WO2016182082A1 - 重合性液体組成物の分散方法及び球状重合体粒子の製造方法 - Google Patents
重合性液体組成物の分散方法及び球状重合体粒子の製造方法 Download PDFInfo
- Publication number
- WO2016182082A1 WO2016182082A1 PCT/JP2016/064416 JP2016064416W WO2016182082A1 WO 2016182082 A1 WO2016182082 A1 WO 2016182082A1 JP 2016064416 W JP2016064416 W JP 2016064416W WO 2016182082 A1 WO2016182082 A1 WO 2016182082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid composition
- spray nozzle
- monomer
- water
- polymerizable
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/70—Spray-mixers, e.g. for mixing intersecting sheets of material
- B01F25/72—Spray-mixers, e.g. for mixing intersecting sheets of material with nozzles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/01—Processes of polymerisation characterised by special features of the polymerisation apparatus used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/32—Polymerisation in water-in-oil emulsions
Definitions
- the present invention relates to a method for dispersing a polymerizable liquid composition and a method for producing spherical polymer particles using a dispersion obtained by the dispersion method.
- spherical polymer particles obtained by polymerizing polymerizable monomers have been used in various fields.
- a great demand for spherical polymer particles having a controlled particle size and particle size distribution As a general method for producing such spherical polymer particles, a suspension polymerization method, an emulsion polymerization method and the like are known.
- the suspension polymerization method and the emulsion polymerization method are methods of obtaining spherical polymer particles by polymerizing a polymerizable monomer dispersed or suspended in a liquid composition incompatible with the polymerizable monomer. It is.
- an emulsion polymerization method and a film emulsion polymerization method using emulsions such as W / O type and O / W type are known (Patent Documents 1 and 2).
- spherical polymer particles obtained by the above suspension polymerization method or emulsion polymerization method are paints, adhesives, antiblocking agents, light diffusing agents, matting agents, additives for decorative plates, additives for artificial marble And additives for resins such as toner additives. It is also widely used as a water-absorbing material for disposable diapers and sanitary products. For example, in the field of water-absorbing materials, it is known that the water absorption performance, handleability, and feeling of use vary depending on the particle size and particle size distribution of spherical polymer particles. Therefore, there is a demand for a powdery or particulate water-absorbing resin composed of spherical polymer particles whose particle diameter and particle size distribution are controlled.
- the powdered or particulate water-absorbing resin is produced by an aqueous solution polymerization method or a reverse phase suspension polymerization method.
- aqueous solution polymerization method it is necessary to pulverize and classify the hydrogel crosslinked polymer obtained in the polymerization step before or after drying, which complicates the manufacturing process. Therefore, advanced operation technology is required for stable operation.
- the particle size can be controlled at the polymerization stage.
- a method in which an aqueous monomer solution is dispersed into fine droplets by mechanical stirring and polymerized Patent Documents 3 to 6
- 5) A method in which a monomer aqueous solution is dropped with fine droplets using a spray nozzle or a perforated plate for generating droplets for polymerization Patent Documents 6 to 9 has been proposed.
- the particle diameter of the water-absorbing resin obtained is as follows. Depends on the inner diameter of the holes of the spray nozzle or the perforated plate for generating droplets, a water absorbent resin having a larger particle size and a sharper particle size distribution than mechanical agitation can be obtained, but paper diapers and sanitary napkins For use in absorbent articles such as absorbent articles, the water absorption rate was slow.
- an object of the present invention is to provide a dispersion method in which a polymerizable liquid composition containing a polymerizable monomer is dispersed in a continuous phase without using a dispersion aid or with an extremely small amount of dispersion aid.
- a production method in which spherical polymer particles excellent in various performances can be stably produced without any trouble in production and can be easily increased in size.
- the present inventors have found that at least one polymerizable liquid composition containing a polymerizable monomer and at least one kind that is incompatible with the polymerizable monomer. After introducing the incompatible liquid composition into the spray nozzle, the polymerizable liquid composition and the incompatible liquid composition are guided to the tip of the spray nozzle without contacting each other.
- the dispersion method of the polymerizable liquid composition in which the polymerizable liquid composition and the incompatible liquid composition are brought into contact immediately before or after being discharged from the liquid has been completed. Furthermore, the present inventors have completed a production method for producing spherical polymer particles using the dispersion obtained by this dispersion method.
- the present invention is a dispersion method in which a polymerizable liquid composition is made into a dispersed phase using a spray nozzle, and the spray nozzle contains at least one kind of polymerization containing a polymerizable monomer.
- the soluble liquid composition is passed through the inside of the spray nozzle without being brought into contact with each other, guided to the tip of the spray nozzle, and immediately before or after being discharged from the spray nozzle.
- the resulting dispersion was used to provide a method for producing spherical polymer particles.
- the dispersion method according to the present invention, a dispersion liquid in which droplets of a fine polymerizable liquid composition are stably dispersed in a continuous phase without any trouble such as a decrease in productivity and clogging of a spray nozzle is obtained. be able to. Furthermore, by using this dispersion method, the dispersion phase in the form of droplets can be stably maintained without using a dispersion aid or with a very small amount of dispersion aid. As a result, it is possible to efficiently produce spherical polymer particles excellent in various performances that are free from performance deterioration due to the remaining dispersion aid.
- the dispersion aid means a substance having a function as a stabilizer in a suspended or dispersed state of droplets.
- FIG. 1 is a cross-sectional view illustrating a two-fluid spray nozzle used in a dispersion method according to an embodiment of the present invention.
- FIG. 2 is a bottom view of the two-fluid spray nozzle of FIG.
- FIG. 3 is a cross-sectional view illustrating a four-fluid spray nozzle used in a dispersion method according to another embodiment of the present invention.
- 4 is a bottom view of the four-fluid spray nozzle of FIG.
- FIG. 5 is a schematic view showing a part of a process for producing spherical polymer particles according to still another embodiment of the present invention.
- the “polymerizable liquid composition” means a liquid composition having fluidity at room temperature, which becomes a spherical polymer particle by a polymerization reaction.
- the liquid composition may be a slurry liquid containing solid particles as long as the liquid composition has fluidity enough to pass through the inside of a spray nozzle described later.
- polymerizable monomer means a compound having a polymerizable functional group, and is a concept including a water-soluble polymerizable monomer and a hydrophobic polymerizable monomer.
- addition polymerization or condensation polymerization may be applied to the polymerizable monomer, but radical polymerization is preferably applied.
- a radical polymerizable monomer that is, a polymerizable unsaturated monomer, more preferably an ethylenically unsaturated monomer is applied.
- water-soluble means a property of being dissolved in water or a mixed solvent containing water as a main component, and when the solubility in water or a mixed solvent containing water as a main component is high (10 g / 100 g-H 2 O Included).
- hydrophobic means a property that dissolves in a water-insoluble or hardly water-soluble solvent, and has low solubility in water or a mixed solvent containing water as a main component (less than 10 g / 100 g-H 2 O). Refers to nature.
- the “main component” means that its content exceeds 50% by mass.
- the “incompatible liquid composition” means a liquid material that does not dissolve the polymerizable monomer or has a property that is negligible even when dissolved. Moreover, even if it is a case where it consists only of the liquid substance of a single compound in this specification, it is called an incompatible liquid composition. Specifically, it refers to a liquid material in which the solubility of the polymerizable monomer in the incompatible liquid composition is preferably less than 10 g / 100 g-solvent, more preferably less than 1 g / 100 g-solvent at 20 ° C.
- a typical incompatible liquid composition is a hydrophobic organic solvent.
- a typical incompatible liquid composition is water.
- the “spherical polymer particles” are substantially spherical polymer particles obtained by polymerization of the polymerizable liquid composition, and include shapes other than the true spherical shape.
- substantially spherical means particles having a ratio of the average major axis to the average minor axis (also referred to as sphericity) of particles of preferably 1.0 to 3.0. The average major axis and the average minor axis of the particles are measured based on an image observed with a microscope.
- the “spherical polymer particles” are not limited to exist as single particles, and may form aggregates of spherical polymer particles.
- the spherical polymer particle in the present invention is designed by selecting a polymerizable monomer according to its use and purpose. For example, when a powdery or particulate water-absorbing resin is produced as spherical polymer particles, a representatively used polymerizable monomer is (meth) acrylic acid and / or a salt thereof.
- Water absorbent resin refers to a water-swellable, water-insoluble polymer gelling agent, which satisfies the following physical properties. That is, the CRC (centrifuge retention capacity) defined by ERT441.2-02 as water swellability is 5 g / g or more, and Ext (water-soluble) defined by ERT470.2-02 as water-insoluble The polymer gelling agent whose (min) is 50 mass% or less.
- the water-absorbent resin can be designed according to its use and purpose, and is not particularly limited, but is preferably a hydrophilic cross-linked polymer obtained by cross-linking an unsaturated monomer having a carboxyl group. Moreover, it is not limited to the form whose whole quantity is a crosslinked polymer, As long as each said physical property (CRC, Ext) satisfy
- water-absorbent resin in the present specification is not limited to the final product before shipment, but is an intermediate in the manufacturing process of the water-absorbent resin (for example, a water-containing gel-like crosslinked polymer after polymerization, a water-absorbent resin powder before surface crosslinking) Etc.). All of these are collectively referred to as “water absorbent resin”.
- poly (meth) acrylic acid (salt) refers to poly (meth) acrylic acid and / or a salt thereof as a polymerizable monomer, and (meth) acrylic acid and / or a salt thereof as a main component.
- (meth) acrylic acid (salt) means a cross-linked polymer containing a graft component as an optional component.
- the “main component” is preferably used in an amount (content) of (meth) acrylic acid (salt) of 50 mol% to 100 mol%, more preferably based on the whole monomer used for polymerization. It means 70 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, particularly preferably substantially 100 mol%.
- the “poly (meth) acrylate” as the crosslinked polymer includes a water-soluble salt of poly (meth) acrylic acid, preferably a monovalent salt, more preferably an alkali metal salt or an ammonium salt, and more preferably an alkali salt.
- Metal salts, particularly preferably sodium salts are included.
- EDANA and "ERT” “EDANA” is an abbreviation for European Disposables and Nonwovens Associations.
- ERT is an abbreviation for EDANA Recommended Test Methods and is a European standard that defines a method for measuring water-absorbing resin. In the present invention, unless otherwise specified, the physical properties of the water-absorbent resin are measured based on the original ERT (revised in 2002).
- CRC is an abbreviation for Centrifugation Retention Capacity (centrifuge retention capacity) and means the water absorption capacity of the water absorbent resin under no pressure (sometimes referred to as “water absorption capacity”). Specifically, 0.2 g of the water-absorbing resin was put in a non-woven bag, and then immersed in a large excess of 0.9 mass% sodium chloride aqueous solution for 30 minutes for free swelling, and then centrifuged (250G ) Is the water absorption capacity (unit: g / g) after draining for 3 minutes.
- Extractables is an abbreviation for Extractables, which means the water-soluble component (water-soluble component amount) of the water-absorbent resin. Specifically, 1.0 g of water-absorbing resin is added to 200 ml of a 0.9% by mass sodium chloride aqueous solution, stirred for 16 hours at 500 rpm, and then the amount of substance dissolved in the aqueous solution (unit: mass%). . PH titration is used to measure the water-soluble content.
- “Residual Monomers” (ERT410.2-02) “Residual Monomers” means the amount of monomer remaining in the water-absorbent resin.
- the monomer remaining in the water absorbent resin is referred to as “residual monomer”. Specifically, it refers to the amount of monomer (unit: ppm) dissolved in an aqueous solution after adding 1.0 g of a water-absorbing resin to 200 ml of a 0.9 mass% sodium chloride aqueous solution and stirring at 500 rpm for 1 hour.
- High performance liquid chromatography (HPLC) is used for the measurement of the amount of residual monomers.
- “Moisture Content” (ERT430.2-02) “Moisture Content” means the water content of the water-absorbent resin. Specifically, it refers to a value (unit: mass%) calculated from loss on drying when 4.0 g of water-absorbing resin is dried at 105 ° C. for 3 hours. In some cases, the amount of the water-absorbing resin is changed to 1.0 g and the drying temperature is changed to 180 ° C.
- PSD is an abbreviation for Particle Size Distribution, and means a particle size distribution of a water-absorbent resin measured by sieving.
- D50 mass average particle diameter
- ⁇ logarithmic standard deviation
- Vortex “Vortex” in the present specification is an index representing the water absorption rate of the water-absorbent resin, and refers to the water absorption time obtained by the measurement method described in Examples described later.
- X to Y indicating a range means “X or more and Y or less”.
- t (ton) which is a unit of mass, means “Metric ton”
- ppm means “mass ppm” or “weight ppm”.
- mass and weight means “mass part” and “part by weight”, “mass%” and “wt%” are treated as synonyms.
- ⁇ acid (salt) means “ ⁇ acid and / or salt thereof”
- (meth) acryl means “acryl and / or methacryl”.
- a spray nozzle is used.
- the spray nozzle is introduced with at least one polymerizable liquid composition containing a polymerizable monomer and at least one incompatible liquid composition that is incompatible with the polymerizable monomer.
- the polymerizable liquid composition and the incompatible liquid composition pass through the inside of the spray nozzle without contacting each other.
- the polymerizable liquid composition and the incompatible liquid composition guided to the tip of the spray nozzle come into contact immediately before or after being discharged from the spray nozzle, and the polymerizable liquid composition becomes droplets.
- a dispersion having a dispersed phase and a continuous phase of an incompatible liquid composition is obtained.
- a droplet of a polymerizable liquid composition that forms a dispersed phase may be simply referred to as a “droplet”.
- a liquid material introduced into the spray nozzle other than the polymerizable liquid composition for example, an incompatible liquid composition
- auxiliary fluid for example, an incompatible liquid composition
- spray nozzle As the spray nozzle used in the present invention, at least one polymerizable liquid composition and at least one incompatible liquid composition are introduced, and these are allowed to pass through them without contacting each other. There is no particular limitation as long as it has a function of contacting and discharging immediately before or after discharging from the spray nozzle.
- a multi-fluid spray nozzle such as a two-fluid spray nozzle, a three-fluid spray nozzle, or a four-fluid spray nozzle; a multiple pipe such as a double pipe, a triple pipe, or a quadruple pipe;
- the two-fluid spray nozzle include a prefilming type, a plain jet type, a cross flow type, an external mixing type, an internal mixing type, and a Y jet type.
- a multi-fluid spray nozzle is preferable, and an external mixing type multi-fluid spray nozzle is more preferable from the viewpoint that the droplets can be miniaturized and blockage hardly occurs.
- Such a multi-fluid spray nozzle include: Kyoritsu Alloy Manufacturing Co., Ltd. mini atomized MMA, Ikeuchi no SETOJet, Spraying Systems Japan Co., Ltd. Air atomizing nozzle SU-HTE91, Arakura Kogyo Co., Ltd. Micromizer, Fujisaki Electric Co., Ltd. 4-fluid nozzle, Okawara Chemical Industries Co., Ltd. twin jet nozzle, etc. are mentioned.
- the usage mode of the conventional multi-fluid spray nozzle is to introduce gas and liquid into the gas flow path and liquid flow path, respectively, and to make the discharged liquid and gas contact and spray into the air.
- the introduction of the liquid into the gas flow channel was originally considered as one of the trouble factors, the present inventors may be able to introduce the liquid into the gas flow channel. I realized that. Then, the incompatible liquid composition is introduced into the gas flow path and the polymerizable liquid composition is introduced into the liquid flow path, or the polymerizable liquid composition is introduced into the gas flow path and the liquid flow is introduced.
- the polymerizable liquid composition By introducing the incompatible liquid composition into the channel, the polymerizable liquid composition is supplied to the continuous phase in the form of droplets, and a very good dispersion state is efficiently achieved, and the present invention Is completed.
- Specific examples of the polymerizable liquid composition and the incompatible liquid composition will be described later in [3] Method for producing spherical polymer particles.
- a gas such as air, nitrogen and water vapor may be intentionally introduced into the spray nozzle as the third component together with the polymerizable liquid composition and the incompatible liquid composition.
- a gas such as air, nitrogen and water vapor
- a polymerizable liquid composition especially a polymerizable liquid composition containing a radical polymerizable monomer
- a small amount of gas may be dispersed.
- the extremely small amount of gas present in these polymerizable liquid compositions is not particularly excluded in the present invention because it does not substantially have an adverse effect (such as blockage in the spray nozzle).
- the “very small amount of gas” refers to a gas whose amount of expansion of the volume of the polymerizable liquid composition due to gas dispersion is preferably 1.1 times or less, more preferably 1.01 times or less. Means.
- FIG. 1 is a cross-sectional view of a spray nozzle 1 used in a dispersion method according to an embodiment of the present invention
- FIG. 2 is a bottom view of the spray nozzle 1.
- the spray nozzle 1 includes one polymerizable liquid composition channel 2 and one incompatible liquid composition channel 3. That is, the spray nozzle 1 is a two-fluid spray nozzle having two flow paths.
- the flow path 2 is described as a polymerizable liquid composition flow path and the flow path 3 is described as an incompatible liquid composition flow path.
- the flow path for the soluble liquid composition and the flow path 3 can also be used as the flow path for the polymerizable liquid composition.
- FIG. 1 is a cross-sectional view of a spray nozzle 1 used in a dispersion method according to an embodiment of the present invention
- FIG. 2 is a bottom view of the spray nozzle 1.
- the spray nozzle 1 includes one polymerizable liquid composition channel 2 and one incompatible liquid composition channel 3. That is, the spray nozzle 1 is
- the polymerizable liquid composition is introduced into the spray nozzle 1 from the polymerizable liquid composition supply port 2a and discharged from the polymerizable liquid composition discharge port 2b.
- the incompatible liquid composition is introduced into the spray nozzle 1 from the incompatible liquid composition supply port 3a and discharged from the incompatible liquid composition discharge port 3b.
- the polymerizable liquid composition and the incompatible liquid composition come into contact with each other outside the spray nozzle 1 immediately after being discharged from the respective discharge ports (2b, 3b). The two are mixed by this contact, and droplets of the polymerizable liquid composition are generated.
- the polymerizable liquid composition and the incompatible liquid composition are guided to the tip portion 4 of the spray nozzle 1 without contacting each other.
- the tip portion 4 of the spray nozzle 1 refers to a portion that is inside the spray nozzle and is close to each of the discharge ports (2b, 3b).
- the polymerizable liquid composition and the incompatible liquid composition do not contact inside the spray nozzle 1. Thereby, the internal obstruction
- the polymerizable liquid composition forms a droplet-like dispersed phase. Thereby, the polymerizable liquid composition is efficiently dispersed in the continuous phase.
- the polymerizable liquid composition and the incompatible liquid composition are brought into contact with the outside of the spray nozzle 1 immediately after being discharged from the respective discharge ports (2b, 3b).
- This two-fluid spray nozzle 1 is an external mixing type.
- an internal mixing type spray nozzle is also permitted.
- the polymerizable liquid composition and the incompatible liquid composition are brought into contact and mixed at the tip of the spray nozzle immediately before discharge from the spray nozzle.
- FIG. 3 is a partial cross-sectional view of a spray nozzle 5 used in a dispersion method according to another embodiment of the present invention
- FIG. 4 is a bottom view of the spray nozzle 5.
- the spray nozzle 5 includes two polymerizable liquid composition channels (61, 62) and two incompatible liquid composition channels (71, 72). That is, the spray nozzle 5 is a four-fluid spray nozzle having four flow paths.
- the shapes of the polymerizable liquid composition outlet (61b, 62b) and the incompatible liquid composition outlet (71b, 72b) are slit-like.
- the vicinity of each discharge port (61b, 62b, 71b, 72b) is the tip 8.
- the tip 8 of the spray nozzle 5 is formed in an inverted triangle in cross section.
- the polymerizable liquid composition is introduced into two polymerizable liquid composition flow paths (61, 62), respectively, and the incompatible liquid composition is converted into two incompatible liquid compositions. It introduce
- the incompatible liquid composition discharged from one incompatible liquid composition discharge port 71b is mixed in contact with the discharged polymerizable liquid composition in the vicinity of the polymerizable liquid composition discharge port 61b. Then, it flows down toward the tip of the spray nozzle 5.
- the incompatible liquid composition discharged from the other incompatible liquid composition outlet 72b is mixed in contact with the discharged polymerizable liquid composition in the vicinity of the polymerizable liquid composition outlet 62b.
- the liquid mixture of the polymerizable liquid composition and the incompatible liquid composition comes into contact at the tip of the spray nozzle 5.
- fine droplets of the polymerizable liquid composition are formed at the tip of the spray nozzle 5.
- the polymerizable liquid composition forms a dispersed phase in the form of finer droplets, whereby a good dispersion state is formed.
- the polymerizable liquid composition and the incompatible liquid composition do not contact inside the spray nozzle 5. Thereby, the internal obstruction
- the same polymerizable liquid composition may be introduced into the two polymerizable liquid composition channels (61, 62), or different types of polymerizable liquid compositions may be introduced. May be. Further, the same incompatible liquid composition may be introduced into the two incompatible liquid composition channels (71, 72), or different types of incompatible liquid compositions may be introduced.
- the flow path for the polymerizable liquid composition of the spray nozzle is usually designed in a tubular structure or a slit-shaped structure, and the inner diameter and clearance can be appropriately selected according to the flow rate of the polymerizable liquid composition. . If the pressure is too narrow, the supply pressure of the polymerizable liquid composition becomes high, and a high-performance pump is required or the spray nozzle is blocked due to clogging, which is not preferable.
- the “clearance” is the smallest distance in the distance between any one point on the outer edge of the outlet for the polymerizable liquid composition and any one point on the outer edge of the outlet for the incompatible liquid composition. Means that.
- At least one polymerizable liquid composition and at least one incompatible liquid composition are introduced into the respective supply ports of the spray nozzle and discharged from the respective discharge ports.
- the particle size and particle size distribution of the droplets can be controlled without depending only on the inner diameter and clearance of the flow path for the polymerizable liquid composition (2, 61, 62), and further, blockage at the spray nozzle is prevented. be able to.
- the particle size of the generated droplets depends on the inner diameter of the flow path for the polymerizable liquid composition, and fine droplets In order to obtain this, the inner diameter had to be narrowed. For this reason, the supply pressure of the polymerizable liquid composition is high, and a high-performance pump is required, and the spray nozzle is frequently blocked due to clogging.
- the discharge port (2b) for the polymerizable liquid composition which is the discharge port of the spray nozzle (1, 5).
- 61b, 62b) and the incompatible liquid composition outlet (3b, 71b, 72b) are arranged to immerse in a liquid composition having a different composition than the discharge from the spray nozzle.
- the spray nozzles (1, 5) arranged in this way, the discharge composed of the polymerizable liquid composition and the incompatible liquid composition discharged from each discharge port (2b, 3b, 61b, 62b, 71b, 72b).
- the material is fed into a liquid composition having a different composition from the discharge from the spray nozzle without contacting the gas.
- the spray nozzle for example, polymerization of the polymerizable liquid composition attached to the tip (4, 8) of the spray nozzle (1, 5)
- 1 and 5 are preferable because blockage is prevented.
- the coalescence of the formed droplets is suppressed, there is an advantage that the dispersibility is improved.
- what is necessary is just to set suitably the distance of each nozzle, and the direction of a nozzle so that the effect of this invention may be acquired when using a some spray nozzle.
- the continuous phase is a liquid material that is substantially incompatible with the polymerizable monomer in the polymerizable liquid composition, It is preferably formed from a liquid substance that is essentially inert to the polymerization reaction of the polymerizable monomer that is the raw material of the spherical polymer particles of the present invention.
- the continuous phase may be formed with the same composition as the incompatible liquid composition discharged from the spray nozzle, or may be formed with a different composition. From the viewpoint of dispersion stability of droplets, formed from an incompatible liquid composition having the same composition ratio as the incompatible liquid composition discharged from the spray nozzle or an incompatible liquid composition having the same composition ratio.
- the continuous phase produced is preferred.
- the dispersion liquid may further contain a minute amount of bubbles that are a dispersed phase composed of a gas as described above.
- the continuous phase flows in the vicinity of each discharge port of the spray nozzle.
- the droplet supply direction by the spray nozzle is the moving direction of the continuous phase. It is preferable to prevent countercurrent flow.
- the angle formed between the supply direction of the droplet and the moving direction of the continuous phase is 90 degrees or less, more preferably 70 degrees or less, still more preferably 50 degrees or less, and particularly preferably 30 degrees or less.
- the supply direction means, for example, the direction of the central axis of the cone when the droplet is supplied in a conical shape.
- the droplet supply direction and the moving direction of the continuous phase are parallel.
- the droplets of the polymerizable liquid composition supplied from the spray nozzle are efficiently dispersed along with the movement of the continuous phase.
- it does not specifically limit as a moving method of a continuous phase The mechanical stirring by a stirrer, the circulation by a circulation pump, etc. are illustrated.
- the “spray index” in the present invention is a parameter for evaluating factors necessary for determining the particle size and particle size distribution of the droplets of the polymerizable liquid composition, and is defined by the following (formula 1).
- the particle diameter of the generated droplets can be easily adjusted by setting the production conditions based on this spray index during the scale-up production.
- Spray index (Da ⁇ Qa ⁇ Va 2 ) / (Dm ⁇ Qm ⁇ Vm 2 ) (Formula 1)
- Da, Qa, and Va are the density (kg / m 3 ), flow rate (m 3 / min), and flow rate (m / sec) of the incompatible liquid composition, respectively.
- Dm, Qm, and Vm are the density (kg / m 3 ), flow rate (m 3 / min), and flow rate (m / second) of the polymerizable liquid composition, respectively.
- the spray index is preferably 30 or more, more preferably 40 or more, still more preferably 50 or more, and particularly preferably 100 or more.
- the upper limit of the spray index is not particularly limited, but is preferably 10,000 or less, more preferably 5000 or less. By setting the spray index within the above range, the particle size and particle size distribution of the obtained droplets can be optimized, which is preferable.
- the spray index is less than 30, the flow rate and flow rate of the incompatible liquid composition are insufficient with respect to the flow rate and flow rate of the polymerizable liquid composition, and the polymerizable liquid composition can be sufficiently dispersed. Since it cannot be done, it is not preferable.
- the flow velocity Va and the flow velocity Vm in the above (Formula 1) are the flow velocity (unit: m / s) of the incompatible liquid composition and the polymerizable liquid composition at the spray nozzle tip (4, 8), respectively, Sometimes it's speed.
- the flow rate Vm of the polymerizable liquid composition at the tip (4, 8) of the spray nozzle is appropriately set so that the spray index falls within the above numerical range. From the viewpoint of blockage due to polymerization or the like inside the spray nozzle. Therefore, the flow velocity Vm is preferably 0.01 m / s or more, more preferably 0.05 m / s or more, and still more preferably 0.1 m / s or more.
- the flow velocity Vm is preferably 10 m / s or less, more preferably 5 m / s or less, and even more preferably 2 m / s or less.
- the flow rate Va of the incompatible liquid composition at the spray nozzle tip (4, 8) is appropriately set so that the spray index falls within the numerical range, but the particle size and particle size distribution of the obtained droplets are From the viewpoint of being optimized, the flow velocity Va is preferably 1 m / s or more, more preferably 1.5 m / s or more, and further preferably 2 m / s or more. Further, from the viewpoint of liquid feeding capacity (pressure) and droplet miniaturization efficiency, the flow velocity Va is preferably 50 m / s or less, more preferably 20 m / s or less, and even more preferably 10 m / s or less.
- the flow rate Vm of the polymerizable liquid composition and the flow rate Va of the incompatible liquid composition are the cross-sectional area calculated from the inner diameter and clearance of each discharge port at the spray nozzle tip (4, 8), and the polymerizable liquid. It is also possible to calculate based on the flow rate of the composition and the incompatible liquid composition.
- the flow rate Qa and the flow rate Qm in the above (formula 1) are respectively the flow rates (unit: m 3 / m) of the incompatible liquid composition and the polymerizable liquid composition introduced into the spray nozzle (1, 5) per unit time. Min). Since the dispersion method according to the present invention targets from the laboratory level to the actual machine level, the above flow rate is preferably defined by a volume ratio. That is, the flow rate Qa of the incompatible liquid composition is preferably 1 to 1000 times, more preferably 5 to 200 times, and still more preferably in volume ratio with respect to the flow rate Qm of the polymerizable liquid composition. Is 10 to 100 times.
- the density Da and the density Dm in the above (formula 1) are respectively the density (unit: kg / m 3 or g / g) of the incompatible liquid composition and the polymerizable liquid composition introduced into the spray nozzle (1, 5). ml). Note that these densities in the present invention are the density of the liquid used and are not particularly limited.
- the particle size of the droplets of the polymerizable liquid composition to be produced may be appropriately adjusted according to the purpose, but the volume average particle size may be the dispersion state or suspension state of the droplets. From the viewpoint of stability, it is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, and still more preferably 800 ⁇ m or less. Further, from the viewpoint of work efficiency, it is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more.
- the “volume average particle size” of the above-mentioned droplets is the “particle size analysis-laser diffraction / scattering method” defined in JIS Z 8825 and “expression of particle size measurement results” defined in JIS Z 8819-2.
- Part 2 Calculation of average particle size or average particle diameter and moment from particle size distribution ”or a method of calculating the dispersion state by image analysis of a photograph taken.
- the dispersion obtained by the method for dispersing a polymerizable liquid composition described above is used in a method for producing spherical polymer particles.
- this dispersion is used in a method for producing a water-absorbent resin that is one of spherical polymer particles.
- the powdery or particulate water-absorbing resin excellent in physical properties such as water absorption performance can be efficiently and stably produced.
- distribution method mentioned above is demonstrated, the manufacturing method of the water absorbing resin which is one of preferable embodiment shall be demonstrated suitably.
- the method for producing spherical polymer particles according to this embodiment includes a mixing step of preparing a polymerizable liquid composition, and supplying the polymerizable liquid composition in the form of droplets together with an incompatible liquid composition to a reaction apparatus.
- a supply step a polymerization step in which a polymerization reaction is started in the reaction apparatus to obtain a gel polymer, a separation step for separating the gel polymer and the incompatible liquid composition, and other steps.
- a dispersion by the dispersion method according to the present invention is obtained in the supplying step.
- This step is a step of preparing a polymerizable liquid composition containing a polymerizable monomer (hereinafter referred to as “monomer”).
- a solution containing a monomer that is a raw material for spherical polymer particles as a main component hereinafter referred to as “monomer solution”.
- a polymerizable liquid composition hereinafter referred to as “monomer composition” when the monomer is a raw material for the water-absorbing resin
- a “monomer aqueous solution” when the monomer is a raw material for the water-absorbing resin
- the “polymerizable liquid composition” includes a monomer and a polymerization initiator described later as essential components, and, if necessary, an additive compatible with the monomer (hereinafter, referred to as “polymerizable liquid composition”). It means a composition containing an additive that is not compatible with a monomer (hereinafter referred to as “incompatible additive”), an internal crosslinking agent, and the like.
- a composition containing a monomer and a polymerization initiator as essential components, and optionally containing additives such as a compatible additive and an internal cross-linking agent (however, compatible with the monomer) Is defined as “a polymerizable liquid composition in a narrow sense” (when a monomer is a raw material of a water absorbent resin, it is referred to as “a monomer composition in a narrow sense”).
- the incompatible additive contained in the polymerizable liquid composition as necessary is any incompatible liquid composition used in the dispersion method or an incompatible liquid composition forming a continuous phase of the dispersion. The same liquid composition as the product may be used, or a different liquid composition may be used.
- the type of monomer used in the polymerizable liquid composition is not particularly limited, but is preferably a radical polymerizable monomer, a radical polymerizable monomer, that is, polymerizable.
- An unsaturated monomer also called an olefinic monomer
- a polymerizable unsaturated monomer such as a vinyl compound, a vinylidene compound, a vinylene compound, or a cyclic olefin compound can be appropriately selected and used depending on the application.
- water-soluble polymerizable monomers examples include olefinic unsaturated carboxylic acid (salt), olefinic unsaturated sulfonic acid (salt), olefinic unsaturated amine, and olefinic unsaturated amide.
- water-soluble polymerizable monomer examples include olefinic unsaturated carboxylic acid (salt), olefinic unsaturated sulfonic acid (salt), olefinic unsaturated amine, and olefinic unsaturated amide.
- hydrophobic polymerizable monomer examples include styrene, vinyl acetate, (meth) acrylic acid esters and the like.
- water-soluble polymerizable monomer examples include (meth) acrylic acid, (anhydrous) maleic acid, itaconic acid, cinnamic acid, vinyl sulfonic acid, allyl toluene sulfonic acid, vinyl toluene sulfonic acid, and styrene sulfonic acid.
- hydrophobic polymerizable monomer examples include (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
- acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
- esters the above-mentioned styrene, vinyl acetate and the like can be mentioned.
- a polymerization inhibitor may be added as necessary.
- a known polymerization inhibitor such as p-methoxyphenol, phenothiazine, Vitamin-E can be used.
- oxygen is used in combination as necessary.
- the amount of the polymerization inhibitor used is preferably 0.1 ppm to 1000 ppm, more preferably 5 ppm to 500 ppm.
- the acid group A neutralized neutralized salt when producing a water-absorbing resin that is one of spherical polymer particles using an acid group-containing unsaturated monomer having an acid group such as a carboxyl group, the acid group A neutralized neutralized salt can be used.
- the salt of the acid group-containing unsaturated monomer is preferably a salt with a monovalent cation, more preferably at least one selected from alkali metal salts, ammonium salts and amine salts, An alkali metal salt is more preferable, at least one selected from a sodium salt, a lithium salt and a potassium salt is still more preferable, and a sodium salt is particularly preferable.
- the monomer is preferably an acid group-containing unsaturated monomer and / or a salt thereof, more preferably (meth) acrylic acid (salt), ( Anhydrous) maleic acid (salt), itaconic acid (salt), cinnamic acid (salt), more preferably (meth) acrylic acid (salt).
- the acid group-containing unsaturated monomer It is preferable to use in combination with neutralizing salts of the body.
- the number of moles of the neutralized salt relative to the total number of moles of the acid group-containing unsaturated monomer and the neutralized salt is preferably 40 mol% or more, More preferably, it is 40 mol% to 80 mol%, still more preferably 45 mol% to 78 mol%, and particularly preferably 50 mol% to 75 mol%.
- the monomer in this invention is the concept containing a neutralization salt unless there is particular notice.
- a method for adjusting the neutralization rate a method of mixing an acid group-containing unsaturated monomer and a neutralized salt thereof; a method of adding a known neutralizing agent to an acid group-containing unsaturated monomer; Examples thereof include a method using a partially neutralized salt of an acid group-containing unsaturated monomer adjusted to a predetermined neutralization rate (that is, a mixture of an acid group-containing unsaturated monomer and a neutralized salt thereof). Moreover, you may combine these methods.
- the neutralizing agent used for neutralizing the acid group-containing unsaturated monomer is not particularly limited, but includes inorganic salts such as sodium hydroxide, potassium hydroxide, sodium carbonate, ammonium carbonate, and amino groups. Or a basic substance such as an amine-based organic compound having an imino group is appropriately selected and used. Two or more basic substances may be used in combination as a neutralizing agent.
