WO2023123681A1 - 一种高精度旋转圈形零件内支撑气浮式静平衡装置及方法 - Google Patents

一种高精度旋转圈形零件内支撑气浮式静平衡装置及方法 Download PDF

Info

Publication number
WO2023123681A1
WO2023123681A1 PCT/CN2022/080539 CN2022080539W WO2023123681A1 WO 2023123681 A1 WO2023123681 A1 WO 2023123681A1 CN 2022080539 W CN2022080539 W CN 2022080539W WO 2023123681 A1 WO2023123681 A1 WO 2023123681A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
rotating ring
cavity
shaped part
air flotation
Prior art date
Application number
PCT/CN2022/080539
Other languages
English (en)
French (fr)
Inventor
刘占生
于树博
张树山
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US17/792,823 priority Critical patent/US20230213063A1/en
Priority to JP2022541202A priority patent/JP2024508058A/ja
Priority to DE112022000012.0T priority patent/DE112022000012B4/de
Publication of WO2023123681A1 publication Critical patent/WO2023123681A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings

Definitions

  • the invention relates to a static balancing device and method, in particular to a high-precision rotating ring-shaped internally supported air-floating static balancing device and method, belonging to the field of static balancing of rotating ring-shaped parts.
  • Rotating ring parts are widely used in manufacturing, navigation, aviation, aerospace and other fields.
  • static unbalanced mass will inevitably occur.
  • these static balance masses will cause abnormal vibration of the system, aggravate equipment wear, and even catastrophic damage to the system, seriously reducing the safety and reliability of the system.
  • Static balancing technology can reduce the static unbalanced quality of rotating ring parts and reduce the vibration level of equipment and systems, which is of great significance for improving safety and reliability.
  • the international publication number is WO 2020/224614 A1
  • the international application number is PCT/CN2020/088949, which discloses a hydrostatic gas bearing device and a rotating ring-shaped part with a split type adjustable swing angle for rotor static balance.
  • Statically balanced air bearing device invention patent specifically discloses a statically balanced air bearing device for rotating ring-shaped parts.
  • the device has the following problems when statically balancing the rotating ring-shaped parts:
  • the air-floating support structure of the air-floating support device adopts a single-support method, and because the rotating ring-shaped parts need to be sleeved on the air-floating support structure during static balance, the air-floating support device must adopt a side part
  • the support method the combination of side support and single support, makes the existing air-floating static balancing device for rotating ring-shaped parts only suitable for occasions with short width of parts, and cannot statically balance rotating ring-shaped parts with long width .
  • the air-floating support device Since the air-floating support structure of the air-floating support device adopts a single-support mode, the air-floating support device can only adjust the elevation and cannot realize the adjustment of the level;
  • the top of the air bearing structure forms a curved thin plate structure, which greatly reduces the strength and stiffness of the air bearing structure, resulting in the existing rotating ring
  • the air-floating static balancing device for shaped parts is only suitable for light parts, and cannot statically balance heavy rotating ring-shaped parts.
  • the purpose of the present invention is to solve the problem that the existing air-floating static balancing device for rotating ring-shaped parts is only suitable for occasions with short width of the parts, and cannot statically balance the rotating ring-shaped parts with long width, so as to provide a high-precision Disclosed are an air-floating static balancing device and method for inner support of a rotating ring-shaped part.
  • a high-precision rotating ring-shaped internal support air-floating static balancing device including an air-floating cavity 1, an end cover 2, a support 3, a supporting column 4, a disc seat 5 and two axial positioning devices 6, the air
  • the inside of the floating chamber 1 is provided with a working air chamber 1-2 and a plurality of cylindrical air intake passages 1-3 connected with the working air chamber 1-2, and the working air chamber 1-2 is located at one end of the air floating chamber 1 , the top of the air flotation chamber 1 is processed with an arc-shaped working surface 1-1, and the working surface 1-1 is processed with a plurality of air inlet holes 1-4 communicating with the cylindrical air inlet passage 1-3, and the end cover 2.
  • the end cover 2 is sealed and connected with the working air chamber 1-2 of the air flotation chamber 1.
  • the end cover 2 is processed with the working air
  • the cavity 1-2 is connected to the air supply hole 2-2, the bottom end of the end cover 2 is rotatably connected to the top end of the support 3, and the side of the air flotation cavity body 1 away from the working air cavity 1-2 passes through the support column 4 and the disc seat 5 connection, two axial positioning devices 6 are respectively installed on both sides of the air flotation chamber 1 along the axis direction.
  • center angle corresponding to the arc of the cross section of the working surface 1-1 is 60°-180°.
  • positions of the plurality of cylindrical air intake passages 1-3 are gradually sparsely arranged from the middle to both ends along the circumferential direction.
  • the end surface of the air flotation cavity 1 is processed with a sealing groove 1-5, and the sealing groove 1-5 is located around the working air chamber 1-2, and a rubber or silicone sealing strip is installed in the sealing groove 1-5 , the rubber or silicone sealing strip is pressed tightly through the end cover 2, and the end surface of the air flotation cavity 1 is processed with a plurality of air flotation cavity threaded holes 1-6, and the end cover 2 is processed with the position of the air flotation cavity threaded holes 1-6 Corresponding to the first cylindrical through hole 2-1, the end cover 2 and the air flotation chamber 1 are connected by bolts through the threaded hole 1-6 of the air flotation chamber and the first cylindrical through hole 2-1.
  • the bottom end of the air flotation chamber 1 away from the working air chamber 1-2 is processed with a concave hemispherical surface 1-7
  • the upper end of the support column 4 is processed with an outwardly convex hemispherical surface matching the hemispherical surface 1-7 4-1
  • the disk seat 5 is processed with a disk seat threaded hole 5-1
  • the support column 4 is processed with an external thread 4-2 matching with the disk seat threaded hole 5-1
  • the support column 4 and the disk seat 5 are connected by external thread 4-2 and disc seat threaded hole 5-1.
  • the bottom end of the end cover 2 is processed with a second cylindrical through hole 2-3 that runs through
  • the support 3 is processed with a third cylindrical through hole 3-1 that is the same size as the second cylindrical through hole 2-3.
  • the end cap 2 and the support 3 are connected by a pin shaft through the second cylindrical through hole 2-3 and the third cylindrical through hole 3-1.
  • end cover 2 and the support 3 can swing along the center of the pin axis at an angle of 0°- ⁇ 8°.
  • each axial positioning device 6 includes a slideway 6-1, two nozzle positioning structures 6-2 and two nozzles 6-3, and the slideway 6-1 is fixedly installed on the side of the air flotation chamber 1 along the axial direction end, the slideway 6-1 is processed with a chute along the length direction, the nozzle positioning structure 6-2 is a cuboid structure, and one end of the nozzle positioning structure 6-2 is processed with an installation groove matching the slideway 6-1, and the two nozzles are positioned One end of the structure 6-2 can be slidably installed on the slideway 6-1, and the other end of the nozzle positioning structure 6-2 is processed with a nozzle installation hole parallel to the axis of the air flotation cavity 1, and the nozzle 6-3 is inserted into the nozzle In the mounting hole, the other end of the nozzle positioning structure 6-2 is processed with a locking threaded hole vertically connected to the nozzle mounting hole, and the nozzle 6-3 is connected to the nozzle positioning structure 6-2 through a locking screw.
