WO2020217890A1 - 含クロム溶鉄の製造方法 - Google Patents
含クロム溶鉄の製造方法 Download PDFInfo
- Publication number
- WO2020217890A1 WO2020217890A1 PCT/JP2020/014962 JP2020014962W WO2020217890A1 WO 2020217890 A1 WO2020217890 A1 WO 2020217890A1 JP 2020014962 W JP2020014962 W JP 2020014962W WO 2020217890 A1 WO2020217890 A1 WO 2020217890A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slag
- concentration
- furnace
- electric furnace
- mass
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 140
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 70
- 239000011651 chromium Substances 0.000 title claims description 91
- 229910052804 chromium Inorganic materials 0.000 title claims description 60
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000002893 slag Substances 0.000 claims abstract description 141
- 229910052751 metal Inorganic materials 0.000 claims abstract description 86
- 239000002184 metal Substances 0.000 claims abstract description 86
- 239000002994 raw material Substances 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 30
- 229910000604 Ferrochrome Inorganic materials 0.000 claims abstract description 16
- 238000007670 refining Methods 0.000 claims abstract description 15
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims description 90
- 230000009467 reduction Effects 0.000 claims description 64
- 238000007664 blowing Methods 0.000 claims description 37
- 229910052710 silicon Inorganic materials 0.000 claims description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 33
- 239000010703 silicon Substances 0.000 claims description 33
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 32
- 230000004907 flux Effects 0.000 claims description 23
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 13
- 239000002801 charged material Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 6
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000009472 formulation Methods 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 abstract description 10
- 238000007254 oxidation reaction Methods 0.000 abstract description 10
- 239000012768 molten material Substances 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 77
- 239000007789 gas Substances 0.000 description 51
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 47
- 229910000423 chromium oxide Inorganic materials 0.000 description 47
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 40
- 238000000034 method Methods 0.000 description 24
- 239000000292 calcium oxide Substances 0.000 description 20
- 235000012255 calcium oxide Nutrition 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 20
- 230000000694 effects Effects 0.000 description 13
- 238000011084 recovery Methods 0.000 description 12
- 238000004090 dissolution Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 238000009529 body temperature measurement Methods 0.000 description 10
- 230000001603 reducing effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 238000005261 decarburization Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5211—Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
- C21C5/5217—Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0006—Adding metallic additives
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/005—Manufacture of stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4673—Measuring and sampling devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/527—Charging of the electric furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/54—Processes yielding slags of special composition
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0025—Adding carbon material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/30—Obtaining chromium, molybdenum or tungsten
- C22B34/32—Obtaining chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/04—Working-up slag
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- This disclosure relates to a method for producing chromium-containing molten iron.
- Patent Document 1 discloses a technique for returning converter slag to an electric furnace and reducing it in the electric furnace. According to this technique, it is stated that metallic chromium can be sufficiently recovered. Further, Patent Document 2 discloses a technique for reducing chromium in an electric furnace without using an F-containing substance such as fluorite. According to this technique, it is described that metallic chromium can be effectively reduced and recovered from chromium oxide.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2010-242128
- Patent Document 2 Japanese Patent Application Laid-Open No. 2010-90428
- Patent Documents 1 and 2 can suppress the amount of slag generated to the outside of the system, but the amount of slag reduction is insufficient from the viewpoint of social demand for environmental harmony. In addition, as the demand for stainless steel products increases, it is also required to be able to efficiently recover chromium.
- the present disclosure provides a method for producing chromium-containing molten iron capable of efficiently reducing unreduced slag containing chromium oxide generated by oxidative refining to recover chromium and suppressing the amount of slag generated.
- the purpose is to provide.
- a charge containing unreduced slag containing oxides has a mass ratio of 0.30 to 0.40 defined by the amount of metallic Si / Cr oxide, and a C concentration of 2.0% by mass or more and a saturation concentration or less.
- the diameter of the circle passing through the center of each of the three electrodes viewed from the central axis direction of the electric furnace is PCD (m), and the vertical distance from the tip of each of the three electrodes to the static molten metal surface of molten iron.
- the deflection angle of the arc is ⁇ (deg)
- the operation is performed under the conditions satisfying the following equations (1) to (4) to produce molten iron containing Cr in which the Cr oxide has been reduced.
- the furnace center is located at the center of gravity of a triangle whose apex is the center of each of the three electrodes, and the electric furnace is further viewed from the central axis direction.
- the furnace bottom excluding the band region.
- ⁇ 4> The method for producing chromium-containing molten iron according to any one of ⁇ 1> to ⁇ 3>, wherein the stirring power density during operation of the electric furnace is set to 0.01 kW / ton or more and 1.0 kW / ton or less. ..
- the container contains a carbon source, a silicon source, a CaO source, and an Al 2 O 3 source.
- a carbon source a silicon source
- a CaO source a CaO source
- Al 2 O 3 source a carbon source
- the containers other than the metal raw material, they are auxiliary raw materials.
- the content of the auxiliary material with a mesh over 25 mm is 5% by mass or more and 30% by mass or less with respect to the entire container, and the content of the auxiliary material with a mesh under 3.15 mm is the charge.
- the C concentration and Si concentration in the molten iron after the reduction treatment satisfy the condition of the following formula (5), and the relationship between the CaO concentration, the SiO 2 concentration and the Al 2 O 3 concentration in the slag after the reduction treatment is The method for producing chromium-containing molten iron according to any one of ⁇ 1> to ⁇ 4>, wherein the charged material is charged into the electric furnace so as to satisfy the condition of the following formula (6).
- [C] and [Si] are the C concentration (mass%) and Si concentration (mass%) in the molten iron after the reduction treatment, respectively, and (CaO), (SiO 2 ) and (Al 2 O 3 ) are respectively.
- T represents the temperature (°C) Molten after the reduction treatment.
- the maximum temperature reached of the surface temperature of the refractory furnace wall of the electric furnace in one charge is 1000 ° C. or more and 1800 ° C. or less, and the surface temperature of the refractory furnace wall is 1000 ° C. or more and 1800 ° C. or less.
- the heat flux from the surface of the refractory furnace wall to the inside of the furnace body is set to 150 Mcal / m 2 / hr or less to melt the charged material charged in the electric furnace ⁇ 1> to ⁇ .
- the method for producing a chromium-containing molten iron according to any one of 6>.
- chromium-containing molten iron capable of efficiently reducing unreduced slag containing chromium oxide generated by oxidative refining to recover chromium and suppressing the amount of slag generated. it can.
- the numerical range represented by using “-” means a range including the numerical values before and after “-” as the lower limit value and the upper limit value.
- the numerical range when “greater than” or “less than” is added to the numerical values before and after “to” means a range in which these numerical values are not included as the lower limit value or the upper limit value.
- the upper limit value or the lower limit value of the numerical range described stepwise may be replaced with the upper limit value or the lower limit value of the numerical range described stepwise. , May be replaced with the values shown in the examples.
- “%” means “mass%”.
- FIG. 1 is a vertical sectional view of an electric furnace for producing chromium-containing molten iron in the present embodiment.
- the detailed structure of the electric furnace used in the present embodiment will be described.
- the electric furnace 10 used in the present embodiment is an AC electric furnace having three electrodes as shown in FIG. Details will be described later, but in the present embodiment, unreduced slag containing chromium oxide generated by oxidative refining, for example, chromium-containing molten iron, is decarburized in a converter which is a subsequent step as a charge to the electric furnace. Separately charged converter slag, ferrochrome containing metallic Si and / or ferrosilicon as a metal raw material, and other auxiliary raw materials as needed are charged into the electric furnace 10 to form unreduced slag. Chromium-containing molten iron is produced by reducing the contained Cr oxide with a metal Si derived from ferrochrome and / or ferrosilicon.
- a plurality of agitating gas blowing plugs 13 are installed in the bottom 12 of the electric furnace 10, and the number of agitating gas blowing plugs 13 is 0.12 or more per 1 m 2 of the molten metal surface area, and further adjacent stirring gas. Assuming that the distance between the centers of the blowing plug 13 is L and the molten metal depth from the furnace bottom 12 to the molten metal surface is H, the L / H is preferably 0.50 or more. This makes it possible to further improve the efficiency of reduction and recovery of chromium oxide.
- the molten metal surface area is the area of the molten metal surface when the electric furnace 10 is viewed from above. Further, the distance L between the centers of the adjacent stirring gas blowing plugs 13 is a horizontal distance.
- the molten metal depth H is the average value of the molten metal depths at the two adjacent plug positions. Generally, the molten metal depth H is 50 cm or more, and the maximum value is about 2 m in a large electric furnace.
