WO2020224275A1 - T型沸石分子筛膜的制备方法 - Google Patents

T型沸石分子筛膜的制备方法 Download PDF

Info

Publication number
WO2020224275A1
WO2020224275A1 PCT/CN2019/128949 CN2019128949W WO2020224275A1 WO 2020224275 A1 WO2020224275 A1 WO 2020224275A1 CN 2019128949 W CN2019128949 W CN 2019128949W WO 2020224275 A1 WO2020224275 A1 WO 2020224275A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
type zeolite
zeolite molecular
gel
carrier
Prior art date
Application number
PCT/CN2019/128949
Other languages
English (en)
French (fr)
Inventor
杨建华
路颖
贺高红
鲁金明
张艳
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to JP2021565845A priority Critical patent/JP7294704B2/ja
Publication of WO2020224275A1 publication Critical patent/WO2020224275A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves

Definitions

  • the invention belongs to the technical field of membrane separation materials, and relates to the preparation and application of a zeolite molecular sieve membrane, in particular a vapor phase conversion preparation method of a T-type zeolite molecular membrane.
  • Pervaporation membrane separation technology for organic solvent dehydration can replace traditional separation methods such as distillation, extraction, and absorption. It can obtain high-quality products with low energy consumption and meet the separation requirements that are difficult or impossible to achieve with conventional methods, especially in separating azeotropic mixtures. , Near-boiling mixtures and heat-sensitive compounds or low-concentration component mixtures have great advantages. Compared with traditional distillation methods, the pervaporation membrane device has the following advantages: low operating energy consumption, high separation efficiency, simple process, small footprint, convenient operation, no third component, high product purity, and stable quality , The process is green and pollution-free, so it has huge industrial economic potential.
  • Pervaporation membranes are classified into pervaporation organic membranes and pervaporation inorganic membranes according to their materials. Compared with organic membranes, inorganic membranes have good thermal and chemical stability, long service life, fewer vulnerable parts, low maintenance costs, easy replacement of membrane components, high membrane flux, large separation coefficient, no swelling, solvent corrosion resistance, etc. Many advantages have become the preferred membrane material for pervaporation.
  • the pervaporation inorganic membrane uses molecular sieve as the membrane material (core separation membrane layer), and uses its regular pore structure to achieve the separation of molecular size levels among different components.
  • T-type zeolite is an intergrowth crystal formed by the mutual growth of erionite and chabazite.
  • the framework structures of erionite and chabazite are different but closely related.
  • the interaction between the two zeolites makes the pore size of T-type zeolite 0.36nm ⁇ 0.51nm .
  • the T-type zeolite membrane has a medium silicon-to-aluminum ratio, good hydrophilicity and acid resistance, and shows good pervaporation performance in separating water and organic solutions.
  • the synthesis methods of zeolite molecular sieve membranes mainly include in-situ hydrothermal synthesis, secondary growth, microwave synthesis, gel conversion and so on.
  • the synthesis method of T-type molecular sieve zeolite membrane reported in patents and literature adopts the secondary growth method (Journal of Materials Chemistry A, 2017, 5(34): 17828-17832) or the microwave-assisted secondary growth method synthesis method (Microporous&Mesoporous Materials ,2009,124(1):117-122), and the use of Gel Conversion Method (Gel Conversion Method) to synthesize T-type zeolite molecular sieve membrane has not been reported at home and abroad.
  • the secondary growth method or the microwave synthesis method is a hydrothermal synthesis method, the amount of synthesis liquid used is large, and the bottom material is discarded after crystallization and film formation; while the traditional gel conversion method is to coat a gel layer on the surface of the carrier.
  • the amount of synthesis liquid required is small, and then it is put into a reaction kettle containing organic template or water, heated to a certain temperature to vaporize, and the gel layer crystallizes under the action of steam to form a zeolite molecular sieve membrane layer. Because this method will increase the stability of the organic template, but the generated steam needs to enter the gel layer, which will cause cracks in the membrane layer. It is difficult to prepare a zeolite molecular sieve membrane with fewer defects, so this method has not been applied Prepare T-type zeolite molecular sieve membrane without adding organic template.
  • the present invention provides a method for preparing a T-type zeolite molecular sieve membrane.
  • the method first subjects a carrier to a wetting process, and then coats the surface of the dried carrier with a gel layer prepared from synthetic raw materials of zeolite molecular sieve, and crystallizes it into Membrane, the gel layer forms a zeolite molecular sieve membrane layer under the action of steam.
  • a seed layer is pre-coated on a cheap macroporous carrier, and the T-type zeolite molecular sieve membrane prepared by the gel method has excellent separation performance and certain stability.
  • the method has high repeatability, effective solvent saving, and high membrane performance.
  • the T-type zeolite molecular sieve membrane gel method production process involved in the present invention includes the following steps:
  • a method for preparing a T-type zeolite molecular sieve membrane adopts a gel conversion method to sequentially coat the surface of a porous carrier with a seed liquid to obtain a seed layer, and coat the gel liquid to obtain a gel layer; then the carrier is crystallized Then, the T-type zeolite molecular sieve membrane is obtained; after the porous carrier is coated with a seed layer, it is first immersed in water or a gel solution (diluted more than 30 times) and then coated with a gel solution to obtain a gel layer .
  • the gel solution is composed of a silicon source, an aluminum source, a fluoride salt and an alkali solution.
  • the silicon source is silica sol; the aluminum source is sodium metaaluminate; the fluoride salt is sodium fluoride and potassium fluoride; the lye is sodium hydroxide and potassium hydroxide.
  • the gel solution is prepared by adding aluminum source, fluoride salt, and silicon source to a mixed alkali solution of sodium hydroxide and potassium hydroxide, and aging for 10-50 hours.
  • the second temperature-variable dipping method is adopted when the seed layer is obtained by coating the seed liquid.
  • the shape of the porous carrier is tubular, flat, hollow fiber or porous channel carrier; preferably, it is tubular.
  • the material of the porous carrier is alumina, zirconia, mullite, stainless steel or metal mesh; the pore diameter of the porous carrier is 0.02-40 ⁇ m;
  • the porous support is preferably alumina, and the pore diameter of the porous support is preferably 0.1-5 ⁇ m.
  • the T-type zeolite molecular sieve membrane prepared by the method has a low silicon-to-aluminum ratio of about 3 to 3.8.
  • the T-type zeolite molecular sieve membrane when the temperature is 75°C, the separation performance for 90wt.% isopropanol/water is flux>5.5kg ⁇ m -2 ⁇ h -1 , separation factor>10000; for 90wt.%
  • the difference between the method used in the present invention and the traditional gel method is that the introduction of water or diluted gel liquid is different.
  • the present invention adopts the method of wetting the carrier to generate steam from the inside of the film layer, effectively avoiding the generation of cracks, so that continuous compaction can be obtained.
  • the zeolite membrane is
  • the T-type zeolite molecular sieve membrane prepared by the gel conversion method has a low silica-alumina ratio, about 3.8.
  • a low silica-alumina ratio can increase the hydrophilicity of the membrane and effectively increase the separation of organic matter/water by the hydrophilic membrane. Flux.
  • the synthesized T-type zeolite molecular sieve membrane has excellent separation performance for isopropanol/water and ethanol/water: when the temperature is 75°C, the separation performance for 90wt.% isopropanol/water is flux>5.5kg ⁇ m -2 ⁇ h -1 , the separation factor is >10000; for the flux of 90wt.% ethanol/water >2.8kg ⁇ m -2 ⁇ h -1 , the separation factor can be as high as 10000.
  • Figure 1 is a surface scanning electron microscope (SEM) image of the synthesized T-type zeolite molecular sieve membrane in Example 1;
  • Example 2 is a cross-sectional scanning electron microscope (SEM) image of the synthesized T-type zeolite molecular sieve membrane in Example 1;
  • Figure 3 is an X-ray diffraction (XRD) chart, where a is a T-type zeolite molecular sieve, b is the synthesized T-type zeolite molecular sieve membrane in Example 1, and c is an empty carrier;
  • XRD X-ray diffraction
  • FIG. 4 is a schematic diagram of a pervaporation (PV) device: (a) magnetic stirrer, (b) water bath, (c) membrane tube, (d) membrane module, (e) raw material storage tank, (f) cold trap , (G) liquid nitrogen, (h) buffer bottle, (i) vacuum gauge, (j) vacuum pump.
  • PV pervaporation
  • Example 5 is a graph showing the PV test stability of the synthetic T-type zeolite molecular sieve membrane in Example 4 against 90 wt.% ethanol/water.
  • Coating seed layer Disperse T-type zeolite molecular sieve seed crystals in deionized water to obtain T-type zeolite molecular sieve seed liquid, and coat this seed liquid on the surface of the porous carrier to obtain uniformly dense, defect-free crystals Seed layer
  • the present invention uses synthetic liquid as gel coating liquid, in which the content of water is relatively small; said synthetic liquid uses silica sol as silicon source, sodium metaaluminate as aluminum source, sodium fluoride and Potassium fluoride is a mixed fluoride salt. Add aluminum source, fluoride salt, and silicon source to the mixed alkali solution of sodium hydroxide and potassium hydroxide, and continue to stir and age for 10-50 hours to form stable SiO 2 -Na 2 OK 2 O -Al 2 O 3 -MF(NaF+KF)-H 2 O system.
  • Crystallization place the carrier in an autoclave for crystallization at 80-200°C for 1-50h.
  • the content of the T-type zeolite molecular sieve in the T-type zeolite molecular sieve seed liquid is 0.01-5 wt.%, and the particle size of the T-type zeolite molecular sieve in the seed liquid is 0.02-7 ⁇ m.
  • the method of introducing the T-type zeolite molecular sieve seed liquid into the seed layer on the surface of the porous support is immersion method, thermal immersion method, variable temperature thermal immersion method, vacuum crystal coating method, spray method, wipe
  • the coating method or spin coating method is preferably a variable temperature thermal dipping method.
  • the preparation conditions of the gel liquid are: stirring at 20-50°C for 10-50h, preferably stirring at 20-40°C for 12-48h.
  • deionized water can be used as the wetting solution, or a gel solution with a certain dilution concentration, preferably deionized water is used as the wetting solution.
  • the method for coating the gel layer is a dipping method, a thermal dipping method, a vacuum method, a spraying method, a wiping method or a spin coating method, preferably a dipping method.
  • the crystallization temperature is 80-200°C and the crystallization time is 1-50h, preferably the crystallization temperature is 100-180°C, and the crystallization time is 2-30h.
  • the outer diameter of the tube is 12mm, the inner diameter of the tube is 8mm, the average pore diameter is 2 to 3 ⁇ m, and the porosity is about 30 to 40%;
  • the outer surface of the carrier tube is covered with 800 mesh and 1500 mesh sandpaper Polish again; use deionized water ultrasonic vibration to remove the residual sand particles on the carrier tube, repeat several times until the water used for washing the tube no longer becomes turbid, then use acid and alkali ultrasonic vibration to remove the residue in the carrier hole , And wash with deionized water to neutral; finally put the tube in an oven to dry, and then put it in a muffle furnace at 550 °C calcined for 6 hours, sealed at both ends for use;
  • step (2) Preheat the carrier tube obtained in step (1) at 120°C for 3 to 4 hours, and then quickly immerse it in a large seed crystal (2 ⁇ m) suspension I with a mass concentration of 1 wt.%, and dry overnight at room temperature. Cure at 120°C for 3 to 4 hours to obtain seed layer support carrier I;
  • the crystal structure of the T-type zeolite molecular sieve membrane was confirmed according to the analysis of the attached drawings.
  • the membrane prepared in this example was thinner with a thickness of 4 ⁇ m. This may be due to the limited content of nutrient solution loaded on the carrier wall during crystallization. Its pervaporation performance is excellent.
  • the pervaporation test was performed on the T-type molecular sieve membrane prepared in Example 1.
  • the flux to 90 wt.% ethanol/water was 3.35 kg ⁇ m -2 ⁇ h -1 , and the separation factor was >10000, and For 90wt.% isopropanol/water, it has higher separation performance, with a flux of 6.02kg ⁇ m -2 ⁇ h -1 and a separation factor of >10000.
  • XPS measured the silicon to aluminum ratio of the film to be 3.8.
  • T-type zeolite molecular sieve membrane mostly adopts the secondary growth method.
  • the steps (1), (2), (3) and (7) in Example 1 are unchanged, and the synthesis liquid ratio in step (4) is SiO 2 :0.05Al 2 O 3 :0.26Na 2 O:0.09K 2 O:0.25MF(3NaF:1KF):35H 2 O, remove step (5), and step (6) will aging the synthetic liquid
  • the inner wall of the kettle is slowly introduced into the reaction kettle and crystallized at high temperature.
  • the flux to 90wt.% ethanol/water is 2.26kg ⁇ m -2 ⁇ h -1
  • the separation factor is 1142
  • 90wt.% isopropanol/water it has higher separation performance.
  • the flux is 3.65 kg ⁇ m -2 ⁇ h -1 and the separation factor is 6063.
  • XPS measured the silicon to aluminum ratio of the film to be 4.4.
  • step (5) and proceed directly to step (6) to synthesize a T-type zeolite molecular sieve membrane.
  • the synthetic liquid is all absorbed into the pores of the molecular sieve, and the performance of the membrane is obtained after the 90wt.% ethanol/water pervaporation test at 75°C.
  • the flux and separation factor are 2.68kg ⁇ m -2 ⁇ h -1 , 1004.
  • the T-type zeolite molecular sieve membrane prepared in Example 1 was subjected to a time-dependent test for the 90 wt.% ethanol/water system.
  • the test result is shown in FIG. 4. After 10 hours of testing, the total flux decreased from the initial 3.35kg ⁇ m -2 ⁇ h -1 to about 2.77kg ⁇ m -2 ⁇ h -1 , and the water content on the permeate side remained basically unchanged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种制备T型沸石分子筛膜的方法,即凝胶法制备T型沸石分子筛膜。将载体涂晶后再润湿晾干,将一定配比凝胶合成液涂覆在载体表面,高温晶化,获得性能优异的T型沸石分子筛膜。该膜进行异丙醇/水,乙醇/水分离时,分离性能优异,并具有良好的时间依存性。实验设备简单、操作方便,重复性高、节约原料,体现绿色化学的理念,具有重要的工业推广及实际应用价值。

Description

T型沸石分子筛膜的制备方法 技术领域
本发明属于膜分离材料技术领域,涉及到一种沸石分子筛膜的制备和应用,特别是T型沸石分子膜的蒸汽相转化制备方法。
背景技术
渗透蒸发膜分离技术进行有机溶剂脱水,可代替蒸馏、萃取、吸收等传统分离方法,能够以低能耗获得高质量的产品,达到常规方法很难或无法实现的分离要求,尤其在分离共沸混合物、近沸混合物和热敏化合物或低浓度组分混合物等方面拥有很大优势。与传统的精馏方式等相比,渗透蒸发膜装置具有以下优点:运行能耗低,分离效率高,过程简单,占地小,操作方便,不引入第三组分,产品纯度高,品质稳定,过程绿色无污染等优点,因而具有巨大的工业化经济潜力。
渗透蒸发膜按材料分为渗透蒸发有机膜和渗透蒸发无机膜。与有机膜相比,无机膜具有热化学稳定性好,使用寿命长,设备易损件少,维修费用低,膜组件更换方便,膜通量高、分离系数大、无溶胀、耐溶剂腐蚀等诸多优点,成为渗透蒸发首选的膜材料。渗透蒸发无机膜采用分子筛作为膜层材料(核心分离膜层),利用其规则的孔道结构实现不同组分间分子尺寸级别的分离。
T型沸石是由毛沸石和菱钾沸石交互生长而成的共生晶体,毛沸石和菱钾沸石的骨架结构不同但密切相关,两种沸石相互作用使T型沸石的孔径为0.36nm×0.51nm。T型沸石膜具有中等硅铝比,具有良好的亲水性和耐酸性,在分离水有机溶液中表现出良好的渗透汽化性能。
沸石分子筛膜的合成方法主要有原位水热合成法、二次生长法、微波合成法、凝胶转化法等。近年来专利和文献报道的T型分子筛沸石膜的合成方法采用二次生长法(Journal of Materials Chemistry A,2017,5(34):17828-17832)或微波辅助二次生长法合成法(Microporous&Mesoporous Materials,2009,124(1):117-122),而采用凝胶转化法(Gel Conversion Method)合成T型沸石分子筛膜在国内外至今没有报道。二次生长法或微波合成法均属于水热合成法,所用合成液量多,晶化成膜后釜底物质废弃;而传统的凝胶转化法是在载体表面涂覆一层凝胶层,所需合成液量少,再将其放入盛有有机模板剂或水的反应釜中,加热到一定温度使其汽化,凝胶层在蒸汽的作用下发生晶化,形成沸石分子筛膜层。由于这 种方法会增加有机模板剂的稳定性,但需要所产生的蒸汽进入凝胶层内部,会使膜层产生裂缝,很难制备出缺陷少的沸石分子筛膜,因此对该方法未应用于制备无需添加有机模板剂的T型沸石分子筛膜。
发明内容
本发明提供一种T型沸石分子筛膜的制备方法,所述方法首先使载体经过润湿过程,然后在晾干的载体表面涂覆一层由沸石分子筛合成原料制备的凝胶层,晶化成膜,凝胶层在蒸汽的作用下形成沸石分子筛膜层。此方法在廉价的大孔载体上预涂晶种层,采用凝胶法制备出的T型沸石分子筛膜的分离性能优异,具有一定的稳定性。该方法重复性高、有效节约溶剂、膜性能高。
本发明所涉及的T型沸石分子筛膜凝胶法生产工艺,包括如下步骤:
一种T型沸石分子筛膜的制备方法,采用凝胶转化法,在多孔载体表面依次涂覆晶种液获得晶种层、涂覆凝胶液获得凝胶层;然后将所述载体晶化处理后得到所述的T型沸石分子筛膜;所述多孔载体在经涂覆晶种层后,先经水或凝胶液(稀释30倍以上的)浸渍后再涂覆凝胶液获得凝胶层。
所述凝胶液由硅源、铝源、氟盐和碱液组成。
所述硅源为硅溶胶;所述铝源为偏铝酸钠;所述氟盐为氟化钠和氟化钾;所述碱液为氢氧化钠和氢氧化钾。
所述凝胶液的制备是将铝源、氟盐、硅源加入氢氧化钠和氢氧化钾的混合碱液中,陈化10~50小时获得。
凝胶液中各组分摩尔比为:SiO 2/Al 2O 3=12~100;H 2O/SiO 2=4~25;(Na 2O+K 2O)/SiO 2=0.12~1.2;Na/K=0.6~10;MF/SiO 2=0~0.5。
所述涂覆晶种液获得晶种层时采用二次变温浸渍法。
所述多孔载体的形状为管状、平板、中空纤维或多孔道载体;优选为管状。
