WO2018227378A1 - 一种盘类零件外圆柱面精密加工装置及其锥度误差调整方法 - Google Patents

一种盘类零件外圆柱面精密加工装置及其锥度误差调整方法 Download PDF

Info

Publication number
WO2018227378A1
WO2018227378A1 PCT/CN2017/088067 CN2017088067W WO2018227378A1 WO 2018227378 A1 WO2018227378 A1 WO 2018227378A1 CN 2017088067 W CN2017088067 W CN 2017088067W WO 2018227378 A1 WO2018227378 A1 WO 2018227378A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
disc
working
bottom plate
disk
Prior art date
Application number
PCT/CN2017/088067
Other languages
English (en)
French (fr)
Inventor
凌四营
王坤
于宝地
王晓东
王立鼎
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/346,506 priority Critical patent/US10513003B2/en
Priority to PCT/CN2017/088067 priority patent/WO2018227378A1/zh
Publication of WO2018227378A1 publication Critical patent/WO2018227378A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/04Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/02Lapping machines or devices; Accessories designed for working surfaces of revolution
    • B24B37/025Lapping machines or devices; Accessories designed for working surfaces of revolution designed for working spherical surfaces

Definitions

  • the invention belongs to the technical field of precision machining, and relates to a precision grinding and polishing device for outer cylindrical surface of a disk type component and a method for adjusting the taper error.
  • Disc parts are a typical type of mechanical parts, and their radial dimensions are generally larger than the axial dimension, and the end face bouncing with higher precision, the cylindricity of the inner bore and the circular jump and full jump accuracy requirements of the outer cylindrical surface are required.
  • the axial reference of the disk-type part is the end faces on both sides, and the radial reference is the axis defined by the cylindrical face of the inner hole.
  • the machining error including the machining error of the mandrel center hole and the machining error of the mandrel reference cylindrical surface
  • the coaxiality of the outer cylindrical surface and the inner cylindrical reference cylindrical surface even if the roundness error of the outer cylindrical surface is small, due to the coaxiality error of the inner and outer cylindrical surface, the disk part will have a large round jump. And full jump error.
  • Typical products for disc parts include the inner and outer rings of the bearing, the friction wheel in the friction drive, the base disc parts in the reference grade involute inspection instrument, and the reference disc parts in the roundness meter. Especially in the field of measurement, the accuracy requirements of sub-micron or even nano-scale are proposed for disc parts used as roundness reference. Existing finishing equipment and ultra-precision grinding processes cannot meet the processing requirements of such disc parts. Grinding is an ultra-precision machining process, which is mainly used for machining ultra-precision machining of flat shapes composed of simple geometric elements such as planes, cylinders and spheres.
  • the flatness of the plane grinding can generally reach 0.2 to 0.5 ⁇ m; the roundness of the cylindrical surface grinding can generally reach 0.2 to 0.5 ⁇ m, and the cylindricity can generally reach 0.5 to 1 ⁇ m.
  • the ultra-precision grinding and polishing process is used to process 1st grade flat crystal with a diameter of 150mm, and the flatness can reach 50nm or less.
  • the current grinding and polishing process and equipment are only suitable for ultra-precision machining of flat and spherical parts.
  • the present invention provides an outer cylindrical surface precision adding device for disc parts by using a grinding and polishing process, by using a busbar winding
  • the fixed axis rotates to form the working principle of the cylindrical surface, and realizes the ultra-precision machining of the outer cylindrical surface of the disc type parts.
  • the specific technical solution is an outer cylindrical surface precision processing device for disc parts using a grinding and polishing process, including a round bottom plate, a diagonal guide rail, a stopper, a pressure plate, a copper pressing block, a dense bead shaft system, a felt plate, and a friction driving wheel.
  • DC motor mobile power, IED lamp, cover;
  • the round bottom plate is made of ball-milled cast iron material, and the ratio of thickness to diameter is 0.1-0.3.
  • the middle position is provided with an inverted trapezoidal slot having a width larger than the thickness of the processed disc-like part, and the processed disc-shaped part is placed in the middle of the inverted trapezoidal groove, the disc
  • the cylindrical surface is tangent to the bottom surface of the circular bottom plate; the inverted trapezoidal slot is perpendicular to the side of the bus bar in the direction of the bus bar, and a plane intersecting and perpendicular to the bottom surface of the circular bottom plate and having a height of 3 to 6 mm is arranged.
  • the LED patch is attached thereto to provide a light source for measuring by the light gap method; the other side opposite to the plane is provided with an observation groove having a height of 2 to 4 mm and a width larger than the length of the bus bar of the processed disk type, so that the human eye can pass the light.
  • the gap method is used to judge the installation precision and processing precision of the busbars of the disc parts;
  • the round bottom plate is provided with the countersunk holes of the fixed inclined guide rails and the friction drive wheel brackets; the round bottom plate can realize: 1 supports the whole precision processing device, 2 repairs the polishing platform 3, using its thickness reduction to achieve the radial continuous automatic micro-feeding of the disc parts in the same direction as the bottom line of the busbar, 4 to determine the mounting precision and processing of the disc-type busbars by the optical gap method Degree;
  • the two sets of inclined guide rails and the round bottom plate are connected by screws, and the working surface of the guide rail is inclined at an angle of 60° to 75° with the bottom surface of the round bottom plate; a T-shaped groove is arranged in the middle of each inclined guide rail for fixing the stopper and the pressure plate; After installation, the two sets of inclined rail working faces are coplanar; the inclined rails are used to realize: 1 positioning and support of the disc parts in a certain diameter range, connection of the 2 stops and the pressure plate, and adjustment of the axial taper error of the 3 disc parts.
  • the two sets of stoppers and pressure plates are respectively fixed to the inclined rails by screws and T-nuts to realize the fixing and adjustment of the mandrel of the disc parts;
  • the stoppers are L-shaped, the two working faces are vertical, and the positioning faces and the inclined holes have countersunk holes.
  • the working surface of the guide rail is in contact with the working surface, and the other working surface is tangent to the mandrel;
  • the pressing plate is in an anti-Z shape, and the positioning surface having the countersunk hole is in contact with the inclined rail, and the angle between the pressing surface of the pressing plate and the positioning surface of the pressing plate is not greater than the inclined rail.
