10-1 and rolling bearings 10-2.
  • a plurality of semi-cylindrical grooves are designed at both ends of the lower base 4, and the plurality of semi-cylindrical grooves are arranged in a circumferential direction along the 10-3 circle, and the plurality of rolling bearing shafts 10-1 pass through the rolling bearings 10-2.
  • the number of rolling bearings 10-1 is the same as the number of semi-cylindrical grooves, the installation method of the rolling bearing shafts 10-1 is vertical embedded, and the rolling bearing shaft 10-1 part of the body structure protrudes from
  • the lower base 4 is designed with a concave surface at the lower part of the upper base 3, the concave surface is in contact with a plurality of rolling bearing surfaces, and the upper base 3 can be rotated by rolling bearings arranged in a circumferential direction.
  • This embodiment includes an upper bottom surface rotation center positioning shaft 11, the upper bottom surface 3 is designed with a cylindrical hole in the center, which is in clearance fit with the rotation center positioning shaft 11, and the bottom bottom surface 4 is designed with a threaded hole in the center.
  • the rotation center positioning shaft 11 is screwed.
  • Embodiment 7 This embodiment includes a rotor axial positioning device 5, which includes a baffle 5-2, two guide rods 5-1 and a positioning cone 5-3.
  • the positioning cone 5-3 has a cylindrical and conical structure. The cone on the positioning cone 5-3 is concentric with the semi-cylindrical working surface.
  • the positioning cone 5-3 is installed on the baffle 5-2.
  • a guide rod 5-1 is slidably mounted on the bearing seat 2, and a top wire 2-4 is designed on the bearing seat 2 to fix the guide rod 5-1.
  • Embodiment 8 also includes an integral connecting structure 8 which includes a tension spring 8-3, a hook 8-1 and a hook 8-2.
  • the number of tension springs 8-3 is 4, the bearing seat 2 is designed with a hook 8-1, the lower base 4 is designed with a hook 8-2, and both ends of the tension spring 8-3 are respectively hung on the hook 8 -1 and the hook 8-2 to connect the bearing seat 2 and the lower base 4 as a whole.
  • the split-type adjustable swing angle static pressure gas bearing device for the static balance of the rotor described in this embodiment provides another support structure of a bearing seat, including: a bearing seat 1, an air bearing support cover 2, an upper The base 3, the pillar 4, the lower base 5; the bearing seat 1 is provided with a cylindrical through hole 1-1, the lower bottom surface is designed with an internal threaded hole 1-2, and the air support cover 2 is provided with a cylindrical through hole 2-1, The floating support cover 2 and the upper base 1 are connected to the internal threaded hole 1-2 by bolts through the cylindrical through hole 2-1, and a sealing ring 6 is arranged between the floating support cover 2 and the bearing seat 1 to form a gas working air cavity 2-6.
  • the upper base is designed with a concave spherical surface 3-1, which is in clearance fit with the outer surface of the air support cover 2-4.
  • the air support cover 2 is placed in In the concave spherical surface 3-1, under working conditions, the gas in the working air chamber 2-6 passes through the multiple air holes 2-2 and the multiple small air holes 2-3, and then on the outer surface of the air support cover 2-4 and An air mold with a certain bearing capacity is formed between the concave spherical surfaces 3-1, and the bearing seat 1 is floated, and the bearing seat 1 can swing freely to realize the automatic centering of the rotor static balance device;
  • the upper base 3 is provided with circular concave platforms 3-2 on both sides, the upper end of the pillar 4 is provided with a convex platform 4-1, and the concave platform 3-2 falls on the convex platform 4-1 to support the upper base 3;
  • the lower end of the pillar 4 is provided with external threads 4-2, and internal threads 5-1 on both sides of the lower base 5, and the pillar and the lower base are connected by threads, and the elevation of the bearing seat can be adjusted by rotating the pillar 4.
  • the air-floating support device for static balance of rotating ring-shaped parts described in this embodiment is used for statically balancing rotating ring-shaped parts.
  • the principle of the above-mentioned technical solution is the same as the principle of air floating support.
  • the previous ones are Statically balance the shaft.
  • This is the static balance of rotating ring-shaped parts (hollow parts), such as gear sleeves or shaft sleeves.
  • the air floatation support device for static balance of rotating ring-shaped parts described in this embodiment includes an axial positioning device 1, an air floatation support structure 2, an axial sealing pressure plate 3, a radial sealing pressure plate 4, a connecting pillar 5, and a base 6;
  • the floating support structure 2 is a semi-cylindrical structure less than or equal to that used to support the rotating ring-shaped parts.
  • One end wall of the air floating support structure 2 is provided with an air inlet 2-5, an air inlet 2-5 and an air floating support structure 2 is connected with the working air chamber 2-2, and the angle ⁇ between the two side walls along the circumferential direction on the working surface 2-1 of the air bearing structure 2 is 30° ⁇ 180°, that is, the air bearing structure (2 )
  • the central angle ⁇ corresponding to the arc in the cross section is 30° ⁇ 180°
  • the air bearing structure 2 is provided with a plurality of through holes communicating with the working air chamber 2-2 on the curved side wall of the air bearing structure 2.
  • the open end surface of the other end of the air bearing structure is sealed and connected by the axial sealing pressure plate 3, the longitudinal section end of the air bearing structure 2 is sealingly connected with the radial sealing pressure plate 4, and the radial sealing pressure plate 4 is connected to the base 6 through the connecting pillar 5; the air bearing structure 2-
  • the two ends of the working surface 2-1 are respectively installed with the axial positioning device 1, in the working state, the gas can pass through the air inlet 2-5 to the working air cavity 2-2 in the air floating support structure 2, and pass A plurality of through holes 2-4 are formed on the working surface 2-1 of the air bearing structure 2 and the cylindrical surface of the rotating ring-shaped part to be tested for static balance to form an air film with a certain load.
  • the ring-shaped part floats.
  • the angle ⁇ is 30° ⁇ 150°, as shown in Figure 35-48.
  • the angle ⁇ can be 180°, as shown in Figure 49. In practical applications, the angle ⁇ can be 45° ⁇ 90° depending on the specific situation.
  • the air bearing structure 2 has: a working surface 2-1, a working air cavity 2-2, a plurality of small cylindrical through holes 2-3, a plurality of micro cylindrical through holes 2-4, an air inlet 2-5, axial The circumferential positioning groove 2-6 of the positioning device 6, the axial positioning groove 2-7 of the axial positioning device 1, the axial sealing groove 2-8 of the air bearing structure 1, the diameter of the air bearing structure 1 To seal groove 2-9, internal threaded hole 2-10 connected with radial sealing pressure plate, internal threaded through hole 2-11 connected with axial sealing pressure plate; in working state, medium pressure gas passes through the air inlet 2- 5 To the working air cavity, through multiple small cylindrical through holes 2-3 and multiple micro cylindrical through holes 2-4 to the working surface 2-1, between the cylindrical surface of the rotating ring-shaped part to be tested for static balance A gas film with a certain load is formed, and the rotating ring-shaped part to be tested for static balance is floated.
  • Axial positioning device 1 is composed of axial positioning thrust plate 1-1, axial positioning sealing plate 1-2, axial positioning device fixing plate 1-3 and axial positioning pin 1-4;
  • axial positioning thrust plate 1-1 is designed with working air chamber 1-1-1, air inlet channel 1-1-2, sealing groove 1-1-3, silicone or rubber sealing material in the sealing groove, working air chamber 1-1- 1
  • the surface is designed with multiple small cylindrical through holes 1-1-4, multiple mini-cylindrical through holes 1-1-5, and multiple cylindrical threaded holes 1-1-6, thrust working surface 1-1 -7, Axial positioning boss 1-1-8, matched with groove 2-7 and groove 3-3, cylindrical through hole 1-2-1 is provided on axial positioning sealing plate 1-2, quantity Corresponding to the position corresponding to the multiple cylindrical threaded holes 1-1-6, connected by bolts;
  • the axial positioning fixing plate 1-3 is matched with the axial positioning groove 2-7 of the axial positioning device 1, and the axial positioning fixing plate 1-3 is designed with a cylindrical through hole 1-3-2, which is screwed to the cylindrical thread
  • the medium-pressure gas enters the working air chamber 1-1-1 from the air inlet channel 1-1-2, and is composed of multiple small cylindrical through holes 1-1-4 and multiple micro-cylindrical through holes 1- 1-5 enters the thrust working surface 1-1-7, and forms an air film with a certain thrust along the axial end surface of the rotating ring-shaped part to be tested for static balance, which plays a role in axial positioning.
  • the radial sealing pressure plate 4, the cylindrical through hole 4-1 is bolted to the internal threaded hole 2-10, there are two cylindrical supporting structures 4-2, which are threaded to the connecting pillar 5;
  • the connecting pillar 5 is designed as a double-ended external thread;
  • the base 6 has two internal threaded through holes 6-1, which are connected to the radial sealing pressure plate 4 through the connecting pillar 5, and are designed with several waist-shaped through holes 6-2 to be fixed to the worktable ;

