WO2020216081A1 - 电池可用能量确定方法、装置、管理系统以及存储介质 - Google Patents

电池可用能量确定方法、装置、管理系统以及存储介质 Download PDF

Info

Publication number
WO2020216081A1
WO2020216081A1 PCT/CN2020/084334 CN2020084334W WO2020216081A1 WO 2020216081 A1 WO2020216081 A1 WO 2020216081A1 CN 2020084334 W CN2020084334 W CN 2020084334W WO 2020216081 A1 WO2020216081 A1 WO 2020216081A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
energy
recoverable
interval
attenuation
Prior art date
Application number
PCT/CN2020/084334
Other languages
English (en)
French (fr)
Inventor
阮见
杜明树
汤慎之
李世超
卢艳华
张伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20794953.8A priority Critical patent/EP3779485B1/en
Publication of WO2020216081A1 publication Critical patent/WO2020216081A1/zh
Priority to US17/138,547 priority patent/US11668755B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a method, device, battery management system, and storage medium for determining the available energy of a battery.
  • Battery capacity refers to the size of the battery's stored power.
  • the accurate estimation of battery available capacity is of great significance to the estimation of remaining capacity and remaining energy, and is also an important parameter reflecting the aging state of the battery.
  • some batteries have two parts of capacity decay: irrecoverable capacity decay and recoverable capacity decay (similar to a memory effect).
  • the unrecoverable capacity attenuation reflects the true aging of the battery and the reduction of real usable energy, while the recoverable capacity attenuation reduces the actual usable energy of the battery.
  • this part of the recoverable energy attenuation is affected by the historical working conditions and makes it difficult to pass the current
  • the energy estimation algorithm (such as look-up table method, etc.) makes the estimation of the remaining available energy of the battery inaccurate.
  • a technical problem to be solved by the present disclosure is to provide a method, device, battery management system, and storage medium for determining the available energy of a battery.
  • a method for determining the available energy of a battery including: obtaining a DOD interval corresponding to the SOC interval in which the battery operates; obtaining the number of cycles and the cycle temperature corresponding to the DOD interval; and according to the DOD The interval, the number of cycles and the cycle temperature obtain the recoverable energy information of the battery; and the actual remaining available energy of the battery is determined based on the recoverable energy information.
  • the recoverable energy information includes: recoverable energy attenuation, recoverable energy attenuation change, or recoverable capacity attenuation.
  • the obtaining the DOD interval corresponding to the SOC interval in which the battery is working includes: obtaining setting information for setting the DOD interval in the SOC usage interval corresponding to the battery; and determining the DOD interval based on the setting information The DOD interval corresponding to the SOC interval.
  • the obtaining the recoverable energy information of the battery according to the DOD interval, the number of cycles, and the cycle temperature includes: pre-establishing the recoverable energy information and the DOD interval, the Correspondence information between the number of cycles and the cycle temperature; and obtain the recoverable energy information corresponding to the DOD interval and the number of cycles based on the correspondence information.
  • the use of the recoverable energy information to correct the available remaining energy of the battery includes: obtaining, according to the battery state information, the remaining available energy of the first battery corresponding to the battery's non-recoverable attenuation capacity state; The remaining available energy of the first battery and the attenuation of the recoverable energy are used to calculate the actual remaining available energy of the battery; or, the actual remaining available energy of the battery is calculated according to the remaining available energy of the first battery and the attenuation change of the recoverable energy.
  • the obtaining the recoverable energy information corresponding to the DOD interval and the number of cycles based on the correspondence information includes: based on the correspondence information and according to the DOD interval, the The number of cycles and the cycle temperature obtain an interval recoverable energy attenuation corresponding to each DOD interval; the recoverable energy of the current operation of the battery is obtained based on the obtained at least one interval recoverable energy attenuation amount Attenuation.
  • the calculating the actual remaining available energy of the battery according to the remaining available energy of the first battery and the amount of recoverable energy attenuation includes: subtracting the remaining available energy of the first battery from the recoverable energy attenuation The actual remaining available energy of the battery is obtained.
  • the obtaining the recoverable energy information corresponding to the DOD interval and the number of cycles based on the correspondence information includes: based on the correspondence information and according to the DOD interval, the The number of cycles and the cycle temperature obtain the recoverable energy attenuation change in the interval corresponding to each of the DOD intervals; the recoverable energy attenuation change of the battery is obtained based on the obtained at least one of the intervals. Restore the amount of energy attenuation change.
  • the calculating the actual remaining available energy of the battery according to the remaining available energy of the first battery and the recoverable energy attenuation includes: according to the recoverable energy attenuation corresponding to the last operation of the battery and The recoverable energy attenuation change amount corresponding to the current operation of the battery is obtained, and the recoverable energy attenuation amount of the current operation of the battery is obtained; the remaining available energy of the first battery is subtracted from the recoverable energy attenuation amount, Obtain the actual remaining available energy of the battery.
  • the use of the recoverable energy information to correct the available remaining energy of the battery includes: obtaining a first available capacity of the battery based on battery operating data; and according to the first available capacity and the recoverable capacity The decay amount calculates the actual remaining available energy of the battery.
  • the obtaining the recoverable energy information corresponding to the DOD interval and the number of cycles based on the correspondence information includes: based on the correspondence information and according to the DOD interval, the The number of cycles and the cycle temperature obtain an interval recoverable capacity attenuation amount corresponding to each DOD interval; the recoverable capacity attenuation amount is obtained based on the obtained at least one interval recoverable capacity attenuation amount.
  • the calculating the actual remaining available energy of the battery according to the first available capacity and the recoverable capacity attenuation includes: subtracting the recoverable capacity attenuation from the first available capacity to obtain The actual available capacity of the battery; the actual remaining available energy of the battery is obtained according to the actual available capacity of the battery and the voltage information of the battery.
  • the obtaining the remaining available energy of the first battery corresponding to the non-recoverable attenuation capacity state of the battery according to the battery state information includes: establishing in advance the remaining available energy of the first battery and the SOC and temperature of the battery The remaining available energy of the first battery is obtained based on the mapping relationship and according to battery status information; wherein the battery status information includes: SOC and temperature information.
  • a device for determining available energy of a battery including: an information obtaining module for obtaining a DOD interval corresponding to the SOC interval in which the battery is running; obtaining the number of cycles corresponding to the DOD interval and Cycle temperature; a recoverable energy obtaining module, used to obtain the recoverable energy information of the battery according to the DOD interval, the number of cycles, and the cycle temperature; an available energy correction module, used to obtain information based on the recoverable energy Determine the actual remaining battery energy available.
  • a battery management system including: the battery available energy determining device as described above.
  • a computer-readable storage medium stores computer instructions, and the instructions are executed by a processor to execute the method as described above.
  • the method, device, battery management system and storage medium for determining the available energy of the battery of the present disclosure obtain the DOD interval corresponding to the SOC interval of the battery operation, and the cycle number and cycle temperature corresponding to the DOD interval, according to the DOD interval and cycle number And cycle temperature to obtain the battery's recoverable energy information and correct the actual remaining available energy of the battery; for batteries with recoverable attenuation capacity, the accuracy of the remaining available energy estimation of the battery is improved, which can improve the reliability of the battery and improve the battery Life.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for determining available energy of a battery according to the present disclosure
  • FIG. 2 is a schematic flowchart of obtaining recoverable energy information in an embodiment of a method for determining available energy of a battery according to the present disclosure
  • FIG. 3 is a schematic diagram of obtaining actual remaining available energy in another embodiment of the method for determining available energy of a battery according to the present disclosure
  • FIG. 4 is a schematic diagram of obtaining actual remaining available energy according to the amount of recoverable energy attenuation in another embodiment of the method for determining available energy of a battery according to the present disclosure
  • FIG. 5 is a schematic diagram of obtaining the actual remaining available energy according to the recoverable energy attenuation transformation amount in another embodiment of the method for determining the available energy of a battery according to the present disclosure
  • FIG. 6 is a schematic diagram of obtaining the actual remaining available energy according to the recoverable energy attenuation transformation amount in another embodiment of the method for determining the available energy of a battery according to the present disclosure
  • FIG. 7 is a schematic diagram of modules of an embodiment of a device for determining available battery energy according to the present disclosure.
  • FIG. 8 is a schematic diagram of a recoverable energy module in an embodiment of the device for determining available energy of a battery according to the present disclosure
  • FIG. 9 is a schematic diagram of modules of another embodiment of a device for determining available battery energy according to the present disclosure.
  • Fig. 1 is a schematic flowchart of an embodiment of a method for determining available battery energy according to the present disclosure, as shown in Fig. 1:
  • Step 101 Obtain a DOD interval corresponding to a SOC (State Of Charge, state of charge) interval for battery operation.
  • SOC State Of Charge, state of charge
  • the battery may be a single cell, battery pack, module, battery pack, etc., which has the characteristics of attenuating capacity and recoverable.
  • the battery is a lithium battery, a lithium battery pack, and the like.
  • Battery operation refers to battery charge-discharge cycle operation
  • DOD (depth of discharge) interval refers to the SOC operation interval set in the SOC usage interval corresponding to the battery.
  • the SOC usage interval corresponding to the battery is 0-100%, and five DOD intervals are set in the SOC usage interval.