- the adjustment of the neutralization rate may be performed before the polymerization reaction of the acid group-containing unsaturated monomer is started, may be performed in the polymerization reaction of the acid group-containing unsaturated monomer, or may contain an acid group. You may carry out with respect to the hydrogel crosslinked polymer obtained after completion
- any of the above-exemplified monomers may be used alone, or any two or more monomers may be appropriately mixed and used. Moreover, as long as the objective of this invention is achieved, another monomer can also be mixed.
- the ratio of (meth) acrylic acid (salt) to the whole monomer is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 from the viewpoint of the water absorption performance of the resulting water-absorbent resin.
- an internal crosslinking agent In the method for producing spherical polymer particles according to the present invention, an internal crosslinking agent is preferably used.
- the internal cross-linking agent adjusts the physical properties of the obtained spherical polymer particles. For example, in the case of a water absorbent resin, the water absorption performance, the gel strength at the time of water absorption, etc. are adjusted.
- the internal cross-linking agent used is not particularly limited as long as it has two or more unsaturated bonds or reactive functional groups in one molecule.
- N N-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, epoxy (meth) acrylate, glycerin (Meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, triallylamine, polyallyloxyalkane (Poly) ethylene glycol diglycidyl ether, glyce
- the amount of the internal cross-linking agent used is appropriately set according to the type of the monomer and the internal cross-linking agent and is not particularly limited.
- the amount when producing a water-absorbing resin From the viewpoint of gel strength of the resulting water-absorbent resin, the amount is preferably 0.001 mol% or more, more preferably 0.005 mol% or more, still more preferably 0.01 mol% or more based on the monomer. .
- the water absorption performance improvement of a water absorbing resin Preferably it is 5 mol% or less, More preferably, it is 2 mol% or less.
- the internal crosslinking agent may not be used.
- other substances include chain transfer agents such as thiols, thiolic acids, secondary alcohols, amines and hypophosphites; foaming agents such as carbonates, bicarbonates, azo compounds, and bubbles; ethylenediamine Chelating agents such as a metal salt of tetraacetic acid, a metal salt of diethylenetriaminepentaacetic acid; polyacrylic acid (salt) and cross-linked products thereof, starch, cellulose, starch-cellulose derivatives, thickeners such as polyvinyl alcohol, and the like.
- chain transfer agents such as thiols, thiolic acids, secondary alcohols, amines and hypophosphites
- foaming agents such as carbonates, bicarbonates, azo compounds, and bubbles
- ethylenediamine Chelating agents such as a metal salt of tetraacetic acid, a metal salt of diethylenetriaminepentaacetic acid
- polyacrylic acid (salt) and cross-linked products thereof starch, cellulose, star
- the amount of other substances used is not particularly limited, but the total concentration of the other substances is preferably 10% by mass or less based on the monomer.
- the viscosity of the monomer solution (Brookfield viscometer / 20 ° C., 6 rpm) is preferably 10 mPa ⁇ s to 500,000 mPa ⁇ s, more preferably 20 mPa ⁇ s.
- a thickener may be added in a range of from ⁇ 300,000 mPa ⁇ s, more preferably from 50 mPa ⁇ s to 100,000 mPa ⁇ s.
- a thermal decomposition type polymerization initiator is preferably used as the polymerization initiator used.
- the thermal decomposition type polymerization initiator refers to a compound that decomposes by heat to generate radicals, but in the case of producing a water absorbent resin as spherical polymer particles, the storage stability and water absorption of the thermal decomposition type polymerization initiator are considered.
- the 10-hour half-life temperature (hereinafter referred to as “T10”) is preferably 0 ° C. to 120 ° C., more preferably 30 ° C. to 100 ° C., and even more preferably 50 ° C. to 80 ° C.
- a water-soluble compound is preferably used.
- thermal decomposition polymerization initiator having T10 in the above range include persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate; 2,2′-azobis (2-methylpropionamidine) dihydrochloride 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis (2-methylpro) Azo compounds such as (pionitrile); peroxides such as hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide. Of these, two or more may be used in combination.
- a persulfate is used, more preferably sodium persulfate, potassium persulfate, ammonium persulfate, and further preferably sodium persulfate is used.
- the amount of the thermal decomposition type polymerization initiator used is appropriately set according to the type of the monomer and the polymerization initiator and is not particularly limited, but is preferably 0 with respect to the monomer from the viewpoint of production efficiency. 0.001 g / mol or more, more preferably 0.005 g / mol or more, and still more preferably 0.01 g / mol or more. Moreover, from a viewpoint of the water absorption performance improvement of a water absorbing resin, Preferably it is 2 g / mol or less, More preferably, it is 1 g / mol or less.
- photodegradable polymerization initiator examples include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, and the like.
- the proportion of the thermal decomposition type polymerization initiator in the total polymerization initiator is preferably 60 mol% or more, more preferably 80 mol% or more. is there.
- a redox polymerization initiator can be obtained by using the above thermal decomposition type polymerization initiator and a reducing agent in combination.
- the thermal decomposition polymerization initiator functions as an oxidizing agent.
- the reducing agent to be used is not particularly limited. For example, (heavy) sulfites such as sodium sulfite and sodium hydrogen sulfite; reducing metal salts such as ferrous salt; L-ascorbic acid (salt), amines and the like Is mentioned.
- the following polymerization initiators are preferably used.
- aromatic peroxides such as benzoyl peroxide, orthochlorobenzoyl peroxide, and orthomethoxybenzoyl peroxide
- peroxide long-chain fatty acids such as lauroyl peroxide and octanoyl peroxide
- Azo polymerization initiators such as;
- it is preferably a peroxygenated long chain fatty acid, more preferably a peroxygenated long chain fatty acid having 6 to 24 carbon atoms, and even more preferably a
- a method for producing a polymerizable liquid composition containing a monomer solution and a polymerization initiator is not particularly limited.
- a monomer solution and a solution containing a polymerization initiator hereinafter, (Referred to as “polymerization initiator solution”) in advance, and a method of supplying and mixing simultaneously from separate pipes to the mixing device, (2) after supplying the monomer solution prepared in advance to the mixing device, (3) After supplying a monomer solution prepared in advance to the mixing device, the polymerization initiator solution prepared in advance is supplied to the mixing device and mixed.
- the selected polymerizable monomer may be used as it is, or by adding and mixing a solvent or a compatible additive compatible with the polymerizable monomer. It may be used as a diluted solution. Furthermore, an incompatible solvent or an incompatible additive may be added to the polymerizable monomer and mixed to use as an emulsion solution. Further, an incompatible solvent or an incompatible additive may be added to the diluted solution of the polymerizable monomer and mixed for use.
- the mixing device is not particularly limited, and examples thereof include a line mixer and a tank. From the viewpoint of storage stability and safety of the polymerization initiator, the mixing method (1) using a line mixer as a mixing device is preferable.
- the concentration of the polymerizable monomer in the polymerizable liquid composition is selected according to the selected polymerizable monomer and the type of the compatible solvent or compatible additive, the type of the spray nozzle, etc. In terms of production efficiency, it is preferably 10% by mass or more, more preferably 20% by mass or more, preferably 100% by mass or less, more preferably 90% by mass or less.
- additives such as a polymerization initiator, an internal cross-linking agent, a surfactant, a density adjusting agent, and a thickener can be added to the polymerizable liquid composition.
- the kind and addition amount of an additive can be suitably selected by the combination of the polymerizable monomer and incompatible liquid composition to be used.
- the monomer concentration in the monomer composition is preferably 10% by mass to 90% by mass from the viewpoint of physical properties and productivity of the water-absorbing resin. More preferably, it is 20% by mass to 80% by mass, and further preferably 30% by mass to 70% by mass.
- the monomer concentration in the narrowly defined monomer composition is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, and still more preferably 30% by mass to 70% by mass. is there.
- a polymerizable liquid composition (particularly a polymerizable liquid composition containing a radical polymerizable monomer) may be subjected to removal of (dissolved) oxygen during radical polymerization.
- the method for removing (dissolved) oxygen is not particularly limited, and examples thereof include introduction of a carbonate that generates carbon dioxide and a gas other than oxygen, and a decrease in oxygen solubility due to temperature rise (heating).
- the concentration of dissolved oxygen in the polymerizable liquid composition after removing oxygen is preferably 10 ppm or less, more preferably 5 ppm or less, and still more preferably 1 ppm or less. Even after the (dissolved) oxygen is removed, a very small amount of gas may be dispersed as bubbles. However, in the present invention, these bubbles may be removed, or the continuous phase is not removed. May be supplied.
- the temperature of the polymerizable liquid composition is appropriately set according to the type of the polymerizable monomer and the polymerization initiator within a range in which the polymerizable liquid composition can maintain a liquid form. Specifically, it may be room temperature (for example, 20 ° C. to 30 ° C.), for example, heated to 30 ° C. to 200 ° C., or cooled to ⁇ 20 ° C. to 20 ° C., for example. Heating or cooling of the polymerizable liquid composition may be performed by external heating or external cooling, and heat of dissolution or heat of neutralization during mixing of the polymerizable liquid composition may be used or used in combination.
- the temperature of the polymerizable liquid composition (hereinafter referred to as “Tm”). ) Is preferably kept at a temperature not exceeding 70 ° C. until it is supplied to the reactor in the supply step described later.
- Tm the lowest 10-hour half-life temperature (T10) of the thermal decomposition type polymerization initiator contained in the polymerizable liquid composition is lower than 70 ° C.
- Tm is maintained at a temperature lower than T10. It is preferable.
- the holding temperature of a polymerizable liquid composition shall be set on the assumption that T10 is 70 degreeC.
- the upper limit is preferably 50 ° C. or less from the viewpoint of cost.
- the polymerizable liquid composition contains an incompatible liquid composition to be described later and the Tm is T10 or more at the time when the polymerizable liquid composition is produced, the polymerizable liquid composition can be immediately subjected to a supply step. preferable.
- the viscosity of the polymerizable liquid composition (Brookfield viscometer / 20 ° C., 6 rpm) is not particularly limited, but is preferably 1 mPa ⁇ s to 500,000 mPa ⁇ s, more preferably 10 mPa ⁇ s to 300,000 mPa ⁇ s. More preferably, it is 50 mPa ⁇ s to 100,000 mPa ⁇ s.
- the viscosity of the polymerizable liquid composition is preferably a compatible solvent or a compatible additive, more preferably increased with respect to the polymerizable monomer appropriately selected according to the type of spray nozzle, the target droplet size, and the like. It is adjusted by blending a sticky agent.
- the polymerizable liquid composition obtained in the mixing step is mixed with the incompatible liquid composition using the dispersion method according to the present invention to form droplets, and then reacted. It is a step of supplying to a continuous phase formed inside the apparatus.
- spray nozzle As the spray nozzle used in the method for producing spherical polymer particles according to the present invention, the spray nozzle described above with respect to the dispersion method can be used, and the type thereof is not particularly limited, but an external mixing type two-fluid spray nozzle, A multi-fluid spray nozzle such as a three-fluid spray nozzle or a four-fluid spray nozzle is preferably used. A plurality of spray nozzles may be used, or two or more spray nozzles may be used in combination.
- the incompatible liquid composition used has low compatibility with the polymerizable monomer and is essentially inert to the reaction of the polymerizable monomer. And is appropriately selected according to the polymerizable monomer to be used.
- an incompatible liquid composition not only a case of being constituted by a plurality of incompatible liquids but also a case of being constituted by a single incompatible liquid is referred to as an “incompatible liquid composition”.
- preferred incompatible liquid compositions include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons. And at least one organic solvent selected from the group consisting of: Specific examples include aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane and n-octane; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, cyclooctane and decalin; benzene, toluene, xylene and the like Aromatic hydrocarbons: Halogenated hydrocarbons such as chlorobenzene, bromobenzene, carbon tetrachloride, 1,2-dichloroethane are exemplified. Among these, n-hexane, n-heptane, and cyclohe
- a preferred incompatible liquid composition includes water or a mixed solvent of water and a hydrophilic organic solvent.
- hydrophilic organic solvents include alcohols such as methanol, ethanol, propanol and isopropanol; glycols such as ethylene glycol, n-propylene glycol and butylene glycol; ketones such as acetone and methyl ethyl ketone; Examples include ethers such as diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, and diethylene glycol monoethyl ether.
- a mixed solvent containing water as a main component is preferable, and water is particularly preferable.
- the temperature of the incompatible liquid composition may be appropriately set according to the method of use. For example, when it is supplied to the spray nozzle, it is preferably substantially the same as the polymerizable liquid composition supplied at the same time, and when it is mixed with the discharge from the spray nozzle, the production conditions after mixing are satisfied. What is necessary is just to set the temperature which suits.
- additives such as a density adjusting agent and a dispersion aid to the incompatible liquid composition.
- the kind and addition amount of an additive are suitably selected by the combination of the polymerizable monomer and incompatible liquid composition to be used.
- an organic solvent that has a low compatibility with the water-soluble monomer to be used and is essentially hydrophobic is preferably used.
- the organic solvent is essentially inert to the polymerization reaction of the monomer that is a raw material for the water-absorbent resin.
- n-hexane, n-heptane, and cyclohexane are preferably used from the viewpoint of availability of the organic solvent and quality stability.
- the tip speed (flow velocity Va) of the organic solvent is preferably 1 m / s to 50 m / s, more preferably 1.5 m / s to 20 m / s, and even more preferably 2 m. / S to 10 m / s.
- the flow rate of the organic solvent (flow rate Qa) is preferably 1 to 1000 times, more preferably 5 to 200 times, and still more preferably in volume ratio with respect to the flow rate (flow rate Qm) of the monomer composition. Is 10 to 100 times.
- the spray index defined by the above is preferably 30 or more, more preferably 40 or more, still more preferably 50 or more, and particularly preferably 100 or more.
- the upper limit of the spray index is not particularly limited, but is preferably 10,000 or less, more preferably 5000 or less.
- the particle size and particle size distribution of the droplets of the monomer composition can be optimized, and the performance of the resulting water absorbent resin Is preferable.
- the volume average particle diameter of the produced droplets is from the viewpoint of the stability of the dispersed state and suspension state of the droplets and the heat transfer efficiency from the continuous phase. Preferably it is 2000 micrometers or less, More preferably, it is 1000 micrometers or less, More preferably, it is 800 micrometers or less. From the viewpoint of production efficiency, the volume average particle diameter of the generated droplets is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more.
- the time until the polymerizable liquid composition produced in the mixing step is supplied into the reactor (hereinafter referred to as “supply time”) is preferably Is 20 minutes or less, more preferably 5 minutes or less, and even more preferably 1 minute or less. It is ideal that the polymerizable liquid composition is immediately supplied to the reaction apparatus after being prepared.
- This step is a step of obtaining a gel polymer by polymerizing the polymerizable liquid composition supplied to the reaction apparatus in the supply step.
- the polymerizable liquid composition is a raw material for the water-absorbent resin
- a hydrogel crosslinked polymer hereinafter referred to as “hydrogel”.
- a continuous phase composed of an incompatible liquid composition is formed during the production process of spherical polymer particles. That is, the incompatible liquid composition forming the continuous phase moves inside the reaction apparatus, is discharged from the reaction apparatus, is separated from the gel polymer, and is further adjusted to a predetermined temperature with a heat exchanger. And then recycled to the reactor.
- a part of the temperature-adjusted incompatible liquid composition is introduced into the spray nozzle of the present invention and used in the dispersion method of the present invention. That is, the incompatible liquid composition described above for the dispersion method can also be used as a continuous phase incompatible liquid composition, and is selected according to the type of monomer used.
- the amount of the incompatible liquid composition used to form the continuous phase is appropriately set according to the shape and capacity of the reactor, but is present in the reactor from the viewpoint of removal of polymerization heat and production efficiency.
- the volume ratio (hereinafter referred to as “W / O ratio”) between the amount W of the polymerizable liquid composition to be formed and the amount O of the incompatible liquid composition that forms the continuous phase is preferably 1 vol% to 40 vol. %, More preferably 2% to 30% by volume, still more preferably 3% to 20% by volume.
- the W / O ratio exceeds 40% by volume, heat removal from the polymerization heat becomes insufficient, and the performance of the resulting spherical polymer particles deteriorates, and operational troubles such as bumping and defective droplet generation occur. It is not preferable because it is easy to do.
- the W / O ratio is less than 1% by volume, it leads to an increase in the amount of the incompatible liquid composition used and an increase in the size of the reaction apparatus, and the cost increases in terms of raw materials and equipment. Absent. Unless otherwise specified, the volume of the polymerizable liquid composition and the incompatible liquid composition is a volume at 25 ° C. and 1 atmosphere.
- a density adjusting agent is preferably blended with the incompatible liquid composition forming the continuous phase.
- the dispersion state and the polymerization time are adjusted by the density adjusting agent.
- the density adjusting agent is not particularly limited as long as it has high compatibility with the incompatible liquid composition of the continuous phase and does not inhibit the polymerization reaction.
- examples of the density adjusting agent blended in the organic solvent forming the continuous phase include chlorine-based or fluorine-based compounds such as hydrofluorocarbons, hydrofluoroethers, hydrochlorofluorocarbons, and fluorides of alcohols. It is done. Of these, two or more may be used in combination.
- an organic solvent in which these compounds are blended as a density adjusting agent may be referred to as a “mixed solvent”.
- the amount of the density adjusting agent used is appropriately determined depending on the types of the monomer and the incompatible liquid composition so that a density difference between the polymerizable liquid composition and the incompatible liquid composition described later can be obtained. Is set.
- a stable dispersion state can be achieved without adding a dispersion aid or with a very small amount of dispersion aid.
- a dispersion aid such as a surfactant or a polymer additive may be added to the incompatible liquid composition or the incompatible liquid composition forming the continuous phase as necessary.
- the type of the dispersion aid is appropriately selected depending on the combination of the incompatible liquid composition and the polymerizable monomer used, but when producing a water-absorbent resin as spherical polymer particles, The following surfactants and polymer additives are exemplified.
- sucrose fatty acid ester specifically, sucrose fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, Polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl Alkyl ethers, polyethylene glycol fatty acid esters, alkyl glucosides, N-alkyl glucones Bromide, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amines, phosphoric esters of polyoxyethylene alkyl ethers, and phosphoric esters of polyoxy
- the polymeric surfactant which has polymerizability can also be used.
- Specific examples of the polymerizable surfactant include compounds having the following structure.
- R 1 and R 2 are each independently hydrogen, methyl or ethyl, and n is an integer of 3 to 20.
- polymer additive examples include maleic anhydride modified polyethylene, maleic anhydride modified polypropylene, maleic anhydride modified ethylene / propylene copolymer, maleic anhydride modified ethylene / propylene / diene terpolymer (EPDM), maleic anhydride modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene , Ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose, and the like.
- EPDM maleic anhydride modified polybutadiene
- maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride / ethylene copolymer, maleic anhydride Propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer are preferable. Of these, two or more may be used in combination. Further, these polymer additives and the above surfactant may be used in combination.
- the amount of the dispersion aid used is appropriately set according to the polymerization form, the monomer composition, the type of organic solvent, and the like. Specifically, the concentration of the dispersion aid in the organic solvent in the continuous phase is preferably 2% by mass or less, more preferably 1% by mass or less.
- the shape of the reaction apparatus in which the polymerization reaction is carried out is not particularly limited, but in the case of the continuous production method, preferably, in the continuous phase formed in the reaction apparatus.
- the polymerizable liquid composition has a shape capable of undergoing a polymerization reaction while moving as a droplet-like dispersed phase.
- Examples of such a reaction apparatus include a reaction apparatus in which tubular reaction tubes are arranged in a vertical type, a horizontal type, or a helical type.
- the ratio (L / D) of the inner diameter D (mm) to the length L (mm) of the reaction tube is preferably 2 to 100,000, more preferably 3 to 50,000, still more preferably 4 ⁇ 20,000.
- the ratio (L / D) is within the above range, the polymerizable liquid composition droplets move well inside the reaction apparatus, so that the dispersion time of the droplets is reduced. Moreover, since the particle diameter of the gel polymer finally obtained has little variation, various physical properties of the obtained spherical polymer particles are also improved.
- the reaction apparatus may be provided with a temperature adjusting means so that the continuous phase inside the reaction apparatus can be heated or cooled from the outside as necessary.
- the temperature adjusting means maintains the temperature of the continuous phase in the reaction apparatus within a predetermined range.
- the temperature adjusting means is not particularly limited, and examples thereof include installation of a jacket in the reaction apparatus, installation of a heater, installation of a heat insulating material and a heat insulating material, supply of hot air and cold air, and the like.
- reaction apparatus copper, titanium alloy, stainless steel such as SUS304, SUS316, and SUS316L, fluorine resin such as PTEE, PFA, and FEP can be used.
- a fluororesin is preferably used, and more preferably, the inner wall surface of the reaction apparatus is subjected to surface processing such as fluororesin processing.
- Td the temperature of the incompatible liquid composition forming the continuous phase in the reactor
- the temperature of the polymerizable liquid composition quickly rises due to heat transfer from the continuous phase.
- the polymerization initiator contained in the droplets is a thermal decomposition polymerization initiator
- the thermal decomposition polymerization initiator is decomposed to generate radicals as the temperature rises.
- a polymerization reaction is started by the generated radical, and a gel polymer is formed as the polymerization reaction proceeds.
- the formed gel polymer moves inside the reactor by the circulating continuous phase and is discharged from the reactor together with the incompatible liquid composition forming the continuous phase. Is done.
- the Td is preferably 70 ° C. or higher, more preferably 75 ° C. or higher, and further preferably 80 ° C. or higher from the viewpoint of the polymerization rate.
- the upper limit of Td is not particularly limited, but is appropriately selected from the viewpoint of safety within a range not exceeding the boiling point of the compound having the highest content in the incompatible liquid composition forming the continuous phase.
- the polymerization rate of the gel polymer obtained may be low, or the particle size of the gel polymer obtained may vary greatly. Furthermore, when a gel polymer having a low polymerization rate is dried, a phenomenon may occur in which the gel polymers adhere to each other and are integrated during drying.
- the above Td is preferably the same as or higher than T10 of the thermal decomposition polymerization initiator used.
- the upper limit value of the difference ⁇ T2 is preferably 50 ° C. or less from the viewpoint of energy efficiency.
- the temperature of the continuous phase varies as the polymerizable liquid composition is supplied to the reaction apparatus.
- the temperature change in the region where the polymerizable liquid composition is supplied is large. Therefore, preferably, the incompatible liquid composition heated by the heat exchanger is resupplied to this region or the temperature of a jacket or the like installed in the reaction apparatus so that a desired Td is obtained in the region.
- the continuous phase in the reactor is heated by the adjusting means. Thereby, the temperature change of the continuous phase which contributes to the start and progress of the polymerization reaction can be suppressed, and Td can be controlled more precisely.
- polymerization time refers to a gel obtained by polymerization reaction starting from the time when the polymerizable liquid composition is charged into the reaction apparatus in the case of a continuous production method.
- the time defined as the end point when the polymer is discharged from the reactor.
- the droplets of one polymerizable liquid composition Means the time required to reach the end point from the start point.
- the time from the start of supply of the polymerizable liquid composition to the reactor until the first gel polymer is discharged from the reactor is the polymerization time.
- the polymerization time corresponds to the residence time of the droplets in the reactor.
- the “polymerization time” is a time defined by starting from the time when the polymerizable liquid composition is supplied to the reactor and starting from the next process following the polymerization process. It is.
- the “next step” refers to a step for solid-liquid separation of the gel polymer in the reaction apparatus and the incompatible liquid composition. For example, filtration such as suction filtration; azeotropic dehydration distillation, etc. Examples of the method include distillation; gravity sedimentation.
- the solid-liquid separation method can be appropriately selected in consideration of the polymerization form and productivity.
- the solid-liquid separation step can be performed in a reaction apparatus.
- the polymerization time is controlled according to the type of monomer and polymerization initiator, etc., but from the viewpoint of production efficiency, it is preferably 60 minutes or less, more preferably 30 minutes or less, still more preferably 20 minutes or less, particularly Preferably it is controlled to 10 minutes or less, most preferably 5 minutes or less.
- the lower limit of the polymerization time is not particularly limited, but the viewpoint of the heat transfer efficiency from the continuous phase when the temperature of the droplets of the polymerizable liquid composition supplied into the reactor is raised to the polymerization temperature. Therefore, it is preferably controlled to 30 seconds or more. Controlling the polymerization time within the above range is preferable because the size of the reaction apparatus can be reduced.
- the droplets of the polymerizable liquid composition formed in the continuous phase have a certain particle size distribution.
- aggregates having different sizes may be formed in addition to single particles while moving in the reaction apparatus. For this reason, the polymerization time of individual droplets is not necessarily exactly the same. Therefore, the polymerization time of each droplet may be slightly different as long as it is within the above range.
- the polymerization time is adjusted using the polymerization rate achieved in the gel polymer as an index.
- the polymerization rate is preferably 70% by mass or more, more preferably 80% by mass or more, more preferably from the viewpoint of suppressing aggregation of the resulting gel polymer during drying and reducing residual monomers in the obtained spherical polymer particles. Preferably it is 90 mass% or more.
- the upper limit of the polymerization rate is not particularly limited, but 100% by mass is ideal.
- the polymerization rate is less than 70% by mass, if such a low-polymerization rate gel-like polymer is dried, even if the method of the present invention is applied, there is a possibility that it strongly aggregates and agglomerates during drying. It is not preferable.
- the method for adjusting the polymerization time for achieving the above polymerization rate is not particularly limited.
- the shape of the reaction apparatus that is, the length and inner diameter of the reaction tube
- It can be adjusted by the flow rate and density of the internal continuous phase, the density of the polymerizable liquid composition, and the like.
- the polymerization time is calculated by dividing the total length of the reaction tube by the flow rate of the continuous phase inside. Adjustment can be made by changing the total length of the reaction tube using the residence time of the continuous phase as a guide.
- the flow rate of the continuous phase is determined based on the flow rate of the continuous phase and the cross-sectional area of the reaction tube.
- the flow rate of the continuous phase is appropriately set according to the supply amount of the polymerizable liquid composition from the viewpoint of heat removal from the polymerization heat.
- the flow rate of the continuous phase is preferably 0.05 m / s to 2.0 m / s, more preferably 0.1 m / s to 1. It is 0 m / s, more preferably 0.2 m / s to 0.5 m / s.
- the flow rate is less than 0.05 m / s, the droplet of the polymerizable liquid composition settles and stays on the bottom surface of the reaction tube, which is not preferable.
- the flow rate exceeds 2.0 m / s, a very long reaction tube is required to obtain a desired polymerization time, which is costly. Further, in order to obtain a desired flow rate, the pressure loss is large, and This is not preferable because it requires a pump.
- the polymerization time is the total length of the reaction tube, the flow rate of the continuous phase inside it, and the droplet (or the liquid composition comprising the polymerizable liquid composition). It is calculated by dividing by the sum of the terminal sedimentation rate of the gel).
- the terminal sedimentation rate of the droplets and gel depends on the density difference between the polymerizable liquid composition and the incompatible liquid composition forming the continuous phase, in addition to the particle size of the droplets and the like. Therefore, the polymerization time can be adjusted by the density difference between the polymerizable liquid composition and the incompatible liquid composition.
- the density difference between the polymerizable liquid composition and the incompatible liquid composition is preferably 0.05 g / ml to 0.40 g / ml, more preferably 0.10 g / ml to 0.30 g / ml.
- the density difference When the density difference is less than 0.05 g / ml and bubbles are attached to the formed gel, the apparent density of the gel becomes smaller than the density of the incompatible liquid composition. As a result, the gel floats backward in the flow direction of the incompatible liquid composition, which may cause trouble, which is not preferable.
- the density of the incompatible liquid composition is smaller than the density of the droplets or gel, and the density difference exceeds 0.40 g / ml, the terminal sedimentation rate increases, and the polymerization time becomes extremely short. It is not preferable.
- the density of an incompatible liquid composition is larger than the density of a droplet or a gel and the density difference exceeds 0.40 g / ml, since a gel floats, it is unpreferable.
- This step is a step of obtaining a gel polymer by separating the gel polymer discharged from the reaction apparatus in the polymerization step and the incompatible liquid composition.
- the type and structure of the separation device are not particularly limited, and for example, known methods such as filtration, sedimentation, centrifugation, and pressing can be used.
- the gel polymer separated from the incompatible liquid composition is appropriately subjected to necessary steps. Specifically, it may be used as it is in the spherical polymer particles by being subjected to a drying process, or it may be further subjected to a pulverization process, a granulation process, a surface crosslinking process, a granulation process, etc. It may be a particle.
- the resulting gel polymer has a substantially spherical shape.
- the particle diameter of the gel polymer (hereinafter referred to as “gel particle diameter”) is appropriately adjusted according to the use of the obtained spherical polymer particles.
- the “spherical shape” is a concept including a shape other than a spherical shape (for example, a substantially spherical shape), and the ratio of the average major axis to the average minor axis (also referred to as “sphericity”) of the particles is preferably 1.0. Means particles of ⁇ 3.0. The average major axis and the average minor axis of the particles are measured based on an image taken with a microscope.
- the gel polymer may be formed as an aggregate of a fine spherical gel, or may be obtained as a mixture of a fine spherical gel and an aggregate of the spherical gel.
- the particle diameter of each spherical gel constituting the aggregate is referred to as a primary particle diameter.
- the primary particle size is not particularly limited, but is preferably 1 ⁇ m to 2000 ⁇ m, more preferably 5 ⁇ m to 1000 ⁇ m, and still more preferably 10 ⁇ m to 800 ⁇ m from the viewpoint that generation of fine powder can be suppressed in the drying step.
- the solid content of the gel polymer used in the drying step described below is not particularly limited, but is preferably 20% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass from the viewpoint of drying cost. As described above, it is particularly preferably 45% by mass or more.
- the upper limit of the solid content of the gel polymer is not particularly limited, but is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, and particularly preferably 60% by mass or less. .
- the effect of this invention becomes remarkable by using the gel-like polymer which is the solid content rate of the said range for the below-mentioned drying process.
- FIG. 5 shows a part of the process for producing spherical polymer particles according to one embodiment of the present invention (mixing step to separating step).
- the production process includes a mixing apparatus 10, a supply apparatus 12, a reaction apparatus 14, a separation apparatus 16, a heat exchanger 18, a liquid feed pump 20, and pipes 30, 40, and 50 connecting these apparatuses. It is included.
- a monomer solution supply pipe 60 and a polymerization initiator supply pipe 70 are connected to the mixing apparatus 10.
- a gel polymer discharge pipe 80 is connected to the separation device 16.
- the reactor 14, the separation device 16, the heat exchanger 18, and the pipes 40 and 50 connecting these devices are filled with an incompatible liquid composition.
- the liquid feeding pump 20 is operated to circulate the incompatible liquid composition.
- the incompatible liquid composition in each apparatus and piping is heated to a predetermined temperature by the heat exchanger 18.
- a part of the incompatible liquid composition heated by the heat exchanger 18 is also supplied to the supply device 12.
- the incompatible liquid composition in the reactor 14 forms a continuous phase.
- the separately prepared monomer solution and polymerization initiator are continuously supplied to the mixing device 10 via the monomer solution supply pipe 60 and the polymerization initiator supply pipe 70, and mixed to obtain a polymerizable liquid.
- a composition is made.
- the polymerizable liquid composition is continuously supplied to the supply device 12 through the pipe 30.
- This polymerizable liquid composition, together with the circulating incompatible liquid composition is continuously charged into the reaction device 14 in the form of droplets by the supply device 12 and dispersed in the continuous phase, and the polymerization reaction is started in the reaction device 14. .
- the droplet made of the polymerizable liquid composition moves by the movement of the circulating incompatible liquid composition. These droplets change into a gel polymer by a polymerization reaction while moving.
- the moving direction of the droplets and the gel polymer is the same as the moving direction of the continuous phase (cocurrent flow).
- the gel polymer obtained by the polymerization reaction is continuously discharged from the reaction device 14 together with the incompatible liquid composition, and continuously supplied to the separation device 16 through the pipe 40.
- the separation device 16 the gel polymer and the incompatible liquid composition are continuously separated.
- the separated gel polymer is continuously supplied to the next step via the gel polymer discharge pipe 80.
- the separated incompatible liquid composition is continuously re-supplied to the reactor 14 via the pipe 50 and the heat exchanger 18. A part of the separated incompatible liquid composition is also supplied to the supply device 12 via the heat exchanger 18.
- a continuous manufacturing method is adopted.
- a batch production method in which the polymerizable liquid composition is intermittently supplied to the reaction apparatus 14 may be employed.
- a batch type stirring reactor is used as the reactor 14. From the viewpoint of stable production of spherical polymer particles, a continuous production method is preferred.
- the method for producing spherical polymer particles according to the present invention includes a drying step, a pulverizing step, a classification step, a surface cross-linking step, a sizing step, as necessary.
- a fine powder removal process, a granulation process, and a fine powder reuse process can be included.
- This step is a step of obtaining a particulate dry polymer by drying the gel polymer separated in the separation step to a desired solid content rate. You may use for a drying process, after adjusting to the desired particle diameter or particle size distribution by crushing or granulating this gel-like polymer.
- drying by conduction heat transfer for example, drying by convection heat transfer (for example, hot air), drying by reduced pressure, drying using infrared rays, or microwave was used.
- convection heat transfer for example, hot air
- reduced pressure drying using infrared rays
- microwave microwave
- drying by azeotropic dehydration with a hydrophobic organic solvent for example, drying by azeotropic dehydration with a hydrophobic organic solvent
- superheated steam drying using high-temperature steam for example, superheated steam
- stirring-type conductive heat transfer drying is preferable because of high drying efficiency and easy recovery of liquid components such as incompatible liquid compositions, and continuous stirring-type drying using an indirect heating method.
- a device is more preferably used.
- the gel polymer formed by the production method according to the present invention has a spherical shape.
- a dry polymer composed of spherical particles can be obtained.
- the dry polymer which consists of a spherical particle obtained at this drying process can also be used for each use as a spherical polymer particle as it is.
- the dry polymer subjected to the surface cross-linking step described later is referred to as “water absorbent resin powder” for convenience.
- the drying temperature and drying time are appropriately adjusted according to the use of the obtained spherical polymer particles, using the solid content as an index.
- the solid content is preferably 85% by mass or more, more preferably 90% by mass to 98% by mass from the viewpoint of water absorption performance.
- the solid content of the water absorbent resin is a value calculated based on the loss on drying when the sample (water absorbent resin) is dried at 180 ° C. for 3 hours.
- the particulate dry polymer obtained in the drying step is made into spherical polymer particles having a controlled particle size or particle size distribution by passing through a pulverization step and a classification step as necessary.
- a high-speed rotary pulverizer such as a roll mill, a hammer mill, a screw mill, or a pin mill, a vibration mill, a knuckle type pulverizer, a cylindrical mixer, and the like are appropriately selected and used.
- classification step for example, sieve classification using a JIS standard sieve (JIS Z8801-1 (2000)), airflow classification, or the like is appropriately selected and used.
- JIS standard sieve JIS Z8801-1 (2000)
- airflow classification or the like
- This surface cross-linking step is a step of providing a portion having a high cross-linking density in the surface layer of the water-absorbent resin powder (portion of several tens of micrometers from the surface of the water-absorbent resin powder).
- a known surface crosslinking technique is appropriately applied.
- the “regulating step” means a step of adjusting the particle size by releasing the water-absorbing resin powder that has been loosely aggregated through the surface cross-linking step.
- the sizing step includes a fine powder removing step after the surface cross-linking step, a gel crushing step, and a classification step.
- the “fine powder recycling step” means a step of supplying the fine powder generated in each of the above steps as it is or after granulating the fine powder to any step.
- the physical properties of the spherical polymer particles of the present invention may be appropriately set depending on the purpose and application, and are not particularly limited. In the case of producing a water-absorbing resin as spherical polymer particles, the following physical properties [4-1] to [4-7] may be satisfied. Hereinafter, preferable physical properties of the water absorbent resin will be described.
- the water-absorbent resin which is one of the spherical polymer particles of the present invention is used for absorbent articles, particularly paper diapers, among the physical properties listed in the following [4-1] to [4-7] , At least one, preferably two or more including surface tension, more preferably three or more including surface tension, more preferably four or more including surface tension, and particularly preferably 5 including surface tension.
- One or more, most preferably all physical properties are desired to be controlled within the desired range.
- all of the following physical properties do not satisfy the following ranges, there is a possibility that sufficient performance may not be exhibited particularly in so-called high-concentration paper diapers where the amount of water-absorbent resin used per paper diaper is large.
- CRC (centrifuge retention capacity) of the water-absorbent resin is usually 5 g / g or more, preferably 15 g / g or more, more preferably 25 g / g or more.
- the upper limit is not particularly limited, and higher CRC is preferable, but from the viewpoint of balance with other physical properties, it is preferably 70 g / g or less, more preferably 50 g / g or less, and still more preferably 40 g / g or less.
- CRC When the CRC is less than 5 g / g, the amount of absorption is small and it is not suitable as an absorbent body for absorbent articles such as paper diapers. In addition, when the CRC exceeds 70 g / g, the rate of absorbing body fluids such as urine and blood decreases, so that it is not suitable for use in a high water absorption rate type paper diaper.
- CRC can be controlled by changing the type and amount of the internal cross-linking agent and surface cross-linking agent.
- the surface tension of the water-absorbent resin is preferably 60 mN / m or more, more preferably 65 mN / m or more, still more preferably 67 mN / m or more, particularly preferably 70 mN / m or more, and most preferably It is 72 mN / m or more, and there is no substantial decrease in surface tension.
- the upper limit is not particularly limited, but is usually 75 mN / m.
- Ext water soluble component
- the Ext (water-soluble content) of the water-absorbent resin is usually 50% by mass or less, preferably 35% by mass or less, more preferably 25% by mass or less, and further preferably 15% by mass or less. Although it does not specifically limit about a lower limit, Preferably it is 0 mass%, More preferably, it is about 0.1 mass%. In the present invention, “about” means including an error of ⁇ 5%.
- Ext exceeds 50% by mass, the gel strength is weak, and there is a risk of becoming a water-absorbing resin having poor liquid permeability. Furthermore, since rewetting increases, it is not suitable as an absorbent body for absorbent articles such as paper diapers. Ext can be controlled by changing the type and amount of the internal cross-linking agent.
- the residual monomer amount contained in the water-absorbent resin is preferably 1000 ppm or less, more preferably 500 ppm or less, and still more preferably 300 ppm or less. Although it does not specifically limit about a lower limit, Preferably it is 0 ppm, More preferably, it is about 10 ppm.
- the water content of the water-absorbent resin is preferably more than 0% by mass and 20% by mass or less, more preferably 1% by mass to 15% by mass, and still more preferably 2% by mass to 13% by mass. Particularly preferred is 2 to 10% by mass.
- a water-absorbing resin excellent in powder characteristics for example, fluidity, transportability, damage resistance, etc.
- the mass average particle size (D50) of the water absorbent resin is preferably 200 ⁇ m to 700 ⁇ m, more preferably 250 ⁇ m to 600 ⁇ m, still more preferably 250 ⁇ m to 500 ⁇ m, and particularly preferably 300 ⁇ m to 450 ⁇ m.
- the proportion of particles having a particle diameter of less than 150 ⁇ m is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less.
- the ratio of particles having a particle diameter of 850 ⁇ m or more is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.
- this water-absorbent resin contains particles having a particle diameter of less than 850 ⁇ m, preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more.
- the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, and still more preferably 0.27 to 0.35.
- Vortex (Water absorption time) of the water-absorbent resin is preferably 60 seconds or less, more preferably 55 seconds or less, still more preferably 50 seconds or less, and particularly preferably 40 seconds or less.
- the lower limit value of Vortex (water absorption time) is not particularly limited, but is preferably 10 seconds or more.
- Vortex water absorption time
- the Vortex water absorption time
- the Vortex can be controlled by the droplet diameter, the gel primary particle diameter, the particle size, and the like when the monomer composition is sprayed.
- the use of the spherical polymer particles of the present invention is not particularly limited, but is preferably a paint, an adhesive, an antiblocking agent, a light diffusing agent, a matting agent, an additive for decorative plates, Examples thereof include resin additives such as artificial marble additives and toner additives.
- the use as a water-absorbing resin, which is one of spherical polymer particles is not particularly limited, but preferably includes absorbent use for absorbent articles such as paper diapers, sanitary napkins, and incontinence pads. In particular, it can be used as an absorbent material for high-concentration paper diapers where odors, coloring, and the like derived from raw materials have been problematic. Furthermore, since this water-absorbent resin is excellent in water absorption time and the particle size distribution is controlled, a remarkable effect can be expected when used in the upper layer portion of the absorber.
- an absorbent material such as pulp fiber can be used as a raw material for the absorbent body together with the water absorbent resin.
- the content (core concentration) of the water absorbent resin in the absorber is preferably 30% by mass to 100% by mass, more preferably 40% by mass to 100% by mass, and still more preferably 50% by mass to 100% by mass. %, Still more preferably 60% to 100% by weight, particularly preferably 70% to 100% by weight, most preferably 75% to 95% by weight.
- the absorbent article can be kept in a clean white state. Furthermore, since the absorbent body is excellent in diffusibility of body fluids such as urine and blood, the amount of absorption can be improved by efficient liquid distribution.
- a mixing step of preparing a monomer composition by mixing a monomer solution containing a monomer that is a raw material of a water-absorbent resin and a thermal decomposition polymerization initiator, Supplying the monomer composition to a reaction apparatus containing an organic solvent; and A polymerization step of starting a polymerization reaction in the reaction apparatus to obtain a gel-like crosslinked polymer;
- a method for producing a water-absorbent resin comprising a separation step of separating the gel-like crosslinked polymer and the organic solvent,
- (Item 2) The manufacturing method according to Item 1, wherein in the supplying step, the organic solvent is used as an auxiliary fluid for supplying the monomer composition using the multi-fluid spray nozzle.
- (Item 3) The manufacturing method according to item 1 or 2, wherein the multi-fluid spray nozzle is an external mixing spray nozzle.
- the multi-fluid spray nozzle is provided with a discharge port for discharging the monomer composition, and the discharge port is immersed in an organic solvent accommodated in the reactor. 4.
- the production method according to any one of items 1 to 3. (Item 5) The manufacturing method according to any one of Items 1 to 4, wherein the organic solvent is circulated and the monomer composition is supplied so as to be cocurrent with the organic solvent.
- Dispersion index (Da ′ ⁇ Qa ′ ⁇ Va ′ 2 ) / (Dm ′ ⁇ Qm ′ ⁇ Vm ′ 2 ) (Formula 1 ′)
- Da ′ is the specific gravity (kg / m 3 ) of the auxiliary fluid
- Qa ′ is the flow rate (m 3 / min) of the auxiliary fluid
- Va ′ is the flow velocity of the auxiliary fluid ( m / sec)
- Dm ′ is the specific gravity (kg / m 3 ) of the monomer composition
- Qm ′ is the flow rate (m 3 / min) of the monomer composition
- Vm ′ is The flow rate (m / sec) of the monomer composition.
- the monomer is an acid group-containing unsaturated monomer or salt thereof, an amide group-containing unsaturated monomer, an amino group-containing unsaturated monomer, a mercapto group-containing unsaturated monomer, or phenol. 7.
- the power supply of 200V or 100V was used for the electric equipment (including the apparatus for a physical property measurement of a water absorbing resin) used by an Example and a comparative example.
- the physical properties of the water-absorbent resin of the present invention were measured under conditions of room temperature (20 ° C. to 25 ° C.) and relative humidity of 50% RH ⁇ 10% unless otherwise noted.
- liter may be expressed as “l” or “L”
- mass% or “weight%” may be expressed as “wt%”.
- D Non Detected
- the water content of the water-absorbent resin was measured according to the EDANA method (ERT430.2-02). In the present invention, the measurement was performed by changing the sample amount to 1.0 g and the drying temperature to 180 ° C.
- M means the mass (g) of the hydrogel
- ⁇ means the solid content (mass%) of the hydrogel.
- a solid content rate is calculated
- a plate method using a platinum plate was adopted. Moreover, the platinum plate used for the measurement was thoroughly cleaned before each measurement, and was heated and cleaned using a burner.
- a magnetic stirrer made of cylindrical Teflon (registered trademark) having a thickness of 8 mm (for example, S type sold by Mutual Rikagaku Glass Mfg. Co., Ltd.) was put into this beaker.
- physiological saline stirred under the condition of 600 rpm 2.0 g of the water-absorbing resin obtained in Examples or Comparative Examples described later was added, and the water absorption time (seconds) was measured.
- the start point and end point of the water absorption time were determined in accordance with the standards described in JIS K 7224 (1996) “Explanation of water absorption rate test method for highly water absorbent resin”.
- the charged water-absorbing resin absorbs physiological saline, and the rotating stirrer chip is covered with the physiological saline being gelated (viewed from the cross section).
- the water absorption speed of the water-absorbent resin was evaluated by measuring the water absorption time (seconds) with the point of time (covered with V-shape) as the end point.
- Example 1 After producing a hydrogel crosslinked polymer (hereinafter referred to as “hydrogel”) (1) according to the production process shown in FIG. 5, the obtained hydrogel (1) is dried and further subjected to surface crosslinking. A spherical water-absorbing resin (1) was produced.
- hydrogel crosslinked polymer
- a static mixer manufactured by Noritake Co., Ltd., model: T3-15
- a two-fluid spray nozzle external mixing type, nozzle inner diameter: 0.50 mm, auxiliary fluid: mixed solvent described later, type : SETO07505S303 + TS303 (manufactured by Ikeuchi Co., Ltd.)
- a PFA tube inner diameter 4 mm, outer diameter 6 mm, total length: 60 m
- a solid-liquid separation device using gravity sedimentation as a separation device, used.
- a mixed solvent obtained by mixing n-heptane and hydrofluoroether (trade name: Novec (registered trademark) 7300, manufactured by Sumitomo 3M Limited) at a mass ratio of 1.0: 2.8 ( Density: 1.18 g / ml) was used as an organic solvent and charged into the auxiliary fluid (incompatible liquid composition) flow path of the two-fluid spray nozzle, the reaction device, the separation device, and the pipe connecting them. .
- the position of the two-fluid spray nozzle was adjusted so that the tip of the two-fluid spray nozzle was immersed in an organic solvent contained in the reaction apparatus.
- the liquid feed pump was operated, and the circulation of the organic solvent was started at a flow rate of 240 ml / min.
- the entire amount of the circulated organic solvent was charged into the reactor via a two-fluid spray nozzle.
- the flow rate of the organic solvent at the tip of the two-fluid spray nozzle was 2.36 m / sec.
- the temperature of the organic solvent existing in the region where the monomer composition is charged in the reactor (hereinafter referred to as “set temperature”) is 85 ° C.
- the organic solvent was heated.
- a monomer aqueous solution (1) was prepared. Nitrogen replacement was performed by blowing nitrogen gas into the monomer aqueous solution (1) while maintaining the liquid temperature at 25 ° C. Separately, sodium persulfate and ion-exchanged water were mixed to prepare a 10% by mass sodium persulfate aqueous solution (1). Nitrogen replacement was performed by blowing nitrogen gas into the aqueous sodium persulfate solution (1).
- the monomer composition (1) had a monomer concentration of 45 mass% and a neutralization rate of 75 mol%.
- polyethylene glycol diacrylate as an internal cross-linking agent is 0.02 mol% with respect to the monomer
- diethylenetriamine pentaacetic acid / trisodium as a chelating agent is 100 ppm with respect to the monomer
- persulfuric acid as a polymerization initiator.
- Sodium was 0.1 g / mol with respect to the monomer.
- the monomer composition (1) prepared in the mixing step was quickly sent to the monomer composition flow path of the two-fluid spray nozzle. Thereafter, using the two-fluid spray nozzle, the monomer composition (1) was supplied at a flow rate of 10 ml / min (11.8 g / min) using the organic solvent as an auxiliary fluid. The monomer composition (1) was supplied in the same direction (cocurrent) as the circulation direction of the organic solvent forming the continuous phase. The flow rate of the monomer composition (1) at the tip of the two-fluid spray nozzle was 0.85 m / sec. Moreover, the liquid temperature of the monomer composition (1) before supplying to this reactor was hold
- the monomer composition (1) supplied by the two-fluid spray nozzle was dispersed in droplets (droplet diameter: 100 ⁇ m to 200 ⁇ m) in the continuous phase.
- the ratio (W / O ratio) between the monomer composition (1) and the organic solvent constituting the continuous phase was 4.2% by volume.
- Droplets composed of the monomer composition (1) move in the reaction apparatus together with the organic solvent, and about 10 seconds after the introduction, the introduction of the reaction apparatus is performed. It reached a position about 3m from the mouth. The particle diameter of the droplets at this position was 150 ⁇ m to 250 ⁇ m. This is presumably because the droplets collided with each other. The temperature of the continuous phase at this position was 83 ° C.
- the droplets move while changing into a fine spherical gel (hereinafter referred to as “spherical gel”), and about 60 seconds after being introduced, the droplets are about It reached the position of 20m. In this position, it was possible to confirm partial aggregation of the droplet and the gel. Further, about 90 seconds after the addition (position at about 30 m from the introduction port), an aggregate having a particle diameter of 2 to 3 mm was confirmed.
- spherical gel fine spherical gel
- the hydrogel (1) obtained by the above series of operations was continuously discharged from the reaction apparatus together with the organic solvent.
- the polymerization time from the start of introduction of the monomer composition (1) into the reactor to the discharge of the first hydrogel (1) from the reactor was 179 seconds.
- the hydrogel (1) and the organic solvent discharged from the reaction apparatus were continuously supplied to the separation apparatus as they were.
- the hydrogel (1) and the organic solvent were separated using gravity sedimentation.
- the organic solvent separated by the separation device was temperature-controlled by a heat exchanger so that the set temperature was 85 ° C., and then supplied again to the supply device and the reaction device.
- the liquid feeding pressure of the monomer composition (1) is constant at 0.13 MPa. There was no clogging.
- the hydrogel (1) obtained by the above operation had a shape in which fine spherical gels were adhered and aggregated, and the primary particle size was 230 ⁇ m.
- the obtained dried polymer (1) was classified using a JIS standard sieve having an opening of 850 ⁇ m and passed through this sieve. Spherical water absorbent resin powder (1) was collected.
- water-absorbent resin powder (1) containing the surface cross-linking agent is introduced into a heat treatment machine adjusted to an atmospheric temperature of 195 ° C. ⁇ 2 ° C., heat-treated for 40 minutes, and then forced until the powder temperature reaches 60 ° C. Cooled.
- surface-crosslinked water-absorbent resin powder hereinafter referred to as “water-absorbent resin particles”.
- the water-absorbent resin particles (1) were sized by passing through a JIS standard sieve having an opening of 850 ⁇ m to obtain a water-absorbent resin (1) as a product.
- Table 1 shows properties measured for the obtained hydrogel (1) and the water-absorbent resin (1).
- Example 1 In Example 1, the supply device was changed from a two-fluid spray nozzle to a needle (inner diameter: 0.21 mm, model: UNS-27G, manufactured by Unicontrols Co., Ltd.), and the route of the circulated organic solvent was changed to the supply device.
- the comparative water-containing gel (1) and the comparative water-absorbing resin (1) are obtained by performing the same operation as in Example 1 except that the path is changed from the path to the reactor to the path to the reactor directly. Obtained.
- the primary particle diameter of the comparative hydrogel (1) discharged from the reactor was 450 ⁇ m.
- the flow rate of the monomer composition (1) at the needle tip was 4.81 m / sec, and the flow rate of the circulated organic solvent was 0.32 m / sec.
- the spray index calculated with the circulated organic solvent was 0.11.
- the liquid feeding pressure of the monomer composition (1) increased from 2.5 MPa to 2.9 MPa initially.
- adhesion of the gel to the tip of the needle was confirmed by inspection after completion of the reaction.
- Table 1 shows various physical properties measured for the obtained comparative hydrous gel (1) and the comparative water absorbent resin (1).
- Example 2 the supply device was supplied from a two-fluid spray nozzle to a needle (inner diameter: 0.14 mm, type: SNA-30G-C, manufactured by Musashi Engineering Co., Ltd.), and the supply amount of the monomer composition (1) was 1 ml. / Min (1.18 g / min), and the route of the circulated organic solvent was changed from a route for feeding into the reactor via the supply device to a route for feeding directly into the reactor, respectively.
- the same operation as in Example 1 was performed to obtain a comparative hydrogel (2) and a comparative water absorbent resin (2).
- the primary particle diameter of the comparative hydrogel (2) discharged from the reactor was 310 ⁇ m.
- the flow rate of the monomer composition (1) at the needle tip was 1.08 m / second, and the flow rate of the circulated organic solvent was 0.32 m / second.
- the spray index calculated with the circulated organic solvent was 21.
- the liquid feeding pressure of the monomer composition (1) by the needle was 4.2 MPa initially, the pressure gradually increased and exceeded 10 MPa after 11 minutes. Therefore, the liquid feeding pump for the monomer composition (1) was stopped. By the inspection after stopping the liquid feeding, gel adhesion to the tip of the needle and clogging inside the needle were confirmed.
- Table 1 shows various physical properties of the obtained comparative hydrous gel (2) and the comparative water absorbent resin (2).
- Example 2 After producing the water-containing gel (2) according to the production process shown in FIG. 5, the obtained water-containing gel (2) was dried and further surface-crosslinked to produce a spherical water-absorbing resin (2).
- the above-mentioned static mixer as the mixing device, and the two-fluid spray nozzle as the supply device (external mixing type, spray nozzle inner diameter: 0.70 mm, organic solvent (continuous phase): mixed solvent described later, type: SETO07507S303 + TS303, manufactured by Ikeuchi Co., Ltd. ), A PFA tube (inner diameter: 25 mm, total length: 10 m) arranged vertically as a reaction device, and a solid-liquid separation device using gravity sedimentation as a separation device, respectively.
- n-heptane and hydrofluoroether (trade name: Novec (registered trademark) 7300, manufactured by Sumitomo 3M Limited) as an organic solvent were mixed at a mass ratio of 1.0: 0.8.
- a mixed solvent density: 0.9 g / ml
- the position of the two-fluid spray nozzle was adjusted so that the tip of the two-fluid spray nozzle was immersed in a continuous phase made of an organic solvent contained in the reaction apparatus.
- the liquid feed pump was operated, and the circulation of the organic solvent was started at a flow rate of 600 ml / min.
- the route of the circulated organic solvent was branched into a route for feeding into the reactor via a two-fluid spray nozzle and a route for feeding directly into the reactor.
- the flow rate of the organic solvent charged into the reactor via the two-fluid spray nozzle was 240 ml / min, and the flow rate of the organic solvent directly charged into the reactor was 360 ml / min.
- the flow rate of the organic solvent at the tip of the two-fluid spray nozzle was 2.36 m / sec.
- the circulating organic solvent was heated so that the set temperature might be 85 degreeC by operating a heat exchanger.
- a monomer aqueous solution (2) was prepared. Nitrogen substitution was performed by blowing nitrogen gas into the monomer aqueous solution (2) while maintaining the liquid temperature at 25 ° C. Separately, sodium persulfate and ion-exchanged water were mixed to prepare a 10% by mass sodium persulfate aqueous solution (2). Nitrogen replacement was performed by blowing nitrogen gas into the aqueous sodium persulfate solution (2).
- the monomer composition (2) had a monomer concentration of 43 mass% and a neutralization rate of 70 mol%.
- polyethylene glycol diacrylate as an internal cross-linking agent is 0.02 mol% with respect to the monomer
- diethylenetriamine pentaacetic acid / trisodium as a chelating agent is 100 ppm with respect to the monomer
- persulfuric acid as a polymerization initiator.
- Sodium was 0.1 g / mol with respect to the monomer.
- the monomer composition (2) prepared in the mixing step was quickly sent to the monomer composition flow path of the two-fluid spray nozzle. Thereafter, using the two-fluid spray nozzle, the monomer composition (2) was supplied to the reactor together with the organic solvent at a flow rate of 20 ml / min (23.6 g / min). The monomer composition (2) was supplied so as to be in the same direction (cocurrent) as the circulation direction of the organic solvent forming the continuous phase. The flow rate of the monomer composition (2) at the tip of the two-fluid spray nozzle was 0.87 m / sec. Moreover, the liquid temperature of the monomer composition (2) before supplying to this reactor was kept at 25 degreeC. Further, the spray index in Example 2 was 68.
- the monomer composition (2) supplied by the two-fluid spray nozzle was dispersed in droplets (droplet diameter: 100 ⁇ m to 250 ⁇ m) in the continuous phase.
- the ratio (W / O ratio) between the monomer composition (2) and the organic solvent constituting the continuous phase was 3.3% by volume.
- the droplet composed of the monomer composition (2) was changed into a fine spherical gel as the polymerization reaction proceeded while dropping in the reaction apparatus filled with the organic solvent as the continuous phase. These fine spherical gels adhered to each other as they dropped to form aggregates. Then, in the vicinity of the outlet of the reactor, a hydrogel (2) composed of fine spherical gel aggregates having a diameter of 1 cm to 2 cm was confirmed.
- the hydrogel (2) obtained by the above series of operations was continuously discharged from the reaction apparatus together with the organic solvent.
- the polymerization time from the start of introduction of the monomer composition (2) into the reactor to the discharge of the first hydrogel (2) from the reactor was 190 seconds.
- the hydrogel (2) and the organic solvent discharged from the reaction apparatus were continuously supplied to the separation apparatus as they were.
- the hydrogel (2) and the organic solvent were separated using gravity sedimentation.
- the organic solvent separated by the separation device was temperature-controlled by a heat exchanger so that the set temperature was 90 ° C., and then supplied again to the reaction device.
- the water-containing gel (2) obtained by the above operation had a shape in which fine spherical water-containing gel was adhered and aggregated, and the primary particle diameter was 250 ⁇ m.
- the obtained dried polymer (2) was classified using a JIS standard sieve having an opening of 850 ⁇ m and passed through this sieve.
- the spherical water-absorbing resin powder (2) was collected.
- the water-absorbent resin powder (2) containing the surface cross-linking agent is introduced into a heat treatment machine having an atmospheric temperature adjusted to 195 ° C. ⁇ 2 ° C. and subjected to heat treatment for 40 minutes, until the powder temperature reaches 60 ° C. Forced cooling. By this operation, water absorbent resin particles (2) were obtained.
- the water absorbent resin particles (2) were sized by passing through a JIS standard sieve having an aperture of 850 ⁇ m to obtain a water absorbent resin (2) as a product.
- Table 1 shows properties measured for the obtained hydrogel (2) and the water-absorbent resin (2).
- Example 3 In Example 2, the spray nozzle inner diameter of the two-fluid spray nozzle is changed from 0.70 mm (model: SETO07507S303 + TS303) to 1.0 mm (model: SETO07510S303 + TS303), the circulation flow rate of the organic solvent is changed from 600 ml / min to 1000 ml / min, and the monomer. Except that the flow rate of the composition (2) was changed from 20 ml / min (23.6 g / min) to 40 ml / min (47.2 g / min), respectively, the same operation as in Example 2 was performed to obtain a hydrous gel. (3) and a water absorbent resin (3) were obtained. The primary particle diameter of the hydrogel (3) discharged from the reactor was 290 ⁇ m.
- the flow rate of the organic solvent introduced into the reactor via the two-fluid spray nozzle is 240 ml / min out of the circulation rate of 1000 ml / min.
- the flow rate was 760 ml / min.
- the flow rate of the organic solvent at the tip of the two-fluid spray nozzle was 2.36 m / sec, and the flow rate of the monomer composition (2) was 0.85 m / sec.
- the spray index in Example 3 was 35.
- Example 4 In Example 3, the material of the two-fluid spray nozzle is changed from SUS303 (type: SETO07510S303 + TS303) to PTFE (type: SETO07510PTFE), the organic solvent is changed from n-heptane and hydrofluoroether to n-heptane (density: 0.68 g). / Ml), the flow rate of the organic solvent charged into the reactor via a two-fluid spray nozzle from 240 ml / min to 800 ml / min, and the flow rate of the organic solvent directly charged into the reactor from 760 ml / min to 200 ml / min.
- SUS303 type: SETO07510S303 + TS303
- PTFE type: SETO07510PTFE
- the organic solvent is changed from n-heptane and hydrofluoroether to n-heptane (density: 0.68 g). / Ml)
- Example 4 Except for the respective changes, the same operation as in Example 3 was performed to obtain a hydrous gel (4) and a water absorbent resin (4).
- the primary particle diameter of the hydrogel (4) discharged from the reactor was 210 ⁇ m.
- the flow rate of the organic solvent at the tip of the two-fluid spray nozzle was 7.86 m / sec, and the flow rate of the monomer composition (2) was 0.85 m / sec. Further, the spray index in Example 4 was 988.
- Example 5 a monomer composition (5) was prepared by changing polyethylene glycol diacrylate (average polymerization degree: 9) to N, N-methylenebisacrylamide, and sucrose fatty acid ester (commercial product) as a dispersion aid. Name: DK ESTER F-50 / Daiichi Kogyo Seiyaku Co., Ltd.) was added to n-heptane in the same manner as in Example 4 except that 0.005% by mass was added to the hydrogel (5) and the water-absorbing resin ( 5) was obtained.
- the hydrogel (5) discharged from the reactor had a shape in which fine spherical gels were adhered and aggregated, and the primary particle size was 100 ⁇ m.
- Example 6 In Example 5, the water-containing gel (6) was prepared in the same manner as in Example 5 except that the concentration of the sucrose fatty acid ester in n-heptane was changed from 0.005% by mass to 0.1% by mass. And water-absorbent resin (6) was obtained. The obtained water-containing gel (6) had a shape in which minute spherical gels were slightly adhered and aggregated, and the primary particle size was 90 ⁇ m.
- Comparative Example 3 In accordance with Example 1 of JP-A-61-192703, a comparative dispersion (3) was prepared to produce a comparative hydrogel (3) and a comparative water-absorbing resin (3).
- cyclohexane as an organic solvent and sorbitan tristearate (HLB: 2.1, commodity) (Name: Leodole SP-S30V / Kao Corporation) 6.0 g was added, and nitrogen gas was blown in for 20 minutes to substitute nitrogen, and the temperature was raised to 70 ° C.
- the sorbitan tristearate concentration in cyclohexane is 1.2% by weight.
- the comparative monomer composition (3) prepared in the mixing step was dropped over 2 hours into the organic solvent in the four-necked flask stirred at a speed of 250 rpm using a dropping funnel. A dispersion of the monomer composition (3) was obtained.
- the comparative hydrous gel (3) was obtained by heating at 70 ° C. for 2 hours.
- the obtained comparative hydrous gel (3) had a primary particle size of 140 ⁇ m and no aggregation was observed.
- the obtained comparative hydrogel (3) was dried at 120 ° C. for 50 minutes, and then the obtained comparative dried polymer (3) was classified using a JIS standard sieve having an opening of 850 ⁇ m.
- a spherical comparative water-absorbent resin powder (3) that passed through a sieve was collected.
- the obtained comparative water absorbent resin powder (3) was subjected to the same surface crosslinking treatment as in Example 1 to obtain a surface crosslinked comparative water absorbent resin (3).
- Table 1 shows properties of the comparative hydrous gel (3) and the comparative water absorbent resin (3).
- Comparative Example 4 In Comparative Example 3, the same operation as in Comparative Example 1 was performed, except that the amount of sorbitan tristearate added was changed from 6.0 g to 0.05 g sorbitan tristearate concentration in cyclohexane: 0.1% by mass. When the dispersion of the comparative monomer composition (3) was adjusted, most of the dropped comparative monomer composition (3) settled and integrated at the bottom of the flask and was not dispersed.
- Example 7 In Example 3, except that the supply device was changed from a two-fluid spray nozzle to a four-fluid spray nozzle (manufactured by Fujisaki Electric Co., Ltd., model: SE4003), the same operation as in Example 3 was performed, and the hydrogel (7) And water-absorbing resin (7) was obtained.
- the flow rate of the monomer composition (2) at the tip of the four-fluid spray nozzle was 0.22 m / second
- the flow rate of the organic solvent was 2.67 m / second
- the spray index was 498.
- the liquid feeding pressure of the monomer composition (2) is constant at 0.02 MPa. No clogging was seen at the spray nozzle.
- the primary particle diameter of the hydrogel (7) obtained by the above operation was 230 ⁇ m. Table 1 shows properties measured for the obtained hydrogel (7) and the water-absorbent resin (7).
- Example 8 In Example 3, the same operation as in Example 3 was performed except that the supply device was changed from the Ikeuchi 2-fluid spray nozzle to the Kyoritsu Alloy Manufacturing (Everloy) 2-fluid spray nozzle (type: MMA50). Thus, a hydrogel (8) and a water absorbent resin (8) were obtained.
- the flow rate of the monomer composition (2) at the tip of the two-fluid spray nozzle was 0.29 m / sec
- the flow rate of the organic solvent was 2.36 m / sec
- the spray index was 295.
- the liquid feeding pressure of the monomer composition (2) is constant at 0.02 MPa. No clogging was seen at the spray nozzle.
- the primary particle diameter of the hydrogel (8) obtained by the above operation was 240 ⁇ m. Table 1 shows properties measured for the obtained hydrogel (8) and the water-absorbent resin (8).
- the droplet diameter of the monomer composition can be made smaller than the inner diameter of the spray nozzle, so that the hydrous gel having a small primary particle diameter Is obtained.
- a water absorbent resin having a short Vortex (water absorption time) and an excellent water absorption speed can be efficiently produced in a short time.
- the primary particle diameter of the obtained hydrogel does not depend on the inner diameter of the spray nozzle and is controlled by adjusting the flow rate of the organic solvent supplied as an auxiliary fluid to the multi-fluid spray nozzle, the size of the apparatus can be increased. Easy and suitable for mass production.
- Comparative Example 1 and Comparative Example 2 a hydrogel having a primary particle size larger than that of Examples 1 to 8 was obtained even though a needle having a smaller inner diameter than that of Examples 1 to 8 was used. Furthermore, in the needle used in Comparative Example 1 and Comparative Example 2, the primary particle diameter of the resulting hydrous gel was larger than the inner diameter of the needle, and the water-absorbing resin with a slow water absorption rate was obtained. In addition, when a needle with a small inner diameter is used to increase the water absorption rate (Comparative Example 2), the supply pressure of the monomer composition is likely to increase and clogging at the tip and inside of the spray nozzle is likely to occur. The improvement was not expected.
- Comparative Example 3 a large amount of dispersion aid is required for the mechanical stirring conventionally used to obtain a water-absorbing resin having the same particle diameter as that of the present invention. The result was a significant drop.
- Comparative Example 4 the mechanical agitation used conventionally could not be dispersed with the same amount of dispersing aid as that of the present invention.
- the method for dispersing a polymerizable liquid composition according to the present invention can be applied to the production of various spherical polymer particles.
- the spherical polymer particles produced by using this dispersion method are suitable for use in various technical fields in addition to the use as a water absorbent resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Polymerisation Methods In General (AREA)
Abstract
【課題】重合性液体組成物の効率的な分散方法及び球状重合体粒子の安定製造方法の提供。 【解決手段】この重合性液体組成物の分散方法では、スプレーノズルに重合性モノマーを含有する少なくとも1種の重合性液体組成物と、この重合性モノマーと非相溶性である少なくとも1種の非相溶性液体組成物とを導入し、相互に接触することなくこのスプレーノズルの内部を通過させてスプレーノズルの先端部まで誘導し、スプレーノズルから排出される直前又は直後に接触させて、連続相に供給することにより、連続相に分散させる。この分散方法は、球状重合体粒子の製造方法に用いられる。
Description
本発明は、重合性液体組成物の分散方法及びその分散方法によって得られた分散液を用いた球状重合体粒子の製造方法に関する。
近年、重合性モノマーを重合して得られる球状重合体粒子が、種々の分野で利用されている。特に、粒子径や粒子径分布が制御された球状重合体粒子に対する要望が多い。このような球状重合体粒子を製造する一般的な方法として、懸濁重合法、乳化重合法等が知られている。
懸濁重合法及び乳化重合法は、重合性モノマーを、この重合性モノマーと非相溶性の液体組成物に粒子状に分散又は懸濁させて重合することで、球状の重合体粒子を得る方法である。例えば、W/O型、O/W型等のエマルションを用いた乳化重合法や膜乳化重合法が知られている(特許文献1及び2)。
上記懸濁重合法又は乳化重合法により得られる球状の重合体粒子の利用例として、塗料、接着剤、アンチブロッキング剤、光拡散剤、艶消し剤、化粧板用添加剤、人工大理石用添加剤、トナー用添加剤等の樹脂用添加剤が挙げられる。また、紙おむつ、生理用品等の吸水性材料としても広く用いられている。例えば、吸水性材料の分野では、球状重合体粒子の粒子径や粒度分布等によって吸水性能や取扱性、使用感が変動することが知られている。そのため、粒子径や粒度分布が制御された球状重合体粒子からなる粉末状又は粒子状の吸水性樹脂が求められている。
従来、上記粉末状又は粒子状の吸水性樹脂の製造方法としては、水溶液重合法や、逆相懸濁重合法により製造されている。該水溶液重合法は、重合工程で得られた含水ゲル状架橋重合体を乾燥前又は乾燥後に粉砕して分級する必要があり、製造プロセスが複雑化する。そのため、安定稼働させるには高度な運転技術が必要となる。
一方、逆相懸濁重合法では、重合段階での粒度制御が可能であり、例えば、機械的攪拌によって、単量体水溶液を微細な液滴状に分散させて重合する方法(特許文献3~5)、スプレーノズル又は液滴生成用の多孔板を用いて、単量体水溶液を微細な液滴で滴下させて重合する方法(特許文献6~9)が提案されている。
上述したように、吸水性材料の分野では、粒子径や粒度分布が制御された球状重合体粒子を得るため、逆相懸濁重合法を利用した技術がこれまでに検討され、実施されている。しかしながら、機械的攪拌によって、単量体水溶液を微細な液滴状に分散させて重合する方法(特許文献3~5)では、所望する粒子径や粒度分布の球状重合体粒子を得るためには、長時間の滴下及び重合操作が必要であった。また、重合中に粒子同士が凝集して塊状とならないように、大量の分散助剤を添加する必要があった。
具体的には、一般的なバッチ式逆相懸濁重合では、有機溶媒中に投入した単量体を、機械的攪拌によって微細な液滴状に分散させた後に重合を開始して、粒子状の吸水性樹脂を得ている。一方で、重合中に微細な液滴が凝集しないように多量の分散助剤を使用するため、必要以上に吸水性樹脂の粒子径が小さいものとなっていた。そのため、上記特許文献3及び4では、重合中でも単量体の滴下をし続け、生成した微細な含水ゲルに単量体を付着させることで、粒子の巨大化を図っている。しかし、粒子径や粒度分布を制御し、かつ重合の反応熱を除去するために、単量体等を小流量で長時間かけて有機溶媒に滴下する必要があり、生産性が低いものであった。また、上記特許文献5では、重合して得られる微細な含水ゲルの分散液を冷却した後、再度、この分散液に単量体を投入し、該含水ゲルに吸収させた後に重合することによって、粒子の巨大化を図っている。しかし、複数回の重合操作が必要であり、その結果として重合時間が長くなり生産性の低下を引き起こしていた。更に、上記特許文献3~5の何れの場合も、単量体を含む液滴を微細化したり、重合反応が継続している間、安定な懸濁状態を維持したりするために、大量の分散助剤の添加が必要であった。その結果、この分散助剤の一部が、重合反応で得られる吸水性樹脂中に残存して表面張力を低下させることになり、所望する吸水性能を有する吸水性樹脂を得ることが困難であった。
また、スプレーノズル又は液滴生成用の多孔板を用いて、単量体水溶液を微細な液滴で滴下させて重合する方法(特許文献6~9)では、得られる吸水性樹脂の粒子径は、スプレーノズル又は液滴生成用の多孔板の孔の内径に依存するため、機械的攪拌と比べて粒径が大きく、粒度分布がシャープな吸水性樹脂が得られるものの、紙オムツや生理用ナプキン等の吸収性物品の吸収体用途で使用するには、吸水速度が遅いものであった。逆に、吸水速度を高めるため、粒子径を小さくしようとすると、スプレーノズル又は液滴生成用の多孔板の孔の内径を小さくする必要があり、生産性の低下や、単量体供給圧の上昇、スプレーノズルでの詰まり発生による停止等、安定的に所望する吸水性能を有する吸水性樹脂を得ることが困難であった。更に、工業的に大量生産を行うためには、多くのスプレーノズルや孔が必要となり、大型化や大量生産が困難であった。
このように、従来技術では、吸水性材料の分野において要望される吸水性能等を備えた球状重合体粒子を、短時間で、効率よく製造する方法は、未だ提案されていない。また、吸水性材料以外の分野でも、さらなる高性能化及び高機能化の観点から、粒子径や粒度分布が制御された球状重合体粒子が強く要望されているが、市場の要望を満たす球状重合体粒子を、効率よく安定して製造する方法は、未だ提案されていない。そこで、本発明の課題は、分散助剤を用いることなく、又は極めて少ない分散助剤の量で、重合性モノマーを含む重合性液体組成物を連続相中に分散させる分散方法を提供することであり、これにより、諸性能に優れた球状重合体粒子を、製造上のトラブルなく、安定して製造でき、大型化が容易な製造方法を提供することである。
上記課題を解決するため種々の検討をおこなった結果、本発明者等は、重合性モノマーを含有する少なくとも1種の重合性液体組成物と、この重合性モノマーと非相溶性である少なくとも1種の非相溶性液体組成物とをスプレーノズルに導入した後、この重合性液体組成物と非相溶性液体組成物とを相互に接触させることなくこのスプレーノズルの先端部まで誘導し、このスプレーノズルから排出される直前又は直後に、重合性液体組成物と非相溶性液体組成物とを接触させる重合性液体組成物の分散方法を完成するに至った。更に、本発明者等は、この分散方法により得られた分散液を用いて球状重合体粒子を製造する製造方法を完成した。
即ち、本発明は上記課題を解決するために、スプレーノズルを用いて重合性液体組成物を分散相にする分散方法であって、上記スプレーノズルに、重合性モノマーを含有する少なくとも1種の重合性液体組成物と、この重合性モノマーと非相溶性である少なくとも1種の非相溶性液体組成物とを導入し、上記少なくとも1種の重合性液体組成物と、上記少なくとも1種の非相溶性液体組成物とを、相互に接触させることなく上記スプレーノズルの内部を通過させて、このスプレーノズルの先端部まで誘導し、上記スプレーノズルから排出する直前又は直後に、上記少なくとも1種の重合性液体組成物と上記少なくとも1種の非相溶性液体組成物とを接触させることにより重合性液体組成物を分散相にする分散方法、及び、当該分散方法により得られた分散液を用いた、球状重合体粒子の製造方法を提供する。
本発明に係る分散方法によれば、生産性の低下や、スプレーノズル詰まり等のトラブルなく、安定して、微細な重合性液体組成物の液滴を連続相中に分散させた分散液を得ることができる。更に、この分散方法を用いることにより、分散助剤を使用しない、又は非常に少ない分散助剤の量で、液滴状の分散相を安定に維持することができる。その結果として、残存する分散助剤による性能劣化がない、諸性能に優れた球状重合体粒子を、短時間で効率よく製造することができる。なお、本明細書において、分散助剤とは、液滴の懸濁状態又は分散状態の安定化剤としての機能を有する物質を意味する。
以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下に例示する以外にも、本発明の趣旨を損なわない範囲内で適宜変更して、実施することが可能である。また、本発明は、以下の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。複数の実施形態についてそれぞれ開示された技術的手段を、適宜組み合わせて得られる他の実施形態についても、本発明の技術的範囲に含まれる。
〔1〕用語の定義
〔1-1〕「重合性液体組成物」
本明細書において「重合性液体組成物」とは、常温で流動性を有する液状の組成物であって、重合反応によって、球状重合体粒子となる液状の組成物を意味する。後述するスプレーノズル内部を通過可能な程度の流動性を有している限り、この液体組成物が固体粒子を含むスラリー液であってもよい。
〔1-1〕「重合性液体組成物」
本明細書において「重合性液体組成物」とは、常温で流動性を有する液状の組成物であって、重合反応によって、球状重合体粒子となる液状の組成物を意味する。後述するスプレーノズル内部を通過可能な程度の流動性を有している限り、この液体組成物が固体粒子を含むスラリー液であってもよい。
〔1-2〕「重合性モノマー」
本明細書において「重合性モノマー」とは、重合性官能基を有する化合物を意味し、水溶性の重合性モノマーと疎水性の重合性モノマーとを含む概念である。また、重合性モノマーは、付加重合又は縮重合が適用されてもよいが、好ましくはラジカル重合が適用される。したがって、本発明では好ましくはラジカル重合性モノマー、即ち重合性不飽和モノマー、より好ましくはエチレン性不飽和モノマーが適用される。上記「水溶性」とは、水又は水を主成分とする混合溶媒に溶解する性質を意味し、水又は水を主成分とする混合溶媒への溶解度が大きい場合(10g/100g-H2O以上)を含む。一方、上記「疎水性」とは、水不溶性又は水難溶性の溶媒に溶解する性質を意味し、水又は水を主成分とする混合溶媒への溶解度が小さい(10g/100g-H2O未満)性質をいう。なお、「主成分」とは、その含有量が50質量%を超えることを意味する。
本明細書において「重合性モノマー」とは、重合性官能基を有する化合物を意味し、水溶性の重合性モノマーと疎水性の重合性モノマーとを含む概念である。また、重合性モノマーは、付加重合又は縮重合が適用されてもよいが、好ましくはラジカル重合が適用される。したがって、本発明では好ましくはラジカル重合性モノマー、即ち重合性不飽和モノマー、より好ましくはエチレン性不飽和モノマーが適用される。上記「水溶性」とは、水又は水を主成分とする混合溶媒に溶解する性質を意味し、水又は水を主成分とする混合溶媒への溶解度が大きい場合(10g/100g-H2O以上)を含む。一方、上記「疎水性」とは、水不溶性又は水難溶性の溶媒に溶解する性質を意味し、水又は水を主成分とする混合溶媒への溶解度が小さい(10g/100g-H2O未満)性質をいう。なお、「主成分」とは、その含有量が50質量%を超えることを意味する。
〔1-3〕「非相溶性液体組成物」
本明細書において「非相溶性液体組成物」とは、重合性モノマーを溶解しないか、溶解してもごく僅かである性質の液状物を意味する。また、本明細書において単一化合物の液状物のみからなる場合であっても、非相溶性液体組成物と称する。具体的には、重合性モノマーの非相溶性液体組成物に対する溶解度が、20℃で好ましくは10g/100g-溶媒未満、より好ましくは1g/100g-溶媒未満の液状物をいう。例えば、水溶性の重合性モノマーの場合、典型的な非相溶性液体組成物は、疎水性の有機溶媒である。一方、疎水性の重合性モノマーの場合、典型的な非相溶性液体組成物は、水である。
本明細書において「非相溶性液体組成物」とは、重合性モノマーを溶解しないか、溶解してもごく僅かである性質の液状物を意味する。また、本明細書において単一化合物の液状物のみからなる場合であっても、非相溶性液体組成物と称する。具体的には、重合性モノマーの非相溶性液体組成物に対する溶解度が、20℃で好ましくは10g/100g-溶媒未満、より好ましくは1g/100g-溶媒未満の液状物をいう。例えば、水溶性の重合性モノマーの場合、典型的な非相溶性液体組成物は、疎水性の有機溶媒である。一方、疎水性の重合性モノマーの場合、典型的な非相溶性液体組成物は、水である。
〔1-4〕「球状重合体粒子」
本明細書において「球状重合体粒子」とは、重合性液体組成物が重合することにより得られる略球形のポリマー粒子であり、真球状以外の形状も含む。詳細には、「略球形」とは、粒子の平均長径と平均短径との比(真球度とも称する)が、好ましくは1.0~3.0の粒子を意味する。粒子の平均長径及び平均短径は、顕微鏡で観察された画像に基づいて、測定される。本発明において、「球状重合体粒子」は単独粒子で存在することに限定されず、球状重合体粒子の凝集体を形成していてもよい。
本明細書において「球状重合体粒子」とは、重合性液体組成物が重合することにより得られる略球形のポリマー粒子であり、真球状以外の形状も含む。詳細には、「略球形」とは、粒子の平均長径と平均短径との比(真球度とも称する)が、好ましくは1.0~3.0の粒子を意味する。粒子の平均長径及び平均短径は、顕微鏡で観察された画像に基づいて、測定される。本発明において、「球状重合体粒子」は単独粒子で存在することに限定されず、球状重合体粒子の凝集体を形成していてもよい。
本発明における球状重合体粒子は、その用途・目的に応じて、重合性モノマーを選択することにより設計される。例えば、球状重合体粒子として粉末状又は粒子状の吸水性樹脂を製造する場合、代表的に用いられる重合性モノマーは、(メタ)アクリル酸及び/又はその塩である。
〔1-5〕「吸水性樹脂」
本明細書における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を指し、下記の物性を満たすものをいう。即ち、水膨潤性としてERT441.2-02で規定されるCRC(遠心分離機保持容量)が5g/g以上であり、かつ、水不溶性としてERT470.2-02で規定されるExt(水可溶分)が50質量%以下である高分子ゲル化剤を指す。
本明細書における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を指し、下記の物性を満たすものをいう。即ち、水膨潤性としてERT441.2-02で規定されるCRC(遠心分離機保持容量)が5g/g以上であり、かつ、水不溶性としてERT470.2-02で規定されるExt(水可溶分)が50質量%以下である高分子ゲル化剤を指す。
上記吸水性樹脂は、その用途・目的に応じた設計が可能であり、特に限定されないが、カルボキシル基を有する不飽和単量体を架橋重合させた親水性架橋重合体であることが好ましい。また、全量が架橋重合体である形態に限定されず、上記の各物性(CRC、Ext)が上記数値範囲を満たす限り、添加剤等を含んだ組成物であってもよい。
本明細書における「吸水性樹脂」は、出荷前の最終製品に限らず、吸水性樹脂の製造工程における中間体(例えば、重合後の含水ゲル状架橋重合体、表面架橋前の吸水性樹脂粉末等)を指す場合もある。これら全てを包括して「吸水性樹脂」と総称する。
〔1-6〕「ポリ(メタ)アクリル酸(塩)」
本明細書における「ポリ(メタ)アクリル酸(塩)」とは、重合性モノマーとしてのポリ(メタ)アクリル酸及び/又はその塩を指し、主成分として(メタ)アクリル酸及び/又はその塩(以下、「(メタ)アクリル酸(塩)」とも称する)を繰り返し単位として含み、任意成分としてグラフト成分を含む架橋重合体を意味する。
本明細書における「ポリ(メタ)アクリル酸(塩)」とは、重合性モノマーとしてのポリ(メタ)アクリル酸及び/又はその塩を指し、主成分として(メタ)アクリル酸及び/又はその塩(以下、「(メタ)アクリル酸(塩)」とも称する)を繰り返し単位として含み、任意成分としてグラフト成分を含む架橋重合体を意味する。
上記「主成分」とは、(メタ)アクリル酸(塩)の使用量(含有量)が、重合に用いられる単量体全体に対して、好ましくは50モル%~100モル%、より好ましくは70モル%~100モル%、更に好ましくは90モル%~100モル%、特に好ましくは実質100モル%であることを意味する。
架橋重合体としての「ポリ(メタ)アクリル酸塩」は、ポリ(メタ)アクリル酸の水溶性塩を含み、好ましくは一価の塩、より好ましくはアルカリ金属塩又はアンモニウム塩、更に好ましくはアルカリ金属塩、特に好ましくはナトリウム塩を含む。
〔1-7〕「EDANA」及び「ERT」
「EDANA」は、European Disposables and Nonwovens Associationsの略称である。また、「ERT」は、EDANA Recommended Test Methodsの略称であり、吸水性樹脂の測定方法を規定した欧州標準である。本発明では、特に断りのない限り、ERT原本(2002年改定)に準拠して、吸水性樹脂の物性を測定する。
「EDANA」は、European Disposables and Nonwovens Associationsの略称である。また、「ERT」は、EDANA Recommended Test Methodsの略称であり、吸水性樹脂の測定方法を規定した欧州標準である。本発明では、特に断りのない限り、ERT原本(2002年改定)に準拠して、吸水性樹脂の物性を測定する。
〔1-7-1〕「CRC」(ERT441.2-02)
「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、吸水性樹脂の無加圧下での吸水倍率(「吸水倍率」と称する場合もある)を意味する。具体的には、吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9質量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で3分間、水切りした後の吸水倍率(単位;g/g)のことをいう。
「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、吸水性樹脂の無加圧下での吸水倍率(「吸水倍率」と称する場合もある)を意味する。具体的には、吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9質量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で3分間、水切りした後の吸水倍率(単位;g/g)のことをいう。
〔1-7-2〕「Ext」(ERT470.2-02)
「Ext」は、Extractablesの略称であり、吸水性樹脂の水可溶分(水可溶成分量)を意味する。具体的には、吸水性樹脂1.0gを0.9質量%塩化ナトリウム水溶液200mlに添加し、500rpmで16時間攪拌した後、水溶液に溶解した物質の量(単位;質量%)のことをいう。水可溶分の測定には、pH滴定が用いられる。
「Ext」は、Extractablesの略称であり、吸水性樹脂の水可溶分(水可溶成分量)を意味する。具体的には、吸水性樹脂1.0gを0.9質量%塩化ナトリウム水溶液200mlに添加し、500rpmで16時間攪拌した後、水溶液に溶解した物質の量(単位;質量%)のことをいう。水可溶分の測定には、pH滴定が用いられる。
〔1-7-3〕「Residual Monomers」(ERT410.2-02)
「Residual Monomers」は、吸水性樹脂中に残存する単量体(モノマー)の量を意味する。以下、吸水性樹脂中に残存する単量体を「残存モノマー」と称する。具体的には、吸水性樹脂1.0gを、0.9質量%塩化ナトリウム水溶液200mlに添加し、500rpmで1時間攪拌した後、水溶液に溶解したモノマー量(単位;ppm)のことをいう。残存モノマー量の測定には、高速液体クロマトグラフィー(HPLC)が用いられる。
「Residual Monomers」は、吸水性樹脂中に残存する単量体(モノマー)の量を意味する。以下、吸水性樹脂中に残存する単量体を「残存モノマー」と称する。具体的には、吸水性樹脂1.0gを、0.9質量%塩化ナトリウム水溶液200mlに添加し、500rpmで1時間攪拌した後、水溶液に溶解したモノマー量(単位;ppm)のことをいう。残存モノマー量の測定には、高速液体クロマトグラフィー(HPLC)が用いられる。
〔1-7-4〕「Moisture Content」(ERT430.2-02)
「Moisture Content」は、吸水性樹脂の含水率を意味する。具体的には、吸水性樹脂4.0gを105℃で3時間乾燥した際の乾燥減量から算出した値(単位;質量%)のことをいう。なお、吸水性樹脂の量を1.0gに、乾燥温度を180℃にそれぞれ変更して測定する場合もある。
「Moisture Content」は、吸水性樹脂の含水率を意味する。具体的には、吸水性樹脂4.0gを105℃で3時間乾燥した際の乾燥減量から算出した値(単位;質量%)のことをいう。なお、吸水性樹脂の量を1.0gに、乾燥温度を180℃にそれぞれ変更して測定する場合もある。
〔1-7-5〕「PSD」(ERT420.2-02)
「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される吸水性樹脂の粒度分布を意味する。なお、質量平均粒子径(D50)及び粒度分布の対数標準偏差(σζ)は、米国特許第7638570号に記載された方法と同様の方法で測定される。
「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される吸水性樹脂の粒度分布を意味する。なお、質量平均粒子径(D50)及び粒度分布の対数標準偏差(σζ)は、米国特許第7638570号に記載された方法と同様の方法で測定される。
〔1-8〕「Vortex」
本明細書における「Vortex」とは、吸水性樹脂の吸水速度を表す指標であり、後述の実施例に記載の測定方法により得られる吸水時間をいう。
本明細書における「Vortex」とは、吸水性樹脂の吸水速度を表す指標であり、後述の実施例に記載の測定方法により得られる吸水時間をいう。
〔1-9〕その他
本明細書において、範囲を示す「X~Y」は「X以上、Y以下」を意味する。また、特に注釈のない限り、質量の単位である「t(トン)」は「Metric ton(メトリック トン)」を意味し、「ppm」は「質量ppm」又は「重量ppm」を意味する。更に、「質量」と「重量」、「質量部」と「重量部」、「質量%」と「重量%」はそれぞれ同義語として扱う。また、「~酸(塩)」は「~酸及び/又はその塩」、「(メタ)アクリル」は「アクリル及び/又はメタクリル」をそれぞれ意味する。
本明細書において、範囲を示す「X~Y」は「X以上、Y以下」を意味する。また、特に注釈のない限り、質量の単位である「t(トン)」は「Metric ton(メトリック トン)」を意味し、「ppm」は「質量ppm」又は「重量ppm」を意味する。更に、「質量」と「重量」、「質量部」と「重量部」、「質量%」と「重量%」はそれぞれ同義語として扱う。また、「~酸(塩)」は「~酸及び/又はその塩」、「(メタ)アクリル」は「アクリル及び/又はメタクリル」をそれぞれ意味する。
〔2〕重合性液体組成物の分散方法
本発明に係る重合性液体組成物の分散方法では、スプレーノズルが用いられる。本発明において、スプレーノズルには、重合性モノマーを含有する少なくとも1種の重合性液体組成物と、この重合性モノマーと非相溶性である少なくとも1種の非相溶性液体組成物とが導入される。本発明において、重合性液体組成物と非相溶性液体組成物とは、相互に接触することなくスプレーノズルの内部を通過する。このスプレーノズルの先端部まで誘導された重合性液体組成物と非相溶性液体組成物とは、このスプレーノズルから排出される直前又は直後に接触し、重合性液体組成物が液滴状となった分散相と、非相溶性液体組成物による連続相とを有する分散液が得られる。
本発明に係る重合性液体組成物の分散方法では、スプレーノズルが用いられる。本発明において、スプレーノズルには、重合性モノマーを含有する少なくとも1種の重合性液体組成物と、この重合性モノマーと非相溶性である少なくとも1種の非相溶性液体組成物とが導入される。本発明において、重合性液体組成物と非相溶性液体組成物とは、相互に接触することなくスプレーノズルの内部を通過する。このスプレーノズルの先端部まで誘導された重合性液体組成物と非相溶性液体組成物とは、このスプレーノズルから排出される直前又は直後に接触し、重合性液体組成物が液滴状となった分散相と、非相溶性液体組成物による連続相とを有する分散液が得られる。
なお、本明細書において、分散相を形成した重合性液体組成物の液滴を単に「液滴」と称する場合がある。また、スプレーノズルに導入される液状物であって、重合性液体組成物以外のもの(例えば、非相溶性液体組成物)を、「補助流体」と称する場合がある。
(スプレーノズル)
本発明で用いられるスプレーノズルとしては、少なくとも1種の重合性液体組成物と、少なくとも1種の非相溶性液体組成物とを導入して、これらを相互に接触することなくその内部を通過させ、スプレーノズルから排出する直前又は直後に接触して排出する機能を備えている限り、特に限定されない。例えば、2流体スプレーノズル、3流体スプレーノズル、4流体スプレーノズル等の多流体スプレーノズル;2重管、3重管、4重管等の多重管;エジェクター等が挙げられる。また、2流体スプレーノズルとして、プレフィルミング型、プレーンジェット型、クロスフロー型、外部混合型、内部混合型及びYジェット型のスプレーノズルが例示される。液滴の微細化が可能で、閉塞が生じにくいとの観点から、多流体スプレーノズルが好ましく、外部混合型の多流体スプレーノズルがより好ましい。
本発明で用いられるスプレーノズルとしては、少なくとも1種の重合性液体組成物と、少なくとも1種の非相溶性液体組成物とを導入して、これらを相互に接触することなくその内部を通過させ、スプレーノズルから排出する直前又は直後に接触して排出する機能を備えている限り、特に限定されない。例えば、2流体スプレーノズル、3流体スプレーノズル、4流体スプレーノズル等の多流体スプレーノズル;2重管、3重管、4重管等の多重管;エジェクター等が挙げられる。また、2流体スプレーノズルとして、プレフィルミング型、プレーンジェット型、クロスフロー型、外部混合型、内部混合型及びYジェット型のスプレーノズルが例示される。液滴の微細化が可能で、閉塞が生じにくいとの観点から、多流体スプレーノズルが好ましく、外部混合型の多流体スプレーノズルがより好ましい。
このような多流体スプレーノズルの具体例として、株式会社共立合金製作所製のミニアトマイズMMA、株式会社いけうちのSETOJet、スプレーイングシステムスジャパン株式会社のエアーアトマイジングノズル SU-HTE91、新倉工業株式会社のミクロマイザー、藤崎電機株式会社の4流体ノズル、大川原化工機株式会社のツインジェットノズル等が挙げられる。
なお、従来の多流体スプレーノズルの使用態様は、気体用流路と液体用流路にそれぞれ気体と液体とを導入し、排出される液体と気体とを接触させて空気中に噴霧するものであった。本来、気体用流路に液体を導入することはトラブル要因の一つとされていたにも関わらず、本発明者らは、この気体用流路にも液体を導入することが可能な場合があることに気付いた。そして、気体用流路に非相溶性液体組成物を導入しかつ液体用流路に重合性液体組成物を導入することや、気体用流路に重合性液体組成物を導入しかつ液体用流路に非相溶性液体組成物を導入することにより、重合性液体組成物が液滴状で連続相に供給され、非常に良好な分散状態が効率的に達成されることを見出して、本発明を完成したものである。なお、上記重合性液体組成物及び非相溶性液体組成物の具体的例示については、〔3〕球状重合体粒子の製造方法にて後述する。
本発明の目的が達成される限り、重合性液体組成物及び非相溶性液体組成物とともに、第3成分として、空気、窒素、水蒸気等の気体がスプレーノズルに意図的に導入されてもよいが、液滴中への気泡混入防止及びスプレーノズル内での閉塞抑制の観点から、スプレーノズルの内部(特に非相溶性液体組成物)に気体が意図的に導入されない実施態様が好ましい。なお、重合性液体組成物(特にラジカル重合性モノマーを含む重合性液体組成物)は、ラジカル重合に際して(溶存)酸素の除去が行われる場合があり、このときに重合性液体組成物中に極少量の気体が分散されることがある。また、重合性液体組成物を重合させる前の昇温(加熱)によって、溶存酸素や水蒸気等が気体となって重合性液体組成物中に分散されることもある。これら重合性液体組成物中に存在する極少量の気体は、実質的に悪影響(スプレーノズル内での閉塞等)を及ぼさないため、本発明では特に排除しない。上記「極少量の気体」とは、気体の分散による重合性液体組成物の体積の膨張度が好ましくは1.1倍以下、より好ましくは1.01倍以下となる程度の量の気体のことを意味する。
図1は、本発明の一実施形態に係る分散方法で用いられるスプレーノズル1の断面図であり、図2はこのスプレーノズル1の底面図である。このスプレーノズル1は、1つの重合性液体組成物用流路2と、1つの非相溶性液体組成物用流路3とを備えている。つまり、このスプレーノズル1は、2つの流路を有する2流体スプレーノズルである。なお、図1では、流路2を重合性液体組成物用流路、流路3を非相溶性液体組成物用流路として記載しているが、相互に入れ替えて、流路2を非相溶性液体組成物用流路、流路3を重合性液体組成物用流路とすることもできる。以下、図1にしたがって詳細に説明する。
この実施形態(図1)では、重合性液体組成物は、重合性液体組成物用供給口2aからスプレーノズル1内に導入され、重合性液体組成物用排出口2bから排出される。一方、非相溶性液体組成物は、非相溶性液体組成物用供給口3aからスプレーノズル1内に導入され、非相溶性液体組成物用排出口3bから排出される。重合性液体組成物と非相溶性液体組成物とは、各排出口(2b、3b)から排出された直後に、スプレーノズル1の外部において接触する。この接触により両者が混合され、重合性液体組成物の液滴が生成される。
この実施形態では、重合性液体組成物と非相溶性液体組成物とが、相互に接触することなく、スプレーノズル1の先端部4まで誘導される。ここで、スプレーノズル1の先端部4とは、スプレーノズルの内部であって、各排出口(2b、3b)に近接する部位を指す。このスプレーノズル1では、重合性液体組成物と非相溶性液体組成物とが、スプレーノズル1の内部において接触しない。これにより、重合性液体組成物と非相溶性液体組成物との接触に起因するスプレーノズル1の内部閉塞が抑制される。図示されないが、この実施形態では、重合性液体組成物が液滴状の分散相を形成する。これにより、重合性液体組成物が効率的に連続相に分散される。
前述した通り、この実施形態では、重合性液体組成物と非相溶性液体組成物とが、各排出口(2b、3b)から排出された直後に、スプレーノズル1の外部において接触する。この2流体スプレーノズル1は外部混合型である。本発明の目的が達成される限り、即ちスプレーノズル内部の閉塞が回避できる限り、内部混合型スプレーノズルの使用も許容される。内部混合型スプレーノズルでは、重合性液体組成物と非相溶性液体組成物とが、スプレーノズルからの排出直前に、スプレーノズルの先端部において接触して混合される。
図3は、本発明の他の実施形態に係る分散方法で用いられるスプレーノズル5の部分断面図であり、図4はこのスプレーノズル5の底面図である。このスプレーノズル5は、2つの重合性液体組成物用流路(61、62)と、2つの非相溶性液体組成物用流路(71、72)とを備えている。つまり、このスプレーノズル5は、4つの流路を有する4流体スプレーノズルである。以下、図3にしたがって詳細に説明する。図示される通り、重合性液体組成物用排出口(61b、62b)及び非相溶性液体組成物用排出口(71b、72b)の形状は、スリット状である。スプレーノズル5において、各排出口(61b、62b、71b、72b)近傍が先端部8である。このスプレーノズル5の先端部8は、断面視逆三角形に形成されている。
この実施形態(図3)では、重合性液体組成物が2つの重合性液体組成物用流路(61、62)にそれぞれ導入され、非相溶性液体組成物が2つの非相溶性液体組成物用流路(71、72)にそれぞれ導入される。一方の非相溶性液体組成物用排出口71bから排出された非相溶性液体組成物は、重合性液体組成物用排出口61bの近傍で、排出された重合性液体組成物と接触して混合され、このスプレーノズル5の先端に向かって流下する。他方の非相溶性液体組成物用排出口72bから排出された非相溶性液体組成物は、重合性液体組成物用排出口62bの近傍で、排出された重合性液体組成物と接触して混合され、このスプレーノズル5の先端に向かって流下する。この実施形態では、重合性液体組成物と非相溶性液体組成物との混合液が、スプレーノズル5の先端において接触する。この接触により、スプレーノズル5の先端において重合性液体組成物の微細な液滴が形成される。この実施形態では、重合性液体組成物がより微細な液滴状で分散相を形成することにより、良好な分散状態が形成される。この実施形態では、重合性液体組成物と非相溶性液体組成物とが、スプレーノズル5の内部において接触しない。これにより、重合性液体組成物と非相溶性液体組成物との接触に起因するスプレーノズル5の内部閉塞が抑制される。
本発明の目的が阻害されない限り、2つの重合性液体組成物用流路(61、62)に、同じ重合性液体組成物が導入されてもよく、異なる種類の重合性液体組成物が導入されてもよい。また、2つの非相溶性液体組成物用流路(71,72)に、同じ非相溶性液体組成物が導入されてもよく、異なる種類の非相溶性液体組成物が導入されてもよい。
(重合性液体組成物用流路の内径及びクリアランス)
上記スプレーノズルの重合性液体組成物用流路は、通常、管状構造又はスリット状構造に設計されるが、その内径及びクリアランスは、重合性液体組成物の流量に応じて適宜選択することができる。狭くし過ぎると重合性液体組成物の供給圧が高圧となり、高性能なポンプが必要となったり、詰まりによるスプレーノズルの閉塞を生じたりするため、好ましくない。なお、上記「クリアランス」とは、重合性液体組成物用排出口の外縁端の任意の一点と、非相溶性液体組成物用排出口の外縁端の任意の一点との距離において、最も小さい距離のことを意味する。
上記スプレーノズルの重合性液体組成物用流路は、通常、管状構造又はスリット状構造に設計されるが、その内径及びクリアランスは、重合性液体組成物の流量に応じて適宜選択することができる。狭くし過ぎると重合性液体組成物の供給圧が高圧となり、高性能なポンプが必要となったり、詰まりによるスプレーノズルの閉塞を生じたりするため、好ましくない。なお、上記「クリアランス」とは、重合性液体組成物用排出口の外縁端の任意の一点と、非相溶性液体組成物用排出口の外縁端の任意の一点との距離において、最も小さい距離のことを意味する。
本発明に係る分散方法では、少なくとも1種の重合性液体組成物と少なくとも1種の非相溶性液体組成物とをスプレーノズルのそれぞれの供給口へ導入してそれぞれの排出口から排出するため、重合性液体組成物用流路(2、61、62)の内径及びクリアランスのみに依存することなく、液滴の粒子径及び粒度分布を制御することができ、更にスプレーノズルでの閉塞を防止することができる。具体的には、後述の噴霧指数を指標として、非相溶性液体組成物及び重合性液体組成物の流速等のバランスにより、好ましい粒子径の液滴を生成することが可能である。
これに対し、従来から使用されていたニードル、多孔プレート、1流体スプレー等では、生成される液滴の粒子径が重合性液体組成物用流路の内径に依存しており、微細な液滴を得るためには、その内径を狭くする必要があった。そのため、重合性液体組成物の供給圧が高圧となって高性能なポンプが必要となり、また詰まりによるスプレーノズルの閉塞が頻発する状態であった。
(スプレーノズルの配置)
重合性液体組成物の分散性向上及びスプレーノズル(1、5)の閉塞防止の観点から、好ましくは、スプレーノズル(1、5)の排出口である、重合性液体組成物用排出口(2b、61b、62b)及び非相溶性液体組成物用排出口(3b、71b、72b)が、スプレーノズルからの排出物と異なる組成を有する液体組成物中に浸漬するように配置される。このように配置されたスプレーノズル(1、5)では、各排出口(2b、3b、61b、62b、71b、72b)から排出された重合性液体組成物及び非相溶性液体組成物からなる排出物が、気体と接触することなく、スプレーノズルからの排出物と異なる組成を有する液体組成物中に供給される。これにより、分散液中への気体(気泡)の巻き込みが防止されるとともに、スプレーノズル(1、5)の先端部(4、8)に付着した重合性液体組成物の重合等によるスプレーノズル(1、5)の閉塞が防止されるため好ましい。また、形成された液滴同士の合一が抑制されるため分散性が向上するという利点も得られる。また、複数のスプレーノズルを用いる場合、各ノズル同士の距離やノズルの向きを本発明の効果が得られるように適宜設定すればよい。
