WO2020221243A1 - 一种无机填料表面接枝蒽醌化合物的制备方法及应用 - Google Patents

一种无机填料表面接枝蒽醌化合物的制备方法及应用 Download PDF

Info

Publication number
WO2020221243A1
WO2020221243A1 PCT/CN2020/087453 CN2020087453W WO2020221243A1 WO 2020221243 A1 WO2020221243 A1 WO 2020221243A1 CN 2020087453 W CN2020087453 W CN 2020087453W WO 2020221243 A1 WO2020221243 A1 WO 2020221243A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
anthraquinone compound
preparation
amino
epoxy
Prior art date
Application number
PCT/CN2020/087453
Other languages
English (en)
French (fr)
Inventor
严滨
叶茜
曾孟祥
Original Assignee
厦门理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门理工学院 filed Critical 厦门理工学院
Publication of WO2020221243A1 publication Critical patent/WO2020221243A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the field of water treatment engineering, in particular to a preparation method and application of an anthraquinone compound grafted onto the surface of an inorganic filler.
  • azo dyes have become the most widely used and the largest amount of synthetic dyes in textiles and garments due to their simple synthesis process, low cost, and outstanding dyeing performance. But under some special conditions, it can decompose to produce more than 20 kinds of carcinogenic aromatic amines, which can change the DNA structure of the human body through activation, thereby causing pathological changes and inducing cancer. In the printing and dyeing process, about 10-15% of the dyes will be lost to the printing and dyeing wastewater. The discharge of these printing and dyeing wastewater will cause serious harm to the receiving water body, including azo dyes.
  • Nitrate is another chemical substance that is harmful to the human body and the environment.
  • Ammonia nitrogen and nitrate nitrogen contained in over-applied chemical fertilizers, domestic sewage, manure, industrial sewage, etc. enter the natural environment through soil and water bodies, and are one of the main substances that cause eutrophication of water bodies.
  • Conventional biochemical treatment processes generally can only convert ammonia nitrogen into nitrate nitrogen, and the reduction of nitrate nitrogen cannot be efficiently completed in general treatment processes because of the low denitrification efficiency.
  • redox mediators containing quinone groups can effectively accelerate the biotransformation process of azo dyes and nitrates, and increase the degradation rate.
  • the redox mediator containing quinone groups has the disadvantages of low molecular weight, which is easy to lose when directly added to the water treatment system, causing secondary pollution and high continuous feeding cost. Fixing the quinone group-containing redox mediator on a physical carrier that is insoluble in water is a relatively feasible industrialized method. It has the advantage of being reusable, not easy to lose, and avoiding secondary pollution.
  • the Chinese authorized invention patent with the authorized announcement number CN101862680B discloses a method for preparing a porous inorganic filler to fix a quinone compound, which effectively improves the degradation rate of azo dyes.
  • the preparation method is to plate ⁇ -alumina on the surface of the porous inorganic filler, and then treat it with 3-aminotriethoxysilane to make the surface of the porous inorganic filler contain primary amino groups, and then pass the primary amino groups and anthracene containing sulfonyl chloride groups.
  • the quinone compound reacts to obtain a porous inorganic filler containing quinone groups on the surface.
  • This method has the following problems: (1) The reaction steps are long, time-consuming, the final yield is low, and the cost is high; (2) The use of anthraquinone compounds containing sulfonyl chloride groups can easily generate hydrogen chloride gas when exposed to water vapor, which is dangerous Therefore, the production environment needs to be strictly controlled during use, which causes inconvenience and cost increase; (3) Although porous inorganic fillers have a large specific surface area, the internal porous structure is easily blocked by the flora in practical applications and cannot function. Only the quinone-based compound on the surface can play a role.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a preparation method for grafting an anthraquinone compound onto the surface of an inorganic filler.
  • Another object of the present invention is to provide an application of an inorganic filler grafted with an anthraquinone compound on the surface.
  • a method for preparing an anthraquinone compound grafted onto the surface of an inorganic filler includes the following steps:
  • the first organic solvent, epoxy silane coupling agent and dilute hydrochloric acid with a mass concentration of 0.05-0.2wt% are stirred at room temperature for 0.5-2 hours, then added to the inorganic filler, heated to no more than 80°C, reaction 1 -5 hours, cool down, filter, filter out the solid, wash 3 times with absolute ethanol, and dry to obtain epoxy-modified inorganic filler;
  • step S2 Add the epoxy-modified inorganic filler, the amino-anthraquinone compound, the second organic solvent and the accelerator obtained in step S1 to the container, stir and react at room temperature for 0.5-10 hours, filter, and filter out the solid with anhydrous It was washed with ethanol three times and dried to obtain an inorganic filler grafted with an anthraquinone compound on the surface.
  • the weight ratio of the first organic solvent, epoxy silane coupling agent, dilute hydrochloric acid and inorganic filler in step S1 is 1:0.1-0.3:0.01:0.5-2.
  • the first organic solvent in step S1 and the second organic solvent in step S2 are selected from methanol, absolute ethanol, isopropanol, n-propanol, ethyl acetate, butyl acetate, tetrahydrofuran, methyl ethyl ketone, One or more of toluene and xylene.
  • the first organic solvent is selected from one or more of methanol, absolute ethanol, isopropanol and ethyl acetate.
  • the second organic solvent is selected from one or more of tetrahydrofuran, absolute ethanol, methyl ethyl ketone and toluene.
  • the epoxy silane coupling agent in step S1 is selected from 3-(2,3-glycidoxy)propyltrimethoxysilane, 3-(2,3-glycidoxy)propyltri Ethoxysilane, 3-(2,3-glycidoxy)propylmethyldiethoxysilane, 3-(2,3-glycidoxy)propylmethyldimethoxysilane, 2 -(3,4-Epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 2-(3,4-epoxycyclohexyl) One or more of ethylmethyldiethoxysilane and 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane.