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种用于转子静平衡的剖分式可调摆角的静压气体轴承装置,以及一种旋转圈形零件静平衡的气浮支承装置,属于静平衡检测领域,为解决转子测量精度低以及为实现对旋转圈形零件进行静平衡。用于转子静平衡的剖分式可调摆角的静压气体轴承装置,包括轴座(1)、上支座(2)、下支座(3)、底座(4)和进气通道(5);在轴座(1)上加工有向内凹的第一半圆柱面,且第一半圆柱面朝上设置,在第一半圆柱面上加工有多个气孔(1-1),轴座(1)固定在上支座(2)上,且轴座(1)与上支座(2)之间设有密封气腔(6),多个气孔(1-1)与密封气腔(6)连通,密封气腔(6)通过进气通道(5)与外部供气装置连接,上支座(2)与下支座(3)铰接能使半圆柱面的轴线沿着竖直方向摆动一定角度,下支座(3)与底座(4)连接在一起。转子与轴承之间是气体接触,摩擦系数小,转子静平衡精度高。

Description

用于转子静平衡的剖分式可调摆角的静压气体轴承装置及旋转圈形零件静平衡的气浮支承装置
对于本申请,申请人要求在先中国发明专利申请号CN201910376022.0的优先权,该发明专利申请在中华人民共和国国家知识产权局的申请日为2019年05月07日。
技术领域
本发明涉及一种轴承或旋转圈形零件的静压气体支撑装置,具体涉及一种用于转子静平衡的剖分式可调摆角的静压气体轴承装置及旋转圈形零件的气浮支承装置,涉及转子或旋转圈形零件静平衡领域、转子或旋转圈形零件静平衡检测领域以及静压气体支撑或气浮支承技术领域。
背景技术
在旋转机械的转子部件制造安装过程中,由于材料不均匀、加工误差和装配误差等原因会导致转子产生不平衡质量。在转子旋转过程中,该不平衡质量会使旋转机械产生振动噪声,严重影响旋转机械的安全性和可靠性。因此旋转机械的转子部件都需要做静平衡,目前转子静平衡检测装置通常使用转子静平衡装置。现有的转子静平衡装置设有两个上下可调节的滑板,每个滑板上设有两个呈一定间隙的滚动轴承,将转子放入到每个滑板的滚动轴承上,并在转子的两端各设有一个滚动轴承来进行轴向定位,采用这种方式来做静平衡存在以下缺陷:摩擦阻力大长时间使用造成滚珠磨损,导致测量精度的下降。静压气体润滑轴承具有摩擦损耗小、运动精度高、振动小、无污染等一系列优点,近些年来在机床行业、高速和精密机械工业、电子工业和医疗器械工业等领域得到了广泛的应用。目前静压气体轴承多是整体制造,不能应用于现有的转子静平衡装置,其主要原因是转子在做静平衡的过程中需要将轴设置成浮动形式,转子转动过程中可能会发生倾斜对轴承造成碰磨,无法满足转子静平衡需要。
目前转子静平衡主要是导轨式和摆架式方法。其中导轨式静平衡装置主要由两根高精度平行导轨和固定支架组成,其工作原理是,将转子放置于导轨上,在重力作用下转子重心自然朝下,通过转动转子反复减重,最终使转子达到静平衡;摆架式静平衡装置由两个摆架组成,每个摆架包括滑板、滚轮、轴向定位器等,其工作原理与导轨式静平衡装置类似。目前转子静平衡装置存在体积重量大、便携性差、平衡精度低等缺点,因此需要一种应用范围广、便捷性高精度的转子静平衡装置。
对旋转圈形零件(空心零件)进行静平衡的问题,现有技术鲜有研究。
发明内容
本发明为了解决现有的转子静平衡装置采用滚动轴承来做支撑,由于摩擦阻力较大,长时间使用会造成滚珠磨损,导致转子测量精度下降,而现有的静压气体轴承多是整体制造,不能应用于现有的转子静平衡装置的问题,而提供用于转子静平衡的剖分式可调摆角的静压气体轴承装置。
本发明还为了解决现有转子静平衡装置体积重量大、便携性差、静平衡精度低等问题,进而 提供了另外两种用于转子静平衡的剖分式可调摆角的静压气体轴承装置,该两种静压气体轴承装置为便携式高精度转子静平衡装置。
本发明为了实现对旋转圈形零件进行静平衡的问题,进而提供了一种旋转圈形零件的气浮支承装置。
本发明为解决上述技术问题采取的技术方案是:
技术方案一:一种用于转子静平衡的剖分式可调摆角的静压气体轴承装置,包括轴座、上支座、下支座、底座和进气通道;轴座加工有向内凹的第一半圆柱面,且第一半圆柱面朝上设置,在第一半圆柱面上加工有多个气孔,轴座固定在上支座上,且轴座与上支座之间设有密封气腔,多个气孔与密封气腔连通,密封气腔通过进气通道与外部供气装置连接,上支座与下支座铰接能使半圆柱面的轴线沿着竖直方向摆动一定角度,支座与底座连接在一起。
技术方案二:一种用于转子静平衡的剖分式可调摆角的静压气体轴承装置,包括轴承、轴承座、密封工作气腔、上底座、下底座、支柱;轴承设有半圆柱形工作表面,工作表面上设有一定深度的多个微型气孔,轴承设有第二半圆柱形面,第二半圆柱面上设计有一定深度的多个小型气孔,多个微型气孔与多个小型气孔连通,轴承1固定在轴承座上二者之间形成密封工作气腔,多个小型气孔与密封工作气腔连通,密封工作气腔通过进气通道充入中压气体,轴承座与上底座通过两个支柱球面接触,可沿竖直方向摆动一定的角度,上底座与下底座通过转动装置可沿自身圆周方向旋转一定的角度。
技术方案三:一种用于转子静平衡的剖分式可调摆角的静压气体轴承装置,包括轴承座、气浮支撑罩、上底座、支柱和下底座;轴承座与安装在其上的轴承之间具有密封气腔,密封气腔通过轴承座上的进气通道与与外部供气装置连接,轴承上多个气孔与所述密封气腔连通;轴承座的底部设有与所述密封气腔连通的通孔,气浮支撑罩置于轴承座的下方且其开口与轴承座底端面密封连接使气浮支撑罩和轴承座形成气体工作气腔,所述密封气腔通过通孔与气体工作气腔连通;气浮支撑罩上的多个气孔与气体工作气腔连通;上底座上设有气浮支撑罩外面表轮廓相吻合的凹型面,凹型面与气浮支撑罩的外表面间隙配合,气浮支撑罩置于凹型面内,工作情况下,工作气腔内的气体可通过气浮支撑罩上的多个气孔后,在气浮支撑罩外表面和凹型面之间形成具有一定承载力的气模以将轴承座浮起,轴承座可自由摆动,实现转子静平衡装置自动对中;上底座通过支柱与下底座连接,上底座与下底座之间的距离可通过支柱进行调整从而调整轴承座的标高。
技术方案四:一种旋转圈形零件静平衡的气浮支承装置,所述装置包括气浮支承结构、轴向密封压板、径向密封压板、连接支柱、底座以及两个轴向定位装置;气浮支承结构用于支承旋转圈形零件的小于或等于半圆柱形结构,气浮支承结构的一端壁上设有进气孔,进气孔与气浮支承结构内的工作气腔连通,气浮支承结构的工作表面上沿圆周方向的两侧壁之间的夹角为30°~180°,即气浮支承结构横截面上的圆弧所对应的圆心角为30°~180°,气浮支承结构曲面侧壁上设有多个与工作气腔连通的通孔,气浮支承结构的另一端开口端面通过轴向密封压板密封连接,气浮支承结构的纵向截面端与径向密封压板密封连接,径向密封压板通过连接支柱与底座连接;气浮支承结构的-工作表面的两端分别安装有轴向定位装置,工作状态下,气体可通过进气 孔至气浮支承结构内的工作气腔中,通过多个通孔到气浮支承结构的工作表面上,与待静平衡检测旋转圈形零件的圆柱形表面之间形成具有一定承载的气膜,将待静平衡检测旋转圈形零件浮起。
上述四个技术方案中前三个方案均用于转子或轴的静平衡,第四种方案是对圆柱形旋转圈形零件(空心零件)进行静平衡,比如齿套或轴套等。上述技术方案的原理一样,并且四个技术方案具有很多相或相应的特定技术特征,具有单一性。
本发明与现有技术相比具有以下有益效果:
技术方案一:本发明轴座为半圆柱面并与转子配合,通过外部的气压装置从进气通道充气,使密封气腔产生正压,通过多个气孔将气体吹入转子与轴座的接触表面以起到支撑的作用,也可以对两端粗中间细的长转子起到支撑的作用,避免整体式静压气体轴承不能穿过长转子的问题。本发明的上支座和下支座铰接使轴座能摆动一定的角度,避免轴座内的转子出现倾斜时磨损轴座。
技术方案二:本发明轴承为剖分式并与转子间隙配合,便于转子放置,通过进气口向工作气腔内通入中压气体,气体通过气孔在轴承工作表面形成具有一定承载力气膜,将转子浮起,转子悬浮后便可对转子进行静平衡。本发明装置体积小、重量轻,便于携带;本发明利用气浮原理将转子浮起后对转子静平衡,平衡精度高;本发明轴承和轴承座可沿自身轴向转动一定角度,并且可沿转子轴摆动一定的角度,避免与转子发生碰磨,自适应能力强。本发明轴承设有半圆柱面的工作表面,与待静平衡转子间隙配合,工作表面上设有多个微型气孔,轴承通过上压板和侧压板固定在轴承座上,轴承与轴承座之间形成密封工作气腔,多个微型气孔与密封工作气腔连通,轴承座与上底座之间通过两个支柱连接,轴承座与支柱之间设计为球面接触连接,轴承座可沿竖直方向摆动一定角度,上底座与下底座之间设计有转动装置,轴承座和上底座可沿圆周方向转动一定角度。本发明使用于高精度转子静平衡场合。
技术方案三:本方案在轴承座下方的气浮支撑罩外表面和上底座凹型面之间形成具有一定承载力的气模,将轴承座浮起,轴承座可自由摆动,实现转子静平衡装置自动对中,结简较简单。本发明使用于高精度转子静平衡场合。
技术方案四:本方案中,在气浮支承结构工作表面与待静平衡检测旋转圈形零件的圆柱形表面之间形成具有一定承载的气膜,将待静平衡检测旋转圈形零件浮起;轴向定位装置的止推工作表面与待静平衡检测旋转圈形零件沿轴向端面形成具有一定推力的气膜,起到轴向定位作用。结构简单,用于旋转圈形零件的静平衡。