  • the residual angle of the dip angle of the working face; the inner side of the pressing surface of the pressure plate is screwed into contact with the mandrel by the screw fixing copper pressing block to improve the positioning rigidity and stability of the mandrel;
  • the bead shaft system includes a mandrel, two sets of annular flat bead plates, a radial bead bushing, a washer bracket, a cross washer and a lock nut; the mandrel is provided with three shaft segments and one shoulder end perpendicular to the axis
  • the shoulder end face is the axial positioning reference of the disc type component, and the yaw of the positioning shaft segment relative to the disc type part is not more than 1 ⁇ m; the difference of the diameter of the positioning shaft sections at both ends is not more than 2 ⁇ m, and the cylindricity is not more than 1 ⁇ m, as the mandrel.
  • the radial dense bead sleeve and the annular flat bead plate adopt spherical rolling bodies; the rolling body and the mandrel shoulder in the annular flat bead plate are controlled by the preload force of the lock nut
  • the gasket bracket is just in contact; the gasket bracket is a long strip type with a thickness of 2 to 3 mm. It is located between the annular flat bead plate and the cross washer, and has a radial opening in the middle. The size of the hole is larger than the nominal diameter of the mandrel thread by 0.5 to 1 mm.
  • the cross washer and the lock nut are fixed to the mandrel, and the bracket extends symmetrically along the radial direction of the mandrel.
  • the length of the bracket is larger than the maximum diameter of the disc part, but does not exceed the inner diameter of the cover body; Slot, fixed by screws Connecting L-type felt board; the length of the mat is larger than the axial width of the cylindrical surface of the disc part to be processed 3 ⁇ 10mm, and is glued to the L-type felt board; the role of the mat: 1 timely remove the polishing liquid on the disc parts To prevent the disc parts from slipping with the friction drive wheel, and to polish the outer cylindrical surface of the disc type parts to improve the smoothness.
  • the mobile power source is fixed on the round bottom plate, and the DC motor and the friction driving wheel are connected to the round bottom plate through the motor bracket, and the width of the friction driving wheel is larger than the axial width of the cylindrical surface of the disk type part to be processed; the friction driving wheel is compared with the steel friction coefficient Made of large silicone or rubber material, it is placed on the steel shaft through the interference joint; the transparent cover is placed on the outside of the device and fixed on the round bottom plate by the positioning pin.
  • the flatness of the bottom surface of the round bottom plate, the working faces of the two sets of inclined guide rails and the working faces of the two sets of the stop blocks are not more than 1 ⁇ m; the flatness of the positioning surfaces of the two sets of pressing plates in contact with the inclined guide rails is not more than 2 ⁇ m;
  • the Rockwell hardness of the working face of the guide rail and the two sets of stop faces is not lower than HRC60.
  • the length of the copper compact is less than 2 to 5 mm of the mandrel positioning shaft section
  • the contact surface of the copper compact and the mandrel is an arc surface having a circular arc diameter larger than a diameter of the mandrel positioning shaft section of 1 to 3 mm.
  • the structure can reduce the pressure of the copper block and the mandrel positioning shaft segment, and protect the positioning shaft segment of the mandrel from damage.
  • the radial dense bead sleeve and the annular flat bead plate adopt the ball with the accuracy of G5 and above.
  • the rolling element; the diameter of the rolling element in the radial bead bushing and the unilateral interference of the inner hole and the mandrel of the disc part are 1 to 3 ⁇ m.
  • the cover body is made of a plastic material, and a vent hole having a diameter of 2 to 3 mm is uniformly disposed near the bottom periphery, and a dust filter mesh is disposed on the inner wall; the probe of the portable temperature and humidity meter is placed in the disk through a small hole at the top of the cover body. 1 to 5mm above the part to collect data on the temperature and humidity around the disk parts during processing; the middle of the top of the cover is installed with an adjustable speed micro fan to adjust the temperature of the processing environment of the disk parts; When the relative humidity is more than 60%, dehumidification is performed by placing a desiccant such as silica gel in the cover.
  • a desiccant such as silica gel
  • a hole for mounting the handle is processed around the round bottom plate to facilitate the handling of the entire device; two positioning posts are fixed on the round bottom plate for positioning the cover; the felt is a wool felt.
  • the taper error adjustment method of the outer cylindrical surface precision grinding and polishing device of the above-mentioned disc type parts is adjusted by adding a spacer on the working surface of the block or the working surface of the inclined rail, and the specific method is as follows:
  • Step 2 the B1 group of measuring blocks are placed in the middle of the disc type parts and the high-precision platform, and the two sets of A1 and C1 measuring blocks are respectively placed on the working surfaces of the two side blocks, wherein the A1 group measuring blocks are padded in the taper of the disc parts.
  • the C1 group is placed on the end of the disc part with a small taper error; the disc part is mounted on the mandrel, and the two side stops are fixed to the inclined rail to ensure the mandrel positioning shaft section and the inclined rail and The two blocks of A1 and C1 are tangent; then the mandrel and the disc parts are removed, and then the three sets of A1, B1 and C1 are removed, and finally the disc parts and the mandrel are fixed to the inclined rail.
  • Step 2 the B2 group of mass blocks are placed between the disc parts and the high-precision platform, and the two sets of A2 and C2 gauge blocks are respectively placed on the working surfaces of the inclined rails on both sides, wherein the taper error of the A2 group gauge blocks in the disc parts
  • the C2 group is placed on the end of the disc part with less taper error
  • the disc part is mounted on the mandrel, and the two side stops are fixed to the inclined rail to ensure the mandrel positioning shaft section and the stopper
  • the working face is tangent to the two blocks of A2 and C2; then the mandrel and the disc parts are removed, then the three sets of A2, B2 and C2 are removed, and finally the disc parts and the mandrel are fixed to the inclined rail.
  • the invention has the beneficial effects that the invention provides a device for finishing the outer cylindrical surface of a disc-shaped part by using a grinding and polishing process on a polishing machine or a polishing table; the working principle of forming a cylindrical surface by using a bus bar around a fixed axis to realize Ultra-precision machining of the outer cylindrical surface of disc parts.
  • the grinding and polishing device and the processing method are used, and the thickness of the round bottom plate which is tangent to the bottom surface of the bus bar and the bottom surface thereof is thinned during the grinding and polishing process, and the radial continuous automatic micro-feeding of the disk parts is realized;
  • the device can determine the installation precision and processing precision of the disc-type busbar by the optical gap method; the device can conveniently adjust the axial taper error of the disc-shaped parts by adding a spacer on the inclined rail or the baffle working surface.
  • the device can realize the ultra-precision processing of the outer cylindrical surface of the sub-micron or even nano-scale disc parts, and has the advantages of simple operation, convenient adjustment and low cost, and has important popularization and application value.
  • Figure 1 round bottom plate.
  • Figure 2 double inclined rail and mandrel positioning and pressing device.
  • Figure 4 is a dense bead shaft system.
  • Figure 5 Disc type parts grinding and polishing device.
  • Figure 7 is a schematic diagram of the ring throwing process of the disk parts.
  • the diameter of the round bottom plate 1, the width of the inverted trapezoidal groove 1-4, and the height of the inclined guide rail 3 are determined in accordance with the size range of the disk-like component 20 to be processed.
  • the maximum processing width of the disk component 20 is smaller than the width of the inverted trapezoidal groove 1-4; the length of the stopper 8, the diameter of the positioning shaft of the mandrel 14, and the thickness of the circular base plate 1 collectively determine the minimum diameter of the disk component 20;
  • the height of the guide rail 3 and the length of the inverted trapezoidal groove of the round bottom plate define the maximum machining diameter of the disk-type part. Therefore, the device can meet the finishing requirements of the outer cylindrical surface of the disc-shaped part within a certain range.
  • the working faces 3-2 of the two inclined rails 3 can be rigidly joined together, and the overall grinding working surface meets the flatness requirement of not more than 1 ⁇ m; The positioning faces are made coplanar, and then the inclined rails 3 are fixed to the round bottom plate 1. Due to the existence of the assembly stress and the difference in the pre-tightening force between the two inclined rails and the round bottom plate screw, it is inevitable that a slight warpage of the working surface of the inclined rail will occur. After the stress is released, the flatness of the inclined rail working surface 3-2 is further improved by integrally grinding the oblique rails after the assembly and connection.
  • the disk component 20 is mounted on the mandrel 14, and the mounting method is as follows: the mandrel 14 is placed upright, and one end of the shoulder is on the lower side, and the annular flat bead plate 15, the radial bead bushing 16 and the disk are sequentially installed.
  • Both sets of annular flat bead plates 15 and radial bead bushings 16 are filled with a low viscosity grease.
  • the round bottom plate 1 is placed on a high-precision platform or a grinding plate of class 00 or higher, and the mandrel 14 on which the disk-like component 20 is mounted is placed in the inverted trapezoidal groove 1-4 of the round bottom plate 1;
  • the positioning shaft segment of the shaft 14 is cut on the inclined rail, and the positioning shaft segment which is cut by the stopper 8 on the mandrel 14 is fixed to the inclined guide T-shaped groove 3-1 by the baffle fixing screw 9, respectively.
  • a small amount of lubricating oil is added to the annular surface of the counterbore hole of the stopper 8.
  • the bus bar of the disk component 20 and the circular base plate 1 are respectively aligned with the working surface of the high precision workbench, thereby ensuring that the bus bar of the disk component 20 is tangent to the working face 1 of the circular base plate.
  • the two sets of pressure plates 4 are respectively fixed to the inclined rails 3, the position of the copper pressing blocks 6 is adjusted, and then the pressing block set screws 7 are tightened, so that the mandrel 14 is pressed against the inclined rails 1 and the stoppers 8, and the mandrel 14 is raised. Mounting rigidity and stability on the inclined rail 3.
  • the DC motor 22 and the friction drive wheel 14 are mounted, and the friction drive wheel 24 is adjusted to be in maximum tangential contact with the disk component 20.
  • the rotation speed is 3 ⁇ 12r/min to obtain better grinding and polishing effects.
  • the axial width of the disk-type parts is l
  • the span of the T-shaped groove of the two inclined guide rails is L
  • the inclination angle of the inclined guide rail is ⁇
  • the axial taper error of the disk-type parts is ⁇ , which is established on the side baffle working surface method
  • T 1 L ⁇ / (lsin ⁇ );
  • Three sets of gauge blocks A1, B1, and C1 with a precision of 1 and above are selected as the adjustment pads, and the monolithic or combined thicknesses are t 0 sin ⁇ , t 0 , t 0 sin ⁇ + T 1 , respectively .
  • the B1 group gauge block is placed between the disc type component 20 and the high-precision platform, and the two sets of A1 and C1 gauge blocks are respectively placed on the working faces of the two-sided stoppers 8, wherein the taper errors of the A1 group gauge blocks in the disc parts are respectively The larger end, the C1 group is placed on the end of the disc part with less taper error; according to the above (1) disc type mounting method, the two side stops 8 are fixed to the inclined rail to ensure the mandrel positioning axis The segment is tangent to the inclined guide rail and the two blocks of A1 and C1.
  • Adjustment method 2 add spacer on the working surface of the inclined rail
  • the axial width of the disk-type parts is l
  • the span of the T-shaped groove of the two inclined guide rails is L
  • the inclination angle of the inclined guide rail is ⁇
  • the axial taper error of the disk-type parts is ⁇ , which is established on the inclined rail working surface method on both sides
  • T 2 L ⁇ / (l cos ⁇ );
  • Three sets of gauges of class 1 and above are selected as the adjusting spacers, and the monolithic or combined thickness is t 0 cos ⁇ , t 0 , t 0 cos ⁇ + T 2 , and the amount of B2 is set.
  • the block pad is in the middle of the disc part 20 and the high-precision platform, and the two sets of A2 and C2 gauge blocks are respectively placed on the working surfaces of the inclined rails on both sides, wherein the A2 group gauge block is at the end with a large taper error of the disc type parts, C2
  • the measuring block pad is at the end with less taper error of the disc type part; according to the above (1) mounting method of the disc type part, the disc type part is mounted on the mandrel, and the two side stoppers 8 are fixed to the inclined rail to ensure the core
  • the shaft positioning shaft segment is tangent to the block working surface and the A2 and C2 two measuring blocks; then the mandrel and the disc parts are removed, and then the A2, B2 and C2 three measuring blocks are removed simultaneously, and finally according to the above (1)
  • the disk component mounting method further fixes the disk component and the mandrel to the inclined rail.

Abstract

一种在研抛机或研磨台上采用研抛工艺精加工圆盘类零件外圆柱面的装置,包括圆底板(1)、斜导轨(3)、挡块(8)、压板(4)、铜压块(6)、密珠轴系(14,15,16,18,19)、毡板(12)、摩擦驱动轮(24)、直流电机(22)、电源(21)、LED灯(2)、罩体(27)。通过母线绕固定轴线回转形成圆柱面工作原理,加工过程无需进刀,利用母线与其底面同向相切的圆底板厚度在研抛过程中的减薄,实现盘类零件径向连续自动微量进刀,通过光隙法判断圆盘类零件母线的安装精度与加工精度,通过在斜导轨或挡块工作面上加垫片的方法实现圆盘类零件轴向锥度误差的精密调整。该装置可实现亚微米甚至纳米级圆盘类零件外圆柱面的超精密加工,具有操作简单、调整方便、成本低的优点。

Description

[根据细则26改正07.09.2017] 一种盘类零件外圆柱面精密加工装置及其锥度误差调整方法 技术领域
本发明属于精密加工技术领域,涉及一种盘类零件外圆柱面的精密研抛加工装置及其锥度误差调整方法。
背景技术
盘类零件是机械零件中较常见的一类典型零件,其径向尺寸一般大于轴向尺寸,且具较高精度的端面跳动、内孔圆柱度和外圆柱面的圆跳和全跳精度要求。盘类零件的轴向基准为两侧端面,径向基准为由内孔的圆柱面确定的轴线。在以内孔为基准加工外圆柱面时,由于所用加工芯轴存在加工误差(包括芯轴中心孔的加工误差和芯轴基准圆柱面的加工误差等)和安装偏心误差,很难保证盘类零件外圆柱面和内孔基准圆柱面的同轴度,即便外圆柱面的圆度误差较小,但由于内外圆柱面面同轴度误差的存在,也会使盘类零件产生较大的圆跳和全跳误差。
盘类零件典型的产品有轴承的内外圈、摩擦驱动中的摩擦轮、基准级渐开线检查仪中的基圆盘类零件、圆度仪中的基准圆盘类零件等。尤其是在测量领域,对用作圆度基准的盘类零件提出了亚微米量级,甚至纳米量级的精度要求。现有精加工设备及超精密磨削工艺无法满足此类盘类零件的加工要求。研磨加工是一种超精密加工工艺,主要用于加工平面、圆柱面和球面等由简单几何元素构成的面形的超精密加工。目前,平面研磨的平面度一般能达到0.2~0.5μm;圆柱面研磨的圆度一般能达到0.2~0.5μm,圆柱度一般能达到0.5~1μm。采用超精密研抛工艺加工直径为150mm的1级标准平晶,平面度可达到50nm以下。但目前的研抛加工工艺及装置仅适用于平面和圆球零件的超精密加工。
发明内容
为解决盘类零件亚微米甚至纳米量级的外圆柱面超精密加工的难题,本发明提供了一种采用研抛加工工艺的盘类零件外圆柱面精密加装置,通过利用母线绕 固定轴线回转形成圆柱面工作原理,实现了圆盘类零件外圆柱面的超精密加工。
具体技术方案为,一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,包括圆底板、斜导轨、挡块、压板、铜压块、密珠轴系、毡板、摩擦驱动轮、直流电机、移动电源、IED灯、罩体;
圆底板采用球磨铸铁材料,厚度与直径比为0.1~0.3,中间位置设有宽度大于被加工圆盘类零件厚度的倒梯形槽孔,被加工圆盘类零件置于倒梯形槽中间,圆盘类零件固定后其圆柱面与圆底板的底面同向相切;倒梯形槽孔垂直于圆盘类零件母线方向的一侧设有与圆底板底面相交并垂直、高度为3~6mm的平面,其上贴有LED贴片,为采用光隙法测量提供光源;与平面相对的另一侧开有高度2~4mm、宽度大于被加工圆盘类零件母线长度的观察槽,便于人眼通过光隙法判断圆盘类零件母线的安装精度与加工精度;圆底板上设有固定斜导轨和摩擦驱动轮支架的沉头孔;圆底板可实现:①支撑整个精密加工装置,②修整研抛平台,③利用其厚度的减薄实现母线与其底面同向相切的盘类零件径向连续自动微量进刀,④通过光隙法判断圆盘类零件母线的安装精度与加工精度;
两套斜导轨与圆底板通过螺钉连接,导轨工作面与圆底板的底面成60°~75°倾角;每个斜导轨中间设有T型槽,用于挡块和压板的固定;与圆底板安装后两套斜导轨工作面共面;斜导轨用于实现:①一定直径范围内的盘类零件的定位与支撑,②挡块和压板的连接,③盘类零件轴向锥度误差的调整。
两套挡块和压板分别通过螺钉和T型螺母固定到斜导轨上,实现盘类零件芯轴的固定与调整;挡块成L型,两工作面垂直,有沉头孔的定位面与斜导轨的工作面接触,另一工作面与芯轴相切;压板成反Z字型,有沉头孔的定位面与斜导轨接触,压板的压面与压板定位面的夹角不大于斜导轨工作面倾角的余角;压板的压面内侧通过螺纹固定铜压块与芯轴压紧接触,以提高芯轴的定位刚度与稳定性;
密珠轴系包括芯轴、两套环形平密珠板、径向密珠轴套、垫圈支架、十字垫圈和锁紧螺母;芯轴上设有三个轴段和一个端面垂直于轴线的轴肩,轴肩端面是盘类零件的轴向定位基准,其相对于盘类零件定位轴段的偏摆不大于1μm;两端定位轴段直径差不大于2μm,圆柱度不大于1μm,作为芯轴在斜导轨上的定位基准;径向密珠轴套与环形平密珠板均采用球形滚动体;通过锁紧螺母的预紧力控制环形平密珠板中的滚动体与芯轴轴肩和垫圈支架刚好接触;垫圈支架为长条板型,厚度2~3mm,位于环形平密珠板和十字垫圈之间,中间径向开孔,孔的尺寸大于芯轴螺纹公称直径0.5~1mm,通过十字垫圈和锁紧螺母固定到芯轴上,支架沿芯轴径向向两侧对称延伸,支架长度大于盘类零件的最大直径,但不超出罩体的内径;垫圈支架两侧延伸段中间开槽,通过螺钉固定连接L型毡板;毡片长度大于盘类零件待加工圆柱面的轴向宽度3~10mm,用胶粘到L型毡板上;毡片的作用:①及时清除盘类零件上的抛光液,防止盘类零件与摩擦驱动轮打滑,②抛光盘类零件外圆柱面,提高其光洁度。
移动电源固定在圆底板上,直流电机和摩擦驱动轮通过电机支架连接到圆底板上,摩擦驱动轮的宽度大于盘类零件待加工圆柱面的轴向宽度;摩擦驱动轮由与钢摩擦系数较大的硅胶或橡胶材料制成,通过过盈连接套在钢轴上;透明的罩体外罩于装置外部,通过定位销固定在圆底板上。
进一步地,所述圆底板底面、两套斜导轨工作面和两套挡块工作面的平面度均不大于1μm;两套压板与斜导轨接触的定位面的平面度不大于2μm;两套斜导轨工作面和两套挡块工作面的洛氏硬度不低于HRC60。
进一步地,所述铜压块的长度小于芯轴定位轴段2~5mm,铜压块与芯轴的接触面为圆弧直径大于芯轴定位轴段直径的1~3mm的圆弧面。该结构可减小铜块与芯轴定位轴段的压强,保护芯轴的定位轴段免于破坏。
进一步地,所述径向密珠轴套与环形平密珠板均采用G5级及以上精度的球 形滚动体;径向密珠轴套中滚动体的其直径与盘类零件内孔和芯轴的单边过盈量为1~3μm。
进一步地,所述罩体为塑料材质,靠近底部周边均布加工有直径2~3mm的通气孔,内壁设有灰尘过滤网;便携式温湿度仪的探头通过罩体顶部的小孔置于盘类零件上方1~5mm的位置,以便采集加工过程中盘类零件周围温湿度的数据;罩体顶部中间位置开孔安装转速可调式微型风扇,用以调节盘类零件加工环境的温度;当加工室内相对湿度大于60%时,通过在罩体内放置硅胶等干燥剂进行降湿。
进一步地,所述圆底板周边加工有安装搬运手柄的孔,方便整个装置的搬运;圆底板上固定两个定位柱,用于罩体的定位;所述毡片为羊毛毡片。
上述盘类零件外圆柱面精密研抛加工装置的锥度误差调整方法,通过在挡块工作面上或斜导轨工作面上加垫片的方法进行调整,具体方法如下:
(1)在挡块与芯轴相切的工作面上加垫片
步骤1,建立在两侧挡块工作面法向厚度差T1与盘类零件轴向锥度误差Δ之间的映射关系为:T1=LΔ/(l sinθ);其中,盘类零件的轴向宽度为l,两斜导轨T型槽的中心跨度为L,斜导轨工作面的倾角为θ;选取三组规格的1级及以上精度的量块组A1、B1、C1作为调整垫片,其厚度分别为t0sinθ,t0,t0sinθ+T1
步骤2,将B1组量块垫在圆盘类零件与高精度平台中间,A1和C1两组量块分别垫在两侧挡块的工作面上,其中A1组量块垫在盘类零件锥度误差大的一端,C1组量块垫在盘类零件锥度误差小的一端;将盘类零件安装在芯轴上,两侧挡块固定到斜导轨上,确保芯轴定位轴段与斜导轨和A1、C1两组量块相切;然后移开芯轴和盘类零件,然后同时去掉A1、B1和C1三组量块,最后再将盘类零件和芯轴固定到斜导轨上,此时,盘类零件母线与圆底板工作平面之间产生了Δ的锥度误差;随着研抛的进行,盘类零件母线与圆底板工作平面趋于相切, 最终实现盘类零件轴向锥度误差的精密消除。
(2)在斜导轨工作面上加垫片
步骤1,建立在两侧斜导轨工作面法向厚度差T2与盘类零件轴向锥度误差Δ之间的映射关系为:T2=LΔ/(l cosθ);选取三组规格的1级及以上精度的量块组A2、B2、C2作为调整垫片,其厚度分别为t0cosθ,t0,t0cosθ+T2
步骤2,将B2组量块垫在盘类零件与高精度平台中间,A2和C2两组量块分别垫在两侧斜导轨的工作面上,其中A2组量块垫在盘类零件锥度误差较大的一端,C2组量块垫在盘类零件锥度误差较小的一端;将盘类零件安装在芯轴上,两侧挡块固定到斜导轨上,确保芯轴定位轴段与挡块工作面和A2、C2两组量块相切;然后移开芯轴和盘类零件,然后同时去掉A2、B2和C2三组量块,最后再将盘类零件和芯轴固定到斜导轨上,此时,盘类零件母线与圆底板工作平面之间产生了Δ的锥度误差;随着研抛的进行,盘类零件母线与圆底板工作平面趋于相切,最终实现盘类零件轴向锥度误差的精密消除。
本发明的有益效果为:本发明提供了一种在研抛机或研磨台上采用研抛工艺精加工圆盘类零件外圆柱面的装置;利用母线绕固定轴线回转形成圆柱面工作原理,实现圆盘类零件外圆柱面的超精密加工。采用该研抛装置与加工方法,加工过程中无需进刀,利用母线与其底面同向相切的圆底板厚度在研抛过程中的减薄,实现盘类零件径向连续自动微量进刀;该装置可通过光隙法判断圆盘类零件母线的安装精度与加工精度;该装置可方便通过在斜导轨或挡板工作面上加垫片的方法实现圆盘类零件轴向锥度误差的调整。采用该装置可实现亚微米甚至纳米量级圆盘类零件类外圆柱面的超精密加工,具有操作简便,调整方便,成本低等优点,具有重要的推广应用价值。
附图说明
图1圆底板。
图2双斜导轨及芯轴定位压紧装置。
图3垫圈支架。
图4密珠轴系。
图5圆盘类零件研抛装置。
图6塑料罩与底板。
图7盘类零件环抛加工示意图。
图中:1圆底板;1-1塑料罩定位销;1-2搬运插孔;1-3斜导轨连接沉头孔;1-4倒梯形槽孔;1-5光隙观察孔;2LED灯;3斜导轨;3-1斜导轨T型槽;3-2斜导轨工作面;4压板;5压板固定螺钉;6铜压块;7压块紧定螺钉;8挡块;9挡板固定螺钉;10垫圈支架;11毡板连接螺钉;12毡板;13毡片;14芯轴;15环形平密珠板;16径向密珠轴套;17球形滚动体;18十字垫圈;19锁紧螺母;20盘类零件;21移动电源;22直流电机;23钢轴;24摩擦轮;25摩擦轮支架;26支架固定螺钉;27罩体;27-1定位孔;27-2通气孔;27-3温湿度仪探头安装孔;27-4微型风扇安装孔。
具体实施方式
(一)盘类零件的安装
根据被加工盘类零件20的尺寸范围,确定圆底板1的直径、倒梯形槽1-4的宽度、斜导轨3的高度。盘类零件20的最大加工宽度小于倒梯形槽1-4的宽度;挡块8的长度、芯轴14定位轴段的直径和圆底板1的厚度共同确定了盘类零件20的最小直径;斜导轨3的高度和圆底板倒梯形槽的长度限定了盘类零件的最大加工直径。因此,该装置能够满足一定范围内的盘形零件外圆柱面的精加工要求。
在不与盘类零件20干涉的情况下,两斜导轨3工作面3-2精研时可刚性连接到一起,整体研磨工作面达到不大于1μm的平面度要求;同时研磨斜导轨1 的定位面,使其共面,然后将斜导轨3固定到圆底板1上。由于装配应力的存在及两斜导轨与圆底板螺钉连接预紧力的差异,难免会造成斜导轨的工作面发生微量翘曲变形。在应力释放后,通过对装配连接后的斜导轨进行整体研磨,进一步提高斜导轨工作面3-2的平面度。
首先将盘类零件20安装到芯轴14上,安装方法如下:将芯轴14立放,有轴肩的一端在下边,依次安装环形平密珠板15、径向密珠轴套16和盘类零件20、另一套环形平密珠板15、垫圈支架10、十字垫圈18、锁紧螺母19。在锁紧螺母轻触到十字垫圈18后,拧紧锁紧螺母上的三个径向紧定螺钉。两套环形平密珠板15和径向密珠轴套16中均填充低粘度的润滑脂。
然后,将圆底板1置于00级以上高精度平台或研磨板上,再将安装好盘类零件20的芯轴14置入圆底板1的倒梯形槽1-4中;接着将并将芯轴14的定位轴段切于斜导轨上,再用挡板固定螺钉9分别将挡块8切紧于芯轴14上的定位轴段固定到斜导轨T型槽3-1里。为防止拧紧挡板固定螺钉9时改变挡块8与芯轴定位轴段的相切状态,挡块8的沉头孔的环面内加少许润滑油。盘类零件20的母线与圆底板1分别与高精度工作台的工作面对齐,从而确保了盘类零件20的母线与圆底板的工作面1同向相切。
接着将两套压板4分别固定到斜导轨3上,调整铜压块6的位置,然后拧紧压块紧定螺钉7,使芯轴14压紧斜导轨1和挡块8,提高芯轴14在斜导轨3上的安装刚度与稳定性。
最后安装直流电机22和摩擦驱动轮14,调整摩擦驱动轮24与盘类零件20最大限度相切接触。调整直流电机支架25在圆底板1上的安装位置,使弹性摩擦驱动轮24与盘类零件20之间产生一定的正压力,进而形成摩擦力矩,驱动盘类零件20匀速自转;控制盘类零件转速在3~12r/min以获得较好的研磨和抛光效果。
(二)盘类零件锥度误差的调整
(1)调整方法一:在挡块工作面上加垫片
设盘类零件的轴向宽度为l,两斜导轨T型槽的跨度为L,斜导轨的倾角为θ,圆盘类零件的轴向锥度误差为Δ,建立在两侧挡板工作面法向厚度差T1与盘类零件轴向锥度误差Δ之间的映射关系为:T1=LΔ/(lsinθ);
选取三组规格的1级及以上精度的量块组A1、B1、C1作为调整垫片,其单块或组合厚度分别为t0sinθ,t0,t0sinθ+T1。将B1组量块垫在圆盘类零件20与高精度平台中间,A1和C1两组量块分别垫在两侧挡块8的工作面上,其中A1组量块垫在盘类零件锥度误差较大的一端,C1组量块垫在盘类零件锥度误差较小的一端;按照上述(1)盘类零件的安装方法,将两侧挡块8固定到斜导轨上,确保芯轴定位轴段与斜导轨和A1、C1两组量块相切。然后移开芯轴和盘类零件,然后同时去掉A1、B1和C1三组量块,最后再按照上述(1)盘类零件安装方法将芯轴及盘类零件固定到斜导轨上。此时,盘类零件母线与圆底板工作平面之间产生了Δ的锥度误差。随着研抛的进行,盘类零件母线与圆底板工作平面趋于相切,最终实现了盘类零件轴向锥度误差的精密消除;
进一步举例说明如下:取L/l=4,θ=75°,选取最小厚度为0.01mm商品不锈钢薄片垫在对应最大锥度误差的一侧挡板工作面上(即上式中的t0=0),则可产生最小锥度误差Δ≈2.41μm。一组0级量块的厚度误差不超过1μm,采用该调整方法该误差对盘类工件锥形误差的影响不到0.24μm。可见,采用在挡板工作面上加量块垫片的调整方法可实现亚微米盘类零件锥度误差的调整。
(2)调整方法二:在斜导轨工作面上加垫片
设盘类零件的轴向宽度为l,两斜导轨T型槽的跨度为L,斜导轨的倾角为θ,圆盘类零件的轴向锥度误差为Δ,建立在两侧斜导轨工作面法向厚度差T2与盘类零件轴向锥度误差Δ之间的映射关系为:T2=LΔ/(l cosθ);
选取三组规格的1级及以上精度的量块组A2、B2、C2作为调整垫片,其单块或组合厚度分别为t0cosθ,t0,t0cosθ+T2,将B2组量块垫在盘类零件20与高精度平台中间,A2和C2两组量块分别垫在两侧斜导轨的工作面上,其中A2组量块垫在盘类零件锥度误差较大的一端,C2组量块垫在盘类零件锥度误差较小的一端;按照上述(1)盘类零件的安装方法,将盘类零件安装在芯轴上,两侧挡块8固定到斜导轨上,确保芯轴定位轴段与挡块工作面和A2、C2两组量块相切;然后移开芯轴和盘类零件,然后同时去掉A2、B2和C2三组量块,最后再按照上述(1)盘类零件安装方法再将盘类零件和芯轴固定到斜导轨上,此时,盘类零件母线与圆底板工作平面之间产生了Δ的锥度误差;随着研抛的进行,盘类零件母线与圆底板工作平面趋于相切,最终实现盘类零件轴向锥度误差的精密消除。
进一步举例说明如下:取L/l=4,θ=75°,选取最小厚度为0.01mm商品不锈钢薄片垫在对应最大锥度误差的一侧斜导轨工作面上(即上式中的t0=0),则可产生最小锥度误差Δ≈0.64μm。一组0级量块的厚度误差不超过1μm,该误差对盘类工件锥形误差的影响不到0.07μm。可见,采用在斜导轨工作面上加量块垫片的调整方法可实现亚微米量级甚至纳米量级盘类零件锥度误差的调整。

Claims (10)

  1. 一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,其特征在于,包括圆底板、斜导轨、挡块、压板、铜压块、密珠轴系、毡板、摩擦驱动轮、直流电机、移动电源、IED灯、罩体;
    圆底板厚度与直径比为0.1~0.3,中间位置设有宽度大于被加工圆盘类零件厚度的倒梯形槽孔;倒梯形槽孔垂直于圆盘类零件母线方向的一侧设有与圆底板底面相交并垂直、高度为3~6mm的平面,其上贴有LED贴片;与平面相对的另一侧开有高度2~4mm、宽度大于被加工圆盘类零件母线长度的观察槽;圆底板上设有固定斜导轨和摩擦驱动轮支架的沉头孔;
    两套斜导轨与圆底板通过螺钉连接,导轨工作面与圆底板的底面成60°~75°倾角;每个斜导轨中间设有T型槽,用于挡块和压板的固定;与圆底板安装后两套斜导轨工作面共面;
    两套挡块和压板分别通过螺钉和T型螺母固定到斜导轨上,实现盘类零件芯轴的固定与调整;挡块成L型,两工作面垂直,有沉头孔的定位面与斜导轨的工作面接触,另一工作面与芯轴相切;压板成反Z字型,有沉头孔的定位面与斜导轨接触,压板的压面与压板定位面的夹角不大于斜导轨工作面倾角的余角;压板的压面内侧通过螺纹固定铜压块与芯轴压紧接触;
    密珠轴系包括芯轴、两套环形平密珠板、径向密珠轴套、垫圈支架、十字垫圈和锁紧螺母;芯轴上设有有三个轴段和一个端面垂直于轴线的轴肩,轴肩端面是盘类零件的轴向定位基准,其相对于盘类零件定位轴段的偏摆不大于1μm;两端定位轴段直径差不大于2μm,圆柱度不大于1μm,作为芯轴在斜导轨上的定位基准;径向密珠轴套与环形平密珠板均采用球形滚动体,通过锁紧螺母的预紧力控制环形平密珠板中的滚动体与芯轴轴肩和垫圈支架接触;垫圈支架为长条板型,厚度2~3mm,位于环形平密珠板和十字垫圈之间,中间径向 开孔,孔的尺寸大于芯轴螺纹公称直径0.5~1mm,通过十字垫圈和锁紧螺母固定到芯轴上,支架沿芯轴径向向两侧对称延伸,支架长度大于盘类零件的最大直径,但不超出罩体的内径;垫圈支架两侧延伸段中间开槽,通过螺钉固定连接L型毡板;毡片长度大于盘类零件待加工圆柱面的轴向宽度3~10mm,用胶粘到L型毡板上;
    移动电源固定在圆底板上,直流电机和摩擦驱动轮通过电机支架连接到圆底板上,摩擦驱动轮的宽度大于盘类零件待加工圆柱面的轴向宽度;摩擦驱动轮由硅胶或橡胶材料制成,通过过盈连接套在钢轴上;透明的罩体外罩于装置外部,通过定位销固定在圆底板上。
  2. 根据权利要求1所述的一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,其特征在于,所述圆底板底面、两套斜导轨工作面和两套挡块工作面的平面度均不大于1μm;两套压板与斜导轨接触的定位面的平面度不大于2μm;两套斜导轨工作面和两套挡块工作面的洛氏硬度不低于HRC60。
  3. 根据权利要求1或2所述的一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,其特征在于,所述铜压块的长度小于芯轴定位轴段2~5mm,铜压块与芯轴的接触面为圆弧直径大于芯轴定位轴段直径的1~3mm的圆弧面。
  4. 根据权利要求1或2所述的一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,其特征在于,径向密珠轴套与环形平密珠板均采用G5级及以上精度的球形滚动体;径向密珠轴套中滚动体与盘类零件内孔和芯轴的单边过盈量为1~3μm。
  5. 根据权利要求3所述的一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,其特征在于,径向密珠轴套与环形平密珠板均采用G5级及以上精度的球形滚动体;径向密珠轴套中滚动体与盘类零件内孔和芯轴的单边过盈量为1~3 μm。
  6. 根据权利要求1或2或5所述的一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,其特征在于,所述罩体为塑料材质,靠近底部周边均布加工有直径2~3mm的通气孔,内壁设有灰尘过滤网;便携式温湿度仪的探头通过罩体顶部的小孔置于盘类零件上方1~5mm的位置;罩体顶部中间位置开孔安装转速可调式微型风扇。
  7. 根据权利要求3所述的一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,其特征在于,所述罩体为塑料材质,靠近底部周边均布加工有直径2~3mm的通气孔,内壁设有灰尘过滤网;便携式温湿度仪的探头通过罩体顶部的小孔置于盘类零件上方1~5mm的位置;罩体顶部中间位置开孔安装转速可调式微型风扇。
  8. 根据权利要求4所述的一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,其特征在于,所述罩体为塑料材质,靠近底部周边均布加工有直径2~3mm的通气孔,内壁设有灰尘过滤网;便携式温湿度仪的探头通过罩体顶部的小孔置于盘类零件上方1~5mm的位置;罩体顶部中间位置开孔安装转速可调式微型风扇。
  9. 根据权利要求1或2或5或7或8所述的一种采用研抛加工工艺的盘类零件外圆柱面精密加工装置,其特征在于,所述圆底板周边加工有安装搬运手柄的螺纹孔;圆底板上固定两个定位柱,用于罩体的定位。
  10. 权利要求1-9任一所述的盘类零件外圆柱面精密研抛加工装置的锥度误差调整方法,其特征在于,通过在挡块工作面上或斜导轨工作面上加垫片的方法进行调整,方法如下:
    (1)在挡块与芯轴相切的工作面上加垫片
    步骤1,建立在两侧挡块工作面法向厚度差T1与盘类零件轴向锥度误差Δ之间的映射关系为:T1=LΔ/(l sinθ);其中,盘类零件的轴向宽度为l,两斜导轨T型槽的中心跨度为L,斜导轨工作面的倾角为θ;选取三组规格的1级及以上精度的量块组A1、B1、C1作为调整垫片,其厚度分别为t0sinθ,t0,t0sinθ+T1
    步骤2,将B1组量块垫在圆盘类零件与高精度平台中间,A1和C1两组量块分别垫在两侧挡块的工作面上,其中A1组量块垫在盘类零件锥度误差大的一端,C1组量块垫在盘类零件锥度误差小的一端;将盘类零件安装在芯轴上,两侧挡块固定到斜导轨上,确保芯轴定位轴段与斜导轨和A1、C1两组量块相切;然后移开芯轴和盘类零件,然后同时去掉A1、B1和C1三组量块,最后再将盘类零件和芯轴固定到斜导轨上,此时,盘类零件母线与圆底板工作平面之间产生了Δ的锥度误差;随着研抛的进行,盘类零件母线与圆底板工作平面趋于相切,最终实现盘类零件轴向锥度误差的精密消除;
    (2)在斜导轨工作面上加垫片
    步骤1,建立在两侧斜导轨工作面法向厚度差T2与盘类零件轴向锥度误差Δ之间的映射关系为:T2=LΔ/(l cosθ);选取三组规格的1级及以上精度的量块组A2、B2、C2作为调整垫片,其厚度分别为t0cosθ,t0,t0cosθ+T2
    步骤2,将B2组量块垫在盘类零件与高精度平台中间,A2和C2两组量块分别垫在两侧斜导轨的工作面上,其中A2组量块垫在盘类零件锥度误差较大的一端,C2组量块垫在盘类零件锥度误差较小的一端;将盘类零件安装在芯轴上,两侧挡块固定到斜导轨上,确保芯轴定位轴段与挡块工作面和A2、C2两组量块相切;然后移开芯轴和盘类零件,然后同时去掉A2、B2和C2三组量块,最后再将盘类零件和芯轴固定到斜导轨上,此时,盘类零件母线与圆底板工作平面之间产生了Δ的锥度误差;随着研抛的进行,盘类零件母线与圆底板工作平面趋 于相切,最终实现盘类零件轴向锥度误差的精密消除。
PCT/CN2017/088067 2017-06-13 2017-06-13 一种盘类零件外圆柱面精密加工装置及其锥度误差调整方法 WO2018227378A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/346,506 US10513003B2 (en) 2017-06-13 2017-06-13 Precision lapping and polishing device for external cylindrical surface of the disk part and its taper error adjustment method thereof
PCT/CN2017/088067 WO2018227378A1 (zh) 2017-06-13 2017-06-13 一种盘类零件外圆柱面精密加工装置及其锥度误差调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/088067 WO2018227378A1 (zh) 2017-06-13 2017-06-13 一种盘类零件外圆柱面精密加工装置及其锥度误差调整方法

Publications (1)

Publication Number Publication Date
WO2018227378A1 true WO2018227378A1 (zh) 2018-12-20

Family

ID=64658994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088067 WO2018227378A1 (zh) 2017-06-13 2017-06-13 一种盘类零件外圆柱面精密加工装置及其锥度误差调整方法

Country Status (2)

Country Link
US (1) US10513003B2 (zh)
WO (1) WO2018227378A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685015B2 (en) * 2019-01-28 2023-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for performing chemical mechanical polishing
CN111890219A (zh) * 2020-07-07 2020-11-06 中国科学院西安光学精密机械研究所 一种镜组倾斜角度快速定量修研装置及方法
CN112643483B (zh) * 2020-09-06 2022-01-21 嘉兴市广杰塑业有限公司 塑料灯座打磨设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050660A1 (de) * 2008-09-22 2010-04-08 Vladimir Volchkov Schleifmaschine
CN202162633U (zh) * 2011-05-17 2012-03-14 广州日宝钢材制品有限公司 一种基于集群磁流变研磨效应的圆柱面高效研磨装置
CN104191346A (zh) * 2014-09-03 2014-12-10 大连理工大学 一种高精度自动研抛装置
WO2015136350A1 (en) * 2014-03-11 2015-09-17 Tenova S.P.A. Equipment and grinding machine for the grinding of external rings of roller bearings
CN204913562U (zh) * 2015-09-09 2015-12-30 吉林大学 一种卧式磨抛机床工具系统
CN105479307A (zh) * 2015-11-23 2016-04-13 北京航空航天大学 一种用于复杂曲面抛光加工的摆动抛光装置
CN205218689U (zh) * 2015-11-19 2016-05-11 浙江工业大学 微半环凹模阵列式研抛装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839993A (en) * 1986-01-28 1989-06-20 Fujisu Limited Polishing machine for ferrule of optical fiber connector
US5938511A (en) * 1997-11-21 1999-08-17 Patterson; James D. Grinding guide assembly
EP0919327B1 (de) * 1997-12-01 2004-11-03 HAWE NEOS DENTAL Dr. H. V. WEISSENFLUH AG Vorrichtung zum Schärfen von Dentalinstrumenten
US9527187B2 (en) * 2012-09-19 2016-12-27 Associated Development Corporation Tool operating assembly for a lens shaping machine
US10150201B2 (en) * 2014-05-22 2018-12-11 Tormek Ab Grinding machine casing for a grinding machine
TWD171425S (zh) * 2014-10-31 2015-11-01 黃振華 木工專用鑽模夾具之部分

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050660A1 (de) * 2008-09-22 2010-04-08 Vladimir Volchkov Schleifmaschine
CN202162633U (zh) * 2011-05-17 2012-03-14 广州日宝钢材制品有限公司 一种基于集群磁流变研磨效应的圆柱面高效研磨装置
WO2015136350A1 (en) * 2014-03-11 2015-09-17 Tenova S.P.A. Equipment and grinding machine for the grinding of external rings of roller bearings
CN104191346A (zh) * 2014-09-03 2014-12-10 大连理工大学 一种高精度自动研抛装置
CN204913562U (zh) * 2015-09-09 2015-12-30 吉林大学 一种卧式磨抛机床工具系统
CN205218689U (zh) * 2015-11-19 2016-05-11 浙江工业大学 微半环凹模阵列式研抛装置
CN105479307A (zh) * 2015-11-23 2016-04-13 北京航空航天大学 一种用于复杂曲面抛光加工的摆动抛光装置

Also Published As

Publication number Publication date
US20190291230A1 (en) 2019-09-26
US10513003B2 (en) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2018227378A1 (zh) 一种盘类零件外圆柱面精密加工装置及其锥度误差调整方法
CN107150285B (zh) 一种盘类零件外圆柱面精密研抛加工装置及其锥度误差调整方法
WO2016011942A1 (zh) 一种用于转台框架同轴度检测的装置
CN204736036U (zh) 一种用于精密圆柱滚子外圆面研磨的加工装置
CN206708709U (zh) 一种高精度回转支承上油装置
CN113752105B (zh) 一种外圆柱面研抛装置及使用方法
CN102606864B (zh) 大口径超精密测量机的半球定心平面支承转台结构
CN102601724A (zh) 一种主动驱动研磨装置
CN105382679A (zh) 浮动式均载行星研磨头
CN110411634B (zh) 圆锥滚子球基面磨削力测量装置及方法
CN105269433A (zh) 一种刃磨修整游标卡尺的装置及其工作方法
CN203887661U (zh) 一种刃磨修整游标卡尺的装置
CN107263227A (zh) 浮托式无心磨头
CN201183118Y (zh) 一种可调导向轮同轨道间隙的装置
CN217122655U (zh) 一种可调节直径的轴承内圈打磨装置
CN203156559U (zh) “v”形支撑工装夹具
CN202114355U (zh) 一种在普通车床上珩磨斜齿轮的装置
CN213795928U (zh) 一种三偏心蝶阀阀座研磨组件
CN211163523U (zh) 一种单盘研磨机修盘器
CN207771302U (zh) 滚压加工支撑装置
CN111238350B (zh) 找正工具
CN220893325U (zh) 一种应用于透镜加工的同心度检测装置
CN203679853U (zh) 夹具定位用减重机构
CN204382064U (zh) 磨床砂轮静平衡调整装置
CN112756710B (zh) 一种用于薄辐板齿轮零件磨齿加工的自定心防颤夹具及装夹方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913511

Country of ref document: EP

Kind code of ref document: A1