WO2020218328A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2020218328A1
WO2020218328A1 PCT/JP2020/017312 JP2020017312W WO2020218328A1 WO 2020218328 A1 WO2020218328 A1 WO 2020218328A1 JP 2020017312 W JP2020017312 W JP 2020017312W WO 2020218328 A1 WO2020218328 A1 WO 2020218328A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing
mass
steel sheet
temperature
rolled
Prior art date
Application number
PCT/JP2020/017312
Other languages
English (en)
French (fr)
Inventor
有衣子 江橋
之啓 新垣
広和 杉原
宗司 吉本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020217033365A priority Critical patent/KR20210138072A/ko
Priority to CN202080029079.4A priority patent/CN113710822B/zh
Priority to JP2020554555A priority patent/JP6813143B1/ja
Priority to KR1020247007347A priority patent/KR20240035910A/ko
Priority to US17/604,830 priority patent/US20220042137A1/en
Priority to EP20795884.4A priority patent/EP3960887B1/en
Publication of WO2020218328A1 publication Critical patent/WO2020218328A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1238Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Definitions

  • the present invention relates to a method for manufacturing a grain-oriented electrical steel sheet suitable for use as an iron core material of a transformer.
  • the grain-oriented electrical steel sheet is a soft magnetic material used as an iron core material for transformers, generators, etc., and has a crystal structure in which the ⁇ 001> orientation, which is the easy axis of iron magnetization, is highly aligned in the rolling direction of the steel sheet. It is characterized by its excellent magnetic properties.
  • the above crystal structure preferentially recrystallizes the crystal grains in the ⁇ 110 ⁇ ⁇ 001> orientation, which is the so-called Goss orientation, and grows hugely. It is formed by letting it.
  • Patent Document 1 discloses a method of using AlN or MnS as an inhibitor
  • Patent Document 2 discloses a method of using MnS or MnSe as an inhibitor, which are industrially put into practical use.
  • the method using these inhibitors is an extremely useful method for stably developing secondary recrystallized grains
  • the slab is heated to a high temperature of 1300 ° C. or higher in order to finely disperse the inhibitors in the steel.
  • it is necessary to dissolve the inhibitor-forming component once.
  • the inhibitor-forming component causes deterioration of the magnetic properties after secondary recrystallization, precipitates and inclusions such as inhibitors are removed from the ground iron at a high temperature of 1100 ° C. or higher in which the atmosphere is controlled. It is necessary to perform a purification process.
  • Patent Document 3 and the like disclose a method for developing Goth directional grains by causing secondary recrystallization using a material that does not contain an inhibitor-forming component.
  • This method makes the grain boundary orientation difference angle dependence of the grain boundary energy of the primary recrystallized grains manifest by eliminating impurities such as inhibitor components as much as possible, and secondary to Goss orientation grains without using an inhibitor. It is a technique that causes recrystallization, and the effect is called the "texture inhibition effect". Since this method does not require fine dispersion of the inhibitor in the steel, it also eliminates the need for high-temperature slab heating, which is indispensable, and has great merits in terms of fuel cost and equipment maintenance.
  • Patent Document 4 describes the texture of the primary recrystallized annealed plate after cold rolling by controlling the carbides precipitated during cooling by increasing the cooling rate of the hot-rolled sheet annealing. Suggestions have been made to improve.
  • the cooling rate in the examples of this patent document is up to 70 ° C./s, and rapid cooling of 100 ° C./s or higher has not been carried out. It is presumed that this is because it was thought that a cooling rate of less than 100 ° C./s was sufficient for controlling carbides, and there was no cooling device capable of achieving a cooling rate higher than that. To.
  • Patent Document 5 in a continuous annealing facility in which annealing is performed while continuously passing a metal plate, a shape generated in the metal plate during quenching and quenching is performed.
  • a quenching and quenching apparatus capable of suppressing a decrease in the cooling rate of a metal plate while suppressing defects is disclosed.
  • This quenching quenching apparatus controls the structure by rapid cooling to obtain a high-strength steel sheet having a desired strength.
  • the above-mentioned rapid cooling has not been applied.
  • an object of the present invention is to apply the above-mentioned rapid cooling technique to the production of grain-oriented electrical steel sheets using a material that does not contain an inhibitor-forming component, and to maintain the superiority in terms of manufacturability and manufacturing cost, and magnetic It is an object of the present invention to propose a method for manufacturing a grain-oriented electrical steel sheet capable of stably obtaining a grain-oriented electrical steel sheet having excellent characteristics.
  • the inventors have made extensive studies on the effect of cooling rates such as hot-rolled sheet annealing on the magnetic properties of grain-oriented electrical steel sheets.
  • the cooling rate such as hot-rolled sheet annealing and intermediate annealing before cold rolling is increased as compared with the prior art, specifically.
  • the cooling rate from 800 ° C. to 300 ° C. to 200 ° C./s or higher, the slip system of dislocations in cold rolling changes and the primary recrystallization texture is improved, resulting in greatly improved magnetic properties. It was found that this was done, and the present invention was developed.
  • the present invention contains C: 0.020 to 0.10 mass%, Si: 2.0 to 4.0 mass%, Mn: 0.005 to 0.50 mass%, and Al: 0.010 mass%.
  • a steel slab containing less than 0.0050 mass% each of N, S and Se and having a component composition in which the balance consists of Fe and unavoidable impurities is heated to a temperature of 1280 ° C. or lower, then hot-rolled and hot-rolled. After the plate is hot-rolled and annealed, it is cold-rolled once or cold-rolled two or more times with intermediate annealing in between to obtain a cold-rolled plate with the final plate thickness, and primary recrystallization that also serves as decarburization annealing.
  • a method for producing a directional electromagnetic steel sheet which comprises a series of steps of annealing, applying an annealing separator to the surface of the steel sheet, finish annealing, and flattening annealing, one or more of the above-mentioned hot-rolled sheet annealing and intermediate annealing.
  • annealing we propose a method for manufacturing a directional electromagnetic steel sheet, which comprises rapidly cooling from 800 ° C. to 300 ° C. in the cooling process from the maximum reached temperature at an average cooling rate of 200 ° C./s or more.
  • the method for producing a grain-oriented electrical steel sheet of the present invention is characterized in that, following the rapid cooling, the average cooling rate is cooled in the range of 5 to 40 ° C / s from 300 ° C to 100 ° C.
  • the method for producing a grain-oriented electrical steel sheet of the present invention is characterized in that the heating rate between 500 and 700 ° C. in the heating process of the primary recrystallization annealing that also serves as the decarburization annealing is 500 ° C./s or more. And.
  • the heating process of the finish annealing after a retention treatment of holding for 5 to 200 hr at an arbitrary temperature between 800 and 950 ° C., or between 800 and 950 ° C. Is heated at an average temperature rise rate of 5 ° C./hr or less to develop secondary recrystallization, and further heated to a temperature of 1100 ° C. or higher to complete the secondary recrystallization, and then kept at that temperature for 2 hr or more. It is characterized by being purified.
  • a grain-oriented electrical steel sheet having excellent magnetic properties can be manufactured inexpensively and stably by using a material that does not contain an inhibitor-forming component while maintaining superiority in terms of manufacturability and manufacturing cost. Because it can be done, the effect of the industry is great.
  • the cooling process of hot-rolled sheet annealing from 1000 ° C. to room temperature was divided into three sections of 1000 to 800 ° C., 800 to 300 ° C., and 300 to 100 ° C., respectively.
  • the average cooling rate in the section was changed for cooling.
  • 50vol% H 2 -50vol% N 2 under a humid atmosphere with a dew point of 50 ° C., soaking temperature 850 ° C. ⁇ soaking time 100s
  • Primary recrystallization annealing was performed, which also served as decarburization annealing.
  • the magnetic flux density is increased by increasing the average cooling rate from 800 to 300 ° C. to 200 ° C./s or more in the cooling process of hot-rolled sheet annealing.
  • the mechanism for improvement is not yet fully understood, but the inventors think as follows.