转子与轴承之间是气体接触,摩擦系数小,因此转子静平衡精度高。
附图说明
每种技术方案的附图标记均是独立的。
图1是本发明技术方案一的示意图,图2是图1的侧视图;图3是图1的俯视图;图4是图2的A-A剖视图;图5是轴座1的示意图(侧视放大图);图6是轴座1的俯视图;图7是上支座2的俯视图;图8是上支座2的正视图;图9是上支座2的侧视图;图10是图9的C-C剖视 图。
图11是本发明技术方案二的示意图:图12是图11的侧视图;图13是图11的俯视图;图14是图12的A-A剖视图;图15是轴承1的正视图;图16是轴承1的俯视图;图17是轴承1的侧视图;图18是轴承座2的正视图;图19是轴承座2的俯视图;图20是下底座的示意图;图21是下底座的俯视图;图22是横向压板的主视图;图23是横向压板的俯视图;图24是本发明技术方案二的立体图。
图25是本发明技术方案三的装配体正视图,图26是装配体剖视图,图27是轴承座上视图,图28是轴承座剖视图,图29是气浮支柱上视图,图30是气浮支柱左视图,图31是气浮支柱剖视图,图32是上底座上视图,图33是上底座剖视图,图34是本发明技术方案三的立体图。
图35是本发明技术方案四的装配体主视图,图36是装配体侧视图,图37是装配体剖视图;图38是气浮支承结构主视图,图39是气浮支承结构剖视图,图40是气浮支承结构俯视图;图41是轴向密封压板主视图,图42是轴向密封压板俯视图;图43是径向密封压板主视图,图44是径向密封压板俯视图;图45是轴向定位止推板主视图,图46是轴向定位止推剖视图,图47是底板俯视图,图48是本发明技术方案四的立体图(气浮支承结构2为为小于半圆柱形结构),图49是本发明技术方案四另一种结构的立体图(气浮支承结构2为为半圆柱形结构)。
图50是转子静平衡示意图(对应本发明前三种方案),图51是旋转圈形零件静平衡示意图(对应本发明第四种方案)。
具体实施方式
技术方案一具体实施方式及工作原理,如图1-10所示:
具体实施方式一:结合图1、图2、图3、图4和图10来说明本实施方式,本实施方式它包括轴座1、上支座2、下支座3、底座4和进气通道5;
在轴座1上加工有向内凹的第一半圆柱面,且第一半圆柱面朝上设置,在第一半圆柱面上加工有多个气孔1-1,轴座1固定在上支座2上,且轴座1与上支座2之间设有密封气腔6,多个气孔1-1与密封气腔6连通,密封气腔6通过进气通道5与外部供气装置连接,上支座2与下支座3铰接能使半圆柱面的轴线沿着竖直方向摆动一定角度,支座3与底座4连接在一起。
在使用时,所要支撑的转子设置在轴座1内,通过外部的气压装置从进气通道5充气,使密封气腔6产生正压,通过多个气孔1-1将气体吹入转子与轴座1的接触表面形成薄的气膜以起到支撑的作用。
具体实施方式二:结合图2和图3来说明本实施方式,本实施方式它还包括轴向定位装置7,轴向定位装置包括挡板7-1、两根导杆7-2和轴向限位轴7-3;
两根导杆7-2滑动设置在所述轴座1上,挡板7-1固定在两根导杆7-2上,挡板7-1朝向轴座1的一面加工有轴承孔,轴承孔内设有轴向限位轴7-3,轴向限位轴7-3上加工有圆锥面,轴向限位轴7-3上的圆锥面的轴线、所述轴座1的半圆柱面的轴线和两根导杆7-2的轴线四者之间互相平行,且轴向限位轴7-3上的圆锥面与轴座1上的半圆柱面同心,在所述轴座1上还加工有两个螺纹孔,每个螺纹孔内设有顶丝,每个顶丝顶在每个导杆7-2上。
如此设置,对所要支撑的转子起到轴向定位的作用,设置两根导杆7-2,可以根据支撑的位置距离转子端部的距离的需要进行调整轴向限位轴7-3的位置,以起到轴线定位的作用,再通过顶丝对每根导杆7-2进行固定。
其它组成和连接关系与具体实施方式一相同。
具体实施方式三:结合图2和图4来说明本实施方式,本实施方式所述下支座3的底部设有三个内凹的半球面,底座4上加工有三个与三个内凹的半球面位置相对应的螺纹孔,每个螺纹孔内均设有支撑螺钉10,每个支撑螺钉10的螺帽上加工有向外凸的半球面,每个支撑螺钉10上的半球面与每个支座3的半球面相配合,且三个支撑螺钉10各自轴线上的任意一点的连线为三角形。
如此设置,可以调整轴座1的支撑高度,并使轴座1的轴线保持水平,方便安装。
其它组成和连接关系与具体实施方式一相同。
具体实施方式四:结合图3来说明本实施方式,本实施方式上支座2和底座4之间还设有四个拉伸弹簧8,每两个拉伸弹簧8为一组,两组拉伸弹簧8对称设置在所述半圆柱面轴线的两侧。
设置四个拉伸弹簧8的目的在于使轴座1的轴线保持水平状态。
其它组成和连接关系与具体实施方式一相同。
具体实施方式五:结合图2、图9和图10来说明本实施方式,本实施方式所述上支座2与所述下支座3的摆动角度为2°~4°。
优选地,上支座2的底部加工有第一凸台2-3和通孔,下支座3的顶部加工有第二凸台3-1和连接孔,上支座2的通孔和下支座3的连接孔同心并通过连接轴连接,且上支座2的第一凸台2-3和下支座3的第二凸台3-1相对设置,上支座2的第一凸台2-3所在平面和下支座3的第二凸台3-1所在平面的夹角为2°~4°,在上支座2与下支座3相对摆动时,第一凸台2-3和第二凸台3-1用来限定上支座2与下支座3的摆动角度。
其它组成和连接关系与具体实施方式一相同。
具体实施方式六:结合图4-图10来说明本实施方式,本实施方式所述轴座1上还加工有向外凸的第二半圆柱面,向外凸的圆柱面的两端分别设有半圆凸起1-5,轴座1上向外凸的第二半圆柱面和向内凹的第一半圆柱面同心设置,向外凸的第二半圆柱面上加工有沟槽1-3和两个并列的第一半环形密封槽1-2,沟槽1-3设置在两个半环形密封槽1-2之间,每个第一半环形密封槽1-2内设置有橡胶密封条,所述上支座2加工有向内凹的第三半圆柱面,第三半圆柱面的端部加工有两个并列的半圆环槽2-2,每个半圆凸起1-5与每个半圆环槽2-2配合,第三半圆柱面和第二半圆柱面相配合使沟槽1-3与第一半圆柱面之间形成密封气腔6;
轴座1上还加工有两个第二半环形密封槽1-4,两个第二半环形密封槽1-4设置在内凹的第一半圆柱面的轴线的两侧,上支座2上还加工有两个第三半环形密封槽2-1,两个第三半环形密封槽2-1设置在第二半圆柱面的轴线的两侧,每个第三半环形密封槽2-1与每个半环形密封槽1-4相吻合形成完整的O形环槽,每个O形环槽内设有一个O形橡胶密封圈,每个O形橡胶密封圈通 过一个压板9压住,轴座1与上支座2通过螺钉分别与压板9连接。且轴座1上的螺钉穿过压板与轴座1自身与上支座2连接使第一半环形密封槽1-2内的橡胶密封条与上支座2上的第二半圆柱面紧贴。
其它组成和连接关系与具体实施方式一相同。
具体实施方式七:结合图5来说明本实施方式,本实施方式多个气孔1-1的排布从第一半圆柱面轴线的两侧到第一半圆柱面轴线方向的中心越来越密集。
本实施方式第一半圆柱面与转子接触时,由于转子的重力作用,因此与转子接触的第一半圆柱面最底部的气孔1-1分布较多,可以提高本发明的承载能力。
其它组成和连接关系与具体实施方式一相同。
工作原理:
本发明的底座4固定在安装设备上,轴座1与待支撑的转子接触,通过外部的气压装置上的气泵对密封气腔6充气使密封气腔6产生正压,密封气腔6内的气体通过,轴座1上的多个气孔1-1进入转子与轴座1的接触表面形成气膜,当转子发生偏转时,轴座1相对底座4发生一定角度的偏转以适应转子的偏转。
技术方案二的具体实施方式及工作原理,如图11-24所示:
具体实施方式一:本实施方式所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置是一种便携式高精度转子静平衡装置,它包括轴承1、轴承座2、密封工作气腔、上底座3、支柱9、下底座4;轴承1设计有半圆柱形工作表面,工作表面上设计有一定深度的多个微型气孔1-3,轴承1设计有第二半圆柱形面,第二半圆柱面上设计有一定深度的多个小型气孔1-4,多个微型气孔1-3与多个小型气孔1-4连通,轴承1固定在轴承座2上,形成密封工作气腔,多个小型气孔1-4与密封工作气腔连通,密封工作气腔通过进气通道2-6充入中压气体,轴承座2与下底座3通过支柱9球面接触,可沿竖直方向摆动一定的角度,上底座3与下底座4通过转动装置10可沿自身圆周方向旋转一定的角度。在转子静平衡时,将转子放置在轴承工作表面上,外部供气装置通过进气道2-6相密封工作气腔内供气,气体从轴承工作表面上的微型气孔吹出,在工作表面与转子之间形成具有一定承载的气膜,将转子浮起,对转子进行静平衡。
具体实施方式二:本实施方式密封工作气腔由轴承1、轴承座2、竖向压板6和横向压板7组成;所述轴承1两侧设计有第一半O形环槽1-1,所述轴承座2两侧设计有第二半O形环槽2-3,横向压板7上设计有缺口7-2,第一半O形环槽1-1、第二半O形环槽2-3和缺口7-2形成两个O形环槽,每个O形环槽内设计有O形硅胶密封环,每个O形环槽通过竖向压板6压住,竖向压板6通过螺栓连接在轴承1和轴承座2上,轴承1前后两侧设计有第一半环形密封槽1-6,轴承座2前后两侧设计有第二半环形密封槽2-7,第一半环形密封槽1-6与第二半环形密封槽形成第三半环形密封槽,第三半环形密封槽内设计有尺寸一致的半环形硅胶密封垫,半环形硅胶密封垫的两端位于所述O形硅胶密封环正下放,每个半环形硅胶密封垫通过横向压板7压住,横向压板7通过螺栓连接在轴承1和轴承座2上,形成工作密封气腔;
轴承1上设计有圆柱形凸起1-2与轴承座2第三圆柱形面紧密贴合,轴承座2上设计有轴承 1的轴向定位凸起结构2-5,轴承1上设计有横向压板7的定位缺口1-5,横向压板7上设计有定位凸起7-3,定位凸起7-3与定位缺口1-5相配合。
具体实施方式三:本实施方式所述竖向压板5下表面设计有与所述O形环槽相配合的O形环状凸起5-1,所述O形环状凸起5-1的高度小于所述O形环槽深度,所述竖向压板5靠近所述半圆柱形工作表面设计有一定梯度的切口5-2,防止竖向压板与转子发生碰磨。
具体实施方式四:本实施方式所述支柱9上端设计为球面,中部设计有平台9-1,所述轴承座2下底面设计有半球面2-2,与所述支柱9的球面相配合,所述轴承座2底端两侧设计有一定角度的摆动限位切面2-1(当轴承座摆动时,摆动限位平台与平台9-1接触,防止轴承座偏倒),所述支柱9与所述上底面3螺纹连接。
具体实施方式五:本实施方式所述转动装置10包括多个滚动轴承轴10-1和滚动轴承10-2。所述下底座4两端设计有多个半圆柱形凹槽,多个半圆柱形凹槽沿10-3圆形进行周向布置设计,所述多个滚动轴承轴10-1通过滚动轴承10-2安装在半圆柱形凹槽内,多个滚动轴承10-1数量与半圆柱形凹槽数量一致,多个滚动轴承轴10-1安装方式为竖直嵌入式,滚动轴承轴10-1部分本体结构突出于下底座4,所述上底座3下部设计有凹面,凹面与多个滚动轴承表面接触,上底座3可通过周向布置的滚动轴承转动。
具体实施方式六:本实施方式它包括上底面转动中心定位轴11,所述上底面3中心设计有圆柱孔,与转动中心定位轴11间隙配合,所述下底面4中心设计有螺纹孔,与转动中心定位轴11螺纹连接。
具体实施方式七:本实施方式它包括转子轴向定位装置5,转子轴向定位装置5包括挡板5-2、两根导杆5-1和定位锥5-3。所述定位锥5-3为圆柱体和圆锥体结构,定位锥5-3上的圆锥体与所述半圆柱工作表面同心,定位锥5-3安装在所述挡板5-2上,两根导杆5-1滑动安装在所述轴承座2上,轴承座2上设计有顶丝2-4,可将导杆5-1固定。
具体实施方式八:本实施方式它还包括整体连接结构8,整体连接结构8包括拉伸弹簧8-3、挂钩8-1和拉钩8-2。拉伸弹簧8-3数量为4个,所述轴承座2上设计有挂钩8-1,所述下底座4上设计有挂钩8-2,拉伸弹簧8-3两端分别挂在挂钩8-1和挂钩8-2上,使轴承座2与下底座4连接为一体。
技术方案三的具体实施方式及工作原理,如图25-34所示:
本实施方式所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置给出了另外一种轴承座的支承结构,包括:轴承座1、气浮支撑罩2、上底座3、支柱4、下底座5;轴承座1设有圆柱形通孔1-1,下底面设计有内螺纹孔1-2,气浮支撑罩2设有圆柱形通孔2-1,气浮支撑罩2与上底座1通过螺栓穿过圆柱通孔2-1连接到内螺纹孔1-2,之间设有密封圆环6,气浮支撑罩2和轴承座1形成气体工作气腔2-6,气浮支柱内表面2-5上设计有多个气孔2-2,还设计多个小气孔2-3贯穿至气浮支撑罩外表面2-4,多个气孔2-2和多个气孔2-3连通,并与工作气腔2-6连通,上底座设计有凹球型面3-1,与气浮支撑罩外表面2-4间隙配合,气浮支撑罩2放置在凹球型面3-1内,工作情况下,工作气腔2-6内的气体通过多个气孔2-2和多个小气孔2-3后,在气 浮支撑罩外表面2-4和凹球型面3-1之间形成具有一定承载力的气模,将轴承座1浮起,轴承座1可自由摆动,实现转子静平衡装置自动对中;
上底座3两侧设有圆形凹台3-2,支柱4上端设有凸台4-1,凹台3-2落在凸台4-1上,支承上底座3;
支柱4下端设有外螺纹4-2,下底座5两侧内螺纹5-1,支柱与下底座通过螺纹连接,转动支柱4可调整轴承座的标高。
技术方案四的具体实施方式及工作原理,如图35-49所示:
本实施方式所述的一种旋转圈形零件静平衡的气浮支承装置用于对旋转圈形零件进行静平衡,与前述技术方案的原理一样,都是使用气浮支承原理,之前的那些是对轴进行静平衡,这个是对旋转圈形零件(空心零件)进行静平衡,比如齿套或轴套等。
本实施方式所述的旋转圈形零件静平衡的气浮支承装置包括轴向定位装置1、气浮支承结构2、轴向密封压板3、径向密封压板4、连接支柱5、底座6;气浮支承结构2为用于支承旋转圈形零件的小于或等于半圆柱形结构,气浮支承结构2的一端壁上设有进气孔2-5,进气孔2-5与气浮支承结构2内的工作气腔2-2连通,气浮支承结构2的工作表面2-1上沿圆周方向的两侧壁之间的夹角α为30°~180°,即气浮支承结构(2)横截面上的圆弧所对应的圆心角α为30°~180°,气浮支承结构2曲面侧壁上设有多个与工作气腔2-2连通的通孔,气浮支承结构2的另一端开口端面通过轴向密封压板3密封连接,气浮支承结构2的纵向截面端与径向密封压板4密封连接,径向密封压板4通过连接支柱5与底座6连接;气浮支承结构2的-工作表面2-1的两端分别安装有轴向定位装置1,工作状态下,气体可通过进气孔2-5至气浮支承结构2内的工作气腔2-2中,通过多个通孔2-4到气浮支承结构2的工作表面2-1上,与待静平衡检测旋转圈形零件的圆柱形表面之间形成具有一定承载的气膜,将待静平衡检测旋转圈形零件浮起。
α角度为30°~150°,如图35-48所示。α角度可为180°,如图49所示。在实际应用根据具体情况,α角度可采用45°~90°。
气浮支承结构2上具有:工作表面2-1,工作气腔2-2,多个小圆柱通孔2-3,多个微型圆柱通孔2-4,进气孔2-5,轴向定位装置6的周向定位凹槽2-6,轴向定位装置1的轴向定位凹槽2-7,气浮支承结构1的轴向密封凹槽2-8,气浮支承结构1的径向密封凹槽2-9,与径向密封压板连接的内螺纹孔2-10,与轴向密封压板连接的内螺纹通孔2-11;工作状态下,中压气体通过进气孔2-5至工作气腔中,通过多个小圆柱通孔2-3和多个微型圆柱通孔2-4到工作表面2-1上,与待静平衡检测旋转圈形零件的圆柱形表面之间形成具有一定承载的气膜,将待静平衡检测旋转圈形零件浮起。
轴向密封压板3,半圆柱形凸起3-1,与气腔2-2配合,密封凹槽3-2,轴向定位装置6的周向定位凹槽3-3,凹槽位置和宽度与轴向定位装置1的周向定位凹槽2-6一致,轴向定位装置1的轴向定位凹槽3-4,凹槽3-4内有螺纹孔;
轴向定位装置1由轴向定位止推板1-1、轴向定位密封压板1-2、轴向定位装置固定板1-3和轴向定位销1-4组成;轴向定位止推板1-1设计有工作气腔1-1-1,进气通道1-1-2,密封凹槽1-1-3, 密封凹槽中有硅胶或橡胶密封材料,工作气腔1-1-1表面设计有多个小圆柱通孔1-1-4,多个微型圆柱通孔1-1-5,还设计有多个圆柱形螺纹孔1-1-6,止推工作表面1-1-7,轴向定位凸台1-1-8,与凹槽2-7和凹槽3-3配合,轴向定位密封压板1-2上设有圆柱形通孔1-2-1,数量与位置与多个圆柱形螺纹孔1-1-6对应,通过螺栓连接;轴向定位固定板1-3与轴向定位装置1的轴向定位凹槽2-7配合,轴向定位固定板1-3设计有圆柱形通孔1-3-2,与定位凹槽中的圆柱形螺纹孔2-7-1螺纹连接,轴向定位固定板1-3设计还有圆柱形内螺纹孔1-3-2,与轴向定位销1-4螺纹连接。工作状态下,中压气体由进气通道1-1-2进入到工作气腔1-1-1中,并由多个小圆柱通孔1-1-4和多个微型圆柱通孔1-1-5进入到止推工作表面1-1-7上,与待静平衡检测旋转圈形零件沿轴向端面形成具有一定推力的气膜,起到轴向定位作用。
径向密封压板4,圆柱形通孔4-1与内螺纹孔2-10螺栓连接,有两个圆柱形支承结构4-2有内螺纹与连接支柱5螺纹连接;
连接支柱5设计为双头外螺纹;底座6,有两个内螺纹通孔6-1,通过连接支柱5与径向密封压板4连接,设计有数个腰型通孔6-2与工作台固定;
工作流程:将底座5固定在工作台上,将轴向定位装置1拆卸,将待静平衡检测旋转圈形零件放置在气浮支承结构2上,安装好轴向定位装置1,通入中压气体,待静平衡检测旋转圈形零件的圆柱形表面与气浮支承结构2的工作表面2-1之间形成具有一定承载的气膜,将待静平衡检测旋转圈形零件浮起,进行静平衡,同时待静平衡检测旋转圈形零件沿轴向两个端面与轴向定位装置1之间形成一定推力的气膜,防止待静平衡检测旋转圈形零件沿轴向脱落。由于待静平衡检测旋转圈形零件不与静平衡装置硬接触,摩擦力小,检测精度高。
利用本发明前三种方案进行转子静平衡检测:
如图50所示,将两个静平衡装置安装在工作台上,调整标高,使两个静平衡装置处于同一水平线上,将待静平衡检测转子放置在两个静平衡装置上,其中转子直径略小于静平衡装置的轴承直径,调整轴向定位装置,使轴向定位装置的顶锥与转子中心接触;接入中压气体,待转子浮起后,通过数次转动转子并添加配重,完成转子静平衡检测。
利用本发明第四种方案进行旋转圈形零件静平衡检测:
如图51所示,将旋转圈形零件静平衡装置安装在工作台上,调整标高,将待静平衡检测的旋转圈形零件放置在旋转圈型零件静平衡装置上,其中旋转圈形零件内圈曲率与旋转圈形零件静平衡装置的气浮支承结构曲率相同,调整轴向定位装置,使轴向定位装置工作表面与旋转圈形零件两个端面留有小缝隙,接入中压气体,待旋转圈形零件浮起后,通过数次转动旋转圈形零件并添加配重,完成旋转圈型零件静平衡检测。

