JP6741475B2 - 監視システム及び監視方法 - Google Patents

監視システム及び監視方法 Download PDF

Info

Publication number
JP6741475B2
JP6741475B2 JP2016101268A JP2016101268A JP6741475B2 JP 6741475 B2 JP6741475 B2 JP 6741475B2 JP 2016101268 A JP2016101268 A JP 2016101268A JP 2016101268 A JP2016101268 A JP 2016101268A JP 6741475 B2 JP6741475 B2 JP 6741475B2
Authority
JP
Japan
Prior art keywords
radar
scanning
area
unit
time slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016101268A
Other languages
English (en)
Other versions
JP2017207418A (ja
Inventor
辰徳 大原
辰徳 大原
信彦 柴垣
信彦 柴垣
淳也 小坂
淳也 小坂
雅夫 辻川
雅夫 辻川
志田 雅昭
雅昭 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2016101268A priority Critical patent/JP6741475B2/ja
Publication of JP2017207418A publication Critical patent/JP2017207418A/ja
Application granted granted Critical
Publication of JP6741475B2 publication Critical patent/JP6741475B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、レーダーを用いて滑走路等の監視領域に存在する異物を検知する監視システムに関する。
空港の滑走路や誘導路上に異物が存在する場合、航空機が当該異物に接触あるいはエンジンが異物を吸い込むことによって重大な事故が生じる可能性がある。そのため、滑走路上の異物の監視が行われている。
また、高速道路においてもパトロール車が走行し、道路上に異物が存在した場合、道路の管理者が当該異物を撤去する作業が行うために、異物を検知するカメラや、レーザー、又はレーダー等を用いた異物の検知技術が開発されている(例えば特許文献1参照)。
レーダーの送信電力は検知対象となる物体のレーダー反射断面積と最大探知距離により決定される。レーダー反射断面積が小さいほどレーダーの送信電力を大きくする必要があり、最大探知距離が長いほどレーダーの送信電力を大きくする必要がある。
一方、送信電力が大きいとレーダーの受信器が受信する反射電力が大きくなり、レーダーの受信器の飽和による性能劣化が無視できなくなる。
空港では、レーダーの反射断面積の大きい飛行機が、レーダーの探知範囲内に存在する場合、飛行機からの反射電力がレーダー受信器の飽和電力を超えないように、送信電力を決定する必要が有る。空港の滑走路や誘導路上などで想定されている異物サイズは3cm程度であり、レーダー反射断面積が小さい。そのため、従来の技術では、3cmの異物のレーダー反射断面積にて、受信器の飽和が発生しないように送信電力を決定するため、最大探知距離の制約があった。
特開2015−194371号公報
空港での異物を検出する監視システムには、滑走路だけでなく、誘導路や駐機場等の空港面上の安全を確保するために、探知距離を広げる、あるいは探知距離を伸ばすニーズがある。例えば、異物サイズは3cm程度を100m程度の探知距離を、500m以上にすることで上記ニーズを満たすことはできるが、探知距離を5倍に伸ばすと送信電力は10倍程度増大することになる。
すなわち、上記従来例のレーダーの最大探知距離に対して、10倍の最大探知距離のレーダーとした場合、レーダーの送信電力は40dB=10000倍大きくする必要が有る。その際、従来例のレーダーがレーダーからの距離αに存在する飛行機から受信する反射電力をβdBmとすると、10倍の最大探知距離のレーダーがレーダーからの距離αに存在する飛行機から受信する反射電力は(β+40)dBmとなる。
上記従来例のレーダーでは、レーダーに近接した飛行機にレーダービームが照射された場合でも、反射電力はそれほど大きくなかった。しかし、上記従来例の10倍の最大探知距離のレーダーでは、反射電力が従来のレーダーと比較して40dB=10000倍大きくなる。そのため、受信器の飽和による性能劣化が発生する、という問題があった。
そこで本発明は、上記問題点に鑑みてなされたもので、レーダーの最大探知距離を増大しながら受信器の飽和を抑制する技術を提供することを目的とする。
本発明は、監視対象の領域に面して配置されたレーダーユニットと、前記監視対象の領域で物体を検出する動体検出部と、プロセッサとメモリを有して前記レーダーユニットを制御するレーダー制御部と、を含む監視システムであって、前記動体検出部は、前記監視対象の領域で物体を検知したときには当該物体の位置を検出し、当該物体がレーダーユニットのレーダービームの照射を回避する非走査対象であるか否かを判定し、前記非走査対象の物体の所定時間後の予測位置を算出し、前記レーダー制御部は、前記レーダービームを照射して物体を検出する前記レーダーユニットの走査領域を複数の走査エリアに分割し、前記走査領域でレーダービームを照射する周期を前記走査エリアの数に応じて複数に分割した区間をタイムスロットとし、前記動体検出部が前記監視対象の領域で前記非走査対象の物体を検知したときには、当該物体の位置と、当該物体の所定時間後の予測位置に応じて、前記タイムスロットに前記走査エリアを割り当てる。
したがって、本発明は、検出した動体の位置に応じてレーダーの走査エリアのスケジューリングを行うことで、レーダーの最大探知距離を増大しながら受信器の飽和を抑制することができる。
本発明の第1の実施例を示し、監視システムの全体を示すブロック図である。 本発明の第1の実施例を示し、監視システムの機能ブロック図である。 本発明の第1の実施例を示し、画像解析部で行われる処理の一例を示すフローチャートである。 本発明の第1の実施例を示し、画像データベースのテーブルの一例を示す図である。 本発明の第1の実施例を示し、画像分析部で行われる処理の一例を示すフローチャートである。 本発明の第1の実施例を示し、レーダー制御部で行われる処理の一例を示すフローチャートである。 本発明の第1の実施例を示し、レーダー制御部のスケジューリング処理の一例を示すフローチャートである。 本発明の第1の実施例を示し、レーダーユニットが走査するエリアを周方向に分割した場合の走査エリアの一例を示す図である。 本発明の第1の実施例を示し、走査エリアを割り当てるタイムスロットの一例を示す図である。 本発明の第1の実施例を示し、スケジューリングテーブルの一例を示す図である。 本発明の第1の実施例を示し、スケジューリングテーブルの他の例を示す図である。 本発明の第2の実施例を示し、レーダーユニットがカバーするカバーエリアを鉛直方向に分割した場合の走査エリアの一例を示す図である。 本発明の第3の実施例を示し、レーダーユニットがカバーするカバーエリアを鉛直方向と水平方向に区切った場合の走査エリアの一例を示す図である。 本発明の第1の実施例を示し、動体検出装置の一例を示すブロック図である。 本発明の第1の実施例を示し、レーダー制御装置の構成の一例を示すブロック図である。 本発明の第1の実施例を示し、配置テーブルの一例を示す図である。
以下、添付図面を参照して本発明の実施形態を説明する。本実施形態は本発明を実現するための一例に過ぎず、本発明の技術的範囲を限定するものではないことに注意すべきである。各図において共通の構成については同一の参照符号が付与されている。
本実施例1は、滑走路や、高速道路や、レール等の路面上の異物を監視する監視システムに関する。例えば、滑走路面上に異物が残された状態で、航空機が異物に接触すると事故が生じる可能性があり、路面上に異物が存在しないかの監視が行われる。また、高速道路においてもパトロールカーが走行して異物があった場合には撤去が日々行われている。このように、路面上の異物の監視は重要であり、異物を検知するためのカメラや、レーダー等を用いた異物の検知技術が開発されている。
図1は、本実施例1の滑走路1の監視システムの全体構成を示すブロック図である。滑走路1(または誘導路、駐機場)の路面の監視を行える位置にカメラユニット102−1〜102−mを滑走路1に沿って複数配置し、カメラユニット102−1〜102−mが所定の周期で撮影した画像データに基づいてレーダー反射断面積の大きい動体(飛行機や保守車両等)2を非走査対象の物体として検出する動体検出装置103を設置する。
レーダーユニット101−1〜101−nは滑走路1に沿って複数配置され、各レーダーユニット101−1〜101−nからの検出結果を基に滑走路1上の異物を検知するレーダー制御装置104を設置する。レーダー制御装置104は動体検出装置103の検出結果に基づいてレーダーユニット101−1〜101−nの制御や、検出結果の表示を行う。
なお、以下の説明では、レーダーユニット101−1〜101−nの全体を「−」のない符号101で示す。カメラユニット102−1〜102−mなど、他の構成要素の符号についても同様である。
レーダーユニット101は、滑走路1上に複数のレーダーの走査領域(カバーエリア)50−1〜50−nを形成するため、滑走路1に沿った所定の間隔で配置される。カメラユニット102は、滑走路1への動体2の侵入または退出が検出可能な所定の位置、たとえば、滑走路1と誘導路(図示省略)の接続位置等に配置される。なお、カバーエリア50は、レーダーユニット101がレーダービームを照射して物体を検出する領域を示す。
図2は、滑走路1の監視システムの機能ブロック図を模式的に示している。
カメラユニット102が所定の周期で撮影した画像データは動体検出装置103内の画像解析部111に転送される。動体検出装置103は、画像データを画像データベース110のデータと比較して動体2の位置などを解析する画像解析部111と、動体2の反射電力などを分析する画像分析部112とを含む。
図13は、動体検出装置103の構成の一例を示すブロック図である。動体検出装置103は、プロセッサ60と、メモリ62と、プロセッサ60とI/Oデバイスを接続するチップセット61、チップセット61に接続されてI/Oデバイスとして機能するストレージデバイス63と、ネットワークI/F64と、入出力装置65と、信号処理部66とを含む。
ネットワークI/F64は、ネットワーク80を介してレーダー制御装置104に接続される。入出力装置65は、ディスプレイやマウスやキーボードなどを含む。信号処理部66は、カメラユニット102に接続されて画像データを取得する。
メモリ62にはOS2と画像解析部111及び画像分析部112がロードされてプロセッサ60によって実行される。また、動体2と比較する画像を蓄積した画像データベース110と、レーダーユニット101の情報を格納する配置テーブル5がメモリ62にロードされて画像解析部111及び画像分析部112から参照される。
画像解析部111と画像分析部112はプログラムとしてメモリ62にロードされる。プロセッサ60は、各機能部のプログラムに従って処理することによって、所定の機能を提供する機能部として稼働する。例えば、プロセッサ60は、画像解析プログラムに従って処理することで画像解析部111として機能する。他のプログラムについても同様である。さらに、プロセッサ60は、各プログラムが実行する複数の処理のそれぞれの機能を提供する機能部としても稼働する。計算機及び計算機システムは、これらの機能部を含む装置及びシステムである。
図15は、配置テーブル5の一例を示す図である。配置テーブル5は、レーダーユニット101やカメラユニット102の位置を予め設定したテーブルである。配置テーブル5のエントリに含むX座標52、Y座標53、Z座標54は、経度、緯度、高度や空港内の座標など3次元の座標であればよい。
図14は、レーダー制御装置104の構成の一例を示すブロック図である。レーダー制御装置104は、プロセッサ70と、メモリ72と、プロセッサ70とI/Oデバイスを接続するチップセット71と、チップセット71に接続されてI/Oデバイスとして機能するストレージデバイス73と、ネットワークI/F74と、入出力装置77と、信号処理部76と、レーダーユニット101及び信号処理部76に所定の信号を供給する信号源75を含む。
ネットワークI/F74は、ネットワーク80を介して動体検出装置103に接続される。入出力装置77は、ディスプレイやマウスやキーボードなどを含む。信号処理部76は、レーダーユニット101に接続されて受信データを取得する。
メモリ72にはOS12とレーダー制御部120及び検出処理部123がロードされてプロセッサ70によって実行される。また、レーダーユニット101を制御するスケジューリングテーブル15がメモリ72に格納される。
レーダー制御部120及び検出処理部123はプログラムとしてメモリ72にロードされる。プロセッサ70は、各機能部のプログラムに従って処理することによって、所定の機能を提供する機能部として稼働する。例えば、プロセッサ70は、レーダー制御プログラムに従って処理することでレーダー制御部120として機能する。他のプログラムについても同様である。さらに、プロセッサ70は、各プログラムが実行する複数の処理のそれぞれの機能を提供する機能部としても稼働する。計算機及び計算機システムは、これらの機能部を含む装置及びシステムである。
図3は画像解析部111で行われる処理の一例を示すフローチャートである。画像解析部111は、カメラユニット102から画像データを受信すると図3の処理を実行する(S201)。
まず、画像解析部111は、背景差分抽出処理を実施する(S202)が行われる。背景差分抽出処理は、観測した画像データと、カメラユニット102毎に事前に画像データベース110の登録テーブル300へ登録しておいた背景画像とを比較することで、事前に取得した背景画像には存在しない物体を抽出する処理である。
画像解析部111は、得られた背景差分(物体の画像)をもとに画像特徴量算出処理を行う(S203)。画像特徴量算出処理では、画像解析部111が抽出した動体2の画像を縦方向にP個に分割し、横方向にQ個分割し、各領域の特徴量として、輝度I(x,y)を算出する(x=0…P−1,y=0…Q−1)。画像解析部111は、得られた輝度I(x,y)の結果について画像データベース110の登録テーブル300に登録されている画像との照合を行う(S204)。
図4は画像データベース110が保持する画像データの登録テーブル300の一例を示す図である。登録テーブル300は動体2の種類を格納する種別301と、画像データを格納する画像302と、画像データ内の動体2の向きを格納する方向303と、レーダーユニット101から照射されたレーダービームの反射電力304をひとつのエントリに含む。なお、動体2の方向303と反射電力304は、動体2の種別301毎に予め測定または設定した値である。なお、画像302の輝度I(x,y)を予め算出して登録テーブル300に格納しておいてもよい。
次に、画像解析部111は、図3のステップS203の画像特徴量算出処理で得られた特徴量(輝度)と、各種画像302の中で最も類似性の高く、類似度が閾値以上の画像を動体2の画像として抽出する。画像解析部111で行われる類似度の算出方法は、SSD(Sum of Squared Difference)や、SAD(Sub of Absolute Difference)を用いることが出来る。
類似度をSSDにて算出する場合、画像解析部111は、ステップS203で抽出した画像の輝度I(x,y)と、各種画像302をI(x,y)と同じ領域毎に分割して輝度を算出したU(x,y)との差を累積した結果を類似度Cとする。具体的には以下の(1)式より類似度Cを算出する。
Figure 0006741475
画像解析部111は、類似度Cが所定の閾値以上の動体2をレーダービームの照射を回避する非走査対象として判定する。また、画像解析部111は、画像データベース110の登録テーブル300を参照して、照合によって抽出された画像302に対応する方向303と反射電力304を取得する。
次に画像解析部111は、分析処理を実施する(S205)。分析処理では、画像解析部111が抽出した画像の位置(方向303)と縮尺率より非検出対象の動体位置(x1,y1,z1)の算出を行う。なお、縮尺率は、画像データから抽出した動体2と、画像データベース110の登録テーブル300の画像302の大きさの比率である。また、動体位置(x1,y1,z1)は、動体2の画像の中心とする。
動体位置は、画像解析部111が画像データの縮尺率に基づいてカメラユニット102から動体2までの距離を算出し、上記取得した画像の方向と、当該動体2を撮影したカメラユニット102の既知の位置(x0,y0,z0)を配置テーブル5から取得して算出すればよい。
画像解析部111は、各レーダーユニット101の座標を配置テーブル5から取得して、各レーダーユニットの位置(x2,y2,z2)と動体位置(x1,y1,z1)より、2点間距離Lを次の(2)式によりを算出する。
Figure 0006741475
そして、画像解析部111は、2点間距離Lが最も小さいレーダーユニット101を動体2に近接するレーダーユニット101として選択し、この2点間距離Lを、動体距離Rとして保持する。
画像解析部111は、上記の処理で算出した動体2の種類、動体位置、方向、動体距離R、反射電力を画像分析部112に送信する(S206)。
図5は、画像分析部で行われる処理の一例を示すフローチャートである。この処理は図3の処理が完了すると開始される。
動体検出装置103の画像分析部112は、画像解析部111からの結果を受信する(S401)と、レーダーユニット101の受信電力の推定を実施する。レーダーユニット101の受信電力の推定値は、画像解析部111より得た動体距離Rと反射電力304から画像分析部112が算出する(S402)。具体的には以下の(3)式によって推定受信電力Pvが算出される。
Figure 0006741475
なお、上記(3)式において、Ptrxは送信電力、Gは送信/受信アンテナ利得、σは反射電力304、τは送信機のデューティ・サイクル、Rは動体距離を用いて計算することが出来る。反射電力(304)σは非走査対象の動体2で反射されたレーダービームの電力の予測値である。
次に画像分析部112は、画像解析部111より得た非走査対象の動体2の位置情報、方向情報と、動体2の過去の位置情報より非走査対象の動体2の移動量を予測する(S403)。これは動体2の過去の位置情報と現在の位置情報の差分から推定を行うことが出来る。簡易的には過去と現在の移動距離を未来にも同等の移動を行うと推定することが可能であり、滑走路1上は行動が限られているため、過去の移動結果をデータベース化し、過去の履歴より推測することも可能である。
なお、画像分析部112は、画像解析部111が検出した物体が非走査対象の動体2の場合に、動体2の所定時間後(例えば、レーダーユニット101のカバーエリアの走査終了時)の予測位置を算出すればよい。
この移動量の予測はレーダーユニット101のレーダー走査開始時点と、レーダー走査完了時点の2つの時刻において、緯度と経度の情報を予測位置情報として算出する。レーダー制御装置104は、所定の周期(例えば、2秒)でレーダービームの走査を行っており、例えば、走査開始のタイミングで動体検出装置103に走査開始を示すトリガを送信することもできる。あるいは、所定の時間間隔で動体検出装置103とレーダー制御装置104の時計または走査開始のタイミングを同期させるようにしてもよい。
動体検出装置103は、所定の周期のレーダービームの照射タイミングと、検出した動体2の位置情報と方位情報から、カバーエリア50におけるレーダー走査開始時の動体2の予測位置と、レーダー走査終了時の動体2の予測位置を動体情報として算出する。算出された動体情報(走査開始時緯度、走査開始時経度、走査終了時緯度、走査終了時経度)と反射電力を、画像分析部112はレーダー制御装置104のレーダー制御部120に通知する。
レーダー制御部120は全レーダーユニット101を管理しており、各レーダーユニット101において、スケジューリングを行う単位でカバーエリア50をN個の走査エリアに分割して管理する(図8A参照)。
走査エリアは必ずしもレーダーの1ビーム照射範囲と同等である必要は無く、レーダーの1ビーム照射よりも大きく、レーダーユニットのカバー範囲より狭い。レーダー制御装置104は、カバーエリア50を分割した各走査エリアでビーム照射が完了する時間をTとし、分割した走査エリアでビーム照射を行う区間(時間)をタイムスロットとして管理する。ひとつのレーダーユニット101がカバーエリア50で、すべての走査エリアのビーム照射が完了する時間(周期)をTallとすると、Tall÷T=タイムスロット数となる。例えば、ひとつの走査エリアでビーム照射が完了する時間T=2秒とし、カバーエリアのビーム照射が完了する時間Tall=16秒とした場合、タイムスロット数=8となる。すなわち、タイムスロットは、カバーエリア50でレーダービームを照射する周期を、走査エリアの数に応じて複数に分割した時間となる。
図8Aは、レーダーユニット101がレーダービームを照射するカバーエリア50を周方向の走査エリアに分割した一例を示す図である。図示の例では、ひとつのレーダーユニット101は、半円形のカバーエリアを有し、カバーエリア内を周方向に8等分したN=8の走査エリア#1〜#8の例について説明を行う。
この例ではレーダー制御装置104は、周方向に走査エリア#1〜#8(701〜708)を分割し、レーダービームの照射制御を行う。この前提は送信アンテナブロック131と受信アンテナブロック133が水平方向に狭く、鉛直方向に広いビームを形成し、当該ビームを照射することで、カバーエリアの走査を行うことを前提とする。なお、本実施例のレーダーユニット101は、フェイズドアレイレーダー等で構成されて、走査エリア#1〜#8の位置と、ビームを照射するタイムスロットの順序を適宜変更可能であればよい。
レーダーユニット101からのカバーエリアは、複数の扇形の走査エリア#1〜#8(701〜708)に分割される。この場合は走査エリアを8分割したのでタイムスロット数は8個となる。
図8Bは、レーダーユニット101がレーダービームの走査を行うタイムスロットの一例を示す図である。図示の例では、1つのタイムスロットが2秒間隔でレーダーのビーム照射を実施して、カバーエリアを16秒で走査する。レーダー制御装置104は、非走査対象の動体2の位置情報と反射電力に応じてタイムスロット#1〜#8毎にビーム照射を実施する走査エリア#1〜#8を割り当てる。
レーダー制御装置104は、後述するように、ひとつのタイムスロットにひとつの走査エリアを割り当てて、レーダービームの照射を実行する。
図9は、レーダービームを照射する走査エリアとタイムスロットの関係を設定したスケジューリングテーブル15の一例を示す図である。レーダー制御部120はレーダーユニット101−1〜101−n毎に図9のスケジューリングテーブル15を作成し、タイムスロットと位置予測結果、スケジューリング結果、送信電力を管理する。
スケジューリングテーブル15は、タイムスロット番号151と、動体2の予測位置に対応する走査エリアを格納する動体位置予測結果152と、レーダービームを照射する走査エリアを格納するスケジューリング153と、当該走査エリアに照射するレーダービームの送信電力154と、をひとつのエントリに含む。
動体位置予測結果152は、動体情報から走査開始時緯度、走査開始時経度、走査終了時緯度、走査終了時経度を取得して各タイムスロットにおける非走査対象の動体2の位置(経度、緯度)を推定し、動体2の推定位置を含む走査エリアを動体位置予測結果152とする。または動体2の推定位置とレーダーユニット101を結ぶ線を含む走査エリアを動体位置予測結果152としてもよい。すなわち、走査エリア内に動体2が存在する場合と、走査エリアの延長上に動体2が存在する場合を同等に扱うようにしてもよい。なお、非走査対象の動体2の予測位置がレーダーユニット101から所定の閾値を超えて遠い場合には、受信電力Pvが飽和することはないので動体位置予測結果152から除外してもよい。
図6は、レーダー制御装置104で行われる処理の一例を示すフローチャートである。この処理は動体検出装置103から動体情報と反射電力を受信したときに実行される。
レーダー制御部120は、動体検出装置103からの情報入力が行われると(S501)、非走査対象の動体位置が各レーダーユニットのどの走査エリアに該当するかを判定する(S502)。
例えば、レーダー制御部120は、画像分析部112より受信した走査開始時緯度と、走査開始時経度 がエリア#7(707)内に該当し、走査終了時緯度と、走査終了時経度がエリア#4(704)に該当する場合の動体位置予測結果152を図9に示す。
レーダー制御部120は、タイムスロット#1、#2にて動体2の予測位置はエリア#7(707)、タイムスロット#3、#4にてエリア#6(706)、タイムスロット#5、#6にてエリア#5(705)、タイムスロット#7、#8にてエリア#4(704)と予測し、この結果を図9のスケジューリングテーブル15に格納する。この予測結果は予測誤差を想定して、ひとつのタイムスロット番号に複数の走査エリアを予測してもよい。
次に、レーダー制御部120は、レーダービーム照射のスケジューリング(S503)を行う。図7は、スケジューリング処理の一例を示すフローチャートである。レーダー制御部120は、スケジューリングの開始後、まず、時間軸の先頭となるタイムスロット#1を選択する(S602)。
まず、レーダー制御部120は、スケジューリングテーブル15の動体位置予測結果152を参照して、レーダーユニット101の1走査区間(カバーエリア)内に非走査対象の動体2が存在する走査エリア群αを抽出する(S603)。図9の例では動体2が存在すると予測された走査エリア#4、#5、#6、#7(704,705,706,707)が該当する。
次にレーダー制御部120は、走査エリア群αのうち、現在選択中のタイムスロットで非走査対象の動体2が存在しない走査エリア群βを抽出する(S604)。現在タイムスロット#1のスケジューリングを行っているので、現在のタイムスロットは#1、図9の例ではタイムスロット#1に動体2が存在する走査エリアは707と推定しているため、走査エリア群βは走査エリア#7(707)を除く、走査エリア#4、#5、#6(704,705,706)となる。
次にレーダー制御部120は、走査エリア群βの中で、未割り当ての走査エリアがあるか否かを判定し(S605)、走査エリア群βの中で未割り当ての走査エリアが有る場合、当該走査エリアの1つを割り当てる(S612)。図9のタイムスロット#1の例では走査エリア群βの走査エリア#4、#5、#6(704,705,706)は全て未割り当てのため、当該走査エリアのうちの1つである#6(706)を現在のタイムスロット#1に割り当てる。
次にレーダー制御部120は、タイムスロット番号が最終タイムスロットと同一か否かを判定し(S613)、最終で無い場合はタイムスロット番号をインクリメントする(S614)。
図9のタイムスロット#1の例では、タイムスロット#1→#2にインクリメントする。最終タイムスロットの場合はスケジューリング処理を終了し、図6の処理に戻る(S611)。
レーダー制御部120は、タイムスロット#4までは、タイムスロット#1と同様に走査エリア群βから割り当てを行い、タイムスロット#2では走査エリア#5(705)を割り当て,タイムスロット#3では走査エリア#4(704)を割り当て,タイムスロット#4では走査エリア#7(707)を割り当てる。
レーダー制御部120は、タイムスロット#5以降は走査エリア群βの中で未割り当ての走査エリアが無くなったため、レーダーユニット101の1走査区間内に非走査対象の動体2が無い走査エリア群γを抽出する(S606)。
図9の例では走査エリア#1、#2、#3、#8(701,702,703,708)が該当する。走査エリア群γの中で未割り当ての走査エリア#が有る場合(S607)、当該走査エリアの1つを割り当てる(S612)。図9のタイムスロット#5の例では走査エリア#1、#2、#3、#8(701,702,703,708)が未割り当てのため、レーダー制御部120は当該走査エリアの1つである走査エリア#8(708)の割り当てを実施する。
レーダー制御部120は、同様にタイムスロット#6では走査エリア#3(703)を割り当て、タイムスロット#7では走査エリア#2(702)を割り当て、タイムスロット#8では走査エリア#1(701)を割り当てる。レーダー制御部120は、タイムスロット#8までのスケジューリングを完了すると最終タイムスロットまでのスケジューリングを完了したため(S613)、スケジューリング処理を完了して図6の処理に復帰する。
次にレーダー制御部120は、図6に戻って送信電力決定処理(S504)を行う。ステップS504では、レーダー制御部120が動体位置予測結果152とスケジューリング153の結果を基に、スケジューリングテーブル15に送信電力の登録を行う。但し、図9の例では非走査対象の動体2にレーダービームを照射するタイムスロットが無いため、送信電力は最大のTmaxにて走査することが出来る。
レーダー制御部120は、上記処理をレーダーユニット101−1〜101−n毎に行って、スケジューリングテーブル15をそれぞれ生成し、レーダーユニット101にそれぞれ通知する(S505)。なお、レーダー制御部120は、監視対象の領域(滑走路1)に非走査対象の動体2が存在しない場合には、非走査対象が存在しないエリア群γ内で、走査エリア#1〜#8がタイムスロット#1〜#8に順次割り当てられる。
次にレーダーユニット101の送信電力を制限するスケジューリングテーブル15の例を図10で説明する。図10の例では動体位置予測結果152がタイムスロット#1〜#8の全てで走査エリア#7(707)となり、非走査対象の動体2の移動速度が遅い、または静止しているような条件となる。
非走査対象の動体2が存在する走査エリア群αは走査エリア#7(707)となるが、現タイムスロットで非走査対象の動体2が存在しない走査エリア群βは存在しない。そのためレーダー制御部120は、非走査対象の動体2が存在しない走査エリア群γの走査エリア#1、#2、#3、#4、#5、#6、#8(701,702,703,704,705,706,708)をタイムスロット#1〜#7に順次割り当てる。
そして、レーダー制御部120は、タイムスロット#8にて走査エリア群γに該当する走査エリア#が存在しなくなるため、現タイムスロット#8に非走査対象の動体2が存在する走査エリア群σを抽出する(S608)。レーダー制御部120は、図10の例では走査エリア群σは走査エリア#7(707)となる。走査エリア群の中で未割り当ての走査エリア#7が有るため(S609)、当該走査エリアの1つを現在のタイムスロット#7に割り当てる(S612)。図10の例ではタイムスロット#8にて、非検出対象の動体2にレーダービームを照射することになるため、レーダーユニット101の電力低減を行う。レーダーユニット101の送信電力Tlowは以下の(4)式で実施する。
送信電力Tlow = Tmax− (S402で計算した推定受信電力Pv
−レーダーユニットの最大受信電力Rmax) …(4)
送信電力Tlowは動体によって反射した受信電力Pvが、レーダーユニット101の最大電力を超えると想定される分を予め低減してレーダービームの照射を行う。すなわち、レーダーユニット101の最大受信電力から非走査対象の物体からの反射電力を差し引いた送信電力以下をレーダービームの出力とする。つまり、非走査対象の動体2の反射電力がレーダーユニット101で許容される最大受信電力Rmaxを超えない範囲に制限する。
スケジューリングが完了するとレーダー制御部120は、各レーダーユニット101−1〜101−nのユニット制御部130にスケジューリングテーブル15の情報と、送信電力を指定したメッセージを送信する。
レーダーユニット101がメッセージを受信すると、次の走査タイミングでスケジューリングテーブル15の情報(スケジューリング情報)に従ったビーム走査と、送信電力の制御情報を生成し、タイムスロット毎に送信アンテナブロック131に通知することで制御を行う。
送信アンテナブロック131は自在にビーム制御を行うためのアレイアンテナの様に複数のアンテナ素子を規則的に配列し、放射素子の振幅及び位相を電気的に制御することで、アンテナ指向性の制御を行うことが出来るアンテナを用いることが望ましい。送信信号は信号源121が生成した周波数を可変させた連続波を送波するFM−CW(Frequency Modulated - Continuous Wave)の信号を生成し、送信機ブロック132に転送する。FM−CW信号はIF(Intermediate Frequency)帯域で生成されて送信されるため、送信機ブロック132ではIF帯域からRF(Radio Frequency)帯域へのアップサンプリングを行い、送信アンテナブロック131に転送する。レーダーユニット101は、前述のスケジューリング情報に従ってFM−CWの送信を行うことで、所望の送信制御を実現することが出来る。
レーダーユニット101の送信信号(レーダービーム)は滑走路1上の動体および異物に反射した信号を受信アンテナブロック133が受信する。レーダー制御部120が生成したスケジューリング情報は受信アンテナブロック133にも伝えられる。
受信アンテナブロック133は、送信アンテナ131とのアイソレーションを考慮して、別ユニットとすることが望ましいが、アンテナ走査制御は送信アンテナブロック131と同様に行われる。受信アンテナブロック133がスケジューリング情報に従いFM−CW信号の受信を行うと、受信結果を受信したアンテナ角情報と共に受信器ブロック134に転送する。受信器ブロック134ではRF帯域からIF帯域へのダウンサンプリングを実施し、信号処理部122に転送を行う。
信号処理部122では送信信号とのミキシングを行い、得られたビート信号をFFT解析することで得られた結果から、異物からの信号の受信強度、距離を判定することが出来る。信号処理部122は判定結果を検出処理部123に転送し、検出処理部123は滑走路の異物検知結果を動体検知結果と合わせてグラフィカルに入出力装置77のディスプレイなどに表示することで、滑走路1の異物検知業務を支援することが出来る。
以上のように、実施例1によれば、レーダー制御部120は、レーダーユニット101のカバーエリアを複数の走査エリアに分割し、走査エリアに非検出対象の動体2の侵入が予測される場合には、当該走査エリア以外の走査エリアでレーダービーム照射を行うようにタイムスロット毎のスケジューリングを行う。そして、レーダー制御部120は、非検出対象の動体2の侵入が予測される走査エリアでレーダービームを照射する場合には、送信電力を低減してレーダーユニット101の受信器ブロック134の受信電力Pvが許容可能な最大値を超えないように抑制する。これにより、レーダーユニット101の最大探知距離を増大しながら受信器ブロック134の飽和を抑制する技術を提供することを目的とする。
実施例1に示した空港での監視システムでは、レーダー反射断面積の大きい動体(飛行機、保守車両等)を非走査対象とし、非走査対象を避けるように、レーダービームの走査をスケジューリングする。スケジューリングの結果、非走査対象へのビーム照射が避けられない場合には、レーダーからの送信電力を低減することで、受信器ブロック134の飽和を回避する。
(1)レーダーユニット101の一走査の照射範囲を複数の走査エリアに分割し、照射時間を複数のタイムスロットに分割する。
(2)一走査の間に、非走査対象が、いつ(タイムスロット#Tのとき)、どこ(エリア#Nの位置)、に存在するかを推定する。推定結果は、スケジューリングテーブル15で保持。
(3)タイムスロットの順に、レーダービームを照射する走査エリアのスケジューリングをする。
上記スケジューリングは、具体的には次の通りである。
フロー1:まず、レーダー制御部120は、走査期間内に非走査対象の動体2が存在する走査エリア群αを抽出。次に、走査エリア群αのうち、現タイムスロットで非走査対象が存在しない走査エリア群βを抽出。次に、走査エリア群βの中で未割当のエリアを、現タイムスロットでの走査エリアに設定する。
フロー2:レーダー制御部120は、走査エリア群βの中で未割当の走査エリアがなくなったら、他タイムスロットのうち、非走査対象が存在しない走査エリア群γを抽出。走査エリア群γの中で未割当の走査エリアを、現タイムスロットでの走査エリアに設定する。
フロー3:レーダー制御部120は、走査エリア群γの中で未割当の走査エリアがなくなったら、現タイムスロットに非走査対象が存在する走査エリア群σを抽出。走査エリア群σのうち、未割当の走査エリアを、現タイムスロットでの走査エリアに設定する。
スケジューリングの結果、非走査対象へのビーム照射が避けられない場合には、レーダーの送信電力を送信電力設定値−(受信電力予測値(受信電力Pv)−レーダーユニットの最大受信電力)に制限する。
上記フロー2よりも先にフロー1を行うことにより、走査エリアとして、他タイムスロットに非走査対象が存在する可能性のある走査エリアを、時間的に走査周期内の初期のタイムスロットへ優先的に割り当てることで、一走査の中にて非走査対象にビーム照射をする可能性を確実に低減できるのである。
なお、上記実施例1では、動体検出装置103が滑走路1に設けたカメラユニット102の画像を用いる例を示したが、これに限定されるものではない。例えば、空港に設置された空港面探知レーダーASDE(Airport Surface Detection Equipment)が検出した動体2の座標や、航空機が送信する位置情報(例えば、ADS−B:Automatic Dependent Surveillance - Broadcast)等を取得して、監視対象の滑走路1上で非走査対象となる動体2を検知するようにしてよい。
また、上記実施例1では、動体検出装置103とレーダー制御装置104を別体で構成した例を示したが、ひとつの装置としてもよい。この場合、動体検出部とレーダー制御部を有する監視装置が、レーダーユニット101とカメラユニット102を制御すればよい。
また、上記実施例1では、監視対象の領域を空港の滑走路1とした例を示したが、これに限定されるものではなく、道路や線路など、異物の検出が必要な面であればよい。
図11は本発明の第2の実施例を示し、レーダーユニット101がカバーするカバーエリアを鉛直方向に分割した場合のエリアの一例を示す図である。その他の構成は、前記実施例1と同様である。
図11では、レーダーユニット101の走査エリアを鉛直(Z軸)方向に8分割した例である。この例では鉛直方向に走査エリア#を分割し(801〜808)、制御を行う。この前提は送信アンテナブロック131と受信アンテナブロック133が鉛直方向に狭く、水平方向に広いレーダービームを形成し、このレーダービームを照射することで、鉛直方向で走査エリア#の走査を行う。
この場合でもスケジューリングのアルゴリズムは図7に従い、走査エリア群α、β、γ、σを抽出し、順次タイムスロットに割り当てを行うことで、上記実施例1と同様の効果を得ることができる。
図12は本発明の第3の実施例を示し、レーダーユニット101がカバーするカバーエリアを鉛直方向と周方向で分割した場合のエリアの一例を示す図である。その他の構成は、前記実施例1と同様である。
図12では、走査エリアを鉛直方向と周方向で16分割した例を示す。この例では周方向と、鉛直方向に走査エリアを分割し(901〜916)、制御を行う。この例では送信アンテナブロック131と受信アンテナブロック133が鉛直方向に狭く、水平方向に狭いビームを形成し、当該レーダービームを照射することで、走査エリアを順次走査する。
この場合でもスケジューリングアルゴリズムは図7に従い、走査エリア群α、β、γ、σを抽出し、順次タイムスロットに割り当てを行うことで、上記実施例1と同様の効果を得ることができる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、又は置換のいずれもが、単独で、又は組み合わせても適用可能である。
また、上記の各構成、機能、処理部、及び処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、及び機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
101−1〜101−n レーダーユニット
102−1〜102−m カメラユニット
103 動体検出装置
104 レーダー制御装置
110 画像データベース
111 画像解析部
112 画像分析部
120 レーダー制御部
130 ユニット制御部
132 送信器ブロック
134 受信器ブロック

Claims (9)

  1. 監視対象の領域に面して配置され、異物を検出するレーダーユニットと、
    前記監視対象の領域で物体を検出する動体検出部と、
    プロセッサとメモリを有して前記レーダーユニットを制御するレーダー制御部と、を含む監視システムであって、
    前記動体検出部は、
    前記監視対象の領域で物体を検知したときには当該物体の位置を検出し、当該物体が前記異物ではなく前記レーダーユニットのレーダービームの照射を回避する非走査対象であるか否かを判定し、前記非走査対象の物体の所定時間後の予測位置を算出し、
    前記レーダー制御部は、
    前記レーダービームを照射して前記異物を検出する前記レーダーユニットの走査領域を複数の走査エリアに分割し、前記走査領域でレーダービームを照射する周期を前記走査エリアの数に応じて複数に分割した区間をタイムスロットとし、前記タイムスロット毎にレーダービームを照射する前記走査エリアを割り当てるとともに、
    前記動体検出部が前記監視対象の領域で前記非走査対象の物体を検知したときには、当該物体の位置と、当該物体の所定時間後の予測位置に応じて、前記非走査対象の物体へのレーダービームの照射を避け、前記非走査対象の物体が存在しない走査エリアでレーダービームを照射するよう、前記タイムスロット毎の前記走査エリアの割り当てをスケジューリングし、前記走査領域における異物の検出を行うことを特徴とする監視システム。
  2. 請求項1に記載の監視システムであって、
    前記動体検出部は、
    前記レーダーユニットのレーダー走査開始時点と、レーダー走査完了時点の2つの時刻における前記非走査対象の物体の予測位置を算出し、
    前記レーダー制御部は、
    前記レーダーユニットのレーダー走査開始時点と、レーダー走査完了時点の2つの時刻における前記非走査対象の物体の予測位置に基づいて前記スケジューリングを行うことを特徴とする監視システム。
  3. 請求項1または請求項2に記載の監視システムであって、
    前記レーダー制御部は、
    前記スケジューリングの結果、前記非走査対象の物体が存在する走査エリアへのレーダービームの照射が避けられない場合には、前記非走査対象の物体が存在する走査エリアを前記タイムスロットに割り当てて、当該タイムスロットにおけるレーダービームの出力を低減することを特徴とする監視システム。
  4. 請求項3に記載の監視システムであって、
    前記レーダー制御部は、
    前記非走査対象の物体が存在する走査エリアでレーダービームの照射を行う前記タイムスロットでは、前記非走査対象の物体の反射電力がレーダーユニットで許容される最大受信電力を超えない範囲にレーダービームの出力を制限することを特徴とする監視システム。
  5. 請求項1に記載の監視システムであって、
    前記レーダー制御部は、
    レーダービームを照射して物体を検出する前記レーダーユニットの走査領域の周方向で、複数の走査エリアに分割することを特徴とする監視システム。
  6. 請求項1に記載の監視システムであって、
    前記動体検出部は、
    監視対象の領域に面して配置されたカメラを含み、当該カメラで撮影した画像データから前記物体を検出し、予め登録された非走査対象の物体の画像と前記画像データの比較を行うことを特徴とする監視システム。
  7. プロセッサとメモリを有して監視対象の領域に面して配置され、異物を検出するレーダーユニットを制御するレーダー制御部と、前記監視対象の領域で物体を検出する動体検出部で前記監視対象の領域を監視する監視方法であって、
    前記動体検出部が、前記監視対象の領域で物体を検知したときには当該物体の位置を検出し、当該物体が前記異物ではなく前記レーダーユニットからのレーダービームの照射を回避する非走査対象であるか否かを判定し、前記非走査対象の物体の所定時間後の予測位置を算出する第1のステップと、
    前記レーダー制御部が、レーダービームを照射して前記異物を検出する前記レーダーユニットの走査領域を複数の走査エリアに分割し、前記走査領域でレーダービームを照射する周期を前記走査エリアの数に応じて複数に分割した区間をタイムスロットとして、前記タイムスロット毎にレーダービームを照射する前記走査エリアを割り当てる第2のステップとを含み、
    前記第2のステップは、
    前記動体検出部が前記監視対象の領域で前記非走査対象の物体を検知したときには、当該物体の位置と、当該物体の所定時間後の予測位置に応じて、前記走査領域における異物の検出を行うべく、前記非走査対象の物体へのレーダービームの照射を避け、前記非走査対象の物体が存在しない走査エリアでレーダービームを照射するよう、前記タイムスロット毎の前記走査エリアの割り当てをスケジューリングすることを特徴とする監視方法。
  8. 請求項7に記載の監視方法であって、
    前記第のステップは、
    前記レーダーユニットのレーダー走査開始時点と、レーダー走査完了時点の2つの時刻における前記非走査対象の物体の予測位置を算出し、
    前記第2のステップは、
    前記レーダーユニットのレーダー走査開始時点と、レーダー走査完了時点の2つの時刻における前記非走査対象の物体の予測位置に基づいて前記スケジューリングを行うことを特徴とする監視方法。
  9. 請求項7または請求項8に記載の監視方法であって、
    前記第2のステップは、
    前記非走査対象の物体が存在する走査エリアへのレーダービームの照射が避けられない場合には、前記非走査対象の物体が存在する走査エリアを前記タイムスロットに割り当てて、当該タイムスロットにおけるレーダービームの出力を低減することを特徴とする監視方法。
JP2016101268A 2016-05-20 2016-05-20 監視システム及び監視方法 Active JP6741475B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101268A JP6741475B2 (ja) 2016-05-20 2016-05-20 監視システム及び監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101268A JP6741475B2 (ja) 2016-05-20 2016-05-20 監視システム及び監視方法

Publications (2)

Publication Number Publication Date
JP2017207418A JP2017207418A (ja) 2017-11-24
JP6741475B2 true JP6741475B2 (ja) 2020-08-19

Family

ID=60415546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101268A Active JP6741475B2 (ja) 2016-05-20 2016-05-20 監視システム及び監視方法

Country Status (1)

Country Link
JP (1) JP6741475B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235397A1 (ja) * 2017-06-19 2018-12-27 株式会社日立国際電気 レーダ装置及びレーダシステム
WO2021181506A1 (ja) * 2020-03-10 2021-09-16 株式会社日立国際電気 異物検知システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145558B2 (ja) * 2002-04-24 2008-09-03 株式会社東芝 空港管制支援システム
EP1712931A1 (en) * 2005-04-14 2006-10-18 Qinetiq Limited Method and apparatus for detecting a target in a scene
JP2011013182A (ja) * 2009-07-06 2011-01-20 Furuno Electric Co Ltd 物標探知装置および物標探知方法
JP2011013183A (ja) * 2009-07-06 2011-01-20 Furuno Electric Co Ltd 物標探知装置および物標探知方法
DE102010061382B4 (de) * 2010-12-21 2019-02-14 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
JP2015194385A (ja) * 2014-03-31 2015-11-05 株式会社日立製作所 計算機システム
JP6293552B2 (ja) * 2014-03-31 2018-03-14 株式会社日立製作所 監視管理システム

Also Published As

Publication number Publication date
JP2017207418A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
US11516763B2 (en) Determining emitter locations
EP3548925B1 (en) Method and system for automatic real-time adaptive scanning with optical ranging systems
US5448243A (en) System for locating a plurality of objects and obstructions and for detecting and determining the rolling status of moving objects, such as aircraft, ground vehicles, and the like
EP3096986B1 (en) Vehicle identification
JP7292099B2 (ja) 二次レーダーを用いて航空機搭載トランスポンダの特定の特徴をライン動作時に測定する方法
JP6741475B2 (ja) 監視システム及び監視方法
KR101386636B1 (ko) 레이더 시스템의 재밍 주파수 회피 장치
Lo et al. Assessing the capability of distance measuring equipment (DME) to support future air traffic capacity
EP2631671B1 (en) Apparatus and method for traffic lane detection
JPWO2007043475A1 (ja) レーダ装置とレーダサイト間調整方法
CN113504525B (zh) 一种雾区能见度反演方法及系统
US20230080655A1 (en) Radar apparatus and radar system
Samczyński et al. Trial results on bistatic passive radar using non-cooperative pulse radar as illuminator of opportunity
CN110888134B (zh) 一种非协作和协作一体化机场场面监视系统
RU2543511C1 (ru) Способ функционирования радиолокационной системы на базе радиолокационных станций с управляемыми параметрами излучения
JPH09288175A (ja) 空港面航空機識別方式
US11061130B2 (en) Radar apparatus and target detecting method
US11333750B2 (en) Method and system for tracking non-cooperative objects using secondary surveillance radar
KR102144048B1 (ko) 빔 스캐닝 분석시 가중치를 적용하는 동작위치 검출 방법 및 장치
CN114973685B (zh) 一种检测停车的方法、装置、电子设备及存储介质
JPH04155286A (ja) 精測進入レーダ
RU2405168C2 (ru) Способ радиолокационного обзора зоны пространства (варианты)
US20240077605A1 (en) Change detection device and change detection method
JP7268732B2 (ja) レーダシステム、イメージング方法およびイメージングプログラム
RU2400767C2 (ru) Способ радиолокационного обзора пространства (варианты)

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250