所述多孔载体的材质为氧化铝、氧化锆、莫来石、不锈钢或金属网;所述多孔载体的孔径为0.02~40μm;。
所述多孔载体优选为氧化铝,所述多孔载体的孔径优选为0.1~5μm。
所述方法制备所得的T型沸石分子筛膜,所述T型沸石分子筛膜的硅铝比低,约为3~3.8。
所述T型沸石分子筛膜,温度为75℃时,对90wt.%异丙醇/水的分离性能为通量>5.5kg·m -2·h -1,分离因子>10000;对90wt.%乙醇/水的通量>2.8kg·m -2·h -1,分离因子可高达10000。
本发明具有以下优点:
本发明所用方法与传统凝胶法的区别在于水或稀释的凝胶液引入方式不同,本发明采用润湿载体的方式使蒸汽从膜层内部产生,有效避免裂缝的产生,因此可获得连续致密的沸石膜层。
(1)制备过程简单、重复性高、该方法只在载体表面涂覆一层凝胶液,反应釜底没有废液残余,避免了凝胶液溶剂的大量浪费,有效节约溶剂、减小环境污染,体现绿色化学理念、具有重要的工业前景及实际意义。
(2)凝胶转化法制备所得的T型沸石分子筛膜硅铝比较低,约为3.8,硅铝比低可提高膜的亲水性,有效增大亲水膜对有机物/水的分离时的通量。
(3)采用润湿载体的方式引入水或稀释的合成液,晶化时蒸汽在凝胶层内部产生,合成的T型沸石分子筛膜连续且分布均匀,膜层不产生裂缝,无针孔,极大降低制膜成本。
(4)合成的T型沸石分子筛膜对异丙醇/水、乙醇/水的分离性能优异:温度为75℃时,对90wt.%异丙醇/水的分离性能为通量>5.5kg·m -2·h -1,分离因子>10000;对90wt.%乙醇/水的通量>2.8kg·m -2·h -1,分离因子可高达10000。
附图说明
本发明附图5幅:
图1为实施例1中合成T型沸石分子筛膜的表面扫描电镜(SEM)图;
图2为实施例1中合成T型沸石分子筛膜的截面扫描电镜(SEM)图;
图3是x射线衍射(XRD)图,其中a为T型沸石分子筛,b为实施例1中合成T型沸石分子筛膜,c为空载体;
图4为渗透汽化(PV)装置示意图:其中,(a)磁力搅拌器,(b)水浴锅,(c)膜管,(d)膜组件,(e)原料储罐,(f)冷阱,(g)液氮,(h)缓冲瓶,(i)真空表,(j)真空泵。
图5为实施例4中合成T型沸石分子筛膜对90wt.%乙醇/水的PV测试稳定性图。
具体实施方式
(1)涂覆晶种层:将T型沸石分子筛晶种分散在去离子水中,得到T型沸石分子筛晶种液,将此晶种液涂覆在多孔载体表面,获得均一致密、无缺陷晶种层;
(2)制备凝胶液:本发明以合成液为凝胶涂膜液,其中水的含量较少;所述合成液以硅溶胶为硅源,偏铝酸钠为铝源,氟化钠和氟化钾为混合氟盐,将铝源、氟盐、硅源加入氢氧化钠和氢氧化钾的混合碱液中,继续搅拌陈化10~50小时形成稳定的SiO 2-Na 2O-K 2O-Al 2O 3-MF(NaF+KF)-H 2O体系。其中,各组分摩尔比为:SiO 2/Al 2O 3=12~100,H 2O/SiO 2=4~25,(Na 2O+K 2O)/SiO 2=0.12~1.2,Na/K=0.6~10,MF/SiO 2=0~0.5;
(3)润湿载体:经过涂晶的载体固化后,用液体润湿载体,于室温下晾干至载体表面无明显的液体痕迹;
(4)涂覆凝胶层:以(2)中所得的凝胶液为涂膜液,均匀涂覆在载体表面;
(5)晶化:将载体置于高压釜中于80~200℃下晶化1~50h。
在所述步骤(1)中,T型沸石分子筛晶种液中T型沸石分子筛的含量为0.01~5wt.%,晶种液中T型沸石分子筛晶体颗粒大小为0.02~7μm。
在所述步骤(1)中,将T型沸石分子筛晶种液在多孔载体表面引入晶种层的方法为浸渍法、热浸渍法、变温热浸渍法、真空涂晶法、喷涂法、擦涂法或旋涂法,优选为变温热浸渍法。
在所述步骤(2)中,凝胶液的制备条件为:在20~50℃下搅拌10~50h,优选为在20~40℃下搅拌12~48h。
在所述步骤(3)中,润湿液可以用去离子水,也可用一定稀释浓度的凝胶液,优选为将去离子水作为润湿液。
在所述步骤(4)中,涂覆凝胶层的方法为浸渍法、热浸渍法、真空法、喷涂法、擦涂法或旋涂法,优选为浸渍法。
在所述步骤(5)中,晶化温度为80~200℃,晶化时间为1~50h,优选为晶化温度100~180℃,晶化时间2~30h。
润湿载体:经过涂晶的载体固化后,用液体润湿载体,于室温下晾干至载体表面无明显的液体痕迹。
为了进一步描述本发明,下面给出几个具体实施案例,但专利权利不局限于 以下例子。
实施例1
(1)预处理α-Al 2O 3载体管:管外径12mm,管内径8mm,平均孔径2~3μm,孔隙率约30~40%;用800目和1500目的砂纸将载体管的外表面先后打磨一遍;用去离子水超声振荡去除载体管上残留的沙粒,重复几次,直至用于洗管的水不再变浑浊,然后依次用酸、碱超声震荡以清除载体孔内残留物,并用去离子水洗至中性;最后将管置于烘箱中干燥,再置于马弗炉中550℃下锻烧6h后,两端封好备用;
(2)将步骤(1)得到的载体管置于120℃下预热3~4h,然后迅速浸渍到质量浓度为1wt.%的大晶种(2μm)悬浮液Ⅰ中,室温下过夜干燥,在120℃下固化3~4h,得晶种层负载载体Ⅰ;
(3)用脱脂棉将载体表面的晶种擦去,晶种层负载载体Ⅰ置于100℃下预热2~4h,然后浸渍到质量浓度为的0.6wt.%的小晶种(600nm)悬浮液Ⅱ中,过夜干燥,在100℃下固化2~3h,得晶种层负载载体Ⅱ;
(4)以摩尔比为SiO 2:0.05Al 2O 3:0.26Na 2O:0.09K 2O:0.25MF(3NaF:1KF):25H 2O配成合成液,在室温下搅拌陈化12~48h;
(5)将载体管Ⅱ用去离子水润湿,放于室温下晾干约至载体管Ⅱ表面无明显的水痕迹,得到载体Ⅲ;
(6)将载体管Ⅲ浸渍在合成液中约20~60s,装入带有聚四氟内衬的不锈钢晶化釜中,置于150℃烘箱中晶化4h;
(7)将合成后的T型分子筛沸石膜用去离子水洗涤至中性,置于50℃烘箱中干燥。
T型沸石分子筛膜晶体结构根据附图分析得以证实,该实施例中制备的膜层较薄,厚度为4μm,这可能是由于晶化时负载于载体壁的营养液含量有限所致,从而使其渗透蒸发性能优异。对实例1所制备的T型分子筛膜进行渗透蒸发测试,在温度为75℃时,对90wt.%乙醇/水的通量为3.35kg·m -2·h -1,分离因子>10000,而对于90wt.%异丙醇/水具有更高的分离性能,通量为6.02kg·m -2·h -1,分离因子>10000。XPS测得该膜的硅铝比为3.8。
对比例1
T型沸石分子筛膜的制备多采用二次生长法,实施例1中第(1)、(2)、(3)和(7)步不变,第(4)步中合成液配比为SiO 2:0.05Al 2O 3:0.26Na 2O:0.09K 2O:0.25MF(3NaF:1KF):35H 2O,第(5)步去掉,第(6)步将陈化后的合成液沿釜内衬壁缓慢导入反应釜,高温晶化。在温度为75℃时,对90wt.%乙醇/水的通量为2.26kg·m -2·h -1,分离因子1142,而对于90wt.%异丙醇/水具有更高的分离性能,通量为3.65kg·m -2·h -1,分离因子6063。XPS测得该膜的硅铝比为4.4。
对比例2
除(5)(6)之外,其余步骤均与实施例1相同;
将步骤(5)跳过,直接进行步骤(6)实验合成T型沸石分子筛膜,合成液全部吸附至分子筛孔道内部,进行75℃下90wt.%乙醇/水渗透蒸发测试后得到其性能,膜的通量和分离因子分别为2.68kg·m -2·h -1,1004。
实施例2
除④之外,其余步骤均与实施例1相同;
改变合成液中的氟含量,MF/SiO 2摩尔比改为0,即不添加氟盐合成T型沸石分子筛膜,进行75℃下90wt.%乙醇/水渗透蒸发测试后得到其性能为膜的通量和分离因子分别为1.57kg·m -2·h -1,112。
实施例3
将实例1制备所得的T型沸石分子筛膜分离90wt.%乙醇/水体系进行时间依存性测试,测试结果如图4所示。经过10h测试后,总通量从起始3.35kg·m -2·h -1降低至2.77kg·m -2·h -1左右,渗透侧水含量基本保持不变。

Claims (10)

  1. 一种T型沸石分子筛膜的制备方法,采用凝胶转化法,在多孔载体表面依次涂覆晶种液获得晶种层、涂覆凝胶液获得凝胶层;然后将所述载体晶化处理后得到所述的T型沸石分子筛膜;其特征在于,所述多孔载体在经涂覆晶种层后,先经水或凝胶液浸渍后再涂覆凝胶液获得凝胶层。
  2. 根据权利要求1所述的制备方法,其特征在于,所述凝胶液由硅源、铝源、氟盐和碱液组成。
  3. 根据权利要求2所述的制备方法,其特征在于,所述硅源为硅溶胶;所述铝源为偏铝酸钠;所述氟盐为氟化钠和氟化钾;所述碱液为氢氧化钠和氢氧化钾。
  4. 根据权利要求2所述的制备方法,其特征在于,所述凝胶液的制备是将铝源、氟盐、硅源加入氢氧化钠和氢氧化钾的混合碱液中,陈化10~50小时获得。
  5. 根据权利要求2所述的制备方法,其特征在于,凝胶液中各组分摩尔比为:SiO 2/Al 2O 3=12~100;H 2O/SiO 2=4~25;(Na 2O+K 2O)/SiO 2=0.12~1.2;Na/K=0.6~10;MF/SiO 2=0~0.5。
  6. 根据权利要求1所述的制备方法,其特征在于,所述涂覆晶种液获得晶种层时采用二次变温浸渍法。
  7. 根据权利要求1所述的制备方法,其特征在于,所述多孔载体的形状为管状、平板、中空纤维或多孔道载体;优选为管状。
  8. 根据权利要求1所述的制备方法,其特征在于,所述多孔载体的材质为氧化铝、氧化锆、莫来石、不锈钢或金属网;所述多孔载体的孔径为0.02~40μm;。
    所述多孔载体优选为氧化铝,所述多孔载体的孔径优选为0.1~5μm。
  9. 权利要求1-8任意一项所述方法制备所得的T型沸石分子筛膜,其特征在于,所述T型沸石分子筛膜的硅铝比低约为3~3.8。
  10. 根据权利要求9所述的T型沸石分子筛膜,其特征在于;所述T型沸石分子筛膜,温度为75℃时,对90wt.%异丙醇/水的分离性能为通量>5.5kg·m -2·h -1,分离因子>10000;对90wt.%乙醇/水的通量>2.8kg·m -2·h -1,分离因子可高达10000。
PCT/CN2019/128949 2019-05-05 2019-12-27 T型沸石分子筛膜的制备方法 WO2020224275A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021565845A JP7294704B2 (ja) 2019-05-05 2019-12-27 T型ゼオライト分子篩膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910368204.3 2019-05-05
CN201910368204.3A CN109999676B (zh) 2019-05-05 2019-05-05 T型沸石分子筛膜的制备方法

Publications (1)

Publication Number Publication Date
WO2020224275A1 true WO2020224275A1 (zh) 2020-11-12

Family

ID=67175640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128949 WO2020224275A1 (zh) 2019-05-05 2019-12-27 T型沸石分子筛膜的制备方法

Country Status (3)

Country Link
JP (1) JP7294704B2 (zh)
CN (1) CN109999676B (zh)
WO (1) WO2020224275A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288871A (zh) * 2021-12-31 2022-04-08 武汉智宏思博环保科技有限公司 一种浸涂分子筛晶种法制备分子筛膜的方法
CN115245838A (zh) * 2022-06-16 2022-10-28 天津大学 T分子筛快速合成方法及催化剂和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999676B (zh) * 2019-05-05 2021-12-07 大连理工大学 T型沸石分子筛膜的制备方法
CN110745841B (zh) * 2019-12-02 2022-01-18 山东蓝景膜技术工程有限公司 一种绿色合成NaA型沸石分子筛膜的方法
CN110898685B (zh) * 2019-12-09 2021-10-19 常州大学 一种低硅铝比丝光沸石膜的简易制备方法
CN111097297B (zh) * 2019-12-30 2021-10-26 江西师范大学 一种硼掺杂的微孔二氧化硅膜及应用
CN112426891B (zh) * 2020-10-09 2022-05-13 大连理工大学 一种cha型沸石分子筛膜的制备方法
CN112933986A (zh) * 2021-02-02 2021-06-11 黄山学院 一种合成高水渗透性的分子筛膜的方法
CN114307689A (zh) * 2022-01-17 2022-04-12 大连理工大学 一种湿凝胶转化合成a型沸石膜的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837989A (zh) * 2010-05-24 2010-09-22 江西师范大学 一种含氟t型沸石分子筛膜的制备方法
US20100311565A1 (en) * 2007-11-02 2010-12-09 Uop Llc Microporous aluminophosphate molecular sieve membranes for highly selective separations
CN104556128A (zh) * 2013-10-21 2015-04-29 大连市沙河口区中小微企业服务中心 超细t型分子筛沸石膜的制备方法
CN105366689A (zh) * 2015-11-14 2016-03-02 大连理工大学 一种稀溶液用微波辅助合成mor沸石分子筛膜的方法
CN108114613A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 晶种法制备耐酸性沸石分子筛膜的方法
CN109999676A (zh) * 2019-05-05 2019-07-12 大连理工大学 T型沸石分子筛膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670852B2 (ja) * 1998-07-27 2005-07-13 三井造船株式会社 混合物分離膜の製法
WO2013106571A1 (en) * 2012-01-11 2013-07-18 The Regents Of The University Of Colorado, A Body Corporate Seeded-gel synthesis of high flux and high selectivity sapo-34 membranes for co2/ch4 separations
CN105363352A (zh) * 2015-11-14 2016-03-02 大连理工大学 一种含氟稀溶液合成高耐酸mor沸石分子筛膜的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100311565A1 (en) * 2007-11-02 2010-12-09 Uop Llc Microporous aluminophosphate molecular sieve membranes for highly selective separations
CN101837989A (zh) * 2010-05-24 2010-09-22 江西师范大学 一种含氟t型沸石分子筛膜的制备方法
CN104556128A (zh) * 2013-10-21 2015-04-29 大连市沙河口区中小微企业服务中心 超细t型分子筛沸石膜的制备方法
CN105366689A (zh) * 2015-11-14 2016-03-02 大连理工大学 一种稀溶液用微波辅助合成mor沸石分子筛膜的方法
CN108114613A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 晶种法制备耐酸性沸石分子筛膜的方法
CN109999676A (zh) * 2019-05-05 2019-07-12 大连理工大学 T型沸石分子筛膜的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288871A (zh) * 2021-12-31 2022-04-08 武汉智宏思博环保科技有限公司 一种浸涂分子筛晶种法制备分子筛膜的方法
CN115245838A (zh) * 2022-06-16 2022-10-28 天津大学 T分子筛快速合成方法及催化剂和应用

Also Published As

Publication number Publication date
JP7294704B2 (ja) 2023-06-20
CN109999676A (zh) 2019-07-12
JP2022532071A (ja) 2022-07-13
CN109999676B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2020224275A1 (zh) T型沸石分子筛膜的制备方法
WO2022073323A1 (zh) 一种 cha 型沸石分子筛膜的制备方法
CN107337472B (zh) 一种fau型沸石分子筛膜的制备方法
US8258069B2 (en) Zeolitic separation membrane and process for producing the same
CN101716470B (zh) 一种含氟丝光沸石分子筛膜的制备方法
US10933382B2 (en) Supported zeolite membranes
CN101890306A (zh) 一种在大孔载体上NaA沸石分子筛膜的合成方法
Zhou et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties
CN103599709A (zh) 一种高成膜率合成NaA沸石膜的方法
US8263179B2 (en) Process for producing zeolite separation membrane
WO2022166509A1 (zh) 一种合成高水渗透性的分子筛膜的方法
CN103933871A (zh) 一种高稳定性全硅mfi型分子筛膜的制备方法
JP2005289735A (ja) ゼオライト膜及びその製造方法
CN101837989B (zh) 一种含氟t型沸石分子筛膜的制备方法
CN114307689A (zh) 一种湿凝胶转化合成a型沸石膜的制备方法
JP2002249313A (ja) ゼオライト結晶のコーティング方法、ゼオライト結晶がコーティングされた基材、ゼオライト膜の製造方法、ゼオライト膜、および分離方法
KR101128358B1 (ko) Lta 제올라이트 분리막 및 그 제조 방법
CN114288871B (zh) 一种浸涂分子筛晶种法制备分子筛膜的方法
Yang et al. Induction of zeolite membrane formation by implanting zeolite crystals into the precursor of ceramic supports
MXPA05001848A (es) Metodo de produccion para cuerpo formado de zeolita y metodo de produccion para composicion estratificada de zeolita.
CN105013337A (zh) 快速合成y型分子筛膜的方法及其在生物醇水混合溶液分离中的应用
CN114405293A (zh) 一种平板分子筛膜的制备方法及装置
CN112892242B (zh) 一种高通量丝光沸石分子筛膜及其制备方法与应用
CN109499390A (zh) 一种采用微波辅助加热快速修复无机膜缺陷的方法
JP2002058973A (ja) マイクロ波を用いたzsm−5膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927912

Country of ref document: EP

Kind code of ref document: A1