Claims (22)

  1. 一种用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:它包括轴座(1)、上支座(2)、下支座(3)、底座(4)和进气通道(5);
    在轴座(1)上加工有向内凹的第一半圆柱面,且第一半圆柱面朝上设置,在第一半圆柱面上加工有多个气孔(1-1),轴座(1)固定在上支座(2)上,且轴座(1)与上支座(2)之间设有密封气腔(6),多个气孔(1-1)与密封气腔(6)连通,密封气腔(6)通过进气通道(5)与外部供气装置连接,上支座(2)与下支座(3)铰接能使半圆柱面的轴线沿着竖直方向摆动一定角度,支座(3)与底座(4)连接在一起。
  2. 根据权利要求1所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:它还包括轴向定位装置(7),轴向定位装置包括挡板(7-1)、两根导杆(7-2)和轴向限位轴(7-3);
    两根导杆(7-2)滑动设置在所述轴座(1)上,挡板(7-1)固定在两根导杆(7-2)上,挡板(7-1)朝向轴座(1)的一面加工有轴承孔,轴承孔内设有轴向限位轴(7-3),轴向限位轴(7-3)上加工有圆锥面,轴向限位轴(7-3)上的圆锥面的轴线、所述轴座(1)的半圆柱面的轴线和两根导杆(7-2)的轴线四者之间互相平行,且轴向限位轴(7-3)上的圆锥面与轴座(1)上的半圆柱面同心,在所述轴座(1)上还加工有两个螺纹孔,每个螺纹孔内设有顶丝,每个顶丝顶在每个导杆(7-2)上。
  3. 根据权利要求1所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:所述下支座(3)的底部设有三个内凹的半球面,底座(4)上加工有三个与三个内凹的半球面位置相对应的螺纹孔,每个螺纹孔内均设有支撑螺钉(10),每个支撑螺钉(10)的螺帽上加工有向外凸的半球面,每个支撑螺钉(10)上的半球面与每个支座(3)的半球面相配合,且三个支撑螺钉(10)各自轴线上的任意一点的连线为三角形。
  4. 根据权利要求1所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:上支座(2)和底座(4)之间还设有四个拉伸弹簧(8),每两个拉伸弹簧(8)为一组,两组拉伸弹簧(8)对称设置在所述半圆柱面轴线的两侧。
  5. 根据权利要求1所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:所述上支座(2)与所述下支座(3)的摆动角度为2°~4°。
  6. 根据权利要求1所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:所述轴座(1)上还加工有向外凸的第二半圆柱面,向外凸的圆柱面的两端分别设有半圆凸起(1-5),轴座(1)上向外凸的第二半圆柱面和向内凹的第一半圆柱面同心设置,向外凸的第二半圆柱面上加工有沟槽(1-3)和两个并列的第一半环形密封槽(1-2),沟槽(1-3)设置在两个半环形密封槽(1-2)之间,每个第一半环形密封槽(1-2)内设置有橡胶密封条,所述上支座(2)加工有向内凹的第三半圆柱面,第三半圆柱面的端部加工有两个并列的半圆环槽(2-2),每个半圆凸起(1-5)与每个半圆环槽(2-2)配合,第三半圆柱面和第二半圆柱面相配合使沟槽(1-3)与第一半圆柱面之间形成密封气腔(6);
    轴座(1)上还加工有两个第二半环形密封槽(1-4),两个第二半环形密封槽(1-4)设置在内凹的第一半圆柱面的轴线的两侧,上支座(2)上还加工有两个第三半环形密封槽(2-1),两个第三半环形密封槽(2-1)设置在第二半圆柱面的轴线的两侧,每个第三半环形密封槽(2-1) 与每个半环形密封槽(1-4)相吻合形成完整的O形环槽,每个O形环槽内设有一个O形橡胶密封圈,每个O形橡胶密封圈通过一个压板(9)压住,轴座(1)与上支座(2)通过螺钉分别与压板(9)连接;且轴座(1)上的螺钉穿过压板与轴座(1)自身与上支座(2)连接使第一半环形密封槽(1-2)内的橡胶密封条与上支座(2)上的第二半圆柱面紧贴。
  7. 根据权利要求1所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:多个气孔(1-1)的排布从第一半圆柱面轴线的两侧到第一半圆柱面轴线方向的中心越来越密集。
  8. 一种用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:包括轴承(1)、轴承座(2)、密封工作气腔、上底座(3)、下底座(4)、支柱(9);
    轴承(1)设有半圆柱形工作表面,工作表面上设有一定深度的多个微型气孔(1-3),轴承(1)设有第二半圆柱形面,第二半圆柱面上设计有一定深度的多个小型气孔(1-4),多个微型气孔(1-3)与多个小型气孔(1-4)连通,轴承(1)固定在轴承座(2)上二者之间形成密封工作气腔,多个小型气孔(1-4)与密封工作气腔连通,密封工作气腔通过进气通道(2-6)充入中压气体,轴承座(2)与上底座(3)通过两个支柱(9)球面接触,可沿竖直方向摆动一定的角度,上底座(3)与下底座(4)通过转动装置(10)可沿自身圆周方向旋转一定的角度。
  9. 根据权利要求8所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:所述密封工作气腔由轴承(1)、轴承座(2)、竖向压板(6)和横向压板(7)组成;所述轴承(1)两侧设计有第一半O形环槽(1-1),所述轴承座(2)两侧设计有第二半O形环槽(2-3),横向压板(7)上设计有缺口(7-2),第一半O形环槽(1-1)、第二半O形环槽(2-3)和缺口(7-2)形成两个O形环槽,每个O形环槽内设计有O形硅胶密封环,每个O形环槽通过竖向压板(6)压住,竖向压板(6)通过连接件连接在轴承(1)和轴承座(2)上,轴承(1)前后两侧设计有第一半环形密封槽(1-6),轴承座(2)前后两侧设计有第二半环形密封槽(2-7),第一半环形密封槽(1-6)与第二半环形密封槽形成第三半环形密封槽,第三半环形密封槽内设有尺寸一致的半环形硅胶密封垫,半环形硅胶密封垫的两端位于所述O形硅胶密封环正下放,每个半环形硅胶密封垫通过横向压板(7)压住,横向压板(7)通过连接件连接在轴承(1)和轴承座(2)上,形成工作密封气腔;
    轴承(1)上设计有圆柱形凸起(1-2)与轴承座(2)第三圆柱形面紧密贴合,轴承座(2)上设有轴承(1)的轴向定位凸起结构(2-5),轴承(1)上设有横向压板(7)的定位缺口(1-5),横向压板(7)上设有定位凸起(7-3),定位凸起(7-3)与定位缺口(1-5)相配合。
  10. 根据权利要求9所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:所述竖向压板(5)下表面设计有与所述O形环槽相配合的O形环状凸起(5-1),所述O形环状凸起(5-1)的高度小于所述O形环槽深度,所述竖向压板(5)靠近所述半圆柱形工作表面设有用于防止竖向压板与转子发生碰磨的一定梯度的切口(5-2)。
  11. 根据权利要求8所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:所述支柱(9)上端设计为球面,中部设有平台(9-1),所述轴承座(2)下底面设有与所述支柱(9)的球面相配合的半球面(2-2),所述轴承座(2)底端两侧设计有一定角度的摆动限位切面(2-1),所述支柱(9)与所述上底座(3)可拆卸连接。
  12. 根据权利要求8、9、10或11所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:所述转动装置(10)包括两组构件,每组构件包括多个滚动轴承轴(10-1)和滚动轴承(10-2);所述下底座(4)两端分别设有多个半圆柱形凹槽,多个半圆柱形凹槽沿圆形(10-3)进行周向布置设计,所述每个滚动轴承轴(10-1)通过滚动轴承(10-2)安装在对应的半圆柱形凹槽内,多个滚动轴承轴(10-1)数量与半圆柱形凹槽数量一致,多个滚动轴承轴(10-1)安装方式为竖直嵌入式,滚动轴承轴(10-1)部分本体结构突出于下底座(4),所述上底座(3)下部对应设有凹面,凹面与多个滚动轴承表面接触,上底座(3)可通过周向布置的滚动轴承转动。
  13. 根据权利要求12所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:所述装置还包括用于连接上底座(3)和下底座(4)的转动中心定位轴(11),上底座(3)中心设有与转动中心定位轴(11)间隙配合的圆柱孔,所述下底座(4)中心设有与转动中心定位轴(11)螺纹连接的螺纹孔。