  • the inorganic filler in step S1 is selected from one or more of wollastonite, talc powder, mica powder, calcium carbonate, clay, attapulgite, montmorillonite and solid glass beads.
  • the average particle size of the filler is not less than 0.1 ⁇ m.
  • the particle size of the inorganic filler is small, which can have a larger specific surface area, increasing the amount of anthraquinone compound fixed on the surface of the inorganic filler per unit weight, which has a better acceleration effect on accelerating the degradation of azo dyes; but the particle size of the inorganic filler It should not be too low. It is found in experiments that the particle size of the inorganic filler is less than 100nm, which is not conducive to the degradation of azo dyes or nitrates.
  • the weight ratio of the epoxy modified inorganic filler, the amino-containing anthraquinone compound, the second organic solvent and the accelerator in step S2 is 1:0.1-0.3:3-8:0.005-0.01.
  • the amino-containing anthraquinone compound in step S2 is selected from 1-amino-2-bromo-4-hydroxyanthraquinone 2-aminoanthraquinone 1,2-Diaminoanthraquinone
  • the amino-containing anthraquinone compound is selected from one of 1-amino-2-bromo-4-hydroxyanthraquinone, 2-aminoanthraquinone, 1-amino-2-methylanthraquinone and 1-aminoanthraquinone. kind or several.
  • the accelerator in step S2 is selected from 2-methylimidazole, 1-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole and 2 -One or more of phenyl-4-methylimidazole.
  • An inorganic filler grafted with an anthraquinone compound on the surface prepared by the preparation method of any one of the above embodiments is used in the field of water treatment.
  • the invention utilizes the rapid and relatively complete reaction between the amino-containing anthraquinone compound and the epoxy group, so that the surface of the inorganic filler is grafted with more anthraquinone compounds through chemical bonds, and has the characteristics of good stability.
  • the present invention has fewer reaction steps, simple reaction process and low cost
  • the present invention does not need to use raw materials that are easy to contact with moisture to produce toxic and harmful gases;
  • the inorganic filler grafted with an anthraquinone compound on the surface obtained in the present invention can significantly increase the degradation rate of azo dyes and nitrates, and can be used continuously after simple treatment.
  • FT-IR analysis shows that the product has a strong and sharp absorption peak at 1668cm -1 , which is the characteristic absorption peak of the carbonyl group on the anthraquinone molecular structure, and a moderately sharp absorption peak at 1597cm -1 , which is the carbon on the benzene ring.
  • the characteristic absorption peak of hydrogen indicates that the anthraquinone compound is grafted to the surface of wollastonite.
  • the elemental analysis method was used to determine the N content of wollastonite before and after grafting. The content of grafted anthraquinone compound on the surface of wollastonite was calculated to be 1.69 mmol/g.
  • FT-IR analysis shows that the product has a strong and sharp absorption peak at 1667cm -1 , which is the characteristic absorption peak of the carbonyl group on the anthraquinone molecular structure, and a moderately sharp absorption peak at 1597cm -1 , which is the carbon on the benzene ring.
  • the characteristic absorption peak of hydrogen indicates that the anthraquinone compound is grafted to the surface of talc.
  • the elemental analysis method was used to determine the N element content of talc before and after grafting, and the content of grafted anthraquinone compound on the surface of talc was 1.24 mmol/g by calculation.
  • Test for acceleration effect of azo dye degradation Wash 2g of blank inorganic filler and 2g of inorganic filler grafted with anthraquinone compound on the surface of Example 1-4 with physiological saline for 3 times, and then add to 200ml of azo containing logarithmic growth phase.
  • Dye-degrading strain GYZ staphylococcus sp. was tested for decolorization in 120 mg/L acid red B, and the concentration of acid red B changed over time. The results are shown in Table 1.
  • Test for accelerating effect of nitrate degradation Wash 2g of blank inorganic filler and 2g of inorganic filler grafted with anthraquinone compound on the surface of Example 1-4 with physiological saline for 3 times, then add to 200ml containing logarithmic growth phase denitrifying microorganisms It was tested in 150mg/L nitrate wastewater to determine the change of nitrate concentration over time. The results are shown in Table 2.
  • Stability test Wash 2g of the inorganic filler grafted with anthraquinone compound on the surface of Examples 1-4 with physiological saline for 3 times, and then add it to 200ml of the azo dye degrading strain GYZ (staphylococcus sp.) with logarithmic growth phase. Decolorization test was carried out in 120mg/L of Acid Red B, and the concentration of Acid Red B after 8 hours was measured. After the test, the inorganic filler grafted with an anthraquinone compound on the surface was washed and dried with water and absolute ethanol, and then subjected to a decolorization test with Acid Red B for 8 hours according to the above method, and the test was repeated 12 times. The results are shown in Table 3.
  • the inorganic filler grafted with an anthraquinone compound on the surface of the present invention has a significant effect of promoting the degradation of azo dyes, and the degradation rate of azo dyes at 8 hours is about 1.6 times that of no anthraquinone compound.
  • the inorganic filler grafted with an anthraquinone compound on the surface of the present invention has a significant effect of promoting the degradation of nitrate, and the degradation rate of nitrate at 8 hours is about 1.7 times that of no anthraquinone compound.
  • the inorganic filler grafted with an anthraquinone compound on the surface obtained in the present invention has a better acceleration effect after being used repeatedly for 12 times in promoting the biodegradation of azo dyes.
  • the inorganic filler grafted with anthraquinone compound on the surface obtained in the present invention has a good acceleration effect on the biodegradation of azo dyes and nitrates, and has good stability, can be used repeatedly, and can be applied to Treatment of wastewater containing dyes, nitrates and other refractory compounds.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