- Stirring of the molten metal appropriately promotes contact between the undissolved charge and the molten metal, and promotes heating and melting of the charged material.
- the electric furnace 10 is a shallow bath, the stirring efficiency is low, and there is a limit to the range in which the molten metal can be well stirred by one stirring gas blowing plug 13.
- the number of the stirring gas blowing plugs 13 per 1 m 2 of the molten metal surface area is within the above range.
- the "stirring gas blowing number of plugs per molten metal surface area 1 m 2” in which the number of stirring gas blowing plug 13 divided by the molten metal surface area at operation.
- the area of the weakly agitated region is reduced and the entire molten metal is well agitated, and as a result, the contact between the charge and the molten metal is promoted, and the heating and melting of the charge are promoted.
- There is a physical upper limit (installation location) for the number of agitated gas blowing plugs to be installed and it is generally considered that the upper limit is about 0.5 per 1 m 2 of the molten metal surface area.
- the upper limit of L / H does not need to be set in particular, but there is a physical upper limit of L / H, which is generally about 5.
- the electric furnace 10 is viewed in a plan view from the central axis direction, and each center of the three electrodes 15a, 15b, and 15c is set as an apex.
- the furnace center 11 is arranged at the center of the triangle, and the electric furnace 10 is viewed in a plan view, and the virtual line extending from the furnace center 11 through the centers of the electrodes 15a, 15b, and 15c to the refractory furnace wall 14 is used as the center line.
- the stirring gas blowing plug 13 Assuming a band region 16 having a width of the diameter of the electrode, it is preferable to arrange the stirring gas blowing plug 13 in the furnace bottom region excluding the band region 16.
- an electromagnetic force is generated between conductors in which current flows in parallel.
- an outward electromagnetic force acts on the arc with respect to the electrode circle.
- the arc is tilted toward the furnace wall rather than vertically.
- the arc directed to the furnace wall blows an arc jet stream of high-temperature gas onto the furnace wall along a virtual line extending from the center of the furnace through the center of the electrodes to the furnace wall.
- This arcjet flow flowing at high speed on the surface layer of the molten metal bath surface gives a shearing force to the molten metal bath surface, and the molten metal flow along the arcjet flow is generated.
- the stirring gas blowing plug has a region that does not hinder the flow of molten metal due to the arcjet flow, that is, a band region whose center line is a virtual line extending from the center of the furnace to the furnace wall through the center of the electrode and the width of the diameter of the electrode. It is preferably arranged in the bottom area to be excluded. In this case, at least one of the plurality of agitating gas blowing plugs may be arranged in the fire bottom region excluding the band region, but all the agitating gas blowing plugs may be arranged in the fire bottom region excluding the band region. More preferred.
- the wear of refractories in the electric furnace can be suppressed, the non-operating time of the electric furnace can be shortened, the time can be devoted to the dissolution and reduction of unreduced slag, and the reduction and recovery of chromium oxide can be further improved. Become.
- the three electrodes 15a, 15b, and 15c are arranged in the central portion of the furnace body 17 so as to form an equilateral triangle with each center as the apex.
- a refractory furnace wall 14 is provided on the inner surface of the furnace body 17.
- the electric furnace 10 according to the present embodiment is a refractory furnace at a position facing the electrodes 15a, 15b, 15c in the radial direction with the furnace body 17, which receives a large amount of radiant heat of the arc generated between the metal raw material and the electrodes.
- a temperature measuring unit 30 for measuring the temperature of the surface of the wall 14 is provided.
- the temperature measuring unit 30 is composed of three thermocouples 31, 33, and 35, respectively.
- the thermocouples 31, 33, and 35 are provided so as to penetrate the furnace body 17 and the perm refractory 14a and the ware refractory 14b constructed on the inner surface thereof so that the tip portion is located inside the ware refractory 14b. ..
- the tips of the thermocouples 31, 33, and 35 are arranged so that the distances L1, L2, and L3 from the surface of the perm refractory 14a in the radial direction of the furnace body 17 are different. As a result, the temperature distribution on the inner wall surface of the furnace at the position measured by the temperature measuring unit 30 can be estimated.
- the temperature measurement value measured by the temperature measurement unit 30 is output to the control device 40 that controls the operation of the electric furnace 10.
- the temperature measuring unit 30 in the present embodiment is composed of three thermocouples 31, 33, and 35, but the present invention is not limited to this example, and the temperature measuring unit 30 may be composed of a plurality of thermocouples.
- the temperature measurement values measured by the thermocouples 31, 33 and 35 are output to the control device 40.
- the control device 40 calculates the temperature gradient in the refractory thickness direction based on these temperature measurement values, and estimates the surface temperature of the refractory furnace wall 14. By obtaining the temperature gradient in the refractory thickness direction in this way, the surface temperature of the refractory furnace wall 14 can be estimated more accurately based on the temperature gradient.
- the acquisition of the surface temperature of the refractory furnace wall 14 is not limited to such a method, and for example, a method of directly measuring the surface temperature or another appropriate surface temperature estimation method may be used.
- the electric furnace 10 in the present embodiment can also measure the heat flux from the surface of the refractory furnace wall 14 to the inside of the furnace body.
- the heat flux can be obtained by, for example, the temperature measuring unit 30 shown in FIG. 3, similar to the measurement of the surface temperature of the refractory furnace wall.
- the temperature measurement values measured by the plurality of thermocouples 31, 33, 35 installed so that the tip portion is located at different positions in the refractory furnace wall 14 in the refractory thickness direction are output to the control device 40.
- the control device 40 calculates the temperature gradient in the refractory thickness direction based on these temperature measurement values, and estimates the heat flux from the surface of the refractory furnace wall 14 to the inside of the furnace body 10.
- the temperature gradient is calculated at a predetermined sampling time (for example, an arbitrary time of 300 seconds or less) to estimate the heat flux.
- the heat flux may be calculated by performing an inverse problem analysis in heat transfer from the time course of the temperature measurement values at two points using any two temperature measurement values of the thermocouples 31, 33, and 35.
- the heat flux is not limited to this method, and other appropriate surface temperature estimation methods and heat flux estimation methods may be used.
- the heat flux is acquired based on the temperature measurement values of each of the three temperature measurement units 30. Then, the maximum heat flux in each charge is determined from the obtained heat flux.
- a separately charged converter slag generated by decarburization treatment (oxidation refining) in a converter which is a subsequent process is used as an electric furnace as an unreduced slag containing Cr oxide after oxidation refining, which will be described later.
- the out-of-system discharge of converter slag becomes zero, and slag to be discharged to the outside of the system is generated only in the electric furnace, so that the total amount of slag generated in the entire melting process can be reduced.
- the decarburization treatment in the converter in the subsequent process can be performed under known conditions.
- the amount of metallic Si refers to the amount of metallic silicon contained in ferrosilicon and ferrochrome.
- ferrosilicon may be used as the metal Si source, from the viewpoint of reducing the ratio of the amount of metal Si / the amount of Cr oxide to 0.40 or less, only ferrochrome containing metal Si or ferrochrome containing metal Si is used. It is preferable to use ferrosilicon together.
- the mass ratio defined by the amount of metallic Si / the amount of Cr oxide is less than 0.30, the amount of metallic silicon is insufficient under the condition assuming the heating rate described later, and the chromium oxide in the slag produced in the electric furnace is relatively high. The amount of chromium increases, and chromium cannot be reduced efficiently. Further, when the mass ratio defined by the amount of metallic Si / the amount of Cr oxide exceeds 0.40, the amount of silicon in the chromium-containing molten iron to be produced increases, and it is produced in the oxidation refining step in the converter, which is a subsequent step. The amount of converter slag increases.
- both the amount of refluxed slag and the amount of refluxed chromium oxide are increased. ..
- the amount of metallic silicon used increases according to the increased amount of slag and the amount of chromium oxide, resulting in an increase in the amount of slag generated in the electric furnace, and as the number of operations increases. The inconvenience of increasing the amount of slag in the electric furnace occurs.
- ⁇ C concentration 2.0% by mass or more>
- the C concentration is set to 2.0% by mass or more for the purpose of improving the efficiency of reduction and recovery of chromium oxide.
- the upper limit of the C concentration is not particularly limited, but is substantially equal to or less than the saturation concentration according to the Cr concentration.
- the saturation concentration of carbon differs depending on the Cr concentration. For example, when the Cr concentration is 0% by mass, the saturation concentration of carbon is about 4.4% by mass, and in a normal chromium-containing steel having a Cr concentration of about 10%, it is about 5.5% by mass.
- the activity of silicon is a factor that affects the reduction reaction, but by setting the C concentration to 2.0% by mass or more, the activity of silicon is maintained at a high level.
- the reduction reaction can be suitably carried out.
- Carbon is contained in carbonaceous materials such as coke and coal, or ferrochrome, and the C concentration can be adjusted to 2.0% by mass or more by adjusting the charge amount thereof.
- an AC electric furnace has three electrodes, and each electrode is arranged on one circumference.
- the diameter of a circle passing through each center of the three electrodes viewed in a plane from the central axis direction is defined as PCD (m).
- 5A and 5B each show a cross section of an electric furnace, and FIG. 5A shows a cross section of AA of FIG. 5B. As shown in FIG.
- the diameter of the furnace body 17 (representing the furnace shell here) in the electric furnace is D f (m)
- the static molten metal surface of the molten iron 100 is formed from the tips of the electrodes 15a, 15b, and 15c. the vertical distance to, and the average electrode height H e (m).
- the position of the static molten metal surface of the molten iron 100 can be geometrically calculated from, for example, the amount of metal charged and the volume of the inner surface of the refractory furnace wall. It can also be measured by a method using a microwave or an iron bar.
- the position of the electrode tip can be calculated, for example, from the value obtained by measuring the distance from the electrode grip portion to the electrode tip before the start of charging and the position of the electrode grip portion during operation. If each electrode height H e are different by three electrodes, using the average value.
- the arcs 20a, 20b, 20c generated between the electrodes 15a, 15b, 15c and the molten metal surface in the three-phase AC electric furnace have a deflection angle with respect to the vertical downward direction. , It is known to deflect the electric furnace horizontally outward. Due to this deflection, the thrust of the arc has a horizontal component as well as a vertical component.
- arc 20a, 20b in relation to the spread diameter D arc and furnace diameter D f of the entire 20c, the following (3) satisfies the formula, and the molten slag shown in mean electrode height H e and 5 In relation to the thickness H s (m), it is necessary to satisfy the following equation (4). 0.22 ⁇ Dark / D f ⁇ 0.30 ... (3) 0.35 ⁇ H e / H s ⁇ 1.50 ⁇ (4)
- the molten slag thickness H s is the vertical distance from the static molten metal surface of the molten slag 50 to the stationary molten metal surface of the molten iron 100, as shown in FIG. 5A.
- the static molten metal surface of the molten slag 50 can be geometrically calculated from, for example, the amount of auxiliary raw materials charged and the volume of the inner surface of the refractory furnace wall in the furnace, and can be calculated geometrically from microwaves and iron bars. It can also be measured by a method using.
- the mass ratio of the amount of metallic Si / the amount of Cr oxide and the C concentration in the container charged into the electric furnace within a predetermined range, and further setting the positional relationship of the three electrodes as a predetermined condition. It is possible to efficiently recover chromium and reduce the amount of slag discharged to the outside of the system. Further, preferably, as described later, if the unreduced slag can be rapidly dissolved by controlling the particle size of the auxiliary raw material to be charged and the slag component after the treatment, the chromium can be recovered more efficiently by the reduction of chromium oxide. be able to.
- auxiliary raw material refers to charges other than metal raw materials (ferrochrome, ferrosilicon, scrap, etc.), and in addition to converter slag (unreduced slag), oxides (fresh lime, silica stone, magnesia, alumina, decommissioning material) , Metal oxides), charcoal oxides (limestone, slagite), hydroxides (metal or semi-metal hydroxides). These can be charged into an electric furnace as needed.
- the mass ratio of the auxiliary material having a mesh size of over 25 mm (hereinafter, may be referred to as “lumpy auxiliary material”) that is difficult to heat and dissolve with respect to the entire charge, and the sieve that is easily heated and dissolved.
- the mass ratio of the auxiliary material with a mesh of 3.15 mm under (hereinafter, sometimes referred to as "fine powder auxiliary material") to the entire charge, the chromium can be recovered more efficiently. it can.
- the above-mentioned 25 mm over mesh and 3.15 mm under mesh are left on the sieve of JIS Z8801-2: 2000 with a nominal opening of 25 mm and a sieve with a nominal opening of 3.15 mm, respectively. Refers to the one under the sieve.
- ⁇ Mass ratio of auxiliary material over 25 mm mesh to the entire container 5 to 30% by mass>
- the mass ratio of the auxiliary raw material having a sieve mesh over 25 mm to the entire charge is preferably 5 to 30% by mass.
- the mass ratio of the auxiliary material having a sieve mesh of 25 mm or more with respect to the charged material is specified in order to specify the composition of the auxiliary material that is difficult to heat and dissolve. In addition, a part or all of the lumpy auxiliary raw material which is difficult to dissolve becomes unreduced slag.
- the chromium oxide in the slag is dissolved, and the reduction reaction of the chromium oxide with molten iron changes from a solid-liquid reaction to a liquid-liquid reaction. change.
- the chromium reduction capacity coefficient which is an index of the reduction reaction of chromium oxide, is significantly improved from about 0.01 (1 / min) to 0.05 (1/min) or more, and the reduction reaction is efficient. You can proceed to.
- the chromium reduction capacity coefficient is a value representing a change in the concentration of chromium oxide per unit time, and is an index of the ease of progress of the reduction reaction.
- the mass ratio of the auxiliary raw material having a sieve mesh over 25 mm to the entire charge is less than 5% by mass, it is difficult to obtain the effect. Further, if the mass ratio of the auxiliary raw material having a mesh over 25 mm to the entire charged material exceeds 30% by mass, it takes a lot of time for heating and melting, and the efficiency of the reduction reaction tends to decrease.
- the mass ratio of the auxiliary raw material having a sieve mesh of 3.15 mm under to the entire charge is preferably 3.0% by mass or more.
- the auxiliary material having a sieve mesh of 3.15 mm under is easily dissolved after heating to promote the dissolution of the massive auxiliary material. If the mass ratio of the fine powder auxiliary material to the entire charge is 3.0% by mass or more, it will be present around the massive auxiliary material after the fine powder auxiliary material is dissolved, and the stirring action by the arc jet flow of the electric furnace It can also contribute to the promotion of heating and melting of the bulk auxiliary material.
- the mass ratio of the auxiliary raw material under the sieve mesh of 3.15 mm to the entire charge is less than 3.0% by mass, the effect cannot be sufficiently obtained. Further, although the upper limit is not particularly specified, even if the fine powder auxiliary material is added in an amount of more than 25% by mass with respect to the entire container, the effect is saturated.
- the fine powder auxiliary material may or may not contain unreduced slag.
- the metal raw material (scrap, ferroalloy, granular iron, solid or melt) is preferably contained in an amount of 45% by mass or more based on the total charge in consideration of the electrical conductivity in the electric furnace.
- the charged material is composed of the above-mentioned auxiliary raw material and the metal raw material
- the fine powder auxiliary raw material is 3% by mass or more and the massive auxiliary raw material is 5% by mass or more. Therefore, the metal raw material is the entire charged material. It is preferably 92% by mass or less.
- the heat dissolution of the bulk auxiliary material can be promoted by containing the fine powder auxiliary material in a certain ratio. Further, after the reduction treatment, when the ultimate temperature, C concentration, and Si concentration satisfying the formula (5) described later, and by satisfying the formula (6) described later, favorable viscosity conditions for the slag can be secured. , Chromium reduction can be more preferably realized.
- [C] and [Si] represent the C concentration and the Si concentration (mass%) in the molten iron, respectively, and T represents the molten iron temperature (° C.) immediately after the reduction treatment.
- the C concentration and the Si concentration can be adjusted by controlling the addition amounts of the carbon source and the silicon source in the container.
- the carbon source carbon materials such as coke and coal and carbon contained in ferrochrome can be used.
- the silicon source ferrosilicon, metallic silicon, silicon contained in ferrochrome, or the like can be used.
- the chromium oxide can be reduced more efficiently.
- the slag composition proper region i.e., (6) the range of expression
- the CaO source CaO content contained in quicklime, limestone, dolomite and the like can be used.
- Al 2 O 3 source aluminum ash, high alumina brick, Al 2 O 3 minutes contained in secondary refining slag or the like can be used. 0.04 ⁇ (CaO) / ⁇ (SiO 2 ) ⁇ (Al 2 O 3 ) ⁇ ⁇ 0.20 ⁇ ⁇ ⁇ (6)
- (CaO), (SiO 2 ), and (Al 2 O 3 ) represent the CaO concentration, the SiO 2 concentration, and the Al 2 O 3 concentration (mass%) in the slag after the reduction treatment, respectively.
- the viscosity has a large effect on the solubility of the slag, and the viscosity decreases as the slag dissolves. It is important to try. It is generally known that the viscosity of this slag increases when Al 2 O 3 is added to basic slag and decreases when Al 2 O 3 is added to acidic slag (eg, No. 1). 3rd Edition Steel Handbook Vol. I, p.43).
- the viscosity of the slag can decrease as the amount increases. That is, M. S. I.
- the by 0.04 or more, the Cr 2 O 3 concentration in the pre-reduction treatment was high concentration of more than 30% by weight slag, to a low concentration of less than 10% by weight after the reduction treatment, more efficiently It is preferable because it can be reduced.
- M. S. I. When the value exceeds 0.20, the melting point of the slag is remarkably increased, the dissolution of the slag is inhibited, and the reduction rate of chromium is greatly reduced. Therefore, in order to secure the reduction rate of chromium, M.I. S. I. Is preferably 0.20 or less.
- the slag can be dissolved substantially without using fluorine, and the chromium oxide can be obtained. It is possible to reduce more efficiently.
- fluorine is substantially not used means that the elution of fluorine from the slag after the reduction treatment is not significantly observed, and the slag composition after the reduction treatment is 0.5 in terms of CaF 2. It refers to the case where it is mass% or less, but more preferably 0.3 mass% or less.
- the Al 2 O 3 concentration in the slag after the reduction treatment is 5.0% by mass or more.
- the Al 2 O 3 concentration exceeds 30.0% by mass, the effect of promoting the reduction of chromium oxide cannot be expected due to the dissolution of slag, and the cost of the alumina source is high. Therefore, 30.0% by mass. The following is preferable.
- the stirring power density can be controlled by the stirring gas (bottom blowing gas) from the stirring gas blowing plug.
- the stirring power density By setting the stirring power density to 0.01 kW / ton or more, it is possible to obtain a stirring effect for efficient reduction of chromium oxide.
- the stirring power density exceeds 1.0 kW / ton, the stirring gas may blow through the molten metal and not contribute to stirring.
- the surface of the molten metal fluctuates sharply, and although the operation is possible, the refractory may be noticeably damaged. Therefore, the stirring power density is preferably 1.0 kW / ton or less.
- the stirring power density ⁇ for each stirring gas blowing plug is expressed by the following equation (7). Therefore, the total stirring power density for each stirring gas blowing plug is the stirring power density of the electric furnace.
- ⁇ (0.371 ⁇ Q ⁇ T l / W) ⁇ [ln ⁇ 1 + (9.8 ⁇ ⁇ l ⁇ h) / P a ⁇ + ⁇ (1-T n / T l )] ⁇ ⁇ ⁇ (7)
- ⁇ stirring power density (kW / ton)
- Q stirring gas flow rate (Nm 3 / sec)
- T l molten iron temperature (K)
- W molten iron mass (ton)
- T n stirring gas temperature (K)
- ⁇ l density of molten iron (kg / m 3)
- h depth bath in stirring gas blowing plug (m)
- P a pressure of the atmosphere (Pa)
- efficient stirring makes it possible to dissolve unreduced slag more quickly.
- the maximum temperature reached by the surface temperature of the refractory furnace wall in one charge is 1000 ° C. or higher and 1800 ° C. or lower.
- the surface temperature of the refractory furnace wall can be measured by the method described above. When the maximum temperature reached exceeds 1800 ° C., the surface temperature of the refractory furnace wall becomes close to the melting point of the refractory, and the strength is remarkably lowered. When the strength of the refractory furnace wall is reduced, the melting damage of the refractory furnace wall becomes remarkable due to the scattering of molten metal or slag.
- the surface temperature of the refractory furnace wall is preferably 1800 ° C. or lower.
- the maximum temperature reached is preferably 1000 ° C. or higher.
- the heat flux from the surface of the refractory furnace wall to the inside of the furnace body is preferably 150 Mcal / m 2 / hr or less.
- the heat flux from the surface of the refractory furnace wall to the inside of the furnace body can be measured by the method described above.
- the surface temperature of the refractory furnace wall is in the range of 1000 ° C. or higher and 1800 ° C. or lower, if the temperature suddenly rises due to contact with molten metal or slag, a difference in thermal expansion occurs locally, similar to spalling. Thermal stress is generated. Therefore, if the surface temperature of the refractory furnace wall rises sharply when the surface temperature of the refractory furnace wall is in the range of 1000 ° C. or higher and 1800 ° C. or lower, the refractory furnace wall is cracked and the wear is remarkable. It becomes.
- the surface temperature of the refractory furnace wall is in the range of 1000 ° C. or higher and 1800 ° C. or lower and the heat flux is 150 Mcal / m 2 / hr or less
- the wear of the refractory furnace wall due to the above-mentioned thermal expansion difference can be suppressed.
- the temperature gradient is gentle, so that the local thermal expansion difference is small and the generation of thermal stress is also small. Therefore, cracks are less likely to occur in the refractory furnace wall.
- the wear of the refractory furnace wall is suppressed and the power is as high as possible.
- the electric furnace can be operated with high electric power within the possible range, the operating time can be shortened.
- wear of the refractory furnace wall can be further suppressed, heat dissipation loss from the furnace wall and the like can be reduced, and manufacturing costs can be reduced.
- the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present disclosure, and the present disclosure is based on this one condition example. It is not limited.
- the present disclosure may adopt various conditions as long as the gist of the present disclosure is not deviated and the object of the present disclosure is achieved.
- Metal raw material 55 tons in total (55% by mass of total charge)
- scrap cast iron (solidified blast furnace hot metal), and alloy iron (ferrochrome), which are metal raw materials containing a carbon source and a silicon source, were used.
- Auxiliary material 45 tons in total (45% by mass of the total charge) Breakdown of unreduced slag containing Cr 2 O 3 generated by decarburization of another charge in the converter 33-39 wt% (converter slag): total 43 tons (43% by weight of the electric RoSo container ),
- the bulk auxiliary material having a mesh size of 25 mm over was 5 to 35 tons
- the fine powder auxiliary material having a sieve mesh of 3.15 mm under was 0.1 to 25 tons.
- the balance of the auxiliary raw material was an Al 2 O 3 source (aluminum ash) and a Ca O source (quick lime) having an intermediate particle size (over mesh 3.15 mm and under mesh 25 mm).
- the mass ratio defined by the amount of metallic Si / the amount of Cr oxide was set to 0.20 to 0.50.
- the molten iron temperature after the reduction treatment was set to 1400 to 1700 ° C.
- the slag composition “(CaO) / ⁇ (SiO 2 ) ⁇ (Al 2 O 3 ) ⁇ ” (described as C / SA in the table) after the reduction treatment was set to 0.01 to 0.25.
- the Al 2 O 3 concentration in the slag after the reduction treatment was set to 4.5 to 30% by mass.
- the stirring power density was set to 0.00 to 1.5 kW / ton.
- the stirring power density is the total value of the stirring power density for each stirring gas blowing plug of the above-mentioned formula (7). Further, "0.00 kW / ton" means a condition in which the stirring gas (bottom blown gas) is not blown.
- the evaluation results were evaluated as AA for less than 0.05, A for 0.05 or more and less than 0.2, B for 0.2 or more and 0.5 or less, and C for those exceeding 0.5.
- the total amount of slag generated after the reduction treatment in the electric furnace and the amount of slag generated after refining in the converter in the subsequent process was used as an evaluation index of the amount of slag generated.
- Such evaluation is based on Comparative Example 1 (100%), A when the total slag amount is less than 85% of the standard, B when 85% or more and 95% or less of the standard, and Comparative Example 1. When it was equivalent to (less than ⁇ 5%) or worsened, it was evaluated as C.
- Table 1-1 and Table 1-2 show the operating conditions and evaluation results. The underlined values in Table 1-1 are values that do not satisfy the operating conditions of the present disclosure.
- Comparative Example 5 since the amount of metallic silicon was relatively small, the reduction reaction was insufficient, the amount of chromium oxide in the slag produced in the electric furnace was relatively large, and the amount of slag generated was also increased accordingly. I have. In Comparative Example 6, since the amount of metallic silicon was relatively large, the reduction reaction was efficiently and sufficiently performed, but the Si concentration in the molten iron became high, and the amount of slag generated after refining in the converter in the subsequent process. Has increased.
- Example 2 The operation was repeated under the same conditions as the charges described in Example 1 and Comparative Example 1 in Table 1, and the electric furnace was operated for one month.
- the electric furnace was operated under the above operating conditions, and the wear state and productivity of the refractory furnace wall were evaluated.
- the maximum temperature of the refractory furnace wall surface was 1200 to 2000 ° C.
- the maximum heat flux of the refractory furnace wall surface was 20 to 150 Mcal / m 2 / hr.
- the results of verifying the effectiveness of the operating method of the electric furnace disclosed in the present disclosure are shown below.
- the evaluation criteria for the wear of the refractory furnace wall, the productivity of one charge, and the productivity of one month are as follows.
- Examples 31 to 33 compare Table 1-1 and Table 1-2 with Example 1 and Comparative Examples 11 to 13 compare Table 1-1 and Table 1-2. It is the same as Example 1.
- Example 1 there was a charge in which the maximum temperature reached exceeded 1800 ° C., and in Example 31, there was a charge in which the maximum heat flux exceeded 150 Mcal / m 2 / hr. Therefore, the productivity per charge was better than that of Example 33, but the rate of wear of the refractory furnace wall was high, and the refractory repair time per month increased.
- Example 33 the maximum temperature reached for each charge was 1000 ° C. or higher and 1800 ° C. or lower, and the maximum heat flux was 150 Mcal / m 2 / hr or lower.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
効率良くステンレス鋼を溶製するため、酸化クロムの発生量を削減したり、スラグ発生量を削減したりすることが求められている。
また、特許文献2には、蛍石等のF含有物を用いずに電気炉でクロムを還元する技術が開示されている。この技術によれば、酸化クロムから金属クロムを有効に還元回収することできると記載されている。
特許文献2:特開2010-90428号公報
<1> 3本の電極を備え、各電極と湯面との間にアークを発生させる交流式電気炉に、金属Siを含むフェロクロム及びフェロシリコンの少なくとも一方の金属原料と酸化精錬で発生したCr酸化物を含む未還元スラグとを含む装入物を、金属Si量/Cr酸化物量で定義される質量比が0.30~0.40、かつC濃度が2.0質量%以上飽和濃度以下となる配合として装入し、
前記電気炉の中心軸方向から平面視した前記3本の電極の各中心を通る円の直径をPCD(m)、前記3本の各電極の先端から溶鉄の静止湯面までの鉛直距離である平均電極高さをHe(m)、炉内直径をDf(m)、溶融スラグ厚みをHs(m)、前記溶鉄の静止湯面における前記アークの広がり直径をDarc(m)、前記アークの偏向角をθ(deg)とした場合に、下記(1)式~(4)式の関係を満たす条件で操業して前記Cr酸化物が還元処理されたCrを含む溶鉄を製造する、
含クロム溶鉄の製造方法。
Darc=PCD+2He・tanθ ・・・(1)
θ=52.5-75・(PCD/Df) ・・・(2)
0.22≦Darc/Df≦0.30 ・・・(3)
0.35≦He/Hs≦1.50 ・・・(4)
前記装入物のうち前記金属原料以外は副原料であり、
篩目25mmオーバーの前記副原料の含有量が、前記装入物全体に対して5質量%以上30質量%以下、かつ、篩目3.15mmアンダーの前記副原料の含有量が、前記装入物全体に対して3.0質量%以上であり、
前記還元処理後の溶鉄中のC濃度及びSi濃度が下記(5)式の条件を満たし、かつ、前記還元処理後のスラグ中のCaO濃度とSiO2濃度とAl2O3濃度との関係が下記(6)式の条件を満たすように前記電気炉に前記装入物を装入する<1>~<4>のいずれか1つに記載の含クロム溶鉄の製造方法。
[C]≧-29.4+0.015×(T+273)-0.003×(T+273)×log[Si] ・・・(5)
0.04≦(CaO)/{(SiO2)×(Al2O3)}≦0.20 ・・・(6)
ここで、[C]と[Si]はそれぞれ還元処理後の溶鉄中のC濃度(質量%)とSi濃度(質量%)、(CaO)と(SiO2)と(Al2O3)はそれぞれ還元処理後のスラグ中のCaO濃度(質量%)とSiO2濃度(質量%)とAl2O3濃度(質量%)、Tは還元処理後の溶鉄の温度(℃)を表す。
なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、「~」の前後に記載される数値に「超」または「未満」が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。
本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、実施例に示されている値に置き換えてもよい。
また、成分の含有量について、「%」は「質量%」を意味する。
炉底に設置された撹拌ガス吹き込みプラグから溶湯に吹き込まれる撹拌ガスによる湯面の広がりは、図2に示すように、湯面の広がり半径が0.21×溶湯深さHであることが知られている。なお、鉛直線に対する撹拌ガスの広がり角度は12度であることが一般的である。
まず、金属Siを含むフェロクロム及びフェロシリコンの一方とCr酸化物及び未還元スラグとを含む装入物を電気炉に装入し、これらを溶解する際に、転炉の未還元スラグを金属シリコンで還元する前提で、金属Si量/Cr酸化物量で定義される質量比が0.30~0.40となるように配合する。なお、電気炉で装入物を溶解する際に、金属Siを含むフェロクロム及び/又はフェロシリコン、必要に応じてその他の副原料も装入されるが、副原料については後述する。また、金属Siを含むフェロクロム及びフェロシリコンを用いる場合、金属Si量は、フェロシリコン及びフェロクロム中に含まれる金属シリコンの量を指す。なお、金属Si源としてフェロシリコンのみを用いてもよいが、金属Si量/Cr酸化物量の比を0.40以下にする観点から、金属Siを含むフェロクロムのみ、又は、金属Siを含むフェロクロムとフェロシリコンを併用することが好ましい。
酸化クロムの還元回収の高効率化を目的として、C濃度は2.0質量%以上とする。C濃度の上限については特に限定しないが、実質的にはCr濃度に応じた飽和濃度以下となる。なお、炭素の飽和濃度は、Cr濃度によって異なる。例えば、Cr濃度が0質量%のときは炭素の飽和濃度は4.4質量%程度であり、Cr濃度が10%程度の通常の含クロム鋼では5.5質量%程度である。金属シリコンによるスラグ中の酸化クロムの還元反応において、シリコンの活量は還元反応に影響する因子となるが、C濃度を2.0質量%以上とすることで、シリコンの活量を高位に維持でき、還元反応を好適に進めることができる。炭素は、コークス及び石炭といった炭材、もしくはフェロクロム中に含まれており、これらの装入量を調整することによってC濃度を2.0質量%以上にすることができる。
次に、操業中の炉内の電極の位置関係について説明する。一般的に、交流式電気炉は3本の電極を有し、各電極は1つの円周上に配置される。ここで、図3に示すように、中心軸方向から平面視した3本の電極の各中心を通る円の直径をPCD(m)とする。また、図5A及び図5Bはそれぞれ電気炉の断面を示しており、図5Aは図5BのA-A断面を示している。図5Aに示すように、電気炉内の炉本体17(ここでは炉殻を表す)の炉内直径をDf(m)とし、各電極15a,15b,15cの先端から溶鉄100の静止湯面までの鉛直距離を、平均電極高さHe(m)とする。なお、溶鉄100の静止湯面の位置は、例えば装入金属量と耐火物炉壁内面の容積から幾何学的に算出することが可能である。また、マイクロ波や鉄棒を用いる方法などで計測することもできる。電極先端の位置は、例えば当該チャージ開始前に電極把持部から電極先端までの距離を測定した値と操業中の電極把持部の位置とから算出することができる。3本の電極で各々の電極高さHeが異なる場合、その加算平均値を用いる。
Darc=PCD+2He・tanθ ・・・(1)
θ=52.5-75・(PCD/Df) ・・・(2)
0.22≦Darc/Df≦0.30 ・・・(3)
0.35≦He/Hs≦1.50 ・・・(4)
上記した副原料は、金属原料(フェロクロム、フェロシリコン、スクラップ等)以外の装入物を指し、転炉スラグ(未還元スラグ)のほか、酸化物(生石灰、珪石、マグネシア、アルミナ、廃炉材、金属酸化物)、炭酸化物(石灰石、ドロマイト)、水酸化物(金属又は半金属の水酸化物)、が含まれる。これらは必要に応じて電気炉に装入することができる。
篩目25mmオーバーの副原料の装入物全体に対する質量比は5~30質量%とすることが好ましい。装入物に対する篩目25mmオーバーの副原料の質量比を規定したのは、加熱及び溶解しにくい副原料の構成を規定するためである。なお、溶解しにくい塊状副原料の一部又は全部が、未還元スラグとなる。
一方、篩目3.15mmアンダーの副原料の装入物全体に対する質量比は3.0質量%以上とすることが好ましい。篩目3.15mmアンダーの副原料は、加熱後容易に溶解し、塊状副原料の溶解を促進する。装入物全体に対する微粉副原料の質量比が3.0質量%以上であれば、この微粉副原料が溶解した後に塊状副原料の周囲に存在することとなり、電気炉のアークジェット流による撹拌作用も含めて、塊状副原料の加熱や溶解の促進に寄与できる。篩目3.15mmアンダーの副原料の装入物全体に対する質量比が3.0質量%未満ではその効果が十分に得られない。また、上限については特に規定はしないが、微粉副原料を装入物全体に対して25質量%を超えて添加しても、その効果は飽和する。なお、微粉副原料には、未還元スラグが含まれてもよいが、含まれなくてもよい。
金属原料(スクラップ、合金鉄、粒鉄、の固形物あるいは溶融物)は、電気炉内の通電性を考えると、装入物全体に対して45質量%以上含むことが好ましい。ここで、装入物とは、上記した副原料と金属原料とからなることから、微粉副原料が3質量%以上で塊状副原料が5質量%以上であるため、金属原料は装入物全体に対して92質量%以下となることが好ましい。
クロムの回収率をより向上させるために、還元処理後の溶鉄中のC濃度およびSi濃度は、以下の(5)式の条件を満たしていることが好ましい。
[C]≧-29.4+0.015×(T+273)-0.003×(T+273)×log[Si] ・・・(5)
さらに、還元処理後のスラグ中のCaO濃度、SiO2濃度、及びAl2O3濃度が、以下の(6)式を満たすと、クロム酸化物をより効率良く還元することが可能となる。装入物としてCaO源およびAl2O3源を電気炉に添加することで、スラグ組成を適正な領域(即ち、(6)式の範囲)に制御することができる。ここでCaO源としては、生石灰、石灰石、ドロマイトなどに含まれるCaO分などが使用できる。また、Al2O3源は、アルミ灰及び高アルミナ質れんが、二次精錬スラグなどに含まれるAl2O3分などが使用できる。
0.04≦(CaO)/{(SiO2)×(Al2O3)}≦0.20 ・・・(6)
撹拌力の弱い電気炉内で、高濃度のクロム酸化物を含む未還元スラグからクロム分を効率よく回収するためには、スラグの溶解性と共に粘度の影響が大きく、スラグの溶解と共に粘度の低下を図ることが肝要である。このスラグの粘度は、塩基性スラグにAl2O3を添加した場合は増加し、酸性スラグにAl2O3を添加した場合は低下することが、一般的に知られている(例えば、第3版 鉄鋼便覧 第I巻、p.43参照)。
また、より好ましくは、スラグ性状の点から、還元処理後のスラグ中のAl2O3濃度を適正範囲とすることで、実質的にフッ素を使用せずにスラグを溶解し、クロム酸化物をより効率良く還元することが可能である。ここで、実質的にフッ素を使用しないとは、還元処理後のスラグからフッ素の溶出が顕著には認められないことを指すもので、還元処理後のスラグ組成において、CaF2換算で0.5質量%以下となる場合を指すが、0.3質量%以下であれば更に好ましい。
スラグ中のクロム酸化物を効率的に還元する際に、電気炉での操業時の撹拌動力密度に適正域が存在する。攪拌動力密度は撹拌ガス吹き込みプラグからの攪拌ガス(底吹きガス)によって制御することができる。この撹拌動力密度を0.01kW/トン以上とすることにより、クロム酸化物の効率的な還元のための撹拌効果を得ることが可能となる。一方、撹拌動力密度が1.0kW/トンを超えると、攪拌ガスが溶湯を吹抜けて撹拌に寄与しない場合がある。また、溶湯面の変動が激しくなり、操業は可能であるが耐火物の溶損が目立つ場合等がある。このため、攪拌動力密度は1.0kW/トン以下とすることが好ましい。
ε=(0.371×Q×Tl/W)×[ln{1+(9.8×ρl×h)/Pa}+η(1-Tn/Tl)] ・・・(7)
まず、1チャージにおける耐火物炉壁の表面温度の最高到達温度を1000℃以上1800℃以下とすることが好ましい。耐火物炉壁の表面温度は、前述した方法によって測定することができる。最高到達温度が1800℃を超えると耐火物炉壁の表面温度が耐火物の融点に近くなり、強度が顕著に下がる。耐火物炉壁の強度が低下すると、溶湯あるいはスラグの飛散により、耐火物炉壁の溶損が顕著となる。したがって、耐火物炉壁の表面温度は1800℃以下にすることが好ましい。一方、最高到達温度を1000℃未満とすると高い生産性を得られない。これより、最高到達温度は1000℃以上とすることが好ましい。
また、耐火物炉壁の表面温度が1000℃以上1800℃以下の範囲では、耐火物炉壁表面から炉本体内部への熱流束を150Mcal/m2/hr以下とすることが好ましい。耐火物炉壁表面から炉本体内部への熱流束は、前述した方法によって測定することができる。
本実験では、アーク式電気炉に金属原料を装入して溶鉄を溶製する際に、クロム酸化物を含むスラグを添加し、スラグ中のクロム酸化物を還元して、クロムを溶鉄中に還元回収した。なお、Al2O3源を添加するに際しては、アルミナ灰を通電開始前に添加し、CaO源として生石灰を添加するに際しては、溶解中に上方ホッパーより添加した。また、溶湯の撹拌を行う場合は、攪拌ガスとして底吹きArガスを吹き込み、撹拌動力密度を(7)式に基づいて算出した。この実験条件を以下に示す。
ここでは、図1~図4に示すような構成の100トンの溶湯が溶製できるアーク式電気炉(アーク式溶解炉)を用いて実験を行った。炉底に配置した撹拌ガス吹き込みプラグの数は、3個、4個、又は6個で実験を行い、実施例12では、すべての撹拌ガス吹き込みプラグをバンド領域以外の位置に設置して実験を行った。また、電極は24インチ径のものを3本用い、中心軸から平面視した場合の各電極の中心を通る円の直径(PCD)は1.0m、1.2m、1.8mの3パターンを用い、炉内直径Dfは6.1mとした。溶鉄の静止湯面から電極先端までの距離(電極高さHe)は、3本の平均で0.11~0.46mとした。
金属原料:合計55トン(装入物全体の55質量%)
実験には、炭素源と珪素源を含む金属原料である、スクラップ、鋳銑(高炉溶銑を凝固させたもの)、及び、合金鉄(フェロクロム)を用いた。
内訳は、転炉での別チャージの脱炭処理で生成されたCr2O3を33~39質量%含む未還元スラグ(転炉スラグ):総量43トン(電気炉装入物の43質量%)であり、上記未還元スラグのうち、篩目25mmオーバーの塊状副原料を5~35トンとし、篩目3.15mmアンダーの微粉副原料を、0.1~25トンとした。
副原料の残部は、中間粒度(篩目3.15mmオーバー、かつ、篩目25mmアンダー)のAl2O3源(アルミ灰)とCaO源(生石灰)とした。
アーク電極3本、40MW、合計通電時間は60分で一定とした。
なお、アークの広がり直径Darc(m)及びアークの偏向角θ(deg)は、いずれの例においても式(1)及び式(2)によって計算した。
加熱溶解では、還元処理後の溶鉄温度を1400~1700℃に設定した。
還元処理後のスラグ組成「(CaO)/{(SiO2)×(Al2O3)}」(表中はC/S・Aと記載)は、0.01~0.25に設定した。
還元処理後のスラグ中のAl2O3濃度は、4.5~30質量%に設定した。
撹拌動力密度は、0.00~1.5kW/トンに設定した。なお、撹拌動力密度は、前述の(7)式の撹拌ガス吹き込みプラグごとの撹拌動力密度の合計値である。また、「0.00kW/トン」とは、攪拌ガス(底吹きガス)を吹き込まない条件を意味する。
以上の条件にて実験を行い、クロム還元性及びスラグ発生量の2つの項目で評価した。
クロム還元性の良否判定の指標としては、「還元処理後のCr2O3/Cr(質量%比)」を用いた。これは、還元処理後の溶鉄中のCr濃度に対する、還元処理後のスラグ中のCr2O3濃度を算出した値であり、この値が小さいほど、効率的に還元処理ができていることを意味している。ここでは、0.5以下であれば、クロムを効率良く回収できたものとみなした。評価結果は、0.05未満をAA、0.05以上0.2未満をA、0.2以上0.5以下をB、0.5を超えたものをCと評価した。
電気炉での還元処理後のスラグ発生量と、後工程の転炉での精錬後のスラグ発生量との合計スラグ量を、スラグ発生量の評価指標とした。かかる評価は、比較例1を基準(100%)として、合計スラグ量が基準より85%未満に少なくなった場合にはA、基準より85%以上95%以下の場合にはB、比較例1と同等(±5%未満)あるいは悪化した場合にはCと評価した。
表1-1及び表1-2に操業条件及び評価結果を示す。表1-1における下線は、本開示の操業条件を満たさない値である。
比較例6では、相対的に金属シリコンの量が多かったため、還元反応は効率良く十分に行われたが、溶鉄中のSi濃度が高くなり、後工程の転炉での精錬後のスラグ発生量が増加してしまった。
表1の実施例1及び比較例1に記載のチャージと同様の条件にて操業を繰り返し行い、1か月間、電気炉を操業させた。以下の表2に示す実施例及び比較例について、上記の操業条件で電気炉を操業し、耐火物炉壁の損耗状態及び生産性を評価した。なお、表2に示した実施例及び比較例では、耐火物炉壁表面の最高温度は1200~2000℃、耐火物炉壁表面の最大熱流束は20~150Mcal/m2/hrであった。
100~200ch操業後の最大損耗量から算出した1チャージあたりの損耗量から算出される損耗速度により評価
A:損耗速度1.5mm/ch未満
B:損耗速度1.5mm/ch以上
1チャージあたりの金属原料の溶解時間により評価
AA:通電開始から通電終わりまでの時間が75分未満
A:通電開始から通電終わりまでの時間が75分以上90分未満
B:通電開始から通電終わりまでの時間が90分以上
A:比較例1を基準とし、増産代が5%以上改善
B:比較例1を基準とし、増産代が5%未満
比較例1を基準(100%)として、合計スラグ量が基準より85%未満に少なくなった場合にはAA、基準より85%以上95%以下の場合にはA、比較例1と同等(±5%未満)あるいは悪化した場合にはBと評価した。
実施例33では、各チャージの最高到達温度は1000℃以上1800℃以下に収まっており、最大熱流束は150Mcal/m2/hr以下に収まっていた。このように電気炉を操業した結果、耐火物炉壁の損耗、1チャージの生産性、および1ヶ月の生産性はいずれも良好であり、その結果、1ヶ月でのスラグ発生量を実施例1よりも低減できた。
一方、比較例11~13では、いずれもスラグの攪拌が不十分であったため、スラグ量としては比較例1と同等または悪化した。
11 炉中心
12 炉底
13 撹拌ガス吹き込みプラグ
14 耐火物炉壁
15、15a、15b、15c 電極
17 炉本体
30 温度測定部
31、33、35 熱電対
40 制御装置
50 溶融スラグ
100 溶鉄
Claims (7)
- 3本の電極を備え、各電極と湯面との間にアークを発生させる交流式電気炉に、金属Siを含むフェロクロム及びフェロシリコンの少なくとも一方の金属原料と酸化精錬で発生したCr酸化物を含む未還元スラグとを含む装入物を、金属Si量/Cr酸化物量で定義される質量比が0.30~0.40、かつC濃度が2.0質量%以上飽和濃度以下となる配合として装入し、
前記電気炉の中心軸方向から平面視した前記3本の電極の各中心を通る円の直径をPCD(m)、前記3本の各電極の先端から溶鉄の静止湯面までの鉛直距離である平均電極高さをHe(m)、炉内直径をDf(m)、溶融スラグ厚みをHs(m)、前記溶鉄の静止湯面における前記アークの広がり直径をDarc(m)、前記アークの偏向角をθ(deg)とした場合に、下記(1)式~(4)式の関係を満たす条件で操業して前記Cr酸化物が還元処理されたCrを含む溶鉄を製造する、
含クロム溶鉄の製造方法。
Darc=PCD+2He・tanθ ・・・(1)
θ=52.5-75・(PCD/Df) ・・・(2)
0.22≦Darc/Df≦0.30 ・・・(3)
0.35≦He/Hs≦1.50 ・・・(4) - 前記電気炉の炉底に、湯面面積1m2当たり0.12個以上の撹拌ガス吹き込みプラグが配置されており、隣接する前記撹拌ガス吹き込みプラグの中心間距離をL、前記炉底から湯面までの溶湯深さをHとすると、L/Hが0.50以上となるようにする請求項1に記載の含クロム溶鉄の製造方法。
- 前記電気炉を前記中心軸方向から平面視して、前記3本の電極の各中心を頂点とする三角形の重心に炉中心が位置し、さらに、前記電気炉を前記中心軸方向から平面視して、前記炉中心から前記3本の各電極の中心を通り炉壁まで延びる仮想線を中心線とし該電極の直径を幅とするバンド領域を想定し、前記バンド領域を除く炉底領域に前記撹拌ガス吹き込みプラグが位置する請求項1又は請求項2に記載の含クロム溶鉄の製造方法。
- 前記電気炉の操業時の撹拌動力密度を、0.01kW/トン以上1.0kW/トン以下にする請求項1~請求項3のいずれか1項に記載の含クロム溶鉄の製造方法。
- 前記装入物には、炭素源、珪素源、CaO源及びAl2O3源が含まれており、
前記装入物のうち前記金属原料以外は副原料であり、
篩目25mmオーバーの前記副原料の含有量が、前記装入物全体に対して5質量%以上30質量%以下、かつ、篩目3.15mmアンダーの前記副原料の含有量が、前記装入物全体に対して3.0質量%以上であり、
前記還元処理後の溶鉄中のC濃度及びSi濃度が下記(5)式の条件を満たし、かつ、前記還元処理後のスラグ中のCaO濃度とSiO2濃度とAl2O3濃度との関係が下記(6)式の条件を満たすように前記電気炉に前記装入物を装入する請求項1~請求項4のいずれか1項に記載の含クロム溶鉄の製造方法。
[C]≧-29.4+0.015×(T+273)-0.003×(T+273)×log[Si] ・・・(5)
0.04≦(CaO)/{(SiO2)×(Al2O3)}≦0.20 ・・・(6)
ここで、[C]と[Si]はそれぞれ還元処理後の溶鉄中のC濃度(質量%)とSi濃度(質量%)、(CaO)と(SiO2)と(Al2O3)はそれぞれ還元処理後のスラグ中のCaO濃度(質量%)とSiO2濃度(質量%)とAl2O3濃度(質量%)、Tは還元処理後の溶鉄の温度(℃)を表す。 - 還元処理後の前記スラグ中のフッ素濃度がCaF2換算で0.5質量%以下、かつAl2O3濃度が5質量%以上30.0質量%以下となるようにする請求項5に記載の含クロム溶鉄の製造方法。
- 1チャージにおける前記電気炉の耐火物炉壁の表面温度の最高到達温度を1000℃以上1800℃以下とし、かつ、前記耐火物炉壁の前記表面温度が1000℃以上1800℃以下の範囲では、前記耐火物炉壁表面から炉本体内部への熱流束が150Mcal/m2/hr以下となるようにして、前記電気炉に装入された前記装入物を溶解する請求項1~請求項6のいずれか1項に記載の含クロム溶鉄の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021515928A JP7028366B2 (ja) | 2019-04-22 | 2020-03-31 | 含クロム溶鉄の製造方法 |
KR1020217037516A KR102522360B1 (ko) | 2019-04-22 | 2020-03-31 | 크롬 함유 용철의 제조 방법 |
ES20796188T ES2961323T3 (es) | 2019-04-22 | 2020-03-31 | Método para producir hierro fundido que contiene cromo |
BR112021021108A BR112021021108A2 (pt) | 2019-04-22 | 2020-03-31 | Método para produzir ferro fundido contendo cromo |
CN202080030007.1A CN113710819B (zh) | 2019-04-22 | 2020-03-31 | 含铬铁液的制造方法 |
US17/603,593 US20220195546A1 (en) | 2019-04-22 | 2020-03-31 | Method for producing chromium-containing molten iron |
EP20796188.9A EP3960880B1 (en) | 2019-04-22 | 2020-03-31 | Method of manufacturing molten iron containing chromium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-081179 | 2019-04-22 | ||
JP2019081179 | 2019-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020217890A1 true WO2020217890A1 (ja) | 2020-10-29 |
Family
ID=72941896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014962 WO2020217890A1 (ja) | 2019-04-22 | 2020-03-31 | 含クロム溶鉄の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20220195546A1 (ja) |
EP (1) | EP3960880B1 (ja) |
JP (1) | JP7028366B2 (ja) |
KR (1) | KR102522360B1 (ja) |
CN (1) | CN113710819B (ja) |
BR (1) | BR112021021108A2 (ja) |
ES (1) | ES2961323T3 (ja) |
TW (1) | TW202039867A (ja) |
WO (1) | WO2020217890A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220195545A1 (en) * | 2019-04-19 | 2022-06-23 | Nippon Steel Corporation | Method for producing chromium-containing molten iron |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010090428A (ja) | 2008-10-07 | 2010-04-22 | Nippon Steel Corp | クロム含有スラグからのクロム回収方法 |
JP2010242128A (ja) | 2009-04-01 | 2010-10-28 | Nippon Steel Corp | 溶融金属の回収方法 |
JP2019081179A (ja) | 2017-10-27 | 2019-05-30 | Jfeスチール株式会社 | 重ね隅肉溶接継手の加工方法および重ね隅肉溶接継手の製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2734818A (en) * | 1956-02-14 | A reverberatory furnace | ||
US1686207A (en) * | 1924-11-27 | 1928-10-02 | Hampus Gustaf Emrik Cornelius | Direct reduction process for producing carbon binding metals or metal alloys |
US2830889A (en) * | 1955-07-22 | 1958-04-15 | Strategic Udy Metallurg & Chem | Process for the production of ferromanganese from high-grade manganese-bearing materials |
US4198229A (en) * | 1976-06-28 | 1980-04-15 | Nippon Steel Corporation | Method of dephosphorization of metal or alloy |
US4412857A (en) * | 1982-04-27 | 1983-11-01 | Gosudarstvenny Proektny I Nauchno-Issledovatelsky Institut "Gipronikel" | Method of smelting ferronickel in ore-smelting electrical furnace under a layer of charge |
US4565574A (en) * | 1984-11-19 | 1986-01-21 | Nippon Steel Corporation | Process for production of high-chromium alloy by smelting reduction |
SU1548233A1 (ru) * | 1988-03-11 | 1990-03-07 | Научно-исследовательский институт металлургии | Способ выплавки ферросплавов, преимущественно ферросилици , в закрытой рудно-термической электропечи |
JPH06145761A (ja) * | 1992-11-13 | 1994-05-27 | Nippon Steel Corp | 電気炉の羽口配置構造 |
IT1280115B1 (it) * | 1995-01-17 | 1998-01-05 | Danieli Off Mecc | Procedimento di fusione per forno elettrico ad arco con sorgenti alternative di energia e relativo forno elettrico ad arco |
JP3462660B2 (ja) * | 1996-03-22 | 2003-11-05 | 日新製鋼株式会社 | 電気アーク炉スラグの粉化防止方法 |
JP3721154B2 (ja) * | 2002-10-18 | 2005-11-30 | 新日本製鐵株式会社 | クロム含有溶湯の精錬方法 |
AT412283B (de) * | 2003-05-16 | 2004-12-27 | Voest Alpine Ind Anlagen | Verfahren zum verwerten von schlacke |
CN101074097B (zh) * | 2006-05-15 | 2011-06-29 | 润鸣新素材(通辽)有限公司 | 一种碳化硼的冶炼方法及可调电弧冶炼炉 |
KR100793591B1 (ko) * | 2006-12-28 | 2008-01-14 | 주식회사 포스코 | 산화크롬 함유 슬래그로부터의 크롬 금속 환원 방법 |
EP2511638A1 (de) * | 2011-04-13 | 2012-10-17 | Siemens Aktiengesellschaft | Verfahren zum Betrieb eines Elektrolichtbogenofens, Vorrichtung zur Durchführung des Verfahrens sowie ein Elektrolichtbogenofen mit einer solchen Vorrichtung |
KR101482340B1 (ko) * | 2012-12-26 | 2015-01-15 | 주식회사 포스코 | 전기로 및 전기로의 전극봉 위치제어방법 |
CN104164531A (zh) * | 2013-09-11 | 2014-11-26 | 襄阳康捷飞龙电气有限公司 | 一种采用转炉吹气冶炼和净化生产铸铁的方法 |
CN103525963B (zh) * | 2013-10-25 | 2015-07-15 | 中冶东方工程技术有限公司 | 一种有氧冶炼矿热炉及其有氧冶炼方法 |
JP6471526B2 (ja) * | 2015-02-17 | 2019-02-20 | 新日鐵住金株式会社 | アーク式底吹き電気炉における副原料の溶解方法 |
JP6476971B2 (ja) * | 2015-02-17 | 2019-03-06 | 新日鐵住金株式会社 | アーク式底吹き電気炉の操業方法 |
JP6458531B2 (ja) * | 2015-02-17 | 2019-01-30 | 新日鐵住金株式会社 | アーク式底吹き電気炉における撹拌方法 |
RU2610975C2 (ru) * | 2015-08-10 | 2017-02-17 | Генрих Алексеевич Дорофеев | Способ выплавки стали в электродуговой печи |
WO2018150858A1 (ja) * | 2017-02-15 | 2018-08-23 | 新日鐵住金株式会社 | 脱りん処理装置およびそれを用いた溶銑の脱りん方法 |
JP6620781B2 (ja) * | 2017-05-15 | 2019-12-18 | Jfeスチール株式会社 | ダストの溶融還元方法及び再利用方法 |
-
2020
- 2020-03-31 BR BR112021021108A patent/BR112021021108A2/pt unknown
- 2020-03-31 US US17/603,593 patent/US20220195546A1/en active Pending
- 2020-03-31 TW TW109111028A patent/TW202039867A/zh unknown
- 2020-03-31 CN CN202080030007.1A patent/CN113710819B/zh active Active
- 2020-03-31 EP EP20796188.9A patent/EP3960880B1/en active Active
- 2020-03-31 WO PCT/JP2020/014962 patent/WO2020217890A1/ja unknown
- 2020-03-31 KR KR1020217037516A patent/KR102522360B1/ko active IP Right Grant
- 2020-03-31 ES ES20796188T patent/ES2961323T3/es active Active
- 2020-03-31 JP JP2021515928A patent/JP7028366B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010090428A (ja) | 2008-10-07 | 2010-04-22 | Nippon Steel Corp | クロム含有スラグからのクロム回収方法 |
JP2010242128A (ja) | 2009-04-01 | 2010-10-28 | Nippon Steel Corp | 溶融金属の回収方法 |
JP2019081179A (ja) | 2017-10-27 | 2019-05-30 | Jfeスチール株式会社 | 重ね隅肉溶接継手の加工方法および重ね隅肉溶接継手の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3960880C0 (en) | 2023-08-30 |
EP3960880A1 (en) | 2022-03-02 |
CN113710819A (zh) | 2021-11-26 |
JP7028366B2 (ja) | 2022-03-02 |
BR112021021108A2 (pt) | 2023-02-23 |
ES2961323T3 (es) | 2024-03-11 |
KR20210151968A (ko) | 2021-12-14 |
TW202039867A (zh) | 2020-11-01 |
CN113710819B (zh) | 2022-08-16 |
EP3960880B1 (en) | 2023-08-30 |
EP3960880A4 (en) | 2022-06-22 |
JPWO2020217890A1 (ja) | 2021-12-16 |
BR112021021108A8 (pt) | 2021-12-14 |
KR102522360B1 (ko) | 2023-04-18 |
US20220195546A1 (en) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2759606B1 (en) | Steel slag reduction equipment and steel slag reduction system | |
JP6458531B2 (ja) | アーク式底吹き電気炉における撹拌方法 | |
US20170280519A1 (en) | Inert gas blanketing of electrodes in an electric arc furnace | |
WO2020213393A1 (ja) | 含クロム溶鉄の製造方法 | |
WO2020217890A1 (ja) | 含クロム溶鉄の製造方法 | |
JP6682932B2 (ja) | アーク式電気炉における金属溶解方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20796188 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021515928 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021021108 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20217037516 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020796188 Country of ref document: EP Effective date: 20211122 |
|
ENP | Entry into the national phase |
Ref document number: 112021021108 Country of ref document: BR Kind code of ref document: A2 Effective date: 20211021 |
|
ENP | Entry into the national phase |
Ref document number: 112021021108 Country of ref document: BR Kind code of ref document: A2 Effective date: 20211021 |