  14. 根据权利要求8或12所述的用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于:所述装置还包括转子轴向定位装置(5),转子轴向定位装置(5)包括挡板5-2、两根导杆5-1和定位锥5-3;所述定位锥5-3为圆柱体和圆锥体结构,定位锥5-3上的圆锥体与所述半圆柱工作表面同心,定位锥(5-3)安装在所述挡板(5-2)上,两根导杆(5-1)滑动安装在所述轴承座(2)上,轴承座(2)上设计有顶丝(2-4),可将导杆(5-1)固定。
  15. 一种用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于,所述装置包括轴承座(1)、气浮支撑罩(2)、上底座(3)、支柱(4)和下底座(5);
    轴承座(1)与安装在其上的轴承之间具有密封气腔,密封气腔通过轴承座(1)上的进气通道(1-3)与与外部供气装置连接,轴承上多个气孔与所述密封气腔连通;轴承座(1)的底部设有与所述密封气腔连通的通孔(1-1),气浮支撑罩(2)置于轴承座(1)的下方且其开口与轴承座(1)底端面密封连接使气浮支撑罩(2)和轴承座(1)形成气体工作气腔(2-6),所述密封气腔通过通孔(1-1)与气体工作气腔(2-6)连通;气浮支撑罩(2)上的多个气孔与气体工作气腔(2-6)连通;上底座(3)上设有气浮支撑罩(2)外面表轮廓相吻合的凹型面(3-1),凹型面(3-1)与气浮支撑罩(2)的外表面(2-4)间隙配合,气浮支撑罩(2)置于凹型面(3-1)内,工作情况下,工作气腔(2-6)内的气体可通过气浮支撑罩(2)上的多个气孔后,在气浮支撑罩(2)外表面2-4和凹型面(3-1)之间形成具有一定承载力的气模以将轴承座(1)浮起,轴承座(1)可自由摆动,实现转子静平衡装置自动对中;上底座(3)通过支柱(4)与下底座(5)连接,上底座(3)与下底座(5)之间的距离可通过支柱(4)进行调整从而调整轴承座的标高。
  16. 根据权利要求15所述的一种用于转子静平衡的剖分式可调摆角的静压气体轴承装置,其特征在于,
    轴承座(1)的底部设有通孔(1-1)为圆柱形通孔,轴承座(1)底端面上位于通孔(1-1)的周围还设有多个内螺纹孔(1-2),所述气浮支撑罩(2)开口边沿上设有多个圆柱形通孔(2-1),所述气浮支撑罩(2)与上底座(1)通过螺栓穿过圆柱通孔(2-1)连接到内螺纹孔(1-2),二者之间设计有密封圆环(6);所述气浮支撑罩(2)内表面(2-5)上设有多个大气孔(2-2),还设有贯穿至气浮支柱外表面(2-4)的多个小气孔(2-3),多个大气孔(2-2)和多个小气孔(2-3)连通,并与工作气腔(2-6)连通;
    所述气浮支撑罩(2)呈半环面状,工作情况下,工作气腔(2-6)内的气体通过多个气孔(2-2)和多个小气孔(2-3)后,在气浮支撑罩(2)外表面和球状凹型面之间形成具有一定承载力的气模以将轴承座(1)浮起;
    上底座(3)两侧设有圆形凹槽(3-2),支柱(4)上端设有凸台(4-1),凹槽(3-2)落在凸台(4-1)上,支承上底座(3);支柱(4)下端设有外螺纹(4-2),下底座(5)两侧内螺纹(5-1),支柱与下底座通过螺纹连接,转动支柱(4)可调整轴承座的标高。
  17. 一种旋转圈形零件静平衡的气浮支承装置,其特征在于,所述装置包括气浮支承结构(2)、轴向密封压板(3)、径向密封压板(4)、连接支柱(5)、底座(6)以及两个轴向定位装置(1);气浮支承结构(2)用于支承旋转圈形零件的小于或等于半圆柱形结构,气浮支承结构(2)的一端壁上设有进气孔(2-5),进气孔(2-5)与气浮支承结构(2)内的工作气腔(2-2)连通,气浮支承结构(2)的工作表面(2-1)上沿圆周方向的两侧壁之间的夹角α为30°~180°,即气浮支承结构(2)横截面上的圆弧所对应的圆心角α为30°~180°,气浮支承结构(2)曲面侧壁上设有多个与工作气腔(2-2)连通的通孔,气浮支承结构(2)的另一端开口端面通过轴向密封压板(3)密封连接,气浮支承结构(2)的纵向截面端与径向密封压板(4)密封连接,径向密封压板(4)通过连接支柱(5)与底座(6)连接;气浮支承结构(2)的-工作表面(2-1)的两端分别安装有轴向定位装置(1),工作状态下,气体可通过进气孔(2-5)至气浮支承结构(2)内的工作气腔(2-2)中,通过多个通孔(2-4)到气浮支承结构(2)的工作表面(2-1)上,与待静平衡检测旋转圈形零件的圆柱形表面之间形成具有一定承载的气膜,将待静平衡检测旋转圈形零件浮起。
  18. 根据权利要求17所述的一种旋转圈形零件静平衡的气浮支承装置,其特征在于所述的α角度为30°~150°。
  19. 根据权利要求18所述的一种旋转圈形零件静平衡的气浮支承装置,其特征在于,每个轴向定位装置(1)内具有工作气腔和进气通道,每个轴向定位装置(1)的止推工作表面上设有与所述工作气腔连通的多个通孔,每个轴向定位装置(1)与气浮支承结构(2)之间设有用于防止轴向定位装置(1)沿气浮支承结构(2)转动的定位结构;工作状态下,气体由轴向定位装置(1)的进气通道进入到工作气腔中,并由多个通孔进入到止推工作表面上,与待静平衡检测旋转圈形零件沿轴向端面形成具有一定推力的气膜,起到轴向定位作用。
  20. 根据权利要求19所述的一种旋转圈形零件静平衡的气浮支承装置,其特征在于,每个轴向定位装置(1)包括轴向定位止推板(1-1)和轴向定位密封压板(1-2)且二者密封连接,轴向定位止推板(1-1)设有工作气腔(1-1-1)和进气通道(1-1-2);轴向定位装置(1)的止推工作表面上的通孔由外向内由连通的小圆柱通孔(1-1-4)和微型圆柱通孔(1-1-5)构成。
  21. 根据权利要求19或20所述的一种旋转圈形零件静平衡的气浮支承装置,其特征在于,气浮支承结构(2)上设有的与工作气腔(2-2)连通的通孔由内至外由连通的小圆柱通孔(2-3)和微型圆柱通孔(2-4)构成。
  22. 根据权利要求21所述的一种旋转圈形零件静平衡的气浮支承装置,其特征在于,连接支柱(5)设计为双头螺纹结构,与径向密封压板(4)螺纹连接,与底座(6)螺纹连接,转动连接支柱(5)可调整气浮支承装置标高。
PCT/CN2020/088949 2019-05-07 2020-05-07 用于转子静平衡的剖分式可调摆角的静压气体轴承装置及旋转圈形零件静平衡的气浮支承装置 WO2020224614A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021565959A JP7417803B2 (ja) 2019-05-07 2020-05-07 回転子の静的バランスのために用いられる分割式かつ揺動角可調整式の静圧気体軸受装置及び回転環型部品の静的バランスの空気軸受装置
DE112020001877.6T DE112020001877T5 (de) 2019-05-07 2020-05-07 Geteilte statische Druckgaslagervorrichtung mit einstellbarem Schwenkwinkel zum statischen Auswuchten von Rotoren und eine Luftlagervorrichtung zum statischen Auswuchten eines rotierenden ringförmigen Teils
US17/519,632 US11988252B2 (en) 2019-05-07 2021-11-05 Split-type swing angle adjustable aerostatic bearing device for rotor static balance, and air flotation support device for static balance of rotating ring-shaped parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910376022.0 2019-05-07
CN201910376022.0A CN110094424B (zh) 2019-05-07 2019-05-07 用于转子静平衡的剖分式可调摆角的静压气体轴承装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/519,632 Continuation US11988252B2 (en) 2019-05-07 2021-11-05 Split-type swing angle adjustable aerostatic bearing device for rotor static balance, and air flotation support device for static balance of rotating ring-shaped parts

Publications (1)

Publication Number Publication Date
WO2020224614A1 true WO2020224614A1 (zh) 2020-11-12

Family

ID=67447156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088949 WO2020224614A1 (zh) 2019-05-07 2020-05-07 用于转子静平衡的剖分式可调摆角的静压气体轴承装置及旋转圈形零件静平衡的气浮支承装置

Country Status (5)

Country Link
US (1) US11988252B2 (zh)
JP (1) JP7417803B2 (zh)
CN (1) CN110094424B (zh)
DE (1) DE112020001877T5 (zh)
WO (1) WO2020224614A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113479356A (zh) * 2021-08-16 2021-10-08 哈尔滨工业大学 哑铃形气浮滑轮纵向重力补偿装置
CN113550978A (zh) * 2021-06-25 2021-10-26 哈尔滨工业大学 一种紧凑型气动高速静压空气主轴
DE112022000012T5 (de) 2021-12-30 2023-08-17 Harbin Institute Of Technology Hochpräzise statische auswuchtvorrichtung mit innenlagerung und gasflotation für ein rotierendes ringförmiges teil und verfahren zu deren verwendung
CN117086655A (zh) * 2023-10-19 2023-11-21 无锡星微科技有限公司杭州分公司 一种高精度微小型空气静压气浮转台

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029795A1 (ja) * 2016-08-10 2018-02-15 国際計測器株式会社 動釣合い試験機
CN110094424B (zh) 2019-05-07 2020-08-11 哈尔滨工业大学 用于转子静平衡的剖分式可调摆角的静压气体轴承装置
CN112727927B (zh) * 2020-12-28 2021-11-02 北京理工大学 一种用于燃料电池系统空气压缩机的空气轴承
CN113074023B (zh) * 2021-04-12 2022-11-11 哈尔滨工业大学 一种无油润滑高功率密度零蒸汽泄露汽轮机
CN114294330B (zh) * 2021-12-30 2022-09-23 哈尔滨工业大学 一种高精度旋转圈形零件内支撑气浮式静平衡装置
CN114523453A (zh) * 2022-03-15 2022-05-24 合肥御微半导体技术有限公司 一种精密气浮转台
CN117416903A (zh) * 2023-12-15 2024-01-19 山东运川智能制造科技有限公司 高安全性能的自行臂式高空作业平台

