WO2020211832A1 - 空间拥挤度的检测方法及电梯轿厢的调度方法 - Google Patents

空间拥挤度的检测方法及电梯轿厢的调度方法 Download PDF

Info

Publication number
WO2020211832A1
WO2020211832A1 PCT/CN2020/085256 CN2020085256W WO2020211832A1 WO 2020211832 A1 WO2020211832 A1 WO 2020211832A1 CN 2020085256 W CN2020085256 W CN 2020085256W WO 2020211832 A1 WO2020211832 A1 WO 2020211832A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave signal
wireless wave
wireless
elevator
space
Prior art date
Application number
PCT/CN2020/085256
Other languages
English (en)
French (fr)
Inventor
刘贤钊
陈刚
黄立明
张彩霞
Original Assignee
日立楼宇技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立楼宇技术(广州)有限公司 filed Critical 日立楼宇技术(广州)有限公司
Publication of WO2020211832A1 publication Critical patent/WO2020211832A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location

Definitions

  • the present application relates to space detection technology, for example, to a detection method of space congestion and an elevator car dispatch method.
  • Cargo information which can facilitate managers to channel the flow of people or goods in time, allocate space resources, and improve space utilization.
  • cameras are usually used to collect information about people and goods in the space.
  • the amount of collected data and data processing in this solution is huge, and the cost is high.
  • the use of cameras to collect information about people in the space may involve privacy issues.
  • the present application provides a method for detecting the degree of space congestion and a method for dispatching elevator cars, so as to realize efficient dispatch of space target objects and improve space utilization.
  • the embodiment of the present application provides a method for detecting spatial congestion, including:
  • the space is divided into at least two detection intervals, and the space is used to carry the target object;
  • the second wireless wave signal is a wireless wave signal generated after the first wireless wave signal is reflected by the target object
  • a wireless detector is provided in the space, and the wireless detector is used to transmit the first wireless wave signal and receive the second wireless wave signal;
  • the determining the position of the target object in the space based on the first wireless wave signal and the second wireless wave signal includes:
  • the distance of the target object from the wireless detector is determined based on the frequency difference as the position of the target object in the space.
  • the detection interval is associated with a detection range, and the detection range is based on the wireless detector;
  • the determining, according to the position, the detection interval where the target object is located in the space includes:
  • the detection range is set as a detection interval where the target object is located in the space.
  • the determining the congestion degree of the target object in the detection interval based on the echo reflection intensity of the second wireless wave signal further includes:
  • the congestion degree associated with the target intensity range is set as the congestion degree of the target object in the detection interval.
  • the method further includes:
  • the radio wave signal matching the frequency spectrum feature is removed from the second radio wave signal.
  • the embodiment of the present application also provides a scheduling method of elevator cars, including:
  • Transmitting a first wireless wave signal to a car the car is divided into at least two detection sections, and the car is used to carry the elevator object;
  • the second wireless wave signal is a wireless wave signal generated after the first wireless wave signal is reflected by the elevator object
  • the car is dispatched according to the degree of congestion.
  • the scheduling of the car according to the degree of congestion includes:
  • the elevator hall call operation is not responded to.
  • the scheduling of the car according to the degree of congestion includes:
  • a target car is selected from a plurality of the cars according to the degree of congestion, and there is at least one of the target cars in the detection interval.
  • the echo reflection intensity of the second wireless wave signal reflected by the elevator object is less than a preset Threshold
  • the embodiment of the present application also provides a space congestion detection device, including:
  • a transmitting module configured to transmit a first wireless wave signal to a space, the space is divided into at least two detection intervals, and the space is used to carry a target object;
  • a receiving module configured to receive a second wireless wave signal, the second wireless wave signal being a wireless wave signal generated after the first wireless wave signal is reflected by the target object;
  • a position determining module configured to determine the position of the target object in the space based on the first wireless wave signal and the second wireless wave signal;
  • An interval determining module configured to determine the detection interval in which the target object is located in the space according to the position
  • the crowding degree determining module is configured to determine the crowding degree of the target object in the detection interval based on the echo reflection intensity of the second wireless wave signal.
  • the embodiment of the application also provides an elevator car dispatching device, including:
  • a transmitting module configured to transmit a first wireless wave signal to a car, the car is divided into at least two detection sections, and the car is used to carry objects in the elevator;
  • a receiving module configured to receive a second wireless wave signal in the elevator car, the second wireless wave signal being a wireless wave signal generated after the first wireless wave signal is reflected by the elevator object;
  • a position determining module configured to determine the position of the elevator object in the car based on the first wireless wave signal and the second wireless wave signal;
  • An interval determination module configured to determine, according to the position, the detection interval where the elevator object is located in the car
  • a congestion degree determination module configured to determine the degree of congestion of the object taking the elevator in the detection interval based on the echo reflection intensity of the second wireless wave signal
  • the dispatch module is used to dispatch the car according to the degree of congestion.
  • An embodiment of the application also provides a computer device, including:
  • One or more processors are One or more processors;
  • Wireless detector used to transmit and receive wireless wave signals
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method for detecting spatial congestion as described in the embodiment of this application, or, as implemented in this application Example of the dispatching method of the elevator car.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method for detecting the degree of congestion of the space as described in the embodiment of the present application is implemented, or, as described in the present application Apply for the elevator car dispatch method described in the embodiment.
  • the space congestion detection method determines the location of a target object in space through wireless wave signals, determines the detection interval of the target object in the space according to the position, and based on the target object in the detection interval
  • the echo reflection intensity of the reflected second wireless wave signal determines the congestion degree of the target object in the detection interval, and then can release prompt information in time according to the congestion degree of the target object in the detection interval, and schedule the target object in the space in time. Carry out space resource allocation to improve space utilization.
  • FIG. 1 is a flowchart of a method for detecting spatial congestion provided in Embodiment 1 of this application;
  • FIG. 2 is a waveform diagram of a first wireless wave signal transmitted by a frequency modulated continuous wave radar in an embodiment of the application;
  • FIG. 3 is a diagram of the frequency of the first wireless wave signal in FIG. 2 changing with time
  • Fig. 4 is a graph showing changes in frequency of the first radio wave signal and the second radio wave signal over time
  • Figure 5 shows the frequency domain characteristics of the sine wave after Fourier transform
  • Figure 6 shows the frequency domain characteristics of the mixed signal after Fourier transform
  • FIG. 7 is a graph of intensity threshold setting and received echo intensity in an embodiment of the application.
  • Figure 8 is a distribution diagram of target objects in space
  • Figure 9 is another distribution diagram of target objects in space
  • Figure 10 is another distribution diagram of target objects in space
  • Figure 11 is another distribution diagram of target objects in space
  • FIG. 12 is a flowchart of a method for detecting spatial congestion provided in Embodiment 2 of this application;
  • FIG. 13 is a schematic structural diagram of a space congestion detection device provided in Embodiment 3 of the application.
  • Figure 14 is a schematic structural diagram of an elevator car dispatching device provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a computer device provided by an embodiment of this application.
  • Embodiment 1 of the present application provides a method for detecting spatial congestion.
  • FIG. 1 is a flowchart of a method for detecting spatial congestion provided by Embodiment 1. As shown in FIG. 1, the method includes the following steps:
  • the space can be an open space that is basically not covered by artificial structures, such as squares, sports fields, material fields or water areas, or non-open spaces, such as indoor spaces, waiting halls, subway stations, or elevator cars. This is not limited.
  • Space is used to carry target objects, which can be people, animals, and goods.
  • the wireless wave signal can be sent by a wireless detector, and the wireless detector can be a radar. In one embodiment, it may be a millimeter wave radar, and millimeter wave radar detection has the advantages of high resolution, high sensitivity, and long detection distance.
  • the wireless wave signal may also be in other forms, such as an ultrasonic signal, a laser signal, etc., which are not limited in this application.
  • the space is divided into at least two detection areas. Illustratively, the wireless detector is taken as the center of the sphere and the space is divided into a plurality of equidistant detection areas along the signal propagation direction.
  • S120 Receive a second wireless wave signal, where the second wireless wave signal is a wireless wave signal generated after the first wireless wave signal is reflected by the target object.
  • a second wireless wave signal is generated and received by the wireless detector.
  • an open space there may be objects placed for a long time, such as sculptures in a square, and there are walls, seats or furnishings in the non-open space.
  • the still life or walls of these spaces will also produce first wireless wave signals. Reflection, in order to avoid the influence of the reflected waves of these space still life or walls on the echo reflection intensity, the first radio wave signal can be transmitted to the space in advance, and the echo spectrum characteristics are recorded. The spectrum characteristics are used to represent the characteristics of the still life in the space.
  • the preset frequency spectrum characteristic After receiving the second wireless wave signal, the preset frequency spectrum characteristic can be obtained, and the wireless wave signal matching the frequency spectrum characteristic can be eliminated from the second wireless wave signal.
  • S130 Determine the position of the target object in space based on the first wireless wave signal and the second wireless wave signal.
  • the position of the target object in space can be determined according to the frequency difference or phase difference between the first wireless wave signal and the second wireless wave signal.
  • a wireless detector is provided in the space, and the wireless detector is used to transmit the first wireless wave signal and receive the second wireless wave signal.
  • the wireless detector is a Frequency Modulated Continuous Wave (FMCW) radar.
  • FMCW Frequency Modulated Continuous Wave
  • S130 may include the following steps:
  • S132 Determine the distance of the target object from the wireless detector based on the frequency difference, as the position of the target object in space.
  • Figure 2 is a waveform diagram of the first wireless wave signal transmitted by the FM continuous wave radar in an embodiment of the application
  • Figure 3 is a diagram of the frequency of the first wireless wave signal in Figure 2 over time, as shown in Figures 2 and 3 It shows that the frequency of the radar wave emitted by the FM continuous wave radar, that is, the frequency of the first radio wave signal increases linearly with time, the increasing speed (slope) is K, and the frequency increasing period (sweep period) is T c .
  • Figure 4 is a graph showing the frequency of the first radio wave signal and the second radio wave signal over time.
  • the wireless detector receives
  • the frequency of the second radio wave signal RX chirp will also increase linearly with time. Since the second radio wave signal needs a certain distance to return to the receiving antenna, the received second radio wave signal has a certain delay compared to the transmitted first radio wave signal.
  • the frequency of the received electromagnetic wave varies with the frequency of the transmitted electromagnetic wave. There is also a delay ⁇ between changes, and there is a frequency difference between the received second radio wave signal and the transmitted first radio wave signal:
  • the second radio wave is:
  • the first radio wave signal and the second radio wave signal are input to the mixer, and the mixer is mixed and processed to output the mixed signal x out :
  • Figure 5 shows the frequency domain characteristics of a sine wave after Fourier transform. As shown in Figure 5, for a sine wave, after its Fourier transform, the frequency domain characteristic is that it has a very high amplitude at its frequency point. The frequency drops rapidly.
  • Figure 6 shows the frequency domain characteristics of the mixed signal after Fourier transform.
  • the Fourier waveform will have two Therefore, the frequency difference S ⁇ between the first radio wave signal and the first radio wave signal can be extracted according to the frequency domain characteristics after the Fourier transform of the mixed signal. Therefore, in the above formula (2), S ⁇ , K Both and c are known quantities, and the distance d between the target object and the wireless detector can be calculated. The distance d between the target object and the wireless detector is combined with the signal transmission angle and reflection angle to determine the target object in space. position.
  • S140 Determine the detection interval in the space of the target object according to the position.
  • the detection interval of the target object in space is determined according to the detection interval of the position in the space.
  • the detection interval is associated with the detection range, and the detection range is based on the wireless detector.
  • S140 may include the following steps:
  • S150 Determine the congestion degree of the target object in the detection interval based on the echo reflection intensity of the second wireless wave signal.
  • the more target objects in the detection interval the greater the echo reflection strength of the second wireless wave signal received by the wireless detector. Therefore, the crowding degree of the target objects in the detection interval can be determined according to the echo reflection strength.
  • determining the congestion degree of the target object in the detection interval based on the echo reflection intensity of the second wireless wave signal includes:
  • the threshold can be set according to actual needs and pre-tests. If the echo reflection intensity corresponding to the target object in a certain detection interval is greater than the preset threshold, it is determined that the crowding degree of the target object in the detection interval is saturated. . According to the congestion of the target object in each detection interval, corresponding business operations are carried out. Illustratively, when it is determined that a certain detection interval in the square, waiting hall and other spaces has been saturated with people, prompt information is released in time to guide the flow of people to Other non-saturated detection areas improve the space utilization of the square while avoiding trampling incidents.
  • determining the congestion degree of the target object in the detection interval based on the echo reflection intensity of the second wireless wave signal further includes:
  • each intensity range is associated with the crowding degree; the crowding degree associated with the target intensity range is set as the crowding degree of the target object in the detection interval.
  • multiple echo reflection intensity thresholds can be set according to actual needs, and the multiple intensity thresholds form multiple intensity ranges, and each intensity range is associated with a degree of congestion.
  • the intensity range of the echo reflection intensity is determined, and the intensity range is taken as the target intensity range, and the crowding degree of the target object in the detection interval is determined according to the crowding degree associated with the target intensity range.
  • Fig. 7 is a graph of intensity threshold setting and received echo intensity according to an embodiment of the application
  • Fig. 8 is a distribution diagram of target objects in space
  • Fig. 9 is another distribution diagram of target objects in space.
  • Figure 10 is another distribution diagram of target objects in space
  • Figure 11 is another distribution diagram of target objects in space.
  • the space is a sector area centered on the wireless detector.
  • the sector area is divided into four concentric ring detection zones with the wireless detector as the center.
  • the distance from the wireless detector from near to far is the monitoring zone W, X, Y and Z, and the distance between adjacent detection zones is 0.5 meters. .
  • Set three intensity thresholds, from small to large, respectively A, B, and C, thus forming four intensity ranges, respectively corresponding to the degree of congestion is idle, low, medium and saturated.
  • the distribution of the target objects in Figure 8 corresponds to the curve a in Figure 7.
  • the echo reflection intensity of each detection interval is between the intensity thresholds A and B.
  • the crowding degree of the target objects in each detection interval is roughly the same, and the crowding of each detection interval
  • the distribution of the target objects in Fig. 9 corresponds to the curve b in Fig. 7.
  • the echo reflection intensity of each detection interval is between the intensity threshold B and C, and the crowding degree of the target objects in each detection interval is roughly the same.
  • the crowdedness of the detection interval is medium crowded;
  • the distribution of the target objects in Figure 10 corresponds to the curve c in Figure 7, the echo reflection intensity of each detection interval is greater than the intensity threshold C, and the crowdedness of the target objects in each detection interval is roughly the same ,
  • the crowding degree of each detection interval is in a saturated state;
  • the distribution of the target object in Fig. 11 corresponds to the curve d in Fig.
  • the echo reflection intensities of the detection intervals W and Y are both greater than the intensity threshold C, that is, within the detection intervals W and Y
  • the crowdedness of the target object is approximately the same in a saturated state, and the echo reflection intensities of the detection intervals X and Z are both less than the intensity threshold A, that is, there is no target object in the detection intervals X and Z and are in an idle state.
  • the frequency spectrum feature is used to represent the characteristics of the still life in the space; the wireless wave signal matching the frequency spectrum feature is removed from the second wireless wave signal.
  • the space congestion detection method determines the location of a target object in space through wireless wave signals, determines the detection interval of the target object in the space according to the position, and based on the target object in the detection interval
  • the echo reflection intensity of the reflected second wireless wave signal determines the congestion degree of the target object in the detection interval, and then can release prompt information in time according to the congestion degree of the target object in the detection interval, and schedule the target object in the space in time. Carry out space resource allocation to improve space utilization.
  • Elevator is an electrical appliance often used in modern life, but there are many unsatisfactory places in elevator control methods. For example, when an elevator is used in an office building, only when the actual load of the elevator reaches the rated load, the full load is displayed on the display screen of each floor, and it does not stop at any floor unless someone wants to get off the elevator. However, in actual use, it often happens that the actual load of the elevator has not reached the rated load but is very close to the rated load. At this time, the elevator will still stop at each floor where there is a hall call, but due to the actual congestion in the elevator car It is already very high.
  • FIG. 12 is a flowchart of a space congestion detection method provided by the second embodiment of the application. As shown in FIG. 12, the method includes the following steps:
  • S210 Transmit the first wireless wave signal to the car, and the car is divided into at least two detection sections, and the car is used to carry the elevator object.
  • the riding object can be any object that enters the elevator car, including people, animals, or objects.
  • the wireless wave signal can be sent by a wireless detector, and the wireless detector can be a radar. In one embodiment, it may be a millimeter wave radar, and millimeter wave radar detection has the advantages of high resolution, high sensitivity, and long detection distance.
  • the space is divided into at least two detection sections.
  • a wireless detector is installed in a corner of the elevator car, with the wireless detector as the center of the sphere, and the space is divided into a plurality of equidistant detections along the signal propagation direction. Area, as shown in Figure 8-11.
  • S220 Receive a second wireless wave signal in the car, where the second wireless wave signal is a wireless wave signal generated after the first wireless wave signal is reflected by the object riding the elevator, and the second wireless wave signal has echo reflection strength.
  • a second wireless wave signal is generated and received by the wireless detector.
  • the second wireless wave signal has echo reflection strength.
  • the method further includes:
  • the frequency spectrum feature is used to represent the characteristics of the still life in the space; the wireless wave signal matching the frequency spectrum feature is removed from the second wireless wave signal.
  • the wireless wave signal matched with the frequency spectrum can eliminate the influence of the reflected wave of the car still life or the box wall on the echo reflection intensity.
  • S230 Based on the first wireless wave signal and the second wireless wave signal, determine the position of the elevator object in the car.
  • the position of the elevator object in the car can be determined based on the frequency difference or phase difference between the first wireless wave signal and the second wireless wave signal.
  • a wireless detector is provided in the car, and the wireless detector is used to transmit the first wireless wave signal and receive the second wireless wave signal.
  • the wireless detector is a frequency modulated continuous wave radar.
  • the foregoing S230 may include the following steps:
  • S232 Determine the distance of the riding object from the wireless detector based on the frequency difference, as the position of the riding object in the car.
  • S240 Determine the detection zone where the elevator object is located in the car according to the position.
  • the distance between the riding object and the wireless detector after determining the position of the riding object in the car, according to the detection section of the position in the car, determine the detection of the riding object in the car Interval.
  • the detection interval is associated with the detection range, and the detection range is based on the wireless detector.
  • S240 may include the following steps:
  • S250 Based on the echo reflection intensity of the second wireless wave signal, determine the degree of congestion of the object riding the elevator in the detection interval.
  • the more elevator objects in the detection interval the greater the echo reflection intensity of the second wireless wave signal received by the wireless detector. Therefore, the degree of congestion of elevator objects in the detection interval can be determined according to the echo reflection intensity.
  • determining the degree of congestion of the object riding the elevator in the detection interval includes:
  • the threshold can be set according to actual needs and pre-tests. If the echo reflection intensity corresponding to the elevator-riding object in a certain detection interval is greater than the preset threshold, it is determined that the crowdedness of the elevator-riding object in the detection interval is Saturated state.
  • determining the crowdedness of the elevator-riding objects in the detection interval further includes:
  • each intensity range is associated with the crowding degree; the crowding degree associated with the target intensity range is set as the crowding degree of the object taking the ladder in the detection interval .
  • the determination of the crowding degree of the object taking the stairs in the detection interval can refer to the determination of the crowding degree of the target object in the detection interval in the first embodiment and FIGS. 7-11, which will not be repeated here.
  • the elevator control system controls the elevator car not to respond to the outside call of the outside caller. Call request, to avoid the situation that the caller sees that the car is saturated and cannot choose the elevator after the elevator door is opened, which improves the efficiency of the elevator, shortens the time for people in the elevator, and improves the user's riding experience.
  • the elevator car dispatching method determines the position of the elevator object in the car in the car by wireless wave signals, and determines the detection section of the elevator object in the car according to the position, and Based on the echo reflection intensity of the second wireless wave signal reflected by the elevator-riding object in the detection interval, the crowdedness of the elevator-riding object in the detection interval is determined, and then the control instructions or prompts can be issued in time according to the crowdedness of the elevator-riding object in the detection interval Information, dispatch the elevator car accordingly, improve the utilization rate of the elevator, shorten the time of the passengers on the elevator, and improve the experience of the passengers on the elevator.
  • peripheral equipment is provided on the wall near the elevator landing door of each floor.
  • the peripheral equipment may include a reminder device and an elevator call cancel button, and the reminder device displays the inside of the car in real time.
  • the current car is idle, low congestion, medium congestion or saturation.
  • the outside caller can choose whether to call according to the congestion in the car.
  • the outside callers on the middle floor who need to go down can choose not to request the hall call, or pass The elevator call cancel button cancels the existing hall call request.
  • the elevator car will not stay and open the door on the floor where the external callers are located, and directly send the elevator passengers in the car to the first floor, which shortens the time of the elevator passengers in the car and improves the elevator experience.
  • the waiting time of waiting staff is also reduced, and the efficiency of elevator use is improved.
  • the echo reflection intensity of the second radio wave signal reflected by the elevator object in the detection section is less than the expected Set threshold; in response to elevator hall call operation, dispatch the target car to the floor.
  • the elevator control system obtains the congestion degree of each elevator car. When receiving a hall call request from an external caller on a certain floor, it selects a target car from multiple cars according to the congestion degree, and there is at least The echo reflection intensity of the second wireless wave signal reflected by the elevator-riding object in one detection interval is less than the preset threshold, that is, at least one detection interval is in an unsaturated state.
  • the elevator control system responds to the external call request of the external elevator caller and dispatches the target car to the floor.
  • Embodiment 3 of the present application provides a space congestion degree detection device.
  • FIG. 13 is a schematic structural diagram of a space congestion degree detection device provided in Embodiment 3 of this application. As shown in FIG. 13, the detection device includes:
  • the transmitting module 310 is configured to transmit the first wireless wave signal to a space, the space is divided into at least two detection intervals, and the space is used to carry the target object.
  • the receiving module 320 is configured to receive a second wireless wave signal, the second wireless wave signal is a wireless wave signal generated after the first wireless wave signal is reflected by a target object, and the second wireless wave signal has an echo reflection strength.
  • the position determining module 330 is configured to determine the position of the target object in space based on the first wireless wave signal and the second wireless wave signal.
  • the interval determining module 340 is configured to determine the detection interval of the target object in the space according to the position.
  • the crowdedness determining module 350 is configured to determine the crowdedness of the target object in the detection interval based on the echo reflection intensity of the second wireless wave signal.
  • the space congestion detection device determines the location of the target object in the space through wireless wave signals, determines the detection interval of the target object in the space according to the position, and based on the target object in the detection interval
  • the echo reflection intensity of the reflected second wireless wave signal determines the congestion degree of the target object in the detection interval, and then can release prompt information in time according to the congestion degree of the target object in the detection interval, and schedule the target object in the space in time. Carry out space resource allocation to improve space utilization.
  • a wireless detector is provided in the space, and the wireless detector is used to transmit the first wireless wave signal and receive the second wireless wave signal.
  • the location determining module 330 includes:
  • the frequency difference calculation unit 331 is configured to calculate the frequency difference between the first wireless wave signal and the second wireless wave signal.
  • the distance determining unit 332 is configured to determine the distance of the target object from the wireless detector based on the frequency difference, as the position of the target object in space.
  • the detection interval is associated with the detection range, and the detection range is based on the wireless detector.
  • the interval determining module 340 includes:
  • the range determining unit 341 is used to determine the detection range including the distance.
  • the interval determining unit 342 is configured to set the detection range as the detection interval where the target object is located in the space.
  • the congestion degree determination module 350 includes:
  • the judging unit 351 is configured to determine that the congestion of the target object in the detection interval is saturated when the echo reflection intensity is greater than a preset threshold.
  • the congestion degree determination module 350 further includes:
  • the intensity range determining unit 352 determines the intensity range in which the echo reflection intensity is located in at least two intensity ranges, as a target intensity range, and each intensity range is associated with a degree of congestion.
  • the congestion degree determining unit 353 is configured to set the congestion degree associated with the target intensity range as the congestion degree of the target object in the detection interval.
  • the detection device further includes:
  • the spectral feature acquiring unit 361 is configured to acquire a preset spectral feature after receiving the second radio wave signal, and the spectral feature is used to represent the characteristics of still life in space.
  • the removing unit 362 is used to remove the wireless wave signal matching the spectral characteristics from the second wireless wave signal.
  • FIG. 14 is a schematic structural diagram of the dispatching device for an elevator car according to an embodiment of the application. As shown in FIG. 14, the dispatching device for an elevator car includes:
  • the transmitting module 410 is configured to transmit a first wireless wave signal to a car, the car is divided into at least two detection sections, and the car is used to carry an elevator object.
  • the receiving module 420 is configured to receive a second wireless wave signal in the elevator car.
  • the second wireless wave signal is a wireless wave signal generated after the first wireless wave signal is reflected by the elevator object.
  • the second radio wave signal has echo reflection intensity.
  • the position determining module 430 is configured to determine the position of the elevator object in the car based on the first wireless wave signal and the second wireless wave signal.
  • the interval determination module 440 is configured to determine, according to the position, the detection interval in which the riding object is located in the car.
  • the congestion degree determination module 450 is configured to determine the degree of congestion of the elevator object in the detection interval based on the echo reflection intensity of the second radio wave signal.
  • the scheduling module 460 is configured to schedule the car according to the degree of congestion.
  • the elevator car dispatching device determines the position of the elevator object in the car in the car through wireless wave signals, and determines the detection section of the elevator object in the car according to the position, and Based on the echo reflection intensity of the second wireless wave signal reflected by the elevator-riding object in the detection interval, the crowdedness of the elevator-riding object in the detection interval is determined, and then the control instructions or prompts can be issued in time according to the crowdedness of the elevator-riding object in the detection interval Information, dispatch the elevator car accordingly, improve the utilization rate of the elevator, shorten the time of the passengers on the elevator, and improve the experience of the passengers on the elevator.
  • a wireless detector is provided in the car, and the wireless detector is used to transmit the first wireless wave signal and receive the second wireless wave signal.
  • the location determining module 430 includes:
  • the frequency difference calculation unit 431 is configured to calculate the frequency difference between the first wireless wave signal and the second wireless wave signal.
  • the distance determining unit 432 is configured to determine the distance of the riding object from the wireless detector based on the frequency difference, as the position of the target object in the car.
  • the interval determining module 440 includes:
  • the range determining unit 441 is used to determine the detection range including the distance.
  • the section determining unit 442 is configured to set the detection range as the detection section where the riding object is located in the car.
  • the congestion degree determination module 450 includes:
  • the judging unit 451 is configured to determine that the crowdedness of the elevator-riding objects in the detection interval is saturated when the echo reflection intensity is greater than a preset threshold.
  • the congestion degree determination module 450 further includes:
  • the intensity range determining unit 452 is configured to determine the intensity range in which the echo reflection intensity is located in at least two intensity ranges, as a target intensity range, and each intensity range is associated with a degree of crowding.
  • the congestion degree determination unit 453 sets the congestion degree associated with the target intensity range as the congestion degree of the object in the detection section.
  • the dispatching device of the elevator car further includes:
  • the spectrum feature acquiring unit 471 is configured to acquire a preset spectrum feature after receiving the second radio wave signal, and the spectrum feature is used to represent the characteristics of still life in space.
  • the removing unit 472 is used to remove the wireless wave signal matching the spectral characteristics from the second wireless wave signal.
  • the scheduling module 460 includes:
  • the hall call receiving unit 461 is used to receive elevator hall call operations on a floor.
  • the selection unit 462 is configured to select a target car from a plurality of cars according to the degree of congestion, where there is at least one target car in the detection interval, and the echo reflection intensity of the second radio wave signal reflected by the elevator object is less than a preset threshold .
  • the dispatching unit 463 is configured to dispatch the target car to the floor in response to the elevator hall call operation.
  • FIG. 15 is a schematic structural diagram of a computer device provided by an embodiment of this application.
  • the computer device includes a processor 10, a memory 11, a communication module 12, Input device 13 and output device 14; the number of processors 10 in the system can be one or more, in Figure 15 a processor 10 is taken as an example; the processor 10, memory 11, communication module 12, input device 13 in the system
  • the output device 14 can be connected via a bus or other means. In FIG. 15, the connection via a bus is taken as an example.
  • the memory 11, as a computer-readable storage medium, can be used to store software programs, computer-executable programs, and modules, such as the module corresponding to the method for detecting space congestion in this embodiment or the method for dispatching elevator cars.
  • the processor 10 executes various functional applications and data processing of the equipment by running software programs, instructions, and modules stored in the memory 11, that is, realizing the above-mentioned method for detecting space congestion or dispatching elevator cars.
  • the memory 11 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the system.
  • the memory 11 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 11 may include a memory remotely provided with respect to the processor 10, and these remote memories may be connected to the system through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 12 is used to establish a connection with the display screen and realize data interaction with the display screen.
  • the input device 13 can be used to receive inputted digital or character information, and generate key signal input related to user settings and function control of the system.
  • the computer equipment provided in this embodiment can execute the space congestion detection method or the elevator car dispatch method provided in the above embodiments of the present application, and has corresponding functions and beneficial effects.
  • the sixth embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method for detecting the degree of congestion of the space or the dispatching of the elevator car as described above in this application is implemented. method.
  • the computer-readable storage medium provided by the embodiments of the present application is not limited to the computer-executable instructions, and can also execute the space congestion detection method or elevator car provided by any of the foregoing embodiments of the present application. Related operations in the scheduling method of the car.
  • this application can be implemented by software and necessary general-purpose hardware, or can be implemented by hardware.
  • the technical solution of this application can be embodied in the form of a software product.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (ROM), and random access memory ( Random Access Memory, flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute the methods described in the various embodiments of this application .
  • the various units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized Yes; in addition, the names of the functional units are only for the convenience of distinguishing each other, and are not used to limit the scope of protection of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种空间拥挤度的检测方法及电梯轿厢的调度方法。所述空间拥挤度的检测方法包括:向一空间发射第一无线波信号,空间被划分为至少两个检测区间,空间用于承载目标对象;接收第二无线波信号,第二无线波信号为第一无线波信号经目标对象反射后生成的无线波信号;基于第一无线波信号和第二无线波信号,确定目标对象在空间中所处的位置;根据位置确定目标对象在空间中所处的检测区间;基于第二无线波信号的回波反射强度,确定检测区间中目标对象的拥挤度。

Description

空间拥挤度的检测方法及电梯轿厢的调度方法
本申请要求在2019年04月19日提交中国专利局、申请号为201910319683.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及空间检测技术,例如涉及一种空间拥挤度的检测方法及电梯轿厢的调度方法。
背景技术
随着工业社会的发展,人们对于生产生活效率的要求要来越高,人们更希望能及时地掌握空间内(例如广场、地铁、大厅、商场、图书馆、电梯、物料场地等)的人群和货物信息,这样能方便管理者及时疏导人流或货物,进行空间资源配置,提高空间利用率。
空间管理中,通常采用摄像头采集空间内的人群和货物信息,然而该方案的采集数据量和数据处理量庞大,成本较高,且采用摄像头采集空间内的人群信息可能涉及到人员隐私的问题。
发明内容
本申请提供一种空间拥挤度的检测方法、电梯轿厢的调度方法,实现对空间的目标对象进行高效的调度,提高空间利用率。
本申请实施例提供一种空间拥挤度的检测方法,包括:
向一空间发射第一无线波信号,所述空间被划分为至少两个检测区间,所述空间用于承载目标对象;
接收第二无线波信号,所述第二无线波信号为所述第一无线波信号经所述目标对象反射后生成的无线波信号;
基于所述第一无线波信号和所述第二无线波信号,确定所述目标对象在所述空间中所处的位置;
根据所述位置确定所述目标对象在所述空间中所处的检测区间;
基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述目标对象的拥挤度。
可选的,在所述空间中设置有一无线检测器,所述无线检测器用于发射所 述第一无线波信号,以及,接收所述第二无线波信号;
所述基于所述第一无线波信号和所述第二无线波信号,确定所述目标对象在所述空间中所处的位置,包括:
计算所述第一无线波信号和所述第二无线波信号之间的频率差;
基于所述频率差确定所述目标对象距离所述无线检测器的距离,作为所述目标对象在所述空间中所处的位置。
可选的,所述检测区间关联检测范围,所述检测范围以所述无线检测器为基准点;
所述根据所述位置确定所述目标对象在所述空间中所处的检测区间,包括:
确定包含所述距离的检测范围;
将所述检测范围设置为所述目标对象在所述空间中所处的检测区间。
可选的,所述基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述目标对象的拥挤度,还包括:
在至少两个强度范围中确定所述回波反射强度所处的强度范围,作为目标强度范围,每个强度范围关联拥挤度;
将所述目标强度范围关联的拥挤度设置为所述检测区间中所述目标对象的拥挤度。
可选的,在所述接收第二无线波信号之后,还包括:
获取预设的频谱特征,所述频谱特征用于表示所述空间中静物的特征;
从所述第二无线波信号中剔除与所述频谱特征匹配的无线波信号。
本申请实施例还提供了一种电梯轿厢的调度方法,包括:
向轿厢发射第一无线波信号,所述轿厢被划分为至少两个检测区间,所述轿厢用于承载乘梯对象;
在所述轿厢中接收第二无线波信号,所述第二无线波信号为所述第一无线波信号经所述乘梯对象反射后生成的无线波信号;
基于所述第一无线波信号和所述第二无线波信号,确定所述乘梯对象在所述轿厢中所处的位置;
根据所述位置确定所述乘梯对象在所述轿厢中所处的检测区间;
基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述乘梯对象的拥挤度;
根据所述拥挤度调度所述轿厢。
可选的,所述根据所述拥挤度调度所述轿厢,包括:
接收一楼层的电梯外召操作;
若所述轿厢内各检测区间中所述乘梯对象反射的第二无线波信号的回波反射强度均大于预设的阈值,则不响应所述电梯外召操作。
可选的,所述根据所述拥挤度调度所述轿厢,包括:
接收一楼层的电梯外召操作;
根据所述拥挤度从多个所述轿厢中选择目标轿厢,所述目标轿厢中存在至少一个检测区间中所述乘梯对象反射的第二无线波信号的回波反射强度小于预设的阈值;
响应于所述电梯外召操作,将所述目标轿厢调度至所述楼层。
本申请实施例还提供了一种空间拥挤度的检测装置,包括:
发射模块,用于向一空间发射第一无线波信号,所述空间被划分为至少两个检测区间,所述空间用于承载目标对象;
接收模块,用于接收第二无线波信号,所述第二无线波信号为所述第一无线波信号经所述目标对象反射后生成的无线波信号;
位置确定模块,用于基于所述第一无线波信号和所述第二无线波信号,确定所述目标对象在所述空间中所处的位置;
区间确定模块,用于根据所述位置确定所述目标对象在所述空间中所处的检测区间;
拥挤度确定模块,用于基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述目标对象的拥挤度。
本申请实施例还提供了一种电梯轿厢的调度装置,包括:
发射模块,用于向轿厢发射第一无线波信号,所述轿厢被划分为至少两个检测区间,所述轿厢用于承载乘梯对象;
接收模块,用于在所述轿厢中接收第二无线波信号,所述第二无线波信号为所述第一无线波信号经所述乘梯对象反射后生成的无线波信号;
位置确定模块,用于基于所述第一无线波信号和所述第二无线波信号,确定所述乘梯对象在所述轿厢中所处的位置;
区间确定模块,用于根据所述位置确定所述乘梯对象在所述轿厢中所处的 检测区间;
拥挤度确定模块,用于基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述乘梯对象的拥挤度;
调度模块,用于根据所述拥挤度调度所述轿厢。
本申请实施例还提供了一种计算机设备,包括:
一个或多个处理器;
无线检测器,用于发射无线波信号,接收无线波信号;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例所述的空间拥挤度的检测方法,或者,如本申请实施例所述的电梯轿厢的调度方法。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现如本申请实施例所述的空间拥挤度的检测方法,或者,如本申请实施例所述的电梯轿厢的调度方法。
本申请实施例提供的空间拥挤度的检测方法,通过无线波信号确定目标对象在空间中所处的位置,根据位置确定目标对象在空间中所处的检测区间,并基于该检测区间内目标对象反射的第二无线波信号的回波反射强度,确定检测区间中目标对象的拥挤度,进而能够根据检测区间中目标对象的拥挤度及时发布提示信息,及时对空间的目标对象进行相应的调度,进行空间资源配置,提高空间利用率。
附图说明
图1为本申请实施例一提供的一种空间拥挤度的检测方法的流程图;
图2为本申请实施例中调频连续波雷达发射的第一无线波信号的波形图;
图3为图2中的第一无线波信号的频率随时间的变化图;
图4为第一无线波信号和第二无线波信号的频率随时间的变化图;
图5为对正弦波进行傅里叶变换后的频域特性;
图6为对混频信号进行傅里叶变换后的频域特性;
图7为本申请实施例的强度阈值设置和接收到的回波强度的图谱;
图8为目标对象在空间内的一种分布图;
图9为目标对象在空间内的另一种分布图;
图10为目标对象在空间内的又一种分布图;
图11为目标对象在空间内的又一种分布图;
图12为本申请实施例二提供的一种空间拥挤度的检测方法的流程图;
图13为本申请实施例三提供的一种空间拥挤度的检测装置的结构示意图;
图14为本申请实施例提供的电梯轿厢的调度装置的结构示意图;
图15为本申请实施例提供的一种计算机设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
实施例一
本申请实施例一提供了一种空间拥挤度的检测方法,图1为本申请实施例一提供的一种空间拥挤度的检测方法的流程图,如图1所示,该方法包括如下步骤:
S110、向一空间发射第一无线波信号,空间被划分为至少两个检测区间,空间用于承载目标对象。
其中,空间可以是基本没有人工构筑物覆盖的开放空间,例如,广场、运动场、物料场地或水域等,也可以是非开放空间,例如室内空间、候车大厅、地铁站或电梯轿厢等,本申请在此不做限定。空间用于承载目标对象,目标对象可以是人、动物、货物。无线波信号可以由无线检测器发出,无线检测器可以是雷达。一实施例中,可以是毫米波雷达,毫米波雷达检测具有高分辨率、高敏感度和检测距离远等优势。无线波信号也可以是其他的形式,例如超声波信号、激光信号等,本申请在此不做限定。该空间被划分为至少两个检测区间,示例性的,以无线检测器为球心,沿信号传播方向,将该空间划分为多个等距的检测区域。
S120、接收第二无线波信号,第二无线波信号为第一无线波信号经目标对象反射后生成的无线波信号。
第一无线波信号经目标对象反射后,生成第二无线波信号,并被无线检测器接收。
在具体实施例中,在开放空间内,可能存在长期放置的物体,例如广场中 的雕塑等,非开放空间存在墙壁、座椅或摆设,这些空间静物或墙壁对第一无线波信号也会产生反射,为了避免这些空间静物或墙壁的反射波对回波反射强度的影响,可预先针对该空间发射第一无线波信号,记录回波频谱特征,频谱特征用于表示空间中静物的特征。
在接收到第二无线波信号之后,可获取预设的频谱特征,从第二无线波信号中剔除与频谱特征匹配的无线波信号。
在空间处于空闲状态时,获取反射波的频谱特征,该频谱特征用于表示空间中静物的特征,从第二无线波信号中剔除与频谱特征匹配的无线波信号,进而消除空间静物或墙壁的反射波对回波反射强度的影响。
S130、基于第一无线波信号和第二无线波信号,确定目标对象在空间中所处的位置。
可选的,可以根据第一无线波信号和第二无线波信号的频率差或相位差,确定目标对象在空间中所处的位置。
可选的,在空间中设置有一无线检测器,无线检测器用于发射第一无线波信号,以及,接收第二无线波信号。一实施例中,无线检测器为调频连续波(Frequency Modulated Continuous Wave,FMCW)雷达。
在一种可选的实施方式中,S130可以包括如下步骤:
S131、计算第一无线波信号和第二无线波信号之间的频率差。
S132、基于频率差确定目标对象距离无线检测器的距离,作为目标对象在空间中所处的位置。
图2为本申请实施例中调频连续波雷达发射的第一无线波信号的波形图,图3为图2中的第一无线波信号的频率随时间的变化图,如图2和图3所示,调频连续波雷达发射的雷达波,即第一无线波信号的频率随着时间线性增加,增加的速度(斜率)为K,频率增加的周期(扫频周期)为T c。图4为第一无线波信号和第二无线波信号的频率随时间的变化图,如图4所示,当第一无线波信号TX chirp遇到目标对象被反射回来后,无线检测器接收到的第二无线波信号RX chirp的频率也会同样随着时间线性增加。由于第二无线波信号需要一定距离才能回到接收天线,因此接收的第二无线波信号相比发射的第一无线波信号有一定的延时,接收的电磁波的频率变化与发射的电磁波的频率变化之间同样存在延时τ,接收的第二无线波信号与发射的第一无线波信号之间存在频率差:
Sτ=K*τ    (1)
其中,τ=2d/c,d为目标对象距离无线检测器的距离,为未知量,c为光速。那么上述式(1)可以变换为:
Sτ=K*2d/c    (2)
假设第一无线波为:
Figure PCTCN2020085256-appb-000001
第二无线波为:
Figure PCTCN2020085256-appb-000002
设计一个混频器,第一无线波信号和第二无线波信号输入混频器,经混频器混频处理,输出混频信号x out
Figure PCTCN2020085256-appb-000003
对于任意时域信号,经过傅里叶变换后,可以获得其频域特性。图5为对正弦波进行傅里叶变换后的频域特性,如图5所示,对于正弦波,其傅里叶变换后,频域特性为在其频率点具有很高的幅值,其它频率则快速下降。
图6为对混频信号进行傅里叶变换后的频域特性,如图6所示,由于第一无线波信号和第一无线波信号的频率存在差值,因此傅里叶波形会具有两个峰值,因此,可以根据混频信号傅里叶变换后的频域特性,提取出第一无线波信号和第一无线波信号的频率差Sτ,因此在上述式(2)中,Sτ、K和c均为已知量,进而可以求出目标对象距离无线检测器的距离d,将目标对象距离无线检测器的距离d,结合信号发射角度和反射角度,确定目标对象在空间中所处的位置。
S140、根据位置确定目标对象在空间中所处的检测区间。
根据目标对象距离无线检测器的距离,确定目标对象在空间中所处的位置之后,根据该位置在空间中所处的检测区间,确定目标对象在空间中所处的检测区间。
可选的,在一实施例中,检测区间关联检测范围,检测范围以无线检测器为基准点。
S140可以包括如下步骤:
S141、确定包含距离的检测范围。
S142、将检测范围设置为目标对象在空间中所处的检测区间。
S150、基于第二无线波信号的回波反射强度,确定检测区间中目标对象的拥挤度。
检测区间中目标对象越多,无线检测器接收的第二无线波信号的回波反射 强度越大,因此,可以根据回波反射强度,确定检测区间中目标对象的拥挤度。
可选的,基于第二无线波信号的回波反射强度,确定检测区间中目标对象的拥挤度,包括:
若回波反射强度大于预设的阈值,则确定检测区间中目标对象的拥挤度为饱和状态。一实施例中,可以根据实际需求和预先试验设定阈值,若某一检测区间内目标对象对应的回波反射强度大于预设的阈值,则确定该检测区间中目标对象的拥挤度为饱和状态。根据各检测区间的目标对象的拥挤度,进行相应的业务操作,示例性的,在确定广场、候车大厅等空间的某一检测区间已处于人员饱和状态时,及时发布提示信息,将人流引至其他非饱和检测区间,提高广场的空间利用率,同时避免出现踩踏事件。示例性的,在确定物料场地等空间的某一检测区间已处于物料饱和状态时,及时发布提示信息,将运送物料的物料车引至其他非饱和检测区间,提高工作效率和物料场地的空间利用率。
可选的,基于第二无线波信号的回波反射强度,确定检测区间中目标对象的拥挤度,还包括:
在至少两个强度范围中确定回波反射强度所处的强度范围,作为目标强度范围,每个强度范围关联拥挤度;将目标强度范围关联的拥挤度设置为检测区间中目标对象的拥挤度。
示例性的,可以根据实际需求,设置多个回波反射强度阈值,多个强度阈值形成多个强度范围,每个强度范围关联拥挤度。根据回波反射强度,确定回波反射强度所处的强度范围,并将该强度范围作为目标强度范围,根据目标强度范围关联的拥挤度,确定检测区间中目标对象的拥挤度。图7为本申请实施例的强度阈值设置和接收到的回波强度的图谱,图8为目标对象在空间内的一种分布图,图9为目标对象在空间内的另一种分布图,图10为目标对象在空间内的又一种分布图,图11为目标对象在空间内的又一种分布图,如图7-11所示,空间为以无线检测器为球心的扇形区域,扇形区域被划分为四个以无线检测器为圆心的同心环的检测区间,距离无线检测器由近到远分别为监测区间W、X、Y和Z,相邻检测区间的间距为0.5米。设置三个强度阈值,由小到大分别为A、B和C,从而形成四个强度范围,分别对应的拥挤度为空闲、较低、中等和饱和。图8中目标对象的分布对应图7中的曲线a,各检测区间的回波反射强度都在强度阈值A和B之间,各检测区间内目标对象的拥挤度大致相同,各检测区间的拥挤度较低;图9中目标对象的分布对应图7中的曲线b,各检测区间的回波反射强度都处于强度阈值B和C之间,各检测区间内目标对象的拥挤度大致相同,各检测区间的拥挤度为中等拥挤度;图10中目标对象的分布对应图7中的曲线c,各检测区间的回波反射强度都大于强度阈值C,各检测区间内目标对象的拥 挤度大致相同,各检测区间的拥挤度都处于饱和状态;图11中目标对象的分布对应图7中的曲线d,检测区间W和Y的回波反射强度都大于强度阈值C,即检测区间W和Y内目标对象的拥挤度大致相同处于饱和状态,检测区间X和Z的回波反射强度都小于强度阈值A,即检测区间X和Z内没有目标对象,处于空闲状态。
在开放空间内,可能存在长期放置的物体,例如广场中的雕塑等,非开放空间存在墙壁、座椅或摆设,这些空间静物或墙壁对第一无线波信号也会产生反射,为了避免这些空间静物或墙壁的反射波对回波反射强度的影响,可选的,在接收第二无线波信号之后,还包括:
获取预设的频谱特征,频谱特征用于表示空间中静物的特征;从第二无线波信号中剔除与频谱特征匹配的无线波信号。
在空间处于空闲状态时,获取反射波的频谱特征,该频谱特征用于表示空间中静物的特征,从第二无线波信号中剔除与频谱特征匹配的无线波信号,进而消除空间静物或墙壁的反射波对回波反射强度的影响。
本申请实施例提供的空间拥挤度的检测方法,通过无线波信号确定目标对象在空间中所处的位置,根据位置确定目标对象在空间中所处的检测区间,并基于该检测区间内目标对象反射的第二无线波信号的回波反射强度,确定检测区间中目标对象的拥挤度,进而能够根据检测区间中目标对象的拥挤度及时发布提示信息,及时对空间的目标对象进行相应的调度,进行空间资源配置,提高空间利用率。
实施例二
电梯是现代生活中经常使用的电器,但是电梯的控制方法存在很多不尽如人意的地方。比如写字楼使用电梯时,只有在电梯的实际载重达到额定载重时,才在每层楼的显示屏上显示满载,并不在任何楼层停靠,除非有人要下电梯。但是在实际使用过程中,常常出现电梯的实际载重还没有达到额定载重但是非常接近额定载重的情况,此时电梯仍旧会在每个存在外召的楼层停靠,但是由于电梯轿厢内实际拥挤度已经很高,门开后大部分候梯人员会选择不上电梯,即电梯会在各层进行停靠开门,但是又没人上电梯,因此不仅会大幅影响电梯的使用效率,而且延长了电梯内人员的乘梯时间,从而影响用户的乘梯感受。
本申请实施例二提供了一种电梯轿厢的调度方法,图12为本申请实施例二提供的一种空间拥挤度的检测方法的流程图,如图12所示,该方法包括如下步骤:
S210、向轿厢发射第一无线波信号,轿厢被划分为至少两个检测区间,轿 厢用于承载乘梯对象。
其中,乘梯对象可以是进入电梯轿厢内的任意对象,包括人、动物或物品。无线波信号可以由无线检测器发出,无线检测器可以是雷达。一实施例中,可以是毫米波雷达,毫米波雷达检测具有高分辨率、高敏感度和检测距离远等优势。该空间被划分为至少两个检测区间,示例性的,无线检测器安装在电梯轿厢内一角,以无线检测器为球心,沿信号传播方向,将该空间划分为多个等距的检测区域,如图8-11所示。
S220、在轿厢中接收第二无线波信号,第二无线波信号为第一无线波信号经乘梯对象反射后生成的无线波信号,第二无线波信号具有回波反射强度。
第一无线波信号经乘梯对象反射后,生成第二无线波信号,并被无线检测器接收,第二无线波信号具有回波反射强度。
在电梯轿厢内,可能存在长期放置的物体,例如内设设备。一实施例中,如灯饰等,轿厢的箱壁,这些空间静物或箱壁对第一无线波信号也会产生反射,为了避免这些空间静物或箱壁的反射波对回波反射强度的影响,可选的,在接收第二无线波信号之后,还包括:
获取预设的频谱特征,频谱特征用于表示空间中静物的特征;从第二无线波信号中剔除与频谱特征匹配的无线波信号。
在轿厢处于空闲状态时,获取反射波的频谱特征,该频谱特征用于表示轿厢中静物的特征(即轿厢处于空闲状态时反射波的频谱特征),从第二无线波信号中剔除与频谱特征匹配的无线波信号,进而消除轿厢静物或箱壁的反射波对回波反射强度的影响。
S230、基于第一无线波信号和第二无线波信号,确定乘梯对象在轿厢中所处的位置。
可选的,可以根据第一无线波信号和第二无线波信号的频率差或相位差,确定乘梯对象在轿厢中所处的位置。
可选的,在轿厢中设置有一无线检测器,无线检测器用于发射第一无线波信号,以及,接收第二无线波信号。一实施例中,无线检测器为调频连续波雷达。
可选的,在一实施例中,上述S230可以包括如下步骤:
S231、计算第一无线波信号和第二无线波信号之间的频率差。
S232、基于频率差确定乘梯对象距离无线检测器的距离,作为乘梯对象在轿厢中所处的位置。
调频连续波雷达测距的原理在上述实施例一中已有描述,在此不再赘述。
S240、根据位置确定乘梯对象在轿厢中所处的检测区间。
根据乘梯对象距离无线检测器的距离,确定乘梯对象在轿厢中所处的位置之后,根据该位置在轿厢中所处的检测区间,确定乘梯对象在轿厢中所处的检测区间。
可选的,检测区间关联检测范围,检测范围以无线检测器为基准点。
可选的,在其中一实施例中,S240可以包括如下步骤:
S241、确定包含距离的检测范围。
S242、将检测范围设置为乘梯对象在轿厢中所处的检测区间。
S250、基于第二无线波信号的回波反射强度,确定检测区间中乘梯对象的拥挤度。
检测区间中乘梯对象越多,无线检测器接收的第二无线波信号的回波反射强度越大,因此,可以根据回波反射强度,确定检测区间中乘梯对象的拥挤度。
可选的,基于第二无线波信号的回波反射强度,确定检测区间中乘梯对象的拥挤度,包括:
若回波反射强度大于预设的阈值,则确定检测区间中乘梯对象的拥挤度为饱和状态。一实施例中,可以根据实际需求和预先试验设定阈值,若某一检测区间内乘梯对象对应的回波反射强度大于预设的阈值,则确定该检测区间中乘梯对象的拥挤度为饱和状态。
可选的,基于第二无线波信号的回波反射强度,确定检测区间中乘梯对象的拥挤度,还包括:
在至少两个强度范围中确定回波反射强度所处的强度范围,作为目标强度范围,每个强度范围关联拥挤度;将目标强度范围关联的拥挤度设置为检测区间中乘梯对象的拥挤度。
一实施例中,检测区间中乘梯对象的拥挤度的确定可以参考实施例一中检测区间中目标对象的拥挤度的确定和图7-11,在此不再赘述。
S260、根据拥挤度调度轿厢。
示例性的,若该轿厢内各检测区间的拥挤度都为饱和状态,当某一楼层有外部召梯人员请求外召时,电梯控制系统控制该电梯轿厢不响应外部召梯人员的外召请求,避免电梯开门后,呼梯人员看见轿厢处于饱和状态而选择不上电梯的情况,提高电梯的使用效率,缩短了电梯内人员的乘梯时间,从而提高了 用户的乘梯体验。
本申请实施例提供的电梯轿厢的调度方法,通过无线波信号确定轿厢内乘梯对象在轿厢中所处的位置,根据位置确定乘梯对象在轿厢中所处的检测区间,并基于该检测区间内乘梯对象反射的第二无线波信号的回波反射强度,确定检测区间中乘梯对象的拥挤度,进而能够根据检测区间中乘梯对象的拥挤度及时发布控制指令或提示信息,对电梯轿厢进行相应的调度,提高电梯的利用率,缩短乘梯人员的乘梯时间,提高乘梯人员的乘梯体验。
示例性的,在本申请另一实施例中,各楼层的电梯层门附近的墙壁上,设置有外设设备,外设设备可以包括提示设备和召梯取消按钮,提示设备实时显示轿厢内的拥挤度情况,例如当前轿厢处于空闲、较低拥挤度、中等拥挤度或饱和状态,外部召梯人员可以根据轿厢内的拥挤度选择是否召梯。
示例性的,例如在提示设备显示轿厢处于饱和状态,且轿厢内乘梯人员均需要下到一层时,位于中间楼层需要下楼的外部召梯人员可以选择不请求外召,或者通过召梯取消按钮将已存在的外召请求取消掉。这样,电梯轿厢将不在外部召梯人员所在的楼层停留开门,直接将轿厢内乘梯人员送至一层,缩短了轿厢内乘梯人员乘梯时间,提高了乘梯体验,同时,由于中间楼层无需停留,也减少了侯梯人员的侯梯时间,提高了电梯的使用效率。
在实际的电梯运行系统中,存在一个电梯控制系统控制多个电梯的情况,可选的,根据拥挤度调度轿厢,包括:
接收一楼层的电梯外召操作;根据拥挤度从多个轿厢中选择目标轿厢,目标轿厢中存在至少一个检测区间中乘梯对象反射的第二无线波信号的回波反射强度小于预设的阈值;响应电梯外召操作,将目标轿厢调度至该楼层。
电梯控制系统获取各电梯轿厢内的拥挤度情况,在接收某一楼层的外部召梯人员的外召请求时,根据拥挤度从多个轿厢中选择目标轿厢,目标轿厢中存在至少一个检测区间中乘梯对象反射的第二无线波信号的回波反射强度小于预设的阈值,即至少存在一个检测区间处于非饱和状态。电梯控制系统响应外部召梯人员的外召请求,将目标轿厢调度至该楼层。
实施例三
本申请实施例三提供了一种空间拥挤度的检测装置,图13为本申请实施例三提供的一种空间拥挤度的检测装置的结构示意图,如图13所示,该检测装置包括:
发射模块310,用于向一空间发射第一无线波信号,空间被划分为至少两个检测区间,空间用于承载目标对象。
接收模块320,用于接收第二无线波信号,第二无线波信号为第一无线波信号经目标对象反射后生成的无线波信号,第二无线波信号具有回波反射强度。
位置确定模块330,用于基于第一无线波信号和第二无线波信号,确定目标对象在空间中所处的位置。
区间确定模块340,用于根据位置确定目标对象在空间中所处的检测区间。
拥挤度确定模块350,用于基于第二无线波信号的回波反射强度,确定检测区间中目标对象的拥挤度。
本申请实施例提供的空间拥挤度的检测装置,通过无线波信号确定目标对象在空间中所处的位置,根据位置确定目标对象在空间中所处的检测区间,并基于该检测区间内目标对象反射的第二无线波信号的回波反射强度,确定检测区间中目标对象的拥挤度,进而能够根据检测区间中目标对象的拥挤度及时发布提示信息,及时对空间的目标对象进行相应的调度,进行空间资源配置,提高空间利用率。
可选的,在空间中设置有一无线检测器,无线检测器用于发射第一无线波信号,以及,接收第二无线波信号。位置确定模块330包括:
频率差计算单元331,用于计算第一无线波信号和第二无线波信号之间的频率差。
距离确定单元332,用于基于频率差确定目标对象距离无线检测器的距离,作为目标对象在空间中所处的位置。
可选的,检测区间关联检测范围,检测范围以无线检测器为基准点。区间确定模块340包括:
范围确定单元341,用于确定包含距离的检测范围。
区间确定单元342,用于将检测范围设置为目标对象在空间中所处的检测区间。
可选的,拥挤度确定模块350包括:
判断单元351,用于在回波反射强度大于预设的阈值,确定检测区间中目标对象的拥挤度为饱和状态。
可选的,拥挤度确定模块350还包括:
强度范围确定单元352,在至少两个强度范围中确定回波反射强度所处的强度范围,作为目标强度范围,每个强度范围关联拥挤度。
拥挤度确定单元353,用于将目标强度范围关联的拥挤度设置为检测区间中 目标对象的拥挤度。
可选的,该检测装置还包括:
频谱特征获取单元361,用于在接收第二无线波信号之后,获取预设的频谱特征,频谱特征用于表示空间中静物的特征。
剔除单元362,用于从第二无线波信号中剔除与频谱特征匹配的无线波信号。
实施例四
本申请实施例四提供一种电梯轿厢的调度装置,图14为本申请实施例提供的电梯轿厢的调度装置的结构示意图,如图14所示,该电梯轿厢的调度装置包括:
发射模块410,用于向轿厢发射第一无线波信号,所述轿厢被划分为至少两个检测区间,所述轿厢用于承载乘梯对象。
接收模块420,用于在所述轿厢中接收第二无线波信号,所述第二无线波信号为所述第一无线波信号经所述乘梯对象反射后生成的无线波信号,所述第二无线波信号具有回波反射强度。
位置确定模块430,用于基于所述第一无线波信号和所述第二无线波信号,确定所述乘梯对象在所述轿厢中所处的位置。
区间确定模块440,用于根据所述位置确定所述乘梯对象在所述轿厢中所处的检测区间。
拥挤度确定模块450,用于基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述乘梯对象的拥挤度。
调度模块460,用于根据所述拥挤度调度所述轿厢。
本申请实施例提供的电梯轿厢的调度装置,通过无线波信号确定轿厢内乘梯对象在轿厢中所处的位置,根据位置确定乘梯对象在轿厢中所处的检测区间,并基于该检测区间内乘梯对象反射的第二无线波信号的回波反射强度,确定检测区间中乘梯对象的拥挤度,进而能够根据检测区间中乘梯对象的拥挤度及时发布控制指令或提示信息,对电梯轿厢进行相应的调度,提高电梯的利用率,缩短乘梯人员的乘梯时间,提高乘梯人员的乘梯体验。
可选的,在轿厢内设置有一无线检测器,无线检测器用于发射第一无线波信号,以及,接收第二无线波信号。位置确定模块430包括:
频率差计算单元431,用于计算第一无线波信号和第二无线波信号之间的频率差。
距离确定单元432,用于基于频率差确定乘梯对象距离无线检测器的距离,作为目标对象在轿厢中所处的位置。
可选的,检测区间关联检测范围,检测范围以无线检测器为基准点。区间确定模块440包括:
范围确定单元441,用于确定包含距离的检测范围。
区间确定单元442,用于将检测范围设置为乘梯对象在轿厢中所处的检测区间。
可选的,拥挤度确定模块450包括:
判断单元451,用于在回波反射强度大于预设的阈值,确定检测区间中乘梯对象的拥挤度为饱和状态。
可选的,拥挤度确定模块450还包括:
强度范围确定单元452,用于在至少两个强度范围中确定回波反射强度所处的强度范围,作为目标强度范围,每个强度范围关联拥挤度。
拥挤度确定单元453,将目标强度范围关联的拥挤度设置为检测区间中乘梯对象的拥挤度。
可选的,该电梯轿厢的调度装置还包括:
频谱特征获取单元471,用于在接收第二无线波信号之后,获取预设的频谱特征,频谱特征用于表示空间中静物的特征。
剔除单元472,用于从第二无线波信号中剔除与频谱特征匹配的无线波信号。
可选的,调度模块460包括:
外召接收单元461,用于接收一楼层的电梯外召操作。
选择单元462,用于根据拥挤度从多个轿厢中选择目标轿厢,目标轿厢中存在至少一个检测区间中乘梯对象反射的第二无线波信号的回波反射强度小于预设的阈值。
调度单元463,用于响应于电梯外召操作,将目标轿厢调度至楼层。
实施例五
本申请实施例五提供了一种计算机设备,图15为本申请实施例提供的一种计算机设备的结构示意图,如图15所示,该计算机设备包括处理器10、存储器11、通信模块12、输入装置13和输出装置14;系统中处理器10的数量可以是一个或多个,图15中以一个处理器10为例;系统中的处理器10、存储器11、 通信模块12、输入装置13和输出装置14可以通过总线或其他方式连接,图15中以通过总线连接为例。
存储器11作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本实施例中的一种空间拥挤度的检测方法对应的模块或电梯轿厢的调度方法对应的模块。处理器10通过运行存储在存储器11中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的一种空间拥挤度的检测方法或电梯轿厢的调度方法。
存储器11可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据系统的使用所创建的数据等。此外,存储器11可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器11可包括相对于处理器10远程设置的存储器,这些远程存储器可以通过网络连接至系统。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块12,用于与显示屏建立连接,并实现与显示屏的数据交互。输入装置13可用于接收输入的数字或字符信息,以及产生与系统的用户设置以及功能控制有关的键信号输入。
本实施例提供的计算机设备,可执行本申请上述实施例提供的空间拥挤度的检测方法或电梯轿厢的调度方法,具有相应的功能和有益效果。
实施例六
本申请实施例六提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请上述任意所述的空间拥挤度的检测方法或电梯轿厢的调度方法。
本申请实施例所提供的一种计算机可读存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请上述任意实施例所提供的空间拥挤度的检测方法或电梯轿厢的调度方法中的相关操作。
通过以上关于实施方式的描述,可以了解到,本申请可借助软件及必需的通用硬件来实现,也可以通过硬件实现。本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上述空间拥挤度的检测装置或电梯轿厢的调度装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (12)

  1. 一种空间拥挤度的检测方法,包括:
    向一空间发射第一无线波信号,所述空间被划分为至少两个检测区间,所述空间用于承载目标对象;
    接收第二无线波信号,所述第二无线波信号为所述第一无线波信号经所述目标对象反射后生成的无线波信号;
    基于所述第一无线波信号和所述第二无线波信号,确定所述目标对象在所述空间中所处的位置;
    根据所述位置确定所述目标对象在所述空间中所处的检测区间;
    基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述目标对象的拥挤度。
  2. 根据权利要求1所述的空间拥挤度的检测方法,其中,在所述空间中设置有一无线检测器,所述无线检测器设置为发射所述第一无线波信号,以及,接收所述第二无线波信号;
    所述基于所述第一无线波信号和所述第二无线波信号,确定所述目标对象在所述空间中所处的位置,包括:
    计算所述第一无线波信号和所述第二无线波信号之间的频率差;
    基于所述频率差确定所述目标对象距离所述无线检测器的距离,作为所述目标对象在所述空间中所处的位置。
  3. 根据权利要求2所述的空间拥挤度的检测方法,其中,所述检测区间关联检测范围,所述检测范围以所述无线检测器为基准点;
    所述根据所述位置确定所述目标对象在所述空间中所处的检测区间,包括:
    确定包含所述距离的检测范围;
    将所述检测范围设置为所述目标对象在所述空间中所处的检测区间。
  4. 根据权利要求1-3任一项所述的空间拥挤度的检测方法,其中,所述基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述目标对象的拥挤度,包括:
    在至少两个强度范围中确定所述回波反射强度所处的强度范围,作为目标强度范围,每个强度范围关联拥挤度;
    将所述目标强度范围关联的拥挤度设置为所述检测区间中所述目标对象的拥挤度。
  5. 根据权利要求1-3任一项所述的空间拥挤度的检测方法,在所述接收第二无线波信号之后,还包括:
    获取预设的频谱特征,所述频谱特征用于表示所述空间中静物的特征;
    从所述第二无线波信号中剔除与所述频谱特征匹配的无线波信号。
  6. 一种电梯轿厢的调度方法,包括:
    向轿厢发射第一无线波信号,所述轿厢被划分为至少两个检测区间,所述轿厢用于承载乘梯对象;
    在所述轿厢中接收第二无线波信号,所述第二无线波信号为所述第一无线波信号经所述乘梯对象反射后生成的无线波信号;
    基于所述第一无线波信号和所述第二无线波信号,确定所述乘梯对象在所述轿厢中所处的位置;
    根据所述位置确定所述乘梯对象在所述轿厢中所处的检测区间;
    基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述乘梯对象的拥挤度;
    根据所述拥挤度调度所述轿厢。
  7. 根据权利要求6所述的电梯轿厢的调度方法,其中,所述根据所述拥挤度调度所述轿厢,包括:
    接收一楼层的电梯外召操作;
    在所述轿厢内多个检测区间中所述乘梯对象反射的第二无线波信号的回波反射强度均大于预设的阈值的情况下,不响应所述电梯外召操作。
  8. 根据权利要求6所述的电梯轿厢的调度方法,其中,所述根据所述拥挤度调度所述轿厢,包括:
    接收一楼层的电梯外召操作;
    根据所述拥挤度从多个所述轿厢中选择目标轿厢,所述目标轿厢中存在至少一个检测区间中所述乘梯对象反射的第二无线波信号的回波反射强度小于预设的阈值;
    响应于所述电梯外召操作,将所述目标轿厢调度至所述楼层。
  9. 一种空间拥挤度的检测装置,包括:
    发射模块,设置为向一空间发射第一无线波信号,所述空间被划分为至少两个检测区间,所述空间用于承载目标对象;
    接收模块,设置为接收第二无线波信号,所述第二无线波信号为所述第一无线波信号经所述目标对象反射后生成的无线波信号;
    位置确定模块,设置为基于所述第一无线波信号和所述第二无线波信号,确定所述目标对象在所述空间中所处的位置;
    区间确定模块,设置为根据所述位置确定所述目标对象在所述空间中所处的检测区间;
    拥挤度确定模块,设置为基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述目标对象的拥挤度。
  10. 一种电梯轿厢的调度装置,包括:
    发射模块,设置为向轿厢发射第一无线波信号,所述轿厢被划分为至少两个检测区间,所述轿厢用于承载乘梯对象;
    接收模块,设置为在所述轿厢中接收第二无线波信号,所述第二无线波信号为所述第一无线波信号经所述乘梯对象反射后生成的无线波信号;
    位置确定模块,设置为基于所述第一无线波信号和所述第二无线波信号,确定所述乘梯对象在所述轿厢中所处的位置;
    区间确定模块,设置为根据所述位置确定所述乘梯对象在所述轿厢中所处的检测区间;
    拥挤度确定模块,设置为基于所述第二无线波信号的回波反射强度,确定所述检测区间中所述乘梯对象的拥挤度;
    调度模块,设置为根据所述拥挤度调度所述轿厢。
  11. 一种计算机设备,包括:
    至少一个处理器;
    无线检测器,设置为发射无线波信号,接收无线波信号;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-5任一所述的空间拥挤度的检测方法,或者,如权利要求6-8任一所述的电梯轿厢的调度方法。
  12. 一种计算机可读存储介质,存储有计算机程序,其中,所述程序被处理器执行时,实现如权利要求1-5任一所述的空间拥挤度的检测方法,或者,如权利要求6-8任一所述的电梯轿厢的调度方法。
PCT/CN2020/085256 2019-04-19 2020-04-17 空间拥挤度的检测方法及电梯轿厢的调度方法 WO2020211832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910319683.X 2019-04-19
CN201910319683.XA CN110040589B (zh) 2019-04-19 2019-04-19 一种空间拥挤度的检测方法及电梯轿厢的调度方法

Publications (1)

Publication Number Publication Date
WO2020211832A1 true WO2020211832A1 (zh) 2020-10-22

Family

ID=67278041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085256 WO2020211832A1 (zh) 2019-04-19 2020-04-17 空间拥挤度的检测方法及电梯轿厢的调度方法

Country Status (2)

Country Link
CN (1) CN110040589B (zh)
WO (1) WO2020211832A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401745A (zh) * 2021-07-21 2021-09-17 裴航 一种基于电梯拥挤度的电梯控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3666705B1 (en) * 2018-12-14 2022-08-24 Otis Elevator Company Conveyance system with loading factor detection
CN110040589B (zh) * 2019-04-19 2022-05-24 日立楼宇技术(广州)有限公司 一种空间拥挤度的检测方法及电梯轿厢的调度方法
CN110826511B (zh) * 2019-11-12 2020-11-27 云和县新马玩具有限公司 儿童房屋拥挤检测系统及方法
CN111453576B (zh) * 2020-04-21 2022-01-04 通力股份公司 监控系统和电梯
CN113086794B (zh) * 2021-03-31 2022-10-28 广东卓梅尼技术股份有限公司 一种电梯轿厢内人员检测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927009A (zh) * 2014-04-16 2014-07-16 北京智谷睿拓技术服务有限公司 交互方法和系统
CN105572669A (zh) * 2014-10-31 2016-05-11 株式会社万都 用于检测目标物件的方法及雷达装置
CN105827280A (zh) * 2016-04-19 2016-08-03 唐山新质点科技有限公司 一种测距方法及装置
CN106164698A (zh) * 2014-03-31 2016-11-23 三美电机株式会社 雷达模块、输送设备以及物体识别方法
US20180113212A1 (en) * 2016-10-20 2018-04-26 Samsung Electronics Co., Ltd. Electronic apparatus and method of detecting information about target object by using ultrasound waves
CN110040589A (zh) * 2019-04-19 2019-07-23 日立楼宇技术(广州)有限公司 一种空间拥挤度的检测方法及电梯轿厢的调度方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651588B2 (zh) * 1974-09-20 1981-12-07
JPH1171080A (ja) * 1997-08-29 1999-03-16 Toshiba Corp エレベータの制御装置
JP2001206649A (ja) * 2000-01-24 2001-07-31 Shimizu Corp 携帯発信機信号を利用したエレベータ運行管理システム
KR100949632B1 (ko) * 2004-05-28 2010-03-26 미쓰비시덴키 가부시키가이샤 엘리베이터의 로프 미끄러짐 검출 장치, 및 엘리베이터장치
JP2006151533A (ja) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd 超音波センサを備えたエレベータ装置
JP2008540302A (ja) * 2005-05-13 2008-11-20 ティッセン エレベーター キャピタル コーポレーション 超広帯域デバイスを備えるエレベータシステム
EP2185455A1 (de) * 2007-08-17 2010-05-19 Inventio AG Aufzugsystem mit tragmittelzustanderfassungseinrichtung und verfahren zum erfassen eines zustandes eines tragmittels
CN101482986B (zh) * 2009-01-19 2012-05-09 张高军 人流量的检测方法
WO2014171296A1 (ja) * 2013-04-18 2014-10-23 株式会社日立製作所 エレベータシステム
CN106276435A (zh) * 2016-08-25 2017-01-04 桂林九马新动力科技有限公司 一种基于拥挤度的电梯控制方法、系统和电梯
CN107255819A (zh) * 2017-05-05 2017-10-17 浙江大学 一种基于超声波阵列的车厢剩余空间检测装置及检测方法
CN208538170U (zh) * 2018-06-04 2019-02-22 黎明职业大学 一种地铁人流密度探测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164698A (zh) * 2014-03-31 2016-11-23 三美电机株式会社 雷达模块、输送设备以及物体识别方法
CN103927009A (zh) * 2014-04-16 2014-07-16 北京智谷睿拓技术服务有限公司 交互方法和系统
CN105572669A (zh) * 2014-10-31 2016-05-11 株式会社万都 用于检测目标物件的方法及雷达装置
CN105827280A (zh) * 2016-04-19 2016-08-03 唐山新质点科技有限公司 一种测距方法及装置
US20180113212A1 (en) * 2016-10-20 2018-04-26 Samsung Electronics Co., Ltd. Electronic apparatus and method of detecting information about target object by using ultrasound waves
CN110040589A (zh) * 2019-04-19 2019-07-23 日立楼宇技术(广州)有限公司 一种空间拥挤度的检测方法及电梯轿厢的调度方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401745A (zh) * 2021-07-21 2021-09-17 裴航 一种基于电梯拥挤度的电梯控制方法
CN113401745B (zh) * 2021-07-21 2022-09-20 裴航 一种基于电梯拥挤度的电梯控制方法

Also Published As

Publication number Publication date
CN110040589A (zh) 2019-07-23
CN110040589B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2020211832A1 (zh) 空间拥挤度的检测方法及电梯轿厢的调度方法
US11999589B2 (en) Mobile device state management and location determination
JP6825159B2 (ja) 無線ノードネットワーク内の事象候補を識別する向上したモニタリングのシステム、マスターノード装置及び方法
CN106429657B (zh) 灵活的目的地调度乘客支持系统
US11226624B2 (en) System and method for enabling a 360-degree threat detection sensor system to monitor an area of interest surrounding a vehicle
CN111874764A (zh) 一种机器人的调度方法、服务器和存储介质
US9145153B2 (en) Method, system and computer program products for real-time departure estimations for transportation systems
CN103991760B (zh) 电梯楼层id号的分配方法与电梯厅外召唤系统
CN101316780A (zh) 包括超宽带装置的电梯系统
KR20190106741A (ko) 엘리베이터 서비스 요청을 위한 인가 관리 및 인가 요청
US6535159B1 (en) Immersion object detection system and method
CN105931491A (zh) 一种车位识别方法、雷达模组及车位识别系统
CN103109201A (zh) 对象检测方法、装置及系统
JP7070394B2 (ja) 携帯端末、プログラム、及びエレベータシステム
CN104349480A (zh) 无线网络信道分配方法、装置及系统
WO2019201670A1 (en) Method and system for determining wireless network coverage within an environment
KR102212678B1 (ko) 출입문의 온오프를 자동으로 제어하는 출입자동화 시스템 및 동작 방법
KR20200097482A (ko) 무인 배달로봇 서비스 제공 시스템
Ninnemann et al. Multipath-assisted radio sensing and occupancy detection for smart in-house parking in its
CN109484930A (zh) 一种电梯控制方法、装置、设备和存储介质
CN110155583B (zh) 立体车库的控制方法、装置、介质及电子设备
WO2023024733A1 (zh) 停车管理方法及装置、停车管理系统、电子设备、计算机可读介质
KR101527206B1 (ko) 주차 관리 시스템 및 방법
JP6741475B2 (ja) 監視システム及び監視方法
CN212292407U (zh) 一种电梯阻车系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20792008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20792008

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10.12.21)

122 Ep: pct application non-entry in european phase

Ref document number: 20792008

Country of ref document: EP

Kind code of ref document: A1