  • the temperature range of 800 to 300 ° C. in the cooling process of hot-rolled sheet annealing is a temperature range that greatly affects the precipitation state of carbides, and has conventionally been 100 ° C./s for the purpose of increasing solid solution C or fine carbides. It has been cooled to a certain degree. However, it is considered that the mechanism for improving the magnetic properties this time is different from that due to the increase in the solid solution C or fine carbides.
  • the steel sheet that has been annealed by hot rolling is before the decarburization annealing (primary recrystallization annealing) process, and because of its high C content, part of it undergoes reverse transformation due to heating during annealing, from the ⁇ phase to the ⁇ phase. It changes with.
  • the transformed ⁇ phase and the surrounding ⁇ phase have different crystal structures ( ⁇ phase is FCC, ⁇ phase is BCC), and the coefficient of thermal expansion is also different.
  • ⁇ phase is FCC
  • ⁇ phase is BCC
  • the coefficient of thermal expansion is also different.
  • the ⁇ phase does not transform into the ⁇ phase due to supercooling, but shrinks and remains as it is. Therefore, due to the difference in the coefficient of thermal expansion, the phase interface between the ⁇ phase and the ⁇ phase is distorted differently than usual.
  • the slip system of dislocations in the cold rolling of the next process changes, the ⁇ 411 ⁇ orientation grains of the steel sheet after primary recrystallization annealing (decarburization annealing) increase, and the texture is improved, resulting in magnetism.
  • decarburization annealing secondary recrystallization annealing
  • ⁇ Experiment 2> Contains C: 0.060 mass%, Si: 3.2 mass%, Mn: 0.1 mass%, Al: 0.080 mass%, N: 0.0045 mass%, S: 0.0010 mass% and Se: 0.0030 mass%. Then, a steel having a component composition in which the balance is composed of Fe and unavoidable impurities is melted in a vacuum melting furnace and cast to form a steel ingot, which is then heated to a temperature of 1200 ° C. and hot-rolled. A hot-rolled plate with a thickness of 2.5 mm was used.
  • the hot-rolled plate is subjected to hot-rolled plate annealing having a maximum reaching temperature of 1050 ° C., and the first cold rolling is performed to obtain an intermediate plate thickness of 1.5 mm, and intermediate annealing having a maximum reaching temperature of 1050 ° C. is performed. gave.
  • the average cooling rate between 1050 and 800 ° C. in the cooling process from 1050 ° C. to room temperature of the intermediate annealing was set to 10 ° C./s, and the average cooling rate between 300 and 100 ° C. was set to 30 ° C./s.
  • the average cooling rate between 800 and 300 ° C. was varied as shown in Table 2 for cooling.
  • an annealing separator mainly composed of MgO is applied to the surface of the steel sheet after the primary recrystallization annealing, and then heated (without retention) at a heating rate of 30 ° C./hr between 800 and 950 ° C. After recrystallization is expressed and the secondary recrystallization is completed by heating between 950 and 1050 ° C. at a heating rate of 20 ° C./hr to 1200 ° C., the temperature is maintained at that temperature for 5 hr in a hydrogen atmosphere. Finish annealing for purification treatment was applied.
  • the average cooling rate from 800 ° C. to 300 ° C. is increased to 200 ° C./s or more in the cooling process of intermediate annealing, and the heating rate of 500 to 700 ° C. is increased to 500 ° C. in the heating process of primary recrystallization annealing.
  • the mechanism by which the magnetic flux density is significantly improved by increasing the temperature to ° C./s or higher has not yet been fully clarified, but the inventors think as follows.
  • C 0.020 to 0.10 mass% If C is less than 0.020 mass%, the structure becomes ⁇ single phase during casting or hot spreading, so that the steel becomes brittle and cracks occur in the slab, or ear cracks occur on the edge of the steel sheet after hot spreading. If it occurs, it will interfere with manufacturing. On the other hand, if it exceeds 0.10 mass%, it becomes difficult to reduce it to 0.005 mass% or less in which magnetic aging does not occur in decarburization annealing. Therefore, C is in the range of 0.020 to 0.10 mass%. Preferably, it is in the range of 0.025 to 0.050 mass%.
  • Si 2.0-4.0 mass%
  • Si is an element necessary to increase the specific resistance of steel and improve iron loss, but the above effect is not sufficient if it is less than 2.0 mass%, while if it exceeds 4.0 mass%, it is a steel. Workability is reduced, making it difficult to roll and manufacture. Therefore, Si is in the range of 2.0 to 4.0 mass%. It is preferably in the range of 2.5 to 3.8 mass%.
  • Mn 0.005 to 0.50 mass%
  • Mn is an element necessary for improving the hot workability of steel, but the above effect is not sufficient if it is less than 0.005 mass%, while if it is added in excess of 0.50 mass%, the magnetic flux of the product plate is increased. The density will decrease. Therefore, Mn is set in the range of 0.005 to 0.50 mass%. It is preferably in the range of 0.03 to 0.20 mass%.
  • Al less than 0.010 mass%, N, S and Se each less than 0.0050 mass% Since the present invention manufactures grain-oriented electrical steel sheets using a steel material that does not contain an inhibitor-forming component, it is an inhibitor-forming component. The contents of certain Al, N, S and Se need to be reduced as much as possible. Therefore, in the present invention, Al: less than 0.010 mass%, and N, S, and Se are each limited to less than 0.0050 mass%. Preferably, Al: less than 0.007 mass%, N: less than 0.0040 mass%, and S and Se: less than 0.0030 mass%, respectively.
  • the balance other than the above components is Fe and unavoidable impurities.
  • Cr 0.01 to 0.50 mass%
  • Cu 0.01 to 0.50 mass%
  • Ni 0.01 to 0.50 mass%.
  • Bi 0.005 to 0.50 mass%
  • B 0.0002 to 0.0025 mass%
  • Nb 0.0010 to 0.0100 mass%
  • Sn 0.010 to 0.400 mass%
  • Sb 0.010 ⁇ 0.150 mass%
  • Mo 0.010 ⁇ 0.200 mass%
  • P 0.010 ⁇ 0.150 mass%
  • V 0.0005 ⁇ 0.0100 mass%
  • Ti 0.0005 ⁇ 0.0100 mass%
  • a steel material (slab) having the component composition described above is heated to a predetermined temperature, hot-rolled to obtain a hot-rolled plate, and then hot-rolled and annealed.
  • a steel material (slab) having the component composition described above is heated to a predetermined temperature, hot-rolled to obtain a hot-rolled plate, and then hot-rolled and annealed.
  • it can be produced by a method for producing a directional electromagnetic steel sheet, which comprises a series of steps of secondary recrystallization, purification treatment, finish annealing, and flattening annealing.
  • the steel material can be produced by a conventional continuous casting method or an ingot-decomposition rolling method after melting steel adjusted to the composition of the components described above in a conventional refining process. .. Further, a thin slab having a thickness of 100 mm or less may be produced by a direct casting method.
  • the slab is heated to a predetermined temperature and then subjected to hot rolling into a hot-rolled plate having a predetermined plate thickness.
  • the steel material containing no inhibitor-forming component is used as the heating temperature of the slab in the present invention, high-temperature heating for solid-solving the inhibitor is not necessary, and 1280 ° C. or lower is sufficient. It is preferably 1250 ° C. or lower.
  • the lower limit of the heating temperature may be a temperature that can ensure workability in hot rolling, and is preferably 1100 ° C. or higher.
  • the hot-rolled plate obtained by the hot rolling is subjected to hot-rolled plate annealing for the purpose of completely recrystallizing the hot-rolled plate structure.
  • the maximum temperature reached for the hot-rolled sheet annealing is preferably 950 ° C. or higher from the viewpoint of surely obtaining the above effects. More preferably, it is 1000 ° C. or higher.