重合性液体組成物の分散性向上及びスプレーノズル(1、5)の閉塞防止の観点から、好ましくは、スプレーノズル(1、5)の排出口である、重合性液体組成物用排出口(2b、61b、62b)及び非相溶性液体組成物用排出口(3b、71b、72b)が、スプレーノズルからの排出物と異なる組成を有する液体組成物中に浸漬するように配置される。このように配置されたスプレーノズル(1、5)では、各排出口(2b、3b、61b、62b、71b、72b)から排出された重合性液体組成物及び非相溶性液体組成物からなる排出物が、気体と接触することなく、スプレーノズルからの排出物と異なる組成を有する液体組成物中に供給される。これにより、分散液中への気体(気泡)の巻き込みが防止されるとともに、スプレーノズル(1、5)の先端部(4、8)に付着した重合性液体組成物の重合等によるスプレーノズル(1、5)の閉塞が防止されるため好ましい。また、形成された液滴同士の合一が抑制されるため分散性が向上するという利点も得られる。また、複数のスプレーノズルを用いる場合、各ノズル同士の距離やノズルの向きを本発明の効果が得られるように適宜設定すればよい。
(分散液)
本発明に係る分散方法は、重合性液体組成物と非相溶性液体組成物とがスプレーノズルを介して混合され、重合性液体組成物が液滴状の分散相を形成した分散液が得られる。上記分散液の分散状態を損なわずに重合反応に供することが好ましいとの観点から、連続相は、重合性液体組成物中の重合性モノマーと実質的に非相溶性の液状物であって、本発明の球状重合体粒子の原料である重合性モノマーの重合反応に対して、本質的に不活性である液状物から形成されることが好ましい。連続相をなす液状物としては特に限定されず、後述する非相溶性液体組成物から適宜選択されて用いられる。良好な分散性が得られる限り、連続相が、スプレーノズルから排出される非相溶性液体組成物と同じ組成で形成されてもよく、異なる組成で形成されてもよい。液滴の分散安定性の観点から、スプレーノズルから排出される非相溶性液体組成物と同じ組成比の非相溶性液体組成物又はこれと同じような組成比の非相溶性液体組成物から形成された連続相が好ましい。なお、本分散液には、上記のように気体からなる分散相である微量の気泡を更に含んでいる場合がある。
本発明に係る分散方法は、重合性液体組成物と非相溶性液体組成物とがスプレーノズルを介して混合され、重合性液体組成物が液滴状の分散相を形成した分散液が得られる。上記分散液の分散状態を損なわずに重合反応に供することが好ましいとの観点から、連続相は、重合性液体組成物中の重合性モノマーと実質的に非相溶性の液状物であって、本発明の球状重合体粒子の原料である重合性モノマーの重合反応に対して、本質的に不活性である液状物から形成されることが好ましい。連続相をなす液状物としては特に限定されず、後述する非相溶性液体組成物から適宜選択されて用いられる。良好な分散性が得られる限り、連続相が、スプレーノズルから排出される非相溶性液体組成物と同じ組成で形成されてもよく、異なる組成で形成されてもよい。液滴の分散安定性の観点から、スプレーノズルから排出される非相溶性液体組成物と同じ組成比の非相溶性液体組成物又はこれと同じような組成比の非相溶性液体組成物から形成された連続相が好ましい。なお、本分散液には、上記のように気体からなる分散相である微量の気泡を更に含んでいる場合がある。
また、分散安定化向上の観点から、連続相が、スプレーノズルの各排出口近傍において流動していることが好ましい。複数の重合性液体組成物の液滴が合一して大きな重合性液体組成物の液滴となることを抑制する場合には、スプレーノズルによる液滴の供給方向が、連続相の移動方向と向流とならないようにすることが好ましい。好ましくは、液滴の供給方向と、連続相の移動方向とのなす角度は90度以下、より好ましくは70度以下、更に好ましくは50度以下、特に好ましくは30度以下である。上記供給方向とは、例えば、液滴が円錐形状に供給される場合には、この円錐の中心軸の方向を意味する。理想的には、液滴の供給方向と、連続相の移動方向とが平行である。これにより、スプレーノズルから供給された重合性液体組成物の液滴が、連続相の移動とともに効率的に分散される。なお、連続相の移動方法としては特に限定されず、攪拌機による機械的攪拌、循環ポンプによる循環等が例示される。
(噴霧指数)
本発明における「噴霧指数」とは、重合性液体組成物の液滴の粒子径及び粒度分布を決定する上で必要となる因子を評価するためのパラメータであり、下記(式1)で定義される。本発明に係る分散方法では、スケールアップ製造時に、この噴霧指数に基づいて製造条件を設定することにより、生成される液滴の粒子径を容易に調整することができる。
噴霧指数=(Da・Qa・Va2)/(Dm・Qm・Vm2) ・・・ (式1)
但し、(式1)中、Da、Qa及びVaは、それぞれ、上記非相溶性液体組成物の密度(kg/m3)、流量(m3/分)及び流速(m/秒)であり、Dm、Qm及びVmは、それぞれ、上記重合性液体組成物の密度(kg/m3)、流量(m3/分)及び流速(m/秒)である。
本発明における「噴霧指数」とは、重合性液体組成物の液滴の粒子径及び粒度分布を決定する上で必要となる因子を評価するためのパラメータであり、下記(式1)で定義される。本発明に係る分散方法では、スケールアップ製造時に、この噴霧指数に基づいて製造条件を設定することにより、生成される液滴の粒子径を容易に調整することができる。
噴霧指数=(Da・Qa・Va2)/(Dm・Qm・Vm2) ・・・ (式1)
但し、(式1)中、Da、Qa及びVaは、それぞれ、上記非相溶性液体組成物の密度(kg/m3)、流量(m3/分)及び流速(m/秒)であり、Dm、Qm及びVmは、それぞれ、上記重合性液体組成物の密度(kg/m3)、流量(m3/分)及び流速(m/秒)である。
上記噴霧指数は、好ましくは30以上、より好ましくは40以上、更に好ましくは50以上、特に好ましくは100以上である。噴霧指数の上限は、特に限定されないが、好ましくは10000以下、より好ましくは5000以下である。この噴霧指数を上記範囲内とすることで、得られる液滴の粒子径及び粒度分布を最適なものにすることができるため、好ましい。一方、上記噴霧指数が30未満である場合、重合性液体組成物の流量や流速に対して、非相溶性液体組成物の流量や流速が足らず、重合性液体組成物を十分に分散させることができないため、好ましくない。
(流速)
上記(式1)中の流速Va及び流速Vmは、それぞれスプレーノズル先端部(4、8)における非相溶性液体組成物及び重合性液体組成物の流速(単位;m/s)であり、先端速度ということもある。スプレーノズル先端部(4、8)における重合性液体組成物の流速Vmは、上記噴霧指数が上記数値範囲内となるように適宜設定されるが、スプレーノズル内部での重合等による閉塞等の観点から、流速Vmは、好ましくは0.01m/s以上、より好ましくは0.05m/s以上、更に好ましくは0.1m/s以上である。また、得られる液滴の粒子径及び粒度分布が最適化されるとの観点から、流速Vmは、好ましくは10m/s以下、より好ましくは5m/s以下、更に好ましくは2m/s以下である。
上記(式1)中の流速Va及び流速Vmは、それぞれスプレーノズル先端部(4、8)における非相溶性液体組成物及び重合性液体組成物の流速(単位;m/s)であり、先端速度ということもある。スプレーノズル先端部(4、8)における重合性液体組成物の流速Vmは、上記噴霧指数が上記数値範囲内となるように適宜設定されるが、スプレーノズル内部での重合等による閉塞等の観点から、流速Vmは、好ましくは0.01m/s以上、より好ましくは0.05m/s以上、更に好ましくは0.1m/s以上である。また、得られる液滴の粒子径及び粒度分布が最適化されるとの観点から、流速Vmは、好ましくは10m/s以下、より好ましくは5m/s以下、更に好ましくは2m/s以下である。
スプレーノズル先端部(4、8)における非相溶性液体組成物の流速Vaは、上記噴霧指数が上記数値範囲内となるように適宜設定されるが、得られる液滴の粒子径及び粒度分布が最適化されるとの観点から、流速Vaは、好ましくは1m/s以上、より好ましくは1.5m/s以上、更に好ましくは2m/s以上である。また、送液能力(圧力)や液滴の微細化効率の観点から、流速Vaは、好ましくは50m/s以下、より好ましくは20m/s以下、更に好ましくは10m/s以下である。なお、重合性液体組成物の流速Vm、非相溶性液体組成物の流速Vaは、スプレーノズル先端部(4、8)における各排出口の内径やクリアランスから算出される断面積と、重合性液体組成物及び非相溶性液体組成物の流量とに基づいて算出することも可能である。
(流量)
上記(式1)中の流量Qa及び流量Qmは、それぞれ単位時間あたりにスプレーノズル(1、5)に導入される非相溶性液体組成物及び重合性液体組成物の流量(単位;m3/分)である。本発明に係る分散方法は実験室レベルから実機レベルを対象とするため、上記の流量は体積比で規定することが好ましい。つまり、上記非相溶性液体組成物の流量Qaは、上記重合性液体組成物の流量Qmに対して、体積比で、好ましくは1倍~1000倍、より好ましくは5倍~200倍、更に好ましくは10倍~100倍とする。
上記(式1)中の流量Qa及び流量Qmは、それぞれ単位時間あたりにスプレーノズル(1、5)に導入される非相溶性液体組成物及び重合性液体組成物の流量(単位;m3/分)である。本発明に係る分散方法は実験室レベルから実機レベルを対象とするため、上記の流量は体積比で規定することが好ましい。つまり、上記非相溶性液体組成物の流量Qaは、上記重合性液体組成物の流量Qmに対して、体積比で、好ましくは1倍~1000倍、より好ましくは5倍~200倍、更に好ましくは10倍~100倍とする。
(密度)
上記(式1)中の密度Da及び密度Dmは、それぞれスプレーノズル(1、5)に導入される非相溶性液体組成物及び重合性液体組成物の密度(単位;kg/m3またはg/ml)である。なお、本発明におけるこれらの密度は、用いられる液体の密度であり、特に限定されない。
上記(式1)中の密度Da及び密度Dmは、それぞれスプレーノズル(1、5)に導入される非相溶性液体組成物及び重合性液体組成物の密度(単位;kg/m3またはg/ml)である。なお、本発明におけるこれらの密度は、用いられる液体の密度であり、特に限定されない。
(液滴の粒子径)
本発明において、生成される重合性液体組成物の液滴の粒子径は、目的に応じて適宜調整すればよいが、その体積平均粒子径としては、この液滴の分散状態や懸濁状態の安定性の観点から、好ましくは2000μm以下、より好ましくは1000μm以下、更に好ましくは800μm以下である。また、作業効率の観点から、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上である。
本発明において、生成される重合性液体組成物の液滴の粒子径は、目的に応じて適宜調整すればよいが、その体積平均粒子径としては、この液滴の分散状態や懸濁状態の安定性の観点から、好ましくは2000μm以下、より好ましくは1000μm以下、更に好ましくは800μm以下である。また、作業効率の観点から、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上である。
なお、上記液滴の「体積平均粒子径」は、JIS Z 8825で規定される「粒子径解析-レーザ回析・散乱法」及びJIS Z 8819-2で規定される「粒子径測定結果の表現-第2部:粒子径分布からの平均粒子径又は平均粒子直径及びモーメントの計算」に準拠して算出する方法や、分散状態を撮影した写真の画像解析により算出する方法を用いることができる。
〔3〕球状重合体粒子の製造方法
以上で説明された重合性液体組成物の分散方法により得られた分散液は、球状重合体粒子の製造方法に用いられる。この分散液を用いることにより、分散助剤の残存に起因する性能劣化がなく、粒子径及び粒度分布が良好な球状重合体粒子を、効率よく安定して製造することができる。好ましくは、この分散液は、球状重合体粒子の一つである吸水性樹脂の製造方法に用いられる。これにより、吸水性能等の物性に優れた粉末状又は粒子状の吸水性樹脂を、効率よく安定して製造することができる。以下、上述した分散方法により得られた分散液を用いた球状重合体粒子の製造方法を説明するが、好ましい実施形態の一つである吸水性樹脂の製造方法についても適宜説明するものとする。
以上で説明された重合性液体組成物の分散方法により得られた分散液は、球状重合体粒子の製造方法に用いられる。この分散液を用いることにより、分散助剤の残存に起因する性能劣化がなく、粒子径及び粒度分布が良好な球状重合体粒子を、効率よく安定して製造することができる。好ましくは、この分散液は、球状重合体粒子の一つである吸水性樹脂の製造方法に用いられる。これにより、吸水性能等の物性に優れた粉末状又は粒子状の吸水性樹脂を、効率よく安定して製造することができる。以下、上述した分散方法により得られた分散液を用いた球状重合体粒子の製造方法を説明するが、好ましい実施形態の一つである吸水性樹脂の製造方法についても適宜説明するものとする。
この実施形態に係る球状重合体粒子の製造方法は、重合性液体組成物を作製する混合工程、この重合性液体組成物を非相溶性液体組成物とともに、液滴状にして反応装置に供給する供給工程、この反応装置において重合反応を開始させてゲル状重合体を得る重合工程、このゲル状重合体と非相溶性液体組成物とを分離する分離工程及びその他の工程を含んでいる。この実施形態では、上記供給工程において、本発明に係る分散方法による分散液が得られる。
以下、各工程(混合工程、供給工程、重合工程、分離工程及びその他の工程)について、詳細に説明する。
〔3-1〕混合工程
本工程は、重合性モノマー(以下、「単量体」と称する)を含有する重合性液体組成物を作製する工程である。この実施形態では、球状重合体粒子の原料である単量体を主成分として含む溶液(以下、「単量体溶液」と称する。また、単量体が吸水性樹脂の原料である場合には「単量体水溶液」と称する)と、重合開始剤とを混合することにより、重合性液体組成物(以下、単量体が吸水性樹脂の原料である場合には「単量体組成物」と称する)とが作製される。なお、この実施形態において、「重合性液体組成物」とは、後述する単量体及び重合開始剤を必須成分として含み、必要に応じて、単量体と相溶性のある添加剤(以下、「相溶性添加剤」と称する)、単量体と相溶性のない添加剤(以下、「非相溶性添加剤」と称する)、内部架橋剤等を含む組成物を意味する。このうち、単量体及び重合開始剤を必須成分として含み、必要に応じて、相溶性添加剤、内部架橋剤等の添加剤(但し、単量体と相溶性のあるもの)を含む組成物を、「狭義の重合性液体組成物」と定義する(単量体が吸水性樹脂の原料である場合には「狭義の単量体組成物」と称する)。なお、重合性液体組成物に必要に応じて含まれる非相溶性添加剤は、上記分散方法に用いられるいずれかの非相溶性液体組成物や上記分散液の連続相をなす非相溶性液体組成物と同一の液体組成物でもよいし、異なる液体組成物でもよい。
本工程は、重合性モノマー(以下、「単量体」と称する)を含有する重合性液体組成物を作製する工程である。この実施形態では、球状重合体粒子の原料である単量体を主成分として含む溶液(以下、「単量体溶液」と称する。また、単量体が吸水性樹脂の原料である場合には「単量体水溶液」と称する)と、重合開始剤とを混合することにより、重合性液体組成物(以下、単量体が吸水性樹脂の原料である場合には「単量体組成物」と称する)とが作製される。なお、この実施形態において、「重合性液体組成物」とは、後述する単量体及び重合開始剤を必須成分として含み、必要に応じて、単量体と相溶性のある添加剤(以下、「相溶性添加剤」と称する)、単量体と相溶性のない添加剤(以下、「非相溶性添加剤」と称する)、内部架橋剤等を含む組成物を意味する。このうち、単量体及び重合開始剤を必須成分として含み、必要に応じて、相溶性添加剤、内部架橋剤等の添加剤(但し、単量体と相溶性のあるもの)を含む組成物を、「狭義の重合性液体組成物」と定義する(単量体が吸水性樹脂の原料である場合には「狭義の単量体組成物」と称する)。なお、重合性液体組成物に必要に応じて含まれる非相溶性添加剤は、上記分散方法に用いられるいずれかの非相溶性液体組成物や上記分散液の連続相をなす非相溶性液体組成物と同一の液体組成物でもよいし、異なる液体組成物でもよい。
本発明に係る球状重合体粒子の製造方法において、重合性液体組成物に使用される単量体の種類は特に限定されないが、好ましくはラジカル重合性単量体、ラジカル重合性モノマー、即ち重合性不飽和モノマー(別称、オレフィン系モノマー)、より好ましくは末端エチレン性不飽和モノマーが適用される。例えば、ビニル化合物、ビニリデン化合物、ビニレン化合物、環状オレフィン化合物等の重合性不飽和モノマーを用途に応じて適宜選択して使用することができる。これらの単量体は、置換基の種類によって水溶性の重合性モノマーと疎水性の重合性モノマーに大別される。水溶性の重合性モノマーとしては、オレフィン系不飽和カルボン酸(塩)、オレフィン系不飽和スルホン酸(塩)、オレフィン系不飽和アミン、オレフィン系不飽和アミド等を挙げることができる。また、疎水性の重合性モノマーとしては、スチレン、酢酸ビニル、(メタ)アクリル酸エステル類等を挙げることができる。なお、本発明で用いることができる重合性モノマーの具体例や反応例については、大津隆行著「高分子合成の化学」(化学同人)34頁~43頁等を参照することができる。これらの重合性モノマーは単独で用いてもよいし、2種以上を混合して用いてもよい。
上記水溶性の重合性モノマーとして、具体的には、(メタ)アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等の酸基含有不飽和単量体;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、ビニルピリジン、N-ビニルピロリドン、N-アクリロイルピペリジン、N-アクリロイルピロリジン、N-ビニルアセトアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有不飽和単量体;メルカプト基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;N-ビニルピロリドン等のラクタム基含有不飽和単量体等が挙げられる。
上記疎水性の重合性モノマーとして、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステル類の他、上述したスチレン、酢酸ビニル等が挙げられる。
なお、上記重合性モノマーの安定性を考慮して、必要に応じて重合禁止剤を添加してもよい。該重合禁止剤として、例えば、p-メトキシフェノール、フェノチアジン、Vitamin-E等の公知の重合禁止剤を使用することができる。また、p-メトキシフェノールを使用する場合には、酸素が必要に応じて併用される。なお、上記重合禁止剤の使用量は、好ましくは0.1ppm~1000ppm、より好ましくは5ppm~500ppmである。
上記単量体の中で、カルボキシル基等の酸基を有する酸基含有不飽和単量体を用いて、球状重合体粒子の一つである吸水性樹脂を製造する場合、該酸基が中和された中和塩を用いることができる。この場合、酸基含有不飽和単量体の塩としては一価のカチオンとの塩であることが好ましく、アルカリ金属塩、アンモニウム塩及びアミン塩から選ばれる少なくとも1種であることがより好ましく、アルカリ金属塩であることが更に好ましく、ナトリウム塩、リチウム塩及びカリウム塩から選ばれる少なくとも1種であることがより更に好ましく、ナトリウム塩が特に好ましい。
これらの中でも、得られる吸水性樹脂の吸水性能の観点から、単量体は、好ましくは酸基含有不飽和単量体及び/又はその塩、より好ましくは(メタ)アクリル酸(塩)、(無水)マレイン酸(塩)、イタコン酸(塩)、ケイ皮酸(塩)、更に好ましくは(メタ)アクリル酸(塩)である。
球状重合体粒子として吸水性樹脂を製造する際に、単量体として酸基含有不飽和単量体を用いる場合、得られる吸水性樹脂の吸水性能の観点から、その酸基含有不飽和単量体の中和塩と併用することが好ましい。吸水性能の観点から、酸基含有不飽和単量体とその中和塩の合計モル数に対する中和塩のモル数(以下、「中和率」と称する)は、好ましくは40モル%以上、より好ましくは40モル%~80モル%、更に好ましくは45モル%~78モル%、特に好ましくは50モル%~75モル%である。なお、本発明における単量体は、特に断りのない限り、中和塩を含む概念である。
上記中和率を調整する方法としては、酸基含有不飽和単量体とその中和塩とを混合する方法;酸基含有不飽和単量体に公知の中和剤を添加する方法;予め所定の中和率に調整された酸基含有不飽和単量体の部分中和塩(即ち、酸基含有不飽和単量体とその中和塩との混合物)を用いる方法等が挙げられる。また、これらの方法を組み合わせてもよい。
上記酸基含有不飽和単量体を中和するために使用される中和剤としては、特に限定されないが、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸アンモニウム等の無機塩や、アミノ基やイミノ基を有するアミン系有機化合物等の塩基性物質が適宜選択されて用いられる。中和剤として、2種以上の塩基性物質が併用されてもよい。
上記中和率の調整は、酸基含有不飽和単量体の重合反応開始前に行ってもよいし、酸基含有不飽和単量体の重合反応中で行ってもよいし、酸基含有不飽和単量体の重合反応終了後に得られる含水ゲル状架橋重合体に対して行ってもよい。また、重合反応開始前、重合反応中又は重合反応終了後のいずれか一つの段階を選択して中和率を調整してもよいし、複数の段階で中和率を調整してもよい。なお、紙オムツ等の吸収性物品等、人体に直接接触する可能性のある用途では、好ましくは重合反応の開始前及び/又は重合反応の期間中、より好ましくは重合反応の開始前に、中和率を調製すればよい。
本発明に係る製造方法では、上記例示した単量体のいずれかを単独で使用してもよく、任意の2種以上の単量体を適宜混合して使用してもよい。また、本発明の目的が達成される限り、更に他の単量体を混合することもできる。
球状重合体粒子として吸水性樹脂を製造する際に2種以上の単量体を併用する場合、主成分として、(メタ)アクリル酸(塩)を含むことが好ましい。この場合、単量体全体に対する(メタ)アクリル酸(塩)の割合は、得られる吸水性樹脂の吸水性能の観点から、通常は50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上(上限は100モル%)である。
(内部架橋剤)
本発明に係る球状重合体粒子の製造方法において、好ましくは内部架橋剤が用いられる。該内部架橋剤によって、得られる球状重合体粒子の物性が調整される。例えば、吸水性樹脂の場合には、吸水性能や吸水時のゲル強度等が調整される。
本発明に係る球状重合体粒子の製造方法において、好ましくは内部架橋剤が用いられる。該内部架橋剤によって、得られる球状重合体粒子の物性が調整される。例えば、吸水性樹脂の場合には、吸水性能や吸水時のゲル強度等が調整される。
球状重合体粒子として吸水性樹脂を製造する場合、用いられる内部架橋剤としては、1分子内に2以上の不飽和結合又は反応性官能基を有していればよく、その種類について特に限定されない。例えば、N,N-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エポキシ(メタ)アクリレート、グリセリン(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリアリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、1,4-ブタンジオール、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレート等が挙げられる。これらのうち、2種以上を併用してもよい。なお、これらの内部架橋剤は、吸水性樹脂以外の球状重合体粒子を製造する際に、必要に応じて使用することができる。
本発明に係る製造方法において、上記内部架橋剤の使用量は、単量体及び内部架橋剤の種類等に応じて適宜設定され、特に限定されないが、例えば、吸水性樹脂を製造する場合には、得られる吸水性樹脂のゲル強度の観点から、単量体に対して、好ましくは0.001モル%以上、より好ましくは0.005モル%以上、更に好ましくは0.01モル%以上である。また、吸水性樹脂の吸水性能向上の観点から、好ましくは5モル%以下、より好ましくは2モル%以下である。なお、単量体の自己架橋反応が有効な重合条件においては、上記内部架橋剤を使用しなくともよい。
(その他の物質)
本発明に係る球状重合体粒子の製造方法において、本発明の目的が達成される範囲内で、以下に例示する物質(以下、「その他の物質」と称する)を単量体溶液に添加することもできる。
本発明に係る球状重合体粒子の製造方法において、本発明の目的が達成される範囲内で、以下に例示する物質(以下、「その他の物質」と称する)を単量体溶液に添加することもできる。
その他の物質の具体例として、チオール類、チオール酸類、2級アルコール類、アミン類、次亜リン酸塩類等の連鎖移動剤;炭酸塩、重炭酸塩、アゾ化合物、気泡等の発泡剤;エチレンジアミン4酢酸の金属塩、ジエチレントリアミン5酢酸の金属塩等のキレート剤;ポリアクリル酸(塩)及びこれらの架橋体、澱粉、セルロース、澱粉-セルロース誘導体、ポリビニルアルコール等の増粘剤等が挙げられる。その他の物質は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。なお、上記その他の物質は、球状重合体粒子として吸水性樹脂を製造する際も好ましく使用することができる。
その他の物質の使用量は、特に限定されないが、その他の物質の全濃度としては、好ましくは単量体に対して10質量%以下である。また、その他の物質として増粘剤を使用する場合、単量体溶液の粘度(ブルックフィールド型粘度計/20℃、6rpm)が、好ましくは10mPa・s~500000mPa・s、より好ましくは20mPa・s~300000mPa・s、更に好ましくは50mPa・s~100000mPa・sとなる範囲で、増粘剤を添加すればよい。
(重合開始剤)
本発明に係る球状重合体粒子の製造方法において、使用される重合開始剤として、熱分解型重合開始剤が好ましく用いられる。該熱分解型重合開始剤は、熱によって分解しラジカルを発生する化合物を指すが、球状重合体粒子として吸水性樹脂を製造する場合には、熱分解型重合開始剤の貯蔵安定性や吸水性樹脂の生産効率の観点から、10時間半減期温度(以下、「T10」と称する)が好ましくは0℃~120℃、より好ましくは30℃~100℃、更に好ましくは50℃~80℃である水溶性の化合物が好ましく用いられる。
本発明に係る球状重合体粒子の製造方法において、使用される重合開始剤として、熱分解型重合開始剤が好ましく用いられる。該熱分解型重合開始剤は、熱によって分解しラジカルを発生する化合物を指すが、球状重合体粒子として吸水性樹脂を製造する場合には、熱分解型重合開始剤の貯蔵安定性や吸水性樹脂の生産効率の観点から、10時間半減期温度(以下、「T10」と称する)が好ましくは0℃~120℃、より好ましくは30℃~100℃、更に好ましくは50℃~80℃である水溶性の化合物が好ましく用いられる。
上記範囲のT10を有する熱分解型重合開始剤として、具体的には、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;2,2'-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2'-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2'-アゾビス(2-メチルプロピオニトリル)等のアゾ化合物;過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物等が挙げられる。これらのうち、2種以上を併用してもよい。
中でも、熱分解型重合開始剤の取扱性や吸水性樹脂の物性の観点から、好ましくは過硫酸塩、より好ましくは過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、更に好ましくは過硫酸ナトリウムが使用される。
上記熱分解型重合開始剤の使用量は、単量体及び重合開始剤の種類等に応じて適宜設定され、特に限定されないが、生産効率の観点から、単量体に対して、好ましくは0.001g/モル以上、より好ましくは0.005g/モル以上、更に好ましくは0.01g/モル以上である。また、吸水性樹脂の吸水性能向上の観点から、好ましくは2g/モル以下、より好ましくは1g/モル以下である。
また、必要に応じて、光分解型重合開始剤等、他の重合開始剤と併用することもできる。該光分解型重合開始剤として、具体的には、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体等が挙げられる。
上記熱分解型重合開始剤と他の重合開始剤とを併用する場合、全重合開始剤に占める熱分解型重合開始剤の割合は、好ましくは60モル%以上、より好ましくは80モル%以上である。
また、上記熱分解型重合開始剤と還元剤とを併用してレドックス系重合開始剤とすることもできる。上記レドックス系重合開始剤では、熱分解型重合開始剤が酸化剤として機能する。用いられる還元剤としては、特に限定されないが、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の(重)亜硫酸塩;第一鉄塩等の還元性金属塩;L-アスコルビン酸(塩)、アミン類等が挙げられる。
球状重合体粒子として疎水性の重合モノマーの重合体を製造する場合、以下に掲げる重合開始剤が好ましく使用される。具体的には、過酸化ベンゾイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル等の芳香族系過酸化物;過酸化ラウロイル、過酸化オクタノイル等の過酸化長鎖脂肪酸;ジメチル-2,2'-アゾビスイソブチレート、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2,3-ジメチルブチロニトリル)等のアゾ系重合開始剤;等が挙げられる。これらの中でも、重合反応性の観点から、好ましくは過酸化長鎖脂肪酸、より好ましくは炭素数が6~24の過酸化長鎖脂肪酸、更に好ましくは炭素数が6~24の過酸化直鎖脂肪酸である。
(重合性液体組成物の作製方法)
本工程において、単量体溶液と重合開始剤とを含む重合性液体組成物を作製する方法は特に限定されないが、例えば、(1)単量体溶液、及び重合開始剤を含む溶液(以下、「重合開始剤溶液」と称する)を予め用意しておき、それぞれ別の配管から同時に混合装置に供給して混合する方法、(2)予め用意した単量体溶液を混合装置に供給した後に、重合開始剤を該混合装置に供給して混合する方法、(3)予め用意した単量体溶液を混合装置に供給した後に、予め用意した重合開始剤溶液を該混合装置に供給して混合する方法等が挙げられる。
本工程において、単量体溶液と重合開始剤とを含む重合性液体組成物を作製する方法は特に限定されないが、例えば、(1)単量体溶液、及び重合開始剤を含む溶液(以下、「重合開始剤溶液」と称する)を予め用意しておき、それぞれ別の配管から同時に混合装置に供給して混合する方法、(2)予め用意した単量体溶液を混合装置に供給した後に、重合開始剤を該混合装置に供給して混合する方法、(3)予め用意した単量体溶液を混合装置に供給した後に、予め用意した重合開始剤溶液を該混合装置に供給して混合する方法等が挙げられる。
上記単量体溶液としては、選択した重合性モノマー(単量体)をそのまま用いてもよいし、又は、この重合性モノマーと相溶性の溶媒又は相溶性添加剤を添加して混合することによって希釈溶液として用いてもよい。更に、この重合性モノマーに非相溶性の溶媒又は非相溶性添加剤を添加して混合し、エマルション溶液として用いてもよい。また、上記重合性モノマーの希釈溶液に非相溶性の溶媒又は非相溶性添加剤を添加して混合して用いてもよい。
また、混合装置としては、特に限定されないが、例えば、ラインミキサーやタンク等が挙げられる。重合開始剤の貯蔵安定性や安全性の観点から、混合装置としてラインミキサーを用いた上記(1)の混合方法が好ましい。
(重合性液体組成物の重合性モノマー濃度)
本発明において、重合性液体組成物中の重合性モノマーの濃度は、選択された重合性モノマー及び相溶性の溶媒又は相溶性添加剤の種類、スプレーノズルの種類等に応じて選択されるが、生産効率上、好ましくは10質量%以上、より好ましくは20質量%以上であり、好ましくは100質量%以下、より好ましくは90質量%以下である。本発明の目的が阻害されない限り、重合性液体組成物に、重合開始剤、内部架橋剤、界面活性剤、密度調整剤、増粘剤等の添加物を配合することも可能である。なお、添加物の種類及び添加量は、用いられる重合性モノマー及び非相溶性液体組成物の組合せにより、適宜選択されうる。
本発明において、重合性液体組成物中の重合性モノマーの濃度は、選択された重合性モノマー及び相溶性の溶媒又は相溶性添加剤の種類、スプレーノズルの種類等に応じて選択されるが、生産効率上、好ましくは10質量%以上、より好ましくは20質量%以上であり、好ましくは100質量%以下、より好ましくは90質量%以下である。本発明の目的が阻害されない限り、重合性液体組成物に、重合開始剤、内部架橋剤、界面活性剤、密度調整剤、増粘剤等の添加物を配合することも可能である。なお、添加物の種類及び添加量は、用いられる重合性モノマー及び非相溶性液体組成物の組合せにより、適宜選択されうる。
球状重合体粒子として吸水性樹脂を製造する場合には、吸水性樹脂の物性及び生産性の観点から、単量体組成物中の単量体濃度は、好ましくは10質量%~90質量%、より好ましくは20質量%~80質量%、更に好ましくは30質量%~70質量%である。また、狭義の単量体組成物中の単量体濃度としては、好ましくは10質量%~90質量%、より好ましくは20質量%~80質量%、更に好ましくは30質量%~70質量%である。
(重合性液体組成物の脱酸素)
本発明において、重合性液体組成物(特にラジカル重合性モノマーを含む重合性液体組成物)は、ラジカル重合に際して、(溶存)酸素の除去が行われる場合がある。(溶存)酸素の除去方法としては、特に限定されないが、例えば、二酸化炭素を発生する炭酸塩や酸素以外の気体の導入、昇温(加熱)による酸素の溶解度低下等が挙げられる。(溶存)酸素を除去した後の重合性液体組成物中の溶存酸素濃度としては、好ましくは10ppm以下、より好ましくは5ppm以下、更に好ましくは1ppm以下である。なお、(溶存)酸素の除去後であっても、極少量の気体が気泡として分散する場合があるが、本発明では、これらの気泡を除去してもよいし、除去せずにそのまま連続相に供給してもよい。
本発明において、重合性液体組成物(特にラジカル重合性モノマーを含む重合性液体組成物)は、ラジカル重合に際して、(溶存)酸素の除去が行われる場合がある。(溶存)酸素の除去方法としては、特に限定されないが、例えば、二酸化炭素を発生する炭酸塩や酸素以外の気体の導入、昇温(加熱)による酸素の溶解度低下等が挙げられる。(溶存)酸素を除去した後の重合性液体組成物中の溶存酸素濃度としては、好ましくは10ppm以下、より好ましくは5ppm以下、更に好ましくは1ppm以下である。なお、(溶存)酸素の除去後であっても、極少量の気体が気泡として分散する場合があるが、本発明では、これらの気泡を除去してもよいし、除去せずにそのまま連続相に供給してもよい。
(重合性液体組成物の温度)
この実施形態では、重合性液体組成物の温度は、重合性液体組成物が液状の形態を維持できる範囲内で重合性モノマーや重合開始剤の種類に応じて、適宜設定される。具体的には、室温(例えば20℃~30℃)であってもよいし、例えば30℃~200℃に加熱されても、例えば-20℃~20℃に冷却されてもよい。重合性液体組成物の加熱や冷却は、外部加熱や外部冷却で行ってもよく、重合性液体組成物の混合時の溶解熱や中和熱を使用又は併用してもよい。
この実施形態では、重合性液体組成物の温度は、重合性液体組成物が液状の形態を維持できる範囲内で重合性モノマーや重合開始剤の種類に応じて、適宜設定される。具体的には、室温(例えば20℃~30℃)であってもよいし、例えば30℃~200℃に加熱されても、例えば-20℃~20℃に冷却されてもよい。重合性液体組成物の加熱や冷却は、外部加熱や外部冷却で行ってもよく、重合性液体組成物の混合時の溶解熱や中和熱を使用又は併用してもよい。