一种无机填料表面接枝蒽醌化合物的制备方法及应用。将环氧基硅烷偶联剂和无机填料反应,得到环氧基修饰无机填料,再与含氨基蒽醌化合物利用环氧基团和氨基之间的高活性反应,得到表面接枝蒽醌化合物的无机填料。得到的表面接枝蒽醌化合物的无机填料可加速偶氮染料、硝酸盐等污染物的降解,可反复使用,而且原料来源广泛、反应步骤少、成本低,可在含偶氮染料和硝酸盐等污染物的废水处理中广泛使用。

Description

一种无机填料表面接枝蒽醌化合物的制备方法及应用 技术领域
本发明涉及水处理工程领域,具体涉及一种无机填料表面接枝蒽醌化合物的制备方法及应用。
背景技术
随着社会经济的发展,人口的不断增长和对工农业产品的需求越来越高,许多含重金属和难生物降解的污染物的废水排放量越来越大,使水质严重恶化,最终对人体健康以及整个自然界生态圈都造成严重危害。比如偶氮染料因合成工艺简单、成本低廉、染色性能突出等特点,已成为纺织品服装在印染工艺中应用最广泛、用量最大的一类合成染料。但是在一些特殊条件下,它能分解产生20多种致癌芳香胺,经过活化作用改变人体的DNA结构从而引起病变和诱发癌症。在印染过程中约有10-15%的染料会流失到印染废水中,这些印染废水的排放会对受纳水体产生严重危害,其中就包括偶氮染料。
硝酸盐是另一类对人体和环境具有较大危害的化学物质。过度施用的化肥、生活污水及粪便、工业污水等含有的氨态氮及硝态氮,经由土壤、水体等进入自然环境,是引发水体富营养化的主要物质之一。常规生化处理工艺一般只能将氨态氮转变为硝态氮,硝态氮的还原因为反硝化效率低而在一般处理工艺中无法高效完成。
因此,对这类废水的处理越发受到重视,其中主要的处理方法是化学法和生物法。生物法的应用前景更好,尤其厌氧-好氧工艺是处理这类废水的最有效也是最广泛使用的方法,如何提高微生物还原染料、硝酸根的速率一直是这类工艺的重点。
研究者发现含有醌基的氧化还原介体能够有效的加速偶氮染料、硝酸盐等的生物转化过程,提高降解速率。而含醌基的氧化还原介体由于分子量较小,直接加入到水处理体系中易流失造成二次污染和连续投料成本高的缺点。将含醌基的氧化还原介体固定在不溶于水的物理载体上,是比较可行的工业化方法,既有可以反复利用的优点,又不容易流失,避免二次污染的发生。
授权公告号CN101862680B的中国授权发明专利公开了一种多孔无机填料固定醌化合物的制备方法,有效提高了对偶氮染料的降解速率。该制备方法是在多孔无机填料表面镀上γ-氧化铝,然后用3-氨基三乙氧基硅烷处理,使得多孔无机填料表面含有伯氨基,再通过该伯氨基与含有磺酰氯基团的蒽醌化合物反应,得到表面含有醌基的多孔无机填料。该方法存在以下的问题:(1)反应步骤长,耗时长,最终收率低,成本高;(2)使用含有磺酰氯基团的蒽醌化合物在接触水汽时很容易产生氯化氢气体,危险性大,因此使 用时需要严格控制生产环境,造成操作不方便和成本提高;(3)多孔无机填料虽然比表面积大,但是内部的多孔结构在实际应用时容易被菌群堵塞,不能发挥作用,往往只有表面的醌基化合物能发挥作用。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种无机填料表面接枝蒽醌化合物的制备方法。
本发明的另一个目的在于提供一种表面接枝蒽醌化合物的无机填料的应用。
本发明的技术方案如下:
一种无机填料表面接枝蒽醌化合物的制备方法,包括以下步骤,
S1、将第一有机溶剂、环氧基硅烷偶联剂和质量浓度0.05-0.2wt%的稀盐酸在室温下搅拌0.5-2小时,加入到无机填料中,升温至不超过80℃,反应1-5小时,降温,过滤,滤出固体用无水乙醇清洗3次,干燥,得到环氧基修饰无机填料;
S2、将步骤S1得到的环氧基修饰无机填料、含氨基蒽醌化合物、第二有机溶剂和促进剂加入到容器中,在室温下搅拌反应0.5-10小时,过滤,滤出固体用无水乙醇清洗3次,干燥,得到表面接枝蒽醌化合物的无机填料。
优选的,步骤S1中所述第一有机溶剂、环氧基硅烷偶联剂、稀盐酸和无机填料的重量比为1:0.1-0.3:0.01:0.5-2。
优选的,步骤S1中所述第一有机溶剂和步骤S2中所述第二有机溶剂选自甲醇、无水乙醇、异丙醇、正丙醇、乙酸乙酯、乙酸丁酯、四氢呋喃、甲乙酮、甲苯和二甲苯中的一种或几种。
更优选的,第一有机溶剂选自甲醇、无水乙醇、异丙醇和乙酸乙酯中的一种或几种。
更优选的,第二有机溶剂选自四氢呋喃、无水乙醇、甲乙酮和甲苯中的一种或几种。
优选的,步骤S1中所述环氧基硅烷偶联剂选自3-(2,3-环氧丙氧)丙基三甲氧基硅烷、3-(2,3环氧丙氧)丙基三乙氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、2-(3,4-环氧环己基)乙基三乙氧基硅烷、2-(3,4-环氧环己基)乙基甲基二乙氧基硅烷和2-(3,4-环氧环己基)乙基甲基二甲氧基硅烷中的一种或几种。
优选的,步骤S1中所述无机填料选自硅灰石、滑石粉、云母粉、碳酸钙、陶土、凹凸棒土、蒙脱土和实心玻璃微珠中的一种或几种,所述无机填料的平均粒径不低于0.1μm。
无机填料的粒径较小,可以具有较大的比表面积,提高单位重量的无机填料表面固定蒽醌化合物的量,对加速偶氮染料的降解具有较好的加速作用;但是无机填料的粒径也不能太低,实验中发现无机填料的粒径低于100nm,反而不利于偶氮染料或硝酸盐的降解。
优选的,步骤S2中所述环氧基修饰无机填料、含氨基蒽醌化合物、第二有机溶剂和促进剂的重量比为1:0.1-0.3:3-8:0.005-0.01。
优选的,步骤S2中所述含氨基蒽醌化合物选自1-氨基-2-溴-4-羟基蒽醌
Figure PCTCN2020087453-appb-000001
2-氨基蒽醌
Figure PCTCN2020087453-appb-000002
1,2-二氨基蒽醌
Figure PCTCN2020087453-appb-000003
1,4-二氨基蒽醌
Figure PCTCN2020087453-appb-000004
2,6-二氨基蒽醌
Figure PCTCN2020087453-appb-000005
1,8-二氨基蒽醌
Figure PCTCN2020087453-appb-000006
1,5-二氨基蒽醌
Figure PCTCN2020087453-appb-000007
1-氨基-2-甲基蒽醌
Figure PCTCN2020087453-appb-000008
1,5-二羟基-4,8-二氨基蒽醌
Figure PCTCN2020087453-appb-000009
和1-氨基蒽醌
Figure PCTCN2020087453-appb-000010
中的一种或几种。
更优选的,含氨基蒽醌化合物选自1-氨基-2-溴-4-羟基蒽醌、2-氨基蒽醌、1-氨基-2-甲基蒽醌和1-氨基蒽醌中的一种或几种。
优选的,步骤S2中所述促进剂选自2-甲基咪唑、1-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-十一烷基咪唑和2-苯基-4-甲基咪唑中的一种或几种。
一种上述任一实施方案所述的制备方法制备出的表面接枝蒽醌化合物的无机填料。
一种上述任一实施方案所述的制备方法制备出的表面接枝蒽醌化合物的无机填料在 水处理领域的应用。
本发明利用含氨基蒽醌化合物和环氧基团之间快速且比较完全的反应,使得无机填料表面通过化学键接枝较多的蒽醌化合物,具有稳定性好的特点。
本发明的有益效果是:
(1)本发明采用价格低廉的无机填料作为物理载体,来源广泛、成本低;
(2)本发明的反应步骤少、反应过程简单,成本低;
(3)本发明无需采用易和湿气接触产生有毒有害气体的原料;
(4)本发明得到的表面接枝蒽醌化合物的无机填料可明显增速偶氮染料、硝酸盐的降解速率,而且经过简单的处理后,可继续使用。
具体实施方式
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。
如无特别指明,以下实施方案中的份数都为重量份数。
实施例1
将100份无水乙醇、12份3-(2,3环氧丙氧)丙基三乙氧基硅烷和1份质量浓度0.01wt%的稀盐酸在室温下搅拌0.5小时,加入到50份平均粒径20μm的硅灰石中,升温至70℃,反应3小时,降温,过滤,滤出固体用无水乙醇清洗3次,干燥,得到环氧基修饰硅灰石。
100份环氧基修饰硅灰石、12份1,5-二氨基蒽醌、350份甲苯和0.7份2-甲基咪唑加入到容器中,在室温下搅拌反应2小时,过滤,滤出固体用无水乙醇清洗3次,干燥,得到表面接枝蒽醌化合物的硅灰石。FT-IR分析,产物在1668cm -1处出现强的尖锐的吸收峰,为蒽醌分子结构上的羰基的特征吸收峰,在1597cm -1出现中等强度的尖锐吸收峰,为苯环上的碳氢的特征吸收峰,表明蒽醌化合物接枝到硅灰石的表面。采用元素分析方法测定接枝前后硅灰石的N元素含量,通过计算得到硅灰石表面接枝蒽醌化合物的含量为1.69mmol/g。
实施例2
将100份甲醇、20份3-(2,3环氧丙氧)丙基三甲氧基硅烷和1份质量浓度0.01wt%的稀盐酸在室温下搅拌1小时,加入到100份平均粒径5μm的玻璃微珠中,升温至48℃,反应5小时,降温,过滤,滤出固体用无水乙醇清洗3次,干燥,得到环氧基修饰玻璃微珠。
100份环氧基修饰玻璃微珠、20份1-氨基蒽醌、500份无水乙醇和0.5份1-甲基咪唑加入到容器中,在室温下搅拌反应7小时,过滤,滤出固体用无水乙醇清洗3次,干燥, 得到表面接枝蒽醌化合物的玻璃微珠。采用元素分析方法测定接枝前后玻璃微珠的N元素含量,通过计算得到玻璃微珠表面接枝蒽醌化合物的含量为1.85mmol/g。
实施例3
将100份异丙醇、28份2-(3,4-环氧环己基)乙基三乙氧基硅烷和1份质量浓度0.01wt%的稀盐酸在室温下搅拌1.5小时,加入到200份平均粒径100μm的滑石粉中,升温至70℃,反应1小时,降温,过滤,滤出固体用无水乙醇清洗3次,干燥,得到环氧基修饰滑石粉1。
100份环氧基修饰滑石粉1、25份1-氨基蒽醌、450份四氢呋喃和0.5份1-甲基咪唑加入到容器中,在室温下搅拌反应3小时,过滤,滤出固体用无水乙醇清洗3次,干燥,得到表面接枝蒽醌化合物的滑石粉1。FT-IR分析,产物在1667cm -1处出现强的尖锐的吸收峰,为蒽醌分子结构上的羰基的特征吸收峰,在1597cm -1出现中等强度的尖锐吸收峰,为苯环上的碳氢的特征吸收峰,表明蒽醌化合物接枝到滑石粉的表面。采用元素分析方法测定接枝前后滑石粉的N元素含量,通过计算得到滑石粉表面接枝蒽醌化合物的含量为1.24mmol/g。
实施例4
将100份异丙醇、28份2-(3,4-环氧环己基)乙基三乙氧基硅烷和1份质量浓度0.01wt%的稀盐酸在室温下搅拌1.5小时,加入到200份平均粒径0.5mm的滑石粉中,升温至70℃,反应1小时,降温,过滤,滤出固体用无水乙醇清洗3次,干燥,得到环氧基修饰滑石粉2。
100份环氧基修饰滑石粉2、25份1-氨基蒽醌、650份四氢呋喃和0.5份1-甲基咪唑加入到容器中,在室温下搅拌反应3小时,过滤,滤出固体用无水乙醇清洗3次,干燥,得到表面接枝蒽醌化合物的滑石粉2。采用元素分析方法测定接枝前后滑石粉的N元素含量,通过计算得到滑石粉表面接枝蒽醌化合物的含量为0.87mmol/g。
测试
对偶氮染料降解加速效果测试:分别将2g空白无机填料、2g实施例1-4中表面接枝蒽醌化合物的无机填料用生理盐水冲洗3次后,加入到200ml含对数生长期的偶氮染料降解菌株GYZ(staphylococcus sp.)的120mg/L的酸性红B中进行脱色测试,测定酸性红B浓度随时间的变化。结果如表1所示。
对硝酸盐降解加速效果测试:分别将2g空白无机填料、2g实施例1-4中表面接枝蒽醌化合物的无机填料用生理盐水冲洗3次后,加入到200ml含对数生长期反硝化微生物 的150mg/L的硝酸盐废水中进行测试,测定硝酸盐浓度随时间的变化。结果如表2所示。
稳定性测试:分别将2g实施例1-4中表面接枝蒽醌化合物的无机填料用生理盐水冲洗3次后,加入到200ml含对数生长期的偶氮染料降解菌株GYZ(staphylococcus sp.)的120mg/L的酸性红B中进行脱色测试,测定8小时后酸性红B的浓度。将测试后表面接枝蒽醌化合物的无机填料用清水和无水乙醇清洗干燥后再按上述方法用酸性红B进行脱色测试8小时,如此反复测试12次。结果如表3所示。
表1酸性红B降解加速测试结果
Figure PCTCN2020087453-appb-000011
由表1可知,本发明的表面接枝蒽醌化合物的无机填料具有显著的促进偶氮染料降解的作用,8h时偶氮染料的降解速率是未加蒽醌化合物的1.6倍左右。
表2硝酸盐降解加速测试结果
Figure PCTCN2020087453-appb-000012
从表2的结果可知,本发明的表面接枝蒽醌化合物的无机填料具有显著的促进硝酸盐降解的作用,8h时硝酸盐的降解速率是未加蒽醌化合物的1.7倍左右。
表3酸性红B降解稳定性测定结果
Figure PCTCN2020087453-appb-000013
由表3可知,本发明得到的表面接枝蒽醌化合物的无机填料在促进偶氮染料生物降解中可反复使用12次后还具有较好的加速作用。
综上所述,本发明得到的表面接枝蒽醌化合物的无机填料对偶氮染料、硝酸盐的生物降解具有较好的加速作用,而且稳定性好,可反复使用,可应用于对含偶氮染料、硝酸盐和其他难处理化合物的废水的处理。
以上所述,显示和描述了本发明的基本原理、主要特征和优点。本领域技术人员应该了解本发明不受上述实施例的限制,上述实施例仅为本发明的较佳实施例而已,不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (10)

  1. 一种无机填料表面接枝蒽醌化合物的制备方法,其特征在于:包括以下步骤,
    S1、将第一有机溶剂、环氧基硅烷偶联剂和质量浓度0.05-0.2wt%的稀盐酸在室温下搅拌0.5-2小时,加入到无机填料中,升温至不超过80℃,反应1-5小时,降温,过滤,滤出固体用无水乙醇清洗3次,干燥,得到环氧基修饰无机填料;
    S2、将步骤S1得到的环氧基修饰无机填料、含氨基蒽醌化合物、第二有机溶剂和促进剂加入到容器中,在室温下搅拌反应0.5-10小时,过滤,滤出固体用无水乙醇清洗3次,干燥,得到表面接枝蒽醌化合物的无机填料。
  2. 根据权利要求1所述的制备方法,其特征在于:步骤S1中所述第一有机溶剂、环氧基硅烷偶联剂、稀盐酸和无机填料的重量比为1:0.1-0.3:0.01:0.5-2。
  3. 根据权利要求1或2所述的制备方法,其特征在于:步骤S1中所述第一有机溶剂和步骤S2中所述第二有机溶剂选自甲醇、无水乙醇、异丙醇、正丙醇、乙酸乙酯、乙酸丁酯、四氢呋喃、甲乙酮、甲苯和二甲苯中的一种或几种。
  4. 根据权利要求1或2所述的制备方法,其特征在于:步骤S1中所述环氧基硅烷偶联剂选自3-(2,3-环氧丙氧)丙基三甲氧基硅烷、3-(2,3环氧丙氧)丙基三乙氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、2-(3,4-环氧环己基)乙基三乙氧基硅烷、2-(3,4-环氧环己基)乙基甲基二乙氧基硅烷和2-(3,4-环氧环己基)乙基甲基二甲氧基硅烷中的一种或几种。
  5. 根据权利要求1或2所述的制备方法,其特征在于:步骤S1中所述无机填料选自硅灰石、滑石粉、云母粉、碳酸钙、陶土、凹凸棒土、蒙脱土和实心玻璃微珠中的一种或几种,所述无机填料的平均粒径不低于0.1μm。
  6. 根据权利要求1所述的制备方法,其特征在于:步骤S2中所述环氧基修饰无机填料、含氨基蒽醌化合物、第二有机溶剂和促进剂的重量比为1:0.1-0.3:3-8:0.005-0.01。
  7. 根据权利要求1或6所述的制备方法,其特征在于:步骤S2中所述含氨基蒽醌化合物选自1-氨基-2-溴-4-羟基蒽醌
    Figure PCTCN2020087453-appb-100001
    2-氨基蒽醌
    Figure PCTCN2020087453-appb-100002
    1,2-二氨基蒽醌
    Figure PCTCN2020087453-appb-100003
    1,4-二氨基蒽醌
    Figure PCTCN2020087453-appb-100004
    2,6-二氨基蒽醌
    Figure PCTCN2020087453-appb-100005
    1,8-二氨基蒽醌
    Figure PCTCN2020087453-appb-100006
    1,5-二氨基蒽醌
    Figure PCTCN2020087453-appb-100007
    1-氨基-2-甲基蒽醌
    Figure PCTCN2020087453-appb-100008
    1,5-二羟基-4,8-二氨基蒽醌
    Figure PCTCN2020087453-appb-100009
    和1-氨基蒽醌
    Figure PCTCN2020087453-appb-100010
    中的一种或几种。
  8. 根据权利要求1或6所述的制备方法,其特征在于:步骤S2中所述促进剂选自2-甲基咪唑、1-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-十一烷基咪唑和2-苯基-4-甲基咪唑中的一种或几种。
  9. 一种权利要求1-8任一项所述的制备方法制备出的表面接枝蒽醌化合物的无机填料。
  10. 一种权利要求1-8任一项所述的制备方法制备出的表面接枝蒽醌化合物的无机填料在水处理领域的应用。
PCT/CN2020/087453 2019-04-29 2020-04-28 一种无机填料表面接枝蒽醌化合物的制备方法及应用 WO2020221243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910357694.7A CN110040844B (zh) 2019-04-29 2019-04-29 一种无机填料表面接枝蒽醌化合物的制备方法及应用
CN201910357694.7 2019-04-29

Publications (1)

Publication Number Publication Date
WO2020221243A1 true WO2020221243A1 (zh) 2020-11-05

Family

ID=67280237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087453 WO2020221243A1 (zh) 2019-04-29 2020-04-28 一种无机填料表面接枝蒽醌化合物的制备方法及应用

Country Status (2)

Country Link
CN (1) CN110040844B (zh)
WO (1) WO2020221243A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040844B (zh) * 2019-04-29 2020-07-07 厦门理工学院 一种无机填料表面接枝蒽醌化合物的制备方法及应用
CN111545230A (zh) * 2020-04-23 2020-08-18 厦门理工学院 一种纳米二氧化钛/MXene复合膜的制备方法、产物及应用
CN111549393B (zh) * 2020-06-01 2023-03-31 福州力天纺织有限公司 一种纤维、制备方法、纺织物及其应用
CN111472065B (zh) * 2020-06-01 2023-03-28 福州力天纺织有限公司 纺织品的制备方法及其应用
CN112358059B (zh) * 2020-11-12 2022-08-26 厦门理工学院 硫铁矿在污水处理中的应用方法
CN112358745B (zh) * 2020-11-12 2022-05-10 厦门理工学院 一种改性硫铁矿的制备方法及其应用
CN112206790B (zh) * 2020-11-12 2022-04-22 厦门理工学院 具有光催化性能的改性硫铁矿的制备方法及其应用
CN112457510B (zh) * 2020-11-26 2023-12-08 深圳市领航新锐科技有限公司 一种改性聚氨酯薄膜的制备方法及其应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238488A (ja) * 1995-03-06 1996-09-17 Kawasaki Kasei Chem Ltd 水溶液中のチオ硫酸銀錯イオンの処理方法
EP0647721B1 (en) * 1993-09-08 1998-12-23 Kawasaki Kasei Chemicals Ltd. Agent for treating metal ions in an aqueous solution, process for producing the metal ion-treating agent and method for treating metal ions in an aqueous solution
CN101862680A (zh) * 2010-06-10 2010-10-20 大连理工大学 一种多孔无机填料固定醌化合物的制备方法
CN105504319A (zh) * 2015-12-23 2016-04-20 厦门理工学院 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用
CN105642127A (zh) * 2016-01-13 2016-06-08 厦门理工学院 一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法
CN106824288A (zh) * 2017-02-07 2017-06-13 天津城建大学 磁性醌介体纳米功能材料及其制备方法和应用
CN108911135A (zh) * 2018-07-17 2018-11-30 厦门理工学院 一种畜禽废水的处理方法
CN108911137A (zh) * 2018-07-17 2018-11-30 厦门理工学院 一种染料废水的处理方法
CN108911134A (zh) * 2018-07-17 2018-11-30 厦门理工学院 一种生活污水的处理方法
CN108911136A (zh) * 2018-07-17 2018-11-30 厦门理工学院 一种重金属废水的处理方法
CN109502600A (zh) * 2018-11-29 2019-03-22 天津城建大学 一种蒽醌介体改性分子筛的制备方法及其应用
CN110040844A (zh) * 2019-04-29 2019-07-23 厦门理工学院 一种无机填料表面接枝蒽醌化合物的制备方法及应用
CN110092389A (zh) * 2019-04-29 2019-08-06 厦门理工学院 一种表面接枝蒽醌化合物的电气石、制备方法及应用
CN110204056A (zh) * 2019-06-04 2019-09-06 厦门理工学院 蒽醌化合物改性亲水性载体的制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777639B2 (ja) * 1988-07-29 1995-08-23 日本碍子株式会社 微生物固定化用多孔性セラミックス担体
CN109336417A (zh) * 2018-08-21 2019-02-15 江苏大学 一种表面接枝功能聚合物改性玄武岩纤维的制备方法及其应用
CN108948233B (zh) * 2018-08-22 2021-03-12 广东工业大学 一种无机纳米粒子表面接枝型光引发剂及其应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647721B1 (en) * 1993-09-08 1998-12-23 Kawasaki Kasei Chemicals Ltd. Agent for treating metal ions in an aqueous solution, process for producing the metal ion-treating agent and method for treating metal ions in an aqueous solution
JPH08238488A (ja) * 1995-03-06 1996-09-17 Kawasaki Kasei Chem Ltd 水溶液中のチオ硫酸銀錯イオンの処理方法
CN101862680A (zh) * 2010-06-10 2010-10-20 大连理工大学 一种多孔无机填料固定醌化合物的制备方法
CN105504319A (zh) * 2015-12-23 2016-04-20 厦门理工学院 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用
CN105642127A (zh) * 2016-01-13 2016-06-08 厦门理工学院 一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法
CN106824288A (zh) * 2017-02-07 2017-06-13 天津城建大学 磁性醌介体纳米功能材料及其制备方法和应用
CN108911135A (zh) * 2018-07-17 2018-11-30 厦门理工学院 一种畜禽废水的处理方法
CN108911137A (zh) * 2018-07-17 2018-11-30 厦门理工学院 一种染料废水的处理方法
CN108911134A (zh) * 2018-07-17 2018-11-30 厦门理工学院 一种生活污水的处理方法
CN108911136A (zh) * 2018-07-17 2018-11-30 厦门理工学院 一种重金属废水的处理方法
CN109502600A (zh) * 2018-11-29 2019-03-22 天津城建大学 一种蒽醌介体改性分子筛的制备方法及其应用
CN110040844A (zh) * 2019-04-29 2019-07-23 厦门理工学院 一种无机填料表面接枝蒽醌化合物的制备方法及应用
CN110092389A (zh) * 2019-04-29 2019-08-06 厦门理工学院 一种表面接枝蒽醌化合物的电气石、制备方法及应用
CN110204056A (zh) * 2019-06-04 2019-09-06 厦门理工学院 蒽醌化合物改性亲水性载体的制备方法及应用

Also Published As

Publication number Publication date
CN110040844A (zh) 2019-07-23
CN110040844B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2020221243A1 (zh) 一种无机填料表面接枝蒽醌化合物的制备方法及应用
WO2020221245A1 (zh) 一种表面接枝蒽醌化合物的电气石、制备方法及应用
WO2020221242A1 (zh) 一种蒽醌化合物固定在无机填料表面的制备方法及应用
CN110066009B (zh) 一种含有蒽醌化合物的电气石、制备方法及应用
CN108940344B (zh) 改性石墨相氮化碳光催化剂及其制备方法和应用
CN110204056B (zh) 蒽醌化合物改性亲水性载体的制备方法及应用
CN110040842B (zh) 一种氧化还原介体接枝在无机填料表面的方法及应用
WO2020221240A1 (zh) 巯基烯点击化学制备含有蒽醌化合物的电气石的方法及应用
CN114196066B (zh) 一种热响应型智能海绵及其制备方法和应用
CN112275321A (zh) 一种柔性复合催化膜的制备方法及其应用
CN111729682A (zh) 一种光催化剂g-C3N4/RGO/Bi2O3及其制备方法
CN110128571B (zh) 一种改性聚苯乙烯树脂的制备方法及应用
CN112358059B (zh) 硫铁矿在污水处理中的应用方法
CN114260026A (zh) 一种表面拉电子基团修饰的超薄石墨相氮化碳纳米片光催化材料及其制备方法和应用
CN115403229B (zh) 一种养殖废水的处理方法
CN102173420A (zh) 一种硅量子点的表面修饰改性方法
CN108940331B (zh) 一种有序纳米片层团簇无金属催化剂及其合成与用途
CN114733543B (zh) 一种硼修饰的氮化碳材料及其制备方法和应用
CN112452310B (zh) 一种氮掺杂碳吸附剂及其制备方法和对有机染料的吸附应用
CN112574372B (zh) 席夫碱网络聚合物光催化剂及其制备方法和应用
CN110565364B (zh) 一种醌改性玄武岩纤维载体及其制备方法、应用
CN111790441A (zh) 聚苯胺负载铜铁催化剂材料及其制备方法和应用
CN111495204A (zh) 一种改性微滤膜及制备方法
CN104841497A (zh) 离子交换树脂化学接枝蒽醌制备氧化还原介体载体的方法
CN110846027A (zh) 用于检测乙酰胆碱酯酶活性的荧光探针材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799191

Country of ref document: EP

Kind code of ref document: A1