WO2020216080A1 - 电池可用容量确定方法、装置、管理系统以及存储介质 - Google Patents

电池可用容量确定方法、装置、管理系统以及存储介质 Download PDF

Info

Publication number
WO2020216080A1
WO2020216080A1 PCT/CN2020/084333 CN2020084333W WO2020216080A1 WO 2020216080 A1 WO2020216080 A1 WO 2020216080A1 CN 2020084333 W CN2020084333 W CN 2020084333W WO 2020216080 A1 WO2020216080 A1 WO 2020216080A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
interval
recoverable
recoverable capacity
attenuation
Prior art date
Application number
PCT/CN2020/084333
Other languages
English (en)
French (fr)
Inventor
阮见
杜明树
汤慎之
李世超
卢艳华
张伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2020573144A priority Critical patent/JP2022529546A/ja
Priority to KR1020207037758A priority patent/KR20220011564A/ko
Publication of WO2020216080A1 publication Critical patent/WO2020216080A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a method, device, battery management system, and storage medium for determining the available battery capacity.
  • Battery capacity refers to the size of the battery's stored power.
  • the accurate estimation of battery available capacity is of great significance to the estimation of remaining capacity and remaining energy, and is also an important parameter reflecting the aging state of the battery.
  • the estimation method of battery available capacity usually includes offline capacity test to obtain the real capacity.
  • the available battery capacity can be updated according to the calibrated aging curve, or online according to the open circuit voltage and SOC-OCV (open circuit voltage) curve.
  • SOC-OCV open circuit voltage
  • some batteries have two parts of capacity decay: irrecoverable capacity decay and recoverable capacity decay (similar to a memory effect).
  • the available capacity estimation method of the battery can only calculate the sum of the two types of capacity attenuation, and cannot accurately obtain the available battery capacity.
  • a technical problem to be solved by the present disclosure is to provide a method, device, battery management system, and storage medium for determining the available battery capacity.
  • a method for determining available battery capacity including: obtaining an SOC interval corresponding to battery operation, determining a DOD interval corresponding to the SOC interval; and obtaining a cycle corresponding to the DOD interval The number of times and cycle temperature; the recoverable capacity attenuation of the battery is obtained according to the DOD interval, the number of cycles, and the cycle temperature; the actual usable capacity of the battery is determined based on the recoverable capacity attenuation.
  • the determining the DOD interval corresponding to the SOC interval in which the battery runs includes: acquiring setting information for setting the DOD interval in the SOC usage interval corresponding to the battery; and determining based on the setting information The DOD interval corresponding to the SOC interval.
  • obtaining the recoverable capacity attenuation of the battery according to the DOD interval, the number of cycles, and the cycle temperature includes: pre-establishing the recoverable capacity attenuation, the DOD interval, and the The corresponding relationship information between the number of cycles and the cycle temperature; based on the corresponding relationship information, the recoverable capacity attenuation corresponding to the DOD interval, the number of cycles, and the cycle temperature is obtained.
  • the SOC interval is determined based on the first SOC of the battery before charging and the second SOC after charging; at least one of the DOD intervals corresponding to the SOC interval is obtained, and each The number of cycles corresponding to the DOD interval and the cycle temperature; based on the correspondence information and according to the DOD interval, the number of cycles, and the cycle temperature, the interval corresponding to each DOD interval can be obtained Recovery capacity attenuation; obtain the first single recoverable capacity attenuation of the battery in this operation based on at least one of the interval recoverable capacity attenuation; obtain the current battery attenuation according to the first single recoverable capacity attenuation Recoverable capacity attenuation under working conditions.
  • the obtaining the recoverable capacity attenuation of the battery under the current operating condition according to the first single recoverable capacity attenuation includes: obtaining the one or more operations corresponding to the previous battery One or more of the second single-recoverable capacity attenuation; according to the preset first calculation rule, the one or more second single-recoverable capacity attenuation and the first single-recoverable capacity attenuation The amount of recoverable capacity attenuation of the battery under the current working condition is obtained.
  • the second single recoverable capacity attenuation corresponding to the last operation of the battery is obtained; the second single recoverable capacity attenuation corresponding to this second single recoverable capacity attenuation and the first single recoverable capacity attenuation are obtained.
  • the second single recoverable capacity attenuation and the first single recoverable capacity attenuation are weighted to calculate to obtain the battery under current operating conditions The amount of recoverable capacity attenuation.
  • a plurality of SOC intervals corresponding to multiple cycles of the battery is obtained; a plurality of the DOD intervals corresponding to the plurality of SOC intervals is obtained, and all the DOD intervals corresponding to each DOD interval are obtained.
  • the number of cycles and the cycle temperature; based on the correspondence information and according to the DOD interval, the number of cycles, and the cycle temperature, a plurality of interval recoverable capacity attenuation amounts corresponding to the plurality of DOD intervals are obtained ; Obtain the recoverable capacity attenuation of the battery in the current working condition according to the multiple interval recoverable capacity attenuation.
  • the obtaining the recoverable capacity attenuation of the battery under the current operating condition according to the plurality of interval recoverable capacity attenuation includes: obtaining from the plurality of interval recoverable capacity attenuation The interval recoverable capacity attenuation corresponding to each SOC interval; based on the interval recoverable capacity attenuation corresponding to each SOC interval, the cumulative recoverable capacity attenuation corresponding to each SOC interval is obtained; according to the preset The second calculation rule processes multiple accumulated recoverable capacity attenuation corresponding to the multiple SOC intervals to obtain the recoverable capacity attenuation of the battery under the current operating condition.
  • the multiple accumulated recoverable capacity attenuation amounts corresponding to the multiple SOC intervals are processed according to a preset second calculation rule to obtain the recoverable capacity of the battery under the current operating condition
  • the capacity attenuation amount includes: obtaining multiple weight values corresponding to the multiple accumulated recoverable capacity attenuation amounts, and weighting the multiple accumulated recoverable capacity attenuation amounts based on the multiple weight values to obtain all Describes the attenuation of the recoverable capacity of the battery under the current operating conditions.
  • the determining the actual available capacity of the battery based on the recoverable capacity attenuation includes: obtaining the first available capacity of the battery based on battery operating data; and according to the first available capacity and the available capacity The recovery capacity decay amount calculates the actual available capacity of the battery, and obtains the battery health status based on the actual available capacity.
  • the recoverable capacity attenuation is greater than or equal to a preset threshold, it is determined that the recoverable capacity attenuation of the battery needs to be eliminated and corresponding operations are performed.
  • the number of charge and discharge is determined, and the battery is fully charged and discharged according to the number of charge and discharge cycles to eliminate the attenuation of the battery's recoverable capacity.
  • a device for determining available battery capacity including: an information obtaining module for obtaining an SOC interval corresponding to battery operation, determining a DOD interval corresponding to the SOC interval; The number of cycles and cycle temperature corresponding to the DOD interval; a recoverable capacity obtaining module for obtaining the attenuation of the battery's recoverable capacity according to the DOD interval, the number of cycles, and the cycle temperature; available capacity correction module , For determining the actual available capacity of the battery based on the recoverable capacity attenuation; a recoverable capacity processing module, for determining that the battery needs to be eliminated if the recoverable capacity attenuation is greater than or equal to a preset threshold The amount of recoverable capacity attenuation and operate accordingly.
  • a battery management system including: the device for determining the available battery capacity as described above.
  • a computer-readable storage medium stores computer instructions, and the instructions are executed by a processor to execute the method as described above.
  • the method, device, battery management system, and storage medium for determining the available battery capacity of the present disclosure obtain the DOD interval corresponding to the SOC interval of the battery operation, and the cycle number and cycle temperature corresponding to the DOD interval, according to the DOD interval and cycle number And cycle temperature to obtain the recoverable capacity attenuation of the battery and determine the actual usable capacity of the battery; for batteries with recoverable attenuation capacity, the present disclosure improves the accuracy of the actual usable capacity and SOH estimation, and can accurately estimate the true aging of the battery State, can improve the reliability of the battery, can increase the service life of the battery.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for determining available battery capacity according to the present disclosure
  • FIG. 2 is a schematic flowchart of obtaining a recoverable capacity attenuation in an embodiment of the method for determining available battery capacity according to the present disclosure
  • FIG. 3 is a schematic diagram of obtaining the attenuation of recoverable capacity in another embodiment of the method for determining available battery capacity according to the present disclosure
  • FIG. 4 is a schematic diagram of obtaining the attenuation of recoverable capacity in another embodiment of the method for determining available battery capacity according to the present disclosure
  • FIG. 5 is a schematic diagram of modules of an embodiment of a device for determining available battery capacity according to the present disclosure
  • FIG. 6 is a schematic diagram of an information obtaining module in an embodiment of the device for determining available battery capacity according to the present disclosure
  • FIG. 7 is a schematic diagram of a recoverable capacity obtaining module in an embodiment of the device for determining available battery capacity according to the present disclosure
  • FIG. 8 is a schematic diagram of modules of a recoverable attenuation obtaining unit in an embodiment of the device for determining available battery capacity according to the present disclosure
  • FIG. 9 is a schematic diagram of modules of another embodiment of a device for determining available battery capacity according to the present disclosure.
  • Fig. 1 is a schematic flowchart of an embodiment of a method for determining available battery capacity according to the present disclosure, as shown in Fig. 1:
  • Step 101 Obtain a SOC (State of Charge, state of charge) interval corresponding to battery operation, and determine a DOD interval corresponding to the SOC interval.
  • SOC State of Charge, state of charge
  • the battery may be a single cell, battery pack, module, battery pack, etc. with recoverable attenuation capacity, for example, the battery is a lithium battery, a lithium battery pack, and the like.
  • Battery operation refers to battery charge-discharge cycle operation
  • DOD (depth of discharge) interval refers to the SOC operation interval set in the SOC usage interval corresponding to the battery.
  • the SOC usage interval corresponding to the battery is 0-100%, and five DOD intervals are set in the SOC usage interval.
  • the five DOD intervals are 0-20%, 20-40%, 40-60%, and 60-80. %, 80-100%. If the battery is discharged once, the SOC interval corresponding to the current discharge of the battery is 80-20%, then the 80-20% SOC interval corresponds to three DOD intervals, which are respectively 20-40% DOD interval and 40-60% DOD Interval, 60-80% DOD interval.
  • Step 102 Obtain the number of cycles and the cycle temperature corresponding to the DOD interval.
  • the number of cycles is the number of cycles the battery runs in the DOD interval.
  • the number of cycles corresponding to the 20-40% DOD interval is the number of charge and discharge cycles of the battery in the 20-40% DOD interval.
  • the cycle temperature is the battery temperature at which the battery runs in the DOD interval.
  • the cycle temperature corresponding to the 20-40% DOD interval is the battery temperature in the 20-40% DOD interval during this operation.
  • Step 103 Obtain the recoverable capacity attenuation of the battery according to the DOD interval, the number of cycles and the cycle temperature.
  • the magnitude of the recoverable capacity attenuation is obtained through experiments, the corresponding relationship between the magnitude of the recoverable capacity attenuation and the DOD interval, the number of cycles and the cycle temperature is established, and the recoverable capacity attenuation is obtained based on the correspondence.
  • Step 104 Determine the actual available capacity of the battery based on the amount of recoverable capacity attenuation.
  • Unrecoverable capacity attenuation is due to the aging of the battery cells and the capacity is unavailable, while the recoverable capacity attenuation is when the battery cells are circulating. The capacity that can be released again after a certain adjustment during operation. This part of the capacity does not reflect the aging state of the battery. Due to the recoverable capacity degradation, it may overestimate the true aging of the current battery cell. Therefore, the recoverable capacity degradation amount needs to be used to correct the actual available capacity of the battery. The actual available capacity of the battery is the true available capacity of the battery.
  • the setting information for setting the DOD section in the SOC use section corresponding to the battery is acquired, and the DOD section corresponding to the SOC section is determined based on the setting information.
  • the setting information for setting the DOD interval in the SOC usage interval corresponding to the battery is five DOD interval information, and the five DOD intervals are 0-20%, 20-40%, 40-60%, 60-80%, 80-100%.
  • the DOD interval corresponding to the 20-60% SOC interval is determined to be the 20-40% DOD interval and the 40-60% DOD interval.
  • FIG. 2 is a schematic diagram of the process of obtaining the attenuation of recoverable capacity in an embodiment of the method for determining the available battery capacity of the present disclosure, as shown in FIG. 2:
  • Step 201 Pre-establish the corresponding relationship information between the recoverable capacity attenuation and the DOD interval, the number of cycles, and the cycle temperature.
  • the corresponding relationship information between the recoverable capacity attenuation and the DOD interval, the number of cycles, and the cycle temperature can be established through experimental data.
  • the corresponding relationship information includes functional relationships, tables, models, etc.
  • Step 202 Based on the correspondence information, obtain a recoverable capacity attenuation corresponding to the DOD interval, the number of cycles, and the cycle temperature.
  • the amount of recoverable capacity attenuation corresponding to different DOD intervals, different cycle times and different cycle temperatures is calibrated through offline experiments.
  • the battery with recoverable capacity attenuation characteristics is tested offline under working conditions to test the corresponding recoverable capacity attenuation under different DOD intervals, different cycle times, and different cycle temperatures.
  • the recoverable capacity attenuation of the battery cell can be obtained through various capacity test procedures.
  • test the battery capacity during the battery capacity test and count the available capacity of the battery cell with no recoverable capacity attenuation under several full charge cycles; the battery is recycled and used in different DOD intervals and under different cycle temperature conditions.
  • Cells are sampled in parallel, after several cycles, the charge and discharge capacity of some of the cells are tested; other cells continue to cycle, and the charge and discharge capacity of the cells after N cycles are measured; finally, they pass the cell capacity test and are fully charged Release cycle, count the available capacity of the battery cell with no recoverable capacity attenuation under current conditions.
  • T1 is the cycle temperature
  • N1, N2,..., NX represent different cycle times
  • [S1, S2],..., [SA, SB] represent different DOD intervals
  • D1X, etc. represent the range of recoverable capacity attenuation of the battery under different working conditions.
  • D1,..., D1X, etc. can be positive or negative.
  • D1,..., D1X, etc. can be obtained through related tests and experiments.
  • the corresponding relationship between the amount of recoverable capacity attenuation and the DOD interval, the number of cycles, and the cycle temperature may also be included in tables under multiple different temperature dimensions. For example, for a certain battery, set multiple cycle temperatures T2, T3, T4, etc., perform related tests and experiments, and obtain the amount of recoverable capacity attenuation at multiple cycle temperatures such as T2, T3, T4, and the corresponding DOD interval and cycle number The contents of each table are shown in Table 1.
  • the SOC interval cannot correspond to multiple complete DOD intervals, for example, the 30-40 interval in the 30-60% SOC interval corresponds to the 20-40% DOD interval, it is determined that the battery is in the same operation as the 20- Set the corresponding coefficient for the number of cycles and cycle temperature corresponding to the 40% DOD interval.
  • the recoverable capacity attenuation multiply this coefficient by the interval corresponding to the 20-40% DOD interval, the number of cycles and the cycle temperature. Restore the capacity attenuation.
  • the cycle temperature is between TI and T2
  • the cycle temperature can be determined as T1 and the corresponding coefficient can be set. When recoverable energy information is obtained, the interval recoverable capacity attenuation under T1 is multiplied by this coefficient.
  • the corresponding relationship between the recoverable capacity attenuation and the DOD interval, the number of cycles and the cycle temperature can also be obtained by function fitting, and regression equations or neural network methods can be used.
  • FIG. 3 is a schematic diagram of obtaining the attenuation of recoverable capacity in another embodiment of the method for determining available battery capacity according to the present disclosure, as shown in FIG. 3:
  • Step 301 Determine the SOC interval based on the first SOC of the battery before charging and the second SOC after charging.
  • Step 302 Obtain at least one DOD interval corresponding to the SOC interval, and obtain the number of cycles and the cycle temperature corresponding to each DOD interval.
  • Step 303 Obtain an interval recoverable capacity attenuation corresponding to each DOD interval based on the correspondence information and according to the DOD interval, the number of cycles and the cycle temperature.
  • Step 304 Obtain the first single recoverable capacity attenuation of the battery in the current operation based on the at least one interval recoverable capacity attenuation.
  • the SOC interval in which the battery can be charged is the first SOC-the second SOC
  • multiple DOD intervals corresponding to this SOC interval are obtained
  • the cycle number and cycle temperature corresponding to each DOD interval are obtained.
  • the recoverable capacity attenuation of the interval corresponding to each DOD interval can be obtained by looking up the table or functional relationship and according to the DOD interval, the number of cycles and the cycle temperature. Add the obtained multiple intervals of recoverable capacity attenuation to obtain the first single recoverable capacity attenuation of the battery in this operation.
  • Step 305 Obtain the recoverable capacity degradation of the battery under the current operating condition according to the first single recoverable capacity degradation.
  • Various methods can be used to obtain the recoverable capacity attenuation of the battery under the current operating conditions according to the first single recoverable capacity attenuation. For example, obtain one or more second single recoverable capacity attenuation corresponding to one or more previous battery operations, and perform one or more second single recoverable capacity attenuation according to the preset first calculation rule The first single recoverable capacity attenuation is processed to obtain the recoverable capacity attenuation of the battery under the current operating conditions.
  • the first calculation rule may have multiple types, and may be a weighted calculation rule. For example, obtain the second single recoverable capacity attenuation corresponding to the last run of the battery, and obtain two weight values corresponding to this second single recoverable capacity attenuation and the first single recoverable capacity attenuation , And based on these two weight values, the second single recoverable capacity attenuation and the first single recoverable capacity attenuation are weighted to calculate the recoverable capacity attenuation of the battery under the current operating conditions.
  • the SOC value of the battery before each charge and the SOC value after the end of the charge are recorded, the SOC interval is obtained, and the DOD interval corresponding to the SOC interval is obtained, as well as the number of cycles and the cycle temperature corresponding to the DOD interval.
  • the recoverable capacity attenuation of the battery can be updated after the battery is charged this time.
  • FIG. 4 is a schematic diagram of obtaining the attenuation of recoverable capacity in another embodiment of the method for determining available battery capacity according to the present disclosure, as shown in FIG. 4:
  • Step 401 Obtain multiple SOC intervals corresponding to multiple cycles of the battery.
  • Step 402 Obtain multiple DOD intervals corresponding to the multiple SOC intervals, and obtain the cycle number and cycle temperature corresponding to each DOD interval.
  • Step 403 Obtain the recoverable capacity attenuation of multiple intervals corresponding to the multiple DOD intervals based on the correspondence information and according to the DOD interval, the number of cycles, and the cycle temperature.
  • Step 405 Obtain the recoverable capacity attenuation of the battery under the current operating condition according to the recoverable capacity attenuation in multiple intervals.
  • the interval recoverable capacity attenuation amount corresponding to each SOC interval is obtained from multiple interval recoverable capacity attenuation amounts, and the interval recoverable capacity attenuation amount corresponding to each SOC interval is obtained based on the interval recoverable capacity attenuation amount corresponding to each SOC interval.
  • the corresponding accumulation can restore the capacity attenuation.
  • multiple accumulated recoverable capacity attenuation amounts corresponding to multiple SOC intervals are processed to obtain the recoverable capacity attenuation amount of the battery under the current operating condition.
  • multiple SOC intervals corresponding to multiple cycles of charging the battery are obtained, multiple DOD intervals corresponding to the multiple SOC intervals are obtained, and the number of cycles and cycle temperature corresponding to each DOD interval are obtained .
  • the look-up table or the functional relational expression and according to the DOD interval, the number of cycles and the cycle temperature, the recoverable capacity attenuation of multiple intervals corresponding to the SOC intervals of multiple battery operation is obtained.
  • the accumulated recoverable capacity attenuation amount corresponding to the SOC interval of the multiple battery operation is obtained based on the interval recoverable capacity attenuation amount respectively corresponding to the SOC interval of the multiple battery operation. For example, the interval recoverable capacity attenuation amount corresponding to each SOC interval is added to obtain the accumulated recoverable capacity attenuation amount corresponding to each SOC interval.
  • the multiple cumulative recoverable capacity attenuations corresponding to multiple SOC intervals are calculated to obtain the recoverable capacity attenuation of the battery under the current operating conditions.
  • the multiple cumulative recoverable capacity attenuation corresponding to multiple SOC intervals are D1, D2,...DN
  • the currently measured capacity value is recorded.
  • the conditions for estimating the battery capacity can be a variety of conditions, for example, the number of cycles of the battery reaches a threshold.
  • the first available capacity of the battery is obtained based on the battery operating data
  • the actual available capacity of the battery is calculated according to the first available capacity and the attenuation of the recoverable capacity
  • the battery health status is obtained based on the actual available capacity.
  • the first available capacity of the battery is obtained by linear interpolation of accumulated ampere hours.
  • the first available capacity of the battery cannot reflect the aging state of the battery cell.
  • the actual available capacity of the battery can be obtained by adding the attenuation of the recoverable capacity to the first available capacity of the battery .
  • Corresponding operations include: determining the number of charge and discharge times, and perform a full charge and discharge cycle operation on the battery according to the number of charge and discharge times to eliminate the attenuation of the battery's recoverable capacity.
  • N is the number of charge and discharge times required to eliminate the capacity attenuation under the current recoverable capacity attenuation measured by the experiment.
  • the state of health (Stay Of Health, SOH) is an important parameter that reflects the performance and life of the battery, and the SOH is used to estimate the true aging state of the battery.
  • the health status of the battery SOH often refers to the ratio of the capacity of the battery after aging to the capacity of the fresh battery. The battery will inevitably undergo aging or deterioration during long-term use, resulting in a significant decrease in battery capacity. If the SOH is not corrected after the battery capacity is attenuated, the calculation error of the state of charge (SOC) of the battery may increase, and there will be current Problems such as overcurrent risk.
  • SOC state of charge
  • There are many ways to obtain the battery health status based on the actual available capacity. For example, the SOH of the battery actual available capacity/nominal capacity value, and the nominal capacity value may be the standard capacity value preset at the factory.
  • the present disclosure provides a device 50 for determining available battery capacity, including: an information obtaining module 51, a recoverable capacity obtaining module 52, an available capacity correction module 53, and a recoverable capacity processing module 54 .
  • the information obtaining module 51 obtains the SOC interval corresponding to the battery operation, determines the DOD interval corresponding to the SOC interval, and obtains the number of cycles and the cycle temperature corresponding to the DOD interval.
  • the information obtaining module 51 may obtain setting information for setting a DOD section in the SOC use section corresponding to the battery, and determine the DOD section corresponding to the SOC section based on the setting information.
  • the recoverable capacity obtaining module 52 obtains the attenuation of the recoverable capacity of the battery according to the DOD interval, the number of cycles, and the cycle temperature.
  • the available capacity correction module 53 determines the actual available capacity of the battery based on the amount of recoverable capacity attenuation.
  • the recoverable capacity obtaining module 52 includes: a mapping information setting unit 521 and a recoverable attenuation obtaining unit 522.
  • the mapping information setting unit 521 pre-establishes the correspondence relationship information between the recoverable capacity attenuation amount and the DOD interval, the number of cycles, and the cycle temperature.
  • the recoverable attenuation obtaining unit 522 obtains the recoverable capacity attenuation amount corresponding to the DOD interval, the number of cycles, and the cycle temperature based on the correspondence information.
  • the information obtaining module 51 includes: a first information determining unit 511 and a second information determining unit 512.
  • the recoverable attenuation obtaining unit 522 includes: a first obtaining unit 523 and a second obtaining unit 524.
  • the first information determining unit 511 determines the SOC interval based on the first SOC before charging and the second SOC after charging of the battery, obtains at least one DOD interval corresponding to the SOC interval, and obtains a cycle corresponding to each DOD interval Number and cycle temperature.
  • the first obtaining unit 523 obtains the interval recoverable capacity attenuation corresponding to each DOD interval based on the correspondence relationship information and according to the DOD interval, the number of cycles, and the cycle temperature.
  • the first obtaining unit 523 obtains the first single recoverable capacity attenuation of the battery in this operation based on at least one interval of the recoverable capacity attenuation, and obtains the recoverable capacity of the battery under the current operating condition according to the first single recoverable capacity attenuation. The amount of capacity attenuation.
  • the first obtaining unit 523 obtains one or more second single recoverable capacity attenuations corresponding to one or more previous battery operations, and calculates one or more second single recoverable capacity decay according to the preset first calculation rule.
  • the recovery capacity attenuation and the first single recoverable capacity attenuation are processed to obtain the recoverable capacity attenuation of the battery under the current operating conditions.
  • the first order 523 obtains the second single recoverable capacity attenuation corresponding to the previous operation of the battery, and obtains the two corresponding to the second single recoverable capacity attenuation and the first single recoverable capacity attenuation. Based on these two weight values, the second single recoverable capacity attenuation and the first single recoverable capacity attenuation are weighted to calculate the recoverable capacity attenuation of the battery under the current operating conditions.
  • the second information determining unit 512 obtains a plurality of SOC intervals corresponding to multiple cycles of the battery, and obtains a plurality of DOD intervals corresponding to the plurality of SOC intervals.
  • the second information determining unit 512 obtains the number of cycles and the cycle temperature corresponding to each DOD section.
  • the second obtaining unit 524 obtains the recoverable capacity attenuation amount of multiple intervals corresponding to the multiple DOD intervals based on the correspondence relationship information and according to the DOD interval, the number of cycles, and the cycle temperature.
  • the second obtaining unit 524 obtains the recoverable capacity attenuation of the battery under the current operating condition according to the recoverable capacity attenuation in multiple intervals.
  • the second obtaining unit 524 obtains the interval recoverable capacity attenuation amount corresponding to each SOC interval from the plurality of interval recoverable capacity attenuation amounts.
  • the second obtaining unit 524 obtains the accumulated recoverable capacity attenuation amount corresponding to each SOC interval based on the interval recoverable capacity attenuation amount corresponding to each SOC interval, and compares it with multiple SOC intervals according to a preset second calculation rule The corresponding multiple accumulated recoverable capacity attenuation is processed to obtain the recoverable capacity attenuation of the battery under the current working condition.
  • the second obtaining unit 524 obtains a plurality of weight values corresponding to the plurality of accumulated recoverable capacity attenuation amounts, and performs a weighted calculation on the plurality of accumulated recoverable capacity attenuation amounts based on the plurality of weight values, and obtains the battery's available capacity under current operating conditions. Restore the amount of capacity attenuation.
  • the available capacity correction module 53 obtains the first available capacity of the battery based on the battery operating data, calculates the actual available capacity of the battery according to the first available capacity and the recoverable capacity attenuation, and obtains the battery health status based on the actual available capacity.
  • the recoverable capacity processing module 54 determines that the recoverable capacity attenuation of the battery needs to be eliminated and performs corresponding operations.
  • the recoverable capacity processing module 54 can determine the number of charge and discharge times, and perform a full charge and discharge cycle operation on the battery according to the number of charge and discharge times, so as to eliminate the attenuation of the recoverable capacity of the battery.
  • FIG. 9 is a schematic diagram of modules of another embodiment of a device for determining available battery capacity according to the present disclosure.
  • the device may include a memory 91, a processor 92, a communication interface 93 and a bus 94.
  • the memory 91 is used to store instructions
  • the processor 92 is coupled to the memory 91
  • the processor 92 is configured to execute the above-mentioned method for determining the available battery capacity based on the instructions stored in the memory 91.
  • the memory 91 may be a high-speed RAM memory, a non-volatile memory (non-volatile memory), etc., and the memory 91 may also be a memory array.
  • the memory 91 may also be divided into blocks, and the blocks may be combined into a virtual volume according to certain rules.
  • the processor 92 may be a central processing unit CPU, or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the method for determining the available battery capacity of the present disclosure.
  • the present disclosure provides a battery management system including the device for determining the available battery capacity in any of the above embodiments.
  • the battery management system can be installed in a car, etc., to manage the battery.
  • the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores computer instructions.
  • the instructions are executed by a processor, the method for determining the available battery capacity as in any of the above embodiments is implemented.
  • the method, device, battery management system, and storage medium for determining the available battery capacity in the above embodiments obtain the DOD interval corresponding to the SOC interval of the battery operation, and the cycle number and cycle temperature corresponding to the DOD interval, according to the DOD interval, The number of cycles and the cycle temperature are used to obtain the recoverable capacity attenuation of the battery and correct the usable capacity of the battery; for batteries with recoverable attenuation capacity, the recoverable capacity attenuation of the battery is obtained, and the available capacity is estimated based on the recoverable capacity attenuation, which improves For the actual available capacity and the accuracy of the SOH estimation results, the reliability of the battery can be improved, and the service life of the battery and the user experience can be improved.
  • the method and system of the present disclosure may be implemented in many ways.
  • the method and system of the present disclosure can be implemented by software, hardware, firmware or any combination of software, hardware, and firmware.
  • the above-mentioned order of the steps for the method is for illustration only, and the steps of the method of the present disclosure are not limited to the order specifically described above, unless otherwise specifically stated.
  • the present disclosure may also be implemented as programs recorded in a recording medium, and these programs include machine-readable instructions for implementing the method according to the present disclosure.
  • the present disclosure also covers a recording medium storing a program for executing the method according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

一种电池可用容量确定方法、装置、电池管理系统以及存储介质,电池可用容量确定方法包括:获得与电池运行的SOC区间相对应的DOD区间(101),以及与DOD区间相对应的循环次数和循环温度(102),根据DOD区间、循环次数和循环温度获得电池的可恢复容量衰减量(103)并确定电池的实际可用容量(104)。提出的方法、装置、电池管理系统以及存储介质,对于具有可恢复衰减容量的电池,提升了对于实际可用容量以及SOH估算结果的准确性,能够提高电池的可靠性,可以提高电池的使用寿命以及用户的使用感受度。

Description

电池可用容量确定方法、装置、管理系统以及存储介质
本公开要求享有2019年04月25日提交的名称为“电池可用容量确定方法、装置、管理系统以及存储介质”的中国专利申请CN201910338512.1的优先权,其全部内容通过引用并入本文中。
技术领域
本公开涉及电池技术领域,尤其涉及一种电池可用容量确定方法、装置、电池管理系统以及存储介质。
背景技术
电池容量是指电池存储电量的大小,电池可用容量的准确估算对剩余容量和剩余能量等估算具有重要意义,也是反映电芯老化状态的重要参数。目前,电池可用容量的估算方法通常包括线下容量测试获得真实容量,电池可用容量可以根据标定的老化曲线更新容量,或者根据开路电压和SOC-OCV(开路电压)曲线进行在线更新。但是,有些电池存在两部分容量衰减:不可恢复的容量衰减和可恢复的容量衰减(类似一种记忆效应)。目前,电芯可用容量估算方法只能计算出两类容量衰减之和,无法准确获得电池可用容量。
发明内容
有鉴于此,本公开要解决的一个技术问题是提供一种电池可用容量确定方法、装置、电池管理系统以及存储介质。
根据本公开的一个方面,提供一种电池可用容量确定方法,包括:获得与电池运行相对应的SOC区间,确定与所述SOC区间相对应的DOD区间;获得与所述DOD区间相对应的循环次数和循环温度;根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复容量衰减量;基于所述可恢复容量衰减量确定所述电池的实际可用容量。
在一个实施例中,所述确定与电池运行的SOC区间相对应的DOD区间,包括:获取在与所述电池相对应的SOC使用区间内设置DOD区间的设置信息;基于所述设置信息,确定与所述SOC区间对应的所述DOD区间。
在一个实施例中,根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复容量衰减量,包括:预先建立所述可恢复容量衰减量与所述DOD区间、所述循环次数和所述循环温度的对应关系信息;基于所述对应关系信息,获得与所述DOD区间、所述循环次数和所述循环温度相对应的所述可恢复容量衰减量。
在一个实施例中,基于电池在充电前的第一SOC、在充电后的第二SOC确定所述SOC区间;获得与所述SOC区间相对应的至少一个所述DOD区间,并获得与每个DOD区间相对应的所述循环次数和所述循环温度;基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与每个所述DOD区间相对应的区间可恢复容量衰减量;基于至少一个所述区间可恢复容量衰减量获得电池本次运行的第一单次可恢复容量衰减量;根据所述第一单次可恢复容量衰减量获得所述电池在当前工况下的可恢复容量衰减量。
在一个实施例中,所述根据所述第一单次可恢复容量衰减量获得所述电池在当前工况下的可恢复容量衰减量,包括:获得与之前的电池一次或多次运行相对应的一个或多个第二单次可恢复容量衰减量;根据预设的第一计算规则对所述一个或多个第二单次可恢复容量衰减量、所述第一单次可恢复容量衰减量进行处理,获得所述电池在当前工况下的可恢复容量衰减量。
在一个实施例中,获得与电池上一次运行相对应的第二单次可恢复容量衰减量;获得与此第二单次可恢复容量衰减量和所述第一单次可恢复容量衰减量相对应的两个权重值,并基于此两个权重值对此第二单次可恢复容量衰减量和所述第一单次可恢复容量衰减量进行加权计算,获得所述电池在当前工况下的可恢复容量衰减量。
在一个实施例中,获得与电池多次循环使用相对应的多个SOC区间;获得与所述多个SOC区间相对应的多个所述DOD区间,并获得与每个DOD区间相对应的所述循环次数和所述循环温度;基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与多个所述DOD区间相对应的多个区间可恢复容量衰减量;根据所述多个区间可恢复容量衰减量获得所述电池在当前工况下的可恢复容量衰减量。
在一个实施例中,所述根据多个所述区间可恢复容量衰减量获得所述电池在当前工况下的可恢复容量衰减量,包括:从所述多个区间可恢复容量衰减量中获得与每个SOC区间相对应的区间可恢复容量衰减量;基于与每个SOC区间相对应的区间可恢复容量衰减量获得与每个SOC区间相对应的累加可恢复容量衰减量;根据预设的第二计算规则对与所述多个SOC区间相对应的多个累加可恢复容量衰减量进行处理,获得所述电池在当前工况下的可恢复容量衰减量。
在一个实施例中,所述根据预设的第二计算规则对与所述多个SOC区间相对应的多个累加可恢复容量衰减量进行处理,获得所述电池在当前工况下的可恢复容量衰减量,包括:获得与所述多个累加可恢复容量衰减量相对应的多个权重值,基于所述多个权重值对所述多个累加可恢复容量衰减量进行加权计算,获得所述电池在当前工况下的可恢复容量衰减量。
在一个实施例中,所述基于所述可恢复容量衰减量确定所述电池的实际可用容量,包括:基于电池运行数据获得电池的第一可用容量;根据所述第一可用容量与所述可恢复容量衰减量计算所述电池的实际可用容量,并基于所述实际可用容量获得电池健康状态。
在一个实施例中,如果所述可恢复容量衰减量大于或等于预设阈值,则确定需要消除所述电池的可恢复容量衰减量并进行相应地操作。
在一个实施例中,确定充放电次数,根据所述充放电次数对电池进行满充满放循环操作,用以消除所述电池的可恢复容量衰减量。
根据本公开的另一方面,提供一种电池可用容量确定装置,包括:信息获得模块,用于获得与电池运行相对应的SOC区间,确定与所述SOC区间相对应的DOD区间;获得与所述DOD区间相对应的循环次数和循环温度;可恢复容量获得模块,用于根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复容量衰减量;可用容量修正模块,用于基于所述可恢复容量衰减量确定所述电池的实际可用容量;可恢复容量处理模块,用于如果所述可恢复容量衰减量大于或等于预设阈值,则确定需要消除所述电池的可恢复容量衰减量并进行相应地操作。
根据本公开的又一方面,提供一种电池管理系统,包括:如上所述的电池可用容量确定装置。
根据本公开的再一方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如上所述的方法。
本公开的电池可用容量确定方法、装置、电池管理系统以及存储介质,获得与电池运行的SOC区间相对应的DOD区间,以及与DOD区间相对应的循环次数和循环温度,根据DOD区间、循环次数和循环温度获得电池的可恢复容量衰减量并确定电池的实际可用容量;对于具有可恢复衰减容量的电池,本公开提升了对于实际可用容量以及SOH估算的准确性,可以准确估算电池的真实老化状态,能够提高电池的可靠性,可以提高电池的使用寿命。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开的电池可用容量确定方法的一个实施例的流程示意图;
图2为根据本公开的电池可用容量确定方法的一个实施例中的获得可恢复容量衰减量的流程示意图;
图3为根据本公开的电池可用容量确定方法的另一个实施例中的获得可恢复容量衰减量的示意图;
图4为根据本公开的电池可用容量确定方法的又一个实施例中的获得可恢复容量衰减量的示意图;
图5为根据本公开的电池可用容量确定装置的一个实施例的模块示意图;
图6为根据本公开的电池可用容量确定装置的一个实施例中的信息获得模块的模块示意图;
图7为根据本公开的电池可用容量确定装置的一个实施例中的可恢复容量获得模块的模块示意图;
图8为根据本公开的电池可用容量确定装置的一个实施例中的可恢复衰减获得单元的模块示意图;
图9为根据本公开的电池可用容量确定装置的另一个实施例的模块示意图。
具体实施方式
下面参照附图对本公开进行更全面的描述,其中说明本公开的示例性实施例。下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。下面结合各个图和实施例对本公开的技术方案进行多方面的描述。
下文中的“第一”、“第二”等仅用于描述上相区别,并没有其他特殊的含义。
图1为根据本公开的电池可用容量确定方法的一个实施例的流程示意图,如图1所示:
步骤101,获得与电池运行相对应的SOC(State of Charge,荷电状态)区间,并确定与SOC区间相对应的DOD区间。
电池可以为具有可恢复衰减容量的单体电芯、电池组、模组、电池包等,例如,电池为锂电池、锂电池组等。电池运行指电池充放电循环运行,DOD(depth of discharge,放电深度)区间是指在与电池相对应的SOC使用区间内设置的SOC运行区间。当电池进行充电或放电时,可以确定与电池充电或放电对应的SOC运行区间,确定与此SOC区间对应的DOD区间。
例如,与电池相对应的SOC使用区间为0~100%,在SOC使用区间设置五个DOD区间,五个DOD区间分别为0~20%、20~40%、40~60%、60~80%、80~100%。如果电池进行一次放电,与电池此次放电电相对应的SOC区间为80-20%,则80-20%SOC区间对应三个DOD区间,分别为20~40%DOD区间、40~60%DOD区间、60~80%DOD区间。
步骤102,获得与DOD区间相对应的循环次数和循环温度。
循环次数为电池在DOD区间中循环运行的次数。例如,与20~40%DOD区间相对应的循环次数为电池在20~40%DOD区间内的充放电的循环次数。循环温度为电池在DOD区间中运行的电池温度。例如,与20~40%DOD区间相对应的循环温度,为在此次运行中,电池在20~40%DOD区间内的电池温度。
步骤103,根据DOD区间、循环次数和循环温度获得电池的可恢复容量衰减量。
可以有多种方法根据DOD区间、循环次数和循环温度获得电池的可恢复容量衰减量。例如,通过实验获得可恢复容量衰减量的大小,建立可恢复容量衰减量的大小与DOD区间、循环次数和循环温度的对应关系,基于对应关系获得可恢复容量衰减量。
步骤104,基于可恢复容量衰减量确定电池的实际可用容量。
电池在充放电过程中可能会存在不可恢复容量衰减与可恢复容量衰减两部分,不可恢复容量衰减是由于电池的电芯老化导致的容量不可用,而可恢复容量衰减是电池的电芯在循环运行过程中经过某种调节而可以再次释放的容量,这部分容量并不能反映电芯的老化状态。由于存在可恢复的容量衰减,可能会高估当前电芯的真实老化情况,因此,需要使用可恢复容量衰减量修正电池的实际可用容量,电池的实际可用容量为电池的真实可用容量。
在一个实施例中,获得与电池工作的SOC区间相对应的DOD区间可以有多种方式。例如,获取在与电池对应的SOC使用区间内设置DOD区间的设置信息,基于设置信息,确定SOC区间所对应的DOD区间。
例如,与电池相对应的SOC使用区间内设置DOD区间的设置信息为五个DOD区间信息,五个DOD区间别为0~20%、20~40%、40~60%、60~80%、80~100%。基于设置信息,确定与20~60%SOC区间对应的DOD区间为20~40%DOD区间和40~60%DOD区间。
图2为根据本公开的电池可用容量确定方法的一个实施例中的获得可恢复容量衰减量的流程示意图,如图2所示:
步骤201,预先建立可恢复容量衰减量与DOD区间、循环次数和循环温度的对应关系信息。
可以通过实验数据建立可恢复容量衰减量与DOD区间、循环次数和循环温度的对应关系信息,对应关系信息包括函数关系、表格、模型等。
步骤202,基于对应关系信息,获得与DOD区间、循环次数和循环温度相对应的可恢复容量衰减量。
通过线下实验标定与不同DOD区间、不同循环次数和不同循环温度相对应的可恢复容量衰减量。在线下对具有可恢复容量衰减特性的电池进行工况循环测试,测试不同DOD区间、不同循环次数、不同循环温度下对应的可恢复容量衰减量。电池的电芯的可恢复容量衰减量可以通过多种容量测试流程获得。
例如,在电芯容量测试时测试电芯容量,统计几个满充满放循环下无可恢复容量衰减量的电芯可用容量;在不同的DOD区间内、不同循环温度条件下循环使用电芯及电芯平行样,经过几个循环后,检测其中部分电芯的充放电容量;其它电芯继续循环,测量N个循环后电芯的充放电容量;最后,再通过电芯容量测试及满充满放循环,统计当前条件下电芯无可恢复容量衰减量存在的电芯可用容量。
统计分析可恢复容量衰减量与DOD区间、循环次数和循环温度的对应函数关系或者表格对应关系等。例如,建立的可恢复容量衰减量与DOD区间、循环次数和循环温度的对应表格如下表1所示:
在T1下:
可恢复容量衰减量 N1 N2 …… NX
[S1,S2] D1 D2 …… DX
……
[SA,SB] D1A D1B D1X
表1-在T1下的可恢复容量衰减量与DOD区间、循环次数的对应表
在表1中,T1为循环温度,N1,N2,…,NX代表不同循环次数,[S1,S2],…,[SA,SB] 代表不同的DOD区间,表1中的D1、……、D1X等代表不同工况下电池的区间可恢复容量衰减量,D1、……、D1X等可以为正也可以为负值,D1、……、D1X等可以通过相关测试、实验等获得。
可恢复容量衰减量与DOD区间、循环次数和循环温度的对应关系也可以包括在多个不同温度维度下的表。例如,对于某种电池设置多个循环温度T2、T3、T4等,进行相关测试、实验,获得在T2、T3、T4等多个循环温度下的可恢复容量衰减量与DOD区间、循环次数对应的多个表格,每个表格的内容都如表1所示。
在一个实施例中,如果SOC区间不能对应多个完整的DOD区间,例如30~60%SOC区间中的30-40区间段对应20~40%DOD区间,确定在电池本次运行中与20-40%DOD区间相对应的循环次数和循环温度,设置相应的系数,在计算可恢复容量衰减量时,将此系数乘以与20~40%DOD区间、循环次数和循环温度相对应的区间可恢复容量衰减量。类似地,如果循环温度位于TI和T2之间,可以将循环温度确定为T1并设置相应的系数,在获得可恢复能量信息时,将T1下的区间可恢复容量衰减量乘以此系数。
对应关系除了采用表格的方式之外,可恢复容量衰减量与DOD区间、循环次数和循环温度的对应关系也可以通过函数拟合获得函数关系,可以利用回归方程或者神经网络方法等。
图3为根据本公开的电池可用容量确定方法的另一个实施例中的获得可恢复容量衰减量的示意图,如图3所示:
步骤301,基于电池在充电前的第一SOC、在充电后的第二SOC确定SOC区间。
步骤302,获得与SOC区间相对应的至少一个DOD区间,并获得与每个DOD区间相对应的循环次数和循环温度。
步骤303,基于对应关系信息并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复容量衰减量。
步骤304,基于至少一个区间可恢复容量衰减量获得电池本次运行的第一单次可恢复容量衰减量。
例如,可以获得电池充电的SOC区间为第一SOC-第二SOC,获得与此SOC区间相对应的多个DOD区间,获得与每个DOD区间相对应的循环次数和循环温度。可以通过查表或函数关系并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复容量衰减量。将获得的多个区间可恢复容量衰减量相加,获得电池本次运行的第一单次可恢复容量衰减量。
步骤305,根据第一单次可恢复容量衰减量获得电池在当前工况下的可恢复容量衰 减量。
根据第一单次可恢复容量衰减量获得电池在当前工况下的可恢复容量衰减量可以采用多种方式。例如,获得与之前的电池一次或多次运行相对应的一个或多个第二单次可恢复容量衰减量,根据预设的第一计算规则对一个或多个第二单次可恢复容量衰减量、第一单次可恢复容量衰减量进行处理,获得电池在当前工况下的可恢复容量衰减量。
第一计算规则可以有多种,可以为加权计算规则等。例如,获得与电池上一次运行相对应的第二单次可恢复容量衰减量,获得与此第二单次可恢复容量衰减量和第一单次可恢复容量衰减量相对应的两个权重值,并基于此两个权重值对此第二单次可恢复容量衰减量和第一单次可恢复容量衰减量进行加权计算,获得电池在当前工况下的可恢复容量衰减量。
在一个实施例中,记录电池每次充电前的SOC值与充电结束后的SOC值,获得SOC区间并获得与SOC区间对应的DOD区间,以及与DOD区间相对应的循环次数、循环温度。通过查表或函数关系式等计算电池本次运行中的第一单次可恢复容量衰减量,基于第一计算规则将与电池之前的多次运行相对应的多个第二单次可恢复容量衰减量进行运算,获得电池当前工况下的可恢复容量衰减量。
例如,获取与电池上一次充电相对应的第二单次可恢复容量衰减量D1,获得与电池本次运行相对应的第一单次可恢复容量衰减量D2,则电池在当前工况下的可恢复容量衰减量为Dnew=α 1D 12D 2,α 1与α 2为权重值(权重系数),α 1与α 2取值范围为[-1,1]。在电池本次充电后可以更新电池的可恢复容量衰减量。
图4为根据本公开的电池可用容量确定方法的又一个实施例中的获得可恢复容量衰减量的示意图,如图4所示:
步骤401,获得与电池多次循环使用相对应的多个SOC区间。
步骤402,获得与多个SOC区间相对应的多个DOD区间,并获得与每个DOD区间相对应的循环次数和循环温度。
步骤403,基于对应关系信息并根据DOD区间、循环次数和循环温度获得与多个DOD区间相对应的多个区间可恢复容量衰减量。
步骤405,根据多个区间可恢复容量衰减量获得电池在当前工况下的可恢复容量衰减量。
根据多个区间可恢复容量衰减量获得电池在当前工况下的可恢复容量衰减量可以采用多种方法。例如,从多个区间可恢复容量衰减量中获得与每个SOC区间相对应 的区间可恢复容量衰减量,基于与每个SOC区间相对应的区间可恢复容量衰减量获得与每个SOC区间相对应的累加可恢复容量衰减量。根据预设的第二计算规则对与多个SOC区间相对应的多个累加可恢复容量衰减量进行处理,获得电池在当前工况下的可恢复容量衰减量。
第二计算规则可以有多种,可以为加权计算规则等。例如,获得与多个累加可恢复容量衰减量相对应的多个权重值,基于多个权重值对多个累加可恢复容量衰减量进行加权计算,获得电池在当前工况下的可恢复容量衰减量。
在一个实施例中,获得与电池多次循环充电相对应的多个SOC区间,获得与多个SOC区间相对应的多个DOD区间,并获得与每个DOD区间相对应的循环次数和循环温度。根据查表或函数关系式并根据DOD区间、循环次数和循环温度获得与多个电池运行的SOC区间相对应的多个区间可恢复容量衰减量。
基于分别与多个电池运行的SOC区间相对应的区间可恢复容量衰减量获得与多个电池运行的SOC区间相对应的累加可恢复容量衰减量。例如,将与每个SOC区间相对应的区间可恢复容量衰减量相加,获得与每个SOC区间相对应的累加可恢复容量衰减量。将与多个SOC区间相对应的多个累计可恢复容量衰减量进行运算,获得电池在当前工况下的可恢复容量衰减量。
例如,与多个SOC区间相对应的多个累计可恢复容量衰减量为D1,D2,……DN,电池的当前的可恢复容量衰减量为Dnew=α 1D 12D 2+…+α n-1D n-1nD n,α 1~α n为权重值(权重系数),取值范围为[-1,1]。在电池多次循环运行后更新电池的可恢复容量衰减量。
在一个实施例中,当电池的运行状态达到电池容量估算的条件时或者在服务站进行电池容量测试时,记录下当前测量的容量值。电池容量估算的条件可以为多种条件,例如电池的循环运行次数达到阈值等。
基于可恢复容量衰减量确定电池的实际可用容量可以有多种方法。例如,基于电池运行数据获得电池的第一可用容量,根据第一可用容量与可恢复容量衰减量计算电池的实际可用容量,并基于实际可用容量获得电池健康状态。获得电池的第一可用容量可以有多种方法,例如,基于电池运行数据,通过累计安时数线性插值计算出电池的第一可用容量等。电池在充放电过程中可能会存在可恢复容量衰减部分,电池的第一可用容量不能反映电芯的老化状态,可以将可恢复容量衰减量加上电池的第一可用容量获得电池的实际可用容量。
如果可恢复容量衰减量大于或等于预设阈值,则确定需要消除电池的可恢复容量 衰减量并进行相应地操作。相应地操作包括:确定充放电次数,根据充放电次数对电池进行满充满放循环操作,用以消除电池的可恢复容量衰减量。
例如,当可恢复容量衰减量或容量衰减量达到预设阈值,可能会对用户出行产生影响时,需要提示客户对电池进行维护或者进行N次的满充满放循环来消除可恢复容量衰减量,N为实验测得的在当前可恢复容量衰减量下,需要消除容量衰减需要充放电次数。
健康状态(Stay Of Health,SOH)是反应电池性能和寿命的重要参数,SOH用于估算电芯真实老化状态。电池的健康状态SOH常指电池老化后容量与新鲜电芯容量比值。电池在长期使用中必然发生老化或者劣化,导致电池容量显著降低,如果电池容量衰减后,不对SOH进行修正,则可能导致电池的荷电状态(State of Charge,SOC)计算误差增大,存在电流过流风险等问题。基于实际可用容量获得电池健康状态可以有多种方法。例如,电池的SOH=实际可用容量/标称容量值,标称容量值可以为在出厂时预设的标准容量值。
在一个实施例中,如图5所示,本公开提供一种电池可用容量确定装置50,包括:信息获得模块51、可恢复容量获得模块52、可用容量修正模块53和可恢复容量处理模块54。信息获得模块51获得与电池运行相对应的SOC区间,确定与SOC区间相对应的DOD区间,获得与DOD区间相对应的循环次数和循环温度。信息获得模块51可以获取在与电池相对应的SOC使用区间内设置DOD区间的设置信息,基于设置信息确定与SOC区间对应的DOD区间。可恢复容量获得模块52根据DOD区间、循环次数和循环温度获得电池的可恢复容量衰减量。可用容量修正模块53基于可恢复容量衰减量确定电池的实际可用容量。
在一个实施例中,如图7所示,可恢复容量获得模块52包括:映射信息设置单元521和可恢复衰减获得单元522。映射信息设置单元521预先建立可恢复容量衰减量与DOD区间、循环次数和循环温度的对应关系信息。可恢复衰减获得单元522基于对应关系信息,获得与DOD区间、循环次数和循环温度相对应的可恢复容量衰减量。
如图6所示,信息获得模块51包括:第一信息确定单元511和第二信息确定单元512。如图8所示,可恢复衰减获得单元522包括:第一获得单元523和第二获得单元524。
第一信息确定单元511基于电池在充电前的第一SOC、在充电后的第二SOC确定SOC区间,获得与SOC区间相对应的至少一个DOD区间,并获得与每个DOD区间相对应的循环次数和循环温度。第一获得单元523基于对应关系信息并根据DOD区间、循环次数和循环温度获得与每个DOD区间相对应的区间可恢复容量衰减量。第一获得单元523基于至少一个区间可恢复容量衰减量获得电池本次运行的第一单次可恢复容量衰减量,根据第一单次可恢复容量衰减量获得电池在当前工况下的可恢复容量衰减量。
第一获得单元523获得与之前的电池一次或多次运行相对应的一个或多个第二单次可恢复容量衰减量,根据预设的第一计算规则对一个或多个第二单次可恢复容量衰减量、第一单次可恢复容量衰减量进行处理,获得电池在当前工况下的可恢复容量衰减量。
第一获得单523获得与电池上一次运行相对应的第二单次可恢复容量衰减量,获得与此第二单次可恢复容量衰减量和第一单次可恢复容量衰减量相对应的两个权重值,并基于此两个权重值对此第二单次可恢复容量衰减量和第一单次可恢复容量衰减量进行加权计算,获得电池在当前工况下的可恢复容量衰减量。
第二信息确定单元512获得与电池多次循环使用相对应的多个SOC区间,获得与多个SOC区间相对应的多个DOD区间。第二信息确定单元512获得与每个DOD区间相对应的循环次数和循环温度。第二获得单元524基于对应关系信息并根据DOD区间、循环次数和循环温度获得与多个DOD区间相对应的多个区间可恢复容量衰减量。第二获得单元524根据多个区间可恢复容量衰减量获得电池在当前工况下的可恢复容量衰减量。
第二获得单元524从多个区间可恢复容量衰减量中获得与每个SOC区间相对应的区间可恢复容量衰减量。第二获得单元524基于与每个SOC区间相对应的区间可恢复容量衰减量获得与每个SOC区间相对应的累加可恢复容量衰减量,根据预设的第二计算规则对与多个SOC区间相对应的多个累加可恢复容量衰减量进行处理,获得电池在当前工况下的可恢复容量衰减量。
第二获得单元524获得与多个累加可恢复容量衰减量相对应的多个权重值,基于多个权重值对多个累加可恢复容量衰减量进行加权计算,获得电池在当前工况下的可恢复容量衰减量。
可用容量修正模块53基于电池运行数据获得电池的第一可用容量,根据第一可用容量与可恢复容量衰减量计算电池的实际可用容量,并基于实际可用容量获得电池健康状态。
如果可恢复容量衰减量大于或等于预设阈值,则可恢复容量处理模块54确定需要消除电池的可恢复容量衰减量并进行相应地操作。可恢复容量处理模块54可以确定充放电次数,根据充放电次数对电池进行满充满放循环操作,用以消除电池的可恢复容量衰减量。
图9为根据本公开的电池可用容量确定装置的另一个实施例的模块示意图。如图9所示,该装置可包括存储器91、处理器92、通信接口93以及总线94。存储器91用于存 储指令,处理器92耦合到存储器91,处理器92被配置为基于存储器91存储的指令执行实现上述的电池可用容量确定方法。
存储器91可以为高速RAM存储器、非易失性存储器(non-volatile memory)等,存储器91也可以是存储器阵列。存储器91还可能被分块,并且块可按一定的规则组合成虚拟卷。处理器92可以为中央处理器CPU,或专用集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本公开的电池可用容量确定方法的一个或多个集成电路。
在一个实施例中,本公开提供一种电池管理系统,包括如上任一实施例中的电池可用容量确定装置。电池管理系统可以安装在汽车上等,可以对电池进行管理。
在一个实施例中,本公开提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上任一个实施例中的电池可用容量确定方法。
上述实施例中的电池可用容量确定方法、装置、电池管理系统以及存储介质,获得与电池运行的SOC区间相对应的DOD区间,以及与DOD区间相对应的循环次数和循环温度,根据DOD区间、循环次数和循环温度获得电池的可恢复容量衰减量并修正电池的可用容量;对于具有可恢复衰减容量的电池,获得电池的可恢复容量衰减量,基于可恢复容量衰减量估算可用容量,提升了对于实际可用容量以及SOH估算结果的准确性,能够提高电池的可靠性,可以提高电池的使用寿命以及用户的使用感受度。
可能以许多方式来实现本公开的方法和系统。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法和系统。用于方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。

Claims (15)

  1. 一种电池可用容量确定方法,包括:
    获得与电池运行相对应的SOC区间,确定与所述SOC区间相对应的DOD区间;获得与所述DOD区间相对应的循环次数和循环温度;
    根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复容量衰减量;
    基于所述可恢复容量衰减量确定所述电池的实际可用容量。
  2. 如权利要求1所述的方法,其中,所述确定与所述SOC区间相对应的DOD区间包括:
    获取在与所述电池相对应的SOC使用区间内设置DOD区间的设置信息;
    基于所述设置信息,确定与所述SOC区间对应的所述DOD区间。
  3. 如权利要求1或2所述的方法,其中,所述根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复容量衰减量包括:
    预先建立所述可恢复容量衰减量与所述DOD区间、所述循环次数和所述循环温度的对应关系信息;
    基于所述对应关系信息,获得与所述DOD区间、所述循环次数和所述循环温度相对应的所述可恢复容量衰减量。
  4. 如权利要求3所述的方法,其中,还包括:
    基于电池在充电前的第一SOC、在充电后的第二SOC确定所述SOC区间;
    获得与所述SOC区间相对应的至少一个所述DOD区间,并获得与每个DOD区间相对应的所述循环次数和所述循环温度;
    基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与每个所述DOD区间相对应的区间可恢复容量衰减量;
    基于至少一个所述区间可恢复容量衰减量获得电池本次运行的第一单次可恢复容量衰减量;
    根据所述第一单次可恢复容量衰减量获得所述电池在当前工况下的可恢复容量衰减量。
  5. 如权利要求4所述的方法,其中,所述根据所述第一单次可恢复容量衰减量获 得所述电池在当前工况下的可恢复容量衰减量包括:
    获得与之前的电池一次或多次运行相对应的一个或多个第二单次可恢复容量衰减量;
    根据预设的第一计算规则对所述一个或多个第二单次可恢复容量衰减量、所述第一单次可恢复容量衰减量进行处理,获得所述电池在当前工况下的可恢复容量衰减量。
  6. 如权利要求5所述的方法,其中,还包括:
    获得与电池上一次运行相对应的第二单次可恢复容量衰减量;
    获得与此第二单次可恢复容量衰减量和所述第一单次可恢复容量衰减量相对应的两个权重值,并基于此两个权重值对此第二单次可恢复容量衰减量和所述第一单次可恢复容量衰减量进行加权计算,获得所述电池在当前工况下的可恢复容量衰减量。
  7. 如权利要求3所述的方法,其中,还包括:
    获得与电池多次循环运行相对应的多个SOC区间;
    获得与所述多个SOC区间相对应的多个所述DOD区间,并获得与每个DOD区间相对应的所述循环次数和所述循环温度;
    基于所述对应关系信息并根据所述DOD区间、所述循环次数和所述循环温度获得与多个所述DOD区间相对应的多个区间可恢复容量衰减量;
    根据所述多个区间可恢复容量衰减量获得所述电池在当前工况下的可恢复容量衰减量。
  8. 如权利要求7所述的方法,其中,所述根据多个所述区间可恢复容量衰减量获得所述电池在当前工况下的可恢复容量衰减量包括:
    从所述多个区间可恢复容量衰减量中获得与每个SOC区间相对应的区间可恢复容量衰减量;
    基于与每个SOC区间相对应的区间可恢复容量衰减量获得与每个SOC区间相对应的累加可恢复容量衰减量;
    根据预设的第二计算规则对与所述多个SOC区间相对应的多个累加可恢复容量衰减量进行处理,获得所述电池在当前工况下的可恢复容量衰减量。
  9. 如权利要求8所述的方法,其中,所述根据预设的第二计算规则对与所述多个SOC区间相对应的多个累加可恢复容量衰减量进行处理,获得所述电池在当前工况下的可恢复容量衰减量包括:
    获得与所述多个累加可恢复容量衰减量相对应的多个权重值,基于所述多个权重值对所述多个累加可恢复容量衰减量进行加权计算,获得所述电池在当前工况下的可恢复容量衰减量。
  10. 如权利要求1所述的方法,其中,所述基于所述可恢复容量衰减量确定所述电池的实际可用容量包括:
    基于电池运行数据获得电池的第一可用容量;
    根据所述第一可用容量与所述可恢复容量衰减量计算所述电池的实际可用容量,并基于所述实际可用容量获得电池健康状态。
  11. 如权利要求1至10任一项所述的方法,其中,还包括:
    如果所述可恢复容量衰减量大于或等于预设阈值,则确定需要消除所述电池的可恢复容量衰减量并进行相应地操作。
  12. 如权利要求11所述的方法,其中,所述进行相应地操作包括:
    确定充放电次数,根据所述充放电次数对电池进行满充满放循环操作,用以消除所述电池的可恢复容量衰减量。
  13. 一种电池可用容量确定装置,包括:
    信息获得模块,用于获得与电池运行相对应的SOC区间,确定与所述SOC区间相对应的DOD区间;获得与所述DOD区间相对应的循环次数和循环温度;
    可恢复容量获得模块,用于根据所述DOD区间、所述循环次数和所述循环温度获得所述电池的可恢复容量衰减量;
    可用容量修正模块,用于基于所述可恢复容量衰减量确定所述电池的实际可用容量;
    可恢复容量处理模块,用于如果所述可恢复容量衰减量大于或等于预设阈值,则确定需要消除所述电池的可恢复容量衰减量并进行相应地操作。
  14. 一种电池管理系统,包括:
    如权利要求13任一项所述的电池可用容量确定装置。
  15. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如权利要求1至12中任一项所述的方法。
PCT/CN2020/084333 2019-04-25 2020-04-11 电池可用容量确定方法、装置、管理系统以及存储介质 WO2020216080A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020573144A JP2022529546A (ja) 2019-04-25 2020-04-11 電池容量決定方法及び装置、管理システム、及び記憶媒体
KR1020207037758A KR20220011564A (ko) 2019-04-25 2020-04-11 배터리 용량 결정 방법 및 장치, 관리 시스템 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910338512.1 2019-04-25
CN201910338512.1A CN110988702B (zh) 2019-04-25 2019-04-25 电池可用容量确定方法、装置、管理系统以及存储介质

Publications (1)

Publication Number Publication Date
WO2020216080A1 true WO2020216080A1 (zh) 2020-10-29

Family

ID=70081648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084333 WO2020216080A1 (zh) 2019-04-25 2020-04-11 电池可用容量确定方法、装置、管理系统以及存储介质

Country Status (6)

Country Link
US (2) US11609276B2 (zh)
EP (1) EP3734309B1 (zh)
JP (1) JP2022529546A (zh)
KR (1) KR20220011564A (zh)
CN (1) CN110988702B (zh)
WO (1) WO2020216080A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988701B (zh) 2019-04-25 2021-04-30 宁德时代新能源科技股份有限公司 电池可用能量确定方法、装置、管理系统以及存储介质
CN110988702B (zh) * 2019-04-25 2021-04-02 宁德时代新能源科技股份有限公司 电池可用容量确定方法、装置、管理系统以及存储介质
CN113547955B (zh) * 2020-04-23 2023-06-16 宁德时代新能源科技股份有限公司 电池的充电控制方法、装置、电池管理系统和介质
CN112881917B (zh) * 2021-01-21 2022-11-22 四川野马汽车股份有限公司 一种基于大数据平台的动力电池寿命预测方法及系统
KR20220168920A (ko) * 2021-06-17 2022-12-26 주식회사 엘지에너지솔루션 배터리 soh 추정 장치 및 방법
CN113702854B (zh) * 2021-08-23 2024-01-02 欣旺达电子股份有限公司 容量老化计算方法、系统、电池储能设备及存储介质
CN114217236B (zh) * 2021-11-05 2024-05-10 东软睿驰汽车技术(沈阳)有限公司 基于循环充放电的电池健康状态确定方法和装置
KR20230072923A (ko) * 2021-11-18 2023-05-25 현대자동차주식회사 배터리 수명 판단 장치 및 방법
CN116298991B (zh) * 2023-05-25 2023-09-12 湖南锂汇通新能源科技有限责任公司 一种退役电池容量快速检测评估方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251618A2 (en) * 2001-04-17 2002-10-23 Makita Corporation Apparatus and methods for determining appropriate timing for recharching recharcheable batteries
CN105738814A (zh) * 2014-12-12 2016-07-06 国家电网公司 一种在线评估锂离子电池容量衰减程度的方法
CN105974326A (zh) * 2016-06-01 2016-09-28 华霆(合肥)动力技术有限公司 锂电池寿命预估方法及装置
CN106855612A (zh) * 2017-02-21 2017-06-16 山东大学 计及非线性容量特性的分数阶KiBaM电池模型及参数辨识方法
CN107492685A (zh) * 2016-06-10 2017-12-19 丰田自动车株式会社 电池系统
CN107690585A (zh) * 2015-04-16 2018-02-13 奥克斯能源有限公司 用于确定锂硫电池组的健康状况和充电状态的方法和装置
JP2019198169A (ja) * 2018-05-09 2019-11-14 日立化成株式会社 ニッケル亜鉛電池の制御方法
CN110988702A (zh) * 2019-04-25 2020-04-10 宁德时代新能源科技股份有限公司 电池可用容量确定方法、装置、管理系统以及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890480B2 (en) 2006-11-30 2014-11-18 The Boeing Company Health management of rechargeable batteries
US9172118B2 (en) 2009-06-17 2015-10-27 Gm Global Technology Operations, Llc. Method and system for estimating battery life
US9244132B2 (en) 2011-09-12 2016-01-26 Eaglepicher Technologies, Llc Systems and methods for determining battery state-of-health
PL2899558T3 (pl) 2012-12-04 2020-07-13 Lg Chem, Ltd. Urządzenie do szacowania głębokości rozładowania (DOD) baterii akumulatorowej
JP6341209B2 (ja) * 2013-09-30 2018-06-13 日本電気株式会社 リチウムイオン二次電池システム
DE102014215309A1 (de) 2014-08-04 2016-02-04 Siemens Aktiengesellschaft Ermittlung eines Alterungszustandes eines elektrischen Energiespeichers
CN111812531B (zh) * 2019-04-11 2023-04-07 东莞新能安科技有限公司 电池状态检测方法、设备及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251618A2 (en) * 2001-04-17 2002-10-23 Makita Corporation Apparatus and methods for determining appropriate timing for recharching recharcheable batteries
CN105738814A (zh) * 2014-12-12 2016-07-06 国家电网公司 一种在线评估锂离子电池容量衰减程度的方法
CN107690585A (zh) * 2015-04-16 2018-02-13 奥克斯能源有限公司 用于确定锂硫电池组的健康状况和充电状态的方法和装置
CN105974326A (zh) * 2016-06-01 2016-09-28 华霆(合肥)动力技术有限公司 锂电池寿命预估方法及装置
CN107492685A (zh) * 2016-06-10 2017-12-19 丰田自动车株式会社 电池系统
CN106855612A (zh) * 2017-02-21 2017-06-16 山东大学 计及非线性容量特性的分数阶KiBaM电池模型及参数辨识方法
JP2019198169A (ja) * 2018-05-09 2019-11-14 日立化成株式会社 ニッケル亜鉛電池の制御方法
CN110988702A (zh) * 2019-04-25 2020-04-10 宁德时代新能源科技股份有限公司 电池可用容量确定方法、装置、管理系统以及存储介质

Also Published As

Publication number Publication date
KR20220011564A (ko) 2022-01-28
CN110988702B (zh) 2021-04-02
EP3734309B1 (en) 2021-11-17
US20200341067A1 (en) 2020-10-29
US20230204674A1 (en) 2023-06-29
US11609276B2 (en) 2023-03-21
CN110988702A (zh) 2020-04-10
EP3734309A1 (en) 2020-11-04
JP2022529546A (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2020216080A1 (zh) 电池可用容量确定方法、装置、管理系统以及存储介质
WO2020216082A1 (zh) 电池健康状态修正方法、装置、管理系统以及存储介质
CN107368619B (zh) 一种扩展卡尔曼滤波soc估算方法
WO2021217698A1 (zh) 一种区分电池微短路和小容量故障的诊断方法
US9709635B2 (en) System and method for SOC estimation of a battery
CN103797374B (zh) 用于电池监控的系统和方法
WO2020216081A1 (zh) 电池可用能量确定方法、装置、管理系统以及存储介质
CN113219351B (zh) 动力电池的监控方法及装置
CN107942261B (zh) 电池荷电状态的估计方法及系统
EP3736585A1 (en) Method and device for predicting peak power of battery
US20240159836A1 (en) Method and device for calibrating soc at tail end of charging or discharging of energy storage system
US20230236252A1 (en) Methods and devices for estimating state of charge of battery, and extracting charging curve of battery
JP2012185124A (ja) 充電率推定装置、充電率推定方法、及びプログラム
CN116930794A (zh) 电池容量更新方法、装置、电子设备及存储介质
CN116400247A (zh) 电池软短路故障的确定方法及装置
CN115015763A (zh) Soc估算校准方法、设备及介质
CN114578229B (zh) 动力电池健康状态确定方法、装置和可读存储介质
WO2019037012A1 (zh) 电池和电池包的荷电状态的估计方法及利用此荷电状态估计方法的电池管理系统、电池以及电动汽车
US20230168309A1 (en) Estimation method, estimation system, and non-transitory computer-readable recording medium
JP6895537B2 (ja) 電池状態推定装置
CN112904211B (zh) 一种深空探测用锂离子电池组剩余容量估计方法
CN117452240A (zh) 一种电池包荷电状态的测算方法、及装置
AU2023208067A1 (en) Method and device for calibrating SOC at tail end of charging or discharging of energy storage system
CN117054919A (zh) 电池soh评估方法、装置及存储介质
CN114578229A (zh) 动力电池健康状态确定方法、装置和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020573144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796299

Country of ref document: EP

Kind code of ref document: A1