上記混合工程において得られた重合性液体組成物が、狭義の重合性液体組成物であり、熱分解型重合開始剤を含む場合、この重合性液体組成物の温度(以下、「Tm」と称する)は、後述する供給工程において反応装置に供給されるまでの間、少なくとも70℃を超えない温度に保持されることが好ましい。但し、重合性液体組成物に含まれる熱分解型重合開始剤の中で最も低い10時間半減期温度(T10)が70℃よりも低い場合、Tmが、このT10よりも低い温度に保持されることが好ましい。なお、熱分解型重合開始剤のT10が不明の場合、そのT10を70℃と仮定して、重合性液体組成物の保持温度を設定するものとする。
重合性液体組成物の貯蔵安定性及び製造トラブルの回避という観点から、上記Tmと上記T10との差ΔT1(=T10-Tm)は、好ましくは10℃以上、より好ましくは15℃以上、更に好ましくは20℃以上である。上限としては、コストの観点から、好ましくは50℃以下である。混合工程で調製された重合性液体組成物が、後述する非相溶性液体組成物を含んでおり、かつ一度も上記T10以上の温度になったことがない場合、前述の条件を満たすように、該重合性液体組成物のTmを設定することが好ましい。一方、上記重合性液体組成物が後述する非相溶性液体組成物を含み、かつこの重合性液体組成物が作製された時点で、そのTmがT10以上である場合、直ちに供給工程に供することが好ましい。
(重合性液体組成物の粘度)
この実施形態では、重合性液体組成物の粘度(ブルックフィールド型粘度計/20℃、6rpm)は特に限定されないが、好ましくは1mPa・s~500000mPa・s、より好ましくは10mPa・s~300000mPa・s、更に好ましくは50mPa・s~100000mPa・sである。重合性液体組成物の粘度は、スプレーノズルの種類、目的とする液滴径等に応じて適宜選択した重合性モノマーに対して、好ましくは相溶性の溶媒又は相溶性添加剤、より好ましくは増粘剤を配合することにより調整される。
この実施形態では、重合性液体組成物の粘度(ブルックフィールド型粘度計/20℃、6rpm)は特に限定されないが、好ましくは1mPa・s~500000mPa・s、より好ましくは10mPa・s~300000mPa・s、更に好ましくは50mPa・s~100000mPa・sである。重合性液体組成物の粘度は、スプレーノズルの種類、目的とする液滴径等に応じて適宜選択した重合性モノマーに対して、好ましくは相溶性の溶媒又は相溶性添加剤、より好ましくは増粘剤を配合することにより調整される。
〔3-2〕供給工程
本工程は、上記混合工程で得られた重合性液体組成物を、本発明に係る分散方法を用いて非相溶性液体組成物と混合して液滴状にし、反応装置の内部に形成された連続相に供給する工程である。
本工程は、上記混合工程で得られた重合性液体組成物を、本発明に係る分散方法を用いて非相溶性液体組成物と混合して液滴状にし、反応装置の内部に形成された連続相に供給する工程である。
(スプレーノズル)
本発明に係る球状重合体粒子の製造方法で使用されるスプレーノズルとしては、分散方法について前述したスプレーノズルが使用可能であり、その種類について特に限定されないが、外部混合型の2流体スプレーノズル、3流体スプレーノズル、4流体スプレーノズル等の多流体スプレーノズルが好ましく使用される。複数のスプレーノズルを使用してもよく、2種以上のスプレーノズルを組み合わせて使用してもよい。
本発明に係る球状重合体粒子の製造方法で使用されるスプレーノズルとしては、分散方法について前述したスプレーノズルが使用可能であり、その種類について特に限定されないが、外部混合型の2流体スプレーノズル、3流体スプレーノズル、4流体スプレーノズル等の多流体スプレーノズルが好ましく使用される。複数のスプレーノズルを使用してもよく、2種以上のスプレーノズルを組み合わせて使用してもよい。
(非相溶性液体組成物)
本発明に係る球状重合体粒子の製造方法において、使用される非相溶性液体組成物は、上記重合性モノマーとの相溶性が小さく、この重合性モノマーの反応に対して、本質的に不活性な液状物であり、使用する重合性モノマーに応じて適宜選択される。なお、本明細書において、複数の非相溶性液体により構成される場合だけでなく、単一の非相溶性液体により構成される場合であっても、「非相溶性液体組成物」と称する。
本発明に係る球状重合体粒子の製造方法において、使用される非相溶性液体組成物は、上記重合性モノマーとの相溶性が小さく、この重合性モノマーの反応に対して、本質的に不活性な液状物であり、使用する重合性モノマーに応じて適宜選択される。なお、本明細書において、複数の非相溶性液体により構成される場合だけでなく、単一の非相溶性液体により構成される場合であっても、「非相溶性液体組成物」と称する。
上記重合性液体組成物が、水溶性の重合性モノマーを主成分として含有する場合、好ましい非相溶性液体組成物として、脂肪族炭化水素、脂環状炭化水素、芳香族炭化水素、ハロゲン化炭化水素からなる群から選ばれる少なくとも1種類の有機溶媒が挙げられる。具体例には、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロオクタン、デカリン等の脂環状炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;クロルベンゼン、ブロムベンゼン、四塩化炭素、1,2-ジクロロエタン等のハロゲン化炭化水素が例示される。これらの中でも、入手容易性及び品質安定性の観点から、n-ヘキサン、n-ヘプタン、シクロヘキサンが好ましい。2種以上を混合した混合溶媒として用いることも可能である。
一方、上記重合性液体組成物が、疎水性の重合性モノマーを主成分として含有する場合、好ましい非相溶性液体組成物として、水、又は水と親水性の有機溶媒との混合溶媒が挙げられる。このような親水性の有機溶媒として、具体的には、メタノール、エタノール、プロパノール、イソプロパノール等のアルコール類;エチレングリコール、n-プロピレングリコール、ブチレングリコール等のグリコール類;アセトン、メチルエチルケトン等のケトン類;ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類が例示される。これらの中でも、液滴の分散安定化及び安全性等の観点から、好ましくは水を主成分とする混合溶媒であり、特に好ましくは水である。
非相溶性液体組成物の温度は、その用いられ方に応じて適宜設定すればよい。例えば、スプレーノズルに供給される場合には、同時に供給される重合性液体組成物と略同じであることが好ましく、スプレーノズルからの排出物と混合される場合には、混合後の製造条件に合うような温度を設定すればよい。
本発明の目的が阻害されない限り、非相溶性液体組成物に、密度調整剤、分散助剤等の添加物を配合することも可能である。なお、添加物の種類及び添加量は、用いられる重合性モノマー及び非相溶性液体組成物の組合せにより、適宜選択される。
本発明に係る球状重合体粒子として吸水性樹脂を製造する場合、使用する水溶性の単量体との相溶性が小さく、本質的に疎水性である有機溶媒が好適に用いられる。該有機溶媒は、吸水性樹脂の原料である単量体の重合反応に対して、本質的に不活性である。このような有機溶媒として、有機溶媒の入手容易性や品質安定性等の観点から、好ましくはn-ヘキサン、n-ヘプタン、シクロヘキサンが使用される。
この製造方法において吸水性樹脂を製造する場合、有機溶媒の先端速度(流速Va)は、好ましくは1m/s~50m/s、より好ましくは1.5m/s~20m/s、更に好ましくは2m/s~10m/sである。また、有機溶媒の流量(流量Qa)は、単量体組成物の流量(流量Qm)に対して、体積比で、好ましくは1倍~1000倍、より好ましくは5倍~200倍、更に好ましくは10倍~100倍である。更に、上述の(式1)で規定される噴霧指数が、好ましくは30以上、より好ましくは40以上、更に好ましくは50以上、特に好ましくは100以上である。噴霧指数の上限は、特に限定されないが、好ましくは10000以下、より好ましくは5000以下である。
上記有機溶媒の流量及び上記噴霧指数を上記範囲内とすることで、上記単量体組成物の液滴の粒子径及び粒度分布を最適なものにすることができ、得られる吸水性樹脂の性能が向上するため、好ましい。
この製造方法において吸水性樹脂を製造する場合には、生成される液滴の体積平均粒子径は、液滴の分散状態や懸濁状態の安定性や連続相からの熱移動効率の観点から、好ましくは2000μm以下、より好ましくは1000μm以下、更に好ましくは800μm以下である。また、生産効率の観点から、生成される液滴の体積平均粒子径は、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上である。
(供給時間)
配管の閉塞等の製造トラブルを回避するという観点から、上記混合工程で作製された重合性液体組成物が反応装置内に供給されるまでの時間(以下、「供給時間」と称する)を、好ましくは20分以下、より好ましくは5分以下、更に好ましくは1分以下とする。なお、重合性液体組成物は作製された後、即時に反応装置に供給されることが理想的である。
配管の閉塞等の製造トラブルを回避するという観点から、上記混合工程で作製された重合性液体組成物が反応装置内に供給されるまでの時間(以下、「供給時間」と称する)を、好ましくは20分以下、より好ましくは5分以下、更に好ましくは1分以下とする。なお、重合性液体組成物は作製された後、即時に反応装置に供給されることが理想的である。
〔3-3〕重合工程
本工程は、上記供給工程において反応装置に供給された重合性液体組成物を重合して、ゲル状重合体を得る工程である。なお、重合性液体組成物が吸水性樹脂の原料である場合は、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)が得られる。
本工程は、上記供給工程において反応装置に供給された重合性液体組成物を重合して、ゲル状重合体を得る工程である。なお、重合性液体組成物が吸水性樹脂の原料である場合は、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)が得られる。
この実施形態では、非相溶性液体組成物からなる連続相が球状重合体粒子の製造プロセス中に形成されている。つまり、この連続相をなす非相溶性液体組成物は、反応装置の内部を移動し、反応装置から排出された後、ゲル状重合体と分離され、更に熱交換器で所定の温度に調温された後、反応装置に循環されている。また、上記調温された非相溶性液体組成物の一部が、本発明のスプレーノズルに導入され、本発明の分散方法に利用される。即ち、分散方法について上述した非相溶性液体組成物が、連続相の非相溶性液体組成物としても使用可能であり、用いられる単量体の種類に応じて選択される。
(W/O比)
上記連続相を形成する非相溶性液体組成物の使用量は、反応装置の形状や容量等に応じて適宜設定されるものの、重合熱の除去及び生産効率の観点から、上記反応装置中に存在する重合性液体組成物の量Wと連続相を形成する非相溶性液体組成物の量Oとの容積比(以下、「W/O比」と称する)は、好ましくは1容積%~40容積%、より好ましくは2容積%~30容積%、更に好ましくは3容積%~20容積%である。
上記連続相を形成する非相溶性液体組成物の使用量は、反応装置の形状や容量等に応じて適宜設定されるものの、重合熱の除去及び生産効率の観点から、上記反応装置中に存在する重合性液体組成物の量Wと連続相を形成する非相溶性液体組成物の量Oとの容積比(以下、「W/O比」と称する)は、好ましくは1容積%~40容積%、より好ましくは2容積%~30容積%、更に好ましくは3容積%~20容積%である。
上記W/O比が40容積%を超える場合、重合熱の除熱が不十分となり、得られる球状重合体粒子の性能が悪化したり、突沸や液滴生成不良等の操作上のトラブルが発生しやすくなったりするため、好ましくない。一方、上記W/O比が1容積%未満の場合、非相溶性液体組成物の使用量の増加や反応装置の大型化につながり、原料的にも設備的にもコストが増大するため、好ましくない。なお、特に断りのない限り、重合性液体組成物及び非相溶性液体組成物の容積は、25℃、1気圧における容積である。
(密度調整剤)
本発明に係る球状重合体粒子の製造方法において、好ましくは密度調整剤が、上記連続相を形成する非相溶性液体組成物に配合される。この実施形態では、該密度調整剤によって、分散状態及び重合時間が調整される。
本発明に係る球状重合体粒子の製造方法において、好ましくは密度調整剤が、上記連続相を形成する非相溶性液体組成物に配合される。この実施形態では、該密度調整剤によって、分散状態及び重合時間が調整される。
上記密度調整剤としては、上記連続相の非相溶性液体組成物との相溶性が高く、重合反応を阻害しないものであればよく、その種類について特に限定されないが、球状重合体粒子として吸水性樹脂を製造する場合、連続相を形成する有機溶媒に配合する密度調整剤として、例えば、ハイドロフルオロカーボン、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、アルコール類のフッ化物等の塩素系又はフッ素系の化合物が挙げられる。これらのうち、2種以上を併用してもよい。以下、これらの化合物が密度調整剤として配合された有機溶媒を「混合溶媒」と称する場合がある。
上記密度調整剤の使用量は、後述する重合性液体組成物と非相溶性液体組成物との密度差が得られるように、単量体及び非相溶性液体組成物等の種類に応じて適宜設定される。
(分散助剤)
本発明に係る重合性液体組成物の分散方法によれば、分散助剤を添加することなく、又は非常に少量の分散助剤により、安定な分散状態を達成することが可能であるが、本発明の目的が阻害されない限り、必要に応じて、非相溶性液体組成物又は連続相をなす非相溶性液体組成物に、界面活性剤や高分子添加剤等の分散助剤を添加してもよい。分散助剤の種類は、用いられる非相溶性液体組成物及び重合性モノマーの組合せにより、適宜選択されるが、球状重合体粒子として吸水性樹脂を製造する場合、使用できる分散助剤としては、以下の界面活性剤や高分子添加剤が例示される。
本発明に係る重合性液体組成物の分散方法によれば、分散助剤を添加することなく、又は非常に少量の分散助剤により、安定な分散状態を達成することが可能であるが、本発明の目的が阻害されない限り、必要に応じて、非相溶性液体組成物又は連続相をなす非相溶性液体組成物に、界面活性剤や高分子添加剤等の分散助剤を添加してもよい。分散助剤の種類は、用いられる非相溶性液体組成物及び重合性モノマーの組合せにより、適宜選択されるが、球状重合体粒子として吸水性樹脂を製造する場合、使用できる分散助剤としては、以下の界面活性剤や高分子添加剤が例示される。
上記界面活性剤として、具体的には、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。これらのうち、2種以上を併用してもよい。また、重合性を有する重合性界面活性剤を使用することもできる。重合性界面活性剤として、具体的には下記の構造を有する化合物が挙げられる。
なお、式中、R1及びR2は、互いに独立して、水素、メチル又はエチルであり、nは、3~20の整数を意味する。
なお、式中、R1及びR2は、互いに独立して、水素、メチル又はエチルであり、nは、3~20の整数を意味する。
上記高分子添加剤として、具体的には、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性エチレン・プロピレン・ジエン三元共重合体(EPDM)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。中でも、単量体組成物の分散安定性の観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び酸化型エチレン・プロピレン共重合体が好ましい。これらのうち、2種以上を併用してもよい。また、これらの高分子添加剤と上記界面活性剤とを併用してもよい。
球状重合体粒子として吸水性樹脂を製造する場合、上記分散助剤の使用量は、重合形態、単量体組成物及び有機溶媒の種類等に応じて適宜設定される。具体的には、連続相の有機溶媒中の分散助剤の濃度として、好ましくは2質量%以下、より好ましくは1質量%以下である。
(反応装置)
本発明に係る球状重合体粒子の製造方法において、重合反応が行われる反応装置の形状は特に限定されないが、連続式製造方法の場合、好ましくは、この反応装置内に形成された連続相中を、上記重合性液体組成物が液滴状の分散相として移動しながら重合反応しうる形状である。このような反応装置として、例えば、管状の反応管を、縦型、横型又は螺旋型に配置した反応装置が挙げられる。この場合、該反応管の内径D(mm)と長さL(mm)との比(L/D)は、好ましくは2~100,000、より好ましくは3~50,000、更に好ましくは4~20,000である。
本発明に係る球状重合体粒子の製造方法において、重合反応が行われる反応装置の形状は特に限定されないが、連続式製造方法の場合、好ましくは、この反応装置内に形成された連続相中を、上記重合性液体組成物が液滴状の分散相として移動しながら重合反応しうる形状である。このような反応装置として、例えば、管状の反応管を、縦型、横型又は螺旋型に配置した反応装置が挙げられる。この場合、該反応管の内径D(mm)と長さL(mm)との比(L/D)は、好ましくは2~100,000、より好ましくは3~50,000、更に好ましくは4~20,000である。
上記比(L/D)を上記範囲内とすることで、上記重合性液体組成物の液滴が反応装置の内部を良好に移動するため、該液滴の滞留時間のバラつきが減少する。また、最終的に得られるゲル状重合体の粒子径についてもバラつきが少ないものとなるため、得られる球状重合体粒子の諸物性も向上する。
また、上記反応装置には、必要に応じて、外部から反応装置内部の連続相を加熱又は冷却できるように、温度調整手段が備えられていてもよい。該温度調整手段によって、反応装置内の連続相の温度が所定の範囲内に維持される。該温度調整手段としては、特に限定されないが、例えば、反応装置へのジャケットの設置、ヒーターの設置、保温材や断熱材の設置、熱風や冷風の供給等が挙げられる。なお、該反応装置に非相溶性液体組成物が再供給される場合、この非相溶性液体組成物は、熱交換器によって加熱される。
また、上記反応装置の材質として、銅、チタン合金、SUS304、SUS316、SUS316L等のステンレス鋼、PTEE、PFA、FEP等のフッ素樹脂等を使用することができる。中でも、得られるゲル状重合体の付着性の観点から、好ましくはフッ素樹脂、より好ましくは反応装置の内壁面に、フッ素樹脂加工等の表面加工が施されたものが使用される。
(重合温度)
本発明に係る製造方法では、反応装置内の連続相をなす非相溶性液体組成物の温度(以下、「Td」と称する)を重合温度とする。
本発明に係る製造方法では、反応装置内の連続相をなす非相溶性液体組成物の温度(以下、「Td」と称する)を重合温度とする。
上記重合性液体組成物が液滴状で連続相に分散しているため、重合性液体組成物の温度は、連続相からの熱移動によって速やかに上昇する。該液滴に含まれる重合開始剤が熱分解型重合開始剤の場合には、上記昇温に伴って熱分解型重合開始剤が分解してラジカルが発生する。発生したラジカルによって重合反応が開始し、重合反応の進行に伴ってゲル状重合体が形成される。
反応装置内の連続相が循環している場合、形成されたゲル状重合体は、循環する連続相によって反応装置の内部を移動し、連続相をなす非相溶性液体組成物と共に反応装置から排出される。
上記重合性液体組成物が熱分解型重合開始剤を含む場合、上記Tdは、重合率の観点から、好ましくは70℃以上、より好ましくは75℃以上、更に好ましくは80℃以上である。Tdの上限は特に限定されないが、安全性の観点から、連続相をなす非相溶性液体組成物中の最も含有量の多い化合物の沸点を超えない範囲内で、適宜選択される。
上記Tdが70℃未満の場合、重合速度が遅くなり、得られるゲル状重合体の重合率が低くなったり、得られるゲル状重合体の粒子径が大きくバラついたりする場合がある。更に、重合率の低いゲル状重合体を乾燥させると、乾燥中にゲル状重合体同士が付着して一体化するという現象が発生することがある。
また、上記Tdは、重合効率の観点から、使用されている熱分解型重合開始剤のT10と同じであるか、またはT10よりも高くすることが好ましい。具体的には、TdとT10との差ΔT2(=Td-T10)は、好ましくは0℃以上、より好ましくは5℃以上、更に好ましくは10℃以上である。差ΔT2の上限値は、エネルギー効率の観点から、好ましくは50℃以下である。
上記ΔT2を上記範囲内とすることで、T10よりも低温に維持された重合性液体組成物が連続相に供給された場合でも、速やかに重合反応が開始され、大きな重合速度が達成される。
なお、上記連続相の温度は、重合性液体組成物が反応装置に供給されることにより変動する。特に、重合性液体組成物が供給される領域での温度変化が大きい。そのため、好ましくは、当該領域で所望するTdが得られるように、熱交換器で加熱した非相溶性液体組成物をこの領域に再供給するか、または、反応装置に設置されたジャケット等の温度調整手段によって反応装置内の連続相を加熱する。これにより、重合反応の開始や進行に寄与する連続相の温度変化を抑制し、より精密にTdを制御することができる。
(重合時間)
本発明に係る球状重合体粒子の製造方法において、「重合時間」とは、連続式製造方法の場合、重合性液体組成物の反応装置への投入時を起点とし、重合反応で得られたゲル状重合体を反応装置から排出する時を終点として規定される時間である。例えば、重合性液体組成物が反応装置に液滴状で連続的に供給され、形成されたゲル状重合体が反応装置から連続的に排出される場合、一の重合性液体組成物の液滴が起点から終点に到達するまでに要する時間を意味する。換言すれば、重合性液体組成物の反応装置への供給開始から、最初のゲル状重合体の反応装置からの排出までの時間が、重合時間である。該重合時間が液滴の反応装置内の滞留時間に相当する。
本発明に係る球状重合体粒子の製造方法において、「重合時間」とは、連続式製造方法の場合、重合性液体組成物の反応装置への投入時を起点とし、重合反応で得られたゲル状重合体を反応装置から排出する時を終点として規定される時間である。例えば、重合性液体組成物が反応装置に液滴状で連続的に供給され、形成されたゲル状重合体が反応装置から連続的に排出される場合、一の重合性液体組成物の液滴が起点から終点に到達するまでに要する時間を意味する。換言すれば、重合性液体組成物の反応装置への供給開始から、最初のゲル状重合体の反応装置からの排出までの時間が、重合時間である。該重合時間が液滴の反応装置内の滞留時間に相当する。
また、バッチ式製造方法の場合、「重合時間」とは、重合性液体組成物の反応装置への供給時を起点とし、重合工程に続く次の工程を開始する時を終点として規定される時間である。該「次の工程」とは、反応装置内のゲル状重合体と非相溶性液体組成物とを固液分離するための工程をいい、例えば、吸引濾過等の濾過;共沸脱水蒸留等の蒸留;重力沈降等の手法が挙げられる。なお、固液分離の手法は、重合形態や生産性を考慮して、適宜選択することができる。バッチ式製造方法では、固液分離の工程を、反応装置内で行うことも可能である。
上記重合時間は、単量体及び重合開始剤の種類等に応じて制御されるが、生産効率の観点から、好ましくは60分以下、より好ましくは30分以下、更に好ましくは20分以下、特に好ましくは10分以下、最も好ましくは5分以下に制御される。また、該重合時間の下限値は特に限定されないが、上記反応装置内に供給された重合性液体組成物の液滴が重合温度まで昇温される際の、連続相からの熱移動効率の観点から、好ましくは30秒以上に制御される。上記重合時間を上記範囲内に制御することで、反応装置のサイズを小さくすることができるため、好ましい。
なお、上記連続相中に形成される重合性液体組成物の液滴は、ある程度の粒子径分布を有している。また、上記反応装置内を移動中に、単粒子以外にサイズの異なる凝集体を形成する場合もある。そのため、個々の液滴の重合時間が厳密には同一とは限らない。したがって、個々の液滴の重合時間は、上記範囲内であれば多少時間が異なっていてもよい。
(重合率)
本発明に係る球状重合体粒子の製造方法では、上記重合時間はゲル状重合体において達成される重合率を指標として調整される。該重合率は、得られるゲル状重合体の乾燥時の凝集抑制や、得られる球状重合体粒子中の残存モノマー低減の観点から、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。重合率の上限は特に限定されないが、100質量%が理想的である。該重合率が70質量%未満の場合、かような低重合率のゲル状重合体を乾燥させると、本願発明の方法を適用したとしても、乾燥中に強く凝集し塊状化する虞があるため、好ましくない。
本発明に係る球状重合体粒子の製造方法では、上記重合時間はゲル状重合体において達成される重合率を指標として調整される。該重合率は、得られるゲル状重合体の乾燥時の凝集抑制や、得られる球状重合体粒子中の残存モノマー低減の観点から、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。重合率の上限は特に限定されないが、100質量%が理想的である。該重合率が70質量%未満の場合、かような低重合率のゲル状重合体を乾燥させると、本願発明の方法を適用したとしても、乾燥中に強く凝集し塊状化する虞があるため、好ましくない。
(重合時間の調整方法)
本発明において、上記重合率を達成するための重合時間の調整方法は特に限定されないが、連続式製造方法の場合、例えば、反応装置の形状(即ち、反応管の長さや内径)や、反応装置内部の連続相の流速及び密度、重合性液体組成物の密度等によって調整することができる。
本発明において、上記重合率を達成するための重合時間の調整方法は特に限定されないが、連続式製造方法の場合、例えば、反応装置の形状(即ち、反応管の長さや内径)や、反応装置内部の連続相の流速及び密度、重合性液体組成物の密度等によって調整することができる。
更に具体的に説明すると、反応装置として螺旋型反応装置を用いて球状重合体粒子を製造する場合、重合時間は、反応管の全長をその内部の連続相の流速で除すことにより算出される連続相の滞留時間を目安として、反応管の全長を変更することで調整することができる。上記連続相の流速は、連続相の流量と、反応管の断面積とに基づいて決定される。該連続相の流量は、重合熱の除熱の観点から、重合性液体組成物の供給量に応じて適宜設定される。
上記螺旋型反応装置を用いて球状重合体粒子を製造する場合、上記連続相の流速としては、好ましくは0.05m/s~2.0m/s、より好ましくは0.1m/s~1.0m/s、更に好ましくは0.2m/s~0.5m/sである。螺旋型反応装置において、該流速が0.05m/s未満の場合、重合性液体組成物の液滴が沈降してしまい、反応管の底面に滞留してしまうため、好ましくない。一方、該流速が2.0m/sを超える場合、所望する重合時間とするには、非常に長い反応管が必要となりコストがかかること、更に所望する流量を得るには圧力損失が大きく、高圧のポンプが必要となるため、好ましくない。
また、反応装置として縦型反応装置を用いて球状重合体粒子を製造する場合、重合時間は、反応管の全長を、その内部の連続相の流速と重合性液体組成物からなる液滴(又はゲル)の終末沈降速度との和で除すことにより算出される。
上記液滴及びゲルの終末沈降速度は、液滴等の粒径の他に、重合性液体組成物と上記連続相をなす非相溶性液体組成物との密度差に依存する。そのため、重合時間を、重合性液体組成物と非相溶性液体組成物との密度差により調整することができる。重合性液体組成物と非相溶性液体組成物との密度差としては、好ましくは0.05g/ml~0.40g/ml、より好ましくは0.10g/ml~0.30g/mlである。
上記密度差が0.05g/ml未満の場合に、形成されたゲルに気泡が付着すると、ゲルの見掛けの密度が非相溶性液体組成物の密度より小さくなる。この結果、非相溶性液体組成物の流れ方向に逆行してゲルが浮上することにより、トラブルの原因となる場合があり、好ましくない。一方、非相溶性液体組成物の密度が液滴又はゲルの密度よりも小さく、その密度差が0.40g/mlを超える場合、終末沈降速度が速くなり、重合時間が極端に短くなるため、好ましくない。また、非相溶性液体組成物の密度が液滴又はゲルの密度よりも大きく、その密度差が0.40g/mlを超える場合、ゲルが浮上するため、好ましくない。
〔3-4〕分離工程
本工程は、上記重合工程において反応装置から排出されたゲル状重合体と非相溶性液体組成物とを分離してゲル状重合体を得る工程である。
本工程は、上記重合工程において反応装置から排出されたゲル状重合体と非相溶性液体組成物とを分離してゲル状重合体を得る工程である。
本発明において、分離装置の種類及び構造については特に限定されないが、例えば、ろ過、沈降、遠心分離、圧搾等の公知の方法を利用することができる。
本工程において、非相溶性液体組成物と分離されたゲル状重合体は、適宜必要な工程に供される。具体的には、そのまま乾燥工程に供されることで球状重合体粒子とされてもよいし、更に粉砕工程、造粒工程、表面架橋工程、整粒工程等に供されることで球状重合体粒子とされてもよい。
(ゲル状重合体の形状)
本発明において、得られるゲル状重合体の形状は略球形である。上記ゲル状重合体の粒子径(以下「ゲル粒子径」と称する)は、得られる球状重合体粒子の用途等に応じて適宜調整される。
本発明において、得られるゲル状重合体の形状は略球形である。上記ゲル状重合体の粒子径(以下「ゲル粒子径」と称する)は、得られる球状重合体粒子の用途等に応じて適宜調整される。
上記「球形」とは、真球状以外の形状(例えば、略球状)を含む概念であって粒子の平均長径と平均短径との比(「真球度」とも称する)が好ましくは1.0~3.0である粒子を意味する。該粒子の平均長径と平均短径は、顕微鏡で撮影された画像に基づいて測定される。本発明において、上記ゲル状重合体は、微小な球形ゲルの凝集体として形成されてもよく、微小な球形ゲルと該球形ゲルの凝集体との混合物として得られでもよい。
また、上記ゲル状重合体が球形ゲルの凝集体である場合、この凝集体を構成する各球形ゲルの粒子径を、1次粒子径と称する。本発明において、1次粒子径は特に制限されないが、乾燥工程において微粉発生を抑制できるという観点から、好ましくは1μm~2000μm、より好ましくは5μm~1000μm、更に好ましくは10μm~800μmである。
(ゲル状重合体の固形分濃度)
後述する乾燥工程に供されるゲル状重合体の固形分率は、特に限定されないが、乾燥コストの観点から、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上、特に好ましくは45質量%以上である。該ゲル状重合体の固形分率の上限は、特に限定されないが、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、特に好ましくは60質量%以下である。上記範囲の固形分率であるゲル状重合体を後述の乾燥工程に供することにより、本発明の効果が顕著となる。
後述する乾燥工程に供されるゲル状重合体の固形分率は、特に限定されないが、乾燥コストの観点から、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上、特に好ましくは45質量%以上である。該ゲル状重合体の固形分率の上限は、特に限定されないが、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、特に好ましくは60質量%以下である。上記範囲の固形分率であるゲル状重合体を後述の乾燥工程に供することにより、本発明の効果が顕著となる。
(具体的な実施形態)
図5には、本発明の一実施形態に係る球状重合体粒子の製造プロセスの一部(混合工程~分離工程)が示されている。図示されている通り、該製造プロセスには、混合装置10、供給装置12、反応装置14、分離装置16、熱交換器18、送液ポンプ20並びにこれらの装置を連結する配管30、40及び50が含まれている。混合装置10には、単量体溶液供給配管60及び重合開始剤供給配管70が接続されている。分離装置16には、ゲル状重合体排出配管80が接続されている。
図5には、本発明の一実施形態に係る球状重合体粒子の製造プロセスの一部(混合工程~分離工程)が示されている。図示されている通り、該製造プロセスには、混合装置10、供給装置12、反応装置14、分離装置16、熱交換器18、送液ポンプ20並びにこれらの装置を連結する配管30、40及び50が含まれている。混合装置10には、単量体溶液供給配管60及び重合開始剤供給配管70が接続されている。分離装置16には、ゲル状重合体排出配管80が接続されている。
本発明の球状重合体粒子の製造方法の概略を、図5にしたがって説明する。
先ず、反応装置14、分離装置16、熱交換器18並びにこれらの装置を連結する配管40及び50の内部に非相溶性液体組成物で満たす。次に、送液ポンプ20を稼働させて、該非相溶性液体組成物を循環させる。各装置及び配管中の非相溶性液体組成物は、熱交換器18で、所定温度に加熱される。熱交換器18で加熱された非相溶性液体組成物の一部は、供給装置12へも供給される。このうち、反応装置14の内部にある非相溶性液体組成物が連続相を形成している。
次に、別途用意した単量体溶液及び重合開始剤を、それぞれ、単量体溶液供給配管60及び重合開始剤供給配管70を介して、混合装置10に連続供給して混合し、重合性液体組成物を作製する。その後、該重合性液体組成物を、配管30を介して供給装置12に連続供給する。この重合性液体組成物は、循環する非相溶性液体組成物とともに、供給装置12によって液滴状で反応装置14に連続投入されて連続相に分散され、反応装置14において重合反応が開始される。反応装置14では、循環する非相溶性液体組成物の移動によって、重合性液体組成物からなる液滴が移動する。この液滴は、移動しながら、重合反応によって、ゲル状重合体に変化する。この液滴及びゲル状重合体の移動方向は、連続相の移動方向と同じ(並流)である。
続いて、重合反応によって得られたゲル状重合体は、非相溶性液体組成物と共に反応装置14から連続的に排出され、配管40を介して分離装置16に連続供給される。該分離装置16において、ゲル状重合体と非相溶性液体組成物とが連続的に分離される。分離されたゲル状重合体は、ゲル状重合体排出配管80を介して、次の工程へ連続的に供給される。分離された非相溶性液体組成物は配管50を介して熱交換器18を経由して、反応装置14に連続的に再供給される。分離された非相溶性液体組成物の一部は、熱交換器18を経由して、供給装置12にも供給される。
以上説明した実施形態では、連続式製造法が採用されており、この場合、各工程及び工程間におけるそれぞれの操作を連続的に実施できるため、各装置の停止及び再稼働に伴う閉塞等のトラブルを回避することができる。また、本発明の他の実施形態として、重合性液体組成物を、反応装置14に、断続的に供給するバッチ式製造法を採用することもできる。この場合、反応装置14として、バッチ式の攪拌型反応装置が使用される。球状重合体粒子の安定製造の観点から、連続式製造法が好ましい。
〔3-5〕その他の工程
本発明に係る球状重合体粒子の製造方法は、上述した各工程以外に、必要に応じて、乾燥工程、粉砕工程、分級工程、表面架橋工程、整粒工程、微粉除去工程、造粒工程及び微粉再利用工程を含むことができる。また、輸送工程、貯蔵工程、梱包工程、保管工程等を更に含んでもよい。
本発明に係る球状重合体粒子の製造方法は、上述した各工程以外に、必要に応じて、乾燥工程、粉砕工程、分級工程、表面架橋工程、整粒工程、微粉除去工程、造粒工程及び微粉再利用工程を含むことができる。また、輸送工程、貯蔵工程、梱包工程、保管工程等を更に含んでもよい。
(乾燥工程)
本工程は、上記分離工程で分離されたゲル状重合体を、所望する固形分率まで乾燥して、粒子状の乾燥重合体を得る工程である。該ゲル状重合体を解砕又は造粒することで所望する粒子径又は粒度分布に調整した後に乾燥工程に供してもよい。
本工程は、上記分離工程で分離されたゲル状重合体を、所望する固形分率まで乾燥して、粒子状の乾燥重合体を得る工程である。該ゲル状重合体を解砕又は造粒することで所望する粒子径又は粒度分布に調整した後に乾燥工程に供してもよい。
なお、上記ゲル状重合体を乾燥する公知の方法としては、例えば、伝導伝熱による乾燥、対流伝熱(例えば、熱風)による乾燥、減圧による乾燥、赤外線を用いた乾燥、マイクロ波を用いた乾燥、疎水性有機溶媒との共沸脱水による乾燥、高温の水蒸気(例えば、過熱水蒸気)を用いた過熱水蒸気乾燥等が挙げられる。
しかしながら、本発明においては、乾燥効率が高く、非相溶性液体組成物等の液体成分の回収が容易である攪拌型の伝導伝熱乾燥が好ましく、間接加熱方式を用いた連続式の攪拌型乾燥装置がより好ましく使用される。
また、上述した通り、本発明に係る製造方法で形成されるゲル状重合体の形状は、球形である。球形のゲル状重合体を上記攪拌型乾燥装置で乾燥することで、球状の粒子からなる乾燥重合体が得られる。なお、本乾燥工程で得られる球状の粒子からなる乾燥重合体を、そのまま球状重合体粒子として各用途に供することもできる。また、この製造方法において吸水性樹脂を製造する場合には、乾燥工程で得られる球状の乾燥重合体を後述する表面架橋工程に供することも可能である。この場合、後述する表面架橋工程に供される乾燥重合体を、便宜上「吸水性樹脂粉末」と称する。
本発明において、乾燥温度及び乾燥時間は、得られる球状重合体粒子の用途に応じて、その固形分率を指標として適宜調整される。例えば、吸水性樹脂の場合、その固形分率は、吸水性能の観点から、好ましくは85質量%以上、より好ましくは90質量%~98質量%である。なお、吸水性樹脂の固形分率は、試料(吸水性樹脂)を180℃で3時間乾燥させた際の、乾燥減量に基づいて算出される値である。
(粉砕工程、分級工程)
上記乾燥工程で得られた粒子状の乾燥重合体は、必要に応じて、粉砕工程及び分級工程を経ることによって、粒子径又は粒度分布が制御された球状重合体粒子とされる。
上記乾燥工程で得られた粒子状の乾燥重合体は、必要に応じて、粉砕工程及び分級工程を経ることによって、粒子径又は粒度分布が制御された球状重合体粒子とされる。
上記粉砕工程では、例えば、ロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が適宜選択されて用いられる。
上記分級工程では、例えば、JIS標準篩(JIS Z8801-1(2000))を用いた篩分級や気流分級等が適宜選択されて用いられる。
(表面架橋工程)
前述した通り、球状重合体粒子として吸水性樹脂を製造する場合、上記乾燥工程を経て得られる粒子状の乾燥重合体、即ち、吸水性樹脂粉末は、必要に応じて表面架橋工程に供される。この表面架橋工程は、吸水性樹脂粉末の表面層(吸水性樹脂粉末の表面から数10μmの部分)に架橋密度の高い部分を設ける工程である。なお、本発明においては、公知の表面架橋技術が適宜適用される。
前述した通り、球状重合体粒子として吸水性樹脂を製造する場合、上記乾燥工程を経て得られる粒子状の乾燥重合体、即ち、吸水性樹脂粉末は、必要に応じて表面架橋工程に供される。この表面架橋工程は、吸水性樹脂粉末の表面層(吸水性樹脂粉末の表面から数10μmの部分)に架橋密度の高い部分を設ける工程である。なお、本発明においては、公知の表面架橋技術が適宜適用される。
(整粒工程)
「整粒工程」とは、上記表面架橋工程を経て緩く凝集した吸水性樹脂粉末を解して粒子径を整える工程を意味する。なお、この整粒工程は、表面架橋工程以降の微粉除去工程、ゲルの解砕工程及び分級工程を含むものとする。
「整粒工程」とは、上記表面架橋工程を経て緩く凝集した吸水性樹脂粉末を解して粒子径を整える工程を意味する。なお、この整粒工程は、表面架橋工程以降の微粉除去工程、ゲルの解砕工程及び分級工程を含むものとする。
(微粉再利用工程)
「微粉再利用工程」とは、上記各工程で発生した微粉をそのまま、又は微粉を造粒した後に何れかの工程に供給する工程を意味する。
「微粉再利用工程」とは、上記各工程で発生した微粉をそのまま、又は微粉を造粒した後に何れかの工程に供給する工程を意味する。
〔4〕球状重合体粒子の物性
本発明の球状重合体粒子の物性については、その目的や用途に応じて適宜設定すればよく、特に限定されない。なお、球状重合体粒子として吸水性樹脂を製造する場合、以下に掲げる〔4-1〕~〔4-7〕の物性を満たすようにすればよい。以下、吸水性樹脂の好ましい物性について説明する。
本発明の球状重合体粒子の物性については、その目的や用途に応じて適宜設定すればよく、特に限定されない。なお、球状重合体粒子として吸水性樹脂を製造する場合、以下に掲げる〔4-1〕~〔4-7〕の物性を満たすようにすればよい。以下、吸水性樹脂の好ましい物性について説明する。
本発明の球状重合体粒子の一つである吸水性樹脂を、吸収性物品、特に紙オムツに使用する場合には、下記の〔4-1〕~〔4-7〕に掲げた物性のうち、少なくとも1つ以上、好ましくは表面張力を含めた2つ以上、より好ましくは表面張力を含めた3つ以上、更に好ましくは表面張力を含めた4つ以上、特に好ましくは表面張力を含めた5つ以上、最も好ましくは全ての物性が、所望する範囲に制御されることが望まれる。特に、高吸収速度タイプの紙オムツ等に使用する場合には、少なくともVortexについて下記の範囲を満たすことが好ましい。以下の全ての物性が下記の範囲を満たさない場合、特に、紙オムツ一枚当たりの吸水性樹脂の使用量が多い、所謂、高濃度紙オムツにおいて十分な性能を発揮しないおそれがある。
〔4-1〕CRC(遠心分離機保持容量)
上記吸水性樹脂のCRC(遠心分離機保持容量)は、通常5g/g以上であり、好ましくは15g/g以上、より好ましくは25g/g以上である。上限については特に限定されず、より高いCRCが好ましいが、他の物性とのバランスの観点から、好ましくは70g/g以下、より好ましくは50g/g以下、更に好ましくは40g/g以下である。
上記吸水性樹脂のCRC(遠心分離機保持容量)は、通常5g/g以上であり、好ましくは15g/g以上、より好ましくは25g/g以上である。上限については特に限定されず、より高いCRCが好ましいが、他の物性とのバランスの観点から、好ましくは70g/g以下、より好ましくは50g/g以下、更に好ましくは40g/g以下である。
上記CRCが5g/g未満の場合、吸収量が少なく、紙オムツ等の吸収性物品の吸収体としては適さない。また、上記CRCが70g/gを超える場合、尿や血液等の体液等を吸収する速度が低下するため、高吸水速度タイプの紙オムツ等への使用に適さない。なお、CRCは、内部架橋剤や表面架橋剤等の種類や量を変更することで制御することができる。
〔4-2〕表面張力
上記吸水性樹脂の表面張力は、好ましくは60mN/m以上、より好ましくは65mN/m以上、更に好ましくは67mN/m以上、特に好ましくは70mN/m以上、最も好ましくは72mN/m以上であり、実質的な表面張力の低下がない。上限値については特に限定されないが、通常75mN/mである。
上記吸水性樹脂の表面張力は、好ましくは60mN/m以上、より好ましくは65mN/m以上、更に好ましくは67mN/m以上、特に好ましくは70mN/m以上、最も好ましくは72mN/m以上であり、実質的な表面張力の低下がない。上限値については特に限定されないが、通常75mN/mである。
上記表面張力が60mN/m未満の場合、吸収体内部の隙間に毛細管現象で保持している吸収液の保持能力が低下し、吸収体に圧力が加わった際の液の戻り量(以下、「Re-Wet(リウェット)」と称する場合がある)が多くなるため、紙オムツ等の吸収性物品の吸収体としては適さない。
〔4-3〕Ext(水可溶分)
上記吸水性樹脂のExt(水可溶分)は、通常50質量%以下であり、好ましくは35質量%以下、より好ましくは25質量%以下、更に好ましくは15質量%以下である。下限値については特に限定されないが、好ましくは0質量%、より好ましくは0.1質量%程度である。なお、本発明において「~程度」とは±5%の誤差を含むことを意味する。
上記吸水性樹脂のExt(水可溶分)は、通常50質量%以下であり、好ましくは35質量%以下、より好ましくは25質量%以下、更に好ましくは15質量%以下である。下限値については特に限定されないが、好ましくは0質量%、より好ましくは0.1質量%程度である。なお、本発明において「~程度」とは±5%の誤差を含むことを意味する。
上記Extが50質量%を超える場合、ゲル強度が弱く、液透過性に劣った吸水性樹脂となるおそれがある。更に、リウェットが多くなるため、紙オムツ等の吸収性物品の吸収体としては適さない。なお、Extは、内部架橋剤等の種類や量の変更により制御することができる。
〔4-4〕残存モノマー量
上記吸水性樹脂に含まれる残存モノマー量は、安全性の観点から、好ましくは1000ppm以下、より好ましくは500ppm以下、更に好ましくは300ppm以下である。下限値については特に限定されないが、好ましくは0ppm、より好ましくは10ppm程度である。
上記吸水性樹脂に含まれる残存モノマー量は、安全性の観点から、好ましくは1000ppm以下、より好ましくは500ppm以下、更に好ましくは300ppm以下である。下限値については特に限定されないが、好ましくは0ppm、より好ましくは10ppm程度である。
上記残存モノマー量を上記範囲内とすることで、人体の皮膚等への刺激が軽減された吸水性樹脂が得られる。
〔4-5〕含水率
上記吸水性樹脂の含水率は、好ましくは0質量%を超えて20質量%以下、より好ましくは1質量%~15質量%、更に好ましくは2質量%~13質量%、特に好ましくは2質量%~10質量%である。
上記吸水性樹脂の含水率は、好ましくは0質量%を超えて20質量%以下、より好ましくは1質量%~15質量%、更に好ましくは2質量%~13質量%、特に好ましくは2質量%~10質量%である。
上記含水率を上記範囲内とすることで、粉体特性(例えば、流動性、搬送性、耐ダメージ性等)に優れた吸水性樹脂が得られる。
〔4-6〕粒度
上記吸水性樹脂の質量平均粒子径(D50)は、好ましくは200μm~700μm、より好ましくは250μm~600μm、更に好ましくは250μm~500μm、特に好ましくは300μm~450μmである。また、粒子径150μm未満の粒子の割合は、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。また、粒子径850μm以上の粒子の割合は、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。換言すれば、この吸水性樹脂は、粒子径850μm未満の粒子を、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上含む。粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.50、より好ましくは0.25~0.40、更に好ましくは0.27~0.35である。
上記吸水性樹脂の質量平均粒子径(D50)は、好ましくは200μm~700μm、より好ましくは250μm~600μm、更に好ましくは250μm~500μm、特に好ましくは300μm~450μmである。また、粒子径150μm未満の粒子の割合は、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。また、粒子径850μm以上の粒子の割合は、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。換言すれば、この吸水性樹脂は、粒子径850μm未満の粒子を、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上含む。粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.50、より好ましくは0.25~0.40、更に好ましくは0.27~0.35である。
〔4-7〕Vortex(吸水時間)
上記吸水性樹脂のVortex(吸水時間)は、好ましくは60秒以下、より好ましくは55秒以下、更に好ましくは50秒以下、特に好ましくは40秒以下である。なお、Vortex(吸水時間)の下限値は特に限定されないが、好ましくは10秒以上である。
上記吸水性樹脂のVortex(吸水時間)は、好ましくは60秒以下、より好ましくは55秒以下、更に好ましくは50秒以下、特に好ましくは40秒以下である。なお、Vortex(吸水時間)の下限値は特に限定されないが、好ましくは10秒以上である。
上記Vortex(吸水時間)が60秒以下であれば、この吸水性樹脂を吸収体に使用した際に、液漏れを抑制することができる。当該Vortex(吸水時間)は、上記単量体組成物の噴霧時の液滴径や、ゲル1次粒子径、粒度等で制御することができる。
〔5〕球状重合体粒子の用途
本発明の球状重合体粒子の用途は、特に限定されないが、好ましくは塗料、接着剤、アンチブロッキング剤、光拡散剤、艶消し剤、化粧板用添加剤、人工大理石用添加剤、トナー用添加剤等の樹脂用添加剤が挙げられる。また、球状重合体粒子の一つである吸水性樹脂としての用途は、特に限定されないが、好ましくは紙オムツ、生理用ナプキン、失禁パッド等の吸収性物品の吸収体用途が挙げられる。特に、原料由来の臭気、着色等が問題となっていた高濃度紙オムツの吸収体として使用することができる。更に、この吸水性樹脂は、吸水時間に優れ、かつ粒度分布が制御されているので、上記吸収体の上層部に使用する場合に、顕著な効果が期待できる。
本発明の球状重合体粒子の用途は、特に限定されないが、好ましくは塗料、接着剤、アンチブロッキング剤、光拡散剤、艶消し剤、化粧板用添加剤、人工大理石用添加剤、トナー用添加剤等の樹脂用添加剤が挙げられる。また、球状重合体粒子の一つである吸水性樹脂としての用途は、特に限定されないが、好ましくは紙オムツ、生理用ナプキン、失禁パッド等の吸収性物品の吸収体用途が挙げられる。特に、原料由来の臭気、着色等が問題となっていた高濃度紙オムツの吸収体として使用することができる。更に、この吸水性樹脂は、吸水時間に優れ、かつ粒度分布が制御されているので、上記吸収体の上層部に使用する場合に、顕著な効果が期待できる。
また、上記吸収体の原料として、上記吸水性樹脂と共にパルプ繊維等の吸収性材料を使用することもできる。この場合、吸収体中の吸水性樹脂の含有量(コア濃度)としては、好ましくは30質量%~100質量%、より好ましくは40質量%~100質量%、更に好ましくは50質量%~100質量%、更により好ましくは60質量%~100質量%、特に好ましくは70質量%~100質量%、最も好ましくは75質量%~95質量%である。
上記コア濃度を上記範囲とすることで、該吸収体を吸収性物品の上層部に使用した場合に、この吸収性物品を清浄感のある白色状態に保つことができる。更に、該吸収体は尿や血液等の体液等の拡散性に優れるため、効率的な液分配がなされることにより、吸収量の向上が見込める。
本発明のより好ましい実施形態は、以下の項目に示されている。
(項目1)吸水性樹脂の原料である単量体を含む単量体溶液と、熱分解型重合開始剤とを混合して、単量体組成物を作製する混合工程と、
上記単量体組成物を、有機溶媒が収容された反応装置に供給する供給工程と、
上記反応装置において重合反応を開始させてゲル状架橋重合体を得る重合工程と、
上記ゲル状架橋重合体と上記有機溶媒とを分離する分離工程とを含む吸水性樹脂の製造方法であって、
上記供給工程において、上記単量体組成物を、多流体噴霧ノズルを用いて供給することにより、上記有機溶媒中に分散させる吸水性樹脂の製造方法。
(項目2)上記供給工程において、上記多流体噴霧ノズルを用いて上記単量体組成物を供給するための補助流体として、上記有機溶媒を用いる項目1に記載の製造方法。
(項目3)上記多流体噴霧ノズルが外部混合型噴霧ノズルである項目1又は2に記載の製造方法。
(項目4)上記多流体噴霧ノズルが、上記単量体組成物を排出するための排出口を備えており、この排出口が、上記反応装置に収容された有機溶媒に浸されている項目1から3のいずれか1項に記載の製造方法。
(項目5)上記有機溶媒が循環されており、この有機溶媒と並流となるように、上記単量体組成物を供給する項目1から4のいずれか1項に記載の製造方法。
(項目6)下記(式1’)で規定される分散指数が30以上である項目1から5のいずれか1項に記載の製造方法。
分散指数=(Da’・Qa’・Va’2)/(Dm’・Qm’・Vm’2) ・・・(式1’)
(式1’)中、Da’は上記補助流体の比重(kg/m3)であり、Qa’は上記補助流体の流量(m3/分)であり、Va’は上記補助流体の流速(m/秒)であり、Dm’は上記単量体組成物の比重(kg/m3)であり、Qm’は上記単量体組成物の流量(m3/分)であり、Vm’は上記単量体組成物の流速(m/秒)である。
(項目7)上記単量体が、酸基含有不飽和単量体又はその塩、アミド基含有不飽和単量体、アミノ基含有不飽和単量体、メルカプト基含有不飽和単量体、フェノール性水酸基含有不飽和単量体及びラクタム基含有不飽和単量体からなる群から選択される1又は2以上である項目1から6のいずれか1項に記載の製造方法。
(項目1)吸水性樹脂の原料である単量体を含む単量体溶液と、熱分解型重合開始剤とを混合して、単量体組成物を作製する混合工程と、
上記単量体組成物を、有機溶媒が収容された反応装置に供給する供給工程と、
上記反応装置において重合反応を開始させてゲル状架橋重合体を得る重合工程と、
上記ゲル状架橋重合体と上記有機溶媒とを分離する分離工程とを含む吸水性樹脂の製造方法であって、
上記供給工程において、上記単量体組成物を、多流体噴霧ノズルを用いて供給することにより、上記有機溶媒中に分散させる吸水性樹脂の製造方法。
(項目2)上記供給工程において、上記多流体噴霧ノズルを用いて上記単量体組成物を供給するための補助流体として、上記有機溶媒を用いる項目1に記載の製造方法。
(項目3)上記多流体噴霧ノズルが外部混合型噴霧ノズルである項目1又は2に記載の製造方法。
(項目4)上記多流体噴霧ノズルが、上記単量体組成物を排出するための排出口を備えており、この排出口が、上記反応装置に収容された有機溶媒に浸されている項目1から3のいずれか1項に記載の製造方法。
(項目5)上記有機溶媒が循環されており、この有機溶媒と並流となるように、上記単量体組成物を供給する項目1から4のいずれか1項に記載の製造方法。
(項目6)下記(式1’)で規定される分散指数が30以上である項目1から5のいずれか1項に記載の製造方法。
分散指数=(Da’・Qa’・Va’2)/(Dm’・Qm’・Vm’2) ・・・(式1’)
(式1’)中、Da’は上記補助流体の比重(kg/m3)であり、Qa’は上記補助流体の流量(m3/分)であり、Va’は上記補助流体の流速(m/秒)であり、Dm’は上記単量体組成物の比重(kg/m3)であり、Qm’は上記単量体組成物の流量(m3/分)であり、Vm’は上記単量体組成物の流速(m/秒)である。
(項目7)上記単量体が、酸基含有不飽和単量体又はその塩、アミド基含有不飽和単量体、アミノ基含有不飽和単量体、メルカプト基含有不飽和単量体、フェノール性水酸基含有不飽和単量体及びラクタム基含有不飽和単量体からなる群から選択される1又は2以上である項目1から6のいずれか1項に記載の製造方法。
以下、球状重合体粒子の一つである吸水性樹脂の製造方法に関して、実施例・比較例に従って本発明をより具体的に説明するが、本発明はこれらの説明に限定解釈されるものではなく、各実施例に開示された技術的手段を適宜組み合わせて得られる実施例も、本発明の範囲に含まれるものとする。
なお、実施例及び比較例で使用する電気機器(吸水性樹脂の物性測定用機器も含む)には、特に注釈のない限り、200V又は100Vの電源を使用した。また、本発明の吸水性樹脂の諸物性は、特に注釈のない限り、室温(20℃~25℃)、相対湿度50%RH±10%の条件下で測定された。
また、便宜上、「リットル」を「l」又は「L」、「質量%」又は「重量%」を「wt%」と表記することがある。微量成分の測定を行う場合、検出限界以下をN.D(Non Detected)と表記する場合がある。
[球状重合体粒子及びゲル状重合体の物性測定方法]
以下、本発明の球状重合体粒子及びゲル状重合体の物性測定方法として、吸水性樹脂及び含水ゲル状架橋重合体の物性測定方法を説明する。なお、吸水性樹脂及び含水ゲル状架橋重合体以外の球状重合体粒子及びゲル状重合体の物性を測定する場合には、下記の測定方法に準拠して測定される。
以下、本発明の球状重合体粒子及びゲル状重合体の物性測定方法として、吸水性樹脂及び含水ゲル状架橋重合体の物性測定方法を説明する。なお、吸水性樹脂及び含水ゲル状架橋重合体以外の球状重合体粒子及びゲル状重合体の物性を測定する場合には、下記の測定方法に準拠して測定される。
(a)CRC(遠心分離機保持容量)
吸水性樹脂のCRC(遠心分離機保持容量)を、EDANA法(ERT441.2-02)に準拠して測定した。
吸水性樹脂のCRC(遠心分離機保持容量)を、EDANA法(ERT441.2-02)に準拠して測定した。
(b)Ext(水可溶分)
吸水性樹脂のExt(水可溶分)を、EDANA法(ERT470.2-02)に準拠して測定した。
吸水性樹脂のExt(水可溶分)を、EDANA法(ERT470.2-02)に準拠して測定した。
(c)残存モノマー量
吸水性樹脂の残存モノマー量を、EDANA法(ERT410.2-02)に準拠して測定した。
吸水性樹脂の残存モノマー量を、EDANA法(ERT410.2-02)に準拠して測定した。
(d)含水率
吸水性樹脂の含水率を、EDANA法(ERT430.2-02)に準拠して測定した。なお、本発明においては、試料量を1.0g、乾燥温度を180℃にそれぞれ変更して測定した。
吸水性樹脂の含水率を、EDANA法(ERT430.2-02)に準拠して測定した。なお、本発明においては、試料量を1.0g、乾燥温度を180℃にそれぞれ変更して測定した。
(e)粒度
吸水性樹脂の粒度(粒度分布、質量平均粒子径(D50)及び粒度分布の対数標準偏差(σζ))を、米国特許第7638570号に記載された方法に準拠して測定した。
吸水性樹脂の粒度(粒度分布、質量平均粒子径(D50)及び粒度分布の対数標準偏差(σζ))を、米国特許第7638570号に記載された方法に準拠して測定した。
(f)重合率
イオン交換水1000gに含水ゲル1.00gを投入し、300rpmで2時間攪拌した後に、ろ過することにより、不溶分を除去した。上記操作で得られたろ液中に抽出された単量体の量を、液体クロマトグラフを用いて測定した。該単量体の量を残存モノマー量m(g)としたときに、下記(式2)にしたがって、重合率C(質量%)を求めた。
イオン交換水1000gに含水ゲル1.00gを投入し、300rpmで2時間攪拌した後に、ろ過することにより、不溶分を除去した。上記操作で得られたろ液中に抽出された単量体の量を、液体クロマトグラフを用いて測定した。該単量体の量を残存モノマー量m(g)としたときに、下記(式2)にしたがって、重合率C(質量%)を求めた。
C(質量%)=100×{1-m/(α・M/100)} ・・・ (式2)
ただし、(式2)中、Mは含水ゲルの質量(g)、αは含水ゲルの固形分率(質量%)を意味する。なお、固形分率は以下の手法によって求められる。
(g)固形分率
底面の直径が50mmのアルミカップに含水ゲル2.00gを投入した後、試料(含水ゲル及びアルミカップ)の総質量W1(g)を正確に秤量した。次に、上記試料を、雰囲気温度180℃に設定されたオーブン内に静置した。24時間経過後、該試料を上記オーブンから取り出し、総質量W2(g)を正確に秤量した。本測定に供された含水ゲルの質量をM(g)としたときに、下記(式3)にしたがって、含水ゲルの固形分率α(質量%)を求めた。
底面の直径が50mmのアルミカップに含水ゲル2.00gを投入した後、試料(含水ゲル及びアルミカップ)の総質量W1(g)を正確に秤量した。次に、上記試料を、雰囲気温度180℃に設定されたオーブン内に静置した。24時間経過後、該試料を上記オーブンから取り出し、総質量W2(g)を正確に秤量した。本測定に供された含水ゲルの質量をM(g)としたときに、下記(式3)にしたがって、含水ゲルの固形分率α(質量%)を求めた。
α(質量%)=100-{(W1-W2)/M}×100 ・・・ (式3)
(h)ゲル粒子径及び一次粒子径
含水ゲルを光学顕微鏡(KH-3000、株式会社ハイロックス製)で撮影し、得られた画像から、一次粒子の短径と長径とを測定した。一次粒子10粒について測定し、その平均値を当該含水ゲルの一次粒子径とした。同様に、含水ゲル10粒を上記光学顕微鏡で撮影して得られた画像から、各含水ゲルの短径と長径とを測定し、その平均値を当該含水ゲルのゲル粒子径とした。
含水ゲルを光学顕微鏡(KH-3000、株式会社ハイロックス製)で撮影し、得られた画像から、一次粒子の短径と長径とを測定した。一次粒子10粒について測定し、その平均値を当該含水ゲルの一次粒子径とした。同様に、含水ゲル10粒を上記光学顕微鏡で撮影して得られた画像から、各含水ゲルの短径と長径とを測定し、その平均値を当該含水ゲルのゲル粒子径とした。
(i)表面張力
十分に洗浄された容量100mlのビーカーに、23℃~25℃に調温された0.9質量%の塩化ナトリウム水溶液(生理食塩水)50mlを投入し、該生理食塩水の表面張力を表面張力計(自動表面張力計K11、クルス社製)を用いて測定した。なお、該測定方法では、生理食塩水の表面張力の測定値が71mN/m~75mN/mの範囲内となる必要がある。該測定値が範囲外となった場合には、再度、初めからやり直す必要がある。
十分に洗浄された容量100mlのビーカーに、23℃~25℃に調温された0.9質量%の塩化ナトリウム水溶液(生理食塩水)50mlを投入し、該生理食塩水の表面張力を表面張力計(自動表面張力計K11、クルス社製)を用いて測定した。なお、該測定方法では、生理食塩水の表面張力の測定値が71mN/m~75mN/mの範囲内となる必要がある。該測定値が範囲外となった場合には、再度、初めからやり直す必要がある。
続いて、上記表面張力を測定した生理食塩水に、十分に洗浄された25mm長のフッ素樹脂製の回転子と吸水性樹脂0.5gとを投入し、500rpmで4分間攪拌した。その後、攪拌を停止して、含水した吸水性樹脂を沈降させ、上澄み液について、上記と同様の手法により表面張力を測定した。
なお、本発明の測定では、白金プレートを用いるプレート法を採用した。また、測定に用いる白金プレートは各測定前に十分洗浄し、かつ、バーナーを用いて加熱洗浄した。
(j)Vortex(吸水時間)
予め調整された0.90質量%塩化ナトリウム水溶液(生理食塩水)1.000質量部に対し、食品添加物である食用青色1号(CAS番号:3844-45-9)0.02質量部を添加し、液温を30℃に調整した。得られた生理食塩水50mlを胴径55mm、高さ70mmの容量100mlのビーカー(例えば、相互理化学硝子製作所が販売するJIS R-3503に準拠したビーカー)に計り取り、スターラーチップとして、長さ40mm、太さ8mmの円筒型テフロン(登録商標)製マグネット式撹拌子(例えば、相互理化学ガラス製作所が販売するS型)を、このビーカーに投入した。600rpmの条件下で攪拌する生理食塩水中に、後述する実施例又は比較例で得られた吸水性樹脂2.0gを投入し、吸水時間(秒)を測定した。吸水時間の始点及び終点は、JISK7224(1996年度)「高吸水性樹脂の吸水速度試験方法解説」に記載されている基準に準じて決定した。具体的には、吸水性樹脂の投入時を始点とし、投入した吸水性樹脂が生理食塩水を吸液して、回転するスターラーチップがゲル化中の生理食塩水に覆われる時点(断面から見るとV字で覆われる時点)を終点として、吸水時間(秒)を測定することにより、吸水性樹脂の吸水速度を評価した。
予め調整された0.90質量%塩化ナトリウム水溶液(生理食塩水)1.000質量部に対し、食品添加物である食用青色1号(CAS番号:3844-45-9)0.02質量部を添加し、液温を30℃に調整した。得られた生理食塩水50mlを胴径55mm、高さ70mmの容量100mlのビーカー(例えば、相互理化学硝子製作所が販売するJIS R-3503に準拠したビーカー)に計り取り、スターラーチップとして、長さ40mm、太さ8mmの円筒型テフロン(登録商標)製マグネット式撹拌子(例えば、相互理化学ガラス製作所が販売するS型)を、このビーカーに投入した。600rpmの条件下で攪拌する生理食塩水中に、後述する実施例又は比較例で得られた吸水性樹脂2.0gを投入し、吸水時間(秒)を測定した。吸水時間の始点及び終点は、JISK7224(1996年度)「高吸水性樹脂の吸水速度試験方法解説」に記載されている基準に準じて決定した。具体的には、吸水性樹脂の投入時を始点とし、投入した吸水性樹脂が生理食塩水を吸液して、回転するスターラーチップがゲル化中の生理食塩水に覆われる時点(断面から見るとV字で覆われる時点)を終点として、吸水時間(秒)を測定することにより、吸水性樹脂の吸水速度を評価した。
[実施例1]
図5に示した製造プロセスに従って含水ゲル状架橋重合体(以下、「含水ゲル」と称する)(1)を作製した後、得られた含水ゲル(1)を乾燥し、更に表面架橋することで、球状の吸水性樹脂(1)を製造した。
図5に示した製造プロセスに従って含水ゲル状架橋重合体(以下、「含水ゲル」と称する)(1)を作製した後、得られた含水ゲル(1)を乾燥し、更に表面架橋することで、球状の吸水性樹脂(1)を製造した。
なお、混合装置としてスタティックミキサー(株式会社ノリタケカンパニーリミテド製、型式:T3-15)、供給装置として2流体スプレーノズル(外部混合型、ノズル内径:0.50mm、補助流体:後述の混合溶媒、形式:SETO07505S303+TS303、株式会社いけうち製)、反応装置としてPFA製チューブ(内径4mm、外径6mm、全長:60m)を螺旋状に成形したもの、分離装置として重力沈降を利用した固液分離装置を、それぞれ使用した。
重合反応の準備段階として、n-ヘプタン及びハイドロフルオロエーテル(商品名:Novec(登録商標)7300、住友スリーエム株式会社製)を質量比1.0:2.8で混合して得た混合溶媒(密度:1.18g/ml)を有機溶媒として、上記2流体スプレーノズルの補助流体(非相溶性液体組成物)用流路、上記反応装置、上記分離装置及びこれらを接続する配管内に投入した。上記2流体スプレーノズルの位置を、2流体スプレーノズルの先端部が、反応装置に収容された有機溶媒に浸るように調整した。
続いて、送液ポンプを稼働させて、流量240ml/分で有機溶媒の循環を開始した。なお、この製造方法では、循環させた有機溶媒の全量を、2流体スプレーノズルを介して、上記反応装置に投入した。該2流体スプレーノズルの先端部での上記有機溶媒の流速は、2.36m/秒であった。
更に、熱交換器を稼働させて、上記反応装置において単量体組成物が投入される領域に存在する有機溶媒の温度(以下、「設定温度」と称する)が85℃となるように、上記有機溶媒を加熱した。
次に、アクリル酸、48.5質量%の水酸化ナトリウム水溶液及びイオン交換水を混合し、更に、ポリエチレングリコールジアクリレート(平均重合度:9)及びジエチレントリアミン5酢酸・3ナトリウムを配合することで、単量体水溶液(1)を作製した。該単量体水溶液(1)に、液温を25℃に保ちながら窒素ガスを吹き込むことで窒素置換を行った。また、別途、過硫酸ナトリウム及びイオン交換水を混合することで、10質量%の過硫酸ナトリウム水溶液(1)を作製した。該過硫酸ナトリウム水溶液(1)に窒素ガスを吹き込むことで窒素置換を行った。
続いて、上記操作で得られた単量体水溶液(1)と過硫酸ナトリウム水溶液(1)とを、それぞれ別個に上記混合装置に供給して混合することで、単量体組成物(1)を作製した。該単量体組成物(1)のモノマー濃度は45質量%、中和率は75モル%であった。また、内部架橋剤であるポリエチレングリコールジアクリレートは単量体に対して0.02モル%、キレート剤であるジエチレントリアミン5酢酸・3ナトリウムは単量体に対して100ppm、重合開始剤である過硫酸ナトリウムは単量体に対して0.1g/モルであった。
次に、上記混合工程で作製した単量体組成物(1)を、速やかに上記2流体スプレーノズルの単量体組成物用流路に送液した。その後、上記2流体スプレーノズルを用いて、上記有機溶媒を補助流体として、流量10ml/分(11.8g/分)で、単量体組成物(1)を供給した。該単量体組成物(1)は、連続相をなす有機溶媒の循環方向と同じ方向(並流)となるように供給した。なお、該2流体スプレーノズルの先端部での上記単量体組成物(1)の流速は、0.85m/秒であった。また、該反応装置に供給する前の単量体組成物(1)の液温を25℃に保持した。また、実施例1での分散指数は185であった。
上記2流体スプレーノズルによって供給された上記単量体組成物(1)は、上記連続相中で液滴状(液滴径;100μm~200μm)に分散した。上記単量体組成物(1)と上記連続相をなす有機溶媒との比(W/O比)は4.2容積%であった。
上記単量体組成物(1)からなる液滴(以下、単に「液滴」と称する)は、有機溶媒と共に反応装置内を移動し、投入してから約10秒後には、反応装置の投入口から約3mの位置に到達していた。該位置での液滴の粒子径は150μm~250μmであった。これは、液滴同士が衝突し合一したためと考えられる。また、該位置での連続相の温度は83℃であった。
その後、上記液滴は、重合反応の進行に伴って、微小な球形のゲル(以下、「球形ゲル」と称する)に変化しながら移動し、投入してから約60秒後には投入口から約20mの位置に到達していた。該位置において、液滴及びゲルの部分的な凝集を確認できた。更に、投入してから約90秒後(投入口から約30mの位置)には、粒子径が2mm~3mmの凝集物を確認した。
上記一連の操作で得られた含水ゲル(1)は、有機溶媒と共に連続的に反応装置から排出された。なお、実施例1において、単量体組成物(1)の反応装置への投入開始から、最初の含水ゲル(1)の反応装置からの排出までの重合時間は179秒であった。
上記反応装置から排出された含水ゲル(1)と有機溶媒とは、そのまま分離装置に連続的に供給された。該分離装置において、重力沈降を利用して、該含水ゲル(1)と有機溶媒とを分離した。なお、該分離装置で分離された有機溶媒は、設定温度が85℃となるように熱交換器で調温された後、再度、供給装置及び反応装置に供給された。
上記2流体スプレーノズルによる単量体組成物(1)の投入を20分間継続する間、該単量体組成物(1)の送液圧は0.13MPaで一定であり、この2流体スプレーノズルにおいて詰まりは見られなかった。
上記操作で得られた含水ゲル(1)は、微小な球形のゲルが付着凝集した形状をしており、一次粒子径は230μmであった。
引き続き、得られた上記含水ゲル(1)を180℃で50分間乾燥させた後、得られた乾燥重合体(1)を目開き850μmのJIS標準篩を用いて分級し、この篩を通過した球形の吸水性樹脂粉末(1)を採取した。
上記操作で得られた吸水性樹脂粉末(1)100質量部に対して、エチレングリコールジグリシジルエーテル0.015質量部、プロピレングリコール1.0質量部及びイオン交換水3.0質量部からなる表面架橋剤溶液をスプレーノズルで噴霧して、連続高速混合機を用いて均一に混合した。
その後、表面架橋剤を含む吸水性樹脂粉末(1)を、雰囲気温度195℃±2℃に調温した熱処理機に導入して、40分間加熱処理した後、粉温が60℃となるまで強制的に冷却した。当操作によって、表面架橋された吸水性樹脂粉末(以下、「吸水性樹脂粒子」と称する)(1)を得た。
上記吸水性樹脂粒子(1)を、目開き850μmのJIS標準篩に通過させることで整粒し、製品としての吸水性樹脂(1)を得た。得られた含水ゲル(1)及び吸水性樹脂(1)について測定した諸物性を表1に示した。
[比較例1]
実施例1において、供給装置を2流体スプレーノズルからニードル(内径:0.21mm、形式:UNS-27G、ユニコントロールズ株式会社製)に、また、循環させた有機溶媒の経路を、供給装置を介して反応装置に投入する経路から直接反応装置に投入する経路に、それぞれ変更した以外は、実施例1と同様の操作を行って、比較含水ゲル(1)及び比較吸水性樹脂(1)を得た。なお、上記反応装置から排出された比較含水ゲル(1)の一次粒子径は450μmであった。当該製造方法では、上記ニードル先端での上記単量体組成物(1)の流速は4.81m/秒であり、上記循環させた有機溶媒の流速は0.32m/秒であった。また、上述の(式1)において、循環させた有機溶媒で算出した噴霧指数は0.11であった。
実施例1において、供給装置を2流体スプレーノズルからニードル(内径:0.21mm、形式:UNS-27G、ユニコントロールズ株式会社製)に、また、循環させた有機溶媒の経路を、供給装置を介して反応装置に投入する経路から直接反応装置に投入する経路に、それぞれ変更した以外は、実施例1と同様の操作を行って、比較含水ゲル(1)及び比較吸水性樹脂(1)を得た。なお、上記反応装置から排出された比較含水ゲル(1)の一次粒子径は450μmであった。当該製造方法では、上記ニードル先端での上記単量体組成物(1)の流速は4.81m/秒であり、上記循環させた有機溶媒の流速は0.32m/秒であった。また、上述の(式1)において、循環させた有機溶媒で算出した噴霧指数は0.11であった。
上記ニードルによる単量体組成物(1)の投入を20分間継続する間、単量体組成物(1)の送液圧は、当初2.5MPaから2.9MPaに上昇した。また、反応終了後の検査により、ニードルの先端部にゲルの付着が確認された。
得られた比較含水ゲル(1)及び比較吸水性樹脂(1)について測定した諸物性を表1に示した。
[比較例2]
実施例1において、供給装置を2流体スプレーノズルからニードル(内径:0.14mm、形式:SNA-30G-C、武蔵エンジニアリング株式会社製)に、単量体組成物(1)の供給量を1ml/分(1.18g/分)に、また、循環させた有機溶媒の経路を、供給装置を介して反応装置に投入する経路から直接反応装置に投入する経路に、それぞれ変更した以外は、実施例1と同様の操作を行って、比較含水ゲル(2)及び比較吸水性樹脂(2)を得た。なお、上記反応装置から排出された比較含水ゲル(2)の一次粒子径は310μmであった。当該製造方法では、上記ニードル先端での上記単量体組成物(1)の流速は1.08m/秒であり、上記循環させた有機溶媒の流速は0.32m/秒であった。また、上述の(式1)において、上記循環させた有機溶媒で算出した噴霧指数は21であった。