  • the maximum temperature reached exceeds 1150 ° C., the crystal grains after annealing on the hot-rolled plate become coarse and it becomes difficult to obtain a primary recrystallized structure of sized grains, so the temperature is limited to 1150 ° C. or lower. More preferably, it is 1100 ° C. or lower.
  • the time for maintaining the maximum temperature is preferably in the range of 5 to 300 s in order to sufficiently obtain the effect of hot-rolled sheet annealing and from the viewpoint of ensuring productivity.
  • the hot-rolled plate after annealing is pickled and descaled, and then cold-rolled once or cold-rolled two or more times with intermediate annealing sandwiched between them to achieve the final thickness of the cold-rolled plate.
  • the annealing temperature in the intermediate annealing is preferably in the range of 1000 to 1150 ° C., below 1000 ° C., it is difficult to completely recrystallize, while annealing. This is because when the temperature exceeds 1150 ° C., the crystal grains after annealing become coarse and it becomes difficult to obtain a primary recrystallized structure of sized grains. More preferably, it is in the range of 1020 to 1100 ° C.
  • the soaking time of the intermediate annealing is preferably in the range of 5 to 300 s in order to obtain a sufficient annealing effect and from the viewpoint of ensuring productivity.
  • the most important thing in the present invention is from the maximum temperature (equal heating temperature) in annealing before cold rolling, specifically, in annealing of any one or more of hot-rolled sheet annealing and intermediate annealing. It means that it is necessary to perform rapid cooling at an average cooling rate of 200 ° C./s or more during the cooling process of 800 to 300 ° C. As described above, by setting the average cooling rate in this temperature range to 200 ° C./s or higher, a large strain is introduced into the steel sheet after cooling, and the texture of the steel sheet after primary recrystallization annealing is improved. , The magnetic properties of the product plate can be improved. It is preferably 300 ° C./s or higher.
  • a rapid cooling device or the like that jet-injects water as described in Patent Document 5 described above can be preferably used.
  • the upper limit cooling rate is not particularly specified, the upper limit cooling rate of the quenching device is about 1200 ° C./s.
  • the cold-rolled steel sheet (cold-rolled sheet) having the final thickness is then subjected to primary recrystallization annealing that also serves as decarburization annealing.
  • this primary recrystallization annealing is preferably performed in the range of a soaking temperature of 800 to 900 ° C. and a soaking time of 50 to 300 s.
  • this annealing atmosphere is preferably a moist atmosphere from the viewpoint of ensuring decarburization.
  • the texture is further improved and the magnetic properties are improved. Desirably, it is 600 ° C./s or higher.
  • the above-mentioned primary recrystallization annealed steel sheet is subjected to an annealing separator mainly containing MgO on the surface of the steel sheet, followed by secondary recrystallization.
  • the finish is annealed for purification.
  • no annealing separator is applied, or an annealing separator mainly composed of silica or alumina is applied to the surface of the steel sheet, and then the above-mentioned finish is applied. Anneal.
  • the finish annealing is a retention treatment of holding 5 to 200 hr at an arbitrary temperature between 800 and 950 ° C., or heating between 800 and 950 ° C. at an average temperature rise rate of 5 ° C./hr or less.
  • the temperature was continued or once lowered to 700 ° C. or lower, and then reheated, and the temperature range between 950 and 1050 ° C. was set as the average temperature rise rate of 5 to 35 ° C./hr. It is preferable to heat to a temperature of 1100 ° C. or higher to complete the secondary recrystallization, and then keep the temperature at 2 hr or more for purification treatment.
  • Al, N, S and Se in the steel sheet are reduced to unavoidable impurity levels.
  • the preferred retention treatment time between 800 and 950 ° C. is 50 to 150 hr, and the preferred average heating rate between 800 and 950 ° C. is 1 to 3 ° C./hr.
  • the preferred temperature of the purification treatment is 1200 to 1250 ° C., and the preferred holding time is 2 to 10 hr.
  • the atmosphere of the purification treatment of the final annealing is preferably set to a H 2 atmosphere.
  • the steel sheet after finish annealing is washed with water, brushed, pickled, etc., and then flattened and annealed for shape correction to reduce iron loss. It is valid. Further, when the steel sheets are laminated and used, it is preferable to coat the surface of the steel sheet with an insulating film in any step of flattening annealing or before or after the flattening annealing in order to improve the iron loss. In order to further reduce iron loss, it is preferable to use a tension-applying film as the insulating film.
  • a method may be adopted in which a tension applying film is formed via a binder, or an inorganic substance is vapor-deposited on the surface layer of the steel sheet by a physical vapor deposition method or a chemical vapor deposition method to form a tension applying film.
  • the surface of the product plate is irradiated with a laser beam, plasma beam, etc. to impart thermal strain or impact strain, or grooves are formed on the surface of the steel plate to perform magnetic domain subdivision processing. Is preferable.
  • a steel slab having the composition shown in Table 3 and having the balance of Fe and unavoidable impurities was produced by a continuous casting method, reheated to a temperature of 1280 ° C., and then hot-rolled to obtain a plate thickness of 2.
  • a 2 mm hot-rolled plate was formed, and the hot-rolled plate was annealed at 1050 ° C. ⁇ 20 s.
  • the average cooling rates between 800 to 300 ° C. and 300 to 100 ° C. in the cooling process of hot-rolled sheet annealing were changed as shown in Table 4.
  • an annealing separator mainly composed of MgO is applied to the surface of the steel sheet after the primary recrystallization annealing, and then heated (without retention) at a heating rate of 30 ° C./hr between 800 ° C. and 950 ° C.
  • the secondary recrystallization is expressed, and subsequently, the temperature between 950 and 1050 ° C. is heated to 1200 ° C. at a heating rate of 20 ° C./hr to complete the secondary recrystallization, and then the temperature is maintained at the temperature of 10 hr under a hydrogen atmosphere. Finish annealing for purification treatment was applied.
  • a test piece was taken from the steel sheet after finish annealing thus obtained, and the magnetic flux density B 8 (magnetic flux density when excited at 800 A / m) was measured by the method described in JIS C2550, and the results are shown in Table 4. It is also written in. From Table 4, all of the steel sheets using a steel material having a composition suitable for the present invention and rapidly cooling by hot-rolled sheet annealing under the conditions suitable for the present invention have excellent magnetic flux densities, and in particular, heat. It can be seen that the faster the cooling rate between 800 and 300 ° C. of rolled sheet annealing, the better the magnetic flux density.
  • a steel slab containing Al: 0.0070 mass%, N: 0.0035 mass% and S: 0.0010 mass%, the balance of which is Fe and unavoidable impurities, is produced by a continuous casting method and reconstituted at a temperature of 1230 ° C. After heating, it was hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.0 mm, and the hot-rolled plate was annealed at 950 ° C. ⁇ 20 s. Then, in the first cold rolling, the intermediate plate thickness was 1.3 mm, after performing intermediate annealing at 1060 ° C.
  • the second cold rolling was performed to obtain a cold rolled plate having a final plate thickness of 0.20 mm. ..
  • the average cooling rates between 800 to 300 ° C. and 300 to 100 ° C. in the cooling process of hot-rolled sheet annealing and intermediate annealing were changed as shown in Table 5.
  • the cold-rolled sheet, in a wet atmosphere having a dew point of 60 ° C. with 55vol% H 2 -45vol% N 2 was subjected to primary recrystallization annealing, which also serves as a decarburization annealing at 850 ° C. ⁇ 60s.
  • the average heating rate between 500 and 700 ° C. in the heating process was 400 ° C./s.
  • an annealing separator mainly composed of MgO is applied to the surface of the steel sheet after the primary recrystallization annealing, and then heated (without retention) at a heating rate of 25 ° C./hr between 800 ° C. and 950 ° C.
  • the secondary recrystallization is expressed, and subsequently, the temperature between 950 and 1050 ° C. is heated to 1225 ° C. at a heating rate of 20 ° C./hr to complete the secondary recrystallization, and then the temperature is maintained at the temperature for 10 hr under a hydrogen atmosphere. Finish annealing for purification treatment was applied.
