WO2020211850A1 - 一种停车机器人 - Google Patents

一种停车机器人 Download PDF

Info

Publication number
WO2020211850A1
WO2020211850A1 PCT/CN2020/085399 CN2020085399W WO2020211850A1 WO 2020211850 A1 WO2020211850 A1 WO 2020211850A1 CN 2020085399 W CN2020085399 W CN 2020085399W WO 2020211850 A1 WO2020211850 A1 WO 2020211850A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
gear
parking robot
clamping
telescopic mechanism
Prior art date
Application number
PCT/CN2020/085399
Other languages
English (en)
French (fr)
Inventor
白寒
Original Assignee
杭州海康机器人技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920534385.8U external-priority patent/CN209924535U/zh
Priority claimed from CN201910315796.2A external-priority patent/CN111827745B/zh
Application filed by 杭州海康机器人技术有限公司 filed Critical 杭州海康机器人技术有限公司
Publication of WO2020211850A1 publication Critical patent/WO2020211850A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/02Small garages, e.g. for one or two cars
    • E04H6/06Small garages, e.g. for one or two cars with means for shifting or lifting vehicles

Definitions

  • This application relates to the technical field of Wheeled Mobile Robots (WMR-Wheeled Mobile Robot), and in particular to a parking robot.
  • WMR-Wheeled Mobile Robot Wheeled Mobile Robots
  • a parking robot can also be called an Automated Guided Vehicle (AGV), which refers to a parking-type automated guided vehicle used to transport vehicles. It locates the position of the vehicle through two-dimensional code, laser, visual navigation, etc., and then lifts the vehicle directly off the ground by clamping or lifting the tire, or parks the vehicle on a pallet, and parking robots carry the pallet. . Through autonomous unmanned intelligent control, it can realize automatic driving and transport the vehicle to the designated location.
  • AGV Automated Guided Vehicle
  • the existing parking robot uses horizontal clamping arms on both sides of the car body to clamp the tires of the vehicle for transportation.
  • the car of the parking robot is usually The body height is lower.
  • the ability to pass obstacles is poor during the transportation of the vehicle. For example, when the road surface is slightly uneven, the clamp arm and the bottom of the vehicle tire clamped on the clamp arm may encounter raised obstacles and become impassable.
  • an embodiment of the present application provides a parking robot, which can improve the ability to overcome obstacles.
  • a parking robot includes a support base and a frame on the support base.
  • the support base is provided with a drive wheel assembly, two sides of the frame are provided with arm clamping mechanisms, and the support base and the frame pass between Vertical telescopic mechanism connection.
  • the clamping arm mechanism includes a first clamping arm and a second clamping arm, and there is a clamping gap between the first clamping arm and the second clamping arm in a clamping state.
  • the frame includes a frame top plate and a frame bottom plate corresponding to the frame top plate, a notch is provided on the frame bottom plate, and the top of the vertical telescopic mechanism is at the position of the notch Connect at the top plate of the opposite frame;
  • the vertical telescopic mechanism When the vertical telescopic mechanism is in a contracted state, at least a part of the supporting base is located in the gap.
  • the arm clamping mechanism is arranged on the bottom plate of the frame adjacent to the gap.
  • the bottom of the vertical telescopic mechanism is connected to the support base, and the vertical telescopic mechanism is also located between the arm clamping mechanisms on both sides of the frame.
  • a through hole is provided on the top plate of the frame at a position opposite to the driving wheel assembly, and the through hole is used to accommodate the driving wheel assembly.
  • the vertical telescopic mechanism is a scissor fork lifting mechanism
  • the scissor fork lifting mechanism includes a transmission shaft, and both ends of the transmission shaft are respectively rotatably connected with a first scissor fork lifting assembly and a second scissor fork lifting assembly Assembly
  • the transmission shaft is provided with a first gear and a second gear
  • the first scissor fork lifting assembly and the second scissor fork lifting assembly include: a first lifting plate hinged on the bottom plate and a The second lifting plate on the bottom plate;
  • the first gear is circumferentially provided with a third gear and a fourth gear that mesh with it for transmission.
  • the third gear and the fourth gear are arranged symmetrically about the axis of the transmission shaft, and the third gear is fixedly connected to the first motor assembly.
  • the fourth gear is axially fixedly connected with a first screw nut, and a first screw is provided in the first screw nut. The first end of the first screw passes through the first screw nut.
  • Four gears, the second end of the first lead screw abuts or is connected to the second lifting plate of the first scissor lift assembly;
  • the second gear is provided with a fifth gear that meshes with it in the circumferential direction, the fifth gear is arranged corresponding to the fourth gear, and the fifth gear is axially fixedly connected with a second screw nut.
  • the second screw nut is provided with a second screw, the first end of the second screw passes through the fifth gear, and the second end of the second screw abuts or is connected to the second scissors lift The second lifting plate of the lifting assembly.
  • a first guide rail is provided on one side of the fourth gear and the fifth gear, and a first sliding block and a second sliding block are slidably arranged on the first guide rail.
  • a second guide rail that cooperates with the first guide rail is provided, a third sliding block and a fourth sliding block are slidably arranged on the second guide rail, and the first sliding block and the third sliding block are fixedly connected
  • the second sliding block and the fourth sliding block are fixedly connected to the second lifting plate of the second scissor fork lifting assembly .
  • the frame includes a first frame and a second frame, and the first frame and the second frame have the same structure and are connected back and forth by a horizontal telescopic mechanism.
  • the horizontal telescopic mechanism includes a guide chute and a guide rod provided in the guide chute, one end of the guide chute is connected to the end of the first frame, and the guide rod is away from the guide chute. One end is connected to the end of the second frame.
  • a driving power supply assembly is respectively provided on the front part of the first frame and the rear part of the second frame.
  • the driving power component includes a battery and a power management module.
  • obstacle detection devices are respectively provided at the front end of the first frame and the rear end of the second frame.
  • a parking robot includes a support base and a frame on the support base.
  • the support base is provided with a drive wheel assembly, two sides of the frame are provided with arm clamping mechanisms, and the support base is connected to the vehicle frame.
  • the frames are connected by a vertical telescopic mechanism. Since the frame includes a clamping arm mechanism connected to the support base through a vertical telescopic mechanism, when it is necessary to lurch into the bottom of the vehicle, the telescopic mechanism can be contracted to make the parking robot in a low position as a whole, so that it can dive into the bottom of the vehicle with a clamping arm Clamping vehicle tires. After clamping the tires, extend the telescopic mechanism to make the parking robot at a high position as a whole.
  • the frame and the clamping arm mechanisms on both sides of the frame are raised, and the vehicles clamped in the clamping arm mechanism follow It is lifted to increase the height of the frame, arm clamping mechanism and vehicle tires from the ground, thereby improving the obstacle-passing ability of the parking robot.
  • FIG. 1 is an exploded schematic diagram of a structure of a parking robot provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of an internal structure of a parking robot provided by an embodiment of the application.
  • Fig. 3 is a schematic structural diagram of the assembled parking robot in the embodiment shown in Fig. 1;
  • FIG. 4 is a schematic diagram of a state where the overall height of the parking robot provided by the embodiment of the application is in a low position
  • FIG. 5 is a schematic diagram of a state where the overall height of the parking robot provided by an embodiment of the application is at a high position
  • Fig. 6 is a schematic structural diagram of a vertical telescopic mechanism provided by an embodiment of the application.
  • Figure 7 is a schematic structural diagram of a horizontal telescopic mechanism provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of an arm clamping mechanism of a parking robot provided by an embodiment of the application.
  • 9A is a schematic diagram of the height change of the parking robot when the arm clamping mechanism is in a retracted state according to an embodiment of the application;
  • 9B is a schematic diagram of the height of the parking robot when the horizontal telescopic mechanism provided by the embodiment of the application is in an extended state;
  • FIG. 9C is a schematic diagram of the height change of the parking robot when the arm clamping mechanism provided by the embodiment of the application is in the unfolded state.
  • the embodiments of the present application provide a parking robot, which is suitable for automatic cargo handling occasions, and is especially suitable for automatic vehicle handling in various scenarios, such as automatic access to vehicles, vehicle maintenance, and vehicle consignment.
  • FIG. 1 is an exploded schematic diagram of the structure of an embodiment of the parking robot according to the application.
  • the parking robot includes: a support base 100 and a frame 200 on the support base 100.
  • the support base 100 is provided with a driving wheel assembly 110, and both sides of the frame 200
  • An arm clamping mechanism 220 is provided, and the support base 100 and the frame 200 are connected by a vertical telescopic mechanism 300.
  • the support base is the base used to carry the drive wheel assembly;
  • the vehicle frame is the support frame used to support and connect the components;
  • the clamp arm mechanism is the clamp member used to clamp the tire, and
  • the vertical telescopic mechanism is capable of vertical Parts that stretch and compress in a straight direction.
  • one end of the vertical telescopic mechanism 300 can be fixed on the support base 100 by a detachable connection method such as a bolt or a welding method, and the other end can be fixed on the frame in the same manner.
  • the vertical telescopic mechanism 300 can be set with different gears according to needs, such as high, medium and low three gears, respectively corresponding to the parking robot in the use process, the frame, the arm clamping mechanism and the tires are in high, medium and low position.
  • the vertical telescopic mechanism 300 may adopt a hydraulic lifting device, for example, a hydraulic jack, or a connecting rod lifting mechanism.
  • the two dead center positions of the crank connecting rod mechanism may be used to realize the lifting support to the high position or the folding and lowering
  • a scissor fork lifting mechanism can also be used.
  • a parking robot in the embodiment of the present application includes: a support base 100 and a frame 200 on the support base 100.
  • the support base 100 is provided with a driving wheel assembly 110, and both sides of the frame 200 are provided with a clamping arm mechanism 220, and the support base 100 and the frame 200 are connected by a vertical telescopic mechanism 300.
  • the frame includes a clamping arm mechanism, it is connected to the support base through a vertical telescopic mechanism.
  • the telescopic mechanism can be contracted to make the parking robot in a low position as a whole, so that the clamping arm can dive into the bottom of the vehicle.
  • the mechanism clamps the vehicle tires.
  • the telescopic mechanism is extended to make the parking robot at a high position as a whole.
  • the frame and the clamping arm mechanism on both sides of the frame are raised, and the vehicle clamped in the clamping arm mechanism is also Then it is lifted up, increasing the height of the frame, arm clamping mechanism and vehicle tires from the ground, thereby improving the obstacle-passing ability of the parking robot.
  • the entire parking robot can be in a high position through the extension of the telescopic mechanism to increase the height of the frame, arm clamping mechanism and tires from the ground, which improves the parking robot’s ability to pass obstacles. , The adaptability of the parking robot to the ground is also enhanced accordingly.
  • the original clamping position In order to increase the height from the lowest point of the tire to the ground, the original clamping position must be moved down to below the horizontal scale shaft diameter, so that although the tire can be raised a little, the clamping tightness is reduced. In situations such as rapid parking during transportation, the vehicle tires are likely to rush out of the clamp arm and fall.
  • the overall height of the parking robot can be adjusted as required to meet the needs of different handling stages, and the tightness of the gripping tires is not affected.
  • FIG. 2 is a schematic diagram of an internal structure of the parking robot provided by an embodiment of the application, that is, a bottom view of the parking robot with the bottom plate under the support base 100 removed.
  • the clamping arm mechanism 220 may include a first clamping arm 223 and a second clamping arm 224. In the clamping state, the first clamping arm 223 and the second clamping arm 224 There is a clamping gap between.
  • the clamping gap is used as a space for accommodating a clamped object, for example, it can be used as a space for accommodating a clamped vehicle tire. In other words, two clamping arms are used to clamp a tire.
  • the vehicle frame 200 in order to make the vehicle body height as low as possible when the telescopic mechanism 300 is retracted, that is, when the entire parking robot is in a low position; in an optional embodiment of the present application, the vehicle frame 200 includes a vehicle frame The top plate 280 and the frame bottom plate 250 corresponding to the frame top plate. Referring to FIGS. 1 and 3, the frame top plate 280 and the frame bottom plate 250 are connected by a support vertical plate 270 and are arranged vertically.
  • the frame bottom plate 250 is provided with a notch 2021, and the top of the vertical telescopic mechanism 300 is connected to the top plate 280 of the frame opposite to the notch 2021, so that when the vertical telescopic mechanism 300 is in a contracted state, the support base 100 is at least vertically Some are located in the gap 2021.
  • the support base can be partially or completely hidden in the vehicle frame, so as to reduce as much as possible the entire parking robot body when it is in a low position. height.
  • the notch 2021 is consistent with the outline of the support base 100. When the support base 100 is hidden in the frame, the support base 100 is just embedded in the notch 2021 on the frame bottom plate 250.
  • FIG. 4 is a schematic diagram of a state where the overall height of the parking robot is at a low position, in which the telescopic mechanism is contracted, and the support base 100 is hidden in the notch on the frame bottom plate 250 of the frame 200.
  • FIG. 5 is a schematic diagram of a state where the overall height of the parking robot is at a high position, in which the telescopic mechanism 300 is extended, and the support base 100 is not hidden in the notch on the frame bottom plate 250 of the frame 200.
  • the arm clamping mechanism 220 is provided on the bottom plate 250 of the frame and adjacent to the notch 2021. This can make the overall structure layout more reasonable and compact.
  • the bottom of the vertical telescopic mechanism 300 is connected to the support base 100, and the vertical telescopic mechanism 300 is also located between the arm clamping mechanisms on both sides of the frame.
  • the vertical telescopic mechanism 300 by arranging the vertical telescopic mechanism 300 between the arm clamping mechanisms 220 on both sides of the frame, the space of the frame is rationally used, and the structure can be made more compact; in addition, when the vehicle is clamped, the vertical expansion The mechanism and the frame together serve as the bottom bearing part of the arm clamping mechanism. Since the vertical telescoping mechanism 300 is arranged between the arm clamping mechanisms 220 on both sides of the frame, the force distribution is relatively uniform, thereby making the clamping and lifting process more stable.
  • the arm clamping mechanism 220 is located at the edge position 203 between the frame top plate 280 and the frame bottom plate 250 after being folded.
  • the parts and other structures on the frame are concentrated in the boundary area defined by the outer contour of the frame, so that the overall structure of the frame is relatively compact.
  • the arm clamping mechanism 220 When the arm clamping mechanism 220 is folded, it can be rotated clockwise or counterclockwise by 90 degrees to gradually approach the outer contour of the frame, and finally close in the boundary area defined by the outer contour of the frame.
  • the parking robot in Fig. 2 has four clamping arm mechanisms 220.
  • Each clamping arm mechanism 220 includes a first clamping arm and a second clamping arm.
  • the left grip arm included in 220 is called the first grip arm
  • the right grip arm is called the second grip arm.
  • the first clamping arm of the two upper clamping arm mechanisms 220 in FIG. 2 and the second clamping arm of the two lower clamping arm mechanisms 220 in FIG. 2 rotate 90 degrees counterclockwise to close It corresponds to the edge position 203 between the frame top plate 280 and the frame bottom plate 250.
  • the second clamp arm of the two upper clamp arm mechanisms 220 in FIG. 2 and the first clamp arm of the two lower clamp arm mechanisms 220 in FIG. 2 rotate 90 degrees clockwise, and are folded into the corresponding frame roof 280 and The edge position 203 between the frame bottom plates 250.
  • a through hole 2011 is provided on the top plate 280 of the frame opposite to the driving wheel assembly 110.
  • the through hole 2011 can accommodate the driving wheel assembly 110.
  • the driving wheel components are distributed on both sides of the vertical telescopic mechanism.
  • the drive wheel assembly itself has a height. Since the drive wheel assembly provided on the support base 100 is above the frame top plate 280, when the vertical telescopic mechanism retracts and the parking robot body is in a low position, the height of the drive wheel assembly will affect The overall height of the car body.
  • a through hole 2011 is provided on the top plate 280 of the frame opposite to the drive wheel assembly 110, and the part of the drive wheel assembly higher than the overall height of the frame can be accommodated in the through hole, that is, it can pass through
  • the through hole extends, so that the height of the vehicle body is restricted by the height of the drive wheel assembly when the vehicle body is in a low position, and the height when the vertical telescopic mechanism is retracted and the vehicle body is in a low position can be reduced.
  • the parking robot can be adapted to the handling of lower chassis vehicles.
  • the drive wheel assembly 110 may be distributed on the upper and lower sides of the vertical telescopic mechanism 300, that is, the drive wheel assembly 110 and the vertical telescopic mechanism 300 are staggered in the same plane, so that the When contracting or extending the telescopic mechanism 300, the driving wheel assembly 110 and the vertical telescopic mechanism 300 will not block each other.
  • the position of the driving wheel assembly 110 may correspond to the position of the notch 2021 on the frame bottom plate 250, and the top of the vertical telescoping mechanism 300 is connected to the top plate 280 of the frame opposite to the position of the notch 2021 on the frame bottom plate 250, so that it can be vertically telescopic
  • the mechanism 300 is in the contracted state, at least part of the vertical telescopic mechanism 300 and the drive wheel assembly 100 are located in the gap 2021.
  • a through hole 2011 is provided on the top plate 280 of the frame opposite to the driving wheel assembly 110.
  • the driving wheel assembly 110 may be located between the clamping arm mechanisms 220 on both sides of the frame, that is, between the first clamping arm and the second clamping arm. Since the first clamping arm and the second clamping arm are used to clamp a tire, they have a clamping gap.
  • the driving wheel assembly 110 is arranged in the frame of the first clamping arm and the second clamping arm corresponding to the clamping gap. In between, the overall length of the parking robot can be significantly reduced.
  • the driving wheel assemblies are arranged on both sides of the vertical telescopic mechanism, and the driving wheel assemblies are arranged between the arm clamping mechanisms, so that the overall length of the parking robot is significantly reduced.
  • the drive wheel assembly and the vertical telescoping mechanism are located at the positions corresponding to the notches on the frame bottom plate. When the vertical telescoping mechanism is in a contracted state, the drive wheel components can be hidden in the notches on the frame bottom plate.
  • the drive wheel assembly can protrude from the through hole of the top plate of the frame, which reduces the height restriction of the drive wheel assembly when the vehicle body is in a low position, and can make the overall structure of the parking robot more compact.
  • the parking spaces in the three-dimensional parking garage can be set to be smaller, which can meet the entry and exit of the parking robot. As the size of a single parking space becomes smaller, the same area can be increased accordingly The number of parking spaces under, brings significant economic benefits.
  • the vertical telescopic mechanism 300 is a scissor fork lifting mechanism. Since the scissor fork lifting mechanism can be easily folded and occupies a small space, the overall structure space can be made compact. In addition, the use of the scissor fork lifting mechanism to achieve a relatively stable change process of the height of the frame can make the vehicle tires clamped in the arm clamping mechanism 220 basically not appear during the process of lifting the frame and the load on the frame. shake.
  • FIG. 6 is a schematic structural diagram of an embodiment of the vertical telescopic mechanism in this application, which adopts the scissor fork lifting mechanism.
  • the scissor fork lifting mechanism includes a transmission shaft 201, and two ends of the transmission shaft 201 are respectively connected to the first scissor fork lifting assembly 202 and the second scissor fork.
  • a first gear 204 and a second gear 205 are provided on the transmission shaft 201.
  • the first scissor fork lifting assembly 202 and the second scissor fork lifting assembly 203 include: a first lifting plate 2021 hinged to the bottom plate 2020 and a second lifting plate 2022 slidably disposed on the bottom plate.
  • the sliding block 2023 may be hinged to one end of the second lifting plate 2022 located on the bottom plate, and a guide groove (not shown in FIG. 6) for guiding the movement of the sliding block is provided on the bottom plate 2020.
  • the bottom plate 2020 can be detachably connected to the supporting base 100 by welding or bolts.
  • the upper surfaces of the first scissor fork lifting assembly 202 and the second scissor fork lifting assembly 203 can be detachably connected by welding or bolts. Fixed on the frame.
  • the sliding block 2023 can be respectively provided at both ends of the first scissor fork lifting assembly 202 and the second scissor fork lifting assembly 203, wherein the two ends are the two ends in the length direction. It is also possible to provide a sliding block 2023 in the length direction of the entire lifting assembly, that is, the sliding block arrangement shown in FIG. 6, so that the second lifting plate 2022 is pushed to slide closer to the first lifting plate 2021 to lift When lifting, the two ends of the first scissor fork lifting assembly 202 or the second scissor fork lifting assembly 203 can be folded and raised synchronously, so that there is no sense of frustration in the lifting process and the lifting is more stable.
  • the first gear 204 is provided with a third gear 206 and a fourth gear 207 that mesh with it in the circumferential direction.
  • the third gear 206 and the fourth gear 207 are arranged symmetrically about the axis of the transmission shaft 201, and the third gear 206 is fixedly connected to the first motor assembly
  • the fourth gear 207 is axially fixedly connected with a first screw nut 209.
  • the first screw nut 209 is provided with a first screw 210.
  • the first end 2101 of the first screw 210 passes through the first screw nut 209.
  • With four gears 207 the second end 2102 of the first screw 210 abuts or is connected to the second lifting plate 2022 of the first scissor lift assembly 202.
  • the second gear 205 is provided with a fifth gear 211 meshing with it in the circumferential direction.
  • the fifth gear 211 and the fourth gear 207 are arranged correspondingly.
  • the fifth gear 211 is axially fixedly connected with a second screw nut 212.
  • 212 is provided with a second screw 213, the first end of the second screw 213 passes through the fifth gear 211, and the second end of the second screw 213 abuts or is connected to the second lift of the second scissor lift assembly 203 Rising board 2022.
  • the first motor assembly 208 is fixedly connected to the third gear 206 through a reducer 214, and the first motor assembly 208 transmits power to the third gear 206.
  • a specific scissor fork lifting mechanism is provided.
  • gear transmission and lead screws are cleverly utilized.
  • the drive of the nut realizes that the lifting components on both sides can be lifted or lowered synchronously using only one motor, so that the overall lifting of the parking robot frame is relatively stable.
  • a first rail 215 is provided on one side of the fourth gear 207 and the fifth gear 211, and a first slider 216 and a second slider are slidably provided on the first rail 215.
  • Block 217 A second guide rail 218 that cooperates with the first guide rail 215 is also provided at a symmetrical position with respect to the transmission shaft 201.
  • a third slider 21 and a fourth slider 22 are also slidably provided on the second guide rail 218. And the third sliding block 21 is fixedly connected to the second lifting plate 2022 of the first scissor fork lifting assembly 202.
  • first slider 216 and the third slider 21 are fixedly connected to the slider 2023 hinged on the second lifting plate 2022, and the second slider 217 and the fourth slider 22 are fixedly connected to the second scissor fork.
  • the second lifting plate of the lifting assembly 203 In this way, when the first screw 210 and the second screw 213 push the second lifting plate 2022 at both ends to slide to achieve lifting or lowering, the guide rail slider mechanism fixedly connected to the second lifting plate 2022 can be provided. , Can make the second lifting plate 2022 slide more smoothly, thereby making the lifting or descending process more stable.
  • the first motor assembly 208 transmits power to the deceler
  • the speed reducer 214 transmits power to the first screw nut 209 through the meshing transmission of the third gear 206, the first gear 204 and the fourth gear 207; at the same time, since the first gear 204 and the second gear 205 are respectively fixedly connected
  • On the transmission shaft 201 when the first gear rotates 204, the second gear 205 also rotates, driving the fifth gear 211 meshed with it to rotate, and the power is transmitted to the second screw nut 212.
  • the first screw nut 209 rotates, and drives the first screw 210 to make a linear reciprocating motion, thereby pushing the first scissor fork lifting assembly 202 against or connected to the second end 2102 of the first screw 210 to perform the second move
  • the hinged sliding block 2023 on the lifting plate 2022 also performs linear reciprocating motion; at the same time, the second screw nut 212 performs a rotary motion, driving the second screw 213 to perform linear reciprocating motion, thereby pushing against or connecting to the second screw 213
  • the sliding block 2023 hinged on the second lifting plate 2022 of the second scissor fork lifting assembly 203 at the second end also performs linear reciprocating motion.
  • the scissor fork lifting mechanism realizes the telescopic action, so that the lifting or lowering of the frame is realized, so that the ground clearance of the frame, the arm clamping mechanism and the vehicle tire can be adjusted, and the vehicle can be transported in uneven road conditions.
  • the sliding block 2023 hinged on the second lifting plate 2022 of the first scissor lift assembly 203 and the second scissor lift assembly 203 is also fixedly connected with a rail slider mechanism. Due to the cooperation of the rail slider during the sliding process, the first slider 216, the first slider 216 on the first rail 215 and the second rail 218
  • the second sliding block 217, the third sliding block 21 and the fourth sliding block 22 also perform linear reciprocating motion, which can make the scissor fork lifting mechanism realize a smooth telescopic action, so as to realize the synchronous expansion and contraction of the scissor fork lifting components on both sides. In this way, the frame 200 can be smoothly raised and lowered, and the height of the parking robot can be adjusted to better adapt to various working stages in the use process.
  • the frame 200 includes a first frame 230
  • the first frame 230 and the second frame 240 have the same structure and are connected back and forth by a horizontal telescopic mechanism 400.
  • the horizontal telescopic mechanism 400 can be adjusted in length to meet the needs of different vehicle wheelbases.
  • the horizontal telescopic mechanism 400 can be adapted to extend or shorten to adjust the length of the parking robot frame, so that the clamping arm mechanism can be adjusted to the position of the tires of the vehicle for rapid transport. Therefore, the parking robot of this embodiment can realize convenient transportation of vehicles with various wheelbases.
  • the horizontal telescopic mechanism includes a guide chute 401 and a guide rod 402 provided in the guide chute 401.
  • One end of the guide chute 401 is connected to the end of the first frame 230, and the guide rod 402 is away from the guide
  • One end of the sliding groove 401 is connected to the end of the second frame 240.
  • the guide chute 401 and the guide rod 402 move relative to each other to achieve stretching or shortening.
  • the specific device for driving the two movement can be a hydraulic cylinder, a pneumatic cylinder or a motor, which is not limited.
  • the support base 100 is also a split structure, and a first support base 101 is correspondingly provided under the first frame 230, and a first support base 101 is correspondingly provided under the second frame 240. There is a second support base 102, and the first support base 101 and the second support base 102 are respectively provided with a driving wheel assembly 110.
  • the horizontal telescopic mechanism can be stretched by controlling the driving wheel assembly 110 on the first support base 101 and the second support base 102 to move in opposite directions, respectively.
  • the driving wheel assembly 110 on the first support base 101 and the second support base 102 is controlled to move toward each other to contract the horizontal telescopic mechanism.
  • the driving wheel assembly that is separately arranged at the front and rear can be fully utilized, which not only saves costs, but also makes the overall structure as compact as possible.
  • the driving wheel assembly 110 includes a differential omnidirectional steering gear. Due to the use of differential omnidirectional steering gear, it can be adapted to curves with a small turning radius, that is, sharp turns can be achieved.
  • the steering gear is a position (angle) servo driver, which is mainly composed of a housing, a circuit board, a motor, a reducer and a position detection element. After the servo receives the signal, it drives the coreless motor through the IC (Integrated Circuit Chip) chip on the circuit board to start rotating, and transmits the power to the swing arm through the reduction gear, and at the same time, the position detector sends back a signal to determine whether it has reached the positioning .
  • Differential omnidirectional steering gear is a steering gear mechanism that can realize steering in all directions through the speed difference between the steering gears.
  • the front part 260 of the first frame 230 and the rear part of the second frame 240 are respectively provided with a driving power supply assembly, which is not shown in FIG. 2, and It is the installation position 260 of one example indicated schematically.
  • the driving power component may include a battery and a power management module.
  • This implementation adopts two batteries and two power management modules, which are respectively placed at the head and tail of the parking robot frame, avoiding the problem of unbalanced center of gravity, excessively long power cords and problems caused by the use of a whole battery.
  • the large size of the whole machine makes the wiring of the parking robot reasonable, stable driving, and compact structure.
  • the clamping arm mechanism 220 includes a power component 221, a transmission component 222, and a clamping arm.
  • the power component 221 is connected to the clamping arm through the transmission component 222; the power component 221 drives the transmission component 222 to drive and the transmission component
  • the clamping arm connected to 222 rotates.
  • the arm clamping mechanism 220 sets corresponding number groups according to the number of vehicle tires. Since there are generally four vehicle tires, there are four groups. One set has two sets of clamping arm mechanisms correspondingly arranged to close and clamp the vehicle tires.
  • the arm clamping mechanism 220 is a basic structure for clamping an object, where the object may be a vehicle tire or the like.
  • the power component 221 and the transmission component 222 can adopt different driving forms and transmission modes.
  • the power component can adopt a hydraulic pump, and accordingly, the transmission component can adopt a hydraulic transmission form; or the power component can adopt a motor, and the transmission component can adopt a gear. Transmission or worm gear or connecting rod mechanism.
  • the clamping arm is used as the executive part of the clamping arm mechanism.
  • As a transmission component in specific settings, it should be able to finally convert the power into a rotary motion and output according to the direction of the power provided by the power component, so as to drive the clamping arm to rotate to achieve clamping or loosening of the tire.
  • each clamping arm is correspondingly provided with a power component and a transmission component.
  • the first clamping arm 223 is used as an example for illustration below.
  • the power assembly includes a motor 2211 and a reducer 2212
  • the transmission assembly 222 is a turbine 2221 and a worm 2222.
  • the motor 2211 is connected to the worm 2222 through the reducer 2212. 2222 meshes with the turbine 2221, the turbine 2221 is fixedly connected with the clamping arm 223, and the turbine 2221 is mounted on the frame through a bearing.
  • the clamping arm 223 includes a supporting frame 2231, and a clamping member 2232 is provided on the supporting frame 2231.
  • the clamping member 2232 is rotatably connected to the support frame 2231. In this way, when the tire is clamped, when the tire is in contact, the sliding friction is changed to rolling friction, which can reduce the wear of the tire during the clamping process.
  • the clamping member 2232 includes a roller.
  • the support frame 2231 is provided with at least two dividing grooves, and a corresponding roller is installed in each dividing groove. In this way, when a section of the clamping member 2232 is damaged, the roller in the corresponding dividing groove can be replaced only to be used normally, thereby reducing the maintenance cost.
  • automatic charging devices are respectively provided at the front end of the first frame 230 and the rear end of the second frame 240 to perform automatic charging when the parking robot needs to be charged. Recharge.
  • obstacle detection devices may be provided at the front end of the first frame 230 and the rear end of the second frame 240 respectively. Since the obstacle detection device is installed on the frame, the whole frame can be raised by the vertical telescopic mechanism during the transportation process, and the ground clearance of the obstacle detection device is also correspondingly increased, so that it is not easy to detect the ground. There is a problem of false detection, which can improve detection accuracy.
  • a parking robot control system and electrical system hardware are provided at a position 410 between the first frame 230 and the second frame 240, so that the overall structure is compact , And centralized layout of electrical system hardware and control system, easy to repair.
  • an image recognition sensor can also be provided at the position 410 defined by the horizontal telescopic mechanism for recognizing a path guide mark set on the ground, such as a two-dimensional code.
  • the vertical telescopic mechanism When the parking robot does not carry the vehicle, the vertical telescopic mechanism is in a high position, the horizontal telescopic mechanism is in a retracted state, the arm clamping mechanism 220 is in a retracted state, and the parking robot is in an idling state and follows the set path to the designated parking space, as shown in Figure 9A As shown, the height of the parking robot is in a normal state;
  • the parking robot reaches the designated parking space and before diving into the bottom of the vehicle, the vertical telescopic mechanism shrinks to lower the height of the robot, and the robot is in a low position, as shown in Figure 9A, where the dotted line in the figure indicates the initial height marking line of the whole vehicle.
  • the parking robot dives into the bottom of the vehicle and controls the horizontal telescopic mechanism to extend so that the arm clamping mechanism is aligned with the tire position of the vehicle, as shown in Figure 9B;
  • the parking robot gripping arm mechanism rotates, and the gripping arm grips the vehicle tires. This gripping action squeezes the vehicle tires and lifts the vehicle, as shown in Figure 9C;
  • the vertical telescopic mechanism is extended, the parking robot is in a high position and held, the frame and its upper parts are raised, and at the same time the vehicle is further lifted, increasing the ground clearance of the vehicle tires, as shown in Figure 9C As shown; then the robot can carry the vehicle to the designated location;
  • the vertical telescopic mechanism shrinks to lower the height of the robot and reduce the ground clearance of the vehicle tires, and then the rear clamp arm mechanism rotates back to the initial position, and the vehicle tires touch the ground and stop at this position; the dotted line in the figure indicates Initial vehicle height marking line.
  • the horizontal telescopic mechanism of the parking robot shrinks, and the car body of the parking robot returns to the shortest length and drives out from the bottom of the vehicle. At this time, the vertical telescopic mechanism extends, and the form of the parking robot returns to the initial state until the end of the handling task.
  • the embodiment of the application provides a parking robot.
  • the structure of the parking robot is creatively divided into a frame and a supporting base, which are connected by a vertical telescopic mechanism, and further divide the robot frame into front and rear frames. Horizontal telescopic mechanism connection.
  • the support base of the robot is divided into a set of walking driving mechanisms corresponding to the front and rear frame to generate relative motion, so that the horizontal telescopic mechanism is extended or shortened.
  • the vertical telescopic mechanism can be used to increase the tire ground clearance after the vehicle is clamped, adapt to different high and low roads, and improve the overall obstacle passing ability of the parking robot , Enhance the ground adaptability, and there will be no problem of the vehicle rushing out of the gripping arm during an emergency stop.
  • the parking robot of this embodiment adopts a clamping mechanism and a vertical and horizontal telescopic mechanism to coordinate and adaptably adjust, so that the applicable tire range is wide, and the applicable tire outer diameter range is 500mm-850mm, which covers tire sizes of all vehicles.
  • first clamp the tires of the vehicle clamp the tires to a certain height from the ground, and then extend the vertical telescopic mechanism to further increase the height of the tires from the ground, and the height of the frame and other components installed on the frame are equal improve.
  • the working distance is the distance between the two clamping arms when clamping the tire, they are generally clamped on the horizontal axis of the tire
  • the tires have a small ground clearance, which will affect the ability to pass obstacles during handling. If the design is small, the tightness of the clamping will be greatly reduced, and the vehicle may rush out of the clamping arm during an emergency stop.
  • the design of the working distance of the left and right clamp arms can be compared with the existing parking
  • the robot is wide and can hold the tires reliably and stably regardless of the size of the tires, and there will be no problem of the vehicle rushing out of the gripping arm during an emergency stop.
  • the parking robot of this embodiment is in a low position, the height of the vehicle body can be relatively lower.
  • the terms “upper”, “lower” and other terms indicating the orientation or positional relationship are only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must It has a specific orientation, is constructed and operated in a specific orientation, and therefore cannot be understood as a limitation to the application.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, It can also be connected indirectly through an intermediary.
  • Relation terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship between these entities or operations Or order.
  • the terms "include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article, or device that includes a series of elements includes not only those elements, but also includes Other elements of, or also include elements inherent to this process, method, article or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, article, or equipment including the element. For those of ordinary skill in the art, it can be understood through specific circumstances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)

Abstract

本申请实施例公开一种停车机器人,涉及轮式移动机器人技术领域,可以提高过障碍能力。包括支撑底座及位于支撑底座上的车架,所述支撑底座上设有驱动轮组件,所述车架两侧设有夹臂机构,所述支撑底座与车架之间通过竖向伸缩机构连接。本申请适用于涉及车辆自动搬运的场合。

Description

一种停车机器人
本申请要求于2019年4月18日交中国专利局、申请号为201910315796.2发明名称为“一种停车机器人”的中国专利申请以及于2019年4月18日交中国专利局、申请号为201920534385.8发明名称为“一种停车机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及轮式移动机器人(WMR―Wheeled Mobile Robot)技术领域,尤其涉及一种停车机器人。
背景技术
停车机器人亦可称停车自动导引运输车(Automated Guided Vehicle,AGV),是指用于搬运车辆的停车类自动导引运输车。其通过二维码、激光、视觉导航等方式定位车辆位置,进而通过夹持轮胎或者举升轮胎将车辆直接抬离地面,或者将车辆停放在托盘上,停车机器人搬运托盘的方式等自动搬运车辆。通过自主无人智能控制,可实现自动行驶并将车辆搬运到指定位置。
发明人在实现本申请创造的过程中发现:现有的停车机器人,利用车体两侧水平设置的夹臂夹持车辆轮胎以搬运,出于进入车辆底部搬运车辆的需要,通常停车机器人的车体高度做的较低。但是,由于车体所包括的夹臂离地高度较低,导致在搬运车辆途中,过障碍能力较差。例如,当路面稍有凹凸不平时,夹臂及夹持于夹臂上的车辆轮胎底部就可能碰到凸起障碍而无法通行。
发明内容
有鉴于此,本申请实施例提供一种停车机器人,可以提高过障碍能力。
为达到上述目的,本申请采用如下技术方案:
一种停车机器人,包括支撑底座及位于支撑底座上的车架,所述支撑底座上设有驱动轮组件,所述车架两侧设有夹臂机构,所述支撑底座与车架之间通过竖向伸缩机构连接。
可选地,所述夹臂机构包括第一夹臂及第二夹臂,在夹持状态下所述第 一夹臂与所述第二夹臂之间具有夹持间隙。
可选地,所述车架包括车架顶板及与所述车架顶板对应设置的车架底板,在所述车架底板上设有缺口,所述竖向伸缩机构的顶部与所述缺口位置相对的车架顶板处连接;
所述竖向伸缩机构处于收缩状态时,所述支撑底座至少有部分位于所述缺口中。
可选地,所述夹臂机构设于所述车架底板上、毗邻所述缺口的位置处。
可选地,所述竖向伸缩机构的底部连接于所述支撑底座上,且所述竖向伸缩机构还位于车架两侧的夹臂机构之间。
可选地,所述车架顶板上、与所述驱动轮组件相对的位置处设有通孔,所述通孔用于容纳所述驱动轮组件。
可选地,所述竖向伸缩机构为剪刀叉升降机构,所述剪刀叉升降机构包括传动轴,所述传动轴两端分别转动连接有第一剪刀叉举升组件及第二剪刀叉举升组件,所述传动轴上设有第一齿轮及第二齿轮,所述第一剪刀叉举升组件及第二剪刀叉举升组件包括:铰接于底板上的第一举升板及滑动设于所述底板上的第二举升板;
所述第一齿轮周向上设有与其啮合传动的第三齿轮及第四齿轮,所述第三齿轮及第四齿轮关于传动轴轴线对称设置,所述第三齿轮固定连接于第一电机组件的输出轴上,所述第四齿轮轴向固定连接有第一丝杠螺母,在所述第一丝杠螺母中设有第一丝杠,所述第一丝杠第一端穿过所述第四齿轮,所述第一丝杠第二端抵靠或连接于所述第一剪刀叉举升组件的第二举升板;
所述第二齿轮周向上设有与其啮合的第五齿轮,所述第五齿轮与所述第四齿轮对应设置,所述第五齿轮轴向固定连接有第二丝杠螺母,在所述第二丝杠螺母中设有第二丝杠,所述第二丝杠第一端穿过所述第五齿轮,所述第二丝杠第二端抵靠或连接于所述第二剪刀叉举升组件的第二举升板。
可选地,所述第四齿轮及第五齿轮一侧设有第一导轨,在所述第一导轨上滑动设置有第一滑块及第二滑块,关于所述传动轴对称位置处还设有与所 述第一导轨协同动作的第二导轨,在所述第二导轨上滑动设置有第三滑块及第四滑块,所述第一滑块及所述第三滑块固定连接于所述第一剪刀叉举升组件的第二举升板上,所述第二滑块及所述第四滑块固定连接于所述第二剪刀叉举升组件的第二举升板上。
可选地,所述车架包括第一车架及第二车架,所述第一车架及第二车架结构相同,并通过水平伸缩机构前后连接。
可选地,所述水平伸缩机构包括导向滑槽及设于所述导向滑槽中的导向杆,所述导向滑槽一端连接于第一车架端部,所述导向杆远离导向滑槽的一端连接于第二车架端部。
可选地,所述第一车架的前部及第二车架的后部上分别设有驱动电源组件。
可选的,所述驱动电源组件包括电池和电源管理模块。
可选的,所述第一车架前端端部及所述第二车架尾端端部分别设有障碍物检测装置。
本申请实施例一种停车机器人,包括支撑底座及位于支撑底座上的车架,所述支撑底座上设有驱动轮组件,所述车架两侧设有夹臂机构,所述支撑底座与车架之间通过竖向伸缩机构连接。由于车架包括夹臂机构通过竖向伸缩机构连接于支撑底座上,当需要潜伏进入车辆底部时,可以通过将伸缩机构收缩,以使停车机器人整体处于低位,这样可以潜入车辆底部用夹臂机构夹持车辆轮胎,当夹紧轮胎后,通过将伸缩机构伸长,以使停车机器人整体处于高位,车架、车架两侧夹臂机构升高,夹持于夹臂机构中的车辆也随之被举高,增大了车架、夹臂机构及车辆轮胎的离地高度,从而提高了停车机器人的过障碍能力。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例所提供的停车机器人一种结构爆炸示意图;
图2为本申请实施例所提供的停车机器人一种内部结构示意图;
图3为图1所示实施例中装配后的停车机器人的一种结构示意图;
图4为本申请实施例所提供的停车机器人整体高度处于低位的一种状态示意图;
图5为本申请实施例所提供的停车机器人整体高度处于高位的一种状态示意图;
图6为本申请实施例所提供的竖向伸缩机构一种结构示意图;
图7为本申请实施例所提供的水平伸缩机构一种结构示意图;
图8为本申请实施例所提供的停车机器人的夹臂机构一种结构示意图;
图9A为本申请实施例所提供的夹臂机构处在收缩状态时停车机器人的高度变化示意图;
图9B为本申请实施例所提供的水平伸缩机构伸长状态时停车机器人的高度示意图;
图9C为本申请实施例所提供的夹臂机构处在展开状态时停车机器人的高度变化示意图。
具体实施方式
下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例提供一种停车机器人,适用于自动搬运货物场合,尤其适用于各种场景中的车辆自动搬运,例如,自动存取车、车辆维修、车辆托运等。
图1为本申请停车机器人一实施例结构爆炸示意图,装配后的停车机器人的结构示意图参见图3。参看图1所示,在本申请一个实施例中,所述停车 机器人包括:支撑底座100及位于支撑底座100上的车架200,支撑底座100上设有驱动轮组件110,车架200两侧设有夹臂机构220,支撑底座100与车架200之间通过竖向伸缩机构300连接。其中,支撑底座为用于承载驱动轮组件的底座;车架为用于支撑、连接各部件的支撑架;夹臂机构为用于夹持轮胎的夹持部件,竖向伸缩机构为能够在竖直方向进行伸展和压缩的部件。
其中,竖向伸缩机构300一端可以通过螺栓等可拆卸连接方式或焊接方式固定在支撑底座100上,另一端则以同样的方式固定在车架上。竖向伸缩机构300可以根据需要设置不同的档位,例如高、中及低三个档位,分别对应停车机器人在使用过程中,车架、夹臂机构及轮胎处于高、中及低三个位置。竖向伸缩机构300可以采用液压举升装置,例如,采用液压千斤顶,还可以采用连杆升降机构,具体可以利用曲柄连杆机构的两个死点位置,实现举升支撑到高位或收拢降低到低位的目的,还可以采用剪刀叉升降机构。
本申请实施例一种停车机器人,包括:支撑底座100及位于支撑底座100上的车架200,支撑底座100上设有驱动轮组件110,车架200两侧设有夹臂机构220,支撑底座100与车架200之间通过竖向伸缩机构300连接。由于车架包括夹臂机构,通过竖向伸缩机构连接于支撑底座上,当需要潜伏进入车辆底部时,可以通过将伸缩机构收缩,以使停车机器人整体处于低位,这样可以潜入车辆底部用夹臂机构夹持车辆轮胎,当夹紧轮胎后,通过将伸缩机构伸长,以使停车机器人整体处于高位,车架、车架两侧夹臂机构升高,夹持于夹臂机构中的车辆也随之被举高,增大了车架、夹臂机构及车辆轮胎的离地高度,从而提高了停车机器人的过障碍能力。
进一步地,由于在托运车辆行走过程中,可以通过伸缩机构伸长使停车机器人整体处于高位,以增加车架、夹臂机构及轮胎的离地高度,在提高了停车机器人的过障碍能力的同时,相应也增强了停车机器人对地面的适应性。
另外,可以理解的是,不同车辆的轮胎大小有所不同,其轮胎直径一般在500mm到850mm不等。相关技术中,停车机器人或者称车辆搬运器在夹持不同大小的轮胎时,在搬运过程中容易出现车辆轮胎离地间隙小,导致车辆搬运器的过障碍能力下降。如果想要提升车辆轮胎的离地间隙,则需要通过改变停车机器人夹持轮胎的位置来实现,例如,如果正常夹持时夹臂与轮 胎接触的位置是轮胎水平对称轴直径的两端部,则为了使轮胎最低点到地面的高度升高,则只有将原来的夹持位置下移至水平称轴直径以下,这样尽管可以使轮胎抬高少许,但是降低了夹持的紧固性,若在搬运过程中遇到快速停车等情况,车辆轮胎容易冲出夹臂掉落。本实施例则通过设置竖向伸缩机构,可以根据需要调整停车机器人整体高度,以适应不同搬运阶段的需要,而且不影响夹持轮胎的紧固性。
图2为本申请实施例提供的停车机器人一种内部结构示意图,也就是将支撑底座100下方的底板去除后的停车机器人仰视图。参看图2所示,在本申请一个可选实施例中,夹臂机构220可以包括第一夹臂223及第二夹臂224,在夹持状态下第一夹臂223与第二夹臂224之间具有夹持间隙。其中,夹持间隙用于作为容纳被夹持物体的空间,例如,可以用于作为容纳被夹持的车辆轮胎的空间。也就是说,两个夹臂用于夹持一个轮胎。
继续参看图1所示,为了使伸缩机构300在收缩时,也就是停车机器人整车处于低位时,车体高度尽可能低;在本申请的一个可选实施例中,车架200包括车架顶板280及与车架顶板对应设置的车架底板250,参看图1及图3,车架顶板280与车架底板250通过支撑竖板270连接,且上下对应设置。
在车架底板250上设有缺口2021,竖向伸缩机构300的顶部与缺口2021位置相对的车架顶板280处连接,以使竖向伸缩机构300处于收缩状态时,支撑底座100在竖向至少有部分位于缺口2021中。这样,通过在车架底板上设置缺口,当竖向伸缩机构收缩使车体处于低位时,支撑底座可以部分或全部隐藏于车架中,从而可以尽可能降低整个停车机器人车体处于低位时的高度。本实施例中,具体地,缺口2021与支撑底座100的轮廓一致,可以在支撑底座100隐藏于车架中时,支撑底座100正好镶嵌在车架底板250上的缺口2021中。
图4所示为停车机器人整体高度处于低位的一种状态示意图,其中,伸缩机构收缩,支撑底座100隐藏于车架200的车架底板250上的缺口中。图5所示为停车机器人整体高度处于高位的一种状态示意图,其中,伸缩机构300伸长,支撑底座100未隐藏于车架200的车架底板250上的缺口中。
参看图2所示,在本申请的另一个实施例中,夹臂机构220设于车架底 板250上、毗邻缺口2021的位置处。这样可以使整体结构布局更加合理紧凑。
具体地,参看图1及图2所示,竖向伸缩机构300的底部连接于支撑底座100上,且竖向伸缩机构300还位于车架两侧的夹臂机构之间。
本实施例,通过将竖向伸缩机构300设置于车架两侧的夹臂机构220之间,合理利用了车架的空间,可以使结构更加紧凑;另外,在夹举车辆时,竖向伸缩机构与车架共同作为夹臂机构的底部承载部件,由于竖向伸缩机构300设置于车架两侧的夹臂机构220之间,作用力分布较为均匀,从而使夹举过程更加平稳。
参看图2所示,本实施例中,夹臂机构220在收拢后,位于车架顶板280与车架底板250之间的边缘位置203。使车架上的零部件等结构集中于车架外轮廓界定的边界区域内,从而使车架整体结构较为紧凑。夹臂机构220在收拢时,可以顺时针或者逆时针旋转90度,以向车架外轮廓逐渐靠近,最后收拢于车架外轮廓界定的边界区域内。
如图2所示,图2中的停车机器人具有4个夹臂机构220,每个夹臂机构220包括第一夹臂和第二夹臂,为了方便描述,将图2中每个夹臂机构220包括的左侧的夹臂称为第一夹臂,右侧的夹臂称为第二夹臂。在夹臂机构220收拢时,图2中上方的两个夹臂机构220中的第一夹臂以及图2中下方的两个夹臂机构220中的第二夹臂逆时针旋转90度,收拢于对应的车架顶板280与车架底板250之间的边缘位置203。图2中上方的两个夹臂机构220中的第二夹臂以及图2中下方的两个夹臂机构220中的第一夹臂顺时针旋转90度,收拢于对应的车架顶板280与车架底板250之间的边缘位置203。
在本申请的又一个实施例中,车架顶板280上、与驱动轮组件110相对的位置处设有通孔2011,竖向伸缩机构处于收缩状态时,通孔2011能容纳驱动轮组件110。
其中,驱动轮组件分布于竖向伸缩机构两侧。驱动轮组件本身具有高度,由于设置于支撑底座100上的驱动轮组件,其上方是车架顶板280,在竖向伸缩机构收缩停车机器人车体整体处于低位时,驱动轮组件的高度会影响到车体的整体高度。本实施例,在车架顶板280上、与驱动轮组件110相对的位置处设有通孔2011,驱动轮组件的高于车架整体高度的部分可以容纳于通孔 中,也就是可以通过该通孔伸出,这样可以减轻车体处于低位时高度受驱动轮组件高度的限制,从而可以降低在竖向伸缩机构收缩车体处于低位时的高度。进一步地,可以使停车机器人可以适应较低底盘车辆的搬运。
具体来说,参看图2和图1,驱动轮组件110可以分布于竖向伸缩机构300的上下两侧,即在驱动轮组件110与竖向伸缩机构300在同一平面内错开设置,以便在竖向伸缩机构300进行收缩或者伸展时,驱动轮组件110与竖向伸缩机构300不会相互阻挡。
并且驱动轮组件110的位置可以对应于车架底板250上的缺口2021位置,竖向伸缩机构300的顶部与车架底板250上的缺口2021位置相对的车架顶板280处连接,这样竖向伸缩机构300处于收缩状态时,竖向伸缩机构300以及驱动轮组件100至少有部分位于缺口2021中。同时,在车架顶板280上、与驱动轮组件110相对的位置处设有通孔2011,在驱动轮组件110的高度高于车架整体高度时,驱动轮组件110可以从通孔2011伸出,也就是从车架上方露出。
另外,驱动轮组件110可以位于车架两侧的夹臂机构220之间,也就是位于第一夹臂和第二夹臂之间。由于第一夹臂和第二夹臂用于夹持一个轮胎,所以二者具有夹持间隙,将驱动轮组件110设置于车架中该夹持间隙对应的第一夹臂和第二夹臂之间,可以使停车机器人的整体长度明显缩小。
在本实施例中,驱动轮组件设置于竖向伸缩机构的两侧,并且驱动轮组件设置于夹臂机构之间,使停车机器人的整体长度明显缩小。同时,驱动轮组件以及竖向伸缩机构位于车架底板上的缺口对应的位置,在竖向伸缩机构处于收缩状态时,驱动轮组件可以隐藏于车架底板上的缺口中,同时,如果驱动轮组件的高度高于车架整体高度时,驱动轮组件可以从车架顶板的通孔伸出,减轻车体处于低位时高度受驱动轮组件高度的限制,可以使停车机器人的整体结构更加紧凑。并且,在停车场景中,由于停车机器人整体长度较短,立体停车库中的停车位可以相应地设置较小,即可满足停车机器人的进出,由于单个停车位尺寸变小,相应可以增加同等面积下的停车位数量,带来显著的经济效益。
参看图1所示,在其中一个可选实施例中,竖向伸缩机构300为剪刀叉 升降机构。由于剪刀叉升降机构能够轻松折叠,占用空间较小,可以使整体结构空间较为紧凑。另外,利用该剪刀叉升降机构实现车架高度升降变化过程比较平稳,可以使夹持于夹臂机构220中的车辆轮胎,在举升车架以及车架上的载重过程中,基本不会出现摇晃。
剪刀叉升降机构的具体结构可以有很多种,图6为本申请中的竖向伸缩机构一实施例结构示意图,其采用了剪刀叉升降机构。参看图6及图2所示,在本申请中的一个实施例中,剪刀叉升降机构包括传动轴201,传动轴201两端分别转动连接有第一剪刀叉举升组件202及第二剪刀叉举升组件203,传动轴201上设有第一齿轮204及第二齿轮205。
第一剪刀叉举升组件202及第二剪刀叉举升组件203包括:铰接于底板2020上的第一举升板2021及滑动设于底板上的第二举升板2022。具体地,可以在第二举升板2022位于底板的一端铰接滑块2023,在底板2020上设置用于引导滑块移动的导向槽(图6中未示出)。底板2020与可以通过焊接或螺栓等可拆卸连接方式固定在支撑底座100上,第一剪刀叉举升组件202及第二剪刀叉举升组件203的上表面可以通过焊接或螺栓等可拆卸连接方式固定在车架上。
其中,滑块2023可以分别在第一剪刀叉举升组件202及第二剪刀叉举升组件203的两端各设置一个,其中,两端是长度方向的两端。也可以在整个举升组件的长度方向上设置一个滑块2023,即如图6中所示的滑块设置方式,这样在推动第二举升板2022向第一举升板2021滑动靠近以举升时,第一剪刀叉举升组件202或第二剪刀叉举升组件203两端可以同步合拢升高,从而使举升过程不会出现顿挫感,举升更加平稳。
第一齿轮204周向上设有与其啮合传动的第三齿轮206及第四齿轮207,第三齿轮206及第四齿轮207关于传动轴201轴线对称设置,第三齿轮206固定连接于第一电机组件208的输出轴上,第四齿轮207轴向固定连接有第一丝杠螺母209,在第一丝杠螺母209中设有第一丝杠210,第一丝杠210第一端2101穿过第四齿轮207,第一丝杠210第二端2102抵靠或连接于第一剪刀叉举升组件202的第二举升板2022。
第二齿轮205周向上设有与其啮合的第五齿轮211,第五齿轮211与第四 齿轮207对应设置,第五齿轮211轴向固定连接有第二丝杠螺母212,在第二丝杠螺母212中设有第二丝杠213,第二丝杠213第一端穿过第五齿轮211,第二丝杠213第二端抵靠或连接于第二剪刀叉举升组件203的第二举升板2022。
具体地,第一电机组件208通过减速器214与第三齿轮206固定连接,第一电机组件208将动力传递给第三齿轮206。
本实施例中,提供了一种具体的剪刀叉举升机构,通过在一根传动轴的两端设置第一剪刀叉举升组件及第二剪刀叉举升组件,巧妙利用齿轮传动及丝杠螺母的传动,实现了两侧的举升组件仅利用一台电机就可以同步举升或下降,从而使得停车机器人车架整体举升较为平稳。
继续参看图6所示,作为一可选实施例,第四齿轮207及第五齿轮211一侧设有第一导轨215,在第一导轨215上滑动设置有第一滑块216及第二滑块217。关于传动轴201对称位置处还设有与第一导轨215协同动作的第二导轨218,在第二导轨218上同样滑动设置有第三滑块21及第四滑块22,第一滑块216以及第三滑块21固定连接于第一剪刀叉举升组件202的第二举升板2022上。
具体地,第一滑块216以及第三滑块21固定连接于铰接在第二举升板2022上的滑块2023上,第二滑块217及第四滑块22固定连接于第二剪刀叉举升组件203的第二举升板上。这样,可以在第一丝杠210及第二丝杠213分别推动两端的第二举升板2022滑动以实现举升或下降时,通过设置与第二举升板2022固定连接的导轨滑块机构,可以使第二举升板2022滑动更加平稳顺滑,从而使举升或下降过程更加平稳。
为了清楚、完整地说明本申请实施例,以下对本实施例停车机器人所采用的剪刀叉举升机构的工作原理作一详细介绍:参看图7所示,第一电机组件208,将动力传递给减速器214,减速器214通过第三齿轮206、第一齿轮204及第四齿轮207的啮合传动将动力传递给第一丝杠螺母209;同时,由于第一齿轮204及第二齿轮205分别固定连接于传动轴201上,第一齿轮转动204的同时,第二齿轮205也随之转动,带动与其啮合的第五齿轮211转动,将动力传递给第二丝杠螺母212。
第一丝杠螺母209进行旋转运动,带动第一丝杠210做直线往复运动,从而推动抵靠或连接于第一丝杠210第二端2102的第一剪刀叉举升组件202的第二举升板2022上铰接的滑块2023也做直线往复运动;同时,第二丝杠螺母212进行旋转运动,带动第二丝杠213做直线往复运动,从而推动抵靠或连接于第二丝杠213第二端的第二剪刀叉举升组件203的第二举升板2022上铰接的滑块2023也做直线往复运动。从而使剪刀叉举升机构实现伸缩动作,这样就实现了举升或降低车架,从而使得车架、夹臂机构及车辆轮胎的离地高度可调,能够适应不平路况搬运车辆。
进一步地,为了增加举升或降低的平稳性及顺滑性,第一剪刀叉举升组件203的第二举升板2022上铰接的滑块2023、第二剪刀叉举升组件203的第二举升板2022上铰接的滑块2023还固定连接有导轨滑块机构,由于在滑动过程中有导轨滑块的协同作用下,第一导轨215及第二导轨218上的第一滑块216、第二滑块217、第三滑块21及第四滑块22也做直线往复运动,可以使剪刀叉举升机构实现顺滑的伸缩动作,从而实现两侧的剪刀叉举升组件同步伸缩,由此实现车架200的平稳上升和下降,使停车机器人高度可调节,以更好地适应使用过程中的各工作阶段。
可以理解的是,不同的车辆的前后轴距不同,为了适应不同车辆轴距的需要,继续参看图1及图2所示,在一可选实施例中,车架200包括第一车架230及第二车架240,第一车架230及第二车架240结构相同,并通过水平伸缩机构400前后连接。其中,水平伸缩机构400可以调节长度,以适应不同车辆轴距的需要。这样,可以根据被搬运车辆的前后轴距,适应性地通过水平伸缩机构400伸长或缩短以调节停车机器人车架的长度,使夹臂机构正好调节对正至车辆轮胎位置以快速搬运,由此,本实施例的停车机器人能实现对多种不同轴距的车辆的方便搬运。
具体地,参看图7所示,水平伸缩机构包括导向滑槽401及设于导向滑槽401中的导向杆402,导向滑槽401一端连接于第一车架230端部,导向杆402远离导向滑槽401的一端连接于第二车架240端部。导向滑槽401与导向杆402相对运动以实现拉伸或缩短,具体驱动二者运动的装置可以为液压缸、气压缸或电机,对此不做限定。
本实施例中,作为一可选实施例,参见图2所示,支撑底座100也为分体结构,第一车架230下方对应设有第一支撑座101,第二车架240下方对应设有第二支撑座102,第一支撑座101及第二支撑座102上分别设有驱动轮组件110。这样,在需要拉伸或缩短以调整车架整体长度时,可以通过控制第一支撑座101及第二支撑座102上的驱动轮组件110分别向相反方向运动,则将水平伸缩机构拉伸,当需要缩短时,则控制第一支撑座101及第二支撑座102上的驱动轮组件110相向运动以将水平伸缩机构收缩。这样,可以无需专门设置实现水平伸缩机构伸长或缩短的驱动装置,而是充分利用前后分体设置的驱动轮组件,不仅可以节省成本,还可以尽量使整体结构紧凑。
在本实施例的一个可选实施例中,驱动轮组件110包括差速全向舵机。由于采用差速全向舵机,可以适应转弯半径较小的弯道,即可以实现急转弯。舵机是一种位置(角度)伺服的驱动器,主要是由外壳、电路板、马达、减速器及位置检测元件所构成。舵机接收信号后,经由电路板上的IC(Integrated Circuit Chip)芯片驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回讯号,判断是否已经到达定位。差速全向舵机即为可以通过舵机之间的速度差实现各个方向上转向的舵机机构。
在本实施例的另一个可选实施例中,第一车架230的前部260及第二车架240的后部分别设有驱动电源组件,图2中未示出该驱动电源组件,而是示意性指出的其一实例的安装位置260。其中,驱动电源组件可以包括电池和电源管理模块。
本实施通过采用两块电池和两个电源管理模块,分别放置于停车机器人车架的头部和尾部的位置,避免了通常采用一整块电池造成的重心不均衡问题、电源线过长问题和整机尺寸大的问题,使得停车机器人的布线合理、行驶平稳,且结构紧凑。
参看图2及图8所示,夹臂机构220包括动力组件221、传动组件222及夹持臂,动力组件221通过传动组件222与夹持臂连接;动力组件221驱动传动组件222带动与传动组件222连接的夹持臂旋转。
夹臂机构220根据车辆轮胎的数量设置相应数量组,由于一般车辆轮胎为四个,所以设置四组,一组有两套夹臂机构对应设置,以靠拢夹持车辆轮 胎。本实施例中,夹臂机构220为夹持物体的基础结构件,其中,物体可以为车辆轮胎等。动力组件221与传动组件222可以采用不同的驱动形式及传动方式,例如,动力组件可以采用液压泵,相应地,传动组件可以采用液压传动形式;或者,动力组件可以采用电机、传动组件可以采用齿轮传动或涡轮蜗杆或连杆机构。无论采用上述何种驱动及传动方式,夹持臂作为夹臂机构中的执行部件。而作为传动组件,在具体设置时,应能够根据动力组件提供的动力的运动方向最终将动力转变成旋转运动并输出,以带动夹持臂旋转实现夹紧或松开轮胎。
夹臂机构220包括第一夹臂223及第二夹臂224时,每个夹持臂对应设置有动力组件及传动组件,以下以第一夹臂223进行举例说明。继续参看图8所示,在本申请的一个可选实施例中,动力组件包括电机2211及减速器2212,传动组件222为涡轮2221及蜗杆2222,电机2211通过减速器2212连接于蜗杆2222,蜗杆2222与涡轮2221啮合,涡轮2221与夹持臂223固定连接,涡轮2221通过轴承安装于车架上。
其中,夹持臂223包括支撑架2231,在支撑架2231上设有夹持件2232。可选地,夹持件2232转动连接于支撑架2231上。这样,在夹持轮胎时,当与轮胎接触时,将滑动摩擦变为滚动摩擦,可以减少夹持过程中对轮胎的磨损。
参看图8所示,在本申请一个实施例中,夹持件2232包括滚筒。可选地,包括至少两个滚筒,支撑架2231上设有至少两个分割槽,在每个分割槽中对应安装一个滚筒。这样,在夹持件2232其中一段损坏时,可以仅更换相应分割槽中的滚筒即可以正常使用,从而可以降低维护成本。
参看图2所示,在本申请一个实施例中,在第一车架230前端端部及第二车架240尾端端部分别还设有自动充电装置,以在停车机器人需要充电时进行自动充电。
相关技术中,停车机器人或自动搬运车的车体由于离地间隙小,导致障碍物检测装置盲区大,非常容易检测到地面出现误检测而停机。在本申请一个实施例中,在第一车架230前端端部及第二车架240尾端端部分别还可以设有障碍物检测装置。由于障碍物检测装置设置于车架上,在搬运过程中, 可以通过竖向伸缩机构将车架整体升高,障碍物检测装置的离地间隙也相应增大,这样就不容易检测到地面而出现误检测的问题,从而可提高检测精确性。
继续参看图2所示,在本申请一个实施例中,在第一车架230及第二车架240之间的位置410处设有停车机器人的控制系统和电气系统硬件,使整体结构布置紧凑,且集中布设电气系统硬件及控制系统,易检修。
具体地,还可以在水平伸缩机构界定的位置410处设置图像识别传感器,用于识别地面上设置的路径导引标识,例如二维码等。
为了清楚、完整地说明本申请实施例提供的一种停车机器人,以下对本实施例停车机器人搬运车辆过程详细描述如下:
停车机器人不搬运车辆时,竖向伸缩机构处在高位,水平伸缩机构处在收缩状态,夹臂机构220处在收缩状态,停车机器人处于空载行驶状态按照设定路径前往指定车位,如图9A所示,停车机器人的高度处于正常状态;
停车机器人到达指定车位,潜入车辆底部前,竖向伸缩机构收缩,降低机器人高度,机器人处于低位状态,如图9A所示,其中,图中虚线标识初始整车高度标线。
停车机器人潜入车辆底部,控制水平伸缩机构伸长,使得夹臂机构对准车辆轮胎位置,如图9B所示;
停车机器人夹臂机构旋转,夹持臂夹持车辆轮胎,该夹持动作挤压车辆轮胎,将车辆抬升,如图9C所示;
停车机器人夹持车辆轮胎到位后,竖向伸缩机构伸长,停车机器人处于高位并保持,车架及其上部件升高,并同时进一步抬升车辆,增大车辆轮胎的离地间隙,如图9C所示;然后机器人可以搬运车辆到指定位置;
停车机器人到达指定位置后,竖向伸缩机构收缩,降低机器人高度,减小车辆轮胎离地间隙,而后夹臂机构旋转回初始位置,车辆轮胎接触地面并停止在该位置;其中,图中虚线标识初始整车高度标线。
停车机器人的水平伸缩机构收缩,停车机器人的车体恢复到最短长度,从车辆底部驶出,此时竖向伸缩机构伸长,停车机器人形态恢复到初始状态,直至搬运任务结束。
本申请实施例提供了一种停车机器人,将停车机器人结构创造性地分为车架与支撑底座上下两部分,由竖直伸缩机构连接,并进一步地将机器人车架又分为前后车架,由水平伸缩机构连接。进一步地将机器人的支撑底座分为对应前后车架各设置一组行走驱动机构,以产生相对运动,使水平伸缩机构伸长或缩短。这样,不仅可以通过水平伸缩机构调节整体长度适应不同车辆轴距,同时可以通过竖向伸缩机构提高夹举车辆后的轮胎离地间隙,适应不同高低起伏的路面,提高停车机器人整体的过障碍能力,增强地面适应性,而且不会存在紧急停车时车辆冲出夹持臂的问题。
同时,因为将驱动轮组件和竖直伸缩机构布置在左右两组夹臂机构的中间,整机长度明显缩小,增加了同等面积下的停车位数量,带来显著的经济效益。
本实施例停车机器人,通过采用夹持机构与竖向及水平伸缩机构协同适应性调节,可适用的轮胎范围广,适用轮胎外径范围500mm-850mm,涵盖了所有车辆的轮胎尺寸。搬运车辆过程中,先夹持车辆轮胎,将轮胎夹离地面一定高度,然后竖向伸缩机构伸长,进一步增加轮胎离地高度,而且车架及其安装在车架上的其余部件的高度均提高。机器人上半部分提高后,车辆轮胎离地的间隙增大,而且上车体距离地面更高,只留有支撑底座及其上的驱动轮组件离地间隙不变,整机接近角和离去角大大增加,由此机器人路面适应性大大提高,爬坡能力显著增强。
现有停车机器人的两个夹臂在夹持车辆轮胎时,如果设计的工作距离较大,工作距离也就是夹紧轮胎时的两个夹臂间的距离,则一般夹持于轮胎的水平轴中线位置两端,轮胎离地间隙较小,会影响搬运过程中的过障碍能力。若设计较小,则夹持的紧固性会大打折扣,在紧急停车时车辆可能会冲出夹持臂。
而本实施例中,由于轮胎被夹持抬高后,离地间隙又再次增加,克服了夹持轮胎后的轮胎离地间隙小的难题,因此左右夹臂的工作距离设计可以比现有停车机器人宽,无论轮胎大小,都能可靠稳定地夹持轮胎,不会存在紧急停车时车辆冲出夹持臂的问题。本实施例的停车机器人在车体处于低位时,车体的高度相对可以做到更低。
需要说明的是,在本文中,术语“上”、“下”等指示的方位或位置关系的用语,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。诸如,第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。对于本领域的普通技术人员而言,可以通过具体情况理解。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种停车机器人,其特征在于,包括支撑底座及位于支撑底座上的车架,所述支撑底座上设有驱动轮组件,所述车架两侧设有夹臂机构,所述支撑底座与车架之间通过竖向伸缩机构连接。
  2. 根据权利要求1所述的停车机器人,其特征在于,所述夹臂机构包括第一夹臂及第二夹臂,在夹持状态下所述第一夹臂与所述第二夹臂之间具有夹持间隙。
  3. 根据权利要求1所述的停车机器人,其特征在于,所述车架包括车架顶板及与所述车架顶板对应设置的车架底板,在所述车架底板上设有缺口,所述竖向伸缩机构的顶部与所述缺口位置相对的车架顶板处连接;
    所述竖向伸缩机构处于收缩状态时,所述支撑底座至少有部分位于所述缺口中。
  4. 根据权利要求3所述的停车机器人,其特征在于,所述夹臂机构设于所述车架底板上、毗邻所述缺口的位置处。
  5. 根据权利要求1所述的停车机器人,其特征在于,所述竖向伸缩机构的底部连接于所述支撑底座上,且所述竖向伸缩机构还位于车架两侧的夹臂机构之间。
  6. 根据权利要求3所述的停车机器人,其特征在于,所述车架顶板上、与所述驱动轮组件相对的位置处设有通孔,所述通孔用于容纳所述驱动轮组件。
  7. 根据权利要求1至6任一所述的停车机器人,其特征在于,所述竖向伸缩机构为剪刀叉升降机构,所述剪刀叉升降机构包括传动轴,所述传动轴两端分别转动连接有第一剪刀叉举升组件及第二剪刀叉举升组件,所述传动轴上设有第一齿轮及第二齿轮,所述第一剪刀叉举升组件及第二剪刀叉举升组件包括:底板、铰接于底板上的第一举升板及滑动设于所述底板上的第二举升板;
    所述第一齿轮周向上设有与其啮合传动的第三齿轮及第四齿轮,所述第三齿轮及第四齿轮关于传动轴轴线对称设置,所述第三齿轮固定连接于第一 电机组件的输出轴上,所述第四齿轮轴向固定连接有第一丝杠螺母,在所述第一丝杠螺母中设有第一丝杠,所述第一丝杠第一端穿过所述第四齿轮,所述第一丝杠第二端抵靠或连接于所述第一剪刀叉举升组件的第二举升板;
    所述第二齿轮周向上设有与其啮合的第五齿轮,所述第五齿轮与所述第四齿轮对应设置,所述第五齿轮轴向固定连接有第二丝杠螺母,在所述第二丝杠螺母中设有第二丝杠,所述第二丝杠第一端穿过所述第五齿轮,所述第二丝杠第二端抵靠或连接于所述第二剪刀叉举升组件的第二举升板。
  8. 根据权利要求7所述的停车机器人,其特征在于,所述第四齿轮及第五齿轮一侧设有第一导轨,在所述第一导轨上滑动设置有第一滑块及第二滑块,关于所述传动轴对称位置处还设有与所述第一导轨协同动作的第二导轨,在所述第二导轨上滑动设置有第三滑块及第四滑块,所述第一滑块及所述第三滑块固定连接于所述第一剪刀叉举升组件的第二举升板上,所述第二滑块及所述第四滑块固定连接于所述第二剪刀叉举升组件的第二举升板上。
  9. 根据权利要求1至6任一所述的停车机器人,其特征在于,所述车架包括第一车架及第二车架,所述第一车架及第二车架结构相同,并通过水平伸缩机构前后连接。
  10. 根据权利要求9所述的停车机器人,其特征在于,所述水平伸缩机构包括导向滑槽及设于所述导向滑槽中的导向杆,所述导向滑槽一端连接于第一车架端部,所述导向杆远离导向滑槽的一端连接于第二车架端部。
  11. 根据权利要求10所述的停车机器人,其特征在于,所述第一车架的前部及第二车架的后部上分别设有驱动电源组件。
  12. 根据权利要求11所述的停车机器人,其特征在于,所述驱动电源组件包括电池和电源管理模块。
  13. 根据权利要求9所述的停车机器人,其特征在于,所述第一车架前端端部及所述第二车架尾端端部分别设有障碍物检测装置。
PCT/CN2020/085399 2019-04-18 2020-04-17 一种停车机器人 WO2020211850A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920534385.8U CN209924535U (zh) 2019-04-18 2019-04-18 一种停车机器人
CN201920534385.8 2019-04-18
CN201910315796.2 2019-04-18
CN201910315796.2A CN111827745B (zh) 2019-04-18 2019-04-18 一种停车机器人

Publications (1)

Publication Number Publication Date
WO2020211850A1 true WO2020211850A1 (zh) 2020-10-22

Family

ID=72837036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085399 WO2020211850A1 (zh) 2019-04-18 2020-04-17 一种停车机器人

Country Status (1)

Country Link
WO (1) WO2020211850A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121767A (ja) * 1996-10-22 1998-05-12 Kaa Tec Kk ロック式駐車装置
CN205206441U (zh) * 2015-12-18 2016-05-04 兰州远达停车产业有限公司 一种用于车辆搬运的两段式夹持搬运器
CN205637771U (zh) * 2016-04-26 2016-10-12 蔡意兴 汽车存车工程车
CN206971843U (zh) * 2017-04-24 2018-02-06 东莞松山湖国际机器人研究院有限公司 Agv子母升降搬运器
CN206987493U (zh) * 2017-07-31 2018-02-09 江西丹巴赫机器人股份有限公司 具备自动提升的停车机器人
CN108166819A (zh) * 2018-02-24 2018-06-15 国信机器人无锡股份有限公司 一种夹抱式泊车机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121767A (ja) * 1996-10-22 1998-05-12 Kaa Tec Kk ロック式駐車装置
CN205206441U (zh) * 2015-12-18 2016-05-04 兰州远达停车产业有限公司 一种用于车辆搬运的两段式夹持搬运器
CN205637771U (zh) * 2016-04-26 2016-10-12 蔡意兴 汽车存车工程车
CN206971843U (zh) * 2017-04-24 2018-02-06 东莞松山湖国际机器人研究院有限公司 Agv子母升降搬运器
CN206987493U (zh) * 2017-07-31 2018-02-09 江西丹巴赫机器人股份有限公司 具备自动提升的停车机器人
CN108166819A (zh) * 2018-02-24 2018-06-15 国信机器人无锡股份有限公司 一种夹抱式泊车机器人

Similar Documents

Publication Publication Date Title
EP3842605B1 (en) Intelligent parking lot and cluster transport robot thereof
CN209924535U (zh) 一种停车机器人
WO2019191899A1 (en) Automated guided vehicle robot and clamping device thereof
CN107187511B (zh) 变轴距可越障工业机器人全向底盘
CN108612373A (zh) 搬运机器人及其操作方法、车辆搬运系统
WO2022144029A1 (zh) 可移动的设备、控制方法、控制装置、存储介质、移动平台及附件
CN108358120B (zh) 自动运行更换模具的台车
CN218507485U (zh) 一种免掉头回转夹抱车
CN103587910B (zh) 轨道输送车供电系统及滑板、滑板输送线
CN206502556U (zh) 带自锁的无线遥控全方位行走升降平台车
WO2020211850A1 (zh) 一种停车机器人
CN112320694B (zh) 多功能钢卷运输车
CN109606509A (zh) 一种自动化无人搬运车
CN111827745B (zh) 一种停车机器人
CN108222602A (zh) 一种汽车搬运装置
CN209958860U (zh) 分体式自适应浮动车搬运器
CN111764713A (zh) Agv停车系统
CN108412281B (zh) 一种汽车搬运装置
CN202139004U (zh) 电动全方位移动升降机
CN211468613U (zh) 一种辅助摄像头巡检的全向轮底盘
CN211309349U (zh) 轨道交通车体的转运设备
CN211776240U (zh) 一种agv停车系统
CN210178052U (zh) 一种停车agv
CN109958309B (zh) 分体式自适应浮动车搬运器及其工作方法
CN111734182A (zh) 一种伸缩式停车机器人及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791533

Country of ref document: EP

Kind code of ref document: A1