WO2020218161A1 - 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 - Google Patents

吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 Download PDF

Info

Publication number
WO2020218161A1
WO2020218161A1 PCT/JP2020/016748 JP2020016748W WO2020218161A1 WO 2020218161 A1 WO2020218161 A1 WO 2020218161A1 JP 2020016748 W JP2020016748 W JP 2020016748W WO 2020218161 A1 WO2020218161 A1 WO 2020218161A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gel
resin particles
absorbent resin
jig
Prior art date
Application number
PCT/JP2020/016748
Other languages
English (en)
French (fr)
Inventor
河原 徹
海紗生 谷口
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2021516058A priority Critical patent/JP7117456B2/ja
Publication of WO2020218161A1 publication Critical patent/WO2020218161A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/20Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing organic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions

Definitions

  • the present invention relates to water-absorbent resin particles, a method for producing the same, an absorber, and an absorbent article.
  • Patent Document 1 discloses water-absorbent resin particles having a particle size that are suitably used for absorbent articles such as diapers.
  • Patent Document 2 describes a method of using a hydrogel-absorbing polymer having specific saline flow inducibility, pressure-lowering performance, etc. as an effective absorbent member for accommodating a body fluid such as urine. It is disclosed.
  • the liquid provided for the absorbent article is not sufficiently absorbed by the absorbent article, the excess liquid may flow on the surface of the absorbent article and leak to the outside of the absorbent article. Therefore, an excellent liquid absorption amount is required for the absorbent article, and in particular, the liquid is supplied to the absorbent article in a state of being attached to the object of use (diaper user, liquid source, etc.). At that time, it is required that leakage is unlikely to occur while absorbing a large amount of liquid.
  • One aspect of the present invention is to provide water-absorbent resin particles capable of obtaining an absorbent article having an excellent liquid-absorbing amount when the liquid is supplied in a state of being attached to a target for use, and a method for producing the same. With the goal.
  • Another aspect of the present invention is to provide an absorber and an absorbent article using the water-absorbent resin particles.
  • One aspect of the present invention provides water-absorbent resin particles having a gel repulsive force reduction rate of 5% or more measured by the following procedures (1) to (5).
  • a gel that swells 30 times as much as the water-absorbent resin particles is prepared in the recess of a container having a recess that opens upward in the vertical direction.
  • the flat surface of the jig having a flat surface is brought into contact with the surface of the gel from above in the vertical direction.
  • the jig in the vertical direction do pushed 1mm in the gel, obtaining a maximum value L 1 of load applied to the jig during the operation.
  • Another aspect of the present invention provides an absorber containing the above-mentioned water-absorbent resin particles.
  • Another aspect of the present invention provides an absorbent article comprising the absorber described above.
  • Another aspect of the present invention provides a method for producing water-absorbent resin particles, which comprises a step of selecting water-absorbent resin particles based on the gel repulsive force reduction rate measured by the following procedures (1) to (5).
  • a gel that swells 30 times as much as the water-absorbent resin particles is prepared in the recess of a container having a recess that opens upward in the vertical direction.
  • the flat surface of the jig having a flat surface is brought into contact with the surface of the gel from above in the vertical direction.
  • An operation of pushing the jig 1 mm into the gel in the vertical direction is performed to obtain a maximum value L 1 of the load applied to the jig during the operation.
  • water-absorbent resin particles capable of obtaining an absorbent article having an excellent liquid absorption amount when attached to a target for use.
  • a water-absorbent resin particle capable of obtaining an absorbent article having an excellent liquid absorption amount when the liquid is supplied in a state of being attached to a target for use, and a method for producing the same. can do. Further, according to another aspect of the present invention, it is possible to provide an absorber and an absorbent article using the water-absorbent resin particles. According to another aspect of the present invention, it is possible to provide application of resin particles, absorbers and absorbent articles to absorbents. According to another aspect of the present invention, it is possible to provide application of resin particles, an absorber and an absorbent article to the adjustment of the amount of liquid absorbed in the absorbent article.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • Saline refers to a 0.9% by mass sodium chloride aqueous solution.
  • the gel repulsive force reduction rate measured by the following procedures (1) to (5) is 5% or more.
  • a gel that swells 30 times as much as the water-absorbent resin particles is prepared in the recess of a container having a recess that opens upward in the vertical direction.
  • the flat surface of the jig having a flat surface is brought into contact with the surface of the gel from above in the vertical direction.
  • An operation of pushing the jig 1 mm into the gel in the vertical direction is performed to obtain a maximum value L 1 of the load applied to the jig during the operation.
  • the gel when the water-absorbent resin particles gel when the absorbent article is attached to the object to be used, the gel easily fits the shape of the attachment point to be used, and there is a gap inside the absorbent article at the attachment point. Even if it occurs, the gel can easily fill the gap. As a result, leakage of the liquid from the gap is suppressed, so that leakage is unlikely to occur while absorbing a large amount of liquid.
  • the 30-fold swelling gel used in step (1) in the gel repulsive force reduction rate test can be obtained by mixing 1 part by mass of water-absorbent resin particles and 29 parts by mass of physiological saline.
  • the container has a bottomed recess, and the container is arranged so that the opening direction of the recess is located on the upper side in the vertical direction.
  • the container has, for example, a flat bottom surface.
  • the side wall forming the recess may have a shape that does not interfere with the operation of each subsequent step, and for example, the side wall does not come into contact with the jig and the side wall.
  • the cross section of the recess perpendicular to the opening direction is, for example, circular. Glass can be used as the material of the container.
  • a jig having a flat surface and capable of transmitting the load applied when it comes into contact with the gel to the detector can be used.
  • the shape of the flat surface may be circular, for example, and the diameter of the circular flat surface may be 4.9 cm.
  • the jig includes, for example, a flat plate portion having a flat surface in contact with the gel. It is preferable that the entire flat plate portion is not immersed in the gel during the operations of steps (3) and (4).
  • the height of the flat plate portion may be 1 mm or more, and may exceed 1 mm.
  • the step (3) may be performed after the jig is brought into contact with the surface of the gel in the step (2) and then the jig is pulled away from the gel.
  • step (3) the jig is pushed into the gel by 1 mm in the vertical direction to obtain the maximum value L 1 (unit: N) of the first load applied to the jig during the operation.
  • step (4) the operation of pulling the jig back 0.5 mm from the gel in the vertical direction and then pushing the jig 0.5 mm into the gel is repeated 29 times, and the jig is used during the final operation in the repeated operation (reciprocating operation).
  • the maximum value L 30 (unit: N) of the load applied to is obtained.
  • a vertical load applied to the jig can be obtained as the gel repulsive force.
  • the load increases as the jig is pushed into the gel, and decreases as the jig is pulled back from the gel.
  • step (3) and step (4) when the jig is pushed into the gel by 1 mm, the maximum value of the load during each operation tends to be obtained.
  • step (4) the maximum value of the load in each operation can be measured 29 times by repeating the operation of pushing 1 mm 29 times, and the number of acquisitions of steps (3) and (4) in the final operation in the repeated operation. Is integrated to obtain the maximum value L 30 of the 30th load.
  • the scanning speed of the jig in the step (3) and the step (4) may be, for example, 10 mm / min.
  • step (5) as the following equation, the first maximum value L 1 and 30th maximum difference gel repulsive force decrease rate of the ratio L 1 of the load between the maximum value L 30 of the load of the load Get as.
  • Gel repulsive force reduction rate [%] (L 1- L 30 ) / L 1 x 100
  • the gel repulsive force reduction rate is preferably 6% or more, 7% or more, 8% or more, 9% or more, or 10% or more from the viewpoint of easily obtaining an excellent liquid absorption amount in the absorbent article.
  • the gel repulsive force reduction rate is 40% or less, 35% or less, 30% or less, 25% or less, 22% or less, 20% or less, 15% or less, from the viewpoint of easily obtaining an excellent liquid absorption amount in an absorbent article. Alternatively, 12.5% or less is preferable. From these viewpoints, the gel repulsive force reduction rate is preferably 5 to 40%.
  • the gel repulsive force reduction rate the gel repulsive force reduction rate at room temperature (25 ⁇ 2 ° C.) can be used.
  • the maximum value L 1 of the load obtained in the step (3) is 1.00 N or more, 1.20 N or more, 1.40 N or more, 1.60 N or more, from the viewpoint of easily obtaining an excellent liquid absorption amount in the absorbent article. It is preferably 1.70 N or more, 1.80 N or more, or 1.90 N or more.
  • the maximum value L 1 of the load is 6.00 N or less, 5.50 N or less, 5.00 N or less, 4.50 N or less, 4.00 N or less, from the viewpoint of easily obtaining an excellent liquid absorption amount in the absorbent article. It is preferably 50 N or less, or 3.00 N or less. From these viewpoints, the maximum load value L 1 is preferably 1.00 to 6.00 N.
  • the maximum value L 30 of the load obtained in the step (4) is 0.95 N or more, 1.00 N or more, 1.20 N or more, 1.40 N or more, from the viewpoint of easily obtaining an excellent liquid absorption amount in the absorbent article. It is preferably 1.50 N or more, 1.60 N or more, or 1.70 N or more.
  • the maximum load value L 30 is 5.50 N or less, 5.00 N or less, 4.75 N or less, 4.50 N or less, 4.00 N or less, from the viewpoint of easily obtaining an excellent liquid absorption amount in an absorbent article. It is preferably 50 N or less, 3.00 N or less, 2.50 N or less, or 2.20 N or less. From these viewpoints, the maximum load value L 30 is preferably 0.95 to 5.50 N.
  • the water-absorbent resin particles according to the present embodiment may be any water-absorbent resin particles as long as they can retain water, and the liquid to be absorbed may contain water.
  • the water-absorbent resin particles according to the present embodiment have excellent absorbency of body fluids such as urine, sweat, and blood (for example, menstrual blood).
  • the water-absorbent resin particles according to the present embodiment can be used as a constituent component of the absorber according to the present embodiment.
  • the water retention amount of the physiological saline of the water-absorbent resin particles according to the present embodiment is preferably in the following range.
  • the amount of water retained is 10 g / g or more, 15 g / g or more, 20 g / g or more, 25 g / g or more, 30 g / g or more, or 35 g / g or more from the viewpoint of easily obtaining an excellent liquid absorption amount in an absorbent article. Is preferable.
  • the amount of water retained is 80 g / g or less, 70 g / g or less, 65 g / g or less, 60 g / g or less, 55 g / g or less, 52 g / g or less, 50 g from the viewpoint of easily obtaining an excellent liquid absorption amount in an absorbent article. It is preferably / g or less, 48 g / g or less, or 45 g / g or less. From these viewpoints, the water retention amount is preferably 10 to 80 g / g. As the water retention amount, the water retention amount at room temperature (25 ⁇ 2 ° C.) can be used. The amount of water retained can be measured by the method described in Examples described later.
  • the water absorption amount of the physiological saline under a load of 4.14 kPa of the water-absorbent resin particles according to the present embodiment is preferably in the following range.
  • the amount of water absorption is 1 mL / g or more, 3 mL / g or more, 5 mL / g or more, 8 mL / g or more, 10 mL / g or more, 12 mL / g or more, 15 mL from the viewpoint of easily obtaining an excellent liquid absorption amount in an absorbent article. It is preferably / g or more, or 18 mL / g or more.
  • the amount of water absorption is 40 mL / g or less, 35 mL / g or less, 30 mL / g or less, 28 mL / g or less, 25 mL / g or less, or 22 mL / g or less from the viewpoint of easily suppressing excessive swelling in the absorbent article.
  • the water absorption amount is preferably 1 to 40 mL / g.
  • the water absorption amount at room temperature (25 ⁇ 2 ° C.) can be used. The amount of water absorption can be measured by the method described in Examples described later.
  • the 10-minute value of the non-pressurized DW of the water-absorbent resin particles according to the present embodiment is 30 mL / g or more, 35 mL / g or more, 40 mL / g or more, from the viewpoint of easily obtaining an excellent liquid absorption amount in the absorbent article. It is preferably 45 mL / g or more, or 50 mL / g or more.
  • the 10-minute value of unpressurized DW may be 80 mL / g or less, 75 mL / g or less, 70 mL / g or less, or 65 mL / g or less.
  • the 10-minute value of unpressurized DW may be 30 to 80 mL / g.
  • the 10-minute value of non-pressurized DW can be measured by the method described in Examples described later.
  • the 10-minute value of the non-pressurized DW is the water absorption rate represented by the amount of the water-absorbent resin particles that have absorbed the physiological saline within 10 minutes after the contact with the physiological saline under no pressure. ..
  • the non-pressurized DW is represented by the absorption amount [mL] per 1 g of the water-absorbent resin particles before the absorption of the physiological saline.
  • Examples of the shape of the water-absorbent resin particles according to the present embodiment include substantially spherical, crushed, and granular shapes. Further, the water-absorbent resin particles according to the present embodiment may be in a form in which fine particles (primary particles) are aggregated (secondary particles) in addition to a form in which each is composed of a single particle.
  • the medium particle size of the water-absorbent resin particles (water-absorbent resin particles before water absorption) according to the present embodiment is preferably in the following range.
  • the medium particle size is 100 ⁇ m or more, 140 ⁇ m or more, 200 ⁇ m or more, 250 ⁇ m or more, 280 ⁇ m or more, 300 ⁇ m or more, 310 ⁇ m or more, 320 ⁇ m or more, 330 ⁇ m or more, 340 ⁇ m or more from the viewpoint of easily obtaining an excellent liquid absorption amount in an absorbent article. , Or 350 ⁇ m or more is preferable.
  • the medium particle size is preferably 600 ⁇ m or less, 550 ⁇ m or less, 500 ⁇ m or less, 450 ⁇ m or less, 400 ⁇ m or less, or 380 ⁇ m or less from the viewpoint of easily keeping the tactile sensation of the absorbent article soft.
  • the medium particle size is preferably 100 to 600 ⁇ m.
  • the water-absorbent resin particles according to the present embodiment may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution can be obtained by performing an operation such as particle size adjustment using classification with a sieve. May be adjusted.
  • the water-absorbent resin particles according to the present embodiment are, for example, crosslinked polymers (derived from ethylenically unsaturated monomers) obtained by polymerizing a monomer containing an ethylenically unsaturated monomer as polymer particles.
  • a crosslinked polymer having a structural unit to be used) can be included. That is, the water-absorbent resin particles according to the present embodiment can have a structural unit derived from an ethylenically unsaturated monomer, and are a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer. It can contain polymer particles containing.
  • a water-soluble ethylenically unsaturated monomer can be used as the ethylenically unsaturated monomer.
  • the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method.
  • the reverse phase suspension polymerization method or the aqueous solution polymerization method is preferable from the viewpoint of ensuring good water absorption characteristics (water retention amount, etc.) of the obtained water-absorbent resin particles and easy control of the polymerization reaction.
  • a reverse phase suspension polymerization method will be described as an example as a method for polymerizing an ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer is preferably water-soluble, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N. , N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylamino Examples thereof include propyl (meth) acrylate and diethylaminopropyl (meth) acrylamide.
  • the amino group may be quaternized.
  • the ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.
  • the ethylenically unsaturated monomer is selected from the group consisting of (meth) acrylic acid and its salts, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It is preferable to contain at least one compound selected, and more preferably to contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof, and acrylamide. From the viewpoint of further enhancing the water absorption characteristics (water retention amount and the like), the ethylenically unsaturated monomer further preferably contains at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof. That is, the water-absorbent resin particles preferably have a structural unit derived from at least one selected from the group consisting of (meth) acrylic acid and salts thereof.
  • a monomer other than the above-mentioned ethylenically unsaturated monomer may be used.
  • Such a monomer can be used, for example, by being mixed with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer.
  • the amount of the ethylenically unsaturated monomer used should be the total amount of the monomer (the total amount of the monomer for obtaining the water-absorbent resin particles. For example, the total amount of the monomer giving the structural unit of the crosslinked polymer. The same shall apply hereinafter). On the other hand, it is preferably 70 to 100 mol%.
  • the ratio of (meth) acrylic acid and a salt thereof is more preferably 70 to 100 mol% with respect to the total amount of the monomers.
  • “Ratio of (meth) acrylic acid and its salt” means the ratio of the total amount of (meth) acrylic acid and its salt.
  • the water-absorbent resin particles containing a crosslinked polymer having a structural unit derived from the ethylenically unsaturated monomer and the above-mentioned ethylenically unsaturated monomer.
  • it contains at least one compound selected from the group consisting of (meth) acrylic acid and a salt thereof, and the ratio of the (meth) acrylic acid and a salt thereof is the total amount of the monomer for obtaining the water-absorbent resin particles.
  • 70 to 100 mol% of the total amount of the monomers giving the structural unit of the crosslinked polymer can be provided.
  • the ethylenically unsaturated monomer is usually preferably used as an aqueous solution.
  • concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as “monomer aqueous solution”) is preferably 20% by mass or more and preferably 25 to 70% by mass. More preferably, 30 to 55% by mass is further preferable.
  • Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
  • the monomer aqueous solution may be used by neutralizing the acid group with an alkaline neutralizer.
  • the degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics (water retention amount, etc.). It is preferably 10 to 100 mol%, more preferably 50 to 90 mol%, and even more preferably 60 to 80 mol% of the acidic group in the weight.
  • alkaline neutralizing agent examples include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • the alkaline neutralizer may be used alone or in combination of two or more.
  • the alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation. Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
  • the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like.
  • a radical polymerization initiator a water-soluble radical polymerization initiator can be used.
  • Nonionic surfactants include sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene.
  • Alkyl ether polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, Examples thereof include polyethylene glycol fatty acid ester.
  • Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , Phosphate ester of polyoxyethylene alkyl allyl ether and the like.
  • the surfactant may be used alone or in combination of two or more.
  • the surfactant is a sorbitan fatty acid ester. It preferably contains at least one compound selected from the group consisting of polyglycerin fatty acid esters and sucrose fatty acid esters. From the viewpoint that an appropriate particle size distribution of the water-absorbent resin particles can be easily obtained, and from the viewpoint that the water-absorbing characteristics (water retention amount, etc.) of the water-absorbent resin particles and the performance of the absorbent article using the same can be easily improved, the surfactant is used. , Sucrose fatty acid ester is preferably contained, and sucrose stearic acid ester is more preferable.
  • the amount of the surfactant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the aqueous monomer solution from the viewpoint of obtaining a sufficient effect on the amount used and economically. .08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
  • a polymer-based dispersant may be used in combination with the above-mentioned surfactant.
  • the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride.
  • the polymer-based dispersant may be used alone or in combination of two or more.
  • maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene
  • maleic anhydride-modified ethylene / propylene copolymer maleic anhydride / ethylene copolymer weight.
  • maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer At least one selected from the group consisting of coalescing is preferable.
  • the amount of the polymer-based dispersant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of obtaining a sufficient effect on the amount used and from the viewpoint of economic efficiency. , 0.08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
  • the hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms.
  • a chain aliphatic hydrocarbon such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, n-octane; cyclohexane , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene.
  • the hydrocarbon dispersion medium may be used alone
  • the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane from the viewpoint of being industrially easily available and having stable quality. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, commercially available ExxonHeptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) is used. You may.
  • the amount of the hydrocarbon dispersion medium used is preferably 30 to 1000 parts by mass and 40 to 500 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. Is more preferable, and 50 to 400 parts by mass is further preferable.
  • the amount of the hydrocarbon dispersion medium used is 30 parts by mass or more, the polymerization temperature tends to be easily controlled.
  • the amount of the hydrocarbon dispersion medium used is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
  • the radical polymerization initiator is preferably water-soluble, and is, for example, a persulfate such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t.
  • a persulfate such as potassium persulfate, ammonium persulfate, sodium persulfate
  • methyl ethyl ketone peroxide methyl isobutyl ketone peroxide
  • di-t-butyl peroxide di-t-butyl peroxide
  • -Peroxides such as butyl cumylperoxide, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) ) 2 hydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] 2 hydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] 2 hydrochloride, 2,2 '-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ Dihydrochloride, 2,2'-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis [2-methyl-N-
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • examples of the radical polymerization initiator include potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, and 2,2'-azobis [2- (2-imidazolin-2-).
  • Is preferable and at least one selected from the group consisting of potassium persulfate, ammonium persulfate, and sodium persulfate is more preferable.
  • potassium persulfate ammonium persulfate
  • sodium persulfate it is easy to increase the gel repulsive force reduction rate and adjust it to a suitable range while maintaining water absorption characteristics such as water retention.
  • the amount of the radical polymerization initiator used may be 0.05 to 10 mmol per 1 mol of the ethylenically unsaturated monomer.
  • the amount of the radical polymerization initiator used is 0.05 mmol or more, the polymerization reaction does not require a long time and is efficient.
  • the amount of the radical polymerization initiator used is 10 mmol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
  • the above-mentioned radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the monomer aqueous solution used for the polymerization may contain a chain transfer agent.
  • chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
  • the monomer aqueous solution used for polymerization may contain a thickener.
  • the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
  • Cross-linking by self-cross-linking may occur during polymerization, but cross-linking may be performed by using an internal cross-linking agent.
  • an internal cross-linking agent When an internal cross-linking agent is used, it is easy to control the water absorption characteristics (water retention amount, etc.) of the water-absorbent resin particles.
  • the internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
  • the internal cross-linking agent examples include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate.
  • polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropy
  • Acrylic acid carbamil esters compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc.
  • Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene
  • Glycidyl compound such as epichlorohydrin, epibromhydrin, ⁇ -methylepichlorohydrin; 2 reactive functional groups such as isocyanate compound (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one.
  • the internal cross-linking agent may be used alone or in combination of two or more. As the internal cross-linking agent, a polyglycidyl compound is preferable, and a diglycidyl ether compound is used.
  • the amount of the internal cross-linking agent used is from the viewpoint that it is easy to obtain an excellent liquid absorption amount in the absorbent article, and the water-soluble property is suppressed by appropriately cross-linking the obtained polymer, so that a sufficient water absorption amount can be obtained.
  • 30 mmol or less is preferable, 0.01 to 10 mmol is more preferable, 0.012 to 5 mmol is further preferable, and 0.015 to 1 mmol is particularly preferable, per 1 mol of the ethylenically unsaturated monomer.
  • 0.02 to 0.1 mmol is very preferable, and 0.025 to 0.06 mmol is very preferable.
  • An ethylenically unsaturated monomer, a radical polymerization initiator, a surfactant, a polymer-based dispersant, a hydrocarbon dispersion medium, etc. (if necessary, an internal cross-linking agent) are mixed and heated under stirring to obtain oil.
  • Reversed phase suspension polymerization can be performed in a medium water system.
  • a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (more polymer-based dispersant if necessary). Disperse.
  • a surfactant more polymer-based dispersant if necessary. Disperse.
  • the timing of adding the surfactant, the polymer-based dispersant, etc. may be either before or after the addition of the monomer aqueous solution.
  • the surfactant is prepared after the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed. It is preferable to carry out the polymerization after further dispersing the above.
  • Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization is preferably carried out in 2 to 3 steps from the viewpoint of increasing productivity.
  • the reaction mixture obtained in the first step polymerization reaction after the first step reverse phase suspension polymerization is subjected to an ethylenically unsaturated single amount.
  • the body may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step.
  • the above-mentioned radical polymerization initiator and / or internal cross-linking agent is used in the reverse phase of each stage of the second and subsequent stages.
  • reverse phase suspension polymerization is carried out by adding within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer.
  • An internal cross-linking agent may be used in the reverse phase suspension polymerization in each of the second and subsequent stages, if necessary.
  • an internal cross-linking agent it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. It is preferable to carry out turbid polymerization.
  • the temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by advancing the polymerization rapidly and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, 20 to 150 ° C. is preferable, and 40 to 120 ° C. is more preferable.
  • the reaction time is usually 0.5-4 hours.
  • the completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel.
  • cross-linking may be performed by adding a cross-linking agent to the obtained hydrogel polymer and heating it.
  • a cross-linking agent By performing cross-linking after the polymerization, the degree of cross-linking of the hydrogel polymer can be increased and the water absorption characteristics (water retention amount, etc.) can be further improved.
  • post-polymerization cross-linking agent examples include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl ether.
  • polyglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether are preferable. ..
  • the cross-linking agent may be used alone or in combination of two or more.
  • the amount of the cross-linking agent after polymerization is set per 1 mol of ethylenically unsaturated monomer from the viewpoint that suitable water absorption characteristics (water retention amount, etc.) can be easily obtained by appropriately cross-linking the obtained hydrogel-like polymer. , 30 mmol or less, more preferably 10 mmol or less, further preferably 0.01 to 5 mmol, particularly preferably 0.012 to 1 mmol, extremely preferably 0.015 to 0.1 mmol, 0.02 to 0.02 to 0.05 mmol is highly preferred.
  • the timing of adding the cross-linking agent after polymerization may be after the polymerization of the ethylenically unsaturated monomer used for polymerization, and in the case of multi-stage polymerization, it is preferable to add it after multi-stage polymerization.
  • the post-polymerization cross-linking agent contains water in consideration of heat generation during and after polymerization, retention due to process delay, opening of the system when the cross-linking agent is added, and fluctuation of water content due to addition of water accompanying the addition of the cross-linking agent. From the viewpoint of rate (described later), it is preferable to add in the region of [moisture content immediately after polymerization ⁇ 3% by mass].
  • polymer particles for example, polymer particles having a structural unit derived from an ethylenically unsaturated monomer
  • a drying method for example, (a) a hydrogel-like polymer is dispersed in a hydrocarbon dispersion medium, and co-boiling distillation is performed by heating from the outside, and the hydrocarbon dispersion medium is refluxed to remove water.
  • Examples thereof include (b) a method of taking out the hydrogel polymer by decantation and drying under reduced pressure, and (c) a method of filtering the hydrogel polymer with a filter and drying under reduced pressure. Above all, it is preferable to use the method (a) because of the simplicity in the manufacturing process.
  • the particle size of the water-absorbent resin particles can be adjusted by adjusting the rotation speed of the stirrer during the polymerization reaction, or by adding a flocculant into the system after the polymerization reaction or in the early stage of drying. By adding a flocculant, the particle size of the obtained water-absorbent resin particles can be increased.
  • an inorganic flocculant can be used as the flocculant.
  • the inorganic flocculant for example, powdered inorganic flocculant
  • the aggregating agent is preferably at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.
  • the flocculant is previously dispersed in a hydrocarbon dispersion medium or water of the same type as that used in the polymerization, and then the hydrogel polymer is mixed under stirring.
  • a method of mixing in a hydrocarbon dispersion medium containing the mixture is preferable.
  • the amount of the flocculant added is preferably 0.001 to 1 part by mass, more preferably 0.005 to 0.5 part by mass, based on 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. 01 to 0.2 parts by mass is more preferable.
  • the amount of the flocculant added is within the above range, water-absorbent resin particles having the desired particle size distribution can be easily obtained.
  • surface cross-linking of the surface portion (surface and vicinity of the surface) of the hydrogel polymer is performed using a surface cross-linking agent in the drying step (moisture removing step) or subsequent steps. Is preferable.
  • the surface cross-linking is preferably performed at a timing when the hydrogel polymer has a specific water content.
  • the time of surface cross-linking is preferably when the water content of the hydrogel polymer is 5 to 50% by mass, more preferably 10 to 40% by mass, and even more preferably 15 to 35% by mass.
  • the water content (mass%) of the hydrogel polymer is calculated by the following formula.
  • Moisture content [Ww / (Ww + Ws)] x 100
  • Ww Necessary when mixing a flocculant, a surface cross-linking agent, etc. to the amount obtained by subtracting the amount of water discharged to the outside of the system by the drying step from the amount of water contained in the monomer aqueous solution before polymerization in the entire polymerization step The amount of water in the hydrogel polymer to which the amount of water used is added.
  • Ws A solid content calculated from the amount of materials such as an ethylenically unsaturated monomer, a cross-linking agent, and an initiator that constitute a hydrogel polymer.
  • Examples of the surface cross-linking agent include compounds having two or more reactive functional groups.
  • Surface cross-linking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl ether.
  • the surface cross-linking agent may be used alone or in combination of two or more.
  • a polyglycidyl compound is preferable, and (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol are used. At least one selected from the group consisting of polyglycidyl ether is more preferable.
  • the amount of the surface cross-linking agent used is preferably 0.01 to 20 mmol with respect to 1 mol of the ethylenically unsaturated monomer used for polymerization from the viewpoint that suitable water absorption characteristics (water retention amount, etc.) can be easily obtained.
  • 0.05 to 10 mmol is more preferable, 0.1 to 5 mmol is further preferable, 0.15 to 1 mmol is particularly preferable, and 0.2 to 0.5 mmol is extremely preferable.
  • polymer particles which are surface-cross-linked dried products can be obtained by distilling off water and a hydrocarbon dispersion medium by a known method, drying under heating and reduced pressure, and the like.
  • the polymerization reaction can be carried out using various stirrers having stirring blades.
  • a flat plate blade a lattice blade, a paddle blade, a propeller blade, an anchor blade, a turbine blade, a Faudler blade, a ribbon blade, a full zone blade, a max blend blade and the like can be used.
  • the flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft.
  • the flat plate portion may have a slit or the like.
  • the water-absorbent resin particles according to the present embodiment include, for example, a gel stabilizer and a metal chelating agent (ethylenediaminetetraacetic acid and its salt, diethylenetriamine-5 acetic acid and its salt, for example, diethylenetriamine-5 sodium acetate and the like).
  • a gel stabilizer and a metal chelating agent ethylenediaminetetraacetic acid and its salt, diethylenetriamine-5 acetic acid and its salt, for example, diethylenetriamine-5 sodium acetate and the like.
  • Additional components such as fluidity improver (lubricant) can be further included. Additional components may be located inside the polymer particles, on the surface of the polymer particles, or both.
  • the water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles.
  • the inorganic particles can be arranged on the surface of the polymer particles.
  • the inorganic particles may be silica particles such as amorphous silica.
  • the content of the inorganic particles may be in the following range based on the total mass of the polymer particles.
  • the content of the inorganic particles may be 0.05% by mass or more, 0.1% by mass or more, 0.15% by mass or more, or 0.2% by mass or more.
  • the content of the inorganic particles may be 5.0% by mass or less, 3.0% by mass or less, 1.0% by mass or less, or 0.5% by mass or less.
  • the inorganic particles here usually have a minute size as compared with the size of the polymer particles.
  • the average particle size of the inorganic particles may be 0.1 to 50 ⁇ m, 0.5 to 30 ⁇ m, or 1 to 20 ⁇ m.
  • the average particle size can be measured by the pore electric resistance method or the laser diffraction / scattering method depending on the characteristics of the particles.
  • the absorber according to this embodiment contains the water-absorbent resin particles according to this embodiment.
  • the absorber according to the present embodiment may contain a fibrous substance, for example, a mixture containing water-absorbent resin particles and the fibrous substance.
  • the structure of the absorber may be, for example, a structure in which the water-absorbent resin particles and the fibrous material are uniformly mixed, and the water-absorbent resin particles are sandwiched between the fibrous material formed in a sheet or layer. It may be a configuration or another configuration.
  • the fibrous material examples include finely pulverized wood pulp; cotton; cotton linter; rayon; cellulosic fibers such as cellulose acetate; synthetic fibers such as polyamide, polyester and polyolefin; and a mixture of these fibers.
  • the average fiber length of the fibrous material is usually 0.1 to 10 mm, and may be 0.5 to 5 mm.
  • the fibrous material may be used alone or in combination of two or more.
  • hydrophilic fibers can be used.
  • the fibers may be adhered to each other by adding an adhesive binder to the fibrous material.
  • the adhesive binder include heat-sealing synthetic fibers, hot melt adhesives, and adhesive emulsions.
  • the adhesive binder may be used alone or in combination of two or more.
  • the heat-bondable synthetic fiber examples include a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer; a non-total fusion type binder having a side-by-side or core-sheath structure of polypropylene and polyethylene.
  • a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer
  • non-total fusion type binder having a side-by-side or core-sheath structure of polypropylene and polyethylene.
  • hot melt adhesive examples include ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer.
  • a mixture of a base polymer such as amorphous polypropylene and a tackifier, a plasticizer, an antioxidant and the like.
  • Examples of the adhesive emulsion include polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.
  • the absorber according to the present embodiment may contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a pigment, a dye, a fragrance, an adhesive and the like.
  • an inorganic powder for example, amorphous silica
  • the absorber may contain an inorganic powder in addition to the inorganic particles in the water-absorbent resin particles.
  • the shape of the absorber according to the present embodiment may be, for example, a sheet shape.
  • the thickness of the absorber (for example, the thickness of the sheet-shaped absorber) may be 0.1 to 20 mm or 0.3 to 15 mm.
  • the content of the water-absorbent resin particles in the absorber is 2 to 100% by mass, 10 to 80% by mass, or 20 to 20 to 100% by mass with respect to the total of the water-absorbent resin particles and the fibrous material from the viewpoint of easily obtaining sufficient absorption characteristics. It may be 60% by mass.
  • the content of the water-absorbent resin particles in the absorber is preferably 100 to 1000 g, more preferably 150 to 800 g, and even more preferably 200 to 700 g per 1 m 2 of the absorber from the viewpoint of easily obtaining sufficient absorption characteristics.
  • the content of the fibrous substance in the absorber is preferably 50 to 800 g, more preferably 100 to 600 g, and even more preferably 150 to 500 g per 1 m 2 of the absorber from the viewpoint of easily obtaining sufficient absorption characteristics.
  • the absorbent article according to the present embodiment includes an absorber according to the present embodiment.
  • Other constituent members of the absorbent article according to the present embodiment include a core wrap that retains the shape of the absorber and prevents the constituent members of the absorber from falling off or flowing; on the outermost side on the side where the liquid to be absorbed enters.
  • Liquid permeable sheet to be arranged Examples thereof include a liquid permeable sheet arranged on the outermost side opposite to the side where the liquid to be absorbed enters.
  • Absorbent articles include diapers (for example, paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, simple toilet materials, animal excrement treatment materials, and the like. ..
  • FIG. 1 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 1 includes an absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40.
  • the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order.
  • the absorber 10 has a water-absorbent resin particle 10a according to the present embodiment and a fiber layer 10b containing a fibrous material.
  • the water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
  • the core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 1) in contact with the absorber 10.
  • the core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 1) in contact with the absorber 10.
  • the absorber 10 is arranged between the core wrap 20a and the core wrap 20b.
  • Examples of the core wraps 20a and 20b include tissues, non-woven fabrics, woven fabrics, synthetic resin films having liquid permeation holes, net-like sheets having a mesh, and the like.
  • the core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.
  • the liquid permeable sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters.
  • the liquid permeable sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a.
  • Examples of the liquid permeable sheet 30 include non-woven fabrics made of synthetic resins such as polyethylene, polypropylene, polyester and polyamide, and porous sheets.
  • the liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30.
  • the liquid permeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b.
  • liquid impermeable sheet 40 examples include a sheet made of a synthetic resin such as polyethylene, polypropylene, and polyvinyl chloride, and a sheet made of a composite material of these synthetic resins and a non-woven fabric.
  • the liquid permeable sheet 30 and the liquid permeable sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.
  • the magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. Further, the method of retaining the shape of the absorber 10 by using the core wraps 20a and 20b is not particularly limited, and as shown in FIG. 1, the absorber may be wrapped by a plurality of core wraps, and the absorber is wrapped by one core wrap. It may be.
  • the absorber may be adhered to the top sheet.
  • a hot melt adhesive is applied to the top sheet at predetermined intervals in a striped shape, a spiral shape, etc. in the width direction and adhered; starch, carboxymethyl cellulose, polyvinyl alcohol, polyvinylpyrrolidone, etc. Examples thereof include a method of adhering using a water-soluble binder such as a water-soluble polymer.
  • a method of adhering by heat-sealing of the heat-sealing synthetic fibers may be adopted.
  • the liquid absorbing method according to the present embodiment includes a step of bringing the liquid to be absorbed into contact with the water-absorbent resin particles, the absorber or the absorbent article according to the present embodiment.
  • the present embodiment is a method for adjusting the amount of liquid absorption in an absorbent article, and is a method for adjusting the amount of liquid absorption using the water-absorbent resin particles, an absorber or the absorbent article according to the present embodiment (for example, an improvement method). )
  • the method for adjusting the liquid absorption amount according to the present embodiment includes an adjustment step for adjusting the gel repulsive force reduction rate measured by the above-mentioned procedures (1) to (5) for the water-absorbent resin particles according to the present embodiment. ..
  • the gel repulsive force reduction rate can be adjusted to each of the above ranges (for example, 5% or more).
  • the water-absorbent resin particles according to the present embodiment include a selection step of selecting the water-absorbent resin particles based on the gel repulsive force reduction rate measured by the above-mentioned procedures (1) to (5).
  • a method for producing water-absorbent resin particles can be provided.
  • the gel repulsive force reduction rate can be adjusted to each of the above ranges (for example, 5% or more).
  • the present embodiment it is possible to provide a method for producing an absorber using the water-absorbent resin particles obtained by the above-mentioned method for producing water-absorbent resin particles.
  • the method for producing an absorber according to the present embodiment includes a particle manufacturing step for obtaining water-absorbent resin particles by the above-mentioned method for producing water-absorbent resin particles.
  • the method for producing an absorber according to the present embodiment may include a step of mixing the water-absorbent resin particles and the fibrous material after the particle manufacturing step. According to the present embodiment, it is possible to provide a method for producing an absorbent article using the absorber obtained by the above-mentioned method for producing an absorber.
  • the method for producing an absorbent article according to the present embodiment includes an absorber manufacturing step for obtaining an absorber by the above-mentioned method for manufacturing an absorber.
  • the method for producing an absorbent article according to the present embodiment may include a step of obtaining an absorbent article by using the absorber and other constituent members of the absorbent article after the absorbent body manufacturing step. For example, an absorbent article is obtained by laminating the absorber and other constituent members of the absorbent article with each other.
  • Example 1 A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer was prepared.
  • the stirrer was equipped with a stirrer blade (flat blade) 200 whose outline is shown in FIG.
  • the stirring blade 200 includes a shaft 200a and a flat plate portion 200b.
  • the flat plate portion 200b is welded to the shaft 200a and has a curved tip.
  • the flat plate portion 200b is formed with four slits S extending along the axial direction of the shaft 200a.
  • the four slits S are arranged in the width direction of the flat plate portion 200b, the width of the two inner slits S is 1 cm, and the width of the two outer slits S is 0.5 cm.
  • the length of the flat plate portion 200b is about 10 cm, and the width of the flat plate portion 200b is about 6 cm.
  • 293 g of n-heptane was added as a hydrocarbon dispersion medium to the above-mentioned separable flask, and a maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals Co., Ltd., High Wax 1105A) was added as a polymer-based dispersant.
  • a mixture was obtained by adding 0.736 g.
  • the dispersant was dissolved in n-heptane by heating the mixture to 80 ° C. with stirring with a stirrer, and then the mixture was cooled to 50 ° C.
  • hydroxylethyl cellulose manufactured by Sumitomo Seika Co., Ltd., HEC AW-15F
  • HEC AW-15F hydroxylethyl cellulose
  • 0.0648 g 0.0648 g (0.272 mmol) of sodium persulfate as a water-soluble radical polymerization initiator
  • ethylene as an internal cross-linking agent.
  • An aqueous solution of the first stage was prepared by adding 0.010 g (0.057 mmol) of glycol diglycidyl ether and dissolving it.
  • the above-mentioned first-stage aqueous solution was added to the above-mentioned separable flask while stirring at a stirring speed of 425 rpm, and then the mixture was stirred for 10 minutes. Then, it was obtained by heating and dissolving 0.736 g of sucrose stearic acid ester (surfactant, manufactured by Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB value: 3) in 6.62 g of n-heptane. The detergent solution was added to the separable flask. Then, the inside of the system was sufficiently replaced with nitrogen while stirring at a stirring speed of 425 rpm. Then, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
  • sucrose stearic acid ester surfactant, manufactured by Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Este
  • the inside of the separable flask described above was cooled to 25 ° C. while stirring at a rotation speed of 650 rpm of the stirrer, and then the entire amount of the aqueous solution of the second stage described above was added to the polymerized slurry solution of the first stage described above. Was added to. Subsequently, after replacing the inside of the system with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a second-stage hydrogel polymer. It was.
  • n-heptane was evaporated at 125 ° C. and dried to obtain polymer particles (dried product).
  • polymer particles dried product
  • 0.2% by mass of amorphous silica (Tokuseal NP-S manufactured by Oriental Silicas Corporation) is weighted based on the total mass of the polymer particles.
  • amorphous silica Tokuseal NP-S manufactured by Oriental Silicas Corporation
  • Example 2 The rotation speed of the stirrer was changed to 350 rpm in the preparation of the polymerized slurry liquid in the first stage, and 257.2 g of water was added by azeotropic distillation in the hydrogel polymer after the polymerization in the second stage. 231.2 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that the particles were extracted from the system. The medium particle size of the water-absorbent resin particles was 359 ⁇ m.
  • Example 3 The rotation speed of the stirrer was changed to 350 rpm in the preparation of the polymerized slurry liquid in the first stage, and 238.6 g of water was added by azeotropic distillation in the hydrogel polymer after the polymerization in the second stage. 226.4 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that the particles were extracted from the system. The medium particle size of the water-absorbent resin particles was 378 ⁇ m.
  • Example 4 In the preparation of the water-containing gel polymer in the second stage, the temperature in the separable flask was changed to 31 ° C instead of 25 ° C, and in the water-containing gel polymer after the polymerization in the second stage, 232.0 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that 275.8 g of water was extracted from the system by azeotropic distillation. The medium particle size of the water-absorbent resin particles was 148 ⁇ m.
  • the rotation speed of the stirrer when adding the entire amount of the aqueous liquid in the second stage to the polymerized slurry liquid in the first stage was changed to 1000 rpm, and the water-containing gel after the polymerization in the second stage.
  • 228.5 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that 232.0 g of water was extracted from the system by copolymerization distillation.
  • the medium particle size of the water-absorbent resin particles was 354 ⁇ m.
  • Comparative Example 2 In the hydrogel polymer after the second stage polymerization, 229.0 g of water-absorbent resin particles were obtained in the same manner as in Comparative Example 1, except that 216.7 g of water was extracted from the system by azeotropic distillation. Obtained. The medium particle size of the water-absorbent resin particles was 348 ⁇ m.
  • the above-mentioned medium particle diameter of the water-absorbent resin particles was measured by the following procedure in an environment of a temperature of 25 ⁇ 2 ° C. and a humidity of 50 ⁇ 10%. That is, from the top, the JIS standard sieve has a mesh size of 600 ⁇ m, a mesh size of 500 ⁇ m, a mesh size of 425 ⁇ m, a mesh size of 300 ⁇ m, a mesh size of 250 ⁇ m, a mesh size of 180 ⁇ m, and a mesh size of 150 ⁇ m. , And the saucer in that order.
  • the water retention amount (room temperature, 25 ⁇ 2 ° C.) of the physiological saline of the water-absorbent resin particles was measured by the following procedure. First, a cotton bag (Membroad No. 60, width 100 mm ⁇ length 200 mm) weighing 2.0 g of water-absorbent resin particles was placed in a beaker having an internal volume of 500 mL. After pouring 500 g of physiological saline into a cotton bag containing water-absorbent resin particles at a time so that maco cannot be formed, tie the upper part of the cotton bag with a rubber band and let it stand for 30 minutes to swell the water-absorbent resin particles. I let you.
  • the cotton bag was dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to have a centrifugal force of 167 G, and then contained a swelling gel after dehydration.
  • the mass Wa [g] of the cotton bag was measured.
  • the same operation was performed without adding the water-absorbent resin particles, the empty mass Wb [g] of the cotton bag when wet was measured, and the water retention amount of the physiological saline of the water-absorbent resin particles was calculated from the following formula.
  • the amount of water absorption (room temperature, 25 ° C. ⁇ 2 ° C.) of the physiological saline under the load of the water-absorbent resin particles was measured using the measuring device Y shown in FIG.
  • the measuring device Y is composed of a burette unit 61, a conduit 62, a measuring table 63, and a measuring unit 64 placed on the measuring table 63.
  • the burette portion 61 has a burette 61a extending in the vertical direction, a rubber stopper 61b arranged at the upper end of the burette 61a, a cock 61c arranged at the lower end of the burette 61a, and one end extending into the burette 61a in the vicinity of the cock 61c. It has an air introduction pipe 61d and a cock 61e arranged on the other end side of the air introduction pipe 61d.
  • the conduit 62 is attached between the burette portion 61 and the measuring table 63.
  • the inner diameter of the conduit 62 is 6 mm.
  • a hole having a diameter of 2 mm is formed in the central portion of the measuring table 63, and the conduit 62 is connected to the hole.
  • the measuring unit 64 has a cylinder 64a (made of acrylic resin), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c.
  • the inner diameter of the cylinder 64a is 20 mm.
  • the opening of the nylon mesh 64b is 75 ⁇ m (200 mesh).
  • the water-absorbent resin particles 65 to be measured are uniformly sprinkled on the nylon mesh 64b.
  • the diameter of the weight 64c is 19 mm, and the mass of the weight 64c is 119.6 g.
  • the weight 64c is placed on the water-absorbent resin particles 65, and a load of 4.14 kPa can be applied to the water-absorbent resin particles 65.
  • the weight 64c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 65 is quickly and smoothly supplied to the inside of the burette 61a from the air introduction pipe, the water level of the physiological saline inside the burette 61a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 65 is obtained.
  • the scale of the burette 61a is engraved from the top to the bottom in increments of 0 mL to 0.5 mL, and the scale Va of the burette 61a before the start of water absorption and the burette 61a 60 minutes after the start of water absorption are used as the water level of the physiological saline.
  • ⁇ Unpressurized DW> The non-pressurized DW of the water-absorbent resin particles was measured using the measuring device Z shown in FIG. The measurement was carried out 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was obtained.
  • the measuring device Z has a burette portion 71, a conduit 72, a flat plate-shaped measuring table 73, a nylon mesh 74, a frame 75, and a clamp 76.
  • the burette portion 71 was connected to a burette 71a on which a scale was written, a rubber stopper 71b for sealing the opening at the upper part of the burette 71a, a cock 71c connected to the tip of the lower part of the burette 71a, and a lower part of the burette 71a. It has an air introduction pipe 71d and a cock 71e.
  • the burette portion 71 is fixed by a clamp 76.
  • the measuring table 73 has a through hole 73a having a diameter of 2 mm formed in the central portion thereof, and is supported by a frame 75 having a variable height.
  • the through hole 73a of the measuring table 73 and the cock 71c of the burette portion 71 are connected by a conduit 72.
  • the inner diameter of the conduit 72 is 6 mm.
  • the measurement was performed in an environment with a temperature of 25 ° C and a humidity of 50 ⁇ 10%.
  • the cock 71c and the cock 71e of the burette portion 71 were closed, and the physiological saline 77 adjusted to 25 ° C. was put into the burette 71a through the opening at the upper part of the burette 71a.
  • the cock 71c and the cock 71e were opened after the opening of the burette 71a was sealed with the rubber stopper 71b.
  • the inside of the conduit 72 was filled with saline 77 to prevent air bubbles from entering.
  • the height of the measuring table 73 was adjusted so that the height of the water surface of the physiological saline 77 that reached the inside of the through hole 73a was the same as the height of the upper surface of the measuring table 73. After the adjustment, the height of the water surface of the physiological saline 77 in the burette 71a was read by the scale of the burette 71a, and the position was set as the zero point (reading value at 0 seconds).
  • a nylon mesh 74 (100 mm ⁇ 100 mm, 250 mesh, thickness: about 50 ⁇ m) was laid in the vicinity of the through hole 73a on the measuring table 73, and a cylinder having an inner diameter of 30 mm and a height of 20 mm was placed in the center thereof. 1.00 g of water-absorbent resin particles 78 were uniformly sprayed on this cylinder. Then, the cylinder was carefully removed to obtain a sample in which the water-absorbent resin particles 78 were dispersed in a circle in the central portion of the nylon mesh 74.
  • the nylon mesh 74 on which the water-absorbent resin particles 78 were placed was quickly moved so that the center thereof was at the position of the through hole 73a so that the water-absorbent resin particles 78 did not dissipate, and the measurement was started.
  • the time when the air bubbles were first introduced into the burette 71a from the air introduction pipe 71d was defined as the start of water absorption (0 seconds).
  • the decrease amount of the physiological saline 77 in the burette 71a (that is, the amount of the physiological saline 77 absorbed by the water-absorbent resin particles 78) is sequentially read in units of 0.1 mL, and calculated from the start of water absorption of the water-absorbent resin particles 78.
  • the weight loss Wc [g] of the physiological saline 77 after 10 minutes was read. From Wc, the 10-minute value of non-pressurized DW was calculated by the following formula.
  • the non-pressurized DW is the amount of water absorbed per 1.00 g of the water-absorbent resin particles 78.
  • Unpressurized DW value [mL / g] Wc / 1.00
  • EZtest (manufactured by Shimadzu Corporation, trade name: EZtest, model number: EZ-SX) is used for measuring the gel repulsive force reduction rate.
  • the jig provided in EZtest can be attached to the load cell of EZtest, and the position of the jig in the vertical direction can be adjusted using the software Trapezium X (manufactured by Shimadzu Corporation) for Shimadzu autograph.
  • the load cell senses the response of the load applied to the jig when the jig is brought into contact with the surface of the gel with respect to the 30-fold swollen gel placed on the measuring table, and the load is used as the test force on the measurement screen.
  • the jig includes a disk portion and a rod-shaped portion.
  • the disk portion is in the shape of a disk having flat surfaces on the front and back surfaces, having a diameter of 4.9 cm and a thickness of 1.2 cm.
  • the length of the rod-shaped portion is 14 cm.
  • One end of the rod-shaped portion is connected to the center of the flat surface of the disk portion, and the other end of the rod-shaped portion is connected to the load cell.
  • the position of the container is adjusted so that the central axis in the height direction of the container is located at the center of the disk portion.
  • the clearance between the jig and the inner wall of the container is 7.5 mm.
  • the measurement was performed in an environment with a temperature of 25 ⁇ 2 ° C and a humidity of 50 ⁇ 10%.
  • the above-mentioned container containing the 30-fold swollen gel was placed on the measuring table.
  • the jig was lowered until the load cell connected to the jig sensed a test force of 0.01 N, and the jig and the gel surface were brought into contact with each other.
  • the jig was placed at the measurement start position by raising the jig by 0.05 mm.
  • the jig was pushed into the gel by 1 mm at a speed of 10 mm / min, and the maximum value L 1 (maximum test force in the first cycle. Unit [N]) of the test force at this time was measured.
  • a liquid feed pump (DOSEIT P910, input diameter: 0.5 cm ⁇ ) manufactured by INTERGRA was assembled.
  • the input amount of the test solution was set to 40 mL and the input rate was set to 8 mL / sec.
  • the test solution was sent to the tip of the tube (inner diameter: 0.5 cm). After putting the tip of the tube into the graduated cylinder, the test solution was injected into the graduated cylinder by driving the liquid feed pump. Calibration was performed by reading the value of the measuring cylinder and confirming that the injection amount of the test solution was the set value (40 mL).
  • a sheet-shaped absorber having a size of 40 cm ⁇ 12 cm is uniformly mixed by air papermaking using an air flow type mixer (Padformer manufactured by Otec Co., Ltd.) to uniformly mix 10 g of water-absorbent resin particles and 8 g of crushed pulp.
  • An air flow type mixer (Padformer manufactured by Otec Co., Ltd.) to uniformly mix 10 g of water-absorbent resin particles and 8 g of crushed pulp.
  • a load of 196 kPa is applied to the whole for 30 seconds and pressed. Obtained a laminate.
  • an air-through type porous liquid permeable sheet (15.5 cm ⁇ 47 cm) made of polyethylene-polypropylene having a basis weight of 22 g / m 2 ). was attached to the back sheet from the top of the absorber. Then, the central part (turned up part) of the back sheet in the pair of side gathers is attached to the liquid permeable sheet with tape glue and returned to the original position, and the portion overlaps the liquid permeable sheet. Absorbent article (diaper) was obtained.
  • a doll manufactured by Kato Tech Co., Ltd. (a mannequin for girls, a standing position, a human model for children from the lower abdomen to the thigh, transparent) was prepared.
  • the dimensions of the doll are as follows. The above test solution was adjusted to a temperature of 25 ⁇ 2 ° C. in a constant temperature bath. After connecting the tube connected to the urination part of the doll and the tube of the liquid delivery pump, the test solution was sent to the liquid outlet of the urination part of the doll.
  • Length around the abdomen (around the navel position): 475 mm
  • Length around the buttocks 465mm
  • Length around the base of the foot 280 mm
  • Crotch length (length between the bases of both feet): 36 mm
  • Length between navel and urination 145 mm
  • the absorbent article After measuring the mass W1 of the above-mentioned absorbent article, the absorbent article was attached to the doll. As the fixing position of the fastening tape in the absorbent article, the tape fixing position "1" printed on the surface of the back sheet was adopted. At this time, the gathers of the absorbent article are in contact with the crotch part of the doll, the gathers are standing, the length of the mounting part is not biased before and after the absorbent article, and the back and tummy circumference. It was confirmed that there was no looseness in.
  • the doll was placed on its back in the bat. 40 mL of the test solution was fed every 5 minutes at a charging rate of 8 mL / sec, and the feeding was repeated until leakage from the absorbent article (liquid outflow from the back side or the crotch side) occurred. After the leakage occurred, the absorbent article was removed from the doll, and the mass W2 of the absorbent article was measured. Then, the amount of absorbed test solution "W2-W1" was calculated. The results are shown in Table 1. When the amount of liquid absorbed is large, it indicates that the amount of liquid that can be absorbed before leakage occurs is large.
  • adjusting the gel repulsive force reduction rate is effective in obtaining an absorbent article having an excellent liquid absorption amount when the liquid is supplied in a state of being attached to the object to be used. Is confirmed.
  • Nylon mesh 64c ... Weight, 73a ... Through hole, 75 ... Mount, 76 ... Clamp, 77 ... Physiological saline, 100 ... Absorbent article, 200 ... Stirring blade, 200a ... Shaft, 200b ... Flat plate, S ... Slit, Y, Z ... Measuring device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

下記(1)~(5)の手順により測定されるゲル反発力減少率が5%以上である、吸水性樹脂粒子10a。 (1)鉛直方向の上側に開口した凹部を有する容器の凹部内に当該吸水性樹脂粒子の30倍膨潤のゲルを準備する。 (2)平坦面を有する治具の平坦面をゲルの表面に鉛直方向の上側から接触させる。 (3)鉛直方向に治具をゲルに1mm押し込む操作を行い、当該操作中に治具に負荷される荷重の最大値L1を得る。 (4)鉛直方向に治具をゲルから0.5mm引き戻した後に治具をゲルに0.5mm押し込む操作を29回繰り返し、当該繰り返し操作における最後の操作中に治具に負荷される荷重の最大値L30を得る。 (5)荷重の最大値L1と荷重の最大値L30との差分の荷重の最大値L1に対する割合をゲル反発力減少率として得る。

Description

吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品
 本発明は、吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品に関する。
 従来、水を主成分とする液体(例えば尿)を吸収するための吸収性物品には、吸水性樹脂粒子を含有する吸収体が用いられている。例えば、下記特許文献1には、おむつ等の吸収性物品に好適に用いられる粒子径を有する吸水性樹脂粒子が開示されている。また、特許文献2には、尿のような体液を収容するのに効果的な吸収性部材として、特定の食塩水流れ誘導性、圧力下性能等を有するヒドロゲル吸収性重合体を使用する方法が開示されている。
特開平06-345819号公報 特表平09-510889号公報
 吸収性物品に供された液が吸収性物品に充分吸収されなければ、余剰の液はその表面を流れる等して吸収性物品の外に漏れるといった不具合が生じ得る。そのため、吸収性物品に対しては、優れた吸液量が求められ、特に、使用対象(おむつの使用者、液体の発生源等)に装着された状態において吸収性物品に液が供給された際に、多くの液を吸液しつつモレが生じにくいことが求められる。
 本発明の一側面は、使用対象に装着された状態において液が供給された際に優れた吸液量を有する吸収性物品を得ることが可能な吸水性樹脂粒子及びその製造方法を提供することを目的とする。また、本発明の他の一側面は、当該吸水性樹脂粒子を用いた吸収体及び吸収性物品を提供することを目的とする。
 本発明の一側面は、下記(1)~(5)の手順により測定されるゲル反発力減少率が5%以上である、吸水性樹脂粒子を提供する。
(1)鉛直方向の上側に開口した凹部を有する容器の前記凹部内に当該吸水性樹脂粒子の30倍膨潤のゲルを準備する。
(2)平坦面を有する治具の前記平坦面を前記ゲルの表面に鉛直方向の上側から接触させる。
(3)鉛直方向に前記治具を前記ゲルに1mm押し込む操作を行い、当該操作中に前記治具に負荷される荷重の最大値Lを得る。
(4)鉛直方向に前記治具を前記ゲルから0.5mm引き戻した後に前記治具を前記ゲルに0.5mm押し込む操作を29回繰り返し、当該繰り返し操作における最後の操作中に前記治具に負荷される荷重の最大値L30を得る。
(5)前記荷重の最大値Lと前記荷重の最大値L30との差分の前記荷重の最大値Lに対する割合を前記ゲル反発力減少率として得る。
 上述の吸水性樹脂粒子によれば、使用対象に装着された状態において優れた吸液量を有する吸収性物品を得ることができる。
 本発明の他の一側面は、上述の吸水性樹脂粒子を含有する、吸収体を提供する。
 本発明の他の一側面は、上述の吸収体を備える、吸収性物品を提供する。
 本発明の他の一側面は、下記(1)~(5)の手順により測定されるゲル反発力減少率に基づき吸水性樹脂粒子を選定する工程を備える、吸水性樹脂粒子の製造方法を提供する。
(1)鉛直方向の上側に開口した凹部を有する容器の前記凹部内に当該吸水性樹脂粒子の30倍膨潤のゲルを準備する。
(2)平坦面を有する治具の前記平坦面を前記ゲルの表面に鉛直方向の上側から接触させる。
(3)鉛直方向に前記治具を前記ゲルに1mm押し込む操作を行い、当該操作中に前記治具に負荷される荷重の最大値Lを得る。
(4)鉛直方向に前記治具を前記ゲルから0.5mm引き戻した後に前記治具を前記ゲルに0.5mm押し込む操作を29回繰り返し、当該繰り返し操作における最後の操作中に前記治具に負荷される荷重の最大値L30を得る。
(5)前記荷重の最大値Lと前記荷重の最大値L30との差分の前記荷重の最大値Lに対する割合を前記ゲル反発力減少率として得る。
 上述の吸水性樹脂粒子の製造方法によれば、使用対象に装着された状態において優れた吸液量を有する吸収性物品を得ることが可能な吸水性樹脂粒子を得ることができる。
 本発明の一側面によれば、使用対象に装着された状態において液が供給された際に優れた吸液量を有する吸収性物品を得ることが可能な吸水性樹脂粒子及びその製造方法を提供することができる。また、本発明の他の一側面によれば、当該吸水性樹脂粒子を用いた吸収体及び吸収性物品を提供することができる。本発明の他の一側面によれば、吸液への樹脂粒子、吸収体及び吸収性物品の応用を提供することができる。本発明の他の一側面によれば、吸収性物品における吸液量の調整への樹脂粒子、吸収体及び吸収性物品の応用を提供することができる。
吸収性物品の一例を示す断面図である。 実施例で使用した撹拌翼の概形を示す平面図である。 吸水性樹脂粒子の荷重下の吸水量の測定装置を示す概略図である。 吸水性樹脂粒子の無加圧DWの測定装置を示す概略図である。
 以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。
 本実施形態に係る吸水性樹脂粒子においては、下記(1)~(5)の手順により測定されるゲル反発力減少率が5%以上である。
(1)鉛直方向の上側に開口した凹部を有する容器の前記凹部内に当該吸水性樹脂粒子の30倍膨潤のゲルを準備する。
(2)平坦面を有する治具の前記平坦面を前記ゲルの表面に鉛直方向の上側から接触させる。
(3)鉛直方向に前記治具を前記ゲルに1mm押し込む操作を行い、当該操作中に前記治具に負荷される荷重の最大値Lを得る。
(4)鉛直方向に前記治具を前記ゲルから0.5mm引き戻した後に前記治具を前記ゲルに0.5mm押し込む操作を29回繰り返し、当該繰り返し操作における最後の操作中に前記治具に負荷される荷重の最大値L30を得る。
(5)前記荷重の最大値Lと前記荷重の最大値L30との差分の前記荷重の最大値Lに対する割合を前記ゲル反発力減少率として得る。
 このような吸水性樹脂粒子によれば、使用対象に装着された状態において液が供給された際に優れた吸液量を有する吸収性物品を得ることが可能であり、使用対象に装着された状態において吸収性物品に液が供給された際に、多くの液を吸液しつつモレが生じにくい吸収性物品を得ることができる。このような効果が得られる原因は明らかではないが、本発明者は下記のように推察している。但し、原因は下記の内容に限定されない。すなわち、ゲル反発力減少率が上記範囲内であるとき、膨潤したゲルが円滑に動きやすい。この場合、吸収性物品が使用対象に装着された状態において吸水性樹脂粒子がゲル化した際にゲルが使用対象の装着箇所の形状にフィットしやすく、装着箇所における吸収性物品の内部に隙間が生じていたとしても当該隙間をゲルが埋めやすい。これにより、当該隙間から液が漏出することが抑制されることから、多くの液を吸液しつつモレが生じにくい。
 ゲル反発力減少率の試験における工程(1)で用いる30倍膨潤のゲルは、吸水性樹脂粒子1質量部と生理食塩水29質量部とを混合することにより得ることができる。工程(1)において、容器は有底の凹部を有しており、凹部の開口方向が鉛直方向の上側に位置するように容器を配置する。容器は、例えば、平坦である底面を有する。容器において、凹部を形成する側壁は、後続の各工程の操作の妨げにならない形状を有していればよく、例えば、治具と側壁とが接触しない形状を有している。凹部における開口方向に垂直な断面は、例えば円形を呈している。容器の材質としては、ガラスを用いることができる。
 工程(2)では、平坦面を有しており、かつ、ゲルに接触したときに負荷される荷重を検出器に伝達可能な治具を用いることができる。平坦面の形状は例えば円形であり、円形の平坦面の直径は4.9cmであってよい。治具は、例えば、ゲルに接触する平坦面を有する平板部を備えている。平板部は、工程(3)及び工程(4)の操作時にその全体がゲルに浸漬しないことが好ましい。平板部の高さは、1mm以上であってよく、1mmを超えていてよい。工程(2)において治具をゲルの表面に接触させた後に治具をゲルから引き離してから工程(3)を行ってもよい。
 工程(3)では、鉛直方向に治具をゲルに1mm押し込む操作を行い、当該操作中に治具に負荷される1回目の荷重の最大値L(単位:N)を得る。工程(4)では、鉛直方向に治具をゲルから0.5mm引き戻した後に治具をゲルに0.5mm押し込む操作を29回繰り返し、当該繰り返し操作(往復操作)における最後の操作中に治具に負荷される荷重の最大値L30(単位:N)を得る。工程(3)及び工程(4)では、ゲル反発力として、例えば、治具に負荷される鉛直方向の荷重を得ることができる。工程(3)及び工程(4)において、治具をゲルに押し込むことに伴い荷重が増加し、治具をゲルから引き戻すことに伴い荷重が減少する。工程(3)及び工程(4)において、治具がゲルに1mm押し込まれた際に各操作中の荷重の最大値が得られる傾向にある。工程(4)では、1mm押し込む操作を29回繰り返すことにより各操作における荷重の最大値が29回計測可能であり、繰り返し操作における最後の操作において、工程(3)及び工程(4)の取得回数を積算して30回目の荷重の最大値L30が得られる。工程(3)及び工程(4)における治具の走査速度は、例えば10mm/minであってよい。そして、工程(5)では、下記式のとおり、1回目の荷重の最大値Lと30回目の荷重の最大値L30との差分の荷重の最大値Lに対する割合をゲル反発力減少率として得る。
  ゲル反発力減少率[%]=(L-L30)/L×100
 ゲル反発力減少率は、吸収性物品において優れた吸液量を得やすい観点から、6%以上、7%以上、8%以上、9%以上、又は、10%以上が好ましい。ゲル反発力減少率は、吸収性物品において優れた吸液量を得やすい観点から、40%以下、35%以下、30%以下、25%以下、22%以下、20%以下、15%以下、又は、12.5%以下が好ましい。これらの観点から、ゲル反発力減少率は、5~40%が好ましい。ゲル反発力減少率としては、室温(25±2℃)におけるゲル反発力減少率を用いることができる。
 工程(3)で得られる荷重の最大値Lは、吸収性物品において優れた吸液量を得やすい観点から、1.00N以上、1.20N以上、1.40N以上、1.60N以上、1.70N以上、1.80N以上、又は、1.90N以上が好ましい。荷重の最大値Lは、吸収性物品において優れた吸液量を得やすい観点から、6.00N以下、5.50N以下、5.00N以下、4.50N以下、4.00N以下、3.50N以下、又は、3.00N以下が好ましい。これらの観点から、荷重の最大値Lは、1.00~6.00Nが好ましい。
 工程(4)で得られる荷重の最大値L30は、吸収性物品において優れた吸液量を得やすい観点から、0.95N以上、1.00N以上、1.20N以上、1.40N以上、1.50N以上、1.60N以上、又は、1.70N以上が好ましい。荷重の最大値L30は、吸収性物品において優れた吸液量を得やすい観点から、5.50N以下、5.00N以下、4.75N以下、4.50N以下、4.00N以下、3.50N以下、3.00N以下、2.50N以下、又は、2.20N以下が好ましい。これらの観点から、荷重の最大値L30は、0.95~5.50Nが好ましい。
 本実施形態に係る吸水性樹脂粒子は、水を保水可能であればよく、吸液対象の液は水を含むことができる。本実施形態に係る吸水性樹脂粒子は、尿、汗、血液(例えば経血)等の体液の吸収性に優れている。本実施形態に係る吸水性樹脂粒子は、本実施形態に係る吸収体の構成成分として用いることができる。
 本実施形態に係る吸水性樹脂粒子の生理食塩水の保水量(無加圧下の保水量)は、下記の範囲が好ましい。保水量は、吸収性物品において優れた吸液量を得やすい観点から、10g/g以上、15g/g以上、20g/g以上、25g/g以上、30g/g以上、又は、35g/g以上が好ましい。保水量は、吸収性物品において優れた吸液量を得やすい観点から、80g/g以下、70g/g以下、65g/g以下、60g/g以下、55g/g以下、52g/g以下、50g/g以下、48g/g以下、又は、45g/g以下が好ましい。これらの観点から、保水量は、10~80g/gが好ましい。保水量としては、室温(25±2℃)における保水量を用いることができる。保水量は、後述する実施例に記載の方法によって測定できる。
 本実施形態に係る吸水性樹脂粒子の荷重4.14kPa下における生理食塩水の吸水量は、下記の範囲が好ましい。吸水量は、吸収性物品において優れた吸液量を得やすい観点から、1mL/g以上、3mL/g以上、5mL/g以上、8mL/g以上、10mL/g以上、12mL/g以上、15mL/g以上、又は、18mL/g以上が好ましい。吸水量は、吸収性物品における過度の膨潤を抑制しやすい観点から、40mL/g以下、35mL/g以下、30mL/g以下、28mL/g以下、25mL/g以下、又は、22mL/g以下が好ましい。これらの観点から、吸水量は、1~40mL/gが好ましい。吸水量としては、室温(25±2℃)における吸水量を用いることができる。吸水量は、後述する実施例に記載の方法によって測定できる。
 本実施形態に係る吸水性樹脂粒子の無加圧DWの10分値は、吸収性物品において優れた吸液量を得やすい観点から、30mL/g以上、35mL/g以上、40mL/g以上、45mL/g以上、又は、50mL/g以上が好ましい。無加圧DWの10分値は、80mL/g以下、75mL/g以下、70mL/g以下、又は、65mL/g以下であってよい。これらの観点から、無加圧DWの10分値は、30~80mL/gであってよい。無加圧DWの10分値は、後述する実施例に記載の方法によって測定できる。無加圧DWの10分値は、吸水性樹脂粒子が、無加圧下で、生理食塩水と接触してから10分経過するまでに生理食塩水を吸収した量で表される吸水速度である。無加圧DWは、生理食塩水の吸収前の吸水性樹脂粒子1g当たりの吸収量[mL]で表される。
 本実施形態に係る吸水性樹脂粒子の形状としては、略球状、破砕状、顆粒状等が挙げられる。また、本実施形態に係る吸水性樹脂粒子は、各々が単一の粒子からなる形態のほかに、微細な粒子(一次粒子)が凝集した形態(二次粒子)であってもよい。本実施形態に係る吸水性樹脂粒子(吸水前の吸水性樹脂粒子)の中位粒子径は、下記の範囲が好ましい。中位粒子径は、吸収性物品において優れた吸液量を得やすい観点から、100μm以上、140μm以上、200μm以上、250μm以上、280μm以上、300μm以上、310μm以上、320μm以上、330μm以上、340μm以上、又は、350μm以上が好ましい。中位粒子径は、吸収性物品の触感を柔らかく保ちやすい観点から、600μm以下、550μm以下、500μm以下、450μm以下、400μm以下、又は、380μm以下が好ましい。これらの観点から、中位粒子径は、100~600μmが好ましい。本実施形態に係る吸水性樹脂粒子は、後述する製造方法により得られた時点で所望の粒度分布を有していてよいが、篩による分級を用いた粒度調整等の操作を行うことにより粒度分布を調整してもよい。
 本実施形態に係る吸水性樹脂粒子は、例えば、重合体粒子として、エチレン性不飽和単量体を含有する単量体を重合させて得られる架橋重合体(エチレン性不飽和単量体に由来する構造単位を有する架橋重合体)を含むことができる。すなわち、本実施形態に係る吸水性樹脂粒子は、エチレン性不飽和単量体に由来する構造単位を有することが可能であり、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を含む重合体粒子を含むことができる。エチレン性不飽和単量体としては、水溶性エチレン性不飽和単量体を用いることができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。これらの中では、得られる吸水性樹脂粒子の良好な吸水特性(保水量等)の確保、及び、重合反応の制御が容易である観点から、逆相懸濁重合法又は水溶液重合法が好ましい。以下においては、エチレン性不飽和単量体を重合させる方法として、逆相懸濁重合法を例にとって説明する。
 エチレン性不飽和単量体は水溶性であることが好ましく、例えば、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。上述の単量体のカルボキシル基、アミノ基等の官能基は、後述する表面架橋工程において架橋が可能な官能基として機能し得る。
 これらの中でも、工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも一種の化合物を含むことが好ましく、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも一種の化合物を含むことがより好ましい。吸水特性(保水量等)を更に高める観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種の化合物を含むことが更に好ましい。すなわち、吸水性樹脂粒子は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種に由来する構造単位を有することが好ましい。
 吸水性樹脂粒子を得るための単量体としては、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量(吸水性樹脂粒子を得るための単量体全量。例えば、架橋重合体の構造単位を与える単量体の全量。以下同様)に対して70~100モル%であることが好ましい。中でも、(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であることがより好ましい。「(メタ)アクリル酸及びその塩の割合」は、(メタ)アクリル酸及びその塩の合計量の割合を意味する。
 本実施形態によれば、吸水性樹脂粒子の一例として、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を含む吸水性樹脂粒子であって、前記エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含み、前記(メタ)アクリル酸及びその塩の割合が、前記吸水性樹脂粒子を得るための単量体全量(例えば、前記架橋重合体の構造単位を与える単量体の全量)に対して70~100モル%である、吸水性樹脂粒子を提供することができる。
 エチレン性不飽和単量体は、通常、水溶液として用いることが好適である。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下が好ましく、25~70質量%がより好ましく、30~55質量%が更に好ましい。水溶液において使用される水としては、水道水、蒸留水、イオン交換水等が挙げられる。
 単量体水溶液は、エチレン性不飽和単量体が酸基を有する場合、その酸基をアルカリ性中和剤によって中和して用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、得られる吸水性樹脂粒子の浸透圧を高くし、吸水特性(保水量等)を更に高める観点から、エチレン性不飽和単量体中の酸性基の10~100モル%であることが好ましく、50~90モル%であることがより好ましく、60~80モル%であることが更に好ましい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。アルカリ性中和剤は、中和操作を簡便にするために水溶液の状態で用いられてもよい。エチレン性不飽和単量体の酸基の中和は、例えば、水酸化ナトリウム、水酸化カリウム等の水溶液を上述の単量体水溶液に滴下して混合することにより行うことができる。
 逆相懸濁重合法においては、界面活性剤の存在下、炭化水素分散媒中で単量体水溶液を分散し、ラジカル重合開始剤等を用いてエチレン性不飽和単量体の重合を行うことができる。ラジカル重合開始剤としては、水溶性ラジカル重合開始剤を用いることができる。
 界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤等が挙げられる。ノニオン系界面活性剤としては、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル等が挙げられる。アニオン系界面活性剤としては、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、ポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。界面活性剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 W/O型逆相懸濁の状態が良好であり、好適な粒子径を有する吸水性樹脂粒子が得られやすく、工業的に入手が容易である観点から、界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも一種の化合物を含むことが好ましい。吸水性樹脂粒子の適切な粒度分布が得られやすい観点、並びに、吸水性樹脂粒子の吸水特性(保水量等)及びそれを用いた吸収性物品の性能が向上しやすい観点から、界面活性剤は、ショ糖脂肪酸エステルを含むことが好ましく、ショ糖ステアリン酸エステルがより好ましい。
 界面活性剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05~10質量部が好ましく、0.08~5質量部がより好ましく、0.1~3質量部が更に好ましい。
 逆相懸濁重合では、上述の界面活性剤と共に高分子系分散剤を併せて用いてもよい。高分子系分散剤としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。高分子系分散剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。高分子系分散剤としては、単量体の分散安定性に優れる観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び、酸化型エチレン・プロピレン共重合体からなる群より選ばれる少なくとも一種が好ましい。
 高分子系分散剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05~10質量部が好ましく、0.08~5質量部がより好ましく、0.1~3質量部が更に好ましい。
 炭化水素分散媒は、炭素数6~8の鎖状脂肪族炭化水素、及び、炭素数6~8の脂環式炭化水素からなる群より選ばれる少なくとも一種の化合物を含んでいてもよい。炭化水素分散媒としては、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。炭化水素分散媒は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 炭化水素分散媒は、工業的に入手が容易であり、かつ、品質が安定している観点から、n-ヘプタン及びシクロヘキサンからなる群より選ばれる少なくとも一種を含んでいてもよい。また、同様の観点から、上述の炭化水素分散媒の混合物としては、例えば、市販されているエクソールヘプタン(エクソンモービル社製:n-ヘプタン及び異性体の炭化水素75~85%含有)を用いてもよい。
 炭化水素分散媒の使用量は、重合熱を適度に除去し、重合温度を制御しやすい観点から、単量体水溶液100質量部に対して、30~1000質量部が好ましく、40~500質量部がより好ましく、50~400質量部が更に好ましい。炭化水素分散媒の使用量が30質量部以上であることにより、重合温度の制御が容易である傾向がある。炭化水素分散媒の使用量が1000質量部以下であることにより、重合の生産性が向上する傾向があり、経済的である。
 ラジカル重合開始剤は水溶性であることが好ましく、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]2塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]2塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物などが挙げられる。ラジカル重合開始剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。ラジカル重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、及び、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩からなる群より選ばれる少なくとも一種が好ましく、過硫酸カリウム、過硫酸アンモニウム、及び、過硫酸ナトリウムからなる群より選ばれる少なくとも一種がより好ましい。中でも、過硫酸ナトリウムを用いることにより、保水量等の吸水特性を維持しながらゲル反発力減少率を増加させて好適な範囲に調整しやすい。
 ラジカル重合開始剤の使用量は、エチレン性不飽和単量体1モルに対して0.05~10ミリモルであってよい。ラジカル重合開始剤の使用量が0.05ミリモル以上であると、重合反応に長時間を要さず、効率的である。ラジカル重合開始剤の使用量が10ミリモル以下であると、急激な重合反応が起こることを抑制しやすい。
 上述のラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。
 重合反応の際、重合に用いる単量体水溶液は、連鎖移動剤を含んでいてもよい。連鎖移動剤としては、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。
 吸水性樹脂粒子の粒子径を制御するために、重合に用いる単量体水溶液は、増粘剤を含んでいてもよい。増粘剤としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等が挙げられる。なお、重合時の撹拌速度が同じであれば、単量体水溶液の粘度が高いほど、得られる粒子の中位粒子径は大きくなる傾向にある。
 重合の際に自己架橋による架橋が生じ得るが、内部架橋剤を用いることで架橋を施してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性(保水量等)を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。内部架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上述のポリオール類と不飽和酸(マレイン酸、フマール酸等)とを反応させて得られる不飽和ポリエステル類;N,N’-メチレンビス(メタ)アクリルアミド等のビス(メタ)アクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N”-トリアリルイソシアヌレート、ジビニルベンゼン等の、重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;イソシアネート化合物(2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)などの、反応性官能基を2個以上有する化合物などが挙げられる。内部架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。内部架橋剤としては、ポリグリシジル化合物が好ましく、ジグリシジルエーテル化合物がより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種が更に好ましい。
 内部架橋剤の使用量は、吸収性物品において優れた吸液量を得やすい観点、及び、得られる重合体が適度に架橋されることにより水溶性の性質が抑制され、充分な吸水量が得られやすい観点から、エチレン性不飽和単量体1モル当たり、30ミリモル以下が好ましく、0.01~10ミリモルがより好ましく、0.012~5ミリモルが更に好ましく、0.015~1ミリモルが特に好ましく、0.02~0.1ミリモルが極めて好ましく、0.025~0.06ミリモルが非常に好ましい。
 エチレン性不飽和単量体、ラジカル重合開始剤、界面活性剤、高分子系分散剤、炭化水素分散媒等(必要に応じて更に内部架橋剤)を混合した状態において撹拌下で加熱し、油中水系において逆相懸濁重合を行うことができる。
 逆相懸濁重合を行う際には、界面活性剤(必要に応じて更に高分子系分散剤)の存在下で、エチレン性不飽和単量体を含む単量体水溶液を炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、界面活性剤、高分子系分散剤等の添加時期は、単量体水溶液の添加の前後どちらであってもよい。
 その中でも、得られる吸水性樹脂に残存する炭化水素分散媒の量を低減しやすい観点から、高分子系分散剤を分散させた炭化水素分散媒に単量体水溶液を分散させた後に界面活性剤を更に分散させてから重合を行うことが好ましい。
 逆相懸濁重合は、1段、又は、2段以上の多段で行うことができる。逆相懸濁重合は、生産性を高める観点から、2~3段で行うことが好ましい。
 2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物にエチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、エチレン性不飽和単量体の他に、上述のラジカル重合開始剤及び/又は内部架橋剤を、2段目以降の各段における逆相懸濁重合の際に添加するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。なお、2段目以降の各段における逆相懸濁重合では、必要に応じて内部架橋剤を用いてもよい。内部架橋剤を用いる場合は、各段に供するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。
 重合反応の温度は、使用するラジカル重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めると共に、容易に重合熱を除去して円滑に反応を行う観点から、20~150℃が好ましく、40~120℃がより好ましい。反応時間は、通常、0.5~4時間である。重合反応の終了は、例えば、反応系内の温度上昇の停止により確認することができる。これにより、エチレン性不飽和単量体の重合体は、通常、含水ゲルの状態で得られる。
 重合後、得られた含水ゲル状重合体に重合後架橋剤を添加して加熱することで架橋を施してもよい。重合後に架橋を行うことで含水ゲル状重合体の架橋度を高めて吸水特性(保水量等)を更に向上させることができる。
 重合後架橋剤としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等の、2個以上のエポキシ基を有する化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の、2個以上のイソシアネート基を有する化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物などが挙げられる。これらの中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物が好ましい。架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 重合後架橋剤の量は、得られる含水ゲル状重合体が適度に架橋されることにより、好適な吸水特性(保水量等)が得られやすい観点から、エチレン性不飽和単量体1モル当たり、30ミリモル以下が好ましく、10ミリモル以下がより好ましく、0.01~5ミリモルが更に好ましく、0.012~1ミリモルが特に好ましく、0.015~0.1ミリモルが極めて好ましく、0.02~0.05ミリモルが非常に好ましい。
 重合後架橋剤の添加時期としては、重合に用いられるエチレン性不飽和単量体の重合後であればよく、多段重合の場合は、多段重合後に添加されることが好ましい。なお、重合時及び重合後の発熱、工程遅延による滞留、架橋剤添加時の系の開放、及び架橋剤添加に伴う水の添加等による水分の変動を考慮して、重合後架橋剤は、含水率(後述)の観点から、[重合直後の含水率±3質量%]の領域で添加することが好ましい。
 引き続き、得られた含水ゲル状重合体から水分を除去するために乾燥を行うことにより重合体粒子(例えば、エチレン性不飽和単量体に由来する構造単位を有する重合体粒子)が得られる。乾燥方法としては、例えば、(a)含水ゲル状重合体が炭化水素分散媒に分散した状態で、外部から加熱することにより共沸蒸留を行い、炭化水素分散媒を還流させて水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。中でも、製造工程における簡便さから、(a)の方法を用いることが好ましい。
 重合反応時の撹拌機の回転数を調整することによって、あるいは、重合反応後又は乾燥の初期において凝集剤を系内に添加することによって吸水性樹脂粒子の粒子径を調整することができる。凝集剤を添加することにより、得られる吸水性樹脂粒子の粒子径を大きくすることができる。凝集剤としては、無機凝集剤を用いることができる。無機凝集剤(例えば粉末状無機凝集剤)としては、シリカ、ゼオライト、ベントナイト、酸化アルミニウム、タルク、二酸化チタン、カオリン、クレイ、ハイドロタルサイト等が挙げられる。凝集効果に優れる観点から、凝集剤としては、シリカ、酸化アルミニウム、タルク及びカオリンからなる群より選ばれる少なくとも一種が好ましい。
 逆相懸濁重合において、凝集剤を添加する方法としては、重合で用いられるものと同種の炭化水素分散媒又は水に凝集剤を予め分散させてから、撹拌下で、含水ゲル状重合体を含む炭化水素分散媒中に混合する方法が好ましい。
 凝集剤の添加量は、重合に使用するエチレン性不飽和単量体100質量部に対して、0.001~1質量部が好ましく、0.005~0.5質量部がより好ましく、0.01~0.2質量部が更に好ましい。凝集剤の添加量が上述の範囲内であることによって、目的とする粒度分布を有する吸水性樹脂粒子が得られやすい。
 吸水性樹脂粒子の製造においては、乾燥工程(水分除去工程)又はそれ以降の工程において、表面架橋剤を用いて含水ゲル状重合体の表面部分(表面及び表面近傍)の表面架橋が行われることが好ましい。表面架橋を行うことで、吸水性樹脂粒子のゲル反発力減少率、吸水特性(保水量等)などを制御しやすい。表面架橋は、含水ゲル状重合体が特定の含水率であるタイミングで行われることが好ましい。表面架橋の時期は、含水ゲル状重合体の含水率が5~50質量%である時点が好ましく、10~40質量%である時点がより好ましく、15~35質量%である時点が更に好ましい。なお、含水ゲル状重合体の含水率(質量%)は、次の式で算出される。
  含水率=[Ww/(Ww+Ws)]×100
 Ww:全重合工程の重合前の単量体水溶液に含まれる水分量から、乾燥工程により系外部に排出された水分量を差し引いた量に、凝集剤、表面架橋剤等を混合する際に必要に応じて用いられる水分量を加えた含水ゲル状重合体の水分量。
 Ws:含水ゲル状重合体を構成するエチレン性不飽和単量体、架橋剤、開始剤等の材料の仕込量から算出される固形分量。
 表面架橋剤としては、例えば、反応性官能基を2個以上有する化合物を挙げることができる。表面架橋剤としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物などが挙げられる。表面架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。表面架橋剤としては、ポリグリシジル化合物が好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及び、ポリグリセロールポリグリシジルエーテルからなる群より選ばれる少なくとも一種がより好ましい。
 表面架橋剤の使用量は、好適な吸水特性(保水量等)が得られやすい観点から、重合に使用するエチレン性不飽和単量体1モルに対して、0.01~20ミリモルが好ましく、0.05~10ミリモルがより好ましく、0.1~5ミリモルが更に好ましく、0.15~1ミリモルが特に好ましく、0.2~0.5ミリモルが極めて好ましい。
 表面架橋後において、公知の方法で水及び炭化水素分散媒を留去すること、加熱減圧下で乾燥すること等により、表面架橋された乾燥品である重合体粒子を得ることができる。
 重合反応は、撹拌翼を有する各種撹拌機を用いて行うことができる。撹拌翼としては、平板翼、格子翼、パドル翼、プロペラ翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼、マックスブレンド翼等を用いることができる。平板翼は、軸(撹拌軸)と、軸の周囲に配置された平板部(撹拌部)とを有している。平板部は、スリット等を有していてもよい。撹拌翼として平板翼を用いた場合には、重合体粒子における架橋反応を均一に行いやすく、保水量等の吸水特性を維持しながらゲル反発力減少率を増加させて好適な範囲に調整しやすい。
 本実施形態に係る吸水性樹脂粒子は、重合体粒子に加えて、例えば、ゲル安定剤、金属キレート剤(エチレンジアミン4酢酸及びその塩、ジエチレントリアミン5酢酸及びその塩、例えばジエチレントリアミン5酢酸5ナトリウム等)、流動性向上剤(滑剤)等の追加成分を更に含むことができる。追加成分は、重合体粒子の内部、重合体粒子の表面上、又は、これらの両方に配置され得る。
 吸水性樹脂粒子は、重合体粒子の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、重合体粒子と無機粒子とを混合することにより、重合体粒子の表面上に無機粒子を配置することができる。この無機粒子は、非晶質シリカ等のシリカ粒子であってもよい。
 吸水性樹脂粒子が、重合体粒子の表面上に配置された無機粒子を含む場合、無機粒子の含有量は、重合体粒子の全質量を基準として下記の範囲であってよい。無機粒子の含有量は、0.05質量%以上、0.1質量%以上、0.15質量%以上、又は、0.2質量%以上であってよい。無機粒子の含有量は、5.0質量%以下、3.0質量%以下、1.0質量%以下、又は、0.5質量%以下であってよい。
 ここでの無機粒子は、通常、重合体粒子の大きさと比較して微小な大きさを有する。例えば、無機粒子の平均粒子径は、0.1~50μm、0.5~30μm、又は、1~20μmであってよい。平均粒子径は、粒子の特性に応じて、細孔電気抵抗法又はレーザー回折・散乱法によって測定できる。
 本実施形態に係る吸収体は、本実施形態に係る吸水性樹脂粒子を含有する。本実施形態に係る吸収体は、繊維状物を含有していてもよく、例えば、吸水性樹脂粒子及び繊維状物を含む混合物である。吸収体の構成としては、例えば、吸水性樹脂粒子及び繊維状物が均一混合された構成であってよく、シート状又は層状に形成された繊維状物の間に吸水性樹脂粒子が挟まれた構成であってもよく、その他の構成であってもよい。
 繊維状物としては、微粉砕された木材パルプ;コットン;コットンリンター;レーヨン;セルロースアセテート等のセルロース系繊維;ポリアミド、ポリエステル、ポリオレフィン等の合成繊維;これらの繊維の混合物などが挙げられる。繊維状物の平均繊維長は、通常0.1~10mmであり、0.5~5mmであってもよい。繊維状物は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。繊維状物としては、親水性繊維を用いることができる。
 吸収体の使用前及び使用中における形態保持性を高めるために、繊維状物に接着性バインダーを添加することによって繊維同士を接着させてもよい。接着性バインダーとしては、熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等が挙げられる。接着性バインダーは、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 熱融着性合成繊維としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等の全融型バインダー;ポリプロピレンとポリエチレンとのサイドバイサイド又は芯鞘構造からなる非全融型バインダーなどが挙げられる。上述の非全融型バインダーにおいては、ポリエチレン部分のみ熱融着することができる。
 ホットメルト接着剤としては、例えば、エチレン-酢酸ビニルコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー、アモルファスポリプロピレン等のベースポリマーと、粘着付与剤、可塑剤、酸化防止剤等との混合物が挙げられる。
 接着性エマルジョンとしては、例えば、メチルメタクリレート、スチレン、アクリロニトリル、2-エチルヘキシルアクリレート、ブチルアクリレート、ブタジエン、エチレン、及び、酢酸ビニルからなる群より選ばれる少なくとも一種の単量体の重合物が挙げられる。
 本実施形態に係る吸収体は、無機粉末(例えば非晶質シリカ)、消臭剤、抗菌剤、顔料、染料、香料、粘着剤等を含有してもよい。吸水性樹脂粒子が無機粒子を含む場合、吸収体は、吸水性樹脂粒子中の無機粒子とは別に無機粉末を含有してよい。
 本実施形態に係る吸収体の形状は、例えばシート状であってよい。吸収体の厚さ(例えば、シート状の吸収体の厚さ)は、0.1~20mm又は0.3~15mmであってよい。
 吸収体における吸水性樹脂粒子の含有量は、充分な吸収特性を得やすい観点から、吸水性樹脂粒子及び繊維状物の合計に対して、2~100質量%、10~80質量%又は20~60質量%であってよい。
 吸収体における吸水性樹脂粒子の含有量は、充分な吸収特性を得やすい観点から、吸収体1m当たり、100~1000gが好ましく、150~800gがより好ましく、200~700gが更に好ましい。吸収体における繊維状物の含有量は、充分な吸収特性を得やすい観点から、吸収体1mあたり、50~800gが好ましく、100~600gがより好ましく、150~500gが更に好ましい。
 本実施形態に係る吸収性物品は、本実施形態に係る吸収体を備える。本実施形態に係る吸収性物品の他の構成部材としては、吸収体を保形すると共に吸収体の構成部材の脱落や流動を防止するコアラップ;吸液対象の液が浸入する側の最外部に配置される液体透過性シート;吸液対象の液が浸入する側とは反対側の最外部に配置される液体不透過性シート等が挙げられる。吸収性物品としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生材料(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、動物排泄物処理材などが挙げられる。
 図1は、吸収性物品の一例を示す断面図である。図1に示す吸収性物品100は、吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。図1において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。
 吸収体10は、本実施形態に係る吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。
 コアラップ20aは、吸収体10に接した状態で吸収体10の一方面側(図1中、吸収体10の上側)に配置されている。コアラップ20bは、吸収体10に接した状態で吸収体10の他方面側(図1中、吸収体10の下側)に配置されている。吸収体10は、コアラップ20aとコアラップ20bとの間に配置されている。コアラップ20a,20bとしては、ティッシュ、不織布、織布、液体透過孔を有する合成樹脂フィルム、網目を有するネット状シート等が挙げられる。コアラップ20a及びコアラップ20bは、例えば、吸収体10と同等の大きさの主面を有している。
 液体透過性シート30は、吸収対象の液が浸入する側の最外部に配置されている。液体透過性シート30は、コアラップ20aに接した状態でコアラップ20a上に配置されている。液体透過性シート30としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の合成樹脂からなる不織布、多孔質シートなどが挙げられる。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外部に配置されている。液体不透過性シート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体不透過性シート40としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、これらの合成樹脂と不織布との複合材料からなるシートなどが挙げられる。液体透過性シート30及び液体不透過性シート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。
 吸収体10、コアラップ20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。また、コアラップ20a,20bを用いて吸収体10を保形する方法は、特に限定されず、図1に示すように複数のコアラップにより吸収体を包んでよく、1枚のコアラップにより吸収体を包んでもよい。
 吸収体は、トップシートに接着されていてもよい。吸収体がコアラップにより挟持又は被覆されている場合、少なくともコアラップとトップシートとが接着されていることが好ましく、コアラップとトップシートとが接着されていると共にコアラップと吸収体とが接着されていることがより好ましい。吸収体の接着方法としては、ホットメルト接着剤をトップシートに対して所定間隔で幅方向にストライプ状、スパイラル状等に塗布して接着する方法;デンプン、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、その他の水溶性高分子等の水溶性バインダーを用いて接着する方法などが挙げられる。また、吸収体が熱融着性合成繊維を含む場合、熱融着性合成繊維の熱融着によって接着する方法を採用してもよい。
 本実施形態によれば、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品を用いた吸液方法を提供することができる。本実施形態に係る吸液方法は、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品に吸液対象の液を接触させる工程を備える。
 本実施形態によれば、吸収性物品における吸液量の調整方法であって、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品を用いた吸液量の調整方法(例えば向上方法)を提供することができる。本実施形態に係る吸液量の調整方法は、本実施形態に係る吸水性樹脂粒子に関して上述した(1)~(5)の手順により測定されるゲル反発力減少率を調整する調整工程を備える。調整工程では、ゲル反発力減少率を上述の各範囲(例えば5%以上)に調整することができる。
 本実施形態によれば、本実施形態に係る吸水性樹脂粒子に関して上述した(1)~(5)の手順により測定されるゲル反発力減少率に基づき吸水性樹脂粒子を選定する選定工程を備える、吸水性樹脂粒子の製造方法を提供することができる。選定工程では、ゲル反発力減少率を上述の各範囲(例えば5%以上)に調整することができる。
 本実施形態によれば、上述の吸水性樹脂粒子の製造方法により得られた吸水性樹脂粒子を用いた、吸収体の製造方法を提供することができる。本実施形態に係る吸収体の製造方法は、上述の吸水性樹脂粒子の製造方法により吸水性樹脂粒子を得る粒子製造工程を備える。本実施形態に係る吸収体の製造方法は、粒子製造工程の後に、吸水性樹脂粒子と繊維状物とを混合する工程を備えてよい。本実施形態によれば、上述の吸収体の製造方法により得られた吸収体を用いた、吸収性物品の製造方法を提供することができる。本実施形態に係る吸収性物品の製造方法は、上述の吸収体の製造方法により吸収体を得る吸収体製造工程を備える。本実施形態に係る吸収性物品の製造方法は、吸収体製造工程の後に、吸収体と吸収性物品の他の構成部材とを用いて吸収性物品を得る工程を備えてよく、当該工程では、例えば、吸収体と吸収性物品の他の構成部材とを互いに積層することにより吸収性物品を得る。
 以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[1.吸水性樹脂粒子の製造]
(実施例1)
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。撹拌機には、図2に概形を示す撹拌翼(平板翼)200を取り付けた。撹拌翼200は、軸200a及び平板部200bを備えている。平板部200bは、軸200aに溶接されていると共に、湾曲した先端を有している。平板部200bには、軸200aの軸方向に沿って延びる4つのスリットSが形成されている。4つのスリットSは平板部200bの幅方向に配列されており、内側の二つのスリットSの幅は1cmであり、外側二つのスリットSの幅は0.5cmである。平板部200bの長さは約10cmであり、平板部200bの幅は約6cmである。続いて、上述のセパラブルフラスコに、炭化水素分散媒としてn-ヘプタン293gを添加し、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社製、ハイワックス1105A)0.736gを添加することにより混合物を得た。この混合物を撹拌機で撹拌しつつ80℃まで昇温することにより分散剤をn-ヘプタンに溶解させた後、混合物を50℃まで冷却した。
 次に、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(アクリル酸:1.03モル)を添加した。続いて、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gをビーカー内に滴下することにより75モル%の中和を行った。その後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社製、HEC AW-15F)、水溶性ラジカル重合開始剤として過硫酸ナトリウム0.0648g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解させることにより第1段目の水性液を調製した。
 そして、撹拌機の回転数425rpmで撹拌しながら上述の第1段目の水性液を上述のセパラブルフラスコに添加した後、10分間撹拌した。その後、n-ヘプタン6.62gにショ糖ステアリン酸エステル(界面活性剤、三菱化学フーズ株式会社製、リョートーシュガーエステルS-370、HLB値:3)0.736gを加熱溶解することにより得られた界面活性剤溶液をセパラブルフラスコに添加した。そして、撹拌機の回転数425rpmで撹拌しながら系内を窒素で充分に置換した。その後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより第1段目の重合スラリー液を得た。
 次に、内容積500mLの別のビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(アクリル酸:1.44モル)を添加した。続いて、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gをビーカー内に滴下することにより75モル%の中和を行った。その後、水溶性ラジカル重合開始剤として過硫酸ナトリウム0.0907g(0.381ミリモル)を加えると共に内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えた後に溶解させることにより第2段目の水性液を調製した。
 次に、撹拌機の回転数650rpmで撹拌しながら、上述のセパラブルフラスコ内を25℃に冷却した後、上述の第2段目の水性液の全量を上述の第1段目の重合スラリー液に添加した。続いて、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行うことにより第2段目の含水ゲル状重合体を得た。
 上述の第2段目の含水ゲル状重合体に45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを撹拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを還流しながら271.0gの水を系外へ抜き出した。そして、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(エチレングリコールジグリシジルエーテル:0.507ミリモル)を添加した後、83℃で2時間保持した。
 その後、n-ヘプタンを125℃にて蒸発させて乾燥させることによって重合体粒子(乾燥品)を得た。この重合体粒子を目開き850μmの篩に通過させた後、重合体粒子の全質量を基準として0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション社製、トクシールNP-S)を重合体粒子に混合することにより、非晶質シリカを含む吸水性樹脂粒子を229.0g得た。吸水性樹脂粒子の中位粒子径は360μmであった。
(実施例2)
 第1段目の重合スラリー液の調製において撹拌機の回転数を350rpmへ変更したこと、及び、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により257.2gの水を系外へ抜き出したこと以外は、実施例1と同様にして、吸水性樹脂粒子231.2gを得た。吸水性樹脂粒子の中位粒子径は359μmであった。
(実施例3)
 第1段目の重合スラリー液の調製において撹拌機の回転数を350rpmへ変更したこと、及び、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により238.6gの水を系外へ抜き出したこと以外は、実施例1と同様にして、吸水性樹脂粒子226.4gを得た。吸水性樹脂粒子の中位粒子径は378μmであった。
(実施例4)
 第2段目の含水ゲル状重合体の作製において、セパラブルフラスコ内の温度を25℃に代えて31℃に変更したこと、及び、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により275.8gの水を系外へ抜き出したこと以外は、実施例1と同様にして、吸水性樹脂粒子232.0gを得た。吸水性樹脂粒子の中位粒子径は148μmであった。
(比較例1)
 無水マレイン酸変性エチレン・プロピレン共重合体を溶解させる際に、撹拌機として、平板翼に代えて、翼径5cmの4枚傾斜パドル翼を2段有する撹拌翼を用いたこと、第1段目の水性液の調製において、水溶性ラジカル重合開始剤として、過硫酸ナトリウム0.0648g(0.272ミリモル)に代えて、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)及び過硫酸カリウム0.018g(0.068ミリモル)を用いると共に、内部架橋剤の使用量を0.010g(0.057ミリモル)から0.0046g(0.026ミリモル)へ変更したこと、第1段目の重合スラリー液の調製において撹拌機の回転数を550rpmへ変更したこと、第2段目の水性液の調製において、水溶性ラジカル重合開始剤として、過硫酸ナトリウム0.0907g(0.381ミリモル)に代えて、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.129g(0.475ミリモル)及び過硫酸カリウム0.026g(0.095ミリモル)を用いたこと、第2段目の水性液の全量を第1段目の重合スラリー液に添加する際の撹拌機の回転数を1000rpmへ変更したこと、及び、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により232.0gの水を系外へ抜き出したこと以外は、実施例1と同様にして、吸水性樹脂粒子228.5gを得た。吸水性樹脂粒子の中位粒子径は354μmであった。
(比較例2)
 第2段目の重合後の含水ゲル状重合体において、共沸蒸留により216.7gの水を系外へ抜き出したこと以外は、比較例1と同様にして、吸水性樹脂粒子229.0gを得た。吸水性樹脂粒子の中位粒子径は348μmであった。
(比較例3)
 第2段目の重合後の含水ゲル状重合体において、共沸蒸留により207.9gの水を系外へ抜き出したこと以外は、比較例1と同様にして、吸水性樹脂粒子232.5gを得た。吸水性樹脂粒子の中位粒子径は360μmであった。
[2.評価方法]
<中位粒子径>
 吸水性樹脂粒子の上述の中位粒子径は、温度25±2℃、湿度50±10%の環境下において、下記手順により測定した。すなわち、JIS標準篩を上から、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び、受け皿の順に組み合わせた。組み合わせた最上の篩に、吸水性樹脂粒子50gを入れ、ロータップ式振とう器(株式会社飯田製作所製)を用いてJIS Z 8815(1994)に準じて分級した。分級後、各篩上に残った粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径として得た。
<保水量>
 吸水性樹脂粒子の生理食塩水の保水量(室温、25±2℃)を下記手順で測定した。まず、吸水性樹脂粒子2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を内容積500mLのビーカー内に設置した。吸水性樹脂粒子の入った綿袋内に生理食塩水500gを、ママコができないように一度に注ぎ込んだ後、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性樹脂粒子を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるように設定した脱水機(株式会社コクサン製、品番:H-122)を用いて1分間脱水した後、脱水後の膨潤ゲルを含んだ綿袋の質量Wa[g]を測定した。吸水性樹脂粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量Wb[g]を測定し、下記式から吸水性樹脂粒子の生理食塩水の保水量を算出した。結果を表1に示す。
  保水量[g/g]=(Wa-Wb)/2.0
<荷重下の吸水量>
 吸水性樹脂粒子の荷重下の生理食塩水の吸水量(室温、25℃±2℃)を、図3に示す測定装置Yを用いて測定した。測定装置Yは、ビュレット部61、導管62、測定台63、及び、測定台63上に置かれた測定部64から構成される。ビュレット部61は、鉛直方向に伸びるビュレット61aと、ビュレット61aの上端に配置されたゴム栓61bと、ビュレット61aの下端に配置されたコック61cと、コック61cの近傍において一端がビュレット61a内に伸びる空気導入管61dと、空気導入管61dの他端側に配置されたコック61eとを有している。導管62は、ビュレット部61と測定台63との間に取り付けられている。導管62の内径は6mmである。測定台63の中央部には、直径2mmの穴があいており、導管62が連結されている。測定部64は、円筒64a(アクリル樹脂製)と、円筒64aの底部に接着されたナイロンメッシュ64bと、重り64cとを有している。円筒64aの内径は20mmである。ナイロンメッシュ64bの目開きは75μm(200メッシュ)である。そして、測定時にはナイロンメッシュ64b上に測定対象の吸水性樹脂粒子65が均一に撒布される。重り64cの直径は19mmであり、重り64cの質量は119.6gである。重り64cは、吸水性樹脂粒子65上に置かれ、吸水性樹脂粒子65に対して4.14kPaの荷重を加えることができる。
 測定装置Yの円筒64aの中に0.100gの吸水性樹脂粒子65を入れた後、重り64cを載せて測定を開始した。吸水性樹脂粒子65が吸水した生理食塩水と同容積の空気が、空気導入管より、速やかにかつスムーズにビュレット61aの内部に供給されるため、ビュレット61aの内部の生理食塩水の水位の減量が、吸水性樹脂粒子65が吸水した生理食塩水量となる。ビュレット61aの目盛は、上から下方向に0mLから0.5mL刻みで刻印されており、生理食塩水の水位として、吸水開始前のビュレット61aの目盛りVaと、吸水開始から60分後のビュレット61aの目盛りVbとを読み取り、下記式より荷重下の吸水量を算出した。結果を表1に示す。
  荷重下の吸水量[mL/g]=(Vb-Va)/0.1
<無加圧DW>
 吸水性樹脂粒子の無加圧DWは、図4に示す測定装置Zを用いて測定した。測定は1種類の吸水性樹脂粒子に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を求めた。
 測定装置Zは、ビュレット部71、導管72、平板状の測定台73、ナイロンメッシュ74、架台75、及び、クランプ76を有する。ビュレット部71は、目盛が記載されたビュレット71aと、ビュレット71aの上部の開口を密栓するゴム栓71bと、ビュレット71aの下部の先端に連結されたコック71cと、ビュレット71aの下部に連結された空気導入管71d及びコック71eとを有する。ビュレット部71はクランプ76で固定されている。測定台73は、その中央部に形成された直径2mmの貫通孔73aを有しており、高さが可変の架台75によって支持されている。測定台73の貫通孔73aとビュレット部71のコック71cとが導管72によって連結されている。導管72の内径は6mmである。
 測定は温度25℃、湿度50±10%の環境下で行った。まずビュレット部71のコック71cとコック71eを閉め、25℃に調節された生理食塩水77をビュレット71a上部の開口からビュレット71aに入れた。ゴム栓71bでビュレット71aの開口の密栓した後、コック71c及びコック71eを開けた。気泡が入らないように導管72内部を生理食塩水77で満たした。貫通孔73a内に到達した生理食塩水77の水面の高さが、測定台73の上面の高さと同じになるように、測定台73の高さを調整した。調整後、ビュレット71a内の生理食塩水77の水面の高さをビュレット71aの目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とした。
 測定台73上の貫通孔73aの近傍にてナイロンメッシュ74(100mm×100mm、250メッシュ、厚さ:約50μm)を敷き、その中央部に、内径30mm、高さ20mmのシリンダーを置いた。このシリンダーに1.00gの吸水性樹脂粒子78を均一に散布した。その後、シリンダーを注意深く取り除き、ナイロンメッシュ74の中央部に吸水性樹脂粒子78が円状に分散されたサンプルを得た。次いで、吸水性樹脂粒子78が載置されたナイロンメッシュ74を、その中心が貫通孔73aの位置になるように、吸水性樹脂粒子78が散逸しない程度にすばやく移動させて、測定を開始した。空気導入管71dからビュレット71a内に気泡が最初に導入された時点を吸水開始(0秒)とした。
 ビュレット71a内の生理食塩水77の減少量(すなわち、吸水性樹脂粒子78が吸水した生理食塩水77の量)を0.1mL単位で順次読み取り、吸水性樹脂粒子78の吸水開始から起算して10分後の生理食塩水77の減量分Wc[g]を読み取った。Wcから、下記式により無加圧DWの10分値を求めた。無加圧DWは、吸水性樹脂粒子78の1.00g当たりの吸水量である。
  無加圧DW値[mL/g]=Wc/1.00
<ゲル反発力減少率>
(膨潤ゲルの作製)
 25℃の生理食塩水145gが入った容器(200mLガラスビーカー、ハリオサイエンス株式会社製、商品名:ビーカー、品番:B-200 SCI、内径:64mm、高さ:90mm)に吸水性樹脂粒子5.0gを600rpmの撹拌下で投入した。撹拌には、スターラーチップ(長さ:40mm、直径:8mm、リングなし)を用いた。生理食塩水の水面は、撹拌しない状態で底面から4.8cmの高さに位置している。吸水性樹脂粒子が膨潤し、液表面の渦が収束したことが確認された後、撹拌を止めた。その後10分間静置し、30倍膨潤ゲルを得た。
(ゲル反発力減少率の測定)
 ゲル反発力減少率の測定には、EZtest(株式会社島津製作所製、商品名:EZtest、型番:EZ-SX)を用いる。EZtestに備えられた治具をEZtestのロードセルに装着し、島津オートグラフ用ソフトウェア トラペジウムX(株式会社島津製作所製)を用いて、鉛直方向における治具の位置を調整できる。測定台上に置かれた30倍膨潤ゲルに対して、治具をゲルの表面に接触させた際に治具に負荷される荷重の応答をロードセルが感知し、その荷重が試験力として測定画面上に表示される。治具は、円板部と棒状部とを備えている。円板部は、表裏に平坦面を有する直径4.9cm、厚さ1.2cmの円盤状である。棒状部の長さは14cmである。棒状部の一端は円板部の平坦面の中央に接続されており、棒状部の他端はロードセルに接続される。容器の高さ方向の中心軸が円板部の中央に位置するように容器の位置を調整される。治具と容器の内壁の間のクリアランスは7.5mmである。
 測定は温度25±2℃、湿度50±10%の環境下で行った。上述のように調整された測定機において、30倍膨潤ゲルが収容された上述の容器を測定台に置いた。次に、治具に接続しているロードセルが0.01Nの試験力を感知するまで治具を下げ、治具とゲル表面とを接触させた。次に、治具を0.05mm上昇させることにより治具を測定開始位置に配置した。
 続いて、10mm/minの速度で治具をゲルに1mm押し込み、このときの試験力の最大値L(1サイクル目の最大試験力。単位[N])を測定した。
 次に、10mm/minの速度で治具をゲルから0.5mm引き戻した後に、10mm/minの速度で治具をゲルに0.5mm押し込む往復操作を行った。この往復操作を更に28回繰り返し、28回目の往復操作(すなわち、積算して30回目の往復操作)における試験力の最大値L30(30サイクル目の最大試験力。単位[N])を測定した。
 そして、試験力の最大値L及びL30に基づき、下記式よりゲル反発力減少率(25℃)を算出した。結果を表1に示す。
 ゲル反発力減少率[%]=((L-L30)/L)×100
<吸収性物品の評価>
(試験液の作製)
 塩化ナトリウム60.0g、塩化カルシウム二水和物1.8g、塩化マグネシウム六水和物3.6g、1質量%トリトンX溶液(和光純薬工業株式会社製のトリトンX-100と水との混合物)15.0g、脱イオン水5919.6g、及び、食用青色1号(着色用)を混合することにより試験液を得た。
(送液ポンプのキャリブレーション)
 INTEGRA社製の送液ポンプ(DOSEIT P910、投入口径:0.5cmφ)を組み立てた。試験条件として、試験液の投入量40mL、投入速度8mL/秒に設定した。試験液をチューブ(内径:0.5cm)の先端まで送液した。チューブの先端をメスシリンダー内に入れた後、送液ポンプを駆動させることにより試験液をメスシリンダーの中に注入した。メスシリンダーの値を読み取り、試験液の注入量が設定値(40mL)であることを確認することによりキャリブレーションを行った。
(吸収性物品の作製)
 気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて、吸水性樹脂粒子10g及び粉砕パルプ8gを空気抄造によって均一混合することにより、40cm×12cmの大きさのシート状の吸収体を作製した。次に、シート状の吸収体と同じ大きさを有する坪量16g/mの2枚のティッシュッペーパーで吸収体の上下を挟んだ状態で全体に196kPaの荷重を30秒間加えてプレスすることにより積層体を得た。
 プロクター・アンド・ギャンブル・ジャパン株式会社製のおむつ(商品名:パンパースさらさらケア、テープタイプ、Lサイズ、2018年購入)から、もともとのトップシート及び吸収コアを取り去り、短手方向の両端部のそれぞれに接着された一対のサイドギャザーを有するバックシートを採取した。バックシートの中央部が露出するようにサイドギャザーを短手方向にめくり上げた。次に、ウエストギャザーを覆わないように、バックシートにおける長手方向の両端部(幅:3cm)を除いた中央領域にポリエチレンシート(12cm×42cm)をテープ糊で貼り付けて補強した。上述のごとく作製した吸収体をポリエチレンシートの中心に載置した。続いて、吸収体の外周部に沿って、バックシート上にテープ糊を配置した後に、坪量22g/mのポリエチレン-ポリプロピレン製のエアスルー型多孔質液体透過性シート(15.5cm×47cm)を吸収体の上部からバックシートに貼り付けた。そして、一対のサイドギャザーにおけるバックシートの中央部側の部分(めくり上げていた部分)をテープ糊で液体透過性シートに貼付けつつ元の位置に戻し、当該部分が液体透過性シートに重なった状態の吸収性物品(おむつ)を得た。
(吸収性物品の吸液量の測定)
 温度25±2℃、湿度50±10%の環境下において、カトーテック株式会社製のドール(女の子用マネキン、立位、下腹部からももまでの子供用人体模型、透明)を準備した。ドールの寸法は下記のとおりである。上述の試験液を恒温槽で温度25±2℃に調整した。ドールの排尿部へ繋がるチューブと、送液ポンプのチューブとを連結した後、試験液をドールの排尿部の液出口まで送液した。
 お腹周り(おへその位置周り)の長さ:475mm
 お尻周りの長さ:465mm
 足の付け根周りの長さ:280mm
 股の間の長さ(両足の付け根間の長さ):36mm
 おへそと排尿部との間の長さ:145mm
 上述の吸収性物品の質量W1を測定した後、ドールに吸収性物品を装着させた。吸収性物品におけるファスニングテープの固定位置は、バックシートの表面に印字されているテープ止め位置「1」を採用した。この際、吸収性物品のギャザーがドールの股部分に接触していること、ギャザーが立っていること、吸収性物品の前後で装着部分の長さに偏りがないこと、並びに、背中及びおなか周囲にゆるみがないことを確認した。
 ドールを仰向けでバット内に設置した。5分毎に40mLの試験液を投入速度8mL/秒で送液し、吸収性物品からのモレ(背中側又は股側からの液体流出)が生じるまで送液を繰り返した。モレが生じた後、ドールから吸収性物品を外し、吸収性物品の質量W2を測定した。そして、試験液の吸液量「W2-W1」を算出した。結果を表1に示す。吸液量が大きい場合、モレが生じるまでに吸収可能な液量が多いことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、ゲル反発力減少率を調整することが、使用対象に装着された状態において液が供給された際に優れた吸液量を有する吸収性物品を得ることに有効であることが確認される。
 10…吸収体、10a,65,78…吸水性樹脂粒子、10b…繊維層、20a,20b…コアラップ、30…液体透過性シート、40…液体不透過性シート、61,71…ビュレット部、61a,71a…ビュレット、61b,71b…ゴム栓、61c,71c,71e…コック、61d,71d…空気導入管、61e…コック、62,72…導管、63,73…測定台、64…測定部、64a…円筒、64b,74…ナイロンメッシュ、64c…重り、73a…貫通孔、75…架台、76…クランプ、77…生理食塩水、100…吸収性物品、200…撹拌翼、200a…軸、200b…平板部、S…スリット、Y,Z…測定装置。

Claims (7)

  1.  下記(1)~(5)の手順により測定されるゲル反発力減少率が5%以上である、吸水性樹脂粒子。
    (1)鉛直方向の上側に開口した凹部を有する容器の前記凹部内に当該吸水性樹脂粒子の30倍膨潤のゲルを準備する。
    (2)平坦面を有する治具の前記平坦面を前記ゲルの表面に鉛直方向の上側から接触させる。
    (3)鉛直方向に前記治具を前記ゲルに1mm押し込む操作を行い、当該操作中に前記治具に負荷される荷重の最大値Lを得る。
    (4)鉛直方向に前記治具を前記ゲルから0.5mm引き戻した後に前記治具を前記ゲルに0.5mm押し込む操作を29回繰り返し、当該繰り返し操作における最後の操作中に前記治具に負荷される荷重の最大値L30を得る。
    (5)前記荷重の最大値Lと前記荷重の最大値L30との差分の前記荷重の最大値Lに対する割合を前記ゲル反発力減少率として得る。
  2.  前記ゲル反発力減少率が5~40%である、請求項1に記載の吸水性樹脂粒子。
  3.  (メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種に由来する構造単位を有する、請求項1又は2に記載の吸水性樹脂粒子。
  4.  請求項1~3のいずれか一項に記載の吸水性樹脂粒子を含有する、吸収体。
  5.  請求項4に記載の吸収体を備える、吸収性物品。
  6.  おむつである、請求項5に記載の吸収性物品。
  7.  下記(1)~(5)の手順により測定されるゲル反発力減少率に基づき吸水性樹脂粒子を選定する工程を備える、吸水性樹脂粒子の製造方法。
    (1)鉛直方向の上側に開口した凹部を有する容器の前記凹部内に当該吸水性樹脂粒子の30倍膨潤のゲルを準備する。
    (2)平坦面を有する治具の前記平坦面を前記ゲルの表面に鉛直方向の上側から接触させる。
    (3)鉛直方向に前記治具を前記ゲルに1mm押し込む操作を行い、当該操作中に前記治具に負荷される荷重の最大値Lを得る。
    (4)鉛直方向に前記治具を前記ゲルから0.5mm引き戻した後に前記治具を前記ゲルに0.5mm押し込む操作を29回繰り返し、当該繰り返し操作における最後の操作中に前記治具に負荷される荷重の最大値L30を得る。
    (5)前記荷重の最大値Lと前記荷重の最大値L30との差分の前記荷重の最大値Lに対する割合を前記ゲル反発力減少率として得る。
PCT/JP2020/016748 2019-04-23 2020-04-16 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 WO2020218161A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516058A JP7117456B2 (ja) 2019-04-23 2020-04-16 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019082042 2019-04-23
JP2019-082042 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020218161A1 true WO2020218161A1 (ja) 2020-10-29

Family

ID=72942660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016748 WO2020218161A1 (ja) 2019-04-23 2020-04-16 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品

Country Status (2)

Country Link
JP (1) JP7117456B2 (ja)
WO (1) WO2020218161A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158802A (ja) * 1999-12-02 2001-06-12 Kao Corp 高吸水性樹脂の製造方法
JP2003026706A (ja) * 2001-07-13 2003-01-29 Sumitomo Seika Chem Co Ltd 連続凝集装置およびこれを備えた多段重合装置
JP2005132957A (ja) * 2003-10-30 2005-05-26 Dainippon Ink & Chem Inc 吸水性樹脂の製造方法
JP2007177153A (ja) * 2005-12-28 2007-07-12 Toagosei Co Ltd 逆相懸濁重合装置及び重合体の製造方法
JP2009506132A (ja) * 2005-08-23 2009-02-12 株式会社日本触媒 改質された吸水性樹脂の製造方法
WO2012033025A1 (ja) * 2010-09-06 2012-03-15 住友精化株式会社 吸水性樹脂、及びその製造方法
WO2016182082A1 (ja) * 2015-05-14 2016-11-17 株式会社日本触媒 重合性液体組成物の分散方法及び球状重合体粒子の製造方法
WO2017169246A1 (ja) * 2016-03-31 2017-10-05 住友精化株式会社 吸水性樹脂粒子の製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158802A (ja) * 1999-12-02 2001-06-12 Kao Corp 高吸水性樹脂の製造方法
JP2003026706A (ja) * 2001-07-13 2003-01-29 Sumitomo Seika Chem Co Ltd 連続凝集装置およびこれを備えた多段重合装置
JP2005132957A (ja) * 2003-10-30 2005-05-26 Dainippon Ink & Chem Inc 吸水性樹脂の製造方法
JP2009506132A (ja) * 2005-08-23 2009-02-12 株式会社日本触媒 改質された吸水性樹脂の製造方法
JP2007177153A (ja) * 2005-12-28 2007-07-12 Toagosei Co Ltd 逆相懸濁重合装置及び重合体の製造方法
WO2012033025A1 (ja) * 2010-09-06 2012-03-15 住友精化株式会社 吸水性樹脂、及びその製造方法
WO2016182082A1 (ja) * 2015-05-14 2016-11-17 株式会社日本触媒 重合性液体組成物の分散方法及び球状重合体粒子の製造方法
WO2017169246A1 (ja) * 2016-03-31 2017-10-05 住友精化株式会社 吸水性樹脂粒子の製造装置

Also Published As

Publication number Publication date
JP7117456B2 (ja) 2022-08-12
JPWO2020218161A1 (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2020184394A1 (ja) 吸水性樹脂粒子、吸収体、吸収性物品、吸水性樹脂粒子の通液維持率の測定方法、及び吸水性樹脂粒子の製造方法
WO2020184389A1 (ja) 吸水性樹脂粒子
WO2020184398A1 (ja) 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品
WO2020184387A1 (ja) 吸水性樹脂粒子及びその製造方法、吸収体、並びに吸収性物品
WO2020184395A1 (ja) 吸水性樹脂粒子及びその製造方法、吸収体、吸収性物品、並びに、浸透速度の調整方法
WO2020184386A1 (ja) 吸水性樹脂粒子、吸収性物品、吸水性樹脂粒子を製造する方法、及び吸収体への生理食塩水の浸透速度を速める方法
JP7129490B2 (ja) 吸水性樹脂粒子、吸収体、吸収性物品、及び液吸引力測定方法
EP3896120A1 (en) Water-absorbing resin particles, absorbent, and absorbent article
EP3896095A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
WO2020184391A1 (ja) 吸収体、吸収性物品、及び、浸透速度の調整方法
JP6991389B2 (ja) 吸水性樹脂粒子及びその製造方法
WO2020218160A1 (ja) 吸水性樹脂粒子、吸収体及び吸収性物品
WO2020218168A1 (ja) 吸水性樹脂粒子、吸収体及び吸収性物品
EP3960792A1 (en) Water-absorbent resin particles
WO2020184393A1 (ja) 吸水性樹脂粒子、吸収体及び吸収性物品
WO2020218158A1 (ja) 吸水性樹脂粒子
WO2020218161A1 (ja) 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品
WO2020218163A1 (ja) 吸水性樹脂粒子、吸収体及び吸収性物品
WO2020218162A1 (ja) 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品
WO2020218166A1 (ja) 吸水性樹脂粒子
JP6752320B2 (ja) 吸収性物品及びその製造方法
WO2021049450A1 (ja) 吸水性樹脂粒子
JP6780048B2 (ja) 吸水性樹脂粒子、吸収体及び吸収性物品
JP6775050B2 (ja) 吸収性物品
WO2020122207A1 (ja) 吸水性樹脂粒子、吸収体及び吸収性物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795020

Country of ref document: EP

Kind code of ref document: A1