  • a test piece was taken from the steel sheet after finish annealing thus obtained, and the magnetic flux density B 8 (magnetic flux density when excited at 800 A / m) was measured by the method described in JIS C2550, and the results are shown in Table 5. It is also written in. From Table 5, all the steel sheets subjected to hot-rolled sheet annealing and / or intermediate annealing under the conditions conforming to the present invention using a steel material having a component composition suitable for the present invention have excellent magnetic flux densities. I understand.
  • a steel slab containing Al: 0.0070 mass%, N: 0.0035 mass% and S: 0.0010 mass%, the balance of which is Fe and unavoidable impurities, is produced by a continuous casting method and reheated to a temperature of 1280 ° C. After heating, it was hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.5 mm, and the hot-rolled plate was annealed at 1000 ° C. for 60 s. At that time, the average cooling rates between 800 to 300 ° C. and 300 to 100 ° C. in the cooling process of hot-rolled sheet annealing were changed as shown in Table 6.
  • the intermediate plate thickness was 1.8 mm
  • the second cold rolling was performed to obtain a cold rolled plate having a final plate thickness of 0.23 mm. ..
  • the average cooling rate between 800 and 100 ° C. in the cooling process of intermediate annealing was set to 40 ° C./s.
  • the cold-rolled sheet in a wet atmosphere having a dew point of 58 ° C. with 55vol% H 2 -45vol% N 2 , was subjected to primary recrystallization annealing, which also serves as a decarburization annealing at 850 ° C. ⁇ 100s.
  • the average heating rate between 500 and 700 ° C. in the heating process was changed as shown in Table 6.
  • an annealing separator mainly composed of MgO is applied to the surface of the steel sheet after the primary recrystallization annealing, and after the secondary recrystallization is completed, it is kept at a temperature of 1225 ° C. for 10 hours in a hydrogen atmosphere for purification.
  • a test piece was taken from the steel sheet after finish annealing thus obtained, and the magnetic flux density B 8 (magnetic flux density when excited at 800 A / m) was measured by the method described in JIS C2550, and the results are shown in Table 6. It is also written in. From Table 6, the temperature is lowered to 680 ° C. by performing a retention treatment of 5 hr or more between 800 and 950 ° C. in the heating process of finish annealing, or by raising the temperature between 800 and 950 ° C. at 5 ° C./s or less. It can be seen that the magnetic flux density of the product plate is further improved regardless of the presence or absence. Further, it can be seen that the magnetic flux density is further improved by increasing the average heating rate between 500 and 700 ° C. in the heating process of the primary recrystallization annealing to 500 ° C./s or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

mass%で、C:0.020~0.10%、Si:2.0~4.0%、Mn:0.005~0.50%を含有し、Al:0.010%未満、N,SおよびSeをそれぞれ0.0050%未満含有する鋼スラブを1280℃以下の温度に加熱した後、熱間圧延し、熱延板焼鈍し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延し、脱炭焼鈍を兼ねた一次再結晶焼鈍し、鋼板表面に焼鈍分離剤を塗布した後、仕上焼鈍し、平坦化焼鈍して方向性電磁鋼板を製造する際、上記熱延板焼鈍および中間焼鈍のいずれか1以上の焼鈍において、最高到達温度からの冷却過程の800℃から300℃までを、平均冷却速度200℃/s以上で急速冷却することで、磁気特性に優れる方向性電磁鋼板を安定して得る。

Description

方向性電磁鋼板の製造方法
 本発明は、変圧器の鉄心材料等に用いて好適な方向性電磁鋼板の製造方法に関するものである。
 方向性電磁鋼板は、変圧器や発電機等の鉄心材料として用いられる軟磁性材料であり、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するため、磁気特性に優れるのが特徴である。上記の結晶組織は、方向性電磁鋼板の製造工程の仕上焼鈍において、いわゆるゴス(Goss)方位と称される{110}<001>方位の結晶粒を優先的に二次再結晶させ、巨大成長させることで形成される。
 上記二次再結晶を起こさせる方法としては、インヒビターと呼ばれる析出物を利用する技術が一般的に使用されている。例えば、特許文献1には、インヒビターとしてAlNやMnSを利用する方法が、また、特許文献2には、インヒビターとしてMnSやMnSeを利用する方法が開示され、工業的に実用化されている。
 しかし、これらのインヒビターを用いる方法は、安定して二次再結晶粒を発達させるには極めて有用な方法であるが、インヒビターを鋼中に微細分散させるため、1300℃以上の高温にスラブを加熱し、インヒビター形成成分を一度固溶させることが必要である。また、インヒビター形成成分は、二次再結晶後においては磁気特性を劣化させる原因となるため、雰囲気を制御した1100℃以上の高温下で、地鉄中からインヒビターなどの析出物および介在物を除去する純化処理を施す必要がある。
 一方、特許文献3等には、インヒビター形成成分を含有しない素材を用いて二次再結晶を起こさせ、ゴス方位粒を発達させる方法が開示されている。この方法は、インヒビター成分のような不純物を極力排除することで、一次再結晶粒が有する粒界エネルギーの粒界方位差角依存性を顕在化させ、インヒビターを用いずにGoss方位粒に二次再結晶を起こさせる技術であり、その効果は「テクスチャーインヒビション効果」と呼ばれている。この方法は、インヒビターの鋼中への微細分散が必要でないため、必須であった高温スラブ加熱も不要となるため、燃料コストや設備のメンテナンスの面でも大きなメリットを有する。
 しかしながら、インヒビター形成成分を含有しない素材を用いる方法は、インヒビターを利用していない分、集合組織の制御が極めて重要となってくる。集合組織を制御する技術としては、例えば特許文献4には、熱延板焼鈍の冷却速度を速めることで冷却中に析出する炭化物を制御し、冷間圧延後の一次再結晶焼鈍板の集合組織を改善する方法が提案されている。しかし、この特許文献の実施例における冷却速度は70℃/sまでであり、100℃/s以上といった急速冷却は実施されていない。これは、炭化物の制御には、100℃/s未満の冷却速度で十分であると考えられていたことと、また、それ以上の冷却速度を実現できる冷却装置が存在していなかったためと推測される。