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201013753Y (zh) * 2007-03-03 2008-01-30 大连海事大学 一种高压大包角跑合型多孔变截面闭式气浮球轴承
US20090034887A1 (en) * 2007-06-04 2009-02-05 Ntn Corporation Hydrostatic gas bearing, rotator and CT scanner
CN103230818A (zh) * 2013-04-28 2013-08-07 昆明学院 一种新型节能球磨机
CN103233978A (zh) * 2013-04-28 2013-08-07 昆明学院 一种中空轴式节能静压轴承
CN103439051A (zh) * 2013-08-26 2013-12-11 中国科学院电工研究所 一种超导转子静平衡检测装置及其检测方法
CN103775497A (zh) * 2012-10-23 2014-05-07 洛阳嘉维轴承制造有限公司 摇杆式静动压磨机主轴承设计方法
CN203711112U (zh) * 2013-04-28 2014-07-16 昆明学院 一种新型节能混磨机
CN110094424A (zh) * 2019-05-07 2019-08-06 哈尔滨工业大学 用于转子静平衡的剖分式可调摆角的静压气体轴承装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1392028A (en) * 1919-05-29 1921-09-27 Vibration Specialty Company Machine for determining the static and dynamic unbalance of rotating bodies
US2946224A (en) * 1956-09-17 1960-07-26 Yamaguchi Takao Dynamic balancing apparatus
US3695114A (en) * 1970-03-06 1972-10-03 Micro Poise Eng & Sales Co Universally tiltable static balance testing apparatus with adjustable work gripping mechanism
JPS52143358A (en) * 1976-05-25 1977-11-29 Hamana Tekko Gas bearing
JPS5938452B2 (ja) * 1978-06-24 1984-09-17 財団法人半導体研究振興会 可動保持装置
JPS56131826A (en) * 1980-03-15 1981-10-15 Hamana Tekko Kk Box-type gas bearing with partition plate
JPS5720635A (en) * 1980-07-14 1982-02-03 Toshiba Corp Static balance testing machine
JPH0266315A (ja) * 1988-09-01 1990-03-06 Canon Inc ガイドバー締結方法
DE10223011A1 (de) * 2002-05-22 2003-12-11 Schenck Rotec Gmbh Lagereinrichtung und Unwuchtmeß- und -ausgleichsvorrichtung für einen auszuwuchtenden Rotor
RU2217719C1 (ru) * 2002-07-10 2003-11-27 Орловский государственный технический университет Способ уравновешивания сборных роторов с наклонными дисками (варианты)
CN101839791B (zh) * 2010-05-19 2012-09-05 中国科学院电工研究所 一种不完整球形超导转子气浮法平衡测定方法
CN103808252B (zh) * 2014-02-14 2015-07-08 哈尔滨工业大学 龙门式航空发动机转子气浮装配方法与装置
CN104354135B (zh) * 2014-10-29 2016-01-27 哈尔滨工业大学 航空发动机转静子装配/测量五自由度调整定位方法与装置
CN204694402U (zh) * 2015-04-02 2015-10-07 哈尔滨东安发动机(集团)有限公司 一种悬臂转子整体动平衡工装
CN106769029A (zh) * 2015-11-25 2017-05-31 由国峰 一种静压气体推力轴承性能检测装置
CN105571783B (zh) * 2016-01-12 2018-01-02 西安电子科技大学 一种基于差分式电容传感原理的转子高精度动平衡装置
CN105910759B (zh) * 2016-05-19 2018-04-13 北京航空航天大学 双轴柔性静平衡仪
CN105865791B (zh) * 2016-05-20 2019-03-26 江苏南方轴承股份有限公司 全自动轴承旋转灵活性测试装置
CN107559305B (zh) * 2017-10-17 2023-08-18 中国工程物理研究院机械制造工艺研究所 一种空气静压支承自调心装置
CN111413030B (zh) * 2019-01-07 2021-10-29 哈尔滨工业大学 基于刚度矢量空间投影极大化的大型高速回转装备测量与神经网络学习调控方法及其装置
CN110595690B (zh) * 2019-01-07 2020-11-13 哈尔滨工业大学 基于形心质心重心惯性中心矢量极小化的大型高速回转装备测量与智能学习装配方法和装置
CN109482699B (zh) * 2019-01-08 2023-12-12 宁波朗迪环境科技有限公司 一种自动平衡机及其平衡块生产机构
JP2024508058A (ja) * 2021-12-30 2024-02-22 哈爾濱工業大学 高精度回転リング状部品の内部支持エアサスペンション静釣合わせ装置および方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201013753Y (zh) * 2007-03-03 2008-01-30 大连海事大学 一种高压大包角跑合型多孔变截面闭式气浮球轴承
US20090034887A1 (en) * 2007-06-04 2009-02-05 Ntn Corporation Hydrostatic gas bearing, rotator and CT scanner
CN103775497A (zh) * 2012-10-23 2014-05-07 洛阳嘉维轴承制造有限公司 摇杆式静动压磨机主轴承设计方法
CN103230818A (zh) * 2013-04-28 2013-08-07 昆明学院 一种新型节能球磨机
CN103233978A (zh) * 2013-04-28 2013-08-07 昆明学院 一种中空轴式节能静压轴承
CN203711112U (zh) * 2013-04-28 2014-07-16 昆明学院 一种新型节能混磨机
CN103439051A (zh) * 2013-08-26 2013-12-11 中国科学院电工研究所 一种超导转子静平衡检测装置及其检测方法
CN110094424A (zh) * 2019-05-07 2019-08-06 哈尔滨工业大学 用于转子静平衡的剖分式可调摆角的静压气体轴承装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113550978A (zh) * 2021-06-25 2021-10-26 哈尔滨工业大学 一种紧凑型气动高速静压空气主轴
CN113550978B (zh) * 2021-06-25 2022-11-18 哈尔滨工业大学 一种紧凑型气动高速静压空气主轴
CN113479356A (zh) * 2021-08-16 2021-10-08 哈尔滨工业大学 哑铃形气浮滑轮纵向重力补偿装置
CN113479356B (zh) * 2021-08-16 2022-04-29 哈尔滨工业大学 哑铃形气浮滑轮纵向重力补偿装置
DE112022000012T5 (de) 2021-12-30 2023-08-17 Harbin Institute Of Technology Hochpräzise statische auswuchtvorrichtung mit innenlagerung und gasflotation für ein rotierendes ringförmiges teil und verfahren zu deren verwendung
DE112022000012B4 (de) 2021-12-30 2024-03-21 Harbin Institute Of Technology Statische auswuchtvorrichtung mit innenlagerung und gasflotation für ein rotierendes ringförmiges teil und verfahren zu deren verwendung
CN117086655A (zh) * 2023-10-19 2023-11-21 无锡星微科技有限公司杭州分公司 一种高精度微小型空气静压气浮转台
CN117086655B (zh) * 2023-10-19 2024-01-19 无锡星微科技有限公司杭州分公司 一种高精度微小型空气静压气浮转台

Also Published As

Publication number Publication date
CN110094424A (zh) 2019-08-06
US11988252B2 (en) 2024-05-21
US20220056954A1 (en) 2022-02-24
JP7417803B2 (ja) 2024-01-19
DE112020001877T5 (de) 2022-01-27
CN110094424B (zh) 2020-08-11
JP2022532537A (ja) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2020224614A1 (zh) 用于转子静平衡的剖分式可调摆角的静压气体轴承装置及旋转圈形零件静平衡的气浮支承装置
CN101788282B (zh) 用于测量回转型工件圆柱度的调心调平工作台
US11549857B2 (en) Dynamic balance testing device
CN102829701A (zh) 大型水轮发电机转子测圆架及其使用方法
CN110231171B (zh) 一种液体静压回转试验台
CN101482443A (zh) 大型混流式水轮机转轮静压轴承平衡工艺方法
CN104180991A (zh) 超高速含油轴承综合性能试验机
CN106441898B (zh) 一种滚动轴承回转精度的测试装置
CN203125149U (zh) 一种静压支撑回转工作台
JP2024508058A (ja) 高精度回転リング状部品の内部支持エアサスペンション静釣合わせ装置および方法
CN210293541U (zh) 行星架静平衡测试装置
CN201501530U (zh) 大型船用螺旋桨悬挂式静平衡机
CN102589866B (zh) 带有气浮导向的气浮加载实验装置
US7360420B2 (en) Method and bearing for balancing rotors without journals
CN212374238U (zh) 一种新型转盘上料机
CN211623966U (zh) 一种空气悬浮轴承
CN212559000U (zh) 主提升绞车绳衬磨损量快速检测装置
CN112630070A (zh) 一种用于轴承成品检测用的硬度检测设备及其检测方法
WO2023123681A1 (zh) 一种高精度旋转圈形零件内支撑气浮式静平衡装置及方法
CN107559305B (zh) 一种空气静压支承自调心装置
CN116464709B (zh) 一种气浮转动平台
CN107764552A (zh) 离心配重试验装置
CN207095853U (zh) 一种气浮式离心飞重试验装置
CN220039725U (zh) 一种氢能源压气轮转子动平衡气浮检测装置
JP2015175510A (ja) 静圧気体軸受回転案内装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565959

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20801984

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20801984

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20801984

Country of ref document: EP

Kind code of ref document: A1