  • the diameter of the air supply hole 2-2 is 0.1-0.2 mm.
  • a stop rod 5-2 is installed on the disk base 5 .
  • the present invention also provides a method for supporting an air-floating static balancing device based on a high-precision rotating ring-shaped part, including the following steps:
  • the external air supply forms an air film with bearing capacity between the working surface 1-1 of the air flotation cavity 1 and the inner surface of the rotating ring-shaped part through the working air chamber 1-2 and the air inlet hole 1-4, and the The rotating ring part floats;
  • the present invention has the following effects:
  • the external working surface 1-1 of the air flotation cavity 1 of the present invention cooperates with the inner surface of the rotating ring-shaped part, and the external air supply enters the working air cavity 1-2, and the gas passes through a plurality of air inlet holes 1-4 in the air.
  • An air film with a certain bearing capacity is formed between the working surface 1-1 of the air flotation cavity 1 and the inner surface of the rotating ring-shaped part, and the rotating ring-shaped part is floated for static balance.
  • the present invention provides a high-precision rotating ring-shaped static flat internal support air-floating static balancing device, which can directly statically balance the rotating ring-shaped parts without using other rotating parts, and eliminate the unevenness of the rotating parts such as rotors and bushings.
  • the air flotation chamber 1 of the present invention adopts double supports on both sides, so that the high-precision rotating ring-shaped static flat inner support air-floating static balancing device of the present invention can be used for static balancing of rotating ring-shaped parts with short width ; and can be used for static balancing of rotating ring-shaped parts with long width, which greatly improves the versatility of the static balancing device.
  • the present invention can quickly adjust the levelness of the air flotation cavity by rotating the support column 4.
  • the air flotation cavity 1 and the end cover 2 and the support 3 Rotating along the center of the pin shaft can quickly adjust the level of the air flotation chamber 1 and improve the static balance efficiency.
  • Two axial positioning devices 6 are respectively installed on both sides of the air flotation cavity 1 of the present invention along the axial direction, the slideway 6-1 is fixed on the bottom of the air flotation cavity 1 through bolt connection, and the nozzle 6-3 can pass through
  • the nozzle positioning structure 6-2 slides axially and vertically in the slideway 6-1 to adjust to the position of the end face of the rotating ring-shaped part, and the external air supply is sprayed to the end face of the rotating ring-shaped part through the nozzle 6-3 to prevent
  • the rotating ring-shaped part moves along the axial direction, which can adapt to rotating ring-shaped parts of different widths and sizes, and improves the versatility of the static balancing device.
  • the air flotation chamber 1 of the present invention is provided with a working air chamber 1-2 and a plurality of cylindrical air intake passages 1-3 communicated with the working air chamber 1-2, which is compatible with the existing air flotation support Compared with the device, the cylindrical air intake channels 1-3 of the present invention are distributed in the air flotation cavity 1, which effectively improves the strength of the air flotation cavity 1, making the air flotation cavity 1 of the present invention applicable In the case of heavy parts, the static balance of heavy rotating ring parts can be realized. Moreover, the plurality of cylindrical air intake passages 1-3 are arranged in a gradually sparse manner along the circumferential direction from the middle to both ends. The number of air inlet holes 1-4 on the top of the working surface 1-1 of the air flotation cavity 1 is large, which can improve the bearing capacity of the present invention.
  • Fig. 1 is an axonometric view of an air-floating static balancing device supported in a high-precision rotating ring-shaped part in Embodiment 1 of the present invention
  • Fig. 2 is a sectional view of the air flotation cavity of the present invention
  • Fig. 3 is a side view of the air flotation cavity of the present invention.
  • Fig. 4 is the front view of end cap of the present invention.
  • Figure 5 is a side view of the end cap of the present invention.
  • Fig. 6 is the front view of bearing of the present invention.
  • Fig. 7 is the front view of support column of the present invention.
  • Fig. 8 is a cross-sectional view of the disc seat in Embodiment 5 of the present invention.
  • Fig. 9 is a front view of the axial positioning device of the present invention.
  • Fig. 10 is a side view of the axial positioning device of the present invention.
  • Fig. 11 is a structural schematic diagram of static balancing of the rotating ring-shaped part by the air-floating static balancing device supported in the high-precision rotating ring-shaped part in Embodiment 5 of the present invention;
  • Fig. 12 is an axonometric view of the air-floating static balancing device supported in the high-precision rotating ring-shaped part in the tenth embodiment of the present invention
  • Fig. 13 is a cross-sectional view of the disc seat in Embodiment 10 of the present invention.
  • Fig. 14 is a structural schematic diagram of static balancing of the rotating ring-shaped part by the air-floating static balancing device supported inside the high-precision rotating ring-shaped part in the tenth embodiment of the present invention.
  • Embodiment 1 This embodiment is described in conjunction with Fig. 1 to Fig. 10.
  • a high-precision rotating ring-shaped part in this embodiment supports an air-floating static balance device, including an air-floating cavity 1, an end cover 2, and a support 3.
  • the support column 4, the disc seat 5 and two axial positioning devices 6, the air flotation chamber 1 is provided with a working air chamber 1-2 and a plurality of cylindrical cylinders connected with the working air chamber 1-2.
  • the air intake channel 1-3, the working air cavity 1-2 is located at one end of the air flotation cavity 1, the top of the air flotation cavity 1 is processed with a circular arc-shaped working surface 1-1, and the working surface 1-1 is processed with multiple
  • the cylindrical air inlet channel 1-3 is connected with the air inlet hole 1-4, the curvature of the working surface 1-1 of the air flotation cavity 1 is the same as the curvature of the inner ring of the rotating ring part, and the end cover 2 is fixedly installed in the air flotation cavity 1
  • the end cover 2 is sealed and connected with the working air chamber 1-2 of the air flotation chamber 1, and the end cover 2 is processed with a power supply connected to the working air chamber 1-2.
  • the air hole 2-2, the bottom end of the end cover 2 is rotatably connected with the top end of the support 3, the side of the air flotation cavity 1 away from the working air chamber 1-2 is connected with the disc seat 5 through the support column 4, and can be connected through the support column 4
  • Adjust the levelness of the air flotation chamber 1 install two axial positioning devices 6 along the axis direction on both sides of the air flotation chamber 1, and in the working state, the externally supplied gas can enter the working air chamber through the air supply hole 2-2 1-2.
  • Cylindrical air intake passes through 1-3 and air intake hole 1-4, forming an air film with bearing capacity between the working surface 1-1 and the inner surface of the rotating ring-shaped part, floating the rotating ring-shaped part together for static balancing.
  • Embodiment 2 This embodiment is described with reference to FIG. 1 and FIG. 3 .
  • the angle of the center of the circle corresponding to the cross-sectional arc of the working surface 1 - 1 in this embodiment is 60°-180°.
  • Other compositions and connections are the same as in the first embodiment.
  • Embodiment 3 This embodiment is described with reference to FIG. 1 and FIG. 2 .
  • a plurality of cylindrical air intake passages 1-3 are arranged in a gradually sparse manner along the circumferential direction from the middle to both ends. In this way, the number of air inlet holes 1-4 on the top of the working surface 1-1 of the air flotation chamber 1 is large, which can improve the bearing capacity of the present invention.
  • Other compositions and connections are the same as those in Embodiment 1 or Embodiment 2.
  • Embodiment 4 This embodiment is described with reference to Fig. 1, Fig. 3 and Fig. 4.
  • the end surface of the air flotation cavity 1 of this embodiment is processed with a sealing groove 1-5, and the sealing groove 1-5 is located in the working air chamber Around 1-2, rubber or silicone sealing strips are installed in the sealing grooves 1-5, and the rubber or silicone sealing strips are pressed by the end cover 2, and the end surface of the air flotation cavity 1 is processed with multiple air flotation cavity threaded holes 1 -6, the first cylindrical through hole 2-1 corresponding to the threaded hole 1-6 of the air flotation cavity is processed on the end cover 2, and the threaded hole of the air flotation cavity is passed between the end cover 2 and the air flotation cavity 1 1-6 and the first cylindrical through hole 2-1 are connected by bolts. In this way, the air flotation chamber 1 and the end cover 2 are connected by bolts, which facilitates the assembly of parts and the replacement of rubber or silicone sealing strips.
  • Other compositions and connections are the same as those in Embodiment 1, 2 or
  • Embodiment 5 This embodiment is described in conjunction with Fig. 2, Fig. 7 and Fig. 8.
  • the bottom end of the side of the air flotation chamber 1 far away from the working air chamber 1-2 in this embodiment is processed with a concave hemispherical surface 1-7
  • the upper end of the support column 4 is processed with a convex hemispherical surface 4-1 matching the hemispherical surface 1-7
  • the disc seat 5 is processed with a disc seat threaded hole 5-1
  • the support column 4 is processed with a disc seat screw thread
  • the support column 4 is connected with the disk seat 5 by the external thread 4-2 and the threaded hole 5-1 of the disk seat.
  • Embodiment Six This embodiment is described in conjunction with Fig. 4, Fig. 5 and Fig. 6.
  • the bottom end of the end cover 2 of this embodiment is processed with a second cylindrical through hole 2-3
  • the support 3 is processed with a second cylindrical through hole 2-3.
  • the third cylindrical through hole 3-1 with the same size as the two cylindrical through holes 2-3, the second cylindrical through hole 2-3 and the third cylindrical through hole 3-1 between the end cover 2 and the support 3 Use a pin connection.
  • the support column 4 is rotated to adjust the height of one side of the air flotation cavity, the air flotation cavity 1, the end cover 2 and the support 3 rotate along the center of the pin shaft, and the levelness of the air flotation cavity 1 is quickly adjusted.
  • Other compositions and connections are the same as those in Embodiment 1, 2, 3, 4 or 5.
  • Embodiment 7 This embodiment is described with reference to FIG. 1 to FIG. 10 .
  • the end cover 2 and the support 3 can swing along the center of the pin axis at an angle of 0°- ⁇ 8°.
  • Other compositions and connections are the same as those in Embodiment 1, 2, 3, 4, 5 or 6.
  • Embodiment 8 This embodiment is described in conjunction with FIG. 1.
  • Each axial positioning device 6 of this embodiment includes a slideway 6-1, two nozzle positioning structures 6-2 and two nozzles 6-3, and the slideway 6 -1 is fixed and installed on the side end of the air flotation chamber 1 along the axial direction, the slideway 6-1 is processed with a slide groove along the length direction, the nozzle positioning structure 6-2 is a cuboid structure, and one end of the nozzle positioning structure 6-2 is processed with a slideway track 6-1, one end of the two nozzle positioning structures 6-2 can be slidably installed on the slideway 6-1, and the other end of the nozzle positioning structure 6-2 is processed with a Parallel nozzle installation holes, the nozzle 6-3 is inserted in the nozzle installation hole, and the other end of the nozzle positioning structure 6-2 is processed with a locking threaded hole vertically connected to the nozzle installation hole, the nozzle 6-3 is connected through the locking screw Connect with the nozzle positioning structure 6-2.
  • the slideway 6-1 is fixed on the bottom of the air flotation chamber 1 through bolt connection, and the nozzle 6-3 can slide axially and vertically in the slideway 6-1 through the nozzle positioning structure 6-2 to adjust to At the position of the end face of the rotating ring-shaped part, the external air supply sprays the gas to the end face of the rotating ring-shaped part through the nozzle 6-3 to prevent the rotating ring-shaped part from moving in the axial direction.
  • Other compositions and connections are the same as those in Embodiment 1, 2, 3, 4, 5, 6 or 7.
  • the diameter of the air supply hole 2 - 2 in this embodiment is 0.1-0.2 mm.
  • the air supply hole 2-2 is directly processed on the working surface 1-1 of the air flotation chamber 1, which is easier to process and improves the processing efficiency compared with the existing throttling hole.
  • Other compositions and connections are the same as those in Embodiments 1, 2, 3, 4, 5, 6, 7 or 8.
  • Embodiment 10 This embodiment is described in conjunction with Fig. 12 and Fig. 13. The difference between this embodiment and Embodiment 5 is that a stop rod 5-2 is installed on the disc seat 5 of this embodiment, and the rotating support column 4 can be To adjust the levelness of the air flotation cavity, the stop rod 5-2 can prevent the disc seat 5 from rotating during the process of adjusting the levelness. Specifically, the stop rod 5-2 is installed vertically through the lower part of the disk seat 5, and the stop rod 5-2 is located below the threaded hole 5-1 of the disk seat.
  • This embodiment also provides a method for supporting an air-floating static balancing device based on a high-precision rotating ring-shaped part, including the following steps:
  • the external air supply forms an air film with bearing capacity between the working surface 1-1 of the air flotation cavity 1 and the inner surface of the rotating ring-shaped part through the working air chamber 1-2 and the air inlet hole 1-4, and the The rotating ring part floats;
  • the disc seat 5 is placed on the installation platform, the support column 4 lower ends are screw-mounted on the disc seat 5, the stop bar 5-2 is installed on the disc seat, and the support column 4 upper end protrudes the hemispherical surface 4 -1 Installed in the concave hemispherical surface 1-7 at the other end of the air flotation cavity 1, the level of the air flotation cavity can be quickly adjusted by rotating the support column 4, and the stop rod 5-2 can prevent the level from being adjusted During the process, the disc seat 5 rotates, specifically, press the stop lever 5-2 and then rotate the support column 4 during work;
  • the gas with a certain pressure enters the working air chamber 1-2, the cylindrical air intake passage 1-3 and the air inlet hole 1-4 through the air supply hole 2-2, and on the working surface 1- 1 and the inner surface of the rotating ring-shaped part form an air film with a certain bearing capacity, which floats the rotating ring-shaped part for static balance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Testing Of Balance (AREA)

Abstract

一种旋转圈形零件内支撑气浮式静平衡装置,包括气浮腔体(1)、端盖(2)、支座(3)、支承柱(4)、圆盘座(5)和两个轴向定位装置(6),气浮腔体(1)内部设有工作气腔(1-2)和与工作气腔(1-2)相连通的多个圆柱形进气通道(1-3),工作气腔(1-2)位于气浮腔体(1)一端,气浮腔体(1)顶端加工有圆弧形的工作表面(1-1),工作表面(1-1)上加工有多个与圆柱形进气通道(1-3)相连通的进气孔(1-4),端盖(2)固定安装在气浮腔体(1)靠近工作气腔(1-2)一侧的端面上,端盖(2)与气浮腔体(1)的工作气腔(1-2)密封连接,端盖(2)上加工有与工作气腔(1-2)相连通的供气孔(2-2),端盖(2)底端与支座(3)顶端可转动连接,气浮腔体(1)远离工作气腔(1-2)的一侧通过支承柱(4)与圆盘座(5)连接,气浮腔体(1)的两侧分别沿轴线方向安装两个轴向定位装置(6)。一种基于该种旋转圈形零件内支撑气浮式静平衡装置的方法,包括以下步骤:S1、将待静平衡的旋转圈形零件放置于气浮腔体(1)上,调整标高及水平度,使旋转圈形零件处于水平位置; S2、外部供气通过工作气腔(1-2)和进气孔(1-4)在气浮腔体(1)的工作表面(1-1)和旋转圈形零件的内表面之间形成具有承载力的气膜,将旋转圈形零件浮起;S3、转动旋转圈形零件,若旋转圈形零件存在静不平衡,则含有不平衡量的相位会自动旋转至最低点静止,在该相位去重或者在其反向相位加重,重复上述过程,直至旋转圈形零件静止后最低点的相位随机,则完成旋转圈形零件静平衡操作。如此设置解决了现有的旋转圈形零件气浮式静平衡装置存在仅适用于零件宽度短的场合,无法对宽度长的旋转圈形零件静平衡的问题,能够实现对不同宽度旋转圈形零件静平衡。

Description

一种高精度旋转圈形零件内支撑气浮式静平衡装置及方法 技术领域
本发明涉及一种静平衡装置及方法,具体涉及一种高精度旋转圈形零件内支撑气浮式静平衡装置及方法,属于旋转圈形零件静平衡领域。
背景技术
旋转圈形零件(比如齿圈、轴套等)是制造业、航海、航空、航天等领域中广泛应用的一类零件。旋转圈形零件在制造过程中,由于材料缺陷、设计误差等因素的影响,不可避免的产生静不平衡质量。在旋转圈形零件随主轴旋转过程中,这些静平衡质量将造成系统异常振动,加剧设备磨损,甚至系统的灾难性破坏,严重降低系统的安全可靠性。静平衡技术能够减少旋转圈形零件静不平衡质量,降低设备、系统的振动水平,对于提高安全可靠性具有重要意义。
由于齿圈、轴套等旋转圈形零件外表面不是圆柱形,现有的平衡导轨、滚动轴承摆架台等静平衡装置无法直接用于旋转圈形零件静平衡,通常与转子和轴套等配合使用。但由于转子和轴套自身的不平衡质量,以及硬接触存在较大的摩擦力矩,导致旋转圈形零件静平衡精度严重下降。
国际公布号为WO 2020/224614 A1、国际申请号为PCT/CN2020/088949公开了一种名称为“用于转子静平衡的剖分式可调摆角的静压气体轴承装置及旋转圈形零件静平衡的气浮支承装置”的发明专利,具体公开了一种旋转圈形零件静平衡的气浮支承装置。但是该装置在对旋转圈形零件静平衡时存在以下几点问题:
(1)由于该气浮支承装置的气浮支承结构采用单支承的方式,且由于旋转圈形零件在静平衡时需要套设在气浮支承结构上,导致该气浮支承装置必须采用侧部支承的方式,侧部支承与单支承相结合的支承方式,致使现有的旋转圈形零件气浮式静平衡装置仅适用于零件宽度短的场合,无法对宽度长的旋转圈形零件静平衡。
(2)由于该气浮支承装置的气浮支承结构采用单支承的方式,导致该气浮支承装置只能调整标高,无法实现水平度的调节;
(3)由于该气浮支承装置的气浮支承结构与两侧轴向定位装置可调范围较小,无法对任意长度的旋转圈形零件实现轴向定位。
(4)由于该气浮支承结构内的工作气腔为一个整体空腔,使气浮支承结构顶端形成曲面薄板结构,大大地降低了气浮支承结构的强度和刚度,致使现有的旋转圈形零件气浮式静平衡装置仅适用于轻型零件的场合,无法对重型的旋转圈形零件静平衡。
综上所述,现有的旋转圈形零件气浮式静平衡装置存在仅适用于零件宽度短的场合,无法对宽度长的旋转圈形零件静平衡的问题。
发明内容
本发明的目的是为了解决现有的旋转圈形零件气浮式静平衡装置存在仅适用于零件宽度短的场合,无法对宽度长的旋转圈形零件静平衡的问题,进而提供一种高精度旋转圈形零件内支撑气浮式静平衡装置及方法。
本发明的技术方案是:
一种高精度旋转圈形零件内支撑气浮式静平衡装置,包括气浮腔体1、端盖2、支座3、支承柱4、圆盘座5和两个轴向定位装置6,气浮腔体1内部设有工作气腔1-2和与所述工作气腔1-2相连通的多个圆柱形进气通道1-3,工作气腔1-2位于气浮腔体1一端,气浮腔体1顶端加工有圆弧形的工作表面1-1,工作表面1-1上加工有多个与圆柱形进气通道1-3相连通的进气孔1-4,端盖2固定安装在气浮腔体1靠近工作气腔1-2一侧的端面上,端盖2与气浮腔体1的工作气腔1-2密封连接,端盖2上加工有与工作气腔1-2相连通的供气孔2-2,端盖2底端与支座3顶端可转动连接,气浮腔体1远离工作气腔1-2的一侧通过支承柱4与圆盘座5连接,气浮腔体1的两侧分别沿轴线方向安装两个轴向定位装置6。
进一步地,工作表面1-1横截面圆弧对应的圆心角度数为60°~180°。
进一步地,多个圆柱形进气通道1-3分布位置为沿周向从中间至两端逐渐稀疏方式排列。
进一步地,气浮腔体1端面加工有密封凹槽1-5,所述密封凹槽1-5位于工作气腔1-2的四周,密封凹槽1-5内安装有橡胶或硅胶密封条,橡胶或硅胶密封条通过端盖2压紧,气浮腔体1端面加工有多个气浮腔体螺纹孔1-6,端盖2上加工有与气浮腔体螺纹孔1-6位置对应的第一圆柱形 通孔2-1,端盖2与气浮腔体1之间通过气浮腔体螺纹孔1-6和第一圆柱形通孔2-1使用螺栓连接。
进一步地,气浮腔体1远离工作气腔1-2的一侧底端加工有内凹的半球面1-7,支承柱4上端加工有与半球面1-7相配合的外凸半球面4-1,圆盘座5上加工有圆盘座螺纹孔5-1,支承柱4加工有与圆盘座螺纹孔5-1相配合的外螺纹4-2,支承柱4与圆盘座5通过外螺纹4-2和圆盘座螺纹孔5-1连接。
进一步地,端盖2底端加工有贯穿的第二圆柱形通孔2-3,支座3上加工有与第二圆柱形通孔2-3尺寸一致的第三圆柱形通孔3-1,端盖2与支座3之间通过第二圆柱形通孔2-3与第三圆柱形通孔3-1使用销轴连接。
进一步地,端盖2与支座3可沿销轴中心摆动角度为0°~±8°。
进一步地,每个轴向定位装置6包括滑道6-1、两个喷嘴定位结构6-2和两个喷嘴6-3,滑道6-1沿轴向固定安装在气浮腔体1侧端,滑道6-1沿长度方向加工有滑槽,喷嘴定位结构6-2为长方体结构,喷嘴定位结构6-2一端加工有与滑道6-1相匹配的安装槽,两个喷嘴定位结构6-2的一端分别可滑动安装在滑道6-1上,喷嘴定位结构6-2另一端加工有与气浮腔体1轴线相平行的喷嘴安装孔,喷嘴6-3插装在喷嘴安装孔内,且喷嘴定位结构6-2另一端加工有与喷嘴安装孔垂直相连通的锁紧螺纹孔,喷嘴6-3通过锁紧螺钉与喷嘴定位结构6-2连接。
进一步地,供气孔2-2的直径为0.1~0.2mm。
进一步地,圆盘座5上安装有止动杆5-2。
本发明还提供一种基于高精度旋转圈形零件内支撑气浮式静平衡装置的方法,包括以下步骤:
S1、将待静平衡的旋转圈形零件放置于气浮腔体1上,调整标高及水平度,使旋转圈形零件处于水平位置;
S2、外部供气通过工作气腔1-2和进气孔1-4在气浮腔体1的工作表面1-1和旋转圈形零件的内表面之间形成具有承载力的气膜,将旋转圈形零件浮起;
S3、转动旋转圈形零件,若旋转圈形零件存在静不平衡,则含有不平衡量的相位会自动旋转至最低点静止,在该相位去重或者在其反向相位 加重,重复上述过程,直至旋转圈形零件静止后最低点的相位随机,则完成旋转圈形零件静平衡操作。
本发明与现有技术相比具有以下效果:
1、本发明的气浮腔体1外部的工作表面1-1与旋转圈形零件内表面相互配合,外部供气进入工作气腔1-2内,气体通过多个进气孔1-4在气浮腔体1的工作表面1-1与旋转圈形零件内表面之间形成具有一定承载力的气膜,将旋转圈形零件浮起后进行静平衡。
2、本发明提供的一种高精度旋转圈形静平内支撑气浮式静平衡装置,不需要借助其他旋转部件,能够直接对旋转圈形零件静平衡,消除转子、轴套等旋转部件自身不平衡量的影响,并且旋转圈形零件与气浮腔体1之间是气体接触,摩擦力矩低,能够极大提高旋转圈形零件静平衡精度。
3、本发明的气浮腔体1采用两侧双支撑的方式,使得本发明的高精度旋转圈形静平内支撑气浮式静平衡装置既能够用于对宽度短的旋转圈形零件静平衡;与能够用于对宽度长的旋转圈形零件静平衡,大大提高了静平衡装置的通用性。
4、本发明可以通过转动支承柱4来快速调整气浮腔体的水平度,在转动支承柱4来调整气浮腔体一侧的高度时,气浮腔体1和端盖2与支座3沿销轴中心转动,能够快速调节气浮腔体1的水平度,提高静平衡效率。
5、本发明的气浮腔体1的两侧分别沿轴线方向安装两个轴向定位装置6,滑道6-1通过螺栓连接固定在气浮腔体1的底部,喷嘴6-3可通过喷嘴定位结构6-2在滑道6-1内沿轴向和垂向滑动,调整至旋转圈形零件端面位置,外部供气通过喷嘴6-3将气体喷至旋转圈形零件端面处,防止旋转圈形零件沿轴向窜动,能够适应不同宽度尺寸的旋转圈形零件,提高了静平衡装置的通用性。
6、本发明的气浮腔体1内部设有工作气腔1-2和与所述工作气腔1-2相连通的多个圆柱形进气通道1-3,与现有的气浮支承装置相比较,本发明的圆柱形进气通道1-3在气浮腔体1呈分散式排布,有效地提高了气浮腔体1的强度,使得本发明的气浮腔体1能够适用于重型零件的场合,进而能够实现对重型旋转圈形零件静平衡。而且所述多个圆柱形进气通道1-3分布位置为沿周向从中间至两端逐渐稀疏方式排列。气浮腔体1的工 作表面1-1顶部的进气孔1-4数量较多,可以提高本发明的承载力。
附图说明
图1是本发明具体实施方式一中的高精度旋转圈形零件内支撑气浮式静平衡装置的轴测图;
图2是本发明的气浮腔体的剖视图;
图3是本发明的气浮腔体的侧视图;
图4是本发明的端盖的正视图;
图5是本发明的端盖的侧视图;
图6是本发明的支座的正视图;
图7是本发明的支承柱的正视图;
图8是本发明具体实施方式五中的圆盘座的剖视图;
图9是本发明的轴向定位装置的正视图;
图10是本发明的轴向定位装置的侧视图;
图11是本发明具体实施方式五中的高精度旋转圈形零件内支撑气浮式静平衡装置对旋转圈形零件静平衡的结构示意图;
图12是本发明具体实施方式十中的高精度旋转圈形零件内支撑气浮式静平衡装置的轴测图;
图13是本发明具体实施方式十中的圆盘座的剖视图;
图14是本发明具体实施方式十中的高精度旋转圈形零件内支撑气浮式静平衡装置对旋转圈形零件静平衡的结构示意图。
图中:1为气浮腔体;1-1为工作表面;1-2为工作气腔;1-3为圆柱形进气通道;1-4为进气孔;1-5为密封凹槽;1-6为气浮腔体螺纹孔;1-7为半球面;2为端盖;2-1为第一圆柱形通孔;2-2为供气孔;2-3为第二圆柱形通孔;3为支座;3-1为第三圆柱形通孔;4为支承柱;4-1为外凸半球面;4-2为外螺纹;5为圆盘座;5-1为圆盘座螺纹孔;5-2为止动杆;6为轴向定位装置;6-1为滑道;6-2为喷嘴定位结构;6-3为喷嘴。
具体实施方式
具体实施方式一:结合图1至图10说明本实施方式,本实施方式的一种高精度旋转圈形零件内支撑气浮式静平衡装置,包括气浮腔体1、端盖2、支座3、支承柱4、圆盘座5和两个轴向定位装置6,气浮腔体1 内部设有工作气腔1-2和与所述工作气腔1-2相连通的多个圆柱形进气通道1-3,工作气腔1-2位于气浮腔体1一端,气浮腔体1顶端加工有圆弧形的工作表面1-1,工作表面1-1上加工有多个与圆柱形进气通道1-3相连通的进气孔1-4,气浮腔体1的工作表面1-1曲率与旋转圈形零件内圈曲率相同,端盖2固定安装在气浮腔体1靠近工作气腔1-2一侧的端面上,端盖2与气浮腔体1的工作气腔1-2密封连接,端盖2上加工有与工作气腔1-2相连通的供气孔2-2,端盖2底端与支座3顶端可转动连接,气浮腔体1远离工作气腔1-2的一侧通过支承柱4与圆盘座5连接,可通过支承柱4调整气浮腔体1的水平度,气浮腔体1的两侧分别沿轴线方向安装两个轴向定位装置6,工作状态下,外部供入气体可通过供气孔2-2进入工作气腔1-2、圆柱形进气通过1-3和进气孔1-4中,在工作表面1-1与旋转圈形零件内表面之间形成具有承载力的气膜,将旋转圈形零件浮起进行静平衡。
具体实施方式二:结合图1和图3说明本实施方式,本实施方式的工作表面1-1横截面圆弧对应的圆心角度数为60°~180°。其它组成和连接关系与具体实施方式一相同。
具体实施方式三:结合图1和图2说明本实施方式,本实施方式的多个圆柱形进气通道1-3分布位置为沿周向从中间至两端逐渐稀疏方式排列。如此设置,气浮腔体1的工作表面1-1顶部的进气孔1-4数量较多,可以提高本发明的承载力。其它组成和连接关系与具体实施方式一或二相同。
具体实施方式四:结合图1、图3和图4说明本实施方式,本实施方式的气浮腔体1端面加工有密封凹槽1-5,所述密封凹槽1-5位于工作气腔1-2的四周,密封凹槽1-5内安装有橡胶或硅胶密封条,橡胶或硅胶密封条通过端盖2压紧,气浮腔体1端面加工有多个气浮腔体螺纹孔1-6,端盖2上加工有与气浮腔体螺纹孔1-6位置对应的第一圆柱形通孔2-1,端盖2与气浮腔体1之间通过气浮腔体螺纹孔1-6和第一圆柱形通孔2-1使用螺栓连接。如此设置,气浮腔体1与端盖2通过螺栓连接,便于零件的装配以及橡胶或硅胶密封条的更换。其它组成和连接关系与具体实施方式一、二或三相同。
具体实施方式五:结合图2、图7和图8说明本实施方式,本实施方式的气浮腔体1远离工作气腔1-2的一侧底端加工有内凹的半球面1-7,支承柱4上端加工有与半球面1-7相配合的外凸半球面4-1,圆盘座5上加工有圆盘座螺纹孔5-1,支承柱4加工有与圆盘座螺纹孔5-1相配合的外螺纹4-2,支承柱4与圆盘座5通过外螺纹4-2和圆盘座螺纹孔5-1连接。如此设置,可以通过转动支承柱4来快速调整气浮腔体的水平度,提高静平衡效率。其它组成和连接关系与具体实施方式一、二、三或四相同。
具体实施方式六:结合图4、图5和图6说明本实施方式,本实施方式的端盖2底端加工有贯穿的第二圆柱形通孔2-3,支座3上加工有与第二圆柱形通孔2-3尺寸一致的第三圆柱形通孔3-1,端盖2与支座3之间通过第二圆柱形通孔2-3与第三圆柱形通孔3-1使用销轴连接。如此设置,在转动支承柱4来调整气浮腔体一侧的高度时,气浮腔体1和端盖2与支座3沿销轴中心转动,快速调节气浮腔体1的水平度。其它组成和连接关系与具体实施方式一、二、三、四或五相同。
具体实施方式七:结合图1至图10说明本实施方式,本实施方式的端盖2与支座3可沿销轴中心摆动角度为0°~±8°。其它组成和连接关系与具体实施方式一、二、三、四、五或六相同。
具体实施方式八:结合图1说明本实施方式,本实施方式的每个轴向定位装置6包括滑道6-1、两个喷嘴定位结构6-2和两个喷嘴6-3,滑道6-1沿轴向固定安装在气浮腔体1侧端,滑道6-1沿长度方向加工有滑槽,喷嘴定位结构6-2为长方体结构,喷嘴定位结构6-2一端加工有与滑道6-1相匹配的安装槽,两个喷嘴定位结构6-2的一端分别可滑动安装在滑道6-1上,喷嘴定位结构6-2另一端加工有与气浮腔体1轴线相平行的喷嘴安装孔,喷嘴6-3插装在喷嘴安装孔内,且喷嘴定位结构6-2另一端加工有与喷嘴安装孔垂直相连通的锁紧螺纹孔,喷嘴6-3通过锁紧螺钉与喷嘴定位结构6-2连接。如此设置,滑道6-1通过螺栓连接固定在气浮腔体1的底部,喷嘴6-3可通过喷嘴定位结构6-2在滑道6-1内沿轴向和垂向滑动,调整至旋转圈形零件端面位置,外部供气通过喷嘴6-3将气体喷至旋转圈形零件端面处,防止旋转圈形零件沿轴向窜动。其它组成和连接关系与具体实施方式一、二、三、四、五、六或七相同。
具体实施方式九:结合图1和图2说明本实施方式,本实施方式的供气孔2-2的直径为0.1~0.2mm。如此设置,直接在气浮腔体1的工作表面1-1加工供气孔2-2,与现有的节流孔相比较,更便于加工,提高加工效率。其它组成和连接关系与具体实施方式一、二、三、四、五、六、七或八相同。
具体实施方式十:结合图12和图13说明本实施方式,本实施方式与实施方式五的区别在于,本实施方式的圆盘座5上安装有止动杆5-2,旋转支承柱4可调整气浮腔体的水平度,止动杆5-2可防止在调节水平度的过程中圆盘座5转动。具体地,止动杆5-2垂直贯穿安装于圆盘座5的下部,且止动杆5-2位于圆盘座螺纹孔5-1的下方。
本实施例还提供一种基于高精度旋转圈形零件内支撑气浮式静平衡装置的方法,包括以下步骤:
S1、将待静平衡的旋转圈形零件放置于气浮腔体1上,调整标高及水平度,使旋转圈形零件处于水平位置;
S2、外部供气通过工作气腔1-2和进气孔1-4在气浮腔体1的工作表面1-1和旋转圈形零件的内表面之间形成具有承载力的气膜,将旋转圈形零件浮起;
S3、转动旋转圈形零件,若旋转圈形零件存在静不平衡,则含有不平衡量的相位会自动旋转至最低点静止,在该相位去重或者在其反向相位加重,重复上述过程,直至旋转圈形零件静止后最低点的相位随机,则完成旋转圈形零件静平衡操作。
工作原理
结合图1至图14说明本发明所述高精度旋转圈形零件内支撑气浮式静平衡装置的工作原理:
首先,将旋转圈形零件内支撑气浮式静平衡装置的支座3固定在安装平台上,将气浮腔体1一端的端盖2通过销轴与支座3可转动连接,将待静平衡检测的旋转圈形零件放置在气浮腔体1上,使气浮腔体1上的工作表面1-1与旋转圈形零件内表面接触;
然后,将圆盘座5放置在安装平台上,将支承柱4下端螺旋安装在圆盘座5上,圆盘座上安装有止动杆5-2,将支承柱4上端外凸半球面4-1 安装在气浮腔体1另一端的内凹的半球面1-7内,通过转动支承柱4来快速调整气浮腔体的水平度,止动杆5-2可防止在调节水平度的过程中圆盘座5转动,具体地,在工作时按住止动杆5-2再转动支承柱4;
进一步地,根据待静平衡检测的旋转圈形零件的宽度尺寸调整轴向定位装置6中喷嘴6-3在滑道6-1上的位置,进而调整喷嘴6-3与将待静平衡检测的旋转圈形零件端面之间的距离,外部供气通过喷嘴6-3将气体喷至旋转圈形零件端面处,防止旋转圈形零件沿轴向窜动;
最后,将具有一定压力的气体通过供气孔2-2进入工作气腔1-2、圆柱形进气通过1-3和进气孔1-4中,在气浮腔体1的工作表面1-1与旋转圈形零件内表面之间形成具有一定承载力的气膜,将旋转圈形零件浮起进行静平衡。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

  1. 一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:包括气浮腔体(1)、端盖(2)、支座(3)、支承柱(4)、圆盘座(5)和两个轴向定位装置(6),气浮腔体(1)内部设有工作气腔(1-2)和与所述工作气腔(1-2)相连通的多个圆柱形进气通道(1-3),工作气腔(1-2)位于气浮腔体(1)一端,气浮腔体(1)顶端加工有圆弧形的工作表面(1-1),工作表面(1-1)上加工有多个与圆柱形进气通道(1-3)相连通的进气孔(1-4),端盖(2)固定安装在气浮腔体(1)靠近工作气腔(1-2)一侧的端面上,端盖(2)与气浮腔体(1)的工作气腔(1-2)密封连接,端盖(2)上加工有与工作气腔(1-2)相连通的供气孔(2-2),端盖(2)底端与支座(3)顶端可转动连接,气浮腔体(1)远离工作气腔(1-2)的一侧通过支承柱(4)与圆盘座(5)连接,气浮腔体(1)的两侧分别沿轴线方向安装两个轴向定位装置(6)。
  2. 根据权利要求1所述的一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:工作表面(1-1)横截面圆弧对应的圆心角度数为60°~180°。
  3. 根据权利要求1或2所述的一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:多个圆柱形进气通道(1-3)分布位置为沿周向从中间至两端逐渐稀疏方式排列。
  4. 根据权利要求3所述的一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:气浮腔体(1)端面加工有密封凹槽(1-5),所述密封凹槽(1-5)位于工作气腔(1-2)的四周,密封凹槽(1-5)内安装有橡胶或硅胶密封条,橡胶或硅胶密封条通过端盖(2)压紧,气浮腔体(1)端面加工有多个气浮腔体螺纹孔(1-6),端盖(2)上加工有与气浮腔体螺纹孔(1-6)位置对应的第一圆柱形通孔(2-1),端盖(2)与气浮腔体(1)之间通过气浮腔体螺纹孔(1-6)和第一圆柱形通孔(2-1)使用螺栓连接。
  5. 根据权利要求1或4所述的一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:气浮腔体(1)远离工作气腔(1-2)的一侧底端加工有内凹的半球面(1-7),支承柱(4)上端加工有与半球面(1-7) 相配合的外凸半球面(4-1),圆盘座(5)上加工有圆盘座螺纹孔(5-1),支承柱(4)加工有与圆盘座螺纹孔(5-1)相配合的外螺纹(4-2),支承柱(4)与圆盘座(5)通过外螺纹(4-2)和圆盘座螺纹孔(5-1)连接。
  6. 根据权利要求5所述的一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:端盖(2)底端加工有贯穿的第二圆柱形通孔(2-3),支座(3)上加工有与第二圆柱形通孔(2-3)尺寸一致的第三圆柱形通孔(3-1),端盖(2)与支座(3)之间通过第二圆柱形通孔(2-3)与第三圆柱形通孔(3-1)使用销轴连接。
  7. 根据权利要求6所述的一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:端盖(2)与支座(3)可沿销轴中心摆动角度为0°~±8°。
  8. 根据权利要求1或6所述的一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:每个轴向定位装置(6)包括滑道(6-1)、两个喷嘴定位结构(6-2)和两个喷嘴(6-3),滑道(6-1)沿轴向固定安装在气浮腔体(1)侧端,滑道(6-1)沿长度方向加工有滑槽,喷嘴定位结构(6-2)为长方体结构,喷嘴定位结构(6-2)一端加工有与滑道(6-1)相匹配的安装槽,两个喷嘴定位结构(6-2)的一端分别可滑动安装在滑道(6-1)上,喷嘴定位结构(6-2)另一端加工有与气浮腔体(1)轴线相平行的喷嘴安装孔,喷嘴(6-3)插装在喷嘴安装孔内,且喷嘴定位结构(6-2)另一端加工有与喷嘴安装孔垂直相连通的锁紧螺纹孔,喷嘴(6-3)通过锁紧螺钉与喷嘴定位结构(6-2)连接。
  9. 根据权利要求8所述的一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:供气孔(2-2)的直径为0.1~0.2mm。
  10. 根据权利要求5所述的一种高精度旋转圈形零件内支撑气浮式静平衡装置,其特征在于:圆盘座(5)上安装有止动杆(5-2)。
  11. 一种基于如权利要求1-10中任一项所述的高精度旋转圈形零件内支撑气浮式静平衡装置的方法,其特征在于,包括以下步骤:
    S1、将待静平衡的旋转圈形零件放置于气浮腔体(1)上,调整标高及水平度,使旋转圈形零件处于水平位置;
    S2、外部供气通过工作气腔(1-2)和进气孔(1-4)在气浮腔体(1)的工作表面(1-1)和旋转圈形零件的内表面之间形成具有承载力的气膜,将旋转圈形零件浮起;
    S3、转动旋转圈形零件,若旋转圈形零件存在静不平衡,则含有不平衡量的相位会自动旋转至最低点静止,在该相位去重或者在其反向相位加重,重复上述过程,直至旋转圈形零件静止后最低点的相位随机,则完成旋转圈形零件静平衡操作。
PCT/CN2022/080539 2021-12-30 2022-03-14 一种高精度旋转圈形零件内支撑气浮式静平衡装置及方法 WO2023123681A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/792,823 US20230213063A1 (en) 2021-12-30 2022-03-14 Inner-support and gas-flotation static balancing device for rotating ring-shaped part and method of using the same
JP2022541202A JP2024508058A (ja) 2021-12-30 2022-03-14 高精度回転リング状部品の内部支持エアサスペンション静釣合わせ装置および方法
DE112022000012.0T DE112022000012B4 (de) 2021-12-30 2022-03-14 Statische auswuchtvorrichtung mit innenlagerung und gasflotation für ein rotierendes ringförmiges teil und verfahren zu deren verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111669388.0A CN114294330B (zh) 2021-12-30 2021-12-30 一种高精度旋转圈形零件内支撑气浮式静平衡装置
CN202111669388.0 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023123681A1 true WO2023123681A1 (zh) 2023-07-06

Family

ID=80973291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080539 WO2023123681A1 (zh) 2021-12-30 2022-03-14 一种高精度旋转圈形零件内支撑气浮式静平衡装置及方法

Country Status (2)

Country Link
CN (1) CN114294330B (zh)
WO (1) WO2023123681A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580186B1 (en) * 1999-08-06 2003-06-17 Ricoh Company, Ltd. Balance correcting method for a high-speed rotatable body, a dynamic pressure bearing, and an optical scanning apparatus utilizing the dynamic pressure bearing
CN103439051A (zh) * 2013-08-26 2013-12-11 中国科学院电工研究所 一种超导转子静平衡检测装置及其检测方法
CN110094424A (zh) * 2019-05-07 2019-08-06 哈尔滨工业大学 用于转子静平衡的剖分式可调摆角的静压气体轴承装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1230989A (zh) * 1967-07-11 1971-05-05
US5989444A (en) * 1998-02-13 1999-11-23 Zywno; Marek Fluid bearings and vacuum chucks and methods for producing same
KR20090013299A (ko) * 2007-08-01 2009-02-05 주식회사 알피에스 에어베어링을 이용한 회전테이블
CN101691879B (zh) * 2009-10-09 2011-02-02 大连理工大学 内π形气楔槽动静压复合气浮轴承
EP2703689A1 (en) * 2012-09-04 2014-03-05 Siemens Aktiengesellschaft An apparatus comprising a shaft and a balancing device for balancing the shaft
CN102928158B (zh) * 2012-10-24 2015-09-23 北京航天控制仪器研究所 一种基于气浮轴承的静平衡测试仪
CN103047284B (zh) * 2012-12-31 2015-02-18 浙江工业大学 一种可实现串联供气的旋转供气装置
CN103016529B (zh) * 2012-12-31 2015-02-18 浙江工业大学 不受气管扰动和高压气体影响的气浮组合装置
CN103511469B (zh) * 2013-09-18 2015-12-30 浙江工业大学 一种无摩擦带扭矩和角度测量的密封轴
WO2016027617A1 (ja) * 2014-08-21 2016-02-25 株式会社Ihi 軸受構造、および、過給機
CN104482049B (zh) * 2014-12-12 2017-05-03 中国航天空气动力技术研究院 动压气浮轴承
CN104533956B (zh) * 2015-01-22 2017-02-22 哈尔滨工业大学 主动补偿式低涡流轴动式气浮轴承
CN104863961B (zh) * 2015-05-21 2017-11-17 哈尔滨工业大学 节流嘴直供气单浮板气足
CN105478808B (zh) * 2016-01-13 2017-11-21 北京海普瑞森科技发展有限公司 一种具有半球轴承的气动主轴装置
CN205715272U (zh) * 2016-06-17 2016-11-23 广州市昊志机电股份有限公司 一种全支承气浮轴承
CN205780306U (zh) * 2016-07-15 2016-12-07 东北林业大学 一种复合式静压气浮主轴
EP3324062A1 (de) * 2016-11-22 2018-05-23 Fischer Engineering Solutions AG Rotationssystem mit radialer gaslagerung
WO2019049353A1 (ja) * 2017-09-11 2019-03-14 株式会社アーカイブワークス ジャーナルガス軸受
CN108150537B (zh) * 2017-12-04 2024-04-09 陕西仙童科技有限公司 一种无阀气体轴承装置
CN107906123A (zh) * 2017-12-12 2018-04-13 西安汉仁精密机械有限公司 一种棒材气浮支撑和密封结构
CN108167332B (zh) * 2017-12-22 2020-05-05 上海理工大学 一种高精度电机装置及精密设备
CN108591261B (zh) * 2018-06-28 2024-04-26 深圳市金园智能科技有限公司 一种应用于超精密龙门式检测平台的气浮导轨
CN208997179U (zh) * 2018-10-16 2019-06-18 天津中精微仪器设备有限公司 一种气浮摆台
CN109869410B (zh) * 2019-04-13 2020-03-10 江西理工大学南昌校区 一种三旋转自由度高低温箱穿箱轴球型气体密封装置
CN210128017U (zh) * 2019-05-06 2020-03-06 广州克勤教育咨询有限公司 一种多级气浮板装置
CN212509225U (zh) * 2020-05-25 2021-02-09 天津市天鼓机械制造有限公司 一种气悬浮轴承

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580186B1 (en) * 1999-08-06 2003-06-17 Ricoh Company, Ltd. Balance correcting method for a high-speed rotatable body, a dynamic pressure bearing, and an optical scanning apparatus utilizing the dynamic pressure bearing
CN103439051A (zh) * 2013-08-26 2013-12-11 中国科学院电工研究所 一种超导转子静平衡检测装置及其检测方法
CN110094424A (zh) * 2019-05-07 2019-08-06 哈尔滨工业大学 用于转子静平衡的剖分式可调摆角的静压气体轴承装置

Also Published As

Publication number Publication date
CN114294330A (zh) 2022-04-08
CN114294330B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
US11988252B2 (en) Split-type swing angle adjustable aerostatic bearing device for rotor static balance, and air flotation support device for static balance of rotating ring-shaped parts
CN102840949B (zh) 一种气压液体式转子在线自动平衡执行器
JP4878175B2 (ja) バランス検査装置
CN110039330A (zh) 一种高推力闭式气体静压转台
CN105527096B (zh) 一种带自定心定位夹紧装置的齿轮箱空载跑合试验台
CN106768643A (zh) 一种旋转机械动平衡快速配重调整装置及方法
CN110231171B (zh) 一种液体静压回转试验台
CN205300927U (zh) 一种带自定心定位夹紧装置的齿轮箱空载跑合试验台
CN105547348B (zh) 一种半实物仿真测试转台及其联轴结构
US4489598A (en) Tire rolling resistance measurement system
CN111085955A (zh) 一种多联复杂空心涡轮叶片内腔水流量测量方法及夹具
WO2023123681A1 (zh) 一种高精度旋转圈形零件内支撑气浮式静平衡装置及方法
CN105277459B (zh) 多功能疲劳磨损试验机
US20230213063A1 (en) Inner-support and gas-flotation static balancing device for rotating ring-shaped part and method of using the same
CN110230642B (zh) 一种新型液体静压推力轴承装置
CN210293541U (zh) 行星架静平衡测试装置
WO2018227378A1 (zh) 一种盘类零件外圆柱面精密加工装置及其锥度误差调整方法
CN106052765A (zh) 盾构机滚刀动态检测装置
CN103016237B (zh) 水轮机桨叶调整测量方法及用于该方法的桨叶测量装置
CN107366692A (zh) 一种手调式高精度透明液粘调速离合器
CN110595700B (zh) 一种静压支承泄漏测试实验台
CN112171608A (zh) 一种导叶式自吸泵泵盖智能制造辅助设备
CN209485606U (zh) 一种磁性空心轴电机转子的动平衡检测支撑装置
CN220751887U (zh) 一种建筑涂料耐磨性能测试装置
CN220405835U (zh) 一种mps中速磨煤机旋转叶轮结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022541202

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912987

Country of ref document: EP

Kind code of ref document: A1