 しかし、近年、薄鋼板の冷却技術の開発が進んでおり、例えば特許文献5には、金属板を連続的に通板しながら焼鈍を行う連続焼鈍設備において、急冷焼入れ時に金属板に発生する形状不良を抑制しつつ、金属板の冷却速度の低下を抑えることのできる急冷焼入装置が開示されている。この急冷焼入装置は、急速冷却することで組織を制御し、所望の強度の高強度鋼板を得ようとするものである。しかし、方向性電磁鋼板では、高強度を得る必要がないため、上記の急速冷却が適用されることはなかった。
特公昭40-015644号公報 特公昭51-013469号公報 特開2000-129356号公報 特開2012-077380号公報 特開2018-066065号公報
 そこで、本発明の目的は、インヒビター形成成分を含有していない素材を用いた方向性電磁鋼板の製造に上記急速冷却技術を適用し、製造性や製造コスト面での優位性を保ちつつ、磁気特性に優れる方向性電磁鋼板を安定して得ることができる方向性電磁鋼板の製造方法を提案することにある。
 発明者らは、熱延板焼鈍等の冷却速度が、方向性電磁鋼板の磁気特性に及ぼす影響について鋭意検討を重ねた。その結果、インヒビター形成成分を含有していない素材を用いた方向性電磁鋼板の製造方法において、冷間圧延前の熱延板焼鈍や中間焼鈍等の冷却速度を従来技術よりも高める、具体的には、800℃から300℃までの冷却速度を200℃/s以上に高めることで、冷間圧延における転位のすべり系が変化して一次再結晶集合組織が改善される結果、磁気特性が大きく向上することを見出し、本発明を開発するに至った。
 すなわち、本発明は、C:0.020~0.10mass%、Si:2.0~4.0mass%、Mn:0.005~0.50mass%を含有し、かつ、Al:0.010mass%未満、N,SおよびSeをそれぞれ0.0050mass%未満含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1280℃以下の温度に加熱した後、熱間圧延して熱延板とし、熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍し、鋼板表面に焼鈍分離剤を塗布した後、仕上焼鈍し、平坦化焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、上記熱延板焼鈍および中間焼鈍のいずれか1以上の焼鈍において、最高到達温度からの冷却過程の800℃から300℃までを、平均冷却速度200℃/s以上で急速冷却することを特徴とする方向性電磁鋼板の製造方法を提案する。
 本発明の上記方向性電磁鋼板の製造方法は、上記急速冷却に引き続き、300℃から100℃までを、平均冷却速度を5~40℃/sの範囲で冷却することを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法は、上記脱炭焼鈍を兼ねた一次再結晶焼鈍の加熱過程における500~700℃間の昇温速度を500℃/s以上とすることを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法は、上記仕上焼鈍の加熱過程において、800~950℃間の任意の温度で5~200hr保持する保定処理した後、または、800~950℃間を平均昇温速度5℃/hr以下で加熱して二次再結晶を発現させ、さらに、1100℃以上の温度まで加熱して二次再結晶を完了させた後、該温度に2hr以上保持して純化処理することを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、Ni:0.01~0.50mass%、Bi:0.005~0.50mass%、B:0.0002~0.0025mass%、Nb:0.0010~0.0100mass%、Sn:0.010~0.400mass%、Sb:0.010~0.150mass%、Mo:0.010~0.200mass%、P:0.010~0.150mass%、V:0.0005~0.0100mass%およびTi:0.0005~0.0100mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。
 本発明によれば、インヒビター形成成分を含有していない素材を用いて、製造性や製造コスト面での優位性を保ちつつ、磁気特性に優れる方向性電磁鋼板を、安価にかつ安定して製造することができるので、産業上、奏する効果は大である。
 まず、本発明を発明する契機となった実験について説明する。
<実験1>
 C:0.045mass%、Si:3.0mass%、Mn:0.05mass%、Al:0.0050mass%、N:0.0030mass%およびS:0.0020mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼を真空溶解炉で溶製し、鋳造して鋼塊とした後、該鋼塊を1250℃の温度に加熱し、熱間圧延して板厚2.0mmの熱延板とした。次いで、上記熱延板に、最高到達温度を1000℃とする熱延板焼鈍を施した。その際、熱延板焼鈍の1000℃から室温までの冷却過程を、表1に示したように、1000~800℃間、800~300℃間および300~100℃間の3区間に分け、それぞれの区間の平均冷却速度を変化させて冷却した。その後、冷間圧延して板厚0.23mmの冷延板に仕上げた後、50vol%H-50vol%N、露点50℃の湿潤雰囲気下で、均熱温度850℃×均熱時間100sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。次いで、MgOを主体とする焼鈍分離剤を鋼板表面に塗布した後、800℃~950℃間を30℃/hrの昇温速度で加熱(保定なし)して二次再結晶を発現させ、引き続き、950~1050℃間を20℃/hrの昇温速度で1200℃まで加熱して二次再結晶を完了させた後、水素雰囲気下で該温度に5hr保持する純化処理する仕上焼鈍を施した。
 斯くして得た仕上焼鈍後の鋼板からサンプルを採取し、磁束密度B(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定し、その結果を、表1に併記した。この結果から、熱延板焼鈍の冷却過程において、800℃から300℃までの平均速度を200℃/s以上で急速冷却することで、磁束密度が大きく向上することがわかった。
Figure JPOXMLDOC01-appb-T000001
 インヒビター形成成分を含有していない素材を用いた場合に、上記したように、熱延板焼鈍の冷却過程で800から300℃までの平均冷却速度を200℃/s以上に高めることで磁束密度が向上するメカニズムは、まだ十分に明らかとなっていないが、発明者らは、以下のように考えている。
 熱延板焼鈍の冷却過程の800から300℃の温度域は、炭化物の析出状態に大きく影響を及ぼす温度域であり、従来、固溶Cの増加もしくは微細炭化物の増加を目的として100℃/s程度までの冷却を行ってきた。しかし、今回の磁気特性向上メカニズムは、上記固溶Cもしくは微細炭化物の増加によるものとは異なると考えている。
 熱延板焼鈍を施した鋼板は、脱炭焼鈍(一次再結晶焼鈍)工程前であり、C含有量が高いため、焼鈍での加熱によって一部が逆変態を起こし、α相からγ相へと変化する。変態したγ相と周囲のα相は結晶構造が異なり(γ相がFCC、α相がBCC)、熱膨張率も異なる。このような状態から、200℃/s以上で急速冷却を行うと、過冷却によってγ相はα相に変態せず、そのまま収縮して残留する。そのため、熱膨張係数の違いにより、γ相とα相の相界面は、通常とは異なる歪が生じる。その結果、次工程の冷間圧延における転位のすべり系が変化し、一次再結晶焼鈍(脱炭焼鈍)後の鋼板の{411}方位粒が増加し、集合組織が改善されることで、磁気特性が向上したものと考えている。なお、100℃/s以下の冷却速度でも相界面に歪は生じると考えられるが、冷却速度が遅い分、歪が解消し易く、上記効果が十分に得られなかったと考えられる。
 一方、上記急速冷却に続く300℃から100℃までの冷却については、平均冷却速度5~40℃/sの範囲で更なる磁気特性の向上が認められた。これは、上記のような緩速冷却を行うことで、残留したγ相がマルテンサイト変態を起こしてさらに高い歪が導入され、一次再結晶集合組織がより改善されたことによるものと考えている。γ相が急冷によりマルテンサイト変態することは周知であるが、200℃/s以上の急速冷却で100℃未満まで冷却した場合には、γ相のまま過冷却されるため、却って、マルテンサイト変態でさえも生じ難くなったものと考えている。
<実験2>
 C:0.060mass%、Si:3.2mass%、Mn:0.1mass%、Al:0.080mass%、N:0.0045mass%、S:0.0010mass%およびSe:0.0030mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼を真空溶解炉で溶製し、鋳造して鋼塊とした後、該鋼塊を1200℃の温度に加熱し、熱間圧延して板厚2.5mmの熱延板とした。次いで、上記熱延板に、最高到達温度を1050℃とする熱延板焼鈍を施し、1回目の冷間圧延して中間板厚1.5mmとし、最高到達温度を1050℃とする中間焼鈍を施した。この際、上記中間焼鈍の1050℃から室温までの冷却過程における1050~800℃間の平均冷却速度を10℃/s、300~100℃の平均冷却速度を30℃/sとし、上記温度域間の800~300℃間の平均冷却速度を表2のように種々に変化させて冷却した。その後、2回目の冷間圧延(最終冷間圧延)して最終板厚0.20mmの冷延板に仕上げた後、50vol%H-50vol%N、露点60℃の湿潤雰囲気下で、均熱温度860℃×均熱時間120sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。この際、一次再結晶焼鈍の加熱過程における500~700℃間の平均昇温速度を300℃/s、500℃/sおよび1000℃/sの3水準に変化させた。次いで、上記一次再結晶焼鈍後の鋼板表面に、MgOを主体とする焼鈍分離剤を塗布した後、800~950℃間を30℃/hrの昇温速度で加熱(保定なし)して二次再結晶を発現させ、引き続き、950~1050℃間を20℃/hrの昇温速度で1200℃まで加熱して二次再結晶を完了させた後、水素雰囲気下で該温度に5hr保持して純化処理する仕上焼鈍を施した。
 斯くして得た仕上焼鈍後の鋼板からサンプルを採取し、磁束密度B(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定し、その結果を、表2に併記した。この結果から、中間焼鈍の冷却過程において、800℃から300℃までの平均速度を200℃/s以上で急速冷却し、続く冷間圧延後の一次再結晶焼鈍の加熱過程における500~700℃間の昇温速度を500℃/s以上にすることで、磁束密度が大きく向上することがわかった。
Figure JPOXMLDOC01-appb-T000002
 上記のように、中間焼鈍の冷却過程で800℃から300℃までの平均冷却速度を200℃/s以上に高め、かつ、一次再結晶焼鈍の加熱過程で500~700℃の昇温速度を500℃/s以上にすることで磁束密度が大幅に向上するメカニズムは、まだ十分に明らかとなっていないが、発明者らは、以下のように考えている。
 中間焼鈍の冷却過程で800から300℃までの平均冷却速度を200℃/s以上に高めた場合、γ相とα相の相界面に通常とは異なる歪が生じると考えられるのは上記<実験1>で述べた通りである。このような状態で冷間圧延を行うと、通常とは異なる変形帯が生じると考えられる。この変形帯は、再結晶温度が高い{411}方位粒が核生成しやすい変形帯であり、一次再結晶焼鈍の加熱過程における昇温速度を500℃/s以上という極めて速い昇温速度とすることで、{411}方位粒がより増加して集合組織が改善されて磁気特性が大幅に向上したものと考えている。
 本発明は、上記の新規な知見に基づき開発したものである。
 次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成の限定理由について説明する。
C:0.020~0.10mass%
 Cは、0.020mass%に満たないと、鋳造時や熱延時に組織がα単相となるため、鋼が脆化して、スラブに割れが生じたり、熱延後の鋼板エッジに耳割れが生じたりして、製造に支障を来たすようになる。一方、0.10mass%を超えると、脱炭焼鈍において、磁気時効が起こらない0.005mass%以下に低減することが困難になる。よって、Cは0.020~0.10mass%の範囲とする。好ましくは、0.025~0.050mass%の範囲である。
Si:2.0~4.0mass%
 Siは、鋼の比抵抗を高めて、鉄損を改善するために必要な元素であるが、2.0mass%未満では上記効果が十分ではなく、一方、4.0mass%を超えると、鋼の加工性が低下し、圧延して製造することが困難となる。よって、Siは2.0~4.0mass%の範囲とする。好ましくは2.5~3.8mass%の範囲である。
Mn:0.005~0.50mass%
 Mnは、鋼の熱間加工性を改善するために必要な元素であるが、0.005mass%未満では上記効果が十分ではなく、一方、0.50mass%を超えて添加すると、製品板の磁束密度が低下するようになる。よって、Mnは0.005~0.50mass%の範囲とする。好ましくは0.03~0.20mass%の範囲である。
Al:0.010mass%未満、N,SおよびSeをそれぞれ0.0050mass%未満
 本発明は、インヒビター形成成分を含有していない鋼素材を用いて方向性電磁鋼板を製造するため、インヒビター形成成分であるAl,N,SおよびSeの含有量は、極力低減する必要がある。そこで、本発明では、Al:0.010mass%未満、N,SおよびSeはそれぞれ0.0050mass%未満に制限する。好ましくは、Al:0.007mass%未満、N:0.0040mass%未満、SおよびSe:それぞれ0.0030mass%未満である。
 本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、磁気特性の向上を目的として、上記成分組成に加えてさらに、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、Ni:0.01~0.50mass%、Bi:0.005~0.50mass%、B:0.0002~0.0025mass%、Nb:0.0010~0.0100mass%、Sn:0.010~0.400mass%、Sb:0.010~0.150mass%、Mo:0.010~0.200mass%、P:0.010~0.150mass%、V:0.0005~0.0100mass%およびTi:0.0005~0.0100mass%のうちから選ばれる1種または2種以上を適宜含有することができる。上記各元素は、方向性電磁鋼板の磁気特性を向上させる効果を有しているが、含有量が上記下限値より低いと、十分な磁気特性向上効果を得ることができない。一方、含有量が上記上限値を超えると、二次再結晶粒の発達が阻害されるようになり、却って磁気特性が劣化するおそれがある。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
 本発明の方向性電磁鋼板は、上記に説明した成分組成を有する鋼素材(スラブ)を所定の温度に加熱した後、熱間圧延して熱延板とし、熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍を施し、鋼板表面に焼鈍分離剤を塗布した後、二次再結晶させた後、純化処理する仕上焼鈍し、平坦化焼鈍する一連の工程からなる方向性電磁鋼板の製造方法で製造することができる。
 上記鋼素材(スラブ)は、常法の精錬プロセスで、上記に説明した成分組成に調整した鋼を溶製した後、常法の連続鋳造法または造塊-分解圧延法で製造することができる。また、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。
 次いで、上記スラブは、所定の温度に加熱した後、所定の板厚の熱延板とする熱間圧延に供する。上記スラブの加熱温度は、本発明ではインヒビター形成成分を含有していない鋼素材を用いているため、インヒビターを固溶させるための高温加熱は不要であり、1280℃以下であれば十分である。好ましくは1250℃以下である。また、加熱温度の下限は、熱間圧延における加工性を確保できる温度であればよく、1100℃以上であることが好ましい。
 次いで、上記熱間圧延して得た熱延板は、熱延板組織を完全に再結晶させる目的で、熱延板焼鈍を施す。この熱延板焼鈍の最高到達温度は、上記効果を確実に得る観点から、950℃以上とするのが好ましい。より好ましくは1000℃以上である。一方、最高到達温度が1150℃を超えると、熱延板焼鈍後の結晶粒が粗大化し、整粒の一次再結晶組織を得ることが難しくなるので、1150℃以下に制限する。より好ましくは1100℃以下である。なお、最高到達温度に保持する時間は、熱延板焼鈍の効果を十分に得るため、および、生産性を確保する観点から5~300sの範囲とするのが好ましい。
 次いで、上記熱延板焼鈍後の熱延板は、酸洗して脱スケールした後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とする。ここで、2回以上の冷間圧延を行うときに中間焼鈍における焼鈍温度は、1000~1150℃の範囲とするのが好ましい、1000℃未満では、完全に再結晶させることが難しく、一方、焼鈍温度が1150℃を超えると、焼鈍後の結晶粒が粗大化し、整粒の一次再結晶組織を得ることが難しくなるためである。より好ましくは1020~1100℃の範囲である。なお、中間焼鈍の均熱時間は、焼鈍効果を十分に得るため、および、生産性を確保する観点から5~300sの範囲とするのが好ましい。
 ここで、本発明において最も重要なことは、冷間圧延前の焼鈍において、具体的には、熱延板焼鈍および中間焼鈍のいずれか1以上の焼鈍において、最高到達温度(均熱温度)からの冷却過程の800~300℃間を、平均冷却速度200℃/s以上の急速冷却を行う必要があるということである。前述したように、この温度域の平均冷却速度を200℃/s以上とすることで、冷却後の鋼板内に大きな歪が導入され、一次再結晶焼鈍後の鋼板の集合組織が改善される結果、製品板の磁気特性を向上することができる。好ましくは300℃/s以上である。この冷却速度を工業的に実現するためには、先述した特許文献5に記載されたような水をジェット噴射する急速冷却装置等を好ましく用いることができる。なお、上限の冷却速度は特に規定しないが、上記急冷装置の上限冷却速度は1200℃/s程度である。
 次に、本発明において重要なことは、上記800~300℃間の急速冷却に続く300℃から100℃までの冷却を、平均冷却速度5~40℃/sの範囲として実施することが好ましいということである。これにより、焼鈍後の鋼板内の歪量がより増加し、磁気特性をさらに改善することができる。より好ましくは20~40℃/sの範囲である。
 上記最終板厚とした冷間圧延後の鋼板(冷延板)は、その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。この一次再結晶焼鈍は、脱炭性を確保する観点から、均熱温度800~900℃×均熱時間50~300sの範囲で行うことが好ましい。また、この焼鈍雰囲気は、脱炭性を確保する観点から、湿潤雰囲気とするのが好ましい。なお、この脱炭焼鈍により、鋼板中のCが0.0050mass%以下に低減される。また、この一次再結晶焼鈍の加熱過程における、再結晶温度域である500~700℃間を500℃/s以上で昇温することで、集合組織がさらに改善されて磁気特性が向上する。望ましくは600℃/s以上である。
 次いで、上記一次再結晶焼鈍の鋼板は、仕上焼鈍でフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を鋼板表面に塗布した後、二次再結晶を起こさせた後、純化処理する仕上焼鈍を施す。一方、打抜加工性を重視し、フォルステライト被膜を形成しない場合には、焼鈍分離剤を適用しないか、シリカやアルミナ等を主体とした焼鈍分離剤を鋼板表面に塗布した後、上記した仕上焼鈍を施す。
 ここで、上記仕上焼鈍は、加熱過程において、800~950℃間の任意の温度で5~200hr保持する保定処理する、または、800~950℃間を平均昇温速度5℃/hr以下で加熱して二次再結晶を発現させた後、引き続き、または、一旦700℃以下まで降温した後、再加熱し、950~1050℃間の温度域を5~35℃/hrの平均昇温速度として1100℃以上の温度まで加熱して二次再結晶を完了させ、さらにその後、該温度に2hr以上保持して純化処理を施すことが好ましい。この純化処理により、鋼板中のAl,N,SおよびSeは、不可避的不純物レベルまで低減される。
 上記800~950℃間の好ましい保定処理時間は50~150hrであり、また、800~950℃間の好ましい平均昇温速度は1~3℃/hrである。また、純化処理の好ましい温度は1200~1250℃、好ましい保持時間は2~10hrである。なお、上記仕上焼鈍の純化処理の雰囲気はH雰囲気とするのが好ましい。
 上記仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を除去するため、水洗やブラッシング、酸洗等を施した後、形状矯正のために平坦化焼鈍を施すことが、鉄損低減のために有効である。また、鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍またはその前後のいずれかの工程で、鋼板表面に絶縁被膜を被成するのが好ましい。なお、より鉄損を低減するためには、上記絶縁被膜に、張力付与被膜を採用することが好ましい。また、その際、バインダーを介して張力付与被膜を被成したり、物理蒸着法や化学蒸着法で無機物を鋼板表層に蒸着し、張力付与被膜としたりする方法を採用してもよい。さらに、より鉄損を低減するため、レーザビームやプラズマビーム等を製品板表面に照射して熱歪や衝撃歪を付与したり、鋼板表面に溝を形成したりし、磁区細分化処理を施すことが好ましい。
 表3に示した成分組成を有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法にて製造し、1280℃の温度に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、該熱延板に1050℃×20sの熱延板焼鈍を施した。その際、熱延板焼鈍の冷却過程における800~300℃間および300~100℃間の平均冷却速度を表4に示したように変化させた。その後、1回の冷間圧延で、最終板厚0.23mmの冷延板とした後、60vol%H-40vol%Nで露点55℃の湿潤雰囲気下で、830℃×150sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。この際、加熱過程の500~700℃間の平均昇温速度は200℃/sとした。
 次いで、上記一次再結晶焼鈍後の鋼板表面に、MgOを主体とする焼鈍分離剤を塗布した後、800℃~950℃間を30℃/hrの昇温速度で加熱(保定なし)して二次再結晶を発現させ、引き続き、950~1050℃間を20℃/hrの昇温速度で1200℃まで加熱して二次再結晶を完了させた後、水素雰囲気下で該温度に10hr保持する純化処理する仕上焼鈍を施した。
 斯くして得た仕上焼鈍後の鋼板から試験片を採取し、磁束密度B(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定し、その結果を、表4に併記した。表4から、本発明に適合した成分組成を有する鋼素材を用い、かつ、本発明に適合する条件で熱延板焼鈍において急速冷却した鋼板は、いずれも優れた磁束密度を有し、特に熱延板焼鈍の800~300℃間の冷却速度が速い鋼板ほど、磁束密度が優れていることがわかる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 C:0.049mass%、Si:3.5mass%、Mn:0.069mass%、sol.Al:0.0070mass%、N:0.0035mass%およびS:0.0010mass%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法にて製造し、1230℃の温度に再加熱した後、熱間圧延して板厚2.0mmの熱延板とし、該熱延板に950℃×20sの熱延板焼鈍を施した。その後、1回目の冷間圧延で、中間板厚1.3mmとし、1060℃×60sの中間焼鈍を施した後、2回目の冷間圧延して最終板厚0.20mmの冷延板とした。その際、熱延板焼鈍および中間焼鈍の冷却過程における800~300℃間および300~100℃間の平均冷却速度を表5に示したように変化させた。次いで、上記冷延板に、55vol%H-45vol%Nで露点60℃の湿潤雰囲気下で、850℃×60sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。この際、加熱過程の500~700℃間の平均昇温速度は400℃/sとした。
 次いで、上記一次再結晶焼鈍後の鋼板表面に、MgOを主体とする焼鈍分離剤を塗布した後、800℃~950℃間を25℃/hrの昇温速度で加熱(保定なし)して二次再結晶を発現させ、引き続き、950~1050℃間を20℃/hrの昇温速度で1225℃まで加熱して二次再結晶を完了させた後、水素雰囲気下で該温度に10hr保持する純化処理する仕上焼鈍を施した。
 斯くして得た仕上焼鈍後の鋼板から試験片を採取し、磁束密度B(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定し、その結果を、表5に併記した。表5から、本発明に適合した成分組成を有する鋼素材を用いて、本発明に適合する条件で熱延板焼鈍および/または中間焼鈍を施した鋼板は、いずれも磁束密度が優れていることがわかる。
Figure JPOXMLDOC01-appb-T000005
 実施例2と同じ、C:0.049mass%、Si:3.5mass%、Mn:0.069mass%、sol.Al:0.0070mass%、N:0.0035mass%およびS:0.0010mass%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法にて製造し、1280℃の温度に再加熱した後、熱間圧延して板厚2.5mmの熱延板とし、該熱延板に1000℃×60sの熱延板焼鈍を施した。その際、熱延板焼鈍の冷却過程における800~300℃間および300~100℃間の平均冷却速度を表6に示したように変化させた。その後、1回目の冷間圧延で、中間板厚1.8mmとし、1080℃×60sの中間焼鈍を施した後、2回目の冷間圧延して最終板厚0.23mmの冷延板とした。その際、中間焼鈍の冷却過程における800~100℃間の平均冷却速度は40℃/sとした。
 次いで、上記冷延板に、55vol%H-45vol%Nで露点58℃の湿潤雰囲気下で、850℃×100sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。この際、加熱過程の500~700℃間の平均昇温速度は表6に記載のように変化させた。次いで、上記一次再結晶焼鈍後の鋼板表面に、MgOを主体とする焼鈍分離剤を塗布した後、二次再結晶を完了させた後、水素雰囲気下で1225℃の温度に10hr保持して純化処理する仕上焼鈍を施した。その際、仕上焼鈍の二次再結晶を完了させるまでの加熱条件(800~950℃間の二次再結晶を発現させるまでの加熱条件、その後の680℃までの降温有無、950~1050℃間の平均昇温速度)を表6に示したように変化させた。
 斯くして得た仕上焼鈍後の鋼板から試験片を採取し、磁束密度B(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定し、その結果を、表6に併記した。表6から、仕上焼鈍の加熱過程の800~950℃間で5hr以上の保定処理を施すか、800~950℃間を5℃/s以下で昇温することにより、その後の680℃までの降温有無に拘わらず、製品板の磁束密度がより向上することがわかる。また、一次再結晶焼鈍の加熱過程における500~700℃間の平均昇温速度を500℃/s以上に高めることで磁束密度がさらに向上することがわかる。
Figure JPOXMLDOC01-appb-T000006

Claims (5)

  1. C:0.020~0.10mass%、Si:2.0~4.0mass%、Mn:0.005~0.50mass%を含有し、かつ、Al:0.010mass%未満、N,SおよびSeをそれぞれ0.0050mass%未満含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1280℃以下の温度に加熱した後、熱間圧延して熱延板とし、熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍し、鋼板表面に焼鈍分離剤を塗布した後、仕上焼鈍し、平坦化焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
    上記熱延板焼鈍および中間焼鈍のいずれか1以上の焼鈍において、最高到達温度からの冷却過程の800℃から300℃までを、平均冷却速度200℃/s以上で急速冷却することを特徴とする方向性電磁鋼板の製造方法。
  2. 上記急速冷却に引き続き、300℃から100℃までを、平均冷却速度を5~40℃/sの範囲で冷却することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  3. 上記脱炭焼鈍を兼ねた一次再結晶焼鈍の加熱過程における500~700℃間の昇温速度を500℃/s以上とすることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。
  4. 上記仕上焼鈍の加熱過程において、800~950℃間の任意の温度で5~200hr保持する保定処理した後、または、800~950℃間を平均昇温速度5℃/hr以下で加熱して二次再結晶を発現させ、さらに、1100℃以上の温度まで加熱して二次再結晶を完了させた後、該温度に2hr以上保持して純化処理することを特徴とする請求項1~3のいずれか1項に記載の方向性電磁鋼板の製造方法。
  5. 上記鋼スラブは、上記成分組成に加えてさらに、
    Cr:0.01~0.50mass%、
    Cu:0.01~0.50mass%、
    Ni:0.01~0.50mass%、
    Bi:0.005~0.50mass%、
    B:0.0002~0.0025mass%、
    Nb:0.0010~0.0100mass%、
    Sn:0.010~0.400mass%、
    Sb:0.010~0.150mass%、
    Mo:0.010~0.200mass%、
    P:0.010~0.150mass%、
    V:0.0005~0.0100mass%および
    Ti:0.0005~0.0100mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1~4のいずれか1項に記載の方向性電磁鋼板の製造方法。
PCT/JP2020/017312 2019-04-23 2020-04-22 方向性電磁鋼板の製造方法 WO2020218328A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217033365A KR20210138072A (ko) 2019-04-23 2020-04-22 방향성 전자 강판의 제조 방법
CN202080029079.4A CN113710822B (zh) 2019-04-23 2020-04-22 取向性电磁钢板的制造方法
JP2020554555A JP6813143B1 (ja) 2019-04-23 2020-04-22 方向性電磁鋼板の製造方法
KR1020247007347A KR20240035910A (ko) 2019-04-23 2020-04-22 방향성 전자 강판의 제조 방법
US17/604,830 US20220042137A1 (en) 2019-04-23 2020-04-22 Method for producing grain-oriented electrical steel sheet
EP20795884.4A EP3960887B1 (en) 2019-04-23 2020-04-22 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-081640 2019-04-23
JP2019081640 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020218328A1 true WO2020218328A1 (ja) 2020-10-29

Family

ID=72941972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017312 WO2020218328A1 (ja) 2019-04-23 2020-04-22 方向性電磁鋼板の製造方法

Country Status (6)

Country Link
US (1) US20220042137A1 (ja)
EP (1) EP3960887B1 (ja)
JP (1) JP6813143B1 (ja)
KR (2) KR20210138072A (ja)
CN (1) CN113710822B (ja)
WO (1) WO2020218328A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210503A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2022250113A1 (ja) * 2021-05-28 2022-12-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469B2 (ja) 1972-10-13 1976-04-28
JPH05214445A (ja) * 1992-02-03 1993-08-24 Kawasaki Steel Corp 磁束密度の極めて高い方向性けい素鋼板の製造方法
JP2000129356A (ja) 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2001040449A (ja) * 1999-07-29 2001-02-13 Nippon Steel Corp 磁束密度および鉄損が優れた一方向性電磁鋼板の製造方法と同鋼板製造用の最終冷間圧延前鋼板
JP2005262217A (ja) * 2004-03-16 2005-09-29 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2012077380A (ja) 2010-09-10 2012-04-19 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2013047383A (ja) * 2011-07-28 2013-03-07 Jfe Steel Corp 極薄方向性電磁鋼板の製造方法
JP2016156069A (ja) * 2015-02-25 2016-09-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2018066065A (ja) 2015-12-28 2018-04-26 Jfeスチール株式会社 急冷焼入れ装置及び急冷焼入れ方法
KR20180074455A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 방향성 전기강판의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
JPH0415644A (ja) 1990-05-09 1992-01-21 Konica Corp 新規な写真用カプラー
JPH1088234A (ja) * 1996-09-13 1998-04-07 Nkk Corp 安定して高い磁束密度を有する方向性珪素鋼板の製造方法
BR112013015997B1 (pt) * 2012-07-20 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Método de fabricação de chapa de aço elétrica de grão orientado
KR101950620B1 (ko) * 2012-12-28 2019-02-20 제이에프이 스틸 가부시키가이샤 방향성 전기 강판의 제조 방법 및 방향성 전기 강판 제조용의 1 차 재결정 강판
JP5846390B2 (ja) * 2013-03-06 2016-01-20 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6617827B2 (ja) * 2016-03-09 2019-12-11 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469B2 (ja) 1972-10-13 1976-04-28
JPH05214445A (ja) * 1992-02-03 1993-08-24 Kawasaki Steel Corp 磁束密度の極めて高い方向性けい素鋼板の製造方法
JP2000129356A (ja) 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2001040449A (ja) * 1999-07-29 2001-02-13 Nippon Steel Corp 磁束密度および鉄損が優れた一方向性電磁鋼板の製造方法と同鋼板製造用の最終冷間圧延前鋼板
JP2005262217A (ja) * 2004-03-16 2005-09-29 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2012077380A (ja) 2010-09-10 2012-04-19 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2013047383A (ja) * 2011-07-28 2013-03-07 Jfe Steel Corp 極薄方向性電磁鋼板の製造方法
JP2016156069A (ja) * 2015-02-25 2016-09-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2018066065A (ja) 2015-12-28 2018-04-26 Jfeスチール株式会社 急冷焼入れ装置及び急冷焼入れ方法
KR20180074455A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 방향성 전기강판의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3960887A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210503A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2022250113A1 (ja) * 2021-05-28 2022-12-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP7197068B1 (ja) 2021-05-28 2022-12-27 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
JPWO2020218328A1 (ja) 2021-05-06
CN113710822A (zh) 2021-11-26
JP6813143B1 (ja) 2021-01-13
EP3960887A4 (en) 2022-06-08
US20220042137A1 (en) 2022-02-10
KR20210138072A (ko) 2021-11-18
CN113710822B (zh) 2023-05-16
EP3960887A1 (en) 2022-03-02
KR20240035910A (ko) 2024-03-18
EP3960887B1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
CN108699621B (zh) 取向性电磁钢板的制造方法
JP6132103B2 (ja) 方向性電磁鋼板の製造方法
JP5782527B2 (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
JP6631724B2 (ja) 方向性電磁鋼板の製造方法
JP6813143B1 (ja) 方向性電磁鋼板の製造方法
JP6856179B1 (ja) 方向性電磁鋼板の製造方法
KR102295735B1 (ko) 방향성 전기 강판의 제조 방법
JP6947147B2 (ja) 方向性電磁鋼板の製造方法
JP6631725B2 (ja) 方向性電磁鋼板の製造方法
CN111417737B (zh) 低铁损取向性电磁钢板及其制造方法
JP5712652B2 (ja) 方向性電磁鋼板の製造方法
JP7338511B2 (ja) 方向性電磁鋼板の製造方法
JP2014173103A (ja) 方向性電磁鋼板の製造方法
JP6866869B2 (ja) 方向性電磁鋼板の製造方法
JP6866901B2 (ja) 方向性電磁鋼板の製造方法
JP6544344B2 (ja) 方向性電磁鋼板の製造方法
JP6607176B2 (ja) 方向性電磁鋼板の製造方法
JP6228956B2 (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
KR20230159875A (ko) 방향성 전자 강판의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020554555

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217033365

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020795884

Country of ref document: EP

Effective date: 20211123