  • the five DOD intervals are 0-20%, 20-40%, 40-60%, and 60-80. %, 80-100%. If the battery is discharged once, and the SOC interval corresponding to the current charge of the battery is 80-20%, the 80-20% SOC interval corresponds to three DOD intervals, which are 20-40% DOD interval and 40-60% DOD interval. , 60 ⁇ 80% DOD interval.
  • Step 102 Obtain the number of cycles and the cycle temperature corresponding to the DOD interval.
  • the number of cycles is the number of cycles the battery runs in the DOD interval.
  • the number of cycles corresponding to the 20-40% DOD interval is the number of charge and discharge cycles of the battery in the 20-40% DOD interval.
  • the cycle temperature is the battery temperature at which the battery runs in the DOD interval.
  • the cycle temperature corresponding to the 20-40% DOD interval is the battery temperature in the 20-40% DOD interval during this operation.
  • Step 103 Obtain the recoverable energy information of the battery according to the DOD interval, the number of cycles and the cycle temperature.
  • Recoverable energy information includes: recoverable energy attenuation, recoverable energy attenuation change, or recoverable capacity attenuation, etc. There are many ways to obtain the recoverable energy attenuation, the recoverable energy attenuation change, or the recoverable capacity attenuation of the battery according to the DOD interval, the number of cycles, and the cycle temperature.
  • Step 104 Determine the actual remaining available energy of the battery based on the recoverable energy information.
  • Recoverable energy attenuation, recoverable energy attenuation change, or recoverable capacity attenuation can be used to correct the actual remaining energy available in the battery.
  • irrecoverable capacity attenuation is due to the aging of the battery cells and the capacity is unavailable, while the recoverable capacity attenuation is when the battery cells are circulating. The capacity that can be released again after a certain adjustment during operation. This part of the capacity does not reflect the aging state of the battery.
  • the setting information for setting the DOD section in the SOC use section corresponding to the battery is acquired, and the DOD section corresponding to the SOC section is determined based on the setting information.
  • the setting information for setting the DOD interval in the SOC usage interval corresponding to the battery is five DOD interval information, and the five DOD intervals are 0-20%, 20-40%, 40-60%, 60-80%, 80-100%.
  • the DOD interval corresponding to the 20-60% SOC interval is determined to be the 20-40% DOD interval and the 40-60% DOD interval.
  • Fig. 2 is a schematic diagram of a process of obtaining recoverable energy information in an embodiment of a method for determining available energy of a battery according to the present disclosure, as shown in Fig. 2:
  • Step 201 Pre-establish the corresponding relationship information between the recoverable energy information and the DOD interval, the number of cycles, and the cycle temperature.
  • Step 202 Obtain recoverable energy information corresponding to the DOD interval and the number of cycles based on the correspondence information.
  • Various methods can be used to establish correspondence information. Calibrate the recoverable energy attenuation, recoverable energy attenuation change, or recoverable capacity attenuation corresponding to different DOD intervals, different cycles and different cycle temperatures through offline experiments. Perform cycle test of the battery with recoverable capacity attenuation characteristics offline, test the corresponding recoverable energy attenuation, recoverable energy attenuation change, or recoverable capacity attenuation under different DOD intervals, different cycle times, and different cycle temperatures . The recoverable energy attenuation amount, recoverable energy attenuation change amount, or recoverable capacity attenuation amount of the battery can be obtained through a variety of capacity test and energy test procedures.
  • test the cell capacity during the cell capacity test and count the available capacity and energy of the cell without recoverable capacity attenuation under several full charge cycles; then formulate the cell attenuation capacity test conditions: in different DOD intervals Recycle batteries and batteries in parallel under different cycle temperature conditions. After several cycles, test the charge and discharge capacity and charge and discharge energy of some of the batteries; continue to cycle for other batteries and measure the batteries after N cycles Finally, through the cell capacity test and full charge and discharge cycle, calculate the available capacity and energy of the cell with no recoverable capacity attenuation under current conditions.
  • Statistical analysis can restore the energy attenuation, the change of restorable energy attenuation, or the corresponding function relationship between the recoverable capacity attenuation and the DOD interval, the number of cycles and the cycle temperature, or the table correspondence, etc. For example, establish the corresponding table of recoverable energy attenuation and DOD interval, cycle number and cycle temperature as shown in Table 1:
  • T1 is the cycle temperature
  • N1, N2,..., NX represent different cycle times
  • [S1, S2],..., [SA,SB] represent different DOD intervals
  • E1,... in Table 1 E1X, etc. represent the interval recoverable energy attenuation of the battery under different working conditions, or E1,..., E1X, etc. can also represent the interval recoverable energy attenuation change of the battery under different working conditions. E1,..., E1X, etc. can be obtained through related tests and experiments.
  • the corresponding relationship between the amount of recoverable energy attenuation and the DOD interval, the number of cycles, and the cycle temperature may also include tables in multiple different temperature dimensions. For example, for a certain battery, set multiple cycle temperatures T2, T3, T4, etc., and perform related tests and experiments to obtain the amount of recoverable energy attenuation at multiple cycle temperatures such as T2, T3, T4, and the corresponding DOD interval and cycle number The contents of each table are shown in Table 1.
  • T1 is the cycle temperature
  • N1, N2,..., NX represent different cycle times
  • [S1, S2] represent different DOD intervals
  • D1X, etc. represent the range of recoverable capacity attenuation of the battery under different working conditions.
  • D1,..., D1X can be positive or negative.
  • D1,..., D1X, etc. can be obtained through related tests and experiments.
  • the corresponding relationship between the amount of recoverable capacity attenuation and the DOD interval, the number of cycles, and the cycle temperature may also be included in tables under multiple different temperature dimensions. For example, for a certain battery, set multiple cycle temperatures T2, T3, T4, etc., perform related tests and experiments, and obtain the amount of recoverable capacity attenuation at multiple cycle temperatures such as T2, T3, T4, and the corresponding DOD interval and cycle number The contents of each table are shown in Table 2.
  • the SOC interval cannot correspond to multiple complete DOD intervals, for example, the 30-40 interval in the 30-60% SOC interval corresponds to the 20-40% DOD interval, it is determined that the battery is in the same operation as the 20-
  • the cycle times and cycle temperature corresponding to the 40% DOD interval set the corresponding coefficient, and when the recoverable energy information is obtained, multiply this coefficient by the interval corresponding to the 20-40% DOD interval, cycle times and cycle temperature to recover Energy attenuation, interval recoverable energy attenuation change or interval recoverable capacity attenuation.
  • the cycle temperature is between TI and T2
  • the cycle temperature can be determined as T1 and the corresponding coefficients can be set.
  • the recoverable energy information is obtained, the recoverable energy attenuation of the interval under T1 and the recoverable energy attenuation of the interval The amount of change or interval can be restored by the amount of capacity attenuation multiplied by this coefficient.
  • the relationship between the recoverable energy attenuation, the recoverable energy attenuation change or the recoverable capacity attenuation and the DOD interval, the number of cycles and the cycle temperature can also be obtained by function fitting. Regression equations or neural network methods can be used.
  • FIG. 3 is a schematic diagram of obtaining actual remaining available energy in another embodiment of the method for determining available energy of a battery according to the present disclosure, as shown in FIG. 3:
  • Step 301 Obtain, according to the battery state information, the remaining available energy of the first battery corresponding to the battery's non-recoverable attenuation capacity state.
  • Various methods can be used to obtain the remaining available energy of the first battery corresponding to the state of the battery's non-recoverable attenuation capacity.
  • the current remaining available energy of the battery under different SOC and temperature conditions when there is no recoverable capacity attenuation can be calibrated online to establish a mapping relationship.
  • a mapping relationship between the remaining available energy of the first battery and the SOC and temperature of the battery is established in advance to obtain the current remaining available energy of the battery at various temperatures and SOCs when there is no recoverable capacity degradation.
  • the mapping relationship can be a table or a fitting relationship.
  • the remaining available energy of the first battery is obtained based on the mapping relationship and the battery status information, and the battery status information includes SOC and temperature information.
  • Step 302 Calculate the actual remaining available energy of the battery according to the remaining available energy of the first battery and the attenuation of the recoverable energy; or, calculating the actual remaining available energy of the battery according to the remaining available energy of the first battery and the attenuation change of the recoverable energy.
  • FIG. 4 is a schematic diagram of obtaining actual remaining available energy according to the amount of recoverable energy attenuation in another embodiment of the method for determining available energy of a battery according to the present disclosure, as shown in FIG. 4:
  • Step 401 Obtain an interval recoverable energy attenuation amount corresponding to each DOD interval based on the correspondence information and according to the DOD interval, the number of cycles and the cycle temperature.
  • Step 402 Obtain the recoverable energy attenuation of the current operation of the battery based on the obtained at least one interval of recoverable energy attenuation.
  • the SOC interval for battery operation as the first SOC-the second SOC, obtain multiple DOD intervals corresponding to this SOC interval, and obtain the cycle number and cycle temperature corresponding to each DOD interval.
  • the recoverable energy attenuation of the interval corresponding to each DOD interval can be obtained by looking up the table or functional relationship and according to the DOD interval, the number of cycles and the cycle temperature.
  • the recoverable energy attenuation of the battery can be obtained by adding the obtained multiple intervals of recoverable energy attenuation.
  • Step 403 Subtract the recoverable energy attenuation from the remaining available energy of the first battery to obtain the actual remaining available energy of the battery.
  • FIG. 5 is a schematic diagram of obtaining the actual remaining available energy according to the recoverable energy attenuation transformation amount in another embodiment of the method for determining available battery energy according to the present disclosure, as shown in FIG. 5:
  • Step 501 Obtain an interval recoverable energy attenuation change amount corresponding to each DOD interval based on the correspondence information and according to the DOD interval, the number of cycles and the cycle temperature.
  • Step 502 Obtain the recoverable energy attenuation change of the current operation of the battery based on the obtained at least one interval of the recoverable energy attenuation change.
  • the SOC interval for battery operation as the first SOC-the second SOC
  • obtain multiple DOD intervals corresponding to this SOC interval and obtain the cycle number and cycle temperature corresponding to each DOD interval.
  • the recoverable energy attenuation change of the interval corresponding to each DOD interval can be obtained by looking up the table or functional relationship and according to the DOD interval, the number of cycles and the cycle temperature. Adding the obtained multiple intervals of recoverable energy attenuation changes, the recoverable energy attenuation changes of the current battery operation can be obtained.
  • Step 503 According to the recoverable energy attenuation amount and the recoverable energy attenuation change amount corresponding to the last operation of the battery, obtain the recoverable energy attenuation amount of the current operation of the battery.
  • Step 504 Subtract the recoverable energy attenuation from the remaining available energy of the first battery to obtain the actual remaining available energy of the battery.
  • the battery state information obtain the current remaining available energy E1 of the battery corresponding to the battery's non-recoverable attenuation capacity state, obtain the SOC interval of each charging operation, obtain the DOD interval corresponding to the SOC interval and the DOD interval corresponding The number of cycles and cycle temperature.
  • the recoverable energy attenuation dE' of the battery can be calculated according to the DOD interval, the number of cycles and the cycle temperature by looking up the table or the functional relationship, and the recoverable energy attenuation dE0 corresponding to the last operation of the battery can be obtained, which will restore the energy attenuation change
  • the actual remaining available energy of the battery can be calculated based on the available capacity and the attenuation of the recoverable capacity.
  • FIG. 6 is a schematic diagram of obtaining the actual remaining available energy according to the recoverable energy attenuation transformation amount in another embodiment of the method for determining the available energy of the battery according to the present disclosure, as shown in FIG. 6:
  • Step 601 Obtain a first available capacity of the battery based on the battery operating data.
  • the first available capacity of the battery is calculated by linear interpolation of accumulated ampere hours.
  • Step 602 Subtract the recoverable capacity attenuation from the first available capacity to obtain the actual available capacity of the battery.
  • the SOC interval can be obtained as the first SOC-the second SOC, a plurality of DOD intervals corresponding to this SOC interval are obtained, and the number of cycles and the cycle temperature corresponding to each DOD interval are obtained.
  • the recoverable energy attenuation of the interval corresponding to each DOD interval can be obtained by looking up the table or functional relationship and according to the DOD interval, the number of cycles and the cycle temperature. The attenuation of recoverable energy in multiple intervals is added together to obtain the attenuation of recoverable capacity of the battery in this operation.
  • Step 603 Obtain the actual remaining available energy of the battery according to the actual available capacity of the battery and the voltage information of the battery.
  • the voltage information of the battery can be the average voltage of the discharge process, etc., which can be obtained from the SOC information and temperature.
  • the usable capacity of the battery can be obtained in a variety of ways. For example, obtaining battery operating data, calculating the available capacity of the battery through linear interpolation of accumulated ampere hours, etc.
  • the present disclosure provides a battery available energy determination device 70 including: an information obtaining module 71, a recoverable energy obtaining module 72, and an available energy correcting module 73.
  • the information obtaining module 71 obtains the DOD interval corresponding to the SOC interval in which the battery is running, and obtains the number of cycles and the cycle temperature corresponding to the DOD interval.
  • the information obtaining module 71 may obtain setting information for setting the DOD interval in the SOC usage interval corresponding to the battery, and determine the DOD interval corresponding to the SOC interval based on the setting information.
  • the recoverable energy obtaining module 72 obtains the recoverable energy information of the battery according to the DOD interval, the number of cycles, and the cycle temperature.
  • the recoverable energy information includes: recoverable energy attenuation, recoverable energy attenuation change, or recoverable capacity attenuation, etc.
  • the recoverable energy obtaining module 72 may pre-establish the corresponding relationship information between the recoverable energy information and the DOD interval, the number of cycles, and the cycle temperature, and obtain the recoverable energy information corresponding to the DOD interval and the number of cycles based on the corresponding relationship information.
  • the available energy correction module 73 determines the actual remaining available capacity of the battery based on the recoverable energy information.
  • the recoverable energy obtaining module 72 includes a remaining energy obtaining unit 721, a first obtaining unit 722, a second obtaining unit 723 and a third obtaining unit 724.
  • the remaining energy obtaining unit 721 obtains the remaining available energy of the first battery corresponding to the battery's non-recoverable attenuation capacity state according to the battery state information.
  • the remaining energy obtaining unit 721 pre-establishes a mapping relationship between the remaining available energy of the first battery and the SOC and temperature of the battery, and obtains the remaining available energy of the first battery based on the mapping relationship and according to battery state information.
  • the battery state information includes: SOC and temperature information.
  • the first obtaining unit 722 calculates the actual remaining available energy of the battery according to the remaining available energy of the first battery and the recoverable energy attenuation.
  • the second obtaining unit 723 calculates the actual remaining available energy of the battery according to the remaining available energy of the first battery and the attenuation change amount of the recoverable energy.
  • the first obtaining unit 722 obtains an interval recoverable energy attenuation amount corresponding to each DOD interval based on the correspondence information and according to the DOD interval, the number of cycles, and the cycle temperature.
  • the first obtaining unit 722 obtains the recoverable energy attenuation of the current operation of the battery based on the obtained at least one interval of the recoverable energy attenuation.
  • the first obtaining unit 722 subtracts the recoverable energy attenuation amount from the remaining available energy of the first battery to obtain the actual remaining available energy of the battery.
  • the second obtaining unit 723 obtains an interval recoverable energy attenuation change amount corresponding to each DOD interval based on the correspondence relationship information and according to the DOD interval, the number of cycles, and the cycle temperature. The second obtaining unit 723 obtains the recoverable energy attenuation change amount of the current operation of the battery based on the obtained at least one interval recoverable energy attenuation change amount.
  • the second obtaining unit 723 obtains the recoverable energy attenuation amount of the current battery operation according to the recoverable energy attenuation amount and the recoverable energy attenuation change amount corresponding to the last operation of the battery.
  • the second obtaining unit 723 subtracts the recoverable energy attenuation amount from the remaining available energy of the first battery to obtain the actual remaining available energy of the battery.
  • the third obtaining module 724 obtains the first available capacity of the battery based on the battery operating data, and calculates the actual remaining available energy of the battery according to the first available capacity and the attenuation of the recoverable capacity.
  • the third obtaining module 724 obtains the interval recoverable capacity attenuation corresponding to each DOD interval based on the correspondence relationship information and according to the DOD interval, the number of cycles, and the cycle temperature.
  • the third obtaining module 724 obtains the recoverable capacity attenuation amount based on the obtained at least one interval recoverable capacity attenuation amount.
  • the third obtaining module 724 subtracts the recoverable capacity attenuation from the available capacity to obtain the actual available capacity of the battery, and obtains the actual remaining available energy of the battery according to the actual available capacity of the battery and the voltage information of the battery.
  • the device may include a memory 91, a processor 92, a communication interface 93 and a bus 94.
  • the memory 91 is configured to store instructions
  • the processor 92 is coupled to the memory 91
  • the processor 92 is configured to execute the above-mentioned method for determining available battery energy based on the instructions stored in the memory 91.
  • the memory 91 may be a high-speed RAM memory, a non-volatile memory (non-volatile memory), etc., and the memory 91 may also be a memory array.
  • the memory 91 may also be divided into blocks, and the blocks may be combined into a virtual volume according to certain rules.
  • the processor 92 may be a central processing unit CPU, or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the method for determining available battery energy of the present disclosure.
  • the present disclosure provides a battery management system, including the battery available energy determination device as in any of the above embodiments.
  • the battery management system can be installed in a car, etc., to manage the battery.
  • the present disclosure provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, the method for determining available battery energy as in any of the above embodiments is implemented.
  • the method, device, battery management system, and storage medium for determining the available energy of the battery in the above embodiment obtain the DOD interval corresponding to the SOC interval of the battery operation, and the cycle number and cycle temperature corresponding to the DOD interval, according to the DOD interval, The number of cycles and cycle temperature are used to obtain the recoverable energy information of the battery and correct the actual remaining available energy of the battery; for batteries with recoverable attenuation capacity, obtain the recoverable energy information of the battery and estimate the remaining available energy of the battery based on the recoverable energy information, Recoverable energy information can be recoverable energy attenuation, recoverable energy attenuation change, or recoverable capacity attenuation; it improves the accuracy of the remaining available energy estimation of the battery, can improve the reliability of the battery, and can improve the use of the battery Life span and user experience.
  • the method and system of the present disclosure may be implemented in many ways.
  • the method and system of the present disclosure can be implemented by software, hardware, firmware or any combination of software, hardware, and firmware.
  • the above-mentioned order of the steps for the method is for illustration only, and the steps of the method of the present disclosure are not limited to the order specifically described above, unless otherwise specifically stated.
  • the present disclosure may also be implemented as programs recorded in a recording medium, and these programs include machine-readable instructions for implementing the method according to the present disclosure.
  • the present disclosure also covers a recording medium storing a program for executing the method according to the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池可用能量确定方法、装置、电池管理系统以及存储介质,电池可用能量确定方法包括:获得与电池运行的SOC区间相对应的DOD区间(101),以及与DOD区间相对应的循环次数和循环温度(102),根据DOD区间、循环次数和循环温度获得电池的可恢复能量信息并修正电池实际剩余可用能量(103)。这种方法、装置、电池管理系统以及存储介质,对于具有可恢复衰减容量的电池,提升了对于电池的剩余可用能量估算的准确性,能够提高电池的可靠性,可以提高电池的使用寿命以及用户的使用感受度。

Description

电池可用能量确定方法、装置、管理系统以及存储介质
本公开要求享有2019年04月25日提交的名称为“电池可用能量确定方法、装置、管理系统以及存储介质”的中国专利申请CN201910338269.3的优先权,其全部内容通过引用并入本文中。
技术领域
本公开涉及电池技术领域,尤其涉及一种电池可用能量确定方法、装置、电池管理系统以及存储介质。
背景技术
电池容量是指电池存储电量的大小,电池可用容量的准确估算对剩余容量和剩余能量等估算具有重要意义,也是反映电芯老化状态的重要参数。但是,有些电池存在两部分容量衰减:不可恢复的容量衰减和可恢复的容量衰减(类似一种记忆效应)。不可恢复的容量衰减反映了电池的真实老化和真实可用能量的减少,而可恢复的容量衰减减少了电池的实际可用能量,但这部分可恢复的能量衰减量受到历史工况影响导致难以通过当前的能量预估算法(如查表法等)进行估计,使得对于电池的剩余可用能量的估算不准确。
发明内容
有鉴于此,本公开要解决的一个技术问题是提供一种电池可用能量确定方法、装置、电池管理系统以及存储介质。
根据本公开的一个方面,提供一种电池可用能量确定方法,包括:获得与电池运行的SOC区间相对应的DOD区间;获得与所述DOD区间相对应的循环次数和循环温度;根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复能量信息;基于所述可恢复能量信息确定电池实际剩余可用能量。
在具体实施例中,所述可恢复能量信息包括:可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量。
在一个实施例中,所述获得与电池工作的SOC区间相对应的DOD区间包括:获取在与所述电池对应的SOC使用区间内设置DOD区间的设置信息;基于所述设置信息,确定所述SOC区间所对应的所述DOD区间。
在一个实施例中,所述根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复能量信息包括:预先建立所述可恢复能量信息与所述DOD区间、所述循环次数和所述循环温度的对应关系信息;基于所述对应关系信息获得与所述DOD区间、所述循环次数相对应的所述可恢复能量信息。
在具体实施例中,所述使用所述可恢复能量信息修正所述电池的可用剩余能量包括:根据电池状态信息获得与电池无可恢复衰减容量状态相对应的第一电池剩余可用能量;根据所述第一电池剩余可用能量与所述可恢复能量衰减量计算电池实际剩余可用能量;或者,根据所述第一电池剩余可用能量与所述可恢复能量衰减变化量计算电池实际剩余可用能量。
在一个实施例中,所述基于所述对应关系信息获得与所述DOD区间、所述循环次数相对应的所述可恢复能量信息包括:基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与每个所述DOD区间相对应的区间可恢复能量衰减量;基于获得的至少一个所述区间可恢复能量衰减量获得电池本次运行的所述可恢复能量衰减量。
在一个实施例中,所述根据所述第一电池剩余可用能量与所述可恢复能量衰减量计算电池实际剩余可用能量包括:将所述第一电池剩余可用能量减去所述可恢复能量衰减量,获得所述电池实际剩余可用能量。
在一个实施例中,所述基于所述对应关系信息获得与所述DOD区间、所述循环次数相对应的所述可恢复能量信息包括:基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与每个所述DOD区间相对应的区间可恢复能量衰减变化量;基于获得的至少一个所述区间可恢复能量衰减变化量获得电池本次运行的所述可恢复能量衰减变化量。
在一个实施例中,所述根据所述第一电池剩余可用能量与所述可恢复能量衰减量计算电池实际剩余可用能量包括:根据与电池上一次运行相对应的所述可恢复能量衰减量和与电池本次运行相对应的所述可恢复能量衰减变化量,获得电池本次运行的所述可恢复能量衰减量;将所述第一电池剩余可用能量减去所述可恢复能量衰减量,获得所述电池实际剩余可用能量。
在一个实施例中,所述使用所述可恢复能量信息修正所述电池的可用剩余能量包括:基于电池运行数据获得电池的第一可用容量;根据所述第一可用容量与所述可恢复容量衰减量计算电池实际剩余可用能量。
在一个实施例中,所述基于所述对应关系信息获得与所述DOD区间、所述循环次数相对应的所述可恢复能量信息包括:基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与每个所述DOD区间相对应的区间可恢复容量衰减量;基于获得的至少一个所述区间可恢复容量衰减量获得所述可恢复容量衰减量。
在一个实施例中,所述根据所述第一可用容量与所述可恢复容量衰减量计算电池实际剩余可用能量,包括:将所述第一可用容量减去所述可恢复容量衰减量,获得所述电池的实际可用容量;根据所述电池的实际可用容量和所述电池的电压信息获得所述电池实际剩余可用能量。
在一个实施例中,所述根据电池状态信息获得与电池无可恢复衰减容量状态相对应的第一电池剩余可用能量包括:预先建立所述第一电池剩余可用能量与所述电池的SOC和温度的映射关系;基于所述映射关系并根据电池状态信息获得所述第一电池剩余可用能量;其中,所述电池状态信息包括:SOC和温度信息。
根据本公开的另一方面,提供一种电池可用能量确定装置,包括:信息获得模块,用于获得与电池运行的SOC区间相对应的DOD区间;获得与所述DOD区间相对应的循环次数和循环温度;可恢复能量获得模块,用于根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复能量信息;可用能量修正模块,用于基于所述可恢复能量信息确定电池实际剩余可用能量。
根据本公开的又一方面,提供一种电池管理系统,包括:如上所述的电池可用能量确定装置。
根据本公开的再一方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如上所述的方法。
本公开的电池可用能量确定方法、装置、电池管理系统以及存储介质,获得与电池运行的SOC区间相对应的DOD区间,以及与DOD区间相对应的循环次数和循环温度,根据DOD区间、循环次数和循环温度获得电池的可恢复能量信息并修正电池实际剩余可用能量;对于具有可恢复衰减容量的电池,提升了对于电池的剩余可用能量估算的准确性,能够提高电池的可靠性,可以提高电池的使用寿命。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开的电池可用能量确定方法的一个实施例的流程示意图;
图2为根据本公开的电池可用能量确定方法的一个实施例中的获得可恢复能量信息的流程示意图;
图3为根据本公开的电池可用能量确定方法的另一个实施例中的获得实际剩余可用能量的示意图;
图4为根据本公开的电池可用能量确定方法的另一个实施例中的根据可恢复能量衰减量获得实际剩余可用能量的示意图;
图5为根据本公开的电池可用能量确定方法的另一个实施例中的根据可恢复能量衰减变换量获得实际剩余可用能量的示意图;
图6为根据本公开的电池可用能量确定方法的又一个实施例中的根据可恢复能量衰减变换量获得实际剩余可用能量的示意图;
图7为根据本公开的电池可用能量确定装置的一个实施例的模块示意图;
图8为根据本公开的电池可用能量确定装置的一个实施例中的可恢复能量模块的模块示意图;
图9为根据本公开的电池可用能量确定装置的另一个实施例的模块示意图。
具体实施方式
下面参照附图对本公开进行更全面的描述,其中说明本公开的示例性实施例。下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。下面结合各个图和实施例对本公开的技术方案进行多方面的描述。
下文中的“第一”、“第二”等仅用于描述上相区别,并没有其它特殊的含义。
图1为根据本公开的电池可用能量确定方法的一个实施例的流程示意图,如图1所示:
步骤101,获得与电池运行的SOC(State Of Charge,荷电状态)区间相对应的DOD区间。
电池可以为具有衰减容量可恢复特性的单体电芯、电池组、模组、电池包等,例如,电池为锂电池、锂电池组等。电池运行指电池充放电循环运行,DOD(depth of discharge,放电深度)区间是指在与电池相对应的SOC使用区间内设置的SOC运行区间。当电池进行充电或放电时,可以确定与电池充电或放电对应的SOC区间,确定与此SOC区间对应的DOD区间。
例如,与电池相对应的SOC使用区间为0~100%,在SOC使用区间设置五个DOD区间,五个DOD区间分别为0~20%、20~40%、40~60%、60~80%、80~100%。如果电池进行一次放电,与电池此次充电相对应的SOC区间为80-20%,则80-20%SOC区间对应三个DOD区间,分别为20~40%DOD区间、40~60%DOD区间、60~80%DOD区间。
步骤102,获得与DOD区间相对应的循环次数和循环温度。
循环次数为电池在DOD区间中循环运行的次数。例如,与20~40%DOD区间相对应的循环次数为电池在20~40%DOD区间内的充放电的循环次数。循环温度为电池在DOD区间中运行的电池温度。例如,与20~40%DOD区间相对应的循环温度,为在此次运行中,电池在20~40%DOD区间内的电池温度。
步骤103,根据DOD区间、循环次数和循环温度获得电池的可恢复能量信息。
可恢复能量信息包括:可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量等。可以有多种方法根据DOD区间、循环次数和循环温度获得电池的可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量。
例如,通过实验获得可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量的大小,建立可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量的大小与DOD区间、循环次数和循环温度的对应关系,基于对应关系获得可恢复能量信息。
步骤104,基于可恢复能量信息确定电池实际剩余可用能量。
可以使用可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量等修正电池实际可用剩余能量。电池在充放电过程中可能会存在不可恢复容量衰减与可恢复容量衰减两部分,不可恢复容量衰减是由于电池的电芯老化导致的容量不可用,而可恢复容量衰减是电池的电芯在循环运行过程中经过某种调节而可以再次释放的容量,这部分容量并不能反映电芯的老化状态。
由于可恢复容量衰减的存在,导致部分电池能量无法完全放出,而一般电池在标定剩 余使用能量时表征的是当前状态所能够释放的所有能量,因此,可恢复容量衰减会高估目前可以释放的能量,需要修正电池实际剩余可用能量。
在一个实施例中,获得与电池工作的SOC区间相对应的DOD区间可以有多种方式。例如,获取在与电池对应的SOC使用区间内设置DOD区间的设置信息,基于设置信息,确定SOC区间所对应的DOD区间。
例如,与电池相对应的SOC使用区间内设置DOD区间的设置信息为五个DOD区间信息,五个DOD区间别为0~20%、20~40%、40~60%、60~80%、80~100%。基于设置信息,确定与20~60%SOC区间对应的DOD区间为20~40%DOD区间和40~60%DOD区间。
图2为根据本公开的电池可用能量确定方法的一个实施例中的获得可恢复能量信息的流程示意图,如图2所示:
步骤201,预先建立可恢复能量信息与DOD区间、循环次数和循环温度的对应关系信息。
步骤202,基于对应关系信息获得与DOD区间、循环次数相对应的可恢复能量信息。
建立对应关系信息可以采用多种方法。通过线下实验标定与不同DOD区间、不同循环次数和不同循环温度相对应的可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量。在线下对具有可恢复容量衰减特性的电池进行工况循环测试,测试不同DOD区间、不同循环次数、不同循环温度下对应的可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量,电池的可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量可以通过多种容量测试和能量测试流程获得。
例如,在电芯容量测试时测试电芯容量,统计几个满充满放循环下无可恢复容量衰减量的电芯可用容量及能量;然后制定电芯衰减容量测试工况:在不同的DOD区间内、不同循环温度条件下循环使用电芯及电芯平行样,经过几个循环后,检测其中部分电芯的充放电容量及充放电能量;其它电芯继续循环,测量N个循环后电芯的充放电容量及充放电能量;最后,通过电芯容量测试及满充满放循环,统计当前条件下电芯无可恢复容量衰减量存在的电芯可用容量及能量。
统计分析可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量与DOD区间、循环次数和循环温度的对应函数关系或者表格对应关系等。例如,建立可恢复能量衰减量与DOD区间、循环次数和循环温度的对应表格如下表1所示:
在T1下:
可恢复能量衰减量 N1 N2 …… NX
[S1,S2] E1 E2 …… EX
……
[SA,SB] E1A E1B E1X
表1-在T1下的可恢复能量衰减量与DOD区间、循环次数的对应表
在表1中,T1为循环温度,N1,N2,…,NX代表不同的循环次数,[S1,S2],…,[SA,SB]代表不同的DOD区间,表1中的E1、……、E1X等代表不同工况下电池的区间可恢复能量衰减量,或者E1、……、E1X等也可以代表不同工况下电池的区间可恢复能量衰减变化量。E1、……、E1X等可以通过相关测试、实验等获得。
可恢复能量衰减量与DOD区间、循环次数和循环温度的对应关系也可以包括在多个不同温度维度下的表。例如,对于某种电池设置多个循环温度T2、T3、T4等,进行相关测试、实验,获得在T2、T3、T4等多个循环温度下的可恢复能量衰减量与DOD区间、循环次数对应的多个表格,每个表格的内容都如表1所示。
建立的可恢复容量衰减量与DOD区间、循环次数和循环温度的对应表格如下表2所示:
在T1下:
可恢复容量衰减量 N1 N2 …… NX
[S1,S2] D1 D2 …… DX
……
[SA,SB] D1A D1B D1X
表2-在T1下的可恢复容量衰减量与DOD区间、循环次数的对应表
在表2中,T1为循环温度,N1,N2,…,NX代表不同循环次数,[S1,S2],…,[SA,SB]代表不同的DOD区间,表2中的D1、……、D1X等代表不同工况下电池的区间可恢复容量衰减量,D1、……、D1X可以为正也可以为负值,D1、……、D1X等可以通过相关测试、实验等获得。
可恢复容量衰减量与DOD区间、循环次数和循环温度的对应关系也可以包括在多个不同温度维度下的表。例如,对于某种电池设置多个循环温度T2、T3、T4等,进行相关测试、实验,获得在T2、T3、T4等多个循环温度下的可恢复容量衰减量与DOD区间、循环次数对应的多个表格,每个表格的内容都如表2所示。
在一个实施例中,如果SOC区间不能对应多个完整的DOD区间,例如30~60%SOC区间中的30-40区间段对应20~40%DOD区间,确定在电池本次运行中与20-40%DOD 区间相对应的循环次数和循环温度,设置相应的系数,在获得可恢复能量信息时,将此系数乘以与20~40%DOD区间、循环次数和循环温度相对应的区间可恢复能量衰减量、区间可恢复能量衰减变化量或区间可恢复容量衰减量。类似地,如果循环温度位于TI和T2之间,可以将循环温度确定为T1并设置相应的系数,在获得可恢复能量信息时,将T1下的区间可恢复能量衰减量、区间可恢复能量衰减变化量或区间可恢复容量衰减量乘以此系数。
对应关系除了采用表格的方式之外,可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量与DOD区间、循环次数和循环温度的对应关系也可以通过函数拟合获得函数关系,可以利用回归方程或者神经网络方法等。
图3为根据本公开的电池可用能量确定方法的另一个实施例中的获得实际剩余可用能量的示意图,如图3所示:
步骤301,根据电池状态信息获得与电池无可恢复衰减容量状态相对应的第一电池剩余可用能量。
获得与电池无可恢复衰减容量状态相对应的第一电池剩余可用能量可以采用多种方法。可以在线下标定无可恢复容量衰减存在时,不同SOC与温度条件下的电池的当前剩余可用能量,建立映射关系。
例如,预先建立第一电池剩余可用能量与电池的SOC和温度的映射关系,用于获得在无可恢复容量衰减存在时,电池在各个温度和SOC下的当前剩余可用能量。映射关系可以为表格或者拟合关系式等。基于映射关系并根据电池状态信息获得第一电池剩余可用能量,电池状态信息包括SOC和温度信息。
步骤302,根据第一电池剩余可用能量与可恢复能量衰减量计算电池实际剩余可用能量;或者,根据第一电池剩余可用能量与可恢复能量衰减变化量计算电池实际剩余可用能量。
图4为根据本公开的电池可用能量确定方法的另一个实施例中的根据可恢复能量衰减量获得实际剩余可用能量的示意图,如图4所示:
步骤401,基于对应关系信息并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复能量衰减量。
步骤402,基于获得的至少一个区间可恢复能量衰减量获得电池本次运行的可恢复能量衰减量。
例如,可以获得电池运行的SOC区间为第一SOC-第二SOC,获得与此SOC区间相对应的多个DOD区间,获得与每个DOD区间相对应的循环次数和循环温度。可以通过 查表或函数关系并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复能量衰减量。将获得的多个区间可恢复能量衰减量相加,可以获得电池本次运行的可恢复能量衰减量。
步骤403,将第一电池剩余可用能量减去可恢复能量衰减量,获得电池实际剩余可用能量。
根据电池状态信息获得与电池无可恢复衰减容量状态相对应的电池的当前剩余可用能量E1,获得每次充电运行的SOC区间,获得与SOC区间相对应的DOD区间以及与DOD区间相对应的循环次数和循环温度。通过查表或函数关系并根据DOD区间、循环次数和循环温度计算电池的可恢复能量衰减量dE,计算电池实际剩余可用能量=E1-dE。
图5为根据本公开的电池可用能量确定方法的另一个实施例中的根据可恢复能量衰减变换量获得实际剩余可用能量的示意图,如图5所示:
步骤501,基于对应关系信息并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复能量衰减变化量。
步骤502,基于获得的至少一个区间可恢复能量衰减变化量获得电池本次运行的可恢复能量衰减变化量。
例如,可以获得电池运行的SOC区间为第一SOC-第二SOC,获得与此SOC区间相对应的多个DOD区间,获得与每个DOD区间相对应的循环次数和循环温度。可以通过查表或函数关系并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复能量衰减变化量。将获得的多个区间可恢复能量衰减变化量相加,可以获得电池本次运行的可恢复能量衰减变化量。
步骤503,根据与电池上一次运行相对应的可恢复能量衰减量和可恢复能量衰减变化量,获得电池本次运行的可恢复能量衰减量。
步骤504,将第一电池剩余可用能量减去可恢复能量衰减量,获得电池实际剩余可用能量。
例如,根据电池状态信息获得与电池无可恢复衰减容量状态相对应的电池的当前剩余可用能量E1,获得每次充电运行的SOC区间,获得与SOC区间相对应的DOD区间以及与DOD区间相对应的循环次数和循环温度。可以通过查表或函数关系并根据DOD区间、循环次数和循环温度计算电池的可恢复能量衰减量dE‘,获得与电池上一次运行相对应的可恢复能量衰减量dE0,将可恢复能量衰减变化量dE更新为dE0-dE’,计算电池实际剩余可用能量=E1-dE。
在一个实施例中,可以根据可用容量与可恢复容量衰减量计算电池实际剩余可用能量。 图6为根据本公开的电池可用能量确定方法的又一个实施例中的根据可恢复能量衰减变换量获得实际剩余可用能量的示意图,如图6所示:
步骤601,基于电池运行数据获得电池的第一可用容量。
获得电池的第一可用容量可以有多种方法,例如,基于电池运行数据,通过累计安时数线性插值计算出电池的第一可用容量等。
步骤602,将第一可用容量减去可恢复容量衰减量,获得电池的实际可用容量。
可恢复容量衰减量可以有多种获得方法。基于对应关系信息并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复容量衰减量,基于获得的至少一个区间可恢复容量衰减量获得可恢复容量衰减量。
例如,可以获得SOC区间为第一SOC-第二SOC,获得与此SOC区间相对应的多个DOD区间,获得与每个DOD区间相对应的循环次数和循环温度。可以通过查表或函数关系并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复能量衰减量。将获得的多个区间可恢复能量衰减量相加,可以获得电池本次运行的可恢复容量衰减量。
步骤603,根据电池的实际可用容量和电池的电压信息获得电池实际剩余可用能量。
例如,电池的电压信息可以为放电过程的平均电压等,可以根据SOC信息以及温度获得。根据可用容量与可恢复容量衰减量计算电池的真实容量,并基于平均电压计算获得电池实际剩余可用能量。例如,E tr=(Q t-Q d)*U avg,其中,E tr为电池的实际剩余可用能量,Q t为可用容量,Q d为可恢复能量衰减量,U avg为放电过程的平均电压。电池的可用容量可以采用多种方法获得。例如,获得电池运行数据,通过累计安时数线性插值计算出电池的可用容量等。
在一个实施例中,本公开提供一种电池可用能量确定装置70包括:信息获得模块71、可恢复能量获得模块72和可用能量修正模块73。信息获得模块71获得与电池运行的SOC区间相对应的DOD区间,获得与DOD区间相对应的循环次数和循环温度。信息获得模块71可以获取在与电池对应的SOC使用区间内设置DOD区间的设置信息,基于设置信息确定SOC区间所对应的DOD区间。
可恢复能量获得模块72根据DOD区间、循环次数和循环温度获得电池的可恢复能量信息,可恢复能量信息包括:可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量等。可恢复能量获得模块72可以预先建立可恢复能量信息与DOD区间、循环次数和循环温度的对应关系信息,基于对应关系信息获得与DOD区间、循环次数相对应的可恢复能量信息。可用能量修正模块73基于可恢复能量信息确定电池实际剩余可 用容量。
如图8所示,可恢复能量获得模块72包括:剩余能量获得单元721、第一获得单元722、第二获得单元723和第三获得单元724。剩余能量获得单元721根据电池状态信息获得与电池无可恢复衰减容量状态相对应的第一电池剩余可用能量。剩余能量获得单元721预先建立第一电池剩余可用能量与电池的SOC和温度的映射关系,基于映射关系并根据电池状态信息获得第一电池剩余可用能量,电池状态信息包括:SOC和温度信息等。
第一获得单元722根据第一电池剩余可用能量与可恢复能量衰减量计算电池实际剩余可用能量。第二获得单元723根据第一电池剩余可用能量与可恢复能量衰减变化量计算电池实际剩余可用能量。
在一个实施例中,第一获得单元722基于对应关系信息并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复能量衰减量。第一获得单元722基于获得的至少一个区间可恢复能量衰减量获得电池本次运行的可恢复能量衰减量。第一获得单元722将第一电池剩余可用能量减去可恢复能量衰减量,获得电池实际剩余可用能量。
第二获得单元723基于对应关系信息并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复能量衰减变化量。第二获得单元723基于获得的至少一个区间可恢复能量衰减变化量获得电池本次运行的可恢复能量衰减变化量。
第二获得单元723根据与电池上一次运行相对应的可恢复能量衰减量和可恢复能量衰减变化量,获得电池本次运行的可恢复能量衰减量。第二获得单元723将第一电池剩余可用能量减去可恢复能量衰减量,获得电池实际剩余可用能量。
第三获得模块724基于电池运行数据获得电池的第一可用容量,根据第一可用容量与可恢复容量衰减量计算电池实际剩余可用能量。第三获得模块724基于对应关系信息并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复容量衰减量。第三获得模块724基于获得的至少一个区间可恢复容量衰减量获得可恢复容量衰减量。
第三获得模块724将可用容量减去可恢复容量衰减量,获得电池的实际可用容量,根据电池的实际可用容量和电池的电压信息获得电池实际剩余可用能量。
图9为根据本公开的电池可用能量确定装置的另一个实施例的模块示意图。如图9所示,该装置可包括存储器91、处理器92、通信接口93以及总线94。存储器91用于存储指令,处理器92耦合到存储器91,处理器92被配置为基于存储器91存储的指令执行实现上述的电池可用能量确定方法。
存储器91可以为高速RAM存储器、非易失性存储器(non-volatile memory)等,存储器91也可以是存储器阵列。存储器91还可能被分块,并且块可按一定的规则组合成虚拟卷。处理器92可以为中央处理器CPU,或专用集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本公开的电池可用能量确定方法的一个或多个集成电路。
在一个实施例中,本公开提供一种电池管理系统,包括如上任一实施例中的电池可用能量确定装置。电池管理系统可以安装在汽车上等,可以对电池进行管理。
在一个实施例中,本公开提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上任一个实施例中的电池可用能量确定方法。
上述实施例中的电池可用能量确定方法、装置、电池管理系统以及存储介质,获得与电池运行的SOC区间相对应的DOD区间,以及与DOD区间相对应的循环次数和循环温度,根据DOD区间、循环次数和循环温度获得电池的可恢复能量信息并修正电池实际剩余可用能量;针对具有可恢复衰减容量的电池,获得电池的可恢复能量信息并基于可恢复能量信息估算出电池的剩余可用能量,可恢复能量信息可以为可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量;提升了对于电池的剩余可用能量估算的准确性,能够提高电池的可靠性,可以提高电池的使用寿命以及用户的使用感受度。
可能以许多方式来实现本公开的方法和系统。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法和系统。用于方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。

Claims (16)

  1. 一种电池可用能量确定方法,包括:
    获得与电池运行的SOC区间相对应的DOD区间;
    获得与所述DOD区间相对应的循环次数和循环温度;
    根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复能量信息;
    基于所述可恢复能量信息确定电池实际剩余可用能量。
  2. 如权利要求1所述的方法,其中,所述可恢复能量信息包括:
    可恢复能量衰减量、可恢复能量衰减变化量或可恢复容量衰减量。
  3. 如权利要求1或2所述的方法,其中,所述获得与电池工作的SOC区间相对应的DOD区间包括:
    获取在与所述电池对应的SOC使用区间内设置DOD区间的设置信息;
    基于所述设置信息,确定所述SOC区间所对应的所述DOD区间。
  4. 如权利要求3所述的方法,其中,所述根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复能量信息,包括:
    预先建立所述可恢复能量信息与所述DOD区间、所述循环次数和所述循环温度的对应关系信息;
    基于所述对应关系信息获得与所述DOD区间、所述循环次数相对应的所述可恢复能量信息。
  5. 如权利要求4所述的方法,其中,所述基于所述可恢复能量信息确定电池实际剩余可用能量,包括:
    根据电池状态信息获得与电池无可恢复衰减容量状态相对应的第一电池剩余可用能量;
    根据所述第一电池剩余可用能量与所述可恢复能量衰减量计算电池实际剩余可用能量;或者,
    根据所述第一电池剩余可用能量与所述可恢复能量衰减变化量计算电池实际剩余可用能量。
  6. 如权利要求5所述的方法,其中,所述基于所述对应关系信息获得与所述DOD区间、所述循环次数相对应的所述可恢复能量信息包括:
    基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与每个所述DOD区间相对应的区间可恢复能量衰减量;
    基于获得的至少一个所述区间可恢复能量衰减量获得电池本次运行的所述可恢复能量衰减量。
  7. 如权利要求6所述的方法,其中,所述根据所述第一电池剩余可用能量与所述可恢复能量衰减量计算电池实际剩余可用能量包括:
    将所述第一电池剩余可用能量减去所述可恢复能量衰减量,获得所述电池实际剩余可用能量。
  8. 如权利要求5所述的方法,其中,所述基于所述对应关系信息获得与所述DOD区间、所述循环次数相对应的所述可恢复能量信息包括:
    基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与每个所述DOD区间相对应的区间可恢复能量衰减变化量;
    基于获得的至少一个所述区间可恢复能量衰减变化量获得电池本次运行的所述可恢复能量衰减变化量。
  9. 如权利要求8所述的方法,其中,所述根据所述电池剩余可用能量与所述可恢复能量衰减量计算电池实际剩余可用能量包括:
    根据与电池上一次运行相对应的所述可恢复能量衰减量和与电池本次运行相对应的所述可恢复能量衰减变化量,获得电池本次运行的所述可恢复能量衰减量;
    将所述第一电池剩余可用能量减去所述可恢复能量衰减量,获得所述电池实际剩余可用能量。
  10. 如权利要求4所述的方法,其中,所述基于所述可恢复能量信息确定电池实际剩余可用能量包括:
    基于电池运行数据获得电池的第一可用容量;
    根据所述第一可用容量与所述可恢复容量衰减量计算电池实际剩余可用能量。
  11. 如权利要求10所述的方法,其中,所述基于所述对应关系信息获得与所述DOD区间、所述循环次数相对应的所述可恢复能量信息包括:
    基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与每个所述DOD区间相对应的区间可恢复容量衰减量;
    基于获得的至少一个所述区间可恢复容量衰减量获得所述可恢复容量衰减量。
  12. 如权利要求11所述的方法,其中,所述根据所述第一可用容量与所述可恢复容量衰减量计算电池实际剩余可用能量包括:
    将所述第一可用容量减去所述可恢复容量衰减量,获得所述电池的实际可用容量;
    根据所述电池的实际可用容量和所述电池的电压信息获得所述电池实际剩余可用能量。
  13. 如权利要求5所述的方法,其中,所述根据电池状态信息获得与电池无可恢复衰减容量状态相对应的第一电池剩余可用能量包括:
    预先建立所述第一电池剩余可用能量与所述电池的SOC和温度的映射关系;
    基于所述映射关系并根据电池状态信息获得所述第一电池剩余可用能量;其中,所述电池状态信息包括:SOC和温度信息。
  14. 一种电池可用能量确定装置,包括:
    信息获得模块,用于获得与电池运行的SOC区间相对应的DOD区间;获得与所述DOD区间相对应的循环次数和循环温度;
    可恢复能量获得模块,用于根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复能量信息;
    可用能量修正模块,用于基于所述可恢复能量信息确定电池实际剩余可用能量。
  15. 一种电池管理系统,包括:
    如权利要求14所述的电池可用能量确定装置。
  16. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如权利要求1至13中任一项所述的方法。
PCT/CN2020/084334 2019-04-25 2020-04-11 电池可用能量确定方法、装置、管理系统以及存储介质 WO2020216081A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20794953.8A EP3779485B1 (en) 2019-04-25 2020-04-11 Available battery energy determination method and device, management system and storage medium
US17/138,547 US11668755B2 (en) 2019-04-25 2020-12-30 Method and apparatus for determining available energy of battery, management system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910338269.3 2019-04-25
CN201910338269.3A CN110988701B (zh) 2019-04-25 2019-04-25 电池可用能量确定方法、装置、管理系统以及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/138,547 Continuation US11668755B2 (en) 2019-04-25 2020-12-30 Method and apparatus for determining available energy of battery, management system, and storage medium

Publications (1)

Publication Number Publication Date
WO2020216081A1 true WO2020216081A1 (zh) 2020-10-29

Family

ID=70081646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084334 WO2020216081A1 (zh) 2019-04-25 2020-04-11 电池可用能量确定方法、装置、管理系统以及存储介质

Country Status (4)

Country Link
US (1) US11668755B2 (zh)
EP (1) EP3779485B1 (zh)
CN (1) CN110988701B (zh)
WO (1) WO2020216081A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759260A (zh) * 2021-08-06 2021-12-07 天津力神电池股份有限公司 大容量动力电池的容量衰减原因快速判断方法
CN116209911A (zh) * 2020-12-24 2023-06-02 宁德时代新能源科技股份有限公司 一种动力电池的剩余能量的获取方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115840148B (zh) * 2022-01-07 2024-01-23 宁德时代新能源科技股份有限公司 确定电池荷电状态的方法、装置、电子设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211090A (ja) * 1996-01-30 1997-08-15 Yuasa Corp 鉛蓄電池の残存容量測定法
FR2946150B1 (fr) * 2009-05-27 2011-05-13 Peugeot Citroen Automobiles Sa Systeme et procede de determination de la perte de capacite d'une batterie.
US20140379284A1 (en) * 2013-06-21 2014-12-25 Kia Motors Corporation System and method for calculating total available energy from vehicle battery
CN105738814A (zh) * 2014-12-12 2016-07-06 国家电网公司 一种在线评估锂离子电池容量衰减程度的方法
CN105974326A (zh) * 2016-06-01 2016-09-28 华霆(合肥)动力技术有限公司 锂电池寿命预估方法及装置
CN106909716A (zh) * 2017-01-19 2017-06-30 东北电力大学 计及容量损耗的磷酸铁锂电池建模及soc估计方法
CN107436418A (zh) * 2017-06-15 2017-12-05 捷开通讯(深圳)有限公司 校准电池电量衰减的方法、终端及装置
CN110988702A (zh) * 2019-04-25 2020-04-10 宁德时代新能源科技股份有限公司 电池可用容量确定方法、装置、管理系统以及存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964635B2 (ja) * 2001-06-20 2007-08-22 松下電器産業株式会社 メモリー効果の検出方法およびその解消方法
JP4780965B2 (ja) * 2005-01-14 2011-09-28 三洋電機株式会社 電池の残容量検出方法及び電源装置
CN103257323B (zh) 2013-06-03 2016-03-23 清华大学 一种锂离子电池剩余可用能量的估计方法
JP2015166710A (ja) 2014-03-04 2015-09-24 ソニー株式会社 蓄電部材状態推定装置、電池パック、電動車両、蓄電装置および蓄電部材状態推定方法
FR3020142B1 (fr) 2014-04-16 2016-05-13 Renault Sa Procede d'estimation de l'etat de sante d'une batterie
US10557893B2 (en) * 2014-11-19 2020-02-11 Gs Yuasa International Ltd. Management device for secondary battery, and method of managing secondary battery
WO2016159087A1 (ja) * 2015-03-31 2016-10-06 株式会社Gsユアサ 蓄電素子の劣化エスティメーター、蓄電装置、蓄電素子の出入力制御装置、及び蓄電素子の出入力制御方法
GB2537406B (en) * 2015-04-16 2017-10-18 Oxis Energy Ltd Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries
CN105203963B (zh) 2015-09-11 2017-12-15 同济大学 一种基于开路电压滞回特性的荷电状态的估计方法
CN105425156B (zh) * 2015-11-06 2018-07-10 安徽江淮汽车集团股份有限公司 一种动力电池循环寿命测试方法
JP6481661B2 (ja) * 2016-06-10 2019-03-13 トヨタ自動車株式会社 電池システム
JP6414580B2 (ja) 2016-10-14 2018-10-31 トヨタ自動車株式会社 リチウムイオン二次電池の容量回復システム
CN107742755B (zh) 2017-09-27 2019-05-28 安徽江淮汽车集团股份有限公司 电动汽车soh修正方法及装置
CN107894571B (zh) * 2017-11-06 2021-01-26 北京长城华冠汽车科技股份有限公司 车载电池组寿命估算方法
CN108196200B (zh) 2018-01-28 2020-08-28 复旦大学 一种锂电池健康和荷电状态的联合模拟评估方法
CN108761343B (zh) 2018-06-05 2020-10-16 华霆(合肥)动力技术有限公司 Soh校正方法及装置
CN109085507B (zh) * 2018-07-31 2022-04-15 中国电力科学研究院有限公司 一种评估储能电池健康状态的方法和系统
CN109507611B (zh) 2018-11-22 2020-07-28 安徽江淮汽车集团股份有限公司 一种电动汽车的soh修正方法及系统
CN110988690B (zh) 2019-04-25 2021-03-09 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理系统以及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211090A (ja) * 1996-01-30 1997-08-15 Yuasa Corp 鉛蓄電池の残存容量測定法
FR2946150B1 (fr) * 2009-05-27 2011-05-13 Peugeot Citroen Automobiles Sa Systeme et procede de determination de la perte de capacite d'une batterie.
US20140379284A1 (en) * 2013-06-21 2014-12-25 Kia Motors Corporation System and method for calculating total available energy from vehicle battery
CN105738814A (zh) * 2014-12-12 2016-07-06 国家电网公司 一种在线评估锂离子电池容量衰减程度的方法
CN105974326A (zh) * 2016-06-01 2016-09-28 华霆(合肥)动力技术有限公司 锂电池寿命预估方法及装置
CN106909716A (zh) * 2017-01-19 2017-06-30 东北电力大学 计及容量损耗的磷酸铁锂电池建模及soc估计方法
CN107436418A (zh) * 2017-06-15 2017-12-05 捷开通讯(深圳)有限公司 校准电池电量衰减的方法、终端及装置
CN110988702A (zh) * 2019-04-25 2020-04-10 宁德时代新能源科技股份有限公司 电池可用容量确定方法、装置、管理系统以及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779485A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116209911A (zh) * 2020-12-24 2023-06-02 宁德时代新能源科技股份有限公司 一种动力电池的剩余能量的获取方法和装置
CN113759260A (zh) * 2021-08-06 2021-12-07 天津力神电池股份有限公司 大容量动力电池的容量衰减原因快速判断方法
CN113759260B (zh) * 2021-08-06 2023-08-08 力神(青岛)新能源有限公司 大容量动力电池的容量衰减原因快速判断方法

Also Published As

Publication number Publication date
US11668755B2 (en) 2023-06-06
US20210148981A1 (en) 2021-05-20
EP3779485A4 (en) 2021-08-25
EP3779485B1 (en) 2022-07-06
EP3779485A1 (en) 2021-02-17
CN110988701B (zh) 2021-04-30
CN110988701A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2020216080A1 (zh) 电池可用容量确定方法、装置、管理系统以及存储介质
WO2020216081A1 (zh) 电池可用能量确定方法、装置、管理系统以及存储介质
US20220099753A1 (en) Method For Predicting Service Life Of Retired Power Battery
US10330738B2 (en) Apparatus for estimating battery degradation state, system including the same, and method thereof
US11899071B2 (en) Method and apparatus for determining state of charge of battery, management system and storage medium
CN109664795B (zh) 电池组被动均衡方法和电池管理系统
CN109507611B (zh) 一种电动汽车的soh修正方法及系统
JP5535968B2 (ja) 充電率推定装置、充電率推定方法、及びプログラム
CN104360285A (zh) 一种基于改进的安时积分法的电池容量修正方法
CN113219351B (zh) 动力电池的监控方法及装置
CN113009346B (zh) 电池系统及其soc值修正方法
CN107861074B (zh) 一种锂电池soc估算方法
KR101777334B1 (ko) 배터리 soh 추정 장치 및 방법
US20240159836A1 (en) Method and device for calibrating soc at tail end of charging or discharging of energy storage system
WO2023116531A1 (zh) 确定电池soc初始值的方法及相关装置
CN117250514A (zh) 一种动力电池系统全生命周期soc的修正方法
CN115825750A (zh) 一种soc校准方法、装置及储能电池系统
JPWO2018186088A1 (ja) 電池制御装置
JP6895537B2 (ja) 電池状態推定装置
US20220407339A1 (en) Power storage device control apparatus, power storage device control system, and power storage device control method
CN112578295B (zh) Soc估算方法、装置、电子设备及存储介质
CN117452240A (zh) 一种电池包荷电状态的测算方法、及装置
CN114578238A (zh) 一种基于磷酸铁锂电池的soc末端的修正方法及装置
CN116148673A (zh) 电池脉冲功率确定方法、设备及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020794953

Country of ref document: EP

Effective date: 20201112

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE