WO2020218321A1 - 水溶性フィルムおよび包装体 - Google Patents

水溶性フィルムおよび包装体 Download PDF

Info

Publication number
WO2020218321A1
WO2020218321A1 PCT/JP2020/017286 JP2020017286W WO2020218321A1 WO 2020218321 A1 WO2020218321 A1 WO 2020218321A1 JP 2020017286 W JP2020017286 W JP 2020017286W WO 2020218321 A1 WO2020218321 A1 WO 2020218321A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
film
soluble film
fluorine
mol
Prior art date
Application number
PCT/JP2020/017286
Other languages
English (en)
French (fr)
Inventor
稔 岡本
さやか 清水
修 風藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN202080030962.5A priority Critical patent/CN113874426A/zh
Priority to EP20793976.0A priority patent/EP3960798A4/en
Priority to JP2021516149A priority patent/JP7398441B2/ja
Publication of WO2020218321A1 publication Critical patent/WO2020218321A1/ja
Priority to US17/505,981 priority patent/US20220041824A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/42Removing articles from moulds, cores or other substrates
    • B29C41/44Articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/24Organic compounds containing halogen
    • C11D3/245Organic compounds containing halogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3753Polyvinylalcohol; Ethers or esters thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a water-soluble film containing a polyvinyl alcohol resin, which is suitably used for packaging various chemicals, and a package using the same.
  • a PVA film containing a polyvinyl alcohol resin (hereinafter, may be referred to as PVA) as a main component is widely used.
  • PVA polyvinyl alcohol resin
  • Various techniques have been proposed to improve various physical properties of this PVA film. For example, a water-soluble film having improved water solubility has been proposed by blending various additives such as a plasticizer or using modified PVA (for example, Patent Document 1).
  • the water-soluble film disclosed in Patent Document 1 reduces its crystallinity and enhances its water-solubility by adjusting the amount of plasticizer added or by using modified PVA.
  • hydrophilic PVA is used for the water-soluble film, and PVA has a high interaction with a metal material. Therefore, when a water-soluble film is formed on a support such as a metal roll or a metal belt, the film is poorly peelable from the support, and surface roughness and uneven thickness are likely to occur. Conventionally, the peelability is controlled by a method such as incorporating a surfactant in the water-soluble film.
  • a PVA film for optical use which is different from the use of the present invention, also has a problem of poor peelability of the PVA film from the support during film formation, and a fluorine-containing surfactant is used for PVA.
  • a method of adding the film to a film-forming stock solution has been proposed (Patent Document 2).
  • a method has been proposed in which a cast base material is coated with a fluorine-containing resin to form a strong fluorine-based resin film to improve peelability (Patent Document 3).
  • Patent Document 2 it is necessary to use a large amount of fluorine-containing surfactant, and it is difficult to deal with environmental pollution caused by halogen substances, which has become a problem in recent years. Further, since the hydrophobic fluorine-containing substance has a low affinity for PVA, phase separation in the film occurs, and the transparency of the film is likely to be impaired. Furthermore, when this technique is applied to a water-soluble film, if the film contains a large amount of fluorine-containing surfactant, the film is sealed with water and / or heat after packaging the inclusions (hereinafter, referred to as a seal). At that time, a defective seal often occurs, and inclusions may leak from the seal portion.
  • a seal water and / or heat after packaging the inclusions
  • Patent Document 3 when the technique of Patent Document 3 is applied to a water-soluble film, the water-soluble film is more likely to cause sticking between the films due to moisture absorption than the optical film, and wrinkles are generated due to friction with the roll when the roll is unwound. Or breakage may occur. Further, forming a strong fluororesin layer on a support such as a roll or a belt is likely to be costly in terms of materials and maintenance of the support.
  • An object of the present invention is to provide a water-soluble film having excellent peelability, transparency and sealing property from a support during film formation of the water-soluble film, and a package of a drug using the same. Further, the present invention provides a method for producing a water-soluble film excellent in these properties.
  • the present inventors have found that the proportion of fluorine elements in all the elements on the first surface of the water-soluble film is within a specific range, and the center side in the thickness direction of the film from the first surface.
  • the proportion of the elemental fluorine in the place where it is slightly entered is less than or equal to a certain value, and based on the finding, further studies have been carried out to complete the present invention.
  • the ratio (F1B) of the fluorine element to all the elements obtained when the surface having a depth of 0.1 ⁇ m from the first surface of 25 mol% or less is analyzed by X-ray photoelectric spectroscopy is 0.5 mol%.
  • the ratio (F2S) of the fluorine element to all the elements determined when the second surface facing the first surface is analyzed by X-ray photoelectric spectroscopy is 1 mol% or more, 25 mol%.
  • the ratio (F2B) of fluorine elements to all elements determined when a surface at a depth of 0.1 ⁇ m from the second surface of the water-soluble film is analyzed by X-ray photoelectric spectroscopy is 0.5 mol. % Or less, the water-soluble film according to the above [1].
  • the present invention it is possible to provide a water-soluble film having excellent peelability, transparency and sealing property from a support during film formation, and a package of a drug using the same. Further, according to the present invention, a water-soluble film having such excellent properties can be produced. Further, the water-soluble film of the present invention is excellent in suppressing stalemate between films due to moisture absorption while maintaining the above characteristics.
  • the ratio (F1S) of fluorine elements to all elements determined when the first surface of the water-soluble film is analyzed by X-ray photoelectric spectroscopy (hereinafter, may be referred to as XPS) is 1 mol%. As mentioned above, it is important that it is 25 mol% or less. When F1S is less than 1 mol%, the peelability from the substrate during film formation becomes insufficient. F1S is preferably 1.5 mol% or more, more preferably 2 mol% or more, further preferably 2.5 mol% or more, and particularly preferably 3 mol% or more. On the other hand, when F1S exceeds 25 mol%, a sealing defect is likely to occur when sealing the package. F1S is preferably 23 mol% or less, more preferably 21 mol% or less, further preferably 20 mol% or less, and particularly preferably 19 mol% or less.
  • the ratio (F1B) of the fluorine element to all the elements obtained when the surface at a depth of 0.1 ⁇ m from the first surface of the water-soluble film is analyzed by XPS is 0.5 mol%. It is also important that: Even when F1B exceeds 0.5 mol%, a sealing defect is likely to occur when sealing the package.
  • F1B is preferably 0.4 mol% or less, more preferably 0.3 mol% or less, still more preferably 0.2 mol% or less.
  • F1B may be 0 mol%, that is, below the detection limit of the XPS measuring device. The detection limit of a general XPS measuring device is usually around 0.1 mol%.
  • the amounts of fluorine elements and other elements on the surface of the water-soluble film are measured by XPS.
  • XPS measurement is the identification and quantification of elements existing on the sample surface by exciting the inner shell electrons of the atom by irradiating the sample surface with X-rays and detecting the kinetic energy of the photoelectrons emitted by it. , The analysis of the chemical bond state is performed.
  • the elements measured by XPS are carbon (1s orbital electron), nitrogen (1s orbital electron), oxygen (1s orbital electron), fluorine (1s orbital electron), sodium (1s orbital electron), and silicon. (2p orbital electrons), phosphorus (2p orbital electrons), sulfur (2p orbital electrons). These elements were quantified, and the ratio of the fluorine element to the total amount was defined as F1S.
  • XPS measurement it is also possible to etch the film surface with C60 (Buckminsterfullerene), argon cluster, etc., and analyze in the depth direction.
  • C60 Bossetsterfullerene
  • argon cluster etc.
  • a surface having a depth of approximately 0.1 ⁇ m from the film surface is formed by etching for 100 seconds under the conditions of an acceleration voltage of 10 kV, a sample current of 20 nA, and a scanning range of 0.5 ⁇ 2.0 mm using C60. It was exposed and F1B was quantified.
  • the first surface when both sides of the water-soluble film were measured by XPS and the ratio of fluorine elements to all the elements on each surface was determined, the one having the larger ratio of fluorine elements was designated as the first surface.
  • the ratio (F2S) of the second surface of the water-soluble film facing the first surface to all the elements of the fluorine element obtained when analyzed by XPS is preferably 1 mol% or more. ..
  • F2S is less than 1 mol%, sticking between films tends to occur easily.
  • F2S is more preferably 1.5 mol% or more, further preferably 2 mol% or more, and particularly preferably 2.5 mol% or more.
  • F2S exceeds 25 mol%, a sealing defect tends to occur easily when sealing the package.
  • F2S is more preferably 23 mol% or less, further preferably 21 mol% or less, and particularly preferably 19 mol% or less.
  • the ratio (F2B) of the fluorine element to all the elements obtained when the surface at a depth of 0.1 ⁇ m from the second surface of the water-soluble film is analyzed by XPS is 0.5 mol%.
  • the following is preferable. Even when F2B exceeds 0.5 mol%, there is a tendency that a sealing defect is likely to occur when sealing the package.
  • F2B is more preferably 0.4 mol% or less, further preferably 0.3 mol% or less, and particularly preferably 0.2 mol% or less.
  • F2B may be 0 mol%, that is, below the detection limit of the XPS measuring device. The detection limit of the XPS measuring device is usually as described above.
  • the difference between F1S and F2S is preferably 2.5 mol% or more.
  • the difference between F1S and F2S is more preferably 3 mol% or more, and further preferably 4 mol% or more. In the present invention, the difference between F1S and F2S does not exceed 25 mol%.
  • the water-soluble film of the present invention contains a polyvinyl alcohol resin (PVA).
  • PVA polyvinyl alcohol resin
  • the PVA one produced by saponifying a vinyl ester polymer obtained by polymerizing a vinyl ester monomer can be used.
  • the vinyl ester monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. Of these, vinyl acetate is preferable.
  • the above vinyl ester polymer is preferably obtained by using only one kind or two or more kinds of vinyl ester monomers as a monomer, and is obtained by using only one kind of vinyl ester monomer as a monomer. More preferably, it may be a copolymer of one or more vinyl ester monomers and another monomer copolymerizable therewith.
  • vinyl ester monomers include, for example, ethylene; olefins having 3 to 30 carbon atoms such as propylene, 1-butene, and isobutene; acrylic acid or a salt thereof; methyl acrylate, acrylic acid, etc.
  • Acrylic such as ethyl, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, etc.
  • Acid ester methyl methacrylate or a salt thereof; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2 methacrylate -Methacrylate esters such as ethylhexyl, dodecyl methacrylate, octadecyl methacrylate; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamide propanesulfonic acid or salts thereof, acrylamide Propyl dimethylamine or a salt thereof, an acrylamide derivative such as N-methylol acrylamide or a derivative thereof; methacrylamide, N-methylmethacrylate, N-ethylmethacrylate, methacrylamide propanesulfonic
  • Methacrylate derivatives such as salts, N-methylolmethacrylamides or derivatives thereof; N-vinylamides such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone; methylvinyl ether, ethylvinyl ether, n-propylvinyl ether, i-propyl Vinyl ethers such as vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; vinyl cyanide such as acrylonitrile and methacrylonitrile; vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride Vinyl halides such as allyl halides, allyl compounds such as allyl chloride; maleic acid or salts thereof, esters or acid anhydrides; itaconic acid or salts thereof, esters or acid an
  • the ratio of the structural units derived from the other monomers to the vinyl ester polymer is 15 mol% based on the number of moles of all the structural units constituting the vinyl ester polymer from the viewpoint of water solubility and film strength. It is preferably less than or equal to, and more preferably 5 mol% or less.
  • the degree of polymerization of PVA is not particularly limited, but the lower limit of the degree of polymerization is preferably 200 or more, more preferably 300 or more, and further preferably 500 or more from the viewpoint of film strength.
  • the upper limit of the degree of polymerization is preferably 8,000 or less, more preferably 5,000 or less, and 3,000 or less from the viewpoint of the productivity of PVA and the productivity of the water-soluble film. It is more preferable to have.
  • the degree of polymerization means the average degree of polymerization measured according to the description of JIS K 6726-1994.
  • the saponification degree of PVA is preferably 64 to 99.99 mol%. By adjusting the degree of saponification within this range, it is easy to achieve both water solubility and mechanical properties of the film.
  • the lower limit of the saponification degree is more preferably 70 mol% or more, and further preferably 75 mol% or more.
  • the upper limit of the saponification degree is more preferably 99.96 mol% or less, and further preferably 99.93 mol% or less.
  • the degree of saponification of PVA is the total number of moles of the structural unit (typically a vinyl ester monomer unit) and the vinyl alcohol unit that can be converted into vinyl alcohol units by saponification of PVA. The ratio (mol%) of the number of moles.
  • the degree of saponification of PVA can be measured according to the description of JIS K 6726-1994.
  • one type of PVA may be used alone as PVA, or two or more types of PVA having different degrees of polymerization, saponification, modification, etc. may be blended and used.
  • the content of PVA in the water-soluble film is not particularly limited, but is preferably 50% by mass, more preferably 80% by mass, and even more preferably 85% by mass.
  • the PVA film is more rigid than other plastic films when it does not contain a plasticizer, and may have problems such as mechanical properties such as impact strength and process passability during secondary processing.
  • the water-soluble film of the present invention contains a plasticizer.
  • Preferred plasticizers include polyhydric alcohols, and specific examples thereof include polyhydric alcohols such as ethylene glycol, glycerin, diglycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, and sorbitol. And so on. These plasticizers may be used alone or in combination of two or more. Among these plasticizers, ethylene glycol or glycerin is preferable, and glycerin is more preferable, from the viewpoint of preventing bleeding out to the film surface.
  • the content of the plasticizer in the water-soluble film is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass or more with respect to 100 parts by mass of PVA contained in the water-soluble film. It is more preferably 70 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 40 parts by mass or less. If the above content is less than 1 part by mass, the effect of improving mechanical properties such as impact strength may be insufficient. On the other hand, if the content exceeds 70 parts by mass, the film may become too flexible and handleability may be deteriorated, or bleed-out to the film surface may cause various problems.
  • the film of the present invention is intended to impart mechanical strength to a water-soluble film, maintain moisture resistance when handling the film, or adjust the rate of softening due to absorption of water when dissolving the film. May contain a water-soluble polymer other than starch and / or PVA.
  • starch examples include natural starches such as corn starch, horse bell starch, sweet potato starch, wheat starch, rice starch, tapioca starch, and sago starch; processed starches that have been etherified, esterified, oxidized, etc. The processed starches are particularly preferable.
  • the content of starch in the water-soluble film is preferably 15 parts by mass or less, and more preferably 10 parts by mass or less, based on 100 parts by mass of PVA. If the content is larger than 15 parts by mass, the process passability may be deteriorated.
  • water-soluble polymers other than PVA examples include dextrin, gelatin, sardine, casein, shelac, gum arabic, polyacrylic acid amide, sodium polyacrylate, polyvinyl methyl ether, and a copolymer of methyl vinyl ether and maleic anhydride.
  • examples thereof include a copolymer of vinyl acetate and itaconic acid, polyvinylpyrrolidone, cellulose, acetyl cellulose, acetyl butyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, sodium algluate and the like.
  • the content of the water-soluble polymer other than PVA in the water-soluble film is preferably 15 parts by mass or less, and more preferably 10 parts by mass or less with respect to 100 parts by mass of PVA. If the content is larger than 15 parts by mass, the water solubility of the film may be insufficient.
  • the water-soluble film preferably contains a surfactant from the viewpoint of its handleability and suppression of film surface abnormalities (die lines, surface roughness, etc.) of the water-soluble film.
  • the type of surfactant is not particularly limited, and examples thereof include anionic surfactants and nonionic surfactants.
  • anionic surfactant examples include a carboxylic acid type such as potassium laurate; a sulfate ester type such as octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate.
  • nonionic surfactant examples include alkyl ether types such as polyoxyethylene lauryl ether and polyoxyethylene oleyl ether; alkylphenyl ether types such as polyoxyethylene octylphenyl ether; and alkyl ester types such as polyoxyethylene laurate.
  • Alkylamine type such as polyoxyethylene laurylamino ether
  • Alkylamide type such as polyoxyethylene lauric acid amide
  • Polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether
  • Alkanolamide type examples thereof include allylphenyl ether type such as polyoxyalkylene allylphenyl ether.
  • One type of surfactant may be used alone, or two or more types may be used in combination.
  • nonionic surfactants are preferable, and alkanolamide type surfactants are more preferable, and aliphatic carboxylic acids (for example, for example) are preferable because they are excellent in reducing film surface abnormalities during film formation.
  • aliphatic carboxylic acids for example, for example
  • Saturated or unsaturated aliphatic carboxylic acids having 8 to 30 carbon atoms are more preferably dialkanolamides (eg, diethanolamides, etc.).
  • the content of the surfactant in the water-soluble film is preferably 0.01 part by mass or more, more preferably 0.02 part by mass or more, and 0.05 part by mass or more with respect to 100 parts by mass of PVA. Is more preferable.
  • the upper limit of the content of the surfactant is preferably 5 parts by mass or less, more preferably 1 part by mass or less, further preferably 0.5 parts by mass or less, and 0.3 parts by mass. It is particularly preferable that the amount is less than or equal to a portion. If the content is less than 0.02 parts by mass, problems such as poor peelability from the film forming apparatus when producing a water-soluble film or blocking between the films are likely to occur. On the other hand, if the content is more than 5 parts by mass, problems such as bleeding out to the film surface and deterioration of the film appearance due to aggregation of the surfactant are likely to occur.
  • the water-soluble film of the present invention includes water, antioxidants, ultraviolet absorbers, lubricants, cross-linking agents, colorants, fillers, and preservatives. , Antifungal agents, other polymer compounds and the like may be contained within a range that does not interfere with the effects of the present invention.
  • the ratio of the total mass of each mass of PVA, plasticizer, starch, water-soluble polymer other than PVA, and surfactant to the total mass of the water-soluble film of the present invention is in the range of 60 to 100% by mass. Is more preferable, and it is more preferably in the range of 80 to 100% by mass, and further preferably in the range of 90 to 100% by mass.
  • PVA and each of the above components are uniformly mixed with PVA and a solvent to prepare a film-forming stock solution for forming a water-soluble film.
  • a solvent to be used any solvent such as water, alcohol and dimethyl sulfoxide can be used as long as it is a good solvent for PVA.
  • water is preferable from the viewpoints of cost, environmental load, no solvent recovery, and the like. Only one type of solvent may be used, or two or more types may be used in combination.
  • the method for preparing the undiluted film-forming solution is not particularly limited, and for example, a method of dissolving PVA and additives such as a plasticizer and a surfactant in a dissolution tank or the like, or using a uniaxial or twin-screw extruder is used.
  • a method of melt-kneading PVA in a water-containing state any method such as a method of melt-kneading with a plasticizer, a surfactant and the like can be adopted.
  • the volatile fraction of the film-forming stock solution (concentration of volatile components such as solvents removed by volatilization or evaporation during film-forming) is preferably in the range of 50 to 90% by mass, preferably 55 to 80% by mass. It is more preferable that it is within the range of. If the volatile fraction is less than 50% by mass, the viscosity of the film-forming stock solution becomes high, which may make film-forming difficult. On the other hand, if the volatile fraction exceeds 90% by mass, the viscosity tends to be low and the thickness uniformity of the resulting film tends to be impaired.
  • the volatile fraction of the membrane-forming stock solution is calculated by the following formula.
  • the method for forming a water-soluble film is a casting film forming method, a wet film forming method (discharge into a poor solvent), a dry wet film forming method, or a gel film forming method using the above-mentioned film forming stock solution.
  • the above-mentioned membrane-forming stock solution is obtained by the method (a method of once cooling and gelling the membrane-forming stock solution and then extracting and removing the solvent to obtain a PVA film), a method of forming a film by a combination of these, or using an extruder or the like.
  • Examples thereof include a melt extrusion film forming method and an inflation film forming method in which a film is formed by extruding the film from a T-die or the like.
  • the casting film forming method and the melt extrusion film forming method are preferable because a homogeneous film can be obtained with high productivity.
  • the water-soluble film of the present invention has excellent peelability from a metal roll or a metal drum, a film-forming method in which a PVA undiluted solution is applied onto a support such as a metal roll or a metal drum and dried and peeled is productive. It is preferable from the viewpoint of.
  • a casting film forming method or a melt extrusion film forming method for a water-soluble film will be described.
  • the above film forming stock solution is poured into a film on a support such as a metal roll or a metal belt and heated to be a solvent. Is removed to solidify and form a film.
  • the solidified film is peeled off from the support, dried by a drying roll, a drying oven, etc. as necessary, further heat-treated as necessary, and wound up to form a long roll-shaped water-soluble film. Can be obtained.
  • a fluorine-containing compound is applied on the support and the like.
  • a method of spreading a film-forming stock solution containing PVA on a coated surface in a film shape (2) on a PVA film formed by casting a film-forming stock solution containing PVA in a support shape in a film shape.
  • the method (1) above is particularly preferable from the viewpoint of manufacturing cost, uniformity of fluorine on the film surface, and the like. The method will be described below.
  • the fluorine-containing compound is preferably a fluorine-containing surfactant having a molecular weight of 10,000 or less because of its ease of transfer to the surface of a water-soluble film.
  • the molecular weight of the fluorine-containing surfactant is more preferably in the range of 150 to 9000, further preferably in the range of 300 to 8000, particularly preferably in the range of 400 to 7000, and in the range of 500 to 6000. Most preferably.
  • a solid or highly viscous liquid fluorine-containing surfactant is used by being dissolved or dispersed in an appropriate solvent such as water or alcohol.
  • the liquid fluorine-containing surfactant having a low viscosity may be used as it is.
  • a solution or dispersion of a low-viscosity fluorine-containing surfactant or a high-viscosity fluorine-containing surfactant was directly brought into contact with (1) the support. After that, any method can be used, such as a method of making the coating amount uniform with a doctor knife or the like, or (2) a method of uniformly applying the dispersion liquid or the like with a roll coater.
  • the coated surface may be dried by heating the support or blowing hot air.
  • fluorine-containing surfactant examples include fluoroalkyl alcohols represented by the general formula RfOH, Fluoroalkyl carboxylic acid salt represented by the general formula RfCOOM, Fluoroalkyl sulphate ester salt represented by the general formula Rf x OSO (3-x) M, Fluoroalkyl sulfonates of the formula RfSO 3 M, Fluoroalkyl phosphate ester salt represented by the general formula Rf x OPO (3-x) M, Fluoroalkyl phosphonates represented by the general formula RfPO 3 M, Examples thereof include fluoroalkyl subphosphonates represented by the general formula RfPO 2 M, fluoroalkyl ammonium salts represented by the general formula Rf x NH (4-x) M, and the like.
  • Rf represents an alkyl group having 1 to 50 carbon atoms containing a fluorine atom.
  • Rf may contain an ether bond in the alkyl group chain.
  • M represents at least one counter cation or counter anion. Further, x is 1 to 3 or 4.
  • fluoroalkyl alcohols are neutral surfactants, such as fluoroalkylcarboxylic acid salts, fluoroalkyl sulfate ester salts, fluoroalkyl sulfonate salts, fluoroalkyl phosphate ester salts, and fluoroalkyl phosphones.
  • Acidates and fluoroalkyl subphosphonates are anionic surfactants, and fluoroalkylammonium salts are cationic surfactants.
  • the counter cation is not particularly limited, Na +, Ca 2+, NH 4 +, or mixtures thereof. Of these, Na + is preferred.
  • the counter anion is also not particularly limited, and examples thereof include Cl ⁇ .
  • fluoroalkyl alcohol examples include monofluoromethylethyl alcohol, trifluoromethylethyl alcohol, trifluoromethylpropyl alcohol, trifluoromethylbutyl alcohol, and partially fluorinated alkyl alcohol such as partially fluorinated higher alcohol; trifluoro Perfluoroalkyl alcohols such as methyl alcohol, pentafluoroethyl alcohol, heptafluoropropyl alcohol, pentadecafluoroheptyl alcohol, heptadecafluorooctyl alcohol, nonadecafluorononyl alcohol; trifluoromethyloxyethyl alcohol, trifluoromethyloxypropyl alcohol , Trifluoromethyl (polyoxyethylene) alcohol, pentafluoroethyl (polyoxyethylene) alcohol, trifluoromethyl (polyoxyperfluoroethylene) alcohol, pentafluoroethyl (polyoxyperfluoroethylene) alcohol, etc.
  • fluoroalkylcarboxylic acidate examples include monofluoromethylethyl carboxylate, trifluoromethylethyl carboxylate, trifluoromethylpropyl carboxylate, trifluoromethylbutyl carboxylate, and partially fluorinated higher fatty acids.
  • ether bond represented by the general formula Rf (ORf') n COMM such as ethylene) carboxylate, trifluoromethyl (polyoxyperfluoroethylene) carboxylate, and pentafluoroethyl (polyoxyperfluoroethylene) carboxylate
  • fluoroalkyl sulfate examples include monofluoromethylethyl sulfate, trifluoromethylethyl sulfate, trifluoromethylpropyl sulfate, trifluoromethylbutyl sulfate, and partially fluorinated higher alkyl.
  • Partially fluorinated alkyl carboxylates such as sulphate; trifluoromethyl sulphate, pentafluoroethyl sulphate, heptafluoropropyl sulphate, pentadecafluoroheptyl sulphate, heptadecafluorooctyl sulphate, Perfluoroalkyl sulphate such as nonadecafluorononyl sulphate; trifluoromethyloxyethyl sulphate, trifluoromethyloxypropyl sulphate, trifluoromethyl (polyoxyethylene) sulphate, pentafluoroethyl ( Represented by the general formula Rf (ORf') n OSO 3 M, such as polyoxyethylene) sulfate, trifluoromethyl (polyoxyperfluoroethylene) sulfate, and pentafluoroethyl (polyoxyperfluor
  • fluoroalkyl sulfonate examples include monofluoromethylethyl sulfonate, trifluoromethylethyl sulfonate, trifluoromethylpropyl sulfonate, trifluoromethylbutyl sulfonate, and partially fluorinated higher alkyl.
  • Partially fluorinated alkyl sulfonates such as salts; trifluoromethyl sulfonate, pentafluoroethyl sulfonate, heptafluoropropyl sulfonate, pentadecafluoroheptyl sulfonate, heptadecafluorooctyl sulfonate, nonadeca Perfluoroalkyl sulfonates such as fluorononyl sulfonate; trifluoromethyloxyethyl sulfonate, trifluoromethyloxypropyl sulfonate, trifluoromethyl (polyoxyethylene) sulfonate, pentafluoroethyl (polyoxy) ethylene) sulfonate, trifluoromethyl (polyoxyethylene perfluoroethylene) sulfonate, pentafluoroethyl (polyoxy)
  • fluoroalkyl phosphate salt examples include monofluoromethylethyl phosphate ester salt, trifluoromethylethyl phosphate ester salt, trifluoromethylpropyl phosphate ester salt, and trifluoromethylbutyl phosphate ester salt.
  • Partially fluorinated alkyl phosphates such as higher alkyl phosphates; trifluoromethyl phosphates, pentafluoroethyl phosphates, heptafluoropropyl phosphates, pentadecafluoroheptyl phosphates Perfluoroalkyl phosphates such as ester salts, heptadecafluorooctyl phosphates, nonadecafluorononyl phosphates; trifluoromethyloxyethyl phosphates, trifluoromethyloxypropyl phosphates, Trifluoromethyl (polyoxyethylene) phosphate ester salt, pentafluoroethyl (polyoxyethylene) phosphate ester salt, trifluoromethyl (polyoxyperfluoroethylene) phosphate ester salt, pentafluoroethyl (polyoxyperfluoroethylene) ) general formula Rf (fluor
  • fluoroalkylphosphonate examples include monofluoromethylethylphosphonate, trifluoromethylethylphosphonate, trifluoromethylpropylphosphonate, trifluoromethylbutylphosphonate, and partially fluorinated higher alkyl.
  • Partially fluorinated alkyl phosphonates such as salts; trifluoromethyl phosphonate, pentafluoroethyl phosphonate, heptafluoropropyl phosphonate, pentadecafluoroheptylphosphonate, heptadecafluorooctylphosphonate, nonadecafluoro Perfluoroalkyl phosphonates such as nonyl salts; trifluoromethyloxyethyl phosphonate, trifluoromethyloxypropyl phosphonate, trifluoromethyl (polyoxyethylene) phosphonate, pentafluoroethyl (polyoxyethylene) phosphonate including salts, trifluoromethyl (polyoxyethylene perfluoroalkyl ethylene) phosphonate, an ether bond represented by the general formula Rf (ORf ') n OPO 3 M , such as pentafluoroethyl (polyoxy
  • fluoroalkyl subphosphonate examples include monofluoromethylethyl subphosphonate, trifluoromethylethyl subphosphonate, trifluoromethylpropyl subphosphonate, and trifluoromethylbutyl subphosphonate.
  • Partially fluorinated alkyl subphosphonates such as partially fluorinated higher alkyl subphosphonates: trifluoromethyl subphosphonate, pentafluoroethyl subphosphonate, heptafluoropropyl subphosphonate, pentadecafluoroheptyl subphosphonate Perfluoroalkyl subphosphonates such as acid salts, heptadecafluorooctyl subphosphonates, nonadecafluorononyl salts; trifluoromethyloxyethyl subphosphonates, trifluoromethyloxypropyl subphosphonates, trifluoromethyl (Polyoxyethylene) subphosphonate, pentafluoroethyl (polyoxyethylene) subphosphonate, trifluoromethyl (polyoxyperfluoroethylene) subphosphonate, pentafluoroethyl (polyoxyperfluoroethylene) subphosphon formula Rf (ORf ') flu
  • fluoroalkylammonium salt examples include a monofluoromethylethylammonium salt, a trifluoromethylethylammonium salt, a trifluoromethylpropylammonium salt, a trifluoromethylbutylammonium salt, and a partially fluorinated higher alkylammonium salt.
  • one of the methods for adjusting F1S and F1B within a specific range is to select a fluorine-containing surfactant having an appropriate affinity for PVA. That is, when a fluorine-containing surfactant having an excessive affinity with PVA is selected, the surfactant may easily diffuse inside the water-soluble film, making it difficult to obtain the effect of improving the peelability. On the other hand, when a fluorine-containing surfactant having a poor affinity for PVA is selected, the amount of the surfactant transferred to the surface of the water-soluble film is reduced, and sticking due to moisture absorption is likely to occur.
  • any one of the above-mentioned surfactants a fluoroalkyl alcohol, a fluoroalkyl phosphate salt, and a fluoroalkyl sulfonate.
  • One type of these surfactants may be used, or a plurality of these surfactants may be used in combination.
  • it may be combined with other surfactants as long as the effects of the present invention are not impaired.
  • the PVA film that has been spilled onto the support undergoes crystallization on the support and during subsequent drying steps.
  • heating in a region having a high water content increases the motility of the PVA molecular chain, so that crystallization proceeds and the crystallinity increases. Therefore, if the drying rate is too fast, the crystals may not grow sufficiently and the crystallinity may be insufficient. On the other hand, if the drying rate is too slow, crystal growth tends to proceed and the crystallite size tends to increase. Further, if the amount of heat given is too large, the crystallinity increases and the water solubility may be insufficient.
  • the surface temperature of the support on which the membrane-forming stock solution is spilled is preferably 50 to 110 ° C.
  • the surface temperature is less than 50 ° C.
  • crystallization proceeds due to the slow progress of drying, and not only the water solubility deteriorates, but also the time required for drying becomes long and the productivity tends to decrease.
  • the fluorine-containing surfactant tends to permeate into the inside of the film, and the peelability tends to deteriorate.
  • the temperature exceeds 110 ° C., abnormalities on the film surface such as foaming tend to occur, and rapid drying tends to increase the amount of amorphous components, which tends to cause blocking due to moisture absorption.
  • the surface temperature is preferably 60 to 100 ° C, more preferably 65 to 95 ° C.
  • hot air having a wind speed of 1 to 10 m / sec may be uniformly blown over the entire region on the non-contact surface side of the PVA film to adjust the drying rate.
  • the temperature of the hot air blown to the non-contact surface side is preferably 50 to 150 ° C., more preferably 70 to 120 ° C. from the viewpoint of drying efficiency and uniformity of drying.
  • the water-soluble film is preferably dried on the support to a volatile fraction of 5 to 50% by mass and then peeled off. At that time, the fluorine-containing surfactant applied on the support is transferred to the surface of the water-soluble film in contact with the support (hereinafter, may be referred to as a support surface).
  • the water-soluble film peeled off from the support is further dried if necessary.
  • the drying method is not particularly limited, and examples thereof include a method of contacting with a drying furnace or a drying roll. When drying with a plurality of drying rolls, it is preferable to alternately bring one side and the other side of the film into contact with the drying rolls in order to reduce the difference in physical properties of both sides of the film.
  • the number of drying rolls is preferably 3 or more, more preferably 4 or more, and even more preferably 5 to 30.
  • the temperature of the drying furnace and the drying roll is preferably 40 ° C. or higher and 110 ° C. or lower.
  • the upper limit of the temperature of the drying furnace and the drying roll is more preferably 100 ° C. or lower, more preferably 90 ° C.
  • the lower limit of the temperature of the drying furnace and the drying roll is more preferably 45 ° C. or higher, and further preferably 50 ° C. or higher. If the temperature of the drying oven and the drying roll is too low, the crystallinity may be low and blocking due to moisture absorption may easily occur.
  • the water-soluble film can be further heat-treated if necessary. By performing the heat treatment, the strength, water solubility, etc. of the film can be adjusted.
  • the heat treatment temperature is preferably 60 ° C. or higher and 135 ° C. or lower.
  • the upper limit of the heat treatment temperature is more preferably 130 ° C. or lower. If the heat treatment temperature is too high, the amount of heat given is too large, so that the crystallinity is high and the water solubility may be lowered.
  • the water-soluble film produced in this manner is further subjected to humidity control treatment, cutting of both ends (ears) of the film, and the like, if necessary, and wound into a roll on a cylindrical core. It is moisture-proof packaged and becomes a product.
  • the method for adjusting the ratio of the fluorine element to the total elements of the surface opposite to the support surface (hereinafter, may be referred to as an open surface) is as follows: (1) A fluorine compound is formed on the open surface after film formation. (2) When a dry roll is used in the film forming process, a method of applying a fluorine-containing surfactant to the surface of the dry roll in contact with the open surface and transferring it to the open surface, ( 3) A part of the fluorine-containing surfactant on the support surface is removed by transferring an excessive amount of the fluorine-containing surfactant to the support surface and adjusting the winding tension when winding the film-formed film. Examples thereof include a method of transferring onto an open surface.
  • an excessive amount of fluorine-containing surfactant is transferred to the support surface of (3) above, and the winding tension when winding the film formed film is performed.
  • a method of transferring a part of the fluorine-containing surfactant on the support surface onto the open surface by adjusting the above is preferable.
  • the winding tension at that time is preferably 30 to 200 N / m. If the take-up tension is less than 30 N / m, the amount of fluorine-containing surfactant transferred to the open surface of the film may be too small.
  • the take-up tension is more preferably 40 N / m or more, further preferably 50 N / m or more, still more preferably 160 N / m or less, still more preferably 120 N / m or less.
  • the volatile fraction of the water-soluble film finally obtained by the series of treatments described above is preferably in the range of 1 to 5% by mass, and more preferably in the range of 2 to 4% by mass.
  • the water-soluble film of the present invention has a complete dissolution time of 150 seconds or less when immersed in deionized water at 10 ° C. Since the complete dissolution time is 150 seconds or less, it can be suitably used as a packaging film for chemicals and the like.
  • the complete dissolution time is more preferably 90 seconds or less, further preferably 60 seconds or less, and particularly preferably 45 seconds or less.
  • the lower limit of the complete dissolution time is not particularly limited, but a water-soluble film having a complete dissolution time too short tends to cause problems such as blocking between films due to absorption of moisture in the atmosphere and a decrease in film strength. Therefore, it is preferably 5 seconds or longer, more preferably 10 seconds or longer, further preferably 15 seconds or longer, and particularly preferably 20 seconds or longer.
  • the thickness of the water-soluble film of the present invention is not particularly limited, but if it is too thick, the secondary processability tends to deteriorate. Therefore, it is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less. It is more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less. If the thickness is too thin, there may be a problem in the mechanical strength of the water-soluble film. Therefore, the thickness is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more. It is particularly preferably 20 ⁇ m or more.
  • the thickness of the water-soluble film can be obtained as an average value by measuring the thickness of any 10 points (for example, any 10 points on a straight line drawn in the length direction of the water-soluble film). ..
  • the water-soluble film of the present invention has an excellent balance between water solubility and mechanical strength, and can be suitably used for various water-soluble film applications.
  • a water-soluble film include a film for chemical packaging, a base film for hydraulic transfer, a base film for embroidery, a release film for artificial marble molding, a film for seed packaging, a film for a filth storage bag, and the like. Be done.
  • the water-soluble film of the present invention is preferably used as a film for packaging a drug because the effect of the present invention is more remarkable.
  • the types of chemicals include pesticides, detergents (including bleaching agents), bactericides and the like.
  • the physical properties of the drug are not particularly limited, and may be acidic, neutral, or alkaline.
  • the drug may contain a boron-containing compound.
  • the form of the drug may be powdery, lumpy, gelled or liquid.
  • the packaging form is not particularly limited, but a unit packaging form in which the drug is packaged in units (preferably sealed packaging) is preferable.
  • the package of the present invention can be obtained by packaging the drug using the film of the present invention as a film for packaging the drug.
  • XPS X-ray photoelectron spectroscopy
  • Measuring device Ohi Quantera SXM (ULVAX-PHI. INC.) Analysis software: Multi Pack ver9.0 (ULVAX-PHI.INC.)
  • X-ray source Monochromatic Al K ⁇ (1486.6 eV)
  • X-ray beam diameter 100 ⁇ m ⁇ (25 W, 15 kV)
  • Measurement range 100 ⁇ m x 300 ⁇ m
  • Signal capture angle 45 °
  • Charge neutralization condition Neutralization electron gun, Ar + ion gun Vacuum degree: 1 x 10 -6 Pa
  • Measurement element peak of excited inner shell atom used for quantification: C (1s), N (1s), O (1s), F (1s), Na (1s), Si (2p), P (2p) ), S (2p)
  • the obtained spectrum was analyzed to determine the ratio of fluorine elements to all elements on the film surface.
  • Peelability evaluation criteria A ... The peeling position is horizontal in the width direction, and there are no wrinkles or stretching on the film surface. B ... The peeling position is horizontal in the width direction, but wrinkles and stretching occur on the film surface. C ... The peeling position is wavy in the width direction, and wrinkles and stretching occur on the film surface.
  • the roller did not pull to the edge of the film, and a part not attached to the edge of the film was left in order to set it on the chuck of the tensile tester. From the bonded water-soluble film, three strip-shaped test pieces having a width of 25 mm were cut out on an MD.
  • Example 1 0.1% by mass aqueous dispersion of fluoroalkyl alcohol (fluorotelomer alcohol: hereinafter, FTOHs) as a fluorine-containing surfactant on a metal drum (first dry roll) that serves as a support for film formation.
  • FTOHs fluoroalkyl alcohol
  • first dry roll a metal drum that serves as a support for film formation.
  • FTOHs fluoroalkyl alcohol
  • Methyl maleate (hereinafter, may be referred to as MA) -modified PVA (saponification degree 99.9 mol%, degree of polymerization 1700, MA modification amount 5 mol%) 100 obtained by saponifying polyvinyl acetate.
  • a film-forming stock solution consisting of 50 parts by mass of glycerin as a plasticizer, 2.0 parts by mass of diethanolamide laurate as a surfactant, and water having a volatile content of 60% by mass is prepared and filtered to obtain a film-forming stock solution. It was.
  • the obtained film-forming stock solution is continuously discharged from the T-die onto the first drying roll (surface temperature 80 ° C.) coated with FTOHs in the form of a film, and on the first drying roll, 85 over the entire open surface.
  • Hot air at ° C. was blown at a rate of 5 m / sec to dry.
  • the film is peeled off from the first drying roll, and the second and subsequent drying rolls are dried at a roll surface temperature of 75 ° C. so that the open surface and the support surface alternately contact each drying roll, and then the winding tension is 90 N.
  • the film was wound at / m to obtain a roll of a water-soluble film (thickness 35 ⁇ m, width 1200 m).
  • Example 2 A water-soluble film was obtained in the same manner as in Example 1 except that MA-modified PVA having a saponification degree of 88 mol% was used.
  • Example 3 A water-soluble film was obtained in the same manner as in Example 1 except that the amount of the plasticizer was 30 parts by mass.
  • Example 4 Water-soluble in the same manner as in Example 1 except that monomethyl maleate (hereinafter sometimes referred to as MMM) -modified PVA having a modification rate of 2 mol% and a saponification degree of 88 mol% was used and the amount of plasticizer was 25 parts by mass. A sex film was obtained.
  • MMM monomethyl maleate
  • Examples 5 and 6 A water-soluble film was obtained in the same manner as in Example 1 except that perfluoroalkylsulfonic acid sodium salt and tris phosphate (2,2,2-trifluoroethyl) were used as the fluorine-containing surfactants, respectively. ..
  • Example 9 A water-soluble film was obtained in the same manner as in Example 1 except that the dispersion liquid of FTOHs was continuously applied and dried on the second drying roll in contact with the open surface as in the first drying roll.
  • Example 1 A water-soluble film was obtained in the same manner as in Example 1 except that the amount of the aqueous dispersion of the fluorine-containing surfactant applied was 24.6 g / m 2 .
  • the F1S of this film was 38.5 mol% and the F1B was 1.2 mol%, and the peelability from the drum was good, but the sealing property was poor.
  • Example 2 A water-soluble film was obtained in the same manner as in Example 1 except that the fluorine-containing surfactant was coated with the aqueous dispersion and then dried with only the residual heat of the first drying roll without hot air drying.
  • the F1S of this film was 5.6 mol% and the F1B was 3.2 mol%, and the peelability from the drum was poor.
  • Table 1 shows the evaluation results of the obtained film.
  • the water-soluble film of the present invention is excellent in peelability from the support, as well as excellent sealing property and transparency. In addition, the sticking property of the film is also suppressed.
  • the water-soluble film of the present invention has excellent sealing properties and transparency, and the sticking property of the film is suppressed. Therefore, a film for chemical packaging, a base film for hydraulic transfer, a base film for embroidery, and a release for artificial marble molding. It is suitably used for mold films, seed packaging films, filth storage bag films, and the like.
  • the water-soluble film of the present invention is suitably used for a drug packaging film for packaging chemicals such as pesticides, detergents (including bleaching agents), and bactericides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】水溶性フィルムの製膜時の支持体からの剥離性、透明性およびシール性に優れる水溶性フィルムおよびそれを用いた薬剤の包装体を提供すること。さらにこれら特性に優れる水溶性フィルムの製造方法を提供すること。 【解決手段】ポリビニルアルコール樹脂を含有する水溶性フィルムであって、前記水溶性フィルムの第1の表面を、X線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F1S)が、1mol%以上、25mol%以下、かつ、第1の表面から0.1μmの深さの面をX線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F1B)が、0.5mol%以下である水溶性フィルム。

Description

水溶性フィルムおよび包装体
 本発明は、各種薬剤の梱包などに好適に使用されるポリビニルアルコール樹脂を含有する水溶性フィルムおよびそれを用いた包装体に関する。
 従来から、水溶性フィルムは、洗剤や農薬といった各種薬剤、種子を内包する包装体などの用途に幅広く使用されており、その簡便性より需要は拡大している。
 かかる用途に用いる水溶性フィルムには、ポリビニルアルコール樹脂(以下、PVAと称することがある)を主成分とするPVAフィルムが広く用いられている。このPVAフィルムの各種物性を改善するため、様々な技術が提案されている。例えば可塑剤等の各種添加剤を配合したり、変性PVAを用いたりすることによって、水溶性を高めた水溶性フィルムが提案されている(例えば特許文献1)。
 特許文献1に開示されている水溶性フィルムは、可塑剤等の添加量を調整することや、変性PVAを用いたりすることにより、その結晶化度を低下させ、水溶性を高めている。しかしながら、水溶性フィルムには親水性のPVAを使用しており、PVAは金属材料との相互作用が高い。そのため、金属ロールや金属ベルト等の支持体上で水溶性フィルムを製膜する際に、支持体からのフィルムの剥離性が悪く、面荒れや厚みむら等を生じやすい。従来は、水溶性フィルム中に界面活性剤を含有させるなどの方法で、剥離性を制御している。
 しかし、近年の水溶性フィルムの需要増加に伴い、生産性の改善が望まれている。製膜速度を速めることで生産性の改善は可能であるが、製膜速度が速くなるに従い、従来の技術では剥離性が不十分となり、面荒れや厚みむら等が生じて製品としての収率が低下する原因となっている。
 一方、本発明の用途とは異なる光学用途のPVAフィルムにおいても同様に、製膜時の支持体からのPVAフィルムの剥離性不良の問題があり、それに対してフッ素を含有する界面活性剤をPVAフィルムの製膜原液中に添加するという方法が提案されている(特許文献2)。また、同じく光学用途のPVAフィルムに関して、キャスト基材をフッ素含有樹脂でコーティング処理して強固なフッ素系樹脂膜を形勢し、剥離性を改善するという方法が提案されている(特許文献3)。
特開2017-078166号公報 特開2006-307059号公報 特開2006-305924号公報
 しかしながら、特許文献2の技術では、フッ素含有界面活性剤を多く使用する必要があり、近年問題となっている、ハロゲン物質による環境汚染への対応が困難である。また、疎水性のフッ素含有物質は、PVAとの親和性が低いことから、フィルム中での相分離が起き、フィルムの透明性が損なわれやすい。さらに、この技術を水溶性フィルムに適用する場合、フィルムがフッ素含有界面活性剤を多く含有すると、内包物を包装した後に行う水および/または熱によるフィルム同士のシール(以下、シールと称することがある)の際に、シール不良が生じることがしばしばあり、シール部より内包物が漏洩することがある。
 一方、特許文献3の技術を水溶性フィルムに適用すると、水溶性フィルムは光学用フィルムに比べ、吸湿によるフィルム同士のこう着を生じやすく、ロール巻き出し時などにロールとの摩擦による皺の発生や破断などが生じることがある。また、ロールやベルトなどの支持体上に強固なフッ素樹脂層を形成するのは材料面でも、支持体のメンテナンスの観点でもコストがかかりやすい。
 本発明は、水溶性フィルムの製膜時の支持体からの剥離性、透明性およびシール性に優れる水溶性フィルムおよびそれを用いた薬剤の包装体を提供することを目的とする。さらに本発明はこれら特性に優れる水溶性フィルムの製造方法を提供する。
 本発明者らは鋭意検討を重ねた結果、水溶性フィルムの第1の表面の全元素中のフッ素元素の占める割合が特定の範囲にあり、かつ第1の表面からフィルムの厚み方向の中心側にわずかに入った場所のフッ素元素の占める割合がある値以下である場合に上記課題が解決されることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。
 すなわち、本発明は以下に関する。
[1]
 ポリビニルアルコール樹脂を含有する水溶性フィルムであって、前記水溶性フィルムの第1の表面を、X線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F1S)が、1mol%以上、25mol%以下、かつ、第1の表面から0.1μmの深さの面をX線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F1B)が、0.5mol%以下である水溶性フィルム。
[2]
 前記水溶性フィルムにおいて、前記第1の表面と対向する第2の表面を、X線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F2S)が、1mol%以上、25mol%以下、かつ、前記水溶性フィルムの第2の表面から0.1μmの深さの面をX線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F2B)が、0.5mol%以下である、前記[1]に記載の水溶性フィルム。
[3]
 前記F1SとF2Sの差が2.5mol%以上である、前記[1]または[2]に記載の水溶性フィルム。
[4]
 前記フッ素元素が、分子量10000以下のフッ素含有界面活性剤に含有されていることを特徴とする、前記[1]~[3]に記載の水溶性フィルム。
[5]
 フッ素含有界面活性剤が、フルオロアルキルアルコール、フルオロアルキルカルボン酸塩、フルオロアルキル硫酸エステル塩、フルオロアルキルスルホン酸塩、フルオロアルキルリン酸エステル塩、フルオロアルキルホスホン酸塩、フルオロアルキル亜ホスホン酸塩、フルオロアルキルアンモニウム塩からなる群から選ばれる少なくとも1種である前記[4]に記載の水溶性フィルム。
[6]
 フッ素含有界面活性剤が、フルオロアルキルアルコール、フルオロアルキルリン酸エステル塩、フルオロアルキルスルホン酸塩からなる群から選ばれる少なくとも1種である前記[5]に記載の水溶性フィルム。
[7]
 前記[1]~[6]に記載の水溶性フィルムが薬剤を収容している包装体。
[8]
 前記の薬剤が農薬、洗剤または殺菌剤である、前記[7]に記載の包装体。
[9]
 前記の薬剤が液体状である、前記[7]または[8]に記載の包装体。
[10]
 支持体上にフッ素含有界面活性剤を塗布し、該塗布面上にポリビニルアルコール樹脂を含有する製膜原液を膜状に流涎する、前記[4]~[6]に記載の水溶性フィルムの製造方法。
[11]
 フッ素含有界面活性剤の溶液または分散液を支持体上に連続的に塗布し、乾燥して支持体上にフッ素含有界面活性を塗布する前記[10]に記載の水溶性フィルムの製造方法。
 本発明によれば製膜時の支持体からの剥離性、透明性およびシール性に優れる水溶性フィルムおよびそれを用いた薬剤の包装体を提供することができる。また本発明によればこのような特性に優れる水溶性フィルムを製造することができる。
 さらに本発明の水溶性フィルムは上記特性を維持しつつ、吸湿によるフィルム同士のこう着抑制にも優れる。
 以下、本発明について具体的に説明する。
 本発明において、水溶性フィルムの第1の表面を、X線光電分光法(以下、XPSと称することがある)により分析した時に求められるフッ素元素の全元素に占める割合(F1S)が、1mol%以上、25mol%以下であることが重要である。F1Sが1mol%未満の場合、製膜時の基材からの剥離性が不十分になる。F1Sは、1.5mol%以上であることが好ましく、2mol%以上であることがより好ましく、2.5mol%以上であることが更に好ましく、3mol%以上であることが特に好ましい。一方、F1Sが25mol%を超える場合、包装体をシールする際にシール不良を生じやすい。F1Sは23mol%以下が好ましく、21mol%以下がより好ましく、20mol%以下がさらに好ましく、19mol%以下が特に好ましい。
 加えて本発明においては、前記水溶性フィルムの第1の表面から0.1μmの深さの面をXPSにより分析した時に求められるフッ素元素の全元素に占める割合(F1B)が、0.5mol%以下であることも重要である。F1Bが0.5mol%を超える場合も、包装体をシールする際にシール不良を生じやすい。F1Bは0.4mol%以下が好ましく、0.3mol%以下がより好ましく、0.2mol%以下がさらに好ましい。F1Bは0mol%、すなわちXPSの測定装置の検出限界以下であってもよい。一般的なXPSの測定装置の検出限界は通常、0.1mol%近辺である。
 本発明において、水溶性フィルム表面のフッ素元素およびその他の元素の量は、XPSにより測定される。XPS測定とは、試料表面にX線を照射することにより原子の内殻電子を励起し、それにより放出された光電子の運動エネルギーを検出することによって、試料表面に存在する元素の同定および定量や、化学結合状態の分析を行うものである。
 本発明においては、XPSにて測定される元素は、炭素(1s軌道電子)、窒素(1s軌道電子)、酸素(1s軌道電子)、フッ素(1s軌道電子)、ナトリウム(1s軌道電子)、ケイ素(2p軌道電子)、リン(2p軌道電子)、硫黄(2p軌道電子)である。これら元素を定量し、その合計量に対するフッ素元素の割合をF1Sとした。
 また、XPS測定では、C60(バックミンスターフラーレン)やアルゴンクラスターなどによってフィルム表面をエッチング処理して、深さ方向に分析することも可能である。本発明では、C60を用いて、加速電圧10kV、試料電流20nA、走査範囲0.5×2.0mmの条件で100秒間エッチング処理することにより、フィルム表面からおおよそ0.1μmの深さの面を露出させ、F1Bを定量した。
 なお、本発明において、水溶性フィルムの両面をXPS測定し、それぞれの表面の全元素中に占めるフッ素元素の割合を求めたときに、フッ素元素の割合が大きい方を第1の表面とした。
 本発明において、水溶性フィルムの前記第1の表面と対向する第2の表面を、XPSにより分析した時に求められるフッ素元素の全元素に占める割合(F2S)が、1mol%以上であることが好ましい。F2Sが1mol%未満の場合、フィルム間のこう着を生じやすくなる傾向がある。F2Sは、1.5mol%以上であることがより好ましく、2mol%以上であることがさらに好ましく、2.5mol%以上であることが特に好ましい。一方、F2Sが25mol%を超える場合、包装体をシールする際にシール不良を生じやすくなる傾向がある。F2Sは23mol%以下がより好ましく、21mol%以下がさらに好ましく、19mol%以下が特に好ましい。
 加えて本発明においては、前記水溶性フィルムの第2の表面から0.1μmの深さの面をXPSにより分析した時に求められるフッ素元素の全元素に占める割合(F2B)が、0.5mol%以下であることが好ましい。F2Bが0.5mol%を超える場合も、包装体をシールする際にシール不良を生じやすくなる傾向がある。F2Bは0.4mol%以下がより好ましく、0.3mol%以下がさらに好ましく、0.2mol%以下が特に好ましい。F2Bは0mol%、すなわちXPSの測定装置の検出限界以下であってもよい。XPSの測定装置の検出限界は通常、上記したとおりである。
 また本発明において、F1SとF2Sの差が2.5mol%以上であることが好ましい。F1SとF2Sの差が2.5mol%以上であることにより、シール不良が生じにくくなる傾向がある。F1SとF2Sの差は、3mol%以上であることがより好ましく、4mol%以上であることがさらに好ましい。本発明において、F1SとF2Sの差は25mol%を超える事はない。
<ポリビニルアルコール樹脂>
 本発明の水溶性フィルムはポリビニルアルコール樹脂(PVA)を含有する。PVAとしては、ビニルエステルモノマーを重合して得られるビニルエステル重合体をけん化することにより製造されたものを使用することができる。ビニルエステルモノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等を挙げることができ、これらの中でも酢酸ビニルが好ましい。
 上記のビニルエステル重合体は、単量体として1種または2種以上のビニルエステルモノマーのみを用いて得られたものが好ましく、単量体として1種のビニルエステルモノマーのみを用いて得られたものがより好ましいが、1種または2種以上のビニルエステルモノマーと、これと共重合可能な他のモノマーとの共重合体であってもよい。
 このようなビニルエステルモノマーと共重合可能な他のモノマーとしては、例えば、エチレン;プロピレン、1-ブテン、イソブテン等の炭素数3~30のオレフィン;アクリル酸またはその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルへキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル;メタクリル酸またはその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸またはその塩、アクリルアミドプロピルジメチルアミンまたはその塩、N-メチロールアクリルアミドまたはその誘導体等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸またはその塩、メタクリルアミドプロピルジメチルアミンまたはその塩、N-メチロールメタクリルアミドまたはその誘導体等のメタクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸またはその塩、エステルもしくは酸無水物;イタコン酸またはその塩、エステルもしくは酸無水物;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニルなどを挙げることができる。上記のビニルエステル重合体は、これらの他のモノマーのうちの1種または2種以上に由来する構造単位を有することができる。
 上記のビニルエステル重合体に占める上記他のモノマーに由来する構造単位の割合は、水溶性やフィルム強度の観点から、ビニルエステル重合体を構成する全構造単位のモル数に基づいて、15モル%以下であることが好ましく、5モル%以下であることがより好ましい。
 PVAの重合度に特に制限はないが、重合度の下限としては、フィルム強度の観点から200以上であることが好ましく、300以上であることがより好ましく、500以上であることがさらに好ましい。一方、重合度の上限としては、PVAの生産性や水溶性フィルムの生産性などの点から8,000以下であることが好ましく、5,000以下であることがより好ましく、3,000以下であることがさらに好ましい。ここで、重合度とは、JIS K 6726-1994の記載に準じて測定される平均重合度を意味する。すなわち、本明細書において、重合度は、PVAの残存酢酸基をけん化し、精製した後、30℃の水中で測定した極限粘度[η](単位:デシリットル/g)から、次式により求められる。
   Po = ([η]×10/8.29)(1/0.62)
 本発明において、PVAのけん化度は64~99.99モル%であることが好ましい。けん化度をこの範囲に調整することにより、フィルムの水溶性と力学物性を両立しやすい。けん化度の下限は、70モル%以上であることがより好ましく、75モル%以上であることが更に好ましい。一方けん化度の上限は99.96モル%以下であることがより好ましく、99.93モル%以下であることが更に好ましい。ここでPVAのけん化度は、PVAが有する、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステルモノマー単位)とビニルアルコール単位との合計モル数に対して当該ビニルアルコール単位のモル数が占める割合(モル%)をいう。PVAのけん化度は、JIS K 6726-1994の記載に準じて測定することができる。
 本発明における水溶性フィルムは、PVAとして1種類のPVAを単独で用いてもよいし、重合度やけん化度あるいは変性度などが互いに異なる2種以上のPVAをブレンドして用いてもよい。
 本発明において、水溶性フィルムにおけるPVAの含有率は特に制限されないが、50質量%が好ましく、80質量%がより好ましく、85質量%がさらに好ましい。
<可塑剤>
 PVAフィルムは、可塑剤を含まない状態では他のプラスチックフィルムに比べ剛直であり、衝撃強度等の機械的物性や二次加工時の工程通過性などが問題になることがある。それらの問題を防止するために、本発明の水溶性フィルムには可塑剤を含有させることが好ましい。好ましい可塑剤としては多価アルコールが挙げられ、具体的には、例えば、エチレングリコール、グリセリン、ジグリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、ソルビトール等の多価アルコールなどを挙げることができる。これらの可塑剤は1種を単独で使用しても2種以上を併用してもよい。これらの可塑剤の中でも、フィルム表面へのブリードアウトをしにくいなどの観点から、エチレングリコールまたはグリセリンが好ましく、グリセリンがより好ましい。
 水溶性フィルムにおける可塑剤の含有量としては、水溶性フィルムに含まれるPVA100質量部に対して1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、また、70質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることがさらに好ましい。上記の含有量が1質量部未満であると、衝撃強度等の機械的物性の改善効果が不十分になるおそれがある。一方、上記の含有量が70質量部を超えると、フィルムが柔軟になりすぎて取り扱い性が低下したり、フィルム表面にブリードアウトして様々な問題を生じたりする場合がある。
<澱粉/水溶性高分子>
 水溶性フィルムに機械的強度を付与し、フィルムを取り扱う際の耐湿性を維持し、あるいはフィルムを溶解する際の水の吸収による柔軟化の速度を調節することなどを目的として、本発明のフィルムに澱粉および/またはPVA以外の水溶性高分子を含有させてもよい。
 澱粉としては、例えば、コーンスターチ、馬鈴薯澱粉、甘藷澱粉、小麦澱粉、コメ澱粉、タピオカ澱粉、サゴ澱粉等の天然澱粉類;エーテル化加工、エステル化加工、酸化加工等が施された加工澱粉類などを挙げることができ、特に加工澱粉類が好ましい。
 水溶性フィルムにおける澱粉の含有量は、PVA100質量部に対して、15質量部以下であることが好ましく、10質量部以下であることがより好ましい。含有量が15質量部より大きいと、工程通過性が悪化するおそれがある。
 PVA以外の水溶性高分子としては、例えば、デキストリン、ゼラチン、にかわ、カゼイン、シェラック、アラビアゴム、ポリアクリル酸アミド、ポリアクリル酸ナトリウム、ポリビニルメチルエーテル、メチルビニルエーテルと無水マレイン酸の共重合体、酢酸ビニルとイタコン酸の共重合体、ポリビニルピロリドン、セルロース、アセチルセルロース、アセチルブチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、アルギン酸ナトリウムなどが挙げられる。
 水溶性フィルムにおけるPVA以外の水溶性高分子の含有量は、PVA100質量部に対して、15質量部以下であることが好ましく、10質量部以下であることがより好ましい。含有量が15質量部より大きいと、フィルムの水溶性が不足するおそれがある。
<界面活性剤>
 本発明において水溶性フィルムは、その取り扱い性や、また水溶性フィルムの膜面異常(ダイライン、面荒れ等)の抑制などの観点から界面活性剤を含むことが好ましい。界面活性剤の種類に特に制限はなく、例えば、アニオン系界面活性剤、ノニオン系界面活性剤などが挙げられる。
 アニオン系界面活性剤としては、例えば、ラウリン酸カリウム等のカルボン酸型;オクチルサルフェート等の硫酸エステル型;ドデシルベンゼンスルホネート等のスルホン酸型などが挙げられる。
 ノニオン系界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル等のアルキルエーテル型;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;ポリオキシエチレンラウレート等のアルキルエステル型;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型などが挙げられる。
 界面活性剤は1種を単独で使用しても、2種以上を併用してもよい。これらの界面活性剤の中でも、製膜時の膜面異常の低減効果に優れることなどから、ノニオン系界面活性剤が好ましく、特にアルカノールアミド型の界面活性剤がより好ましく、脂肪族カルボン酸(例えば、炭素数8~30の飽和または不飽和脂肪族カルボン酸など)のジアルカノールアミド(例えば、ジエタノールアミド等)が更に好ましい。
 水溶性フィルムにおける界面活性剤の含有量は、PVA100質量部に対して、0.01質量部以上であることが好ましく、0.02質量部以上であることがより好ましく、0.05質量部以上であることが更に好ましい。一方、界面活性剤の含有量の上限は、5質量部以下であることが好ましく、1質量部以下であることがより好ましく、0.5質量部以下であることが更に好ましく、0.3質量部以下であることが特に好ましい。上記含有量が0.02質量部より少ないと、水溶性フィルムを製造する際の製膜装置からの剥離性が不良になる、あるいはフィルム間でブロッキングを生じるなどの問題を生じやすくなる。一方、上記含有量が5質量部より多いと、フィルム表面へのブリードアウトや、界面活性剤の凝集によるフィルム外観の悪化などの問題を生じやすい。
<その他の成分>
 本発明の水溶性フィルムは、可塑剤、澱粉、PVA以外の水溶性高分子、界面活性剤以外に、水分、酸化防止剤、紫外線吸収剤、滑剤、架橋剤、着色剤、充填剤、防腐剤、防黴剤、他の高分子化合物などの成分を、本発明の効果を妨げない範囲で含有してもよい。PVA、可塑剤、澱粉、PVA以外の水溶性高分子、界面活性剤の各質量の合計値が本発明の水溶性フィルムの全質量に占める割合は、60~100質量%の範囲内であることが好ましく、80~100質量%の範囲内であることがより好ましく、90~100質量%の範囲内であることがさらに好ましい。
 PVAおよび上記の各成分はPVAおよび溶媒と均一に混合され、水溶性フィルムを製膜するための製膜原液として調整される。使用する溶媒は、水、アルコール、ジメチルスルホキシドなど、PVAに対して良溶媒であれば任意のもの使用することができる。それらの中で、コスト、環境負荷、溶媒回収が不要、などの観点より、水が好ましい。溶媒は1種のみを用いてもよく、2種以上を併用してもよい。
 本発明において、製膜原液の調整方法に特に制限はなく、例えば、PVAと可塑剤、界面活性剤などの添加剤を溶解タンク等で溶解させる方法や、一軸または二軸押出機を使用して含水状態のPVAを溶融混錬する際に、可塑剤、界面活性剤などと共に溶融混錬する方法など、任意の方法を採用できる。
 上記製膜原液の揮発分率(製膜時などに揮発や蒸発によって除去される溶媒等の揮発性成分の濃度)は50~90質量%の範囲内であることが好ましく、55~80質量%の範囲内であることがより好ましい。揮発分率が50質量%未満であると、製膜原液の粘度が高くなり、製膜が困難となる場合がある。一方、揮発分率が90質量%を超えると、粘度が低くなり得られるフィルムの厚さ均一性が損なわれやすい。
 製膜原液の揮発分率は、下記の式により求められる。
 製膜原液の揮発分率(質量%)={(Wa-Wb)/Wa}×100
(式中、Waは製膜原液の質量(g)を表し、WbはWa(g)の製膜原液を105℃の電熱乾燥機中で16時間乾燥した時の質量(g)を表す。)
<水溶性フィルムの製造方法>
 本発明において、水溶性フィルムの製膜方法は、上記製膜原液を使用して、流延製膜法、湿式製膜法(貧溶媒中への吐出)、乾湿式製膜法、ゲル製膜法(製膜原液を一旦冷却ゲル化した後、溶媒を抽出除去し、PVAフィルムを得る方法)、あるいはこれらの組み合わせにより製膜する方法や、押出機などを使用して上記製膜原液を得てこれをTダイなどから押出すことにより製膜する溶融押出製膜法やインフレーション製膜法など、が例示できる。これらの中でも、流延製膜法および溶融押出製膜法が、均質なフィルムを生産性よく得ることができるため、好ましい。本発明の水溶性フィルムは金属ロールや金属ドラムからの剥離性に優れることから、金属ロールや金属ドラム等の支持体上にPVA原液が塗工され、乾燥、剥離するという製膜方法が生産性の観点から好ましい。以下、水溶性フィルムの流延製膜法または溶融押出製膜法について説明する。
 水溶性フィルムを流延製膜法または溶融押出製膜法にて製膜する場合、上記の製膜原液は金属ロールや金属ベルトなどの支持体の上へ膜状に流涎され、加熱されて溶媒が除去されることにより、固化してフィルム化する。固化したフィルムは支持体より剥離されて、必要に応じて乾燥ロール、乾燥炉などにより乾燥されて、さらに必要に応じて熱処理されて、巻き取られることにより、ロール状の長尺の水溶性フィルムを得ることができる。
 本発明において、水溶性フィルム表面に占めるフッ素元素の割合(F1SおよびF2S)を1mol%以上、25mol%以下に調整する方法としては、(1)上記支持体上にフッ素含有化合物を塗布し、該塗布面上にPVAを含有する製膜原液を膜状に流延する方法、(2)上記支持体状にPVAを含有する製膜原液を膜状に流延して製膜したPVAフィルム上に、フッ素含有化合物をコーティングする方法、(3)PVAを含有する製膜原液にフッ素含有化合物を添加し、該製膜原液を膜状に流延する方法、などが例示される。これらの中でも、製造コスト、フィルム表面のフッ素の均一性などの観点から、上記(1)の方法が特に好ましい。以下、その方法について説明する。
 本発明において、フッ素含有化合物は、水溶性フィルム表面への転写の容易性より、分子量10000以下のフッ素含有界面活性剤が好ましい。フッ素含有界面活性剤の分子量は150~9000の範囲にあることがより好ましく、300~8000の範囲にあることがさらに好ましく、400~7000の範囲にあることが特に好ましく、500~6000の範囲にあることが最も好ましい。
 固体または粘度の高い液体のフッ素含有界面活性剤は、水、アルコールなど、適当な溶媒に溶解、または分散されて使用される。粘度の低い液体のフッ素含有界面活性剤は、そのまま使用しても良い。支持体上にフッ素含有界面活性剤を塗布する方法としては粘度の低いフッ素含有界面活性剤、または粘度の高いフッ素含有界面活性剤の溶液、分散液を、(1)支持体に直接接触させた後、ドクターナイフ等で塗布量を均一化する方法、(2)該分散液等をロールコーターで均一に塗布する方法など、任意の方法を使用できる。このとき、必要に応じて、支持体を加熱したり熱風を吹き付けるなどして、塗布面を乾燥させてもよい。中でも、フッ素含有界面活性剤を支持体上に均一に塗布するという観点から、フッ素含有界面活性剤の溶液または分散液を支持体上に連続的に塗布し、乾燥させることが好ましい。具体的には、PVAフィルムを支持体から剥離した後、製膜原液が支持体に流延される間に、フッ素含有界面活性を支持体に連続的に塗布し乾燥させることが好ましい。
<フッ素含有界面活性剤>
 本発明におけるフッ素含有界面活性剤は以下のものが例示される。
  一般式 RfOHで表わされるフルオロアルキルアルコール、
  一般式 RfCOOMで表わされるフルオロアルキルカルボン酸塩、
  一般式 RfOSO(3-x)Mで表わされるフルオロアルキル硫酸エステル塩、
  一般式 RfSOMで表わされるフルオロアルキルスルホン酸塩、
  一般式 RfOPO(3-x)Mで表わされるフルオロアルキルリン酸エステル塩、
  一般式 RfPOMで表わされるフルオロアルキルホスホン酸塩、
  一般式 RfPOMで表わされるフルオロアルキル亜ホスホン酸塩、および
  一般式 RfNH(4-x)Mで表わされるフルオロアルキルアンモニウム塩
などが挙げられる。
 これらの一般式中、Rfはフッ素原子を含む炭素数1~50のアルキル基を表わす。Rfは、アルキル基鎖内にエーテル結合を含むものであってもよい。Mは少なくとも1以上のカウンターカチオンまたはカウンターアニオンを表わす。また、xは1~3または4である。
 これらのフッ素含有界面活性剤において、フルオロアルキルアルコールは中性の界面活性剤であり、フルオロアルキルカルボン酸塩、フルオロアルキル硫酸エステル塩、フルオロアルキルスルホン酸塩、フルオロアルキルリン酸エステル塩、フルオロアルキルホスホン酸塩およびフルオロアルキル亜ホスホン酸塩はアニオン性の界面活性剤であり、フルオロアルキルアンモニウム塩はカチオン性の界面活性剤である。
 また、カウンターカチオンとしては、特に限定されないが、Na、Ca2+、NH 、またはこれらの混合物が挙げられる。これらの中では、Naが好ましい。カウンターアニオンも、特に限定されないが、Clなどが挙げられる。
 フルオロアルキルアルコールとしては、具体的には、モノフルオロメチルエチルアルコール、トリフルオロメチルエチルアルコール、トリフルオロメチルプロピルアルコール、トリフルオロメチルブチルアルコール、部分フッ素化高級アルコールなどの部分フッ素化アルキルアルコール; トリフルオロメチルアルコール、ペンタフルオロエチルアルコール、ヘプタフルオロプロピルアルコール、ペンタデカフルオロヘプチルアルコール、ヘプタデカフルオロオクチルアルコール、ノナデカフルオロノニルアルコールなどのパーフルオロアルキルアルコール; トリフルオロメチルオキシエチルアルコール、トリフルオロメチルオキシプロピルアルコール、トリフルオロメチル( ポリオキシエチレン) アルコール、ペンタフルオロエチル(ポリオキシエチレン)アルコール、トリフルオロメチル(ポリオキシパーフルオロエチレン)アルコール、ペンタフルオロエチル(ポリオキシパーフルオロエチレン)アルコールなどの一般式Rf(ORf’)OHで表わされるエーテル結合を含むフルオロアルキルアルコールが挙げられる。ここで、Rf’はフッ素原子を含むアルキレン基を、nは縮合度を表わす。
 フルオロアルキルカルボン酸塩としては、具体的には、モノフルオロメチルエチルカルボン酸塩、トリフルオロメチルエチルカルボン酸塩、トリフルオロメチルプロピルカルボン酸塩、トリフルオロメチルブチルカルボン酸塩、部分フッ素化高級脂肪酸塩などの部分フッ素化アルキルカルボン酸塩; トリフルオロメチルカルボン酸塩、ペンタフルオロエチルカルボン酸塩、ヘプタフルオロプロピルカルボン酸塩、ペンタデカフルオロヘプチルカルボン酸塩、ヘプタデカフルオロオクチルカルボン酸塩、ノナデカフルオロノニルカルボン酸塩などのパーフルオロアルキルカルボン酸塩; トリフルオロメチルオキシエチルカルボン酸塩、トリフルオロメチルオキシプロピルカルボン酸塩、トリフルオロメチル(ポリオキシエチレン)カルボン酸塩、ペンタフルオロエチル(ポリオキシエチレン)カルボン酸塩、トリフルオロメチル(ポリオキシパーフルオロエチレン)カルボン酸塩、ペンタフルオロエチル(ポリオキシパーフルオロエチレン)カルボン酸塩などの一般式Rf(ORf’)COOMで表わされるエーテル結合を含むフルオロアルキルカルボン酸塩が挙げられる。
 フルオロアルキル硫酸エステル塩としては、具体的には、モノフルオロメチルエチル硫酸エステル塩、トリフルオロメチルエチル硫酸エステル塩、トリフルオロメチルプロピル硫酸エステル塩、トリフルオロメチルブチル硫酸エステル塩、部分フッ素化高級アルキル硫酸エステル塩などの部分フッ素化アルキルカルボン酸塩; トリフルオロメチル硫酸エステル塩、ペンタフルオロエチル硫酸エステル塩、ヘプタフルオロプロピル硫酸エステル塩、ペンタデカフルオロヘプチル硫酸エステル塩、ヘプタデカフルオロオクチル硫酸エステル塩、ノナデカフルオロノニル硫酸エステル塩などのパーフルオロアルキル硫酸エステル塩; トリフルオロメチルオキシエチル硫酸エステル塩、トリフルオロメチルオキシプロピル硫酸エステル塩、トリフルオロメチル(ポリオキシエチレン)硫酸エステル塩、ペンタフルオロエチル(ポリオキシエチレン)硫酸エステル塩、トリフルオロメチル(ポリオキシパーフルオロエチレン)硫酸エステル塩、ペンタフルオロエチル(ポリオキシパーフルオロエチレン)硫酸エステル塩などの一般式Rf(ORf’)OSOMで表わされるエーテル結合を含むフルオロアルキルカルボン酸塩が挙げられる。
 フルオロアルキルスルホン酸塩としては、具体的には、モノフルオロメチルエチルスルホン酸塩、トリフルオロメチルエチルスルホン酸塩、トリフルオロメチルプロピルスルホン酸塩、トリフルオロメチルブチルスルホン酸塩、部分フッ素化高級アルキル塩などの部分フッ素化アルキルスルホン酸塩; トリフルオロメチルスルホン酸塩、ペンタフルオロエチルスルホン酸塩、ヘプタフルオロプロピルスルホン酸塩、ペンタデカフルオロヘプチルスルホン酸塩、ヘプタデカフルオロオクチルスルホン酸塩、ノナデカフルオロノニルスルホン酸塩などのパーフルオロアルキルスルホン酸塩; トリフルオロメチルオキシエチルスルホン酸塩、トリフルオロメチルオキシプロピルスルホン酸塩、トリフルオロメチル(ポリオキシエチレン)スルホン酸塩、ペンタフルオロエチル(ポリオキシエチレン)スルホン酸塩、トリフルオロメチル(ポリオキシパーフルオロエチレン)スルホン酸塩、ペンタフルオロエチル(ポリオキシパーフルオロエチレン)スルホン酸塩などの一般式Rf(ORf’)SOMで表わされるエーテル結合を含むフルオロアルキルスルホン酸塩が挙げられる。また、ジエステル以上のフルオロアルキルとなっても良い。
 フルオロアルキルリン酸エステル塩としては、具体的には、モノフルオロメチルエチルリン酸エステル塩、トリフルオロメチルエチルリン酸エステル塩、トリフルオロメチルプロピルリン酸エステル塩、トリフルオロメチルブチルリン酸エステル塩、部分フッ素化高級アルキルリン酸エステル塩などの部分フッ素化アルキルリン酸エステル塩; トリフルオロメチルリン酸エステル塩、ペンタフルオロエチルリン酸エステル塩、ヘプタフルオロプロピルリン酸エステル塩、ペンタデカフルオロヘプチルリン酸エステル塩、ヘプタデカフルオロオクチルリン酸エステル塩、ノナデカフルオロノニルリン酸エステル塩などのパーフルオロアルキルリン酸エステル塩; トリフルオロメチルオキシエチルリン酸エステル塩、トリフルオロメチルオキシプロピルリン酸エステル塩、トリフルオロメチル(ポリオキシエチレン)リン酸エステル塩、ペンタフルオロエチル(ポリオキシエチレン)リン酸エステル塩、トリフルオロメチル(ポリオキシパーフルオロエチレン)リン酸エステル塩、ペンタフルオロエチル(ポリオキシパーフルオロエチレン)リン酸エステル塩などの一般式Rf(ORf’)OPOMで表わされるエーテル結合を含むフルオロアルキルリン酸エステル塩が挙げられる。また、ジエステル以上のフルオロアルキルとなっても良い。
 フルオロアルキルホスホン酸塩としては、具体的には、モノフルオロメチルエチルホスホン酸塩、トリフルオロメチルエチルホスホン酸塩、トリフルオロメチルプロピルホスホン酸塩、トリフルオロメチルブチルホスホン酸塩、部分フッ素化高級アルキル塩などの部分フッ素化アルキルホスホン酸塩; トリフルオロメチルホスホン酸塩、ペンタフルオロエチルホスホン酸塩、ヘプタフルオロプロピルホスホン酸塩、ペンタデカフルオロヘプチルホスホン酸塩、ヘプタデカフルオロオクチルホスホン酸塩、ノナデカフルオロノニル塩などのパーフルオロアルキルホスホン酸塩; トリフルオロメチルオキシエチルホスホン酸塩、トリフルオロメチルオキシプロピルホスホン酸塩、トリフルオロメチル(ポリオキシエチレン)ホスホン酸塩、ペンタフルオロエチル(ポリオキシエチレン)ホスホン酸塩、トリフルオロメチル(ポリオキシパーフルオロエチレン)ホスホン酸塩、ペンタフルオロエチル(ポリオキシパーフルオロエチレン)ホスホン酸塩などの一般式Rf(ORf’)OPOMで表わされるエーテル結合を含むフルオロアルキルホスホン酸塩が挙げられる。
 フルオロアルキル亜ホスホン酸塩としては、具体的には、モノフルオロメチルエチル亜ホスホン酸塩、トリフルオロメチルエチル亜ホスホン酸塩、トリフルオロメチルプロピル亜ホスホン酸塩、トリフルオロメチルブチル亜ホスホン酸塩、部分フッ素化高級アルキル亜ホスホン酸塩などの部分フッ素化アルキル亜ホスホン酸塩: トリフルオロメチル亜ホスホン酸塩、ペンタフルオロエチル亜ホスホン酸塩、ヘプタフルオロプロピル亜ホスホン酸塩、ペンタデカフルオロヘプチル亜ホスホン酸塩、ヘプタデカフルオロオクチル亜ホスホン酸塩、ノナデカフルオロノニル塩などのパーフルオロアルキル亜ホスホン酸塩; トリフルオロメチルオキシエチル亜ホスホン酸塩、トリフルオロメチルオキシプロピル亜ホスホン酸塩、トリフルオロメチル(ポリオキシエチレン)亜ホスホン酸塩、ペンタフルオロエチル(ポリオキシエチレン)亜ホスホン酸塩、トリフルオロメチル(ポリオキシパーフルオロエチレン)亜ホスホン酸塩、ペンタフルオロエチル(ポリオキシパーフルオロエチレン)亜ホスホン酸塩などの一般式Rf(ORf’)POMで表わされるエーテル結合を含むフルオロアルキル亜ホスホン酸塩が挙げられる。
 フルオロアルキルアンモニウム塩としては、具体的には、モノフルオロメチルエチルアンモニウム塩、トリフルオロメチルエチルアンモニウム塩、トリフルオロメチルプロピルアンモニウム塩、トリフルオロメチルブチルアンモニウム塩、部分フッ素化高級アルキルアンモニウム塩などの部分フッ素化アルキルアンモニウム塩; トリフルオロメチルアンモニウム塩、ペンタフルオロエチルアンモニウム塩、ヘプタフルオロプロピルアンモニウム塩、ペンタデカフルオロヘプチルアンモニウム塩、ヘプタデカフルオロオクチルアンモニウム塩、ノナデカフルオロノニルアンモニウム塩などのパーフルオロアルキルアンモニウム塩; トリフルオロメチルオキシエチルアンモニウム塩、トリフルオロメチルオキシプロピルアンモニウム塩、トリフルオロメチル(ポリオキシエチレン)アンモニウム塩、ペンタフルオロエチル(ポリオキシエチレン)アンモニウム塩、トリフルオロメチル(ポリオキシパーフルオロエチレン)アンモニウム塩、ペンタフルオロエチル(ポリオキシパーフルオロエチレン)アンモニウム塩などの一般式(Rf(ORf’) NH(4-x)Mで表わされるエーテル結合を含むフルオロアルキルアンモニウム塩が挙げられる。
 本発明において、F1SおよびF1Bを特定の範囲内に調整する方法の一つとして、PVAと適度な親和性を有するフッ素含有界面活性剤を選択することが挙げられる。すなわち、PVAと過度の親和性を有するフッ素含有界面活性剤を選択した場合、界面活性剤は容易に水溶性フィルムの内部に拡散し、剥離性の改善効果を得にくくなるおそれがある。一方、PVAとの親和性が不良なフッ素含有界面活性剤を選択した場合、水溶性フィルムの表面に転写される界面活性剤の量が少なくなり、吸湿によるこう着を生じやすくなる。この観点より、上記界面活性剤の中から、フルオロアルキルアルコール、フルオロアルキルリン酸エステル塩、フルオロアルキルスルホン酸塩の、いずれかを使用することが好ましい。これらの界面活性剤は、1種類を使用してもよいし、複数を組み合わせて使用してもよい。また、本発明の効果を妨げない範囲で、他の界面活性剤と組み合わせてもよい。
 支持体上に流涎されたPVA膜は支持体上およびその後の乾燥工程で加熱乾燥される間に結晶化が進む。特に水分率が多い領域で加熱されることによってPVA分子鎖の運動性が高くなるため結晶化が進み、結晶化度が高くなる。したがって、乾燥速度が速すぎると結晶が十分に成長せず、結晶化度が不足するおそれがある。一方、乾燥速度が遅すぎると結晶成長が進み結晶子サイズが大きくなる傾向がある。また、与える熱量が多すぎると結晶化度が大きくなり、水溶性が不足するおそれがある。
 製膜原液を流涎する支持体の表面温度は50~110℃であることが好ましい。表面温度が50℃未満の場合、乾燥がゆっくりと進むことにより結晶化が進行し、水溶性が悪化するだけでなく、乾燥に要する時間が長くなり生産性が低下する傾向がある。また、乾燥に時間を要すると、フッ素含有界面活性剤がフィルム内部まで浸透し、剥離性が悪化する傾向がある。110℃を超える場合は、発泡等の膜面の異常を生じやすくなる傾向、および急速に乾燥が進むことにより非晶成分が多くなって、吸湿によるブロッキングを起こしやすくなる傾向がある。フッ素含有界面活性剤の浸透状態を調節し易くする観点から、上記表面温度は60~100℃であることが好ましく、65~95℃であることがより好ましい。
 支持体上でPVA膜を加熱すると同時に、PVA膜の非接触面側の全領域に風速1~10m/秒の熱風を均一に吹き付けて、乾燥速度を調節してもよい。非接触面側に吹き付ける熱風の温度は、乾燥効率や乾燥の均一性などの点から、50~150℃であることが好ましく、70~120℃であることがより好ましい。
 水溶性フィルムは、支持体上で好ましくは揮発分率5~50質量%にまで乾燥された後、剥離される。その際、支持体上に塗布されたフッ素含有界面活性剤は、水溶性フィルムの支持体に接した面(以下、支持体面と称することがある)に転写される。
 支持体から剥離された水溶性フィルムは、必要に応じてさらに乾燥される。乾燥の方法に特に制限はなく、乾燥炉や乾燥ロールに接触させる方法が挙げられる。複数の乾燥ロールで乾燥させる場合は、フィルムの一方の面と他方の面を交互に乾燥ロールに接触させることが、フィルム両面の物性差を低減させるために、好ましい。乾燥ロールの数は3個以上であることが好ましく、4個以上であることがより好ましく、5~30個であることがさらに好ましい。乾燥炉、乾燥ロールの温度は、40℃以上110℃以下であることが好ましい。乾燥炉、乾燥ロールの温度の上限は100℃以下であることがより好ましく、90℃以下であることがより好ましく、85℃以下であることが更に好ましい。乾燥炉、乾燥ロールの温度が高すぎると、結晶化度が高くなって、水溶性が低下するおそれがある。一方、乾燥炉、乾燥ロールの温度の下限は45℃以上であることがより好ましく、50℃以上であることがさらに好ましい。乾燥炉、乾燥ロールの温度が低すぎると、結晶化度が低くなって、吸湿によるブロッキングを生じやすくなるおそれがある。
 水溶性フィルムに対して、必要に応じてさらに熱処理を行うことができる。熱処理を行うことにより、フィルムの強度、水溶性などの調整を行うことができる。熱処理の温度は60℃以上135℃以下であることが好ましい。熱処理温度の上限は130℃以下であることがより好ましい。熱処理温度が高すぎると、与える熱量が多すぎるため結晶化度が高くなり、水溶性が低下するおそれがある。
 このようにして製造された水溶性フィルムは、必要に応じて、さらに、調湿処理、フィルム両端部(耳部)のカットなどを行い、円筒状のコアの上にロール状に巻き取られ、防湿包装されて、製品となる。
 本発明において、前記支持体面と反対側の面(以下、開放面と称することがある)の、フッ素元素の全元素に占める割合を調整する方法は、(1)製膜後に開放面にフッ素化合物を塗布する方法や、(2)製膜工程において乾燥ロールを使用する場合に、開放面が接する乾燥ロールの表面にフッ素含有界面活性剤を塗布して、それを開放面に転写する方法、(3)支持体面に過剰量のフッ素含有界面活性剤を転写しておき、製膜したフィルムを巻き取る際の巻取張力を調整する事により、支持体面上のフッ素含有界面活性剤の一部を開放面上に転写する方法などが挙げられる。
 これらの中で、製膜設備コストや生産性の観点より、前記(3)の支持体面に過剰量のフッ素含有界面活性剤を転写しておき、製膜したフィルムを巻き取る際の巻取張力を調整する事により、支持体面上のフッ素含有界面活性剤の一部を開放面上に転写する方法が、好ましい。その際の巻取張力は、30~200N/mであることが好ましい。巻取張力が30N/m未満の場合、フィルムの開放面に転写されるフッ素含有界面活性剤の量が少なすぎるおそれがある。一方、巻取張力が200N/mを超える場合、フィルムの開放面に転写されるフッ素含有界面活性剤の量が多くなりすぎたり、フィルムの皺などの膜面異常が発生したりするおそれがある。巻取張力は、より好ましくは40N/m以上であり、さらに好ましくは50N/m以上であり、また、より好ましくは160N/m以下であり、さらに好ましくは120N/m以下である。
 上述した一連の処理によって最終的に得られる水溶性フィルムの揮発分率は1~5質量%の範囲内にあることが好ましく、2~4質量%の範囲内にあることがより好ましい。
 本発明の水溶性フィルムは、10℃の脱イオン水に浸漬した浸漬した時の完溶時間が150秒以内であることが好ましい。完溶時間が150秒以内であることにより、薬剤等の包装用フィルムとして好適に使用できる。完溶時間は90秒以内であることがより好ましく、60秒以内であることがさらに好ましく、45秒以内であることが特に好ましい。一方、完溶時間の下限に特に制限はないが、完溶時間が短すぎる水溶性フィルムでは、雰囲気中の水分の吸湿によるフィルム間のブロッキングやフィルム強度の低下などの問題が生じやすくなる傾向があることから、5秒以上であることが好ましく、10秒以上であることがより好ましく、15秒以上であることがさらに好ましく、20秒以上であることが特に好ましい。
 本発明の水溶性フィルムの厚みに特に制限はないが、厚みが厚すぎると二次加工性が悪化する傾向があることから、200μm以下であることが好ましく、150μm以下であることがより好ましく、100μm以下であることがさらに好ましく、50μm以下であることが特に好ましい。また厚みがあまりに薄い場合、水溶性フィルムの力学的強度に問題が生じるおそれがあることから、5μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることがさらに好ましく、20μm以上であることが特に好ましい。なお、水溶性フィルムの厚みは、任意の10箇所(例えば、水溶性フィルムの長さ方向に引いた直線上にある任意の10箇所)の厚みを測定し、それらの平均値として求めることができる。
<用途>
 本発明の水溶性フィルムは、水溶性と力学強度のバランスに優れ、各種水溶性フィルムの用途に好適に使用することができる。このような水溶性フィルムとしては、例えば、薬剤包装用フィルム、液圧転写用ベースフィルム、刺繍用基材フィルム、人工大理石成形用離型フィルム、種子包装用フィルム、汚物収容袋用フィルムなどが挙げられる。これらの中でも、本発明の効果がより顕著に奏されることから、本発明の水溶性フィルムは薬剤包装用フィルムとして使用されるのが好ましい。
 本発明の水溶性フィルムを薬剤包装用フィルムとして使用する場合における薬剤の種類としては、農薬、洗剤(漂白剤を含む)、殺菌剤などが挙げられる。薬剤の物性に特に制限はなく、酸性であっても、中性であっても、アルカリ性であってもよい。また、薬剤にはホウ素含有化合物が含まれていてもよい。薬剤の形態としては、粉末状、塊状、ゲル状および液体状のいずれであってもよい。包装形態に特に制限はないが、薬剤を単位量ずつ包装(好ましくは密封包装)するユニット包装の形態が好ましい。本発明のフィルムを薬剤包装用フィルムとして使用して薬剤を包装することにより、本発明の包装体が得られる。
 以下に本発明を実施例などにより具体的に説明するが、本発明は、以下の実施例により何ら限定されるものではない。なお、以下の実施例および比較例において採用された評価項目とその方法は、下記の通りである。
(1)X線光電子分光分析(XPS)
 (1-1)水溶性フィルム表面のフッ素元素の全元素に占める割合の分析
 フィルムを5mm×5mmのサイズに裁断し、導電性両面テープを介して、測定台座にセットする。測定にあたっては、フィルム両面を測定し、フッ素元素量が多い方の面の値を採用する。下記測定条件で各サンプルを測定した。
測定装置:Ohi Quantera SXM(ULVAX―PHI.INC.)
解析ソフト: Multi Pack ver9.0 (ULVAX―PHI.INC.)X線源:単色化Al Kα(1486.6eV)
X線ビーム径:100μmφ(25W、15kV)
測定範囲:100μm×300μm
信号の取り込み角:45°
帯電中和条件:中和電子銃、Ar+イオン銃
真空度:1×10-6Pa
測定元素(定量に用いた励起される内殻原子のピーク):C(1s)、N(1s)、O(1s)、F(1s)、Na(1s)、Si(2p)、P(2p)、S(2p)
 得られたスペクトルを解析し、フィルム表面におけるフッ素元素の全元素に占める割合を求めた。
 (1-2) 表面から0.1μmの深さのフッ素元素の全元素に占める割合の分析
 XPS分析装置内において、C60でフィルムを0.1μm深さまでエッチングした後、上記と同様の条件で、フィルム深さ0.1μmにおける元素量を定量し、フッ素元素の全元素に占める割合を算出した。
(エッチング処理条件)
  測定条件:         加速電圧10kV
  試料電流:         20mA
  走査範囲:         0.5mm×2.0mm
  エッチングレート:  1.0nm/min
(2)支持体からの剥離性評価
 水溶性フィルムを製膜した際に、フィルムの支持体からの剥離状態を目視で観察し、以下の基準で評価した。
 剥離性評価基準:
  A…剥離位置が幅方向に水平であり、フィルム面に皺、延伸の発生が無い。
  B…剥離位置が幅方向に水平であるが、フィルム面に皺、延伸が発生している。
  C…剥離位置が幅方向に波打ち、フィルム面に皺、延伸が発生している。
(3)シール性評価
 フッ素元素の全元素に占める割合が低いフィルム面同士のシール性を評価した。
(3-1)前調整
 水溶性フィルムを製膜の流れ方向(MD)に約30cm、幅方向(TD)に約10cmのサイズの長方形の試験片を、サンプルごとに各2枚切り出し、10℃-35%RHの環境下に16時間以上保持した。
(3-2)フィルムの貼り合せ
 10℃-35%RHの環境下で、台上に上記の前調整後のフィルムを1枚置き、フィルムの4隅を粘着テープで固定した。さらにその上にもう1枚のフィルムを重ねて、10cmの辺の一方の両端を粘着テープで固定し、固定されてない端部を140/10アニロックスローラーを使用して、ESIPROOFプルーフィングローラーに通した。0.5mLの脱イオン水を、ESIPROOFプルーフィングローラーのドクターブレード上に注ぎ、ローラーを約7.5cm/秒の速度で引いて、2枚のフィルムを貼り合せた。なおこの時、ローラーはフィルムの端まで引かず、引張試験機のチャックにセットするために、フィルムの端に貼り合せていない部分を残した。貼り合せた水溶性フィルムから、MDに25mm幅の短冊状の試験片を3枚切り出した。
(3-3)シール強度の測定
 貼り合せ後、10分間放置した後、試験片を引張試験機にセットして、JIS K6854-3:1999に基づいたT型はく離試験に準拠してはく離し、得られた3枚の試験片のはく離力の平均値を接着力とした。当該試験において測定条件は、引張速度30mm/分とした。
 評価基準:
  A…シール性に優れる・・・シール強度目安:5N/25mmを超える
  B…シール性にやや劣る・・・シール強度目安:1~5N/25mm
  C…シールができない・・・シール強度目安:1N/25mm未満
(4)透明性評価
 各フィルム内に緑色に着色した液体(擬似洗剤)を梱包したものの、内容物視認性により透明性を評価した。
 評価基準:
  A…透明性に優れ、曇りなく透けて見える。・・・目安:全ヘイズ値が50%以下
  B…若干濁度があるものの、曇りなく透けて見える。・・・目安:全ヘイズ値が50~70%
  C…フィルムが曇って見え、不透明でありはっきりと透けて見えない。・・・目安:全ヘイズ値が70%以上
(5)フィルムこう着性評価
 水溶性PVAフィルムを3cm×20cmに切り出し、短辺を軸として内径約1cmの円筒状に丸めた後、両端部を切断した。これにより、内径1cm、幅1cmの小さな水溶性フィルムのロールを作製した。口幅15mmのダブルクリップ(コクヨ株式会社製、商品名Scel-bo)を用いて、得られたロールの中心軸付近を、クリップの挟む部分の方向がロールの軸方向に一致するようにして挟み、60℃-90%RHの条件下に16時間保管した。保管後のフィルムロールを巻出して、端部における接触面同士のこう着状態を評価した。
 評価基準:
  A…端部において接触面同士のこう着がなく、水溶性フィルムを抵抗なく巻き出せた。
  B…巻出し時に抵抗が感じられたが、力を加えれば水溶性フィルムを巻き出せた。
  C…端部において接触面同士がこう着しており、水溶性フィルムを巻き出すことができなかった。
<実施例1>
 製膜の支持体となる金属ドラム(第1乾燥ロール)上に、フッ素含有界面活性剤としてフルオロアルキルアルコール(フッ素テロマーアルコール:以下、FTOHsと称することがある)の0.1質量%水分散液を、水分散液として2.5g/mとなるようにロールコーターで連続的に塗工し、それに80℃の熱風を吹きつけて乾燥し、FTOHsを金属ドラム表面に連続的に塗工した。
 その上に、ポリ酢酸ビニルをけん化することにより得られたマレイン酸メチル(以下、MAと称することがある)変性PVA(けん化度99.9モル%、重合度1700、MA変性量5mol%)100質量部、可塑剤としてグリセリン50質量部、界面活性剤としてラウリン酸ジエタノールアミド2.0質量部、および水からなる揮発分率60質量%の製膜原液を調整し、ろ過し製膜原液を得た。得られた製膜原液をTダイからFTOHsが塗工された第1乾燥ロール(表面温度80℃)上へ連続的に膜状に吐出し、第1乾燥ロール上で、開放面の全体に85℃の熱風を5m/秒の速度で吹き付けて乾燥した。次いで第1乾燥ロールから剥離して、開放面と支持体面とが各乾燥ロールに交互に接触するように、第2乾燥ロール以降の乾燥をロール表面温度75℃で行った後、巻取張力90N/mで巻き取って、水溶性フィルム(厚み35μm、幅1200m)のロールを得た。
 得られたフィルムロールから水溶性フィルムを採取して、フッ素元素量をXPSで測定した結果、F1Sは16.7mol%、F1Bは検出下限以下(<0.1mol%)、F2Sは9.4mol%、F2Bは検出下限以下(<0.1mol%)、であった。金属ドラムからの剥離性、シール性、内容物視認性、およびフィルムこう着性の評価結果は良好であった。
<実施例2>
 けん化度が88mol%のMA変性PVAを使用したこと以外は実施例1と同様にして水溶性フィルムを得た。
<実施例3>
 可塑剤量を30質量部としたこと以外は実施例1と同様にして水溶性フィルムを得た。
<実施例4>
 変性率が2mol%、けん化度88mol%のマレイン酸モノメチル(以下、MMMと称することがある)変性PVAを用い、可塑剤量を25質量部としたこと以外は、実施例1と同様にして水溶性フィルムを得た。
<実施例5、6>
 フッ素含有界面活性剤として、それぞれ、ペルフルオロアルキルスルホン酸ナトリウム塩、りん酸トリス(2,2,2-トリフルオロエチル)を使用したこと以外は、実施例1と同様にして水溶性フィルムを得た。
<実施例7、8>
 第1乾燥ロール上へのフッ素含有界面活性剤の水分散液の塗工量を、それぞれ1.1g/m、8.1g/mとしたこと以外は、実施例4と同様にして水溶性フィルムを得た。
<実施例9>
 開放面が接触する第2乾燥ロール上にも、第1乾燥ロールと同様にFTOHsの分散液を連続的に塗工、乾燥した以外は、実施例1と同様にして水溶性フィルムを得た。
<比較例1>
 フッ素含有界面活性剤の水分散液の塗工量を24.6g/mとしたこと以外は、実施例1と同様にして水溶性フィルムを得た。このフィルムのF1Sは38.5mol%、F1Bは1.2mol%であり、ドラムからの剥離性は良好であったが、シール性が悪かった。
<比較例2>
 フッ素含有界面活性剤の水分散液塗工後に、熱風乾燥を行わず、第1乾燥ロールの余熱のみで乾燥させたこと以外は、実施例1と同様にして水溶性フィルムを得た。このフィルムのF1Sは5.6mol%、F1Bは3.2mol%であり、ドラムからの剥離性が不良であった。
<比較例3>
 フッ素含有界面活性剤を毎周塗工する代わりに、フッ素含有樹脂(ジクロロペンタフルオロプロパン(HCFC-225)のエタノール溶液をロール上に塗工、乾燥しておき、フッ素樹脂コーティングを施した。それ以外は実施例1と同様に水溶性フィルムを得た。フィルムの剥離性には優れていたが、フィルムロールを巻き返す際に、フィルム同士が接着したり、搬送ロール内に接着したりしたため、フィルムに皺が発生していた。
<比較例4、5>
 フッ素含有界面活性剤を塗工する代わりに、PVA製膜原液内に、FTOHsを5000ppm、100ppmとなるように添加し、製膜したこと以外は、実施例1と同様にして水溶性フィルムを得た。これらのフィルムの剥離性は比較例4の方では良好であったが、比較例5のフィルムでは不良であり、また両者とも、フィルムの透明性は悪く、濁ったフィルムとなった。
 得られたフィルムの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の結果から、本発明の水溶性フィルムは支持体からの剥離性に優れるとともに、シール性、透明に優れる。またフィルムのこう着性も抑制されている。本発明の水溶性フィルムはシール性、透明性に優れ、フィルムのこう着性が抑制されることから、薬剤包装用フィルム、液圧転写用ベースフィルム、刺繍用基材フィルム、人工大理石成形用離型フィルム、種子包装用フィルム、汚物収容袋用フィルムなどに好適に用いられる。特に本発明の水溶性フィルムは農薬、洗剤(漂白剤を含む)、殺菌剤等の薬剤を包装する薬剤包装用フィルムに好適に使用される。

 

Claims (11)

  1.  ポリビニルアルコール樹脂を含有する水溶性フィルムであって、前記水溶性フィルムの第1の表面を、X線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F1S)が、1mol%以上、25mol%以下、かつ、第1の表面から0.1μmの深さの面をX線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F1B)が、0.5mol%以下である水溶性フィルム。
  2.  前記水溶性フィルムにおいて、前記第1の表面と対向する第2の表面を、X線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F2S)が、1mol%以上、25mol%以下、かつ、第2の表面から0.1μmの深さの面をX線光電分光法により分析した時に求められるフッ素元素の全元素に占める割合(F2B)が、0.5mol%以下である、請求項1に記載の水溶性フィルム。
  3.  前記F1SとF2Sの差が2.5mol%以上である、請求項2に記載の水溶性フィルム。
  4.  前記フッ素元素が、分子量10000以下のフッ素含有界面活性剤に含有されていることを特徴とする、請求項1~3に記載の水溶性フィルム。
  5.  フッ素含有界面活性剤が、フルオロアルキルアルコール、フルオロアルキルカルボン酸塩、フルオロアルキル硫酸エステル塩、フルオロアルキルスルホン酸塩、フルオロアルキルリン酸エステル塩、フルオロアルキルホスホン酸塩、フルオロアルキル亜ホスホン酸塩、フルオロアルキルアンモニウム塩からなる群から選ばれる少なくとも1種である、請求項4に記載の水溶性フィルム。
  6.  フッ素含有界面活性剤が、フルオロアルキルアルコール、フルオロアルキルリン酸エステル塩、フルオロアルキルスルホン酸塩からなる群から選ばれる少なくとも1種である、請求項5に記載の水溶性フィルム。
  7.  請求項1~6に記載の水溶性フィルムが薬剤を収容している包装体。
  8.  前記の薬剤が農薬、洗剤または殺菌剤である、請求項7に記載の包装体。
  9.  前記の薬剤が液体状である、請求項7または8に記載の包装体。
  10.  支持体上にフッ素含有界面活性剤を塗布し、該塗布面上にポリビニルアルコール樹脂を含有する製膜原液を膜状に流涎する、請求項4~6に記載の水溶性フィルムの製造方法。
  11.  フッ素含有界面活性剤の溶液または分散液を支持体上に連続的に塗布し、乾燥して支持体上にフッ素含有界面活性を塗布する、請求項10に記載の水溶性フィルムの製造方法。

     
PCT/JP2020/017286 2019-04-23 2020-04-22 水溶性フィルムおよび包装体 WO2020218321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080030962.5A CN113874426A (zh) 2019-04-23 2020-04-22 水溶性薄膜及包装体
EP20793976.0A EP3960798A4 (en) 2019-04-23 2020-04-22 WATER SOLUBLE FILM AND PACKAGING
JP2021516149A JP7398441B2 (ja) 2019-04-23 2020-04-22 水溶性フィルムおよび包装体
US17/505,981 US20220041824A1 (en) 2019-04-23 2021-10-20 Water-soluble film and packaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019082218 2019-04-23
JP2019-082218 2019-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/505,981 Continuation US20220041824A1 (en) 2019-04-23 2021-10-20 Water-soluble film and packaging

Publications (1)

Publication Number Publication Date
WO2020218321A1 true WO2020218321A1 (ja) 2020-10-29

Family

ID=72942169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017286 WO2020218321A1 (ja) 2019-04-23 2020-04-22 水溶性フィルムおよび包装体

Country Status (5)

Country Link
US (1) US20220041824A1 (ja)
EP (1) EP3960798A4 (ja)
JP (1) JP7398441B2 (ja)
CN (1) CN113874426A (ja)
WO (1) WO2020218321A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004345A1 (ja) * 2020-06-29 2022-01-06 株式会社クラレ 水溶性フィルムおよび包装体
WO2022004342A1 (ja) * 2020-06-29 2022-01-06 株式会社クラレ 水溶性フィルムおよび包装体
WO2022092038A1 (ja) * 2020-10-28 2022-05-05 株式会社クラレ ポリビニルアルコールフィルム及びそれを用いた偏光フィルム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0911606A (ja) * 1995-06-28 1997-01-14 Toyobo Co Ltd インクジェット記録用白色フィルム
JP2006307059A (ja) 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルムおよびそれを用いた偏光フィルム、偏光板
JP2006305924A (ja) 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルムの製造方法、およびポリビニルアルコール系フィルム
JP2013147670A (ja) * 2006-07-23 2013-08-01 Ube Industries Ltd 多成分ポリイミドからなるポリイミドフィルム及びその製造方法
WO2016047126A1 (ja) * 2014-09-26 2016-03-31 株式会社クラレ 変性ポリビニルアルコールおよび水溶性フィルム
JP2017078166A (ja) 2015-10-19 2017-04-27 日本合成化学工業株式会社 水溶性フィルム及び薬剤包装体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017346B2 (ja) * 1978-06-21 1985-05-02 日本合成化学工業株式会社 表面改質されたビニルアルコ−ル重合体フイルム及びその製造法
JPS553455A (en) * 1978-06-23 1980-01-11 Japan Atom Energy Res Inst Preparation of fluorine-containing crosslinked copolymer
JP3782162B2 (ja) * 1996-07-24 2006-06-07 株式会社クラレ ポリビニルアルコール系フィルム
US20030215582A1 (en) * 2002-05-20 2003-11-20 Eastman Kodak Company Optical films prepared by coating methods
US20130045390A1 (en) * 2011-08-16 2013-02-21 Rui Xu Base Film of Modified Polyvinyl Alcohol and Its Preparation Method and Polarizer
KR101399427B1 (ko) * 2012-04-18 2014-05-27 에스케이씨 주식회사 폴리비닐알코올계 필름 및 이를 이용한 편광 필름
WO2018237212A1 (en) * 2017-06-22 2018-12-27 The Procter & Gamble Company FILMS COMPRISING A WATER-SOLUBLE LAYER AND AN ORGANIC COATING DEPOSITED IN STEAM PHASE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0911606A (ja) * 1995-06-28 1997-01-14 Toyobo Co Ltd インクジェット記録用白色フィルム
JP2006307059A (ja) 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルムおよびそれを用いた偏光フィルム、偏光板
JP2006305924A (ja) 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルムの製造方法、およびポリビニルアルコール系フィルム
JP2013147670A (ja) * 2006-07-23 2013-08-01 Ube Industries Ltd 多成分ポリイミドからなるポリイミドフィルム及びその製造方法
WO2016047126A1 (ja) * 2014-09-26 2016-03-31 株式会社クラレ 変性ポリビニルアルコールおよび水溶性フィルム
JP2017078166A (ja) 2015-10-19 2017-04-27 日本合成化学工業株式会社 水溶性フィルム及び薬剤包装体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3960798A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004345A1 (ja) * 2020-06-29 2022-01-06 株式会社クラレ 水溶性フィルムおよび包装体
WO2022004342A1 (ja) * 2020-06-29 2022-01-06 株式会社クラレ 水溶性フィルムおよび包装体
WO2022092038A1 (ja) * 2020-10-28 2022-05-05 株式会社クラレ ポリビニルアルコールフィルム及びそれを用いた偏光フィルム

Also Published As

Publication number Publication date
JP7398441B2 (ja) 2023-12-14
US20220041824A1 (en) 2022-02-10
EP3960798A1 (en) 2022-03-02
CN113874426A (zh) 2021-12-31
EP3960798A4 (en) 2023-02-22
JPWO2020218321A1 (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2020218321A1 (ja) 水溶性フィルムおよび包装体
JP7546030B2 (ja) 水溶性フィルム、その製造方法および包装体
JP7336464B2 (ja) 水溶性フィルムおよび包装体
JPWO2020138441A1 (ja) 水溶性フィルムおよび包装体
JP7217295B2 (ja) 水溶性フィルムおよび包装体
JP7162077B2 (ja) 水溶性フィルムおよび包装体
US20210324163A1 (en) Water-soluble film and package
US20210324158A1 (en) Water-soluble film and package
US20220135301A1 (en) Water-soluble film and package
WO2022092038A1 (ja) ポリビニルアルコールフィルム及びそれを用いた偏光フィルム
US20230312846A1 (en) Water-soluble film and packaging
WO2022004343A1 (ja) 水溶性フィルムおよび包装体
JP7314438B1 (ja) 水溶性フィルム、製造方法及び包装体
US20230250245A1 (en) Water-soluble film and packaging
WO2022004346A1 (ja) 水溶性フィルムおよび包装体
WO2022004344A1 (ja) 水溶性フィルムおよび包装体
TW202037618A (zh) 聚乙烯醇薄膜及使用其之偏光薄膜的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020793976

Country of ref document: EP

Effective date: 20211123