実施例1において、供給装置を2流体スプレーノズルからニードル(内径:0.14mm、形式:SNA-30G-C、武蔵エンジニアリング株式会社製)に、単量体組成物(1)の供給量を1ml/分(1.18g/分)に、また、循環させた有機溶媒の経路を、供給装置を介して反応装置に投入する経路から直接反応装置に投入する経路に、それぞれ変更した以外は、実施例1と同様の操作を行って、比較含水ゲル(2)及び比較吸水性樹脂(2)を得た。なお、上記反応装置から排出された比較含水ゲル(2)の一次粒子径は310μmであった。当該製造方法では、上記ニードル先端での上記単量体組成物(1)の流速は1.08m/秒であり、上記循環させた有機溶媒の流速は0.32m/秒であった。また、上述の(式1)において、上記循環させた有機溶媒で算出した噴霧指数は21であった。
また、上記ニードルによる単量体組成物(1)の送液圧は、当初4.2MPaであったが、徐々に圧力が上昇し、11分後には10MPaを超えた。そのため、単量体組成物(1)の送液ポンプが停止した。送液停止後の検査により、ニードルの先端部へのゲルの付着やニードル内部の詰まりが確認された。
得られた比較含水ゲル(2)及び比較吸水性樹脂(2)について測定した諸物性を表1に示した。
[実施例2]
図5に示した製造プロセスに従って含水ゲル(2)を作製した後、得られた含水ゲル(2)を乾燥し、更に表面架橋することで、球状の吸水性樹脂(2)を製造した。
図5に示した製造プロセスに従って含水ゲル(2)を作製した後、得られた含水ゲル(2)を乾燥し、更に表面架橋することで、球状の吸水性樹脂(2)を製造した。
なお、混合装置として前述のスタティックミキサー、供給装置として2流体スプレーノズル(外部混合型、スプレーノズル内径:0.70mm、有機溶媒(連続相):後述の混合溶媒、形式:SETO07507S303+TS303、株式会社いけうち製)、反応装置としてPFA製チューブ(内径:25mm、全長:10m)を縦に配置したもの、分離装置として重力沈降を利用した固液分離装置を、それぞれ使用した。
重合反応の準備段階として、有機溶媒としてn-ヘプタン及びハイドロフルオロエーテル(商品名:Novec(登録商標)7300、住友スリーエム株式会社製)を質量比1.0:0.8で混合して得た混合溶媒(密度:0.9g/ml)を、上記2流体スプレーノズルの補助流体(非相溶性液体組成物)用流路、上記反応装置、上記分離装置及びこれらを接続する配管内に投入した。上記2流体スプレーノズルの位置を、2流体スプレーノズルの先端が、反応装置に収容された有機溶媒からなる連続相に浸るように調整した。
続いて、送液ポンプを稼働させて、流量600ml/分で、有機溶媒の循環を開始した。この製造方法では、循環させた有機溶媒の経路を、2流体スプレーノズルを介して反応装置に投入する経路と、直接反応装置に投入する経路とに分岐させた。2流体スプレーノズルを介して反応装置に投入される有機溶媒の流量を240ml/分とし、直接反応装置に投入される有機溶媒の流量を360ml/分とした。また、該2流体スプレーノズルの先端部での上記有機溶媒の流速は、2.36m/秒であった。また、熱交換器を稼働させて、設定温度が85℃となるように、上記循環する有機溶媒を加熱した。
次に、アクリル酸、48.5質量%の水酸化ナトリウム水溶液及びイオン交換水を混合し、更に、ポリエチレングリコールジアクリレート(平均重合度:9)及びジエチレントリアミン5酢酸・3ナトリウムを配合することで、単量体水溶液(2)を作製した。該単量体水溶液(2)に、液温を25℃に保ちながら窒素ガスを吹き込むことで窒素置換を行った。また、別途、過硫酸ナトリウム及びイオン交換水を混合することで、10質量%の過硫酸ナトリウム水溶液(2)を作製した。該過硫酸ナトリウム水溶液(2)に窒素ガスを吹き込むことで窒素置換を行った。
続いて、上記操作で得られた単量体水溶液(2)と過硫酸ナトリウム水溶液(2)とを、それぞれ別個に上記混合装置に供給して混合することで、単量体組成物(2)を作製した。該単量体組成物(2)のモノマー濃度は43質量%、中和率は70モル%であった。また、内部架橋剤であるポリエチレングリコールジアクリレートは単量体に対して0.02モル%、キレート剤であるジエチレントリアミン5酢酸・3ナトリウムは単量体に対して100ppm、重合開始剤である過硫酸ナトリウムは単量体に対して0.1g/モルであった。
次に、上記混合工程で作製した単量体組成物(2)を、速やかに上記2流体スプレーノズルの単量体組成物用流路に送液した。その後、上記2流体スプレーノズルを用いて、上記有機溶媒とともに、流量20ml/分(23.6g/分)で、単量体組成物(2)を反応装置に供給した。該単量体組成物(2)は、連続相をなす有機溶媒の循環方向と同じ方向(並流)となるように供給した。なお、該2流体スプレーノズルの先端部での上記単量体組成物(2)の流速は、0.87m/秒であった。また、該反応装置に供給する前の単量体組成物(2)の液温を25℃に保持した。また、実施例2での噴霧指数は68であった。
上記2流体スプレーノズルによって供給された上記単量体組成物(2)は、上記連続相中で液滴状(液滴径;100μm~250μm)に分散した。上記単量体組成物(2)と上記連続相をなす有機溶媒との比(W/O比)は、3.3容積%であった。
上記単量体組成物(2)からなる液滴は、上記連続相である有機溶媒が満たされた反応装置内を落下しながら、重合反応の進行に伴って微小な球形ゲルに変化した。これらの微小な球形ゲルは、落下するに従って相互に付着して凝集体を形成した。そして、該反応装置の排出口付近において、直径1cm~2cmの微小な球形ゲルの凝集体からなる含水ゲル(2)を確認した。
上記一連の操作で得られた含水ゲル(2)は、有機溶媒と共に連続的に反応装置から排出された。なお、実施例2において、単量体組成物(2)の反応装置への投入開始から、最初の含水ゲル(2)の反応装置からの排出までの重合時間は190秒であった。
上記反応装置から排出された含水ゲル(2)と有機溶媒とは、そのまま分離装置に連続的に供給された。該分離装置において、重力沈降を利用して、該含水ゲル(2)と有機溶媒とを分離した。なお、該分離装置で分離された有機溶媒は、設定温度が90℃となるように熱交換器で調温した後、再度、反応装置に供給した。
上記2流体スプレーノズルによる単量体組成物(2)の投入を20分間継続する間、該単量体組成物(2)の送液圧は0.10MPaで一定であり、この2流体スプレーノズルにおいて詰まりは見られなかった。
上記操作で得られた含水ゲル(2)は、微小な球形の含水ゲルが付着凝集した形状をしており、一次粒子径は250μmであった。
引き続き、得られた上記含水ゲル(2)を、180℃で50分間乾燥させた後、得られた乾燥重合体(2)を目開き850μmのJIS標準篩を用いて分級し、この篩を通過した球状の吸水性樹脂粉末(2)を採取した。
上記操作で得られた吸水性樹脂粉末(2)100質量部に対して、エチレングリコールジグリシジルエーテル0.015質量部、プロピレングリコール1.0質量部及びイオン交換水3.0質量部からなる表面架橋剤溶液をスプレーノズルで噴霧して、連続高速混合機を用いて均一に混合した。
その後、表面架橋剤を含む吸水性樹脂粉末(2)を、雰囲気温度を195℃±2℃に調温した熱処理機に導入して、40分間加熱処理した後、粉温が60℃となるまで強制的に冷却した。当操作によって、吸水性樹脂粒子(2)を得た。
上記吸水性樹脂粒子(2)を目開き850μmのJIS標準篩に通過させることで整粒し、製品としての吸水性樹脂(2)を得た。得られた含水ゲル(2)及び吸水性樹脂(2)について測定した諸物性を表1に示した。
[実施例3]
実施例2において、2流体スプレーノズルのスプレーノズル内径を0.70mm(形式:SETO07507S303+TS303)から1.0mm(形式:SETO07510S303+TS303)に、有機溶媒の循環流量を600ml/分から1000ml/分に、単量体組成物(2)の流量を20ml/分(23.6g/分)から40ml/分(47.2g/分)に、それぞれ変更した以外は、実施例2と同様の操作を行って、含水ゲル(3)及び吸水性樹脂(3)を得た。なお、上記反応装置から排出された含水ゲル(3)の一次粒子径は290μmであった。
実施例2において、2流体スプレーノズルのスプレーノズル内径を0.70mm(形式:SETO07507S303+TS303)から1.0mm(形式:SETO07510S303+TS303)に、有機溶媒の循環流量を600ml/分から1000ml/分に、単量体組成物(2)の流量を20ml/分(23.6g/分)から40ml/分(47.2g/分)に、それぞれ変更した以外は、実施例2と同様の操作を行って、含水ゲル(3)及び吸水性樹脂(3)を得た。なお、上記反応装置から排出された含水ゲル(3)の一次粒子径は290μmであった。
この製造方法では、上記有機溶媒の循環流量1000ml/分のうち、2流体スプレーノズルを介して反応装置に投入される有機溶媒の流量を240ml/分とし、直接反応装置に投入される有機溶媒の流量を760ml/分とした。また、該2流体スプレーノズルの先端部での上記有機溶媒の流速は2.36m/秒であり、上記単量体組成物(2)の流速は0.85m/秒であった。また、実施例3での噴霧指数は35であった。
上記2流体スプレーノズルによる単量体組成物(2)の投入を20分間継続する間、該単量体組成物(2)の送液圧は0.07MPaで一定であり、この2流体スプレーノズルにおいて詰まりは見られなかった。得られた含水ゲル(3)及び吸水性樹脂(3)について測定した諸物性を表1に示した。
[実施例4]
実施例3において、2流体スプレーノズルの材質をSUS303(形式:SETO07510S303+TS303)からPTFE(形式:SETO07510PTFE)に、有機溶媒をn-ヘプタン及びハイドロフルオロエーテルの混合溶媒からn-ヘプタン(密度:0.68g/ml)に、2流体スプレーノズルを介して反応装置に投入される有機溶媒の流量を240ml/分から800ml/分に、直接反応装置に投入される有機溶媒の流量を760ml/分から200ml/分に、それぞれ変更した以外は、実施例3と同様の操作を行って、含水ゲル(4)及び吸水性樹脂(4)を得た。なお、上記反応装置から排出された含水ゲル(4)の一次粒子径は210μmであった。また、該2流体スプレーノズルの先端部での上記有機溶媒の流速は7.86m/秒であり、上記単量体組成物(2)の流速は0.85m/秒であった。また、実施例4での噴霧指数は988であった。
実施例3において、2流体スプレーノズルの材質をSUS303(形式:SETO07510S303+TS303)からPTFE(形式:SETO07510PTFE)に、有機溶媒をn-ヘプタン及びハイドロフルオロエーテルの混合溶媒からn-ヘプタン(密度:0.68g/ml)に、2流体スプレーノズルを介して反応装置に投入される有機溶媒の流量を240ml/分から800ml/分に、直接反応装置に投入される有機溶媒の流量を760ml/分から200ml/分に、それぞれ変更した以外は、実施例3と同様の操作を行って、含水ゲル(4)及び吸水性樹脂(4)を得た。なお、上記反応装置から排出された含水ゲル(4)の一次粒子径は210μmであった。また、該2流体スプレーノズルの先端部での上記有機溶媒の流速は7.86m/秒であり、上記単量体組成物(2)の流速は0.85m/秒であった。また、実施例4での噴霧指数は988であった。
上記2流体スプレーノズルによる単量体組成物(2)の投入を20分間継続する間、該単量体組成物(2)の送液圧は0.06MPaで一定であり、この2流体スプレーノズルにおいて詰まりは見られなかった。得られた含水ゲル(4)及び吸水性樹脂(4)について測定した諸物性を表1に示した。
[実施例5]
実施例4において、ポリエチレングリコールジアクリレート(平均重合度:9)をN,N-メチレンビスアクリルアミドに変更して単量体組成物(5)を作製し、分散助剤としてショ糖脂肪酸エステル(商品名:DKエステルF-50/第一工業製薬株式会社)をn-ヘプタンに0.005質量%添加した以外は、実施例4と同様の操作を行って含水ゲル(5)及び吸水性樹脂(5)を得た。なお、上記反応装置から排出された含水ゲル(5)は、微小な球形ゲルが付着凝集した形状をしており、その一次粒子径は100μmであった。
実施例4において、ポリエチレングリコールジアクリレート(平均重合度:9)をN,N-メチレンビスアクリルアミドに変更して単量体組成物(5)を作製し、分散助剤としてショ糖脂肪酸エステル(商品名:DKエステルF-50/第一工業製薬株式会社)をn-ヘプタンに0.005質量%添加した以外は、実施例4と同様の操作を行って含水ゲル(5)及び吸水性樹脂(5)を得た。なお、上記反応装置から排出された含水ゲル(5)は、微小な球形ゲルが付着凝集した形状をしており、その一次粒子径は100μmであった。
上記2流体スプレーノズルによる単量体組成物(5)の投入を20分間継続する間、該単量体組成物(5)の送液圧は0.06MPaで一定であり、この2流体スプレーノズルにおいて詰まりは見られなかった。得られた含水ゲル(5)及び吸水性樹脂(5)について測定した諸物性を表1に示した。
[実施例6]
実施例5において、n-ヘプタン中のショ糖脂肪酸エステルの濃度を、0.005質量%から0.1質量%に変更した以外は、実施例5と同様の操作を行って含水ゲル(6)及び吸水性樹脂(6)を得た。得られた含水ゲル(6)は、微小な球形ゲルがわずかに付着凝集した形状をしており、その一次粒子径は90μmであった。
実施例5において、n-ヘプタン中のショ糖脂肪酸エステルの濃度を、0.005質量%から0.1質量%に変更した以外は、実施例5と同様の操作を行って含水ゲル(6)及び吸水性樹脂(6)を得た。得られた含水ゲル(6)は、微小な球形ゲルがわずかに付着凝集した形状をしており、その一次粒子径は90μmであった。
上記2流体スプレーノズルによる単量体組成物(5)の投入を20分間継続する間、該単量体組成物(5)の送液圧は0.06MPaで一定であり、この2流体スプレーノズルにおいて詰まりは見られなかった。得られた含水ゲル(6)及び吸水性樹脂(6)について測定した諸物性を表1に示した。
[比較例3]
特開昭61-192703号公報の実施例1に準拠して、比較分散液(3)を調整し、比較含水ゲル(3)及び比較吸水性樹脂(3)を製造した。
特開昭61-192703号公報の実施例1に準拠して、比較分散液(3)を調整し、比較含水ゲル(3)及び比較吸水性樹脂(3)を製造した。
即ち、攪拌機、2段パドル翼、還流冷却器、滴下ロート及び窒素ガス導入管を備えた容量1Lの四つ口フラスコに、有機溶媒としてシクロヘキサン500g及びソルビタントリステアレート(HLB:2.1、商品名:レオドール SP-S30V/花王株式会社)6.0gを投入した後、20分間、窒素ガスを吹き込んで窒素置換し、70℃まで昇温した。シクロヘキサン中のソルビタントリステアレート濃度は、1.2質量%である。
別のフラスコに、アクリル酸100g(1.39モル)を投入した後、外部から冷却しながら、20.8質量%の水酸化ナトリウム水溶液207g(1.08モル)を滴下して、中和率78モル%のアクリル酸ナトリウム水溶液を得た。その後、ラジカル重合開始剤として過硫酸アンモニウム0.2gと、内部架橋剤としてエチレングリコールジグリシジルエーテル0.1gとを加えて溶解することで、比較単量体組成物(3)を調製した。該比較単量体組成物(3)に、液温を20℃に保ちながら窒素ガスを吹き込むことで窒素置換した。また、該比較単量体組成物(3)のモノマー濃度は40質量%であった。
上記混合工程で調製した比較単量体組成物(3)を、滴下ロートを用いて、250rpmの速度で撹拌している上記四つ口フラスコ内の有機溶媒中に2時間かけて滴下し、比較単量体組成物(3)の分散液を得た。
上記比較単量体組成物(3)の全量を滴下した後、70℃で2時間、加熱することにより、比較含水ゲル(3)を得た。得られた比較含水ゲル(3)の一次粒子径は140μmであり、凝集は見られなかった。
引き続き、得られた上記比較含水ゲル(3)を、120℃で50分間乾燥を行った後、得られた比較乾燥重合体(3)を目開き850μmのJIS標準篩を用いて分級し、この篩を通過した球状の比較吸水性樹脂粉末(3)を採取した。得られた上記比較吸水性樹脂粉末(3)を実施例1と同様の表面架橋処理を行い、表面架橋された比較吸水性樹脂(3)を得た。得られた比較含水ゲル(3)及び比較吸水性樹脂(3)の諸物性を表1に示した。
[比較例4]
比較例3において、ソルビタントリステアレートの添加量を6.0gから0.05gシクロヘキサン中のソルビタントリステアレート濃度:0.1質量%)に変更した以外は、比較例1と同様の操作を行い、比較単量体組成物(3)の分散液の調整を行ったところ、滴下した比較単量体組成物(3)の大部分がフラスコの底部に沈降、一体化し、分散しなかった。
比較例3において、ソルビタントリステアレートの添加量を6.0gから0.05gシクロヘキサン中のソルビタントリステアレート濃度:0.1質量%)に変更した以外は、比較例1と同様の操作を行い、比較単量体組成物(3)の分散液の調整を行ったところ、滴下した比較単量体組成物(3)の大部分がフラスコの底部に沈降、一体化し、分散しなかった。
[実施例7]
実施例3において、供給装置を2流体スプレーノズルから4流体スプレーノズル(藤崎電気株式会社製、形式:SE4003)に変更した以外は、実施例3と同様の操作を行って、含水ゲル(7)及び吸水性樹脂(7)を得た。なお、該4流体スプレーノズルの先端部での上記単量体組成物(2)の流速は0.22m/秒、上記有機溶媒の流速は、2.67m/秒、噴霧指数は498であった。また、上記4流体スプレーノズルによる単量体組成物(2)の投入を20分間継続する間、該単量体組成物(2)の送液圧は0.02MPaで一定であり、この4流体スプレーノズルにおいて詰まりは見られなかった。上記操作で得られた含水ゲル(7)の一次粒子径は230μmであった。得られた含水ゲル(7)及び吸水性樹脂(7)について測定した諸物性を表1に示した。
実施例3において、供給装置を2流体スプレーノズルから4流体スプレーノズル(藤崎電気株式会社製、形式:SE4003)に変更した以外は、実施例3と同様の操作を行って、含水ゲル(7)及び吸水性樹脂(7)を得た。なお、該4流体スプレーノズルの先端部での上記単量体組成物(2)の流速は0.22m/秒、上記有機溶媒の流速は、2.67m/秒、噴霧指数は498であった。また、上記4流体スプレーノズルによる単量体組成物(2)の投入を20分間継続する間、該単量体組成物(2)の送液圧は0.02MPaで一定であり、この4流体スプレーノズルにおいて詰まりは見られなかった。上記操作で得られた含水ゲル(7)の一次粒子径は230μmであった。得られた含水ゲル(7)及び吸水性樹脂(7)について測定した諸物性を表1に示した。
[実施例8]
実施例3において、供給装置を株式会社いけうち製2流体スプレーノズルから株式会社 共立合金製作所(エバーロイ)製2流体スプレーノズル(形式:MMA50)に変更した以外は、実施例3と同様の操作を行って、含水ゲル(8)及び吸水性樹脂(8)を得た。なお、該2流体スプレーノズルの先端部での上記単量体組成物(2)の流速は0.29m/秒、上記有機溶媒の流速は、2.36m/秒、噴霧指数は295であった。また、上記2流体スプレーノズルによる単量体組成物(2)の投入を20分間継続する間、該単量体組成物(2)の送液圧は0.02MPaで一定であり、この2流体スプレーノズルにおいて詰まりは見られなかった。上記操作で得られた含水ゲル(8)の一次粒子径は240μmであった。得られた含水ゲル(8)及び吸水性樹脂(8)について測定した諸物性を表1に示した。
実施例3において、供給装置を株式会社いけうち製2流体スプレーノズルから株式会社 共立合金製作所(エバーロイ)製2流体スプレーノズル(形式:MMA50)に変更した以外は、実施例3と同様の操作を行って、含水ゲル(8)及び吸水性樹脂(8)を得た。なお、該2流体スプレーノズルの先端部での上記単量体組成物(2)の流速は0.29m/秒、上記有機溶媒の流速は、2.36m/秒、噴霧指数は295であった。また、上記2流体スプレーノズルによる単量体組成物(2)の投入を20分間継続する間、該単量体組成物(2)の送液圧は0.02MPaで一定であり、この2流体スプレーノズルにおいて詰まりは見られなかった。上記操作で得られた含水ゲル(8)の一次粒子径は240μmであった。得られた含水ゲル(8)及び吸水性樹脂(8)について測定した諸物性を表1に示した。
(まとめ)
表1に示した通り、実施例1~8の製造方法によれば、単量体組成物の液滴径を、スプレーノズル内径よりも小さくすることができるため、1次粒子径が小さい含水ゲルが得られる。その結果として、Vortex(吸水時間)が短く、吸水速度に優れた吸水性樹脂を、短時間で効率良く製造することができる。また、得られる含水ゲルの1次粒子径は、スプレーノズルの内径に依存せず、多流体スプレーノズルに補助流体として投入される有機溶媒の流量の調整によって制御されるため、装置の大型化が容易であり、大量生産に適している。
表1に示した通り、実施例1~8の製造方法によれば、単量体組成物の液滴径を、スプレーノズル内径よりも小さくすることができるため、1次粒子径が小さい含水ゲルが得られる。その結果として、Vortex(吸水時間)が短く、吸水速度に優れた吸水性樹脂を、短時間で効率良く製造することができる。また、得られる含水ゲルの1次粒子径は、スプレーノズルの内径に依存せず、多流体スプレーノズルに補助流体として投入される有機溶媒の流量の調整によって制御されるため、装置の大型化が容易であり、大量生産に適している。
一方、比較例1及び比較例2では、実施例1~8よりも内径の小さいニードルを使用したにもかかわらず、実施例1~8よりも一次粒子径が大きな含水ゲルが得られた。更に、比較例1及び比較例2で用いられるニードルでは、得られる含水ゲルの1次粒子径がニードルの内径より大きくなり、吸水速度が遅い吸水性樹脂となった。また、吸水速度を高めるために内径の細いニードルを用いた場合(比較例2)、単量体組成物の供給圧の上昇や、スプレーノズル先端及び内部での詰まりが発生しやすく、生産性の向上は見込めない結果であった。また、比較例3では、従来用いられていた機械的攪拌では、本発明と同等の粒子径の吸水性樹脂を得るには大量の分散助剤が必要であり、そのため、吸水性樹脂の表面張力が大幅に低下する結果であった。比較例4では、従来用いられていた機械的攪拌では、本発明と同量の分散助剤量では分散ができない結果であった。
表1に示された評価結果から、本発明の優位性は明らかである。
本発明に係る重合性液体組成物の分散方法は、種々の球状重合体粒子の製造に適用することができる。この分散方法を使用して製造された球状重合体粒子は、吸水性樹脂としての用途以外にも、様々な技術分野での利用に適している。
1・・・2流体スプレーノズル
2、61、62・・・重合性液体組成物用流路
2a、61a、62a・・・重合性液体組成物用供給口
2b、61b、62b・・・重合性液体組成物用排出口
3、71、72・・・非相溶性液体組成物用流路
3a、71a、72a・・・非相溶性液体組成物用供給口
3b、71b、72b・・・非相溶性液体組成物用排出口
4、8・・・スプレーノズルの先端部
5・・・4流体スプレーノズル
10・・・混合装置
12・・・供給装置
14・・・反応装置
16・・・分離装置
18・・・熱交換器
20・・・送液ポンプ
30、40、50・・・配管
60・・・単量体溶液供給配管
70・・・重合開始剤供給配管
80・・・ゲル状重合体排出配管
2、61、62・・・重合性液体組成物用流路
2a、61a、62a・・・重合性液体組成物用供給口
2b、61b、62b・・・重合性液体組成物用排出口
3、71、72・・・非相溶性液体組成物用流路
3a、71a、72a・・・非相溶性液体組成物用供給口
3b、71b、72b・・・非相溶性液体組成物用排出口
4、8・・・スプレーノズルの先端部
5・・・4流体スプレーノズル
10・・・混合装置
12・・・供給装置
14・・・反応装置
16・・・分離装置
18・・・熱交換器
20・・・送液ポンプ
30、40、50・・・配管
60・・・単量体溶液供給配管
70・・・重合開始剤供給配管
80・・・ゲル状重合体排出配管
Claims (13)
- スプレーノズルを用いて重合性液体組成物を分散相にする分散方法であって、
上記スプレーノズルに、重合性モノマーを含有する少なくとも1種の重合性液体組成物と、この重合性モノマーと非相溶性である少なくとも1種の非相溶性液体組成物とを導入し、
上記少なくとも1種の重合性液体組成物と、上記少なくとも1種の非相溶性液体組成物とを、相互に接触させることなく上記スプレーノズルの内部を通過させて、このスプレーノズルの先端部まで誘導し、
上記スプレーノズルから排出する直前又は直後に、上記少なくとも1種の重合性液体組成物と上記少なくとも1種の非相溶性液体組成物とを接触させることにより重合性液体組成物を分散相にする分散方法。 - 上記スプレーノズルの内部に、気体が導入されない、請求項1に記載の分散方法。
- 上記スプレーノズルからの排出物を、該排出物と異なる組成を有する液体組成物に供給する請求項1又は2に記載の分散方法。
- 上記排出物と異なる組成を有する液体組成物が、上記スプレーノズルから排出された非相溶性液体組成物を主成分とする非相溶性液体組成物から形成される、請求項3に記載の分散方法。
- 上記スプレーノズルの排出口を、上記排出物と異なる組成を有する液体組成物に浸漬させる、請求項3又は4に記載の分散方法。
- 上記スプレーノズルが、外部混合型の多流体スプレーノズルである、請求項1から5の何れか1項に記載の分散方法。
- 上記重合性液体組成物の、上記スプレーノズルの先端部における流速が0.01m/s~10m/sであり、
上記非相溶性液体組成物の、上記スプレーノズルの先端部における流速が1m/s~50m/sである、請求項1から6の何れか1項に記載の分散方法。 - 上記重合性モノマーが水溶性の重合性モノマーである、請求項1から7の何れか1項に記載の分散方法。
- 上記重合性液体組成物が、(メタ)アクリル酸(塩)を主成分とする単量体組成物であり、
上記非相溶性液体組成物が、脂肪族炭化水素、脂環状炭化水素、芳香族炭化水素、ハロゲン化炭化水素からなる群から選択される少なくとも1種の有機溶媒である、請求項1から8の何れか1項に記載の分散方法。 - 請求項1から9の何れか1項に記載の分散方法により得られた分散液を用いた、球状重合体粒子の製造方法。
- 上記重合性液体組成物が熱分解型重合開始剤を含んでおり、
上記スプレーノズルから排出された重合性液体組成物を加熱することにより、上記重合性モノマーをラジカル重合させて上記球状重合体粒子を製造する、請求項10に記載の製造方法。 - 上記球状重合体粒子が、連続式製造法により製造される請求項10又は11に記載の製造方法。
- 上記球状重合体粒子が吸水性樹脂である、請求項10から12の何れか1項に記載の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-099218 | 2015-05-14 | ||
JP2015099218 | 2015-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016182082A1 true WO2016182082A1 (ja) | 2016-11-17 |
Family
ID=57249061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/064416 WO2016182082A1 (ja) | 2015-05-14 | 2016-05-16 | 重合性液体組成物の分散方法及び球状重合体粒子の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016182082A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020067311A1 (ja) * | 2018-09-27 | 2020-04-02 | 株式会社日本触媒 | 吸水性樹脂の製造方法および吸水性樹脂 |
JPWO2020218162A1 (ja) * | 2019-04-23 | 2020-10-29 | ||
WO2020218161A1 (ja) * | 2019-04-23 | 2020-10-29 | 住友精化株式会社 | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 |
WO2020218168A1 (ja) * | 2019-04-23 | 2020-10-29 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体及び吸収性物品 |
JP2021518874A (ja) * | 2019-01-07 | 2021-08-05 | エルジー・ケム・リミテッド | 高吸水性樹脂およびその製造方法 |
JP2021178982A (ja) * | 2014-01-10 | 2021-11-18 | 小松マテーレ株式会社 | 繊維強化樹脂材料及びそれを用いた繊維強化樹脂成形体 |
WO2022181771A1 (ja) | 2021-02-26 | 2022-09-01 | 株式会社日本触媒 | 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05132502A (ja) * | 1991-11-13 | 1993-05-28 | Jgc Corp | 噴霧重合法 |
JPH05329351A (ja) * | 1992-05-30 | 1993-12-14 | Kao Corp | 微粒液滴の生成方法 |
JP2004250630A (ja) * | 2003-02-21 | 2004-09-09 | Mitsubishi Chemicals Corp | 疎水性液滴の製造方法、ポリマービーズの製造方法及び製造装置、並びにイオン交換樹脂の製造方法 |
JP2013160495A (ja) * | 2012-02-03 | 2013-08-19 | Ryotsu Kogyo:Kk | 水と油との分散混合燃料生成装置 |
-
2016
- 2016-05-16 WO PCT/JP2016/064416 patent/WO2016182082A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05132502A (ja) * | 1991-11-13 | 1993-05-28 | Jgc Corp | 噴霧重合法 |
JPH05329351A (ja) * | 1992-05-30 | 1993-12-14 | Kao Corp | 微粒液滴の生成方法 |
JP2004250630A (ja) * | 2003-02-21 | 2004-09-09 | Mitsubishi Chemicals Corp | 疎水性液滴の製造方法、ポリマービーズの製造方法及び製造装置、並びにイオン交換樹脂の製造方法 |
JP2013160495A (ja) * | 2012-02-03 | 2013-08-19 | Ryotsu Kogyo:Kk | 水と油との分散混合燃料生成装置 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021178982A (ja) * | 2014-01-10 | 2021-11-18 | 小松マテーレ株式会社 | 繊維強化樹脂材料及びそれを用いた繊維強化樹脂成形体 |
JP7157167B2 (ja) | 2018-09-27 | 2022-10-19 | 株式会社日本触媒 | 吸水性樹脂の製造方法および吸水性樹脂 |
WO2020067311A1 (ja) * | 2018-09-27 | 2020-04-02 | 株式会社日本触媒 | 吸水性樹脂の製造方法および吸水性樹脂 |
JPWO2020067311A1 (ja) * | 2018-09-27 | 2021-08-30 | 株式会社日本触媒 | 吸水性樹脂の製造方法および吸水性樹脂 |
EP3819330A4 (en) * | 2019-01-07 | 2021-10-20 | LG Chem, Ltd. | SUPERABSORBIVE RESIN AND MANUFACTURING METHOD FOR IT |
US11718694B2 (en) | 2019-01-07 | 2023-08-08 | Lg Chem, Ltd. | Super absorbent polymer and preparation method thereof |
JP7210082B2 (ja) | 2019-01-07 | 2023-01-23 | エルジー・ケム・リミテッド | 高吸水性樹脂およびその製造方法 |
JP2021518874A (ja) * | 2019-01-07 | 2021-08-05 | エルジー・ケム・リミテッド | 高吸水性樹脂およびその製造方法 |
JPWO2020218161A1 (ja) * | 2019-04-23 | 2020-10-29 | ||
WO2020218168A1 (ja) * | 2019-04-23 | 2020-10-29 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体及び吸収性物品 |
JPWO2020218168A1 (ja) * | 2019-04-23 | 2021-12-02 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体及び吸収性物品 |
JP7117456B2 (ja) | 2019-04-23 | 2022-08-12 | 住友精化株式会社 | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 |
JP7143513B2 (ja) | 2019-04-23 | 2022-09-28 | 住友精化株式会社 | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 |
WO2020218162A1 (ja) * | 2019-04-23 | 2020-10-29 | 住友精化株式会社 | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 |
WO2020218161A1 (ja) * | 2019-04-23 | 2020-10-29 | 住友精化株式会社 | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 |
JPWO2020218162A1 (ja) * | 2019-04-23 | 2020-10-29 | ||
WO2022181771A1 (ja) | 2021-02-26 | 2022-09-01 | 株式会社日本触媒 | 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016182082A1 (ja) | 重合性液体組成物の分散方法及び球状重合体粒子の製造方法 | |
EP3228636B1 (en) | Method for producing water-absorbent resin | |
EP2922882B2 (en) | A process for producing surface-postcrosslinked water-absorbent polymer particles | |
JP5755142B2 (ja) | モノマー溶液の液滴を重合させることによって浸透性の吸水性ポリマー粒子を製造する方法 | |
EP2550306B1 (en) | A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution | |
EP2922879B1 (en) | A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution | |
JP6595623B2 (ja) | 吸水性樹脂の製造方法 | |
KR20150091363A (ko) | 폴리아크릴산(염)계 흡수성 수지 및 그의 제조 방법 | |
JP7157167B2 (ja) | 吸水性樹脂の製造方法および吸水性樹脂 | |
JP2018172692A (ja) | 吸水性ポリマー粒子から残留モノマーを除去する方法 | |
EP3227345A1 (de) | Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation | |
US11491463B2 (en) | Superabsorber mixtures | |
JP6722507B2 (ja) | 吸水性樹脂の製造方法 | |
EP3262086A1 (de) | Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation | |
US11859059B2 (en) | Method for the pneumatic delivery of superabsorbent particles | |
JP2018510951A (ja) | 超吸収体粒子を凝集させる方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16792806 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16792806 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |