WO2020211630A1 - 反应气体供应系统及其控制方法 - Google Patents

反应气体供应系统及其控制方法 Download PDF

Info

Publication number
WO2020211630A1
WO2020211630A1 PCT/CN2020/082269 CN2020082269W WO2020211630A1 WO 2020211630 A1 WO2020211630 A1 WO 2020211630A1 CN 2020082269 W CN2020082269 W CN 2020082269W WO 2020211630 A1 WO2020211630 A1 WO 2020211630A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
precursor
gas
reaction
containers
Prior art date
Application number
PCT/CN2020/082269
Other languages
English (en)
French (fr)
Inventor
王春
郑波
马振国
王晶
吴鑫
王晓娟
史晶
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to JP2021560981A priority Critical patent/JP2022526453A/ja
Priority to US17/603,057 priority patent/US11708636B2/en
Priority to SG11202111300PA priority patent/SG11202111300PA/en
Publication of WO2020211630A1 publication Critical patent/WO2020211630A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber

Definitions

  • the present invention relates to the technical field of semiconductor manufacturing, in particular to a reactive gas supply system and a control method thereof.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • WSD wet etching
  • ALD atomic layer deposition
  • CVD process and ALD process have more advantages in step coverage (Step Coverage), and more and more are applied to semiconductor process flow.
  • the CVD process and the ALD process generally involve a variety of gaseous reactions, and the consumption of reactive gases is also large. Therefore, it is necessary to supply high-purity gases and non-gaseous precursors.
  • non-gaseous precursors it is necessary to volatilize the precursors into gaseous reactants by heating, and then pass them into the reaction chamber for reaction, and control the flow of reaction gas through a flow meter.
  • the gaseous precursor cannot be supplied sufficiently and stably during the reaction stage, the process result will be affected.
  • an existing method is to increase the precursor volatilization rate by increasing the heating temperature of the precursor container.
  • the heating temperature cannot be higher than the decomposition temperature of the precursor, this limits the increase in the volatilization rate of the precursor.
  • the improvement of gas supply capacity is limited.
  • to increase the heating temperature it is necessary to adapt higher specifications of heating components and heat-resistant components, which increases the cost of equipment.
  • Another existing method is to increase the volume of the gaseous precursor stored in the precursor container by reducing the volume occupied by the precursor in the precursor container, thereby enhancing the reactive gas supply capacity, but at the same time it will increase the replacement of the precursor Frequency, reducing equipment capacity.
  • the volume and number of precursor containers can be increased to increase the supply capacity of reactive gas, this will increase the throughput of the equipment and increase the cost of the product. Therefore, there is an urgent need for a technical solution that can solve the shortage of reactive gas supply capacity.
  • the embodiments of the present invention provide a reactive gas supply system and a control method thereof, which can ensure a stable supply of reactive gas, increase the utilization rate of precursors, and improve production efficiency and product quality.
  • a reaction gas supply system for supplying reaction gas to a plurality of reaction chambers; including a plurality of precursor containers and a supply adjustment device; wherein, the precursor container and at least one The reaction chamber is connected; among a plurality of the precursor containers, there is at least one pair of the precursor containers in any combination, and the supply adjustment device is arranged between each pair of the precursor containers, and the supply The adjusting device is used to communicate with the corresponding pair of the precursor containers.
  • the supply adjustment device includes a pipeline unit and a pipeline control unit; the number of the pipeline control unit is the same as the number of the pipeline unit, and each pipeline control unit is used to control the corresponding The on-off of the pipeline unit; wherein the pipeline unit is connected between a corresponding pair of the precursor containers and is used for transmitting reaction gas.
  • the pipeline unit includes a first pipeline, and both ends of the first pipeline are respectively connected to a corresponding pair of the precursor containers;
  • the pipeline control unit includes a first valve device, which is arranged in the corresponding first pipeline and used to control the on-off of the first pipeline.
  • the first valve device includes a vacuum valve.
  • the pipeline unit includes a second pipeline and a third pipeline, and both ends of the second pipeline and the third pipeline are connected to a corresponding pair of the precursor containers;
  • the pipeline control unit includes a second valve device and a third valve device, and the second valve device and the third valve device are respectively disposed in the second pipeline and the third pipeline for The on-off of the second pipeline and the third pipeline are respectively controlled, and the pipeline can be unidirectionally conducted, and the second valve device controls the direction of conduction of the second pipeline and The direction in which the third valve device controls the conduction of the third pipeline is opposite.
  • both the second valve device and the third valve device include a vacuum valve and a one-way valve.
  • the precursor container includes a container for storing non-gaseous precursors and a gas pipeline respectively connected to the container and at least one of the reaction chambers, and the gas pipeline is used for storing in The non-gaseous precursor in the container generates the reaction gas after volatilization, and is input into at least one of the reaction chambers.
  • the pipeline unit is connected between the gas pipelines of a corresponding pair of the precursor containers for transmission between the gas pipelines of a corresponding pair of the precursor containers Reactive gas.
  • the precursor container further includes a flow control device, which is provided in the gas pipeline and used to control the flow of the reaction gas input into the reaction chamber.
  • a flow control device which is provided in the gas pipeline and used to control the flow of the reaction gas input into the reaction chamber.
  • connection point between the pipeline unit and each gas pipeline is located upstream of the flow control device.
  • the number of the precursor container and the reaction chamber are the same, and they are arranged in a one-to-one correspondence; each of the precursor containers and one of the other precursor containers form a pair of The precursor container is provided with the supply adjusting device between each pair of the precursor containers.
  • the present invention also provides a control method of the above reactive gas supply system provided by the present invention, including:
  • the supply adjustment device is controlled to connect the precursor container connected to the reaction chamber in the process stage with the precursor container connected to the reaction chamber in the idle or non-process stage.
  • the pair of precursor containers can be connected by means of a supply adjustment device connected between at least a pair of precursor containers in any combination to realize the precursor container
  • a supply adjustment device connected between at least a pair of precursor containers in any combination to realize the precursor container
  • Fig. 1 is a schematic block diagram of a reactive gas supply system provided by a first embodiment of the present invention
  • FIG. 2 is a schematic block diagram of a reactive gas supply system provided by a second embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a reactive gas supply system provided by a third embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of the reactive gas supply system provided by the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another structure of the reactive gas supply system provided by the first embodiment of the present invention.
  • Fig. 6 is a schematic flowchart of a control method of a reactive gas supply system provided by a fourth embodiment of the present invention.
  • the first embodiment of the present invention provides a reaction gas supply system for supplying reaction gas to two reaction chambers (11, 13), the system includes two precursor containers (12, 14) And the supply adjustment device 17, wherein the two precursor containers (12, 14) are respectively connected to the two reaction chambers (11, 13) for supplying reaction gas to the two reaction chambers (11, 13) respectively.
  • the two reaction chambers (11, 13) and the two precursor containers (12, 14) can be realized in a variety of structures, and the reaction gas can be a variety of existing gases.
  • the supply adjusting device 17 can be implemented in various structures.
  • the supply adjusting device 17 is connected between the two precursor containers (12, 14) for communicating the two. In this way, the gas transport between the two precursor containers (12, 14) can be realized, and one of the precursor containers can supply reaction gas to the other precursor container through the supply adjustment device 17 to realize the supplement of the reaction gas.
  • the precursor container 14 passes through the supply regulator 17 The reaction gas is input into the precursor container 12, so that the supply capacity of the reaction gas can be improved.
  • the precursor container 14 will be adjusted by the supply regulator 17 The reaction gas is fed into the precursor container 14.
  • the reaction gas supply system can use the precursor container connected to the reaction chamber in the idle or non-process stage to supply the gas to the reaction chamber in the process stage when the flow rate is insufficient.
  • the supplementary precursor container transports reaction gas to ensure that the flow rate of the reaction gas provided by the precursor container to the connected reaction chamber is sufficient, thereby ensuring a stable supply of reaction gas, increasing the utilization rate of precursors, and improving production efficiency and products quality.
  • the reaction gas supply system includes three precursor containers (12, 14, 16) and The supply adjustment device 17, in which three precursor containers (12, 14, 16) are connected to the three reaction chambers (11, 13, 15) in a one-to-one correspondence; in the three precursor containers (12, 14, 16) In ), two sets of three pairs of precursor containers are synthesized, and a supply adjustment device 17 is provided between each pair of precursor containers.
  • a supply adjusting device 17 is provided between the two precursor containers (12, 14), between the two precursor containers (12, 16), and between the two precursor containers (14, 16). In this way, the two precursor containers (12, 14), the two precursor containers (12, 16), and the two precursor containers (14, 16) can all be communicated through the supply adjustment device 17.
  • each of the substance containers can provide additional reaction gas to the precursor container connected to the reaction chamber in the process stage through the corresponding supply adjustment device 17, so as to ensure that the precursor container provides sufficient reaction gas flow to the connected reaction chamber , which can ensure a stable supply of reaction gas, increase the utilization rate of precursors, and improve production efficiency and product quality.
  • At least one pair of precursor containers is arbitrarily combined according to specific needs, and a supply adjusting device 17 is provided between each pair of precursor containers.
  • the number of precursor containers and reaction chambers is the same, and they are arranged in a one-to-one correspondence.
  • the present invention is not limited to this.
  • the same precursor container can be One reaction chamber is connected, or may be connected to multiple reaction chambers.
  • different precursor containers can be connected to the same reaction chamber or different reaction chambers.
  • the reaction gas supply system provided by the third embodiment of the present invention provides a specific implementation of the supply adjustment device 17 on the basis of the above-mentioned second embodiment.
  • the supply adjustment device 17a includes a pipeline unit 171 and a pipeline control unit 174; wherein, the pipeline unit 171 is connected between the two precursor containers (12, 14) for transferring gas between the two;
  • the circuit control unit 174 is used to control the on and off of the pipeline unit 171.
  • the supply adjustment device 17b includes a pipeline unit 172 and a pipeline control unit 175; wherein the pipeline unit 172 is connected between the two precursor containers (12, 16) for transmitting gas between the two; pipeline control
  • the unit 175 is used to control the on and off of the pipeline unit 172.
  • the supply adjustment device 17c includes a pipeline unit 173 and a pipeline control unit 176; wherein the pipeline unit 173 is connected between the two precursor containers (14, 16) for transmitting gas between the two; pipeline control The unit 176 is used to control the on/off of the pipeline unit 173.
  • the number of piping units and the connection with the precursor container can also be in other ways, and the number of piping control units is the same as the number of piping units, and they are set in one-to-one correspondence.
  • reaction gas supply system The structure of the reaction gas supply system will be described in detail below by taking the supply system for supplying reaction gas to the two reaction chambers in the above first embodiment as an example. Specifically, as shown in Figure 4,
  • the system includes two precursor containers (308, 312) and a supply adjustment device.
  • the two precursor containers (308, 312) are connected to two reaction chambers (301, 317), respectively, for connecting to the two reaction chambers (301, 317).
  • the precursor container 308 includes a container for storing non-gaseous precursors and gas pipelines respectively connected to the container and the reaction chamber 301. The non-gaseous precursors in the container generate reaction gas by volatilization, and the reaction gas is transported The gas pipeline is input into the reaction chamber 301.
  • the gas pipeline connected to the reaction chamber 301 includes three pipelines (302, 305, and 309).
  • the inlet end of the pipeline 305 is connected to the precursor container 308, and the outlet end is connected to the inlet end of the pipeline 302 and the pipeline 309.
  • the inlet end of the pipe 302 is connected; the outlet end of the pipe 302 is connected to the reaction chamber 301; the outlet end of the pipe 309 is connected to the vacuum pump 303.
  • two vacuum valves (304, 306) are respectively provided on the pipeline 302 and the pipeline 309 to control the on-off of the pipeline.
  • the gas pipeline connected to the reaction chamber 317 includes three pipelines (310, 316, 314), wherein the inlet end of the pipeline 310 is connected to the precursor container 312, and the outlet end is connected to the inlet end of the pipeline 316 and the inlet end of the pipeline 314; The gas outlet end of the pipe 316 is connected to the reaction chamber 317; the gas outlet end of the pipe 314 is connected to the vacuum pump 318.
  • two vacuum valves (315, 313) are respectively provided on the pipeline 316 and the pipeline 314 to control the on-off of the pipeline.
  • a flow control device 307 is also provided in the pipeline 305 for controlling the flow of the reaction gas input into the reaction chamber 301.
  • a flow control device 311 is also provided in the pipeline 310 for controlling the flow of the reaction gas input into the reaction chamber 317.
  • the flow control device may be a flow meter or the like.
  • the precursor container 308 is taken as an example to describe in detail the gas delivery mode of the precursor container. Specifically, the precursor container 308 is placed near the reaction chamber 301, and the non-gaseous precursor in the precursor container 308 is heated. The non-gaseous precursor volatilizes to produce a gaseous reactant, which is stored above the non-gaseous precursor in the precursor container 308. Before the process steps begin, the vacuum valve 304 is closed, and the vacuum valve 306 is opened, so that the reaction gas can enter the vacuum pump 303 through the pipe 305 and the pipe 309 in sequence, and the reaction gas does not enter the reaction chamber 301 at this time.
  • the vacuum valve 304 is opened and the vacuum valve 306 is closed so that the reaction gas can enter the reaction chamber 301 through the pipe 305 and the pipe 302 in sequence, and the flow rate of the reaction gas input into the reaction chamber 301 is controlled by the flow control device 307.
  • the gas delivery method of the precursor container 312 is the same as the foregoing method, and will not be repeated here.
  • the pipeline unit of the supply regulator includes a first pipeline 320 connected between the gas pipelines of two precursor containers (308, 312). Specifically, the first pipeline Two ends of the road 320 are respectively connected to two pipes (305, 310) corresponding to the two precursor containers (308, 312).
  • the pipeline control unit includes a first valve device 319 disposed in the first pipeline 320 for controlling the on and off of the first pipeline 320.
  • the first valve device 319 includes a vacuum valve and the like.
  • connection point between the first pipeline 320 and the two pipelines (305, 310) is located upstream of the two flow control devices (307, 311).
  • the flow control device (307, 311) can adjust the flow rate of the mixed gas of the reaction gas output via the first pipe 320 and the reaction gas output from the precursor container, that is, the flow rate of the gas flowing into the reaction chamber.
  • the vacuum valve 304 is opened and the vacuum valve 306 is closed, and the gaseous precursor in the precursor container 308 is passed into the reaction chamber 301 via the pipe 305 and the pipe 302 in turn.
  • both the vacuum valve 313 and the vacuum valve 315 are closed.
  • the first valve device 319 is opened, and the gaseous precursors in the precursor container 312 pass through the first pipeline 320, the pipeline 305 and the pipeline 302 in turn.
  • the reaction chamber 301 supplies gaseous precursors.
  • the flow control device 307 controls the flow of the reaction gas to ensure a stable flow of the reaction gas.
  • the vacuum valve 315 is opened and the vacuum valve 313 is closed, and the gaseous precursor in the precursor container 312 is passed into the reaction chamber 317 via the pipe 310 and the pipe 315 in sequence.
  • both the vacuum valve 304 and the vacuum valve 306 are closed.
  • the first valve device 319 is opened, and the gaseous precursors in the precursor container 308 pass through the first pipeline 320, the pipeline 310, and the pipeline 315 in turn.
  • the reaction chamber 317 supplies gaseous precursors.
  • the flow control device 311 controls the flow of the reaction gas to ensure a stable flow of the reaction gas.
  • the pipeline unit for supplying the regulating device includes the first pipeline 320, but the present invention is not limited to this. In practical applications, the pipeline unit and the pipeline control unit may also Use any other structure.
  • the pipeline unit of the supply regulator includes a second pipeline 523 and a third pipeline 524, both ends of the second pipeline 523 and the third pipeline 524 are connected in two Between the gas pipelines of the precursor containers (308, 312), specifically, both ends of the second pipeline 523 and both ends of the third pipeline 524 correspond to the two pipelines (503, 518) corresponding to the two precursor containers (503, 518). 505,510) connection.
  • the pipeline control unit includes a second valve device and a third valve device, which are respectively arranged in the second pipeline 523 and the third pipeline 524 for controlling the communication of the second pipeline 523 and the third pipeline 524, respectively.
  • the second valve device controls the second pipeline 523 to conduct in a direction opposite to the third valve device controls the third pipeline 524 to conduct. In this way, it is possible to avoid the occurrence of gas backflow in the second pipe 523 or the third pipe 524.
  • the second valve device provided in the second pipeline 523 includes a vacuum valve 519 and a one-way valve 522.
  • the third valve device provided in the third pipeline 524 includes a vacuum valve 521 and a check valve 522.
  • the vacuum valve 504 is opened and the vacuum valve 506 is closed, and the gaseous precursor in the precursor container 508 is passed into the reaction chamber 501 via the pipe 505 and the pipe 502 in sequence.
  • both the vacuum valve 513 and the vacuum valve 515 are closed.
  • the vacuum valve 519 in the second valve device open the vacuum valve 519 in the second valve device.
  • the pressure of the gas in the precursor container 512 is higher than that in the precursor container 508
  • the pressure causes the one-way valve 520 to open, and the gaseous precursor in the precursor container 512 sequentially supplies the gaseous precursor to the reaction chamber 501 via the second pipeline 523, the pipeline 505, and the pipeline 502.
  • the flow control device 507 Control the flow rate of the reaction gas to ensure a stable flow rate of the reaction gas.
  • the vacuum valve 515 is opened and the vacuum valve 513 is closed, and the gaseous precursor in the precursor container 512 is passed into the reaction chamber 517 via the pipe 510 and the pipe 516 in turn.
  • both the vacuum valve 504 and the vacuum valve 506 are closed.
  • the vacuum valve 521 in the third valve device open the vacuum valve 521 in the third valve device. At this time, the pressure of the gas in the precursor container 508 is higher than that in the precursor container 512.
  • the one-way valve 522 opens, and the gaseous precursor in the precursor container 508 sequentially supplies the gaseous precursor to the reaction chamber 517 via the third pipeline 524, the pipeline 510, and the pipeline 516.
  • the flow control device 511 controls The flow rate of the reaction gas is to ensure a stable flow rate of the reaction gas.
  • the reaction gas supply system provided by the above embodiments of the present invention can realize the precursors by connecting the pair of precursor containers with the supply adjusting device connected between at least a pair of precursor containers in any combination.
  • the gas transport between the containers can make it possible to use at least one precursor container connected to the reaction chamber in an idle or non-process stage when the gas supplied to each reaction chamber in the process stage is insufficient.
  • the precursor container to be replenished transports the reaction gas to ensure that the flow rate of the reaction gas provided by the precursor container to the connected reaction chamber is sufficient, thereby ensuring a stable supply of the reaction gas, increasing the utilization rate of the precursor, and improving production efficiency and product quality.
  • a fourth embodiment of the present invention provides a control method of a reactive gas supply system, and the method includes:
  • Step 601 Determine whether the flow rate of the reaction gas provided to the reaction chamber in the process stage is lower than the preset flow threshold; if yes, go to step 602; if not, go back to step 601;
  • Step 602 Control the supply adjustment device to connect the precursor container connected to the reaction chamber in the process stage with the precursor container connected to the reaction chamber in the idle or non-process stage.
  • the control method of the reaction gas supply system can use the reaction chamber connected to the idle or non-process stage when the gas supplied to each reaction chamber in the process stage is insufficient.
  • At least one precursor container delivers reaction gas to the precursor container to be replenished to ensure that the precursor container provides sufficient reaction gas flow to the connected reaction chamber, thereby ensuring a stable supply of reaction gas and improving the use of precursors Rate, improve production efficiency and product quality.
  • fixed connection can be understood as a fixed connection that can be detached (for example, connected by bolts or screws), or It is understood as: a non-detachable fixed connection (such as riveting, welding).
  • a non-detachable fixed connection such as riveting, welding
  • the mutual fixed connection can also be replaced by an integrated structure (for example, manufactured by integral molding using a casting process) (except obviously that the integral molding process cannot be used).
  • any of the technical solutions disclosed in the present invention to indicate a positional relationship or shape include a state or shape similar to, similar to, or close to it, unless otherwise stated.
  • Any component provided by the present invention can be assembled from a plurality of separate components, or can be a single component manufactured by an integral forming process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

一种反应气体供应系统及其控制方法,其中的反应气体供应系统包括多个前驱物容器(12,14)和供给调节装置(17);其中,前驱物容器(12,14)与至少一个反应腔室(11,13)连接;在多个前驱物容器(12,14)中,有任意组合的至少一对前驱物容器(12,14),每对前驱物容器(12,14)之间设置有供给调节装置(17),该供给调节装置(17)用于将与之对应的一对前驱物容器(12,14)相连通。通过该反应气体供应系统及其控制方法,可以保证反应气体稳定供应,提高前驱物的使用率,提高生产效率以及产品质量。

Description

反应气体供应系统及其控制方法 技术领域
本发明涉及半导体制造技术领域,尤其涉及一种反应气体供应系统及其控制方法。
背景技术
半导体工艺包括化学气相沉积(Chemical Vapor Deposition,以下简称CVD)、物理气相沉积(Physical Vapor Deposition,以下简称PVD)、湿法刻蚀(Wet Clean)、原子层沉积(Atomic Layer Deposition,以下简称ALD)等的多种工艺类型。CVD工艺和ALD工艺因在台阶覆盖率(Step Coverage)等方面更具优势,越来越多地被应用到半导体工艺流程中。
CVD工艺和ALD工艺一般涉及多种气态反应,反应气体的消耗量也较大,因此需要供应高纯气体以及非气态前驱物等。对于非气态前驱物,需要通过加热使前驱物挥发变成气态反应物,然后将其通入反应腔室进行反应,并通过流量计来控制反应气体流量。但是,如果在反应阶段无法充足、稳定地供应气态前驱物,则会影响工艺结果。
为此,现有的一种方法是通过提高前驱物容器的加热温度,来提高前驱物挥发速率,但是由于加热温度不可高于前驱物分解温度,这限制了前驱物挥发速率的提高程度,反应气体供应能力的改善有限。而且,提高加热温度需要适应性地配备规格更高的加热部件及耐热部件等,增加了设备成本。
现有的另一种方法是通过减少前驱物容器中前驱物所占用的体积,来提升前驱物容器储存气态前驱物的体积,从而增强了反应气体供应能力,但这同时会增加前驱物补充更换频率,降低设备产能。虽然可以通过增加前驱物容器的体积和数量,来增强反应气体供应能力,但这又会增加设备占用的洁 净间面积(throughput),也会增加产品成本。因此,目前亟需一种能够解决反应气体供应能力不足的技术方案。
发明内容
有鉴于此,本发明实施例提供一种反应气体供应系统及其控制方法,其可以保证反应气体稳定供应,提高前驱物的使用率,提高生产效率以及产品质量。
根据本发明实施例的一个方面,提供一种反应气体供应系统,用于向多个反应腔室提供反应气体;包括多个前驱物容器和供给调节装置;其中,所述前驱物容器与至少一个所述反应腔室连接;在多个所述前驱物容器中,有任意组合的至少一对所述前驱物容器,每对所述前驱物容器之间设置有所述供给调节装置,所述供给调节装置用于将与之对应的一对所述前驱物容器相连通。
可选的,所述供给调节装置包括管路单元和管路控制单元;所述管路控制单元的数量与所述管路单元的数量相同,且各所述管路控制单元用于控制对应的所述管路单元的通断;其中,所述管路单元连接在对应的一对所述所述前驱物容器之间,用于传输反应气体。
可选的,所述管路单元包括第一管路,所述第一管路的两端分别与对应的一对所述前驱物容器连接;
所述管路控制单元包括第一阀门装置,所述第一阀门装置设置在对应的所述第一管路中,用于控制所述第一管路的通断。
可选的,所述第一阀门装置包括真空阀。
可选的,所述管路单元包括第二管路和第三管路,所述第二管路的两端和第三管路的两端均与对应的一对所述前驱物容器连接;
所述管路控制单元包括第二阀门装置和第三阀门装置,所述第二阀门装 置和所述第三阀门装置分别设置在所述第二管路和所述第三管路中,用于分别控制所述第二管路和所述第三管路的通断,且能够使其所在的管路单向导通,并且所述第二阀门装置控制所述第二管路导通的方向与所述第三阀门装置控制所述第三管路导通的方向相反。
可选的,所述第二阀门装置和所述第三阀门装置均包括真空阀和单向阀。
可选的,所述前驱物容器包括用于存储非气态前驱物的容器和分别与所述容器和至少一个所述反应腔室均连接的输气管路,所述输气管路用于将存储于所述容器内的所述非气态前驱物通过挥发后产生所述反应气体,输入至少一个所述反应腔室。
可选的,所述管路单元连接在对应的一对所述前驱物容器的所述输气管路之间,用于在对应的一对所述前驱物容器的所述输气管路之间传输反应气体。
可选的,所述前驱物容器还包括流量控制装置,所述流量控制装置设置在所述输气管路中,用于控制输入所述反应腔室的所述反应气体的流量。
可选的,在各所述输气管路的气体输送方向上,所述管路单元与各所述输气管路的连通点位于所述流量控制装置的上游。
可选的,所述前驱物容器与所述反应腔室的数量相同,且一一对应地设置;每个所述前驱物容器均与其他前驱物容器中的一个驱物容器组成一对所述前驱物容器,每对所述前驱物容器之间设置有所述供给调节装置。
作为另一个技术方案,本发明还提供一种本发明提供的上述反应气体供应系统的控制方法,包括:
判断向处于工艺阶段的反应腔室提供的反应气体的流量是否低于预设的流量阈值;
若是,则控制所述供给调节装置将所述处于工艺阶段的反应腔室所连接 的所述前驱物容器与处于闲置或非工艺阶段的反应腔室所连接的所述前驱物容器相连通。
本发明的有益效果:
本发明提供的反应气体供应系统及其控制方法的技术方案中,借助连接在任意组合的至少一对前驱物容器之间的供给调节装置,将该对前驱物容器相连通,可以实现前驱物容器之间的气体输送,从而可以在向处于工艺阶段的各反应腔室提供的气体出现流量不足的情况时,可以利用处于闲置或非工艺阶段的反应腔室所连接的至少一个前驱物容器向待补充的前驱物容器输送反应气体,以保证该前驱物容器向所连接的反应腔室提供的反应气体的流量充足,从而可以保证反应气体稳定供应,提高前驱物的使用率,提高生产效率以及产品质量。
本发明实施例附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图:
图1为本发明第一实施例提供的反应气体供应系统的原理框图;
图2为本发明第二实施例提供的反应气体供应系统的原理框图;
图3为本发明第三实施例提供的反应气体供应系统的原理框图;
图4为本发明第一实施例提供的反应气体供应系统的一种结构示意图;
图5为本发明第一实施例提供的反应气体供应系统的另一种结构示意图;
图6为本发明第四实施例提供的反应气体供应系统的控制方法的流程示 意图。
具体实施方式
下面参照附图对本发明进行更全面的描述,其中说明本发明的示例性实施例。下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合图和实施例对本发明的技术方案进行多方面的描述。
下文为了叙述方便,下文中所称的“左”、“右”、“上”、“下”与附图本身的左、右、上、下方向一致。下文中的“第一”、“第二”等,仅用于描述上相区别,并没有其它特殊的含义。
如图1所示,本发明第一实施例提供一种反应气体供应系统,用于向两个反应腔室(11,13)提供反应气体,该系统包括两个前驱物容器(12,14)和供给调节装置17,其中,两个前驱物容器(12,14)分别与两个反应腔室(11,13)连接,用于分别向两个反应腔室(11,13)提供反应气体。两个反应腔室(11,13)和两个前驱物容器(12,14)可以实现为多种结构,反应气体可以为现有的多种气体。
供给调节装置17可以实现为多种结构。该供给调节装置17连接在两个前驱物容器(12,14)之间,用于将二者连通。这样,可以实现两个前驱物容器(12,14)之间的气体输送,其中一个前驱物容器可以通过供给调节装置17向其中另一个前驱物容器供应反应气体,以实现反应气体的补充。
在工艺过程中,若反应腔室11处于工艺阶段,反应腔室13处于闲置或非工艺阶段,在前驱物容器12向反应腔室11提供反应气体的同时,前驱物容器14通过供给调节装置17将反应气体输入前驱物容器12中,从而可以 提高反应气体的供应能力。类似的,若反应腔室13处于工艺阶段,反应腔室11处于闲置或非工艺阶段,则在前驱物容器14向反应腔室13提供反应气体的同时,前驱物容器12通过供给调节装置17将反应气体输入前驱物容器14中。
本实施例提供的反应气体供应系统,可以在向处于工艺阶段的反应腔室提供的气体出现流量不足的情况时,可以利用处于闲置或非工艺阶段的反应腔室所连接的前驱物容器向待补充的前驱物容器输送反应气体,以保证该前驱物容器向所连接的反应腔室提供的反应气体的流量充足,从而可以保证反应气体稳定供应,提高前驱物的使用率,提高生产效率以及产品质量。
如图2所示,本发明第二实施例提供的反应气体供应系统,其与上述第一实施例相比,区别在于:反应气体供应系统包括三个前驱物容器(12、14、16)和供给调节装置17,其中,三个前驱物容器(12、14、16)一一对应地与三个反应腔室(11、13、15)连接;在三个前驱物容器(12、14、16)中,两两组合成三对前驱物容器,每对前驱物容器之间设置有供给调节装置17。具体地,两个前驱物容器(12、14)之间、两个前驱物容器(12、16)之间以及两个前驱物容器(14、16)之间均设置有供给调节装置17。这样,两个前驱物容器(12、14)之间、两个前驱物容器(12、16)之间以及两个前驱物容器(14、16)之间均可以通过供给调节装置17实现连通。
由此,三个反应腔室(11、13、15)中的任意一个反应腔室处于工艺阶段时,若其余两个反应腔室中有至少一个处于闲置或非工艺阶段,与之连接的前驱物容器均可通过相应的供给调节装置17向处于工艺阶段的反应腔室连接的前驱物容器提供附加的反应气体,以保证该前驱物容器向所连接的反应腔室提供的反应气体的流量充足,从而可以保证反应气体稳定供应,提高前驱物的使用率,提高生产效率以及产品质量。
在实际应用中,根据具体需要,任意组合至少一对前驱物容器,并在每 对前驱物容器之间设置供给调节装置17。
需要说明的是,在本实施例中,前驱物容器与反应腔室的数量相同,且一一对应地设置,但是,本发明并不局限于此,在实际应用中,同一前驱物容器可以与一个反应腔室连接,或者也可以与多个反应腔室连接。并且,不同的前驱物容器可以连接相同的反应腔室,也可以连接不同的反应腔室。
如图3所示,本发明第三实施例提供的反应气体供应系统,其是在上述第二实施例的基础上,提供了供给调节装置17的具体实施方式。
具体地,供给调节装置17为三个,分别为供给调节装置17a、供给调节装置17b和供给调节装置17c。其中,供给调节装置17a包括管路单元171和管路控制单元174;其中,管路单元171连接在两个前驱物容器(12,14)之间,用于在二者之间传输气体;管路控制单元174用于控制管路单元171的通断。供给调节装置17b包括管路单元172和管路控制单元175;其中,管路单元172连接在两个前驱物容器(12,16)之间,用于在二者之间传输气体;管路控制单元175用于控制管路单元172的通断。供给调节装置17c包括管路单元173和管路控制单元176;其中,管路单元173连接在两个前驱物容器(14,16)之间,用于在二者之间传输气体;管路控制单元176用于控制管路单元173的通断。
当然,在实际应用中,管路单元的数量和与前驱物容器的连接还可以采用其他多种方式,并且管路控制单元的数量与管路单元的数量相同,且一一对应地设置。
下面以上述第一实施例中向两个反应腔室提供反应气体的供应系统为例,对反应气体供应系统的结构进行详细描述。具体地,如图4所示,
该系统包括两个前驱物容器(308,312)和供给调节装置,其中,两个前驱物容器(308,312)分别与两个反应腔室(301,317)连接,用于分别向两个反应腔室(301,317)提供反应气体。并且,前驱物容器308包括用于存储非 气态前驱物的容器和分别与该容器和反应腔室301连接的输气管路,该容器内的非气态前驱物通过挥发产生反应气体,反应气体通过输气管路输入反应腔室301。
在本实施例中,与反应腔室301连接的输气管路包括三条管道(302,305,309),其中,管道305的进气端与前驱物容器308连接,出气端与管道302的进气端和管道309的进气端连接;管道302的出气端与反应腔室301连接;管道309的出气端与真空泵303连接。并且,在管道302和管道309上分别设置有两个真空阀(304,306),用于控制管道的通断。
与反应腔室317连接的输气管路包括三条管道(310,316,314),其中,管道310的进气端与前驱物容器312连接,出气端与管道316的进气端和管道314的进气端连接;管道316的出气端与反应腔室317连接;管道314的出气端与真空泵318连接。并且,在管道316和管道314上分别设置有两个真空阀(315,313),用于控制管道的通断。
在本实施例中,对于前驱物容器308,在管道305中还设置有流量控制装置307,用于控制输入反应腔室301的反应气体的流量。对于前驱物容器312,在管道310中还设置有流量控制装置311,用于控制输入反应腔室317的反应气体的流量。流量控制装置可以为流量计等。
下面以前驱物容器308为例对前驱物容器的气体输送方式进行详细描述,具体地,前驱物容器308在反应腔室301附近放置,通过对前驱物容器308中的非气态前驱物进行加热,非气态前驱物挥发产生气态反应物,并储存在前驱物容器308中非气态前驱物的上方。工艺步骤开始之前,真空阀304关闭,真空阀306打开,以使反应气体能够依次经由管道305和管道309进入真空泵303,此时反应气体没有进入反应腔室301中。工艺开始时,真空阀304打开,真空阀306关闭,以使反应气体能够依次经由管道305和管道302进入反应腔室301,同时通过流量控制装置307控制输入反应腔室301 的反应气体的流量。前驱物容器312的气体输送方式与前述方式相同,再此不再赘述。
在本实施例中,供给调节装置的管路单元包括第一管路320,该第一管路320连接在两个前驱物容器(308,312)的输气管路之间,具体的,该第一管路320的两端分别与两个前驱物容器(308,312)对应的两个管道(305,310)连接。管路控制单元包括第一阀门装置319,该第一阀门装置319设置在第一管路320中,用于控制第一管路320的通断。第一阀门装置319包括真空阀等。
在一个实施例中,在输气管路的气体输送方向上,第一管路320与两个管道(305,310)的连通点位于两个流量控制装置(307,311)的上游。这样,流量控制装置(307,311)可以调节经由第一管路320输出的反应气体与前驱物容器输出的反应气体的混合气体的流量,即,流入反应腔室内的气体流量。
当反应腔室301处于工艺阶段时,真空阀304打开,真空阀306关闭,前驱物容器308中的气态前驱物依次经由管道305和管道302通入反应腔室301中。当反应腔室317处于闲置或非工艺阶段时,真空阀313和真空阀315均关闭。随着工艺的进行,若前驱物容器308出现气态前驱物供应不足的情况,打开第一阀门装置319,前驱物容器312中的气态前驱物依次经由第一管路320、管道305和管道302向反应腔室301供应气态前驱物,在此过程中,流量控制装置307控制反应气体的流量,以保证反应气体流量稳定。
当反应腔室317处于工艺阶段时,真空阀315打开,真空阀313关闭,前驱物容器312中的气态前驱物依次经由管道310和管道315通入反应腔室317中。反应腔室301处于闲置或非工艺阶段时,真空阀304和真空阀306均关闭。随着工艺的进行,若前驱物容器317出现气态前驱物供应不足的情况,打开第一阀门装置319,前驱物容器308中的气态前驱物依次经由第一管路 320、管道310和管道315向反应腔室317供应气态前驱物,在此过程中,流量控制装置311控制反应气体的流量,以保证反应气体流量稳定。
需要说明的是,在本实施例中,供给调节装置的管路单元包括第一管路320,但是,本发明并不局限于此,在实际应用中,管路单元和管路控制单元还可以采用其他任意结构。
例如,如图5所示,供给调节装置的管路单元包括第二管路523和第三管路524,第二管路523的两端和第三管路524的两端均连接在两个前驱物容器(308,312)的输气管路之间,具体的,第二管路523的两端和第三管路524的两端均分别与两个前驱物容器(503,518)对应的两个管道(505,510)连接。
管路控制单元包括第二阀门装置和第三阀门装置,二者分别设置在第二管路523和第三管路524中,用于分别控制第二管路523和第三管路524的通断,且能够使其所在的管路单向导通,并且第二阀门装置控制第二管路523导通的方向与第三阀门装置控制第三管路524导通的方向相反。这样,可以避免第二管路523或第三管路524出现气体反流的情况。
在本实施例中,设置在第二管路523中的第二阀门装置包括真空阀519和单向阀522。设置在第三管路524中的第三阀门装置包括真空阀521和单向阀522。
当反应腔室501处于工艺阶段时,真空阀504打开,真空阀506关闭,前驱物容器508中的气态前驱物依次经由管道505和管道502通入反应腔室501中。当反应腔室517处于闲置或非工艺阶段时,真空阀513和真空阀515均关闭。随着工艺的进行,若前驱物容器508出现气态前驱物供应不足的情况,打开第二阀门装置中的真空阀519,此时前驱物容器512中的气体压力高于前驱物容器508中的气体压力,使得单向阀520打开,前驱物容器512中的气态前驱物依次经由第二管路523、管道505和管道502向反应腔室501 供应气态前驱物,在此过程中,流量控制装置507控制反应气体的流量,以保证反应气体流量稳定。
当反应腔室517处于工艺阶段时,真空阀515打开,真空阀513关闭,前驱物容器512中的气态前驱物依次经由管道510和管道516通入反应腔室517中。反应腔室501处于闲置或非工艺阶段时,真空阀504和真空阀506均关闭。随着工艺的进行,若前驱物容器517出现气态前驱物供应不足的情况,打开第三阀门装置中的真空阀521,此时前驱物容器508中的气体压力高于前驱物容器512中的气体压力,单向阀522打开,前驱物容器508中的气态前驱物依次经由第三管路524、管道510和管道516向反应腔室517供应气态前驱物,在此过程中,流量控制装置511控制反应气体的流量,以保证反应气体流量稳定。
综上所述,本发明上述各实施例提供的反应气体供应系统,借助连接在任意组合的至少一对前驱物容器之间的供给调节装置,将该对前驱物容器相连通,可以实现前驱物容器之间的气体输送,从而可以在向处于工艺阶段的各反应腔室提供的气体出现流量不足的情况时,可以利用处于闲置或非工艺阶段的反应腔室所连接的至少一个前驱物容器向待补充的前驱物容器输送反应气体,以保证该前驱物容器向所连接的反应腔室提供的反应气体的流量充足,从而可以保证反应气体稳定供应,提高前驱物的使用率,提高生产效率以及产品质量。
作为另一个技术方案,如图6所示,本发明第四实施例提供一种反应气体供应系统的控制方法,该方法包括:
步骤601、判断向处于工艺阶段的反应腔室提供的反应气体的流量是否低于预设的流量阈值;若是,则进行步骤602;若否,则返回步骤601;
步骤602、控制供给调节装置将处于工艺阶段的反应腔室所连接的前驱物容器与处于闲置或非工艺阶段的反应腔室所连接的前驱物容器相连通。
本发明实施例提供的反应气体供应系统的控制方法,可以在向处于工艺阶段的各反应腔室提供的气体出现流量不足的情况时,可以利用处于闲置或非工艺阶段的反应腔室所连接的至少一个前驱物容器向待补充的前驱物容器输送反应气体,以保证该前驱物容器向所连接的反应腔室提供的反应气体的流量充足,从而可以保证反应气体稳定供应,提高前驱物的使用率,提高生产效率以及产品质量。
上述本发明所公开的任一技术方案除另有声明外,如果其公开了数值范围,那么公开的数值范围均为优选的数值范围,任何本领域的技术人员应该理解:优选的数值范围仅仅是诸多可实施的数值中技术效果比较明显或具有代表性的数值。由于数值较多,无法穷举,所以本发明才公开部分数值以举例说明本发明的技术方案,并且,上述列举的数值不应构成对本发明创造保护范围的限制。
同时,上述本发明如果公开或涉及了互相固定连接的零部件或结构件,那么,除另有声明外,固定连接可以理解为:能够拆卸地固定连接(例如使用螺栓或螺钉连接),也可以理解为:不可拆卸的固定连接(例如铆接、焊接),当然,互相固定连接也可以为一体式结构(例如使用铸造工艺一体成形制造出来)所取代(明显无法采用一体成形工艺除外)。
另外,上述本发明公开的任一技术方案中所应用的用于表示位置关系或形状的术语除另有声明外其含义包括与其近似、类似或接近的状态或形状。本发明提供的任一部件既可以是由多个单独的组成部分组装而成,也可以为一体成形工艺制造出来的单独部件。
以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术 方案范围当中。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (12)

  1. 一种反应气体供应系统,用于向多个反应腔室提供反应气体;其特征在于,包括多个前驱物容器和供给调节装置;其中,所述前驱物容器与至少一个所述反应腔室连接;在多个所述前驱物容器中,有任意组合的至少一对所述前驱物容器,每对所述前驱物容器之间设置有所述供给调节装置,所述供给调节装置用于将与之对应的一对所述前驱物容器相连通。
  2. 如权利要求1所述的系统,其特征在于,
    所述供给调节装置包括管路单元和管路控制单元,所述管路控制单元的数量与所述管路单元的数量相同,且各所述管路控制单元用于控制对应的所述管路单元的通断;其中,所述管路单元连接在对应的一对所述前驱物容器之间,用于传输反应气体。
  3. 如权利要求2所述的系统,其特征在于,
    所述管路单元包括第一管路,所述第一管路的两端分别与对应的一对所述前驱物容器连接;
    所述管路控制单元包括第一阀门装置,所述第一阀门装置设置在对应的所述第一管路中,用于控制所述第一管路的通断。
  4. 如权利要求3所述的系统,其特征在于,
    所述第一阀门装置包括真空阀。
  5. 如权利要求2所述的系统,其特征在于,
    所述管路单元包括第二管路和第三管路,所述第二管路的两端和第三管路的两端均与对应的一对所述前驱物容器连接;
    所述管路控制单元包括第二阀门装置和第三阀门装置,所述第二阀门装 置和所述第三阀门装置分别设置在所述第二管路和所述第三管路中,用于分别控制所述第二管路和所述第三管路的通断,且能够使其所在的管路单向导通,并且所述第二阀门装置控制所述第二管路导通的方向与所述第三阀门装置控制所述第三管路导通的方向相反。
  6. 如权利要求5所述的系统,其特征在于,
    所述第二阀门装置和所述第三阀门装置均包括真空阀和单向阀。
  7. 如权利要求2所述的系统,其特征在于,
    所述前驱物容器包括用于存储非气态前驱物的容器和分别与所述容器和至少一个所述反应腔室均连接的输气管路,所述输气管路用于将存储于所述容器内的所述非气态前驱物通过挥发后产生所述反应气体,输入至少一个所述反应腔室。
  8. 如权利要求7所述的系统,其特征在于,
    所述管路单元连接在对应的一对所述前驱物容器的所述输气管路之间,用于在对应的一对所述前驱物容器的所述输气管路之间传输反应气体。
  9. 如权利要求8所述的系统,其特征在于,
    所述前驱物容器还包括流量控制装置,所述流量控制装置设置在所述输气管路中,用于控制输入所述反应腔室的所述反应气体的流量。
  10. 如权利要求9所述的系统,其特征在于,
    在各所述输气管路的气体输送方向上,所述管路单元与各所述输气管路的连通点位于所述流量控制装置的上游。
  11. 如权利要求1所述的系统,其特征在于,
    所述前驱物容器与所述反应腔室的数量相同,且一一对应地设置;每个所述前驱物容器均与其他前驱物容器中的一个驱物容器组成一对所述前驱物容器,每对所述前驱物容器之间设置有所述供给调节装置。
  12. 一种权利要求1-11任一所述的反应气体供应系统的控制方法,其特征在于,包括:
    判断向处于工艺阶段的反应腔室提供的反应气体的流量是否低于预设的流量阈值;
    若是,则控制所述供给调节装置将所述处于工艺阶段的反应腔室所连接的所述前驱物容器与处于闲置或非工艺阶段的反应腔室所连接的所述前驱物容器相连通。
PCT/CN2020/082269 2019-04-16 2020-03-31 反应气体供应系统及其控制方法 WO2020211630A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021560981A JP2022526453A (ja) 2019-04-16 2020-03-31 反応ガス供給システムおよびその制御方法
US17/603,057 US11708636B2 (en) 2019-04-16 2020-03-31 Reaction gas supply system and control method thereof
SG11202111300PA SG11202111300PA (en) 2019-04-16 2020-03-31 Reaction gas supply system and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910305543.7A CN110176414B (zh) 2019-04-16 2019-04-16 反应气体供应系统及其控制方法
CN201910305543.7 2019-04-16

Publications (1)

Publication Number Publication Date
WO2020211630A1 true WO2020211630A1 (zh) 2020-10-22

Family

ID=67689960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082269 WO2020211630A1 (zh) 2019-04-16 2020-03-31 反应气体供应系统及其控制方法

Country Status (6)

Country Link
US (1) US11708636B2 (zh)
JP (1) JP2022526453A (zh)
CN (1) CN110176414B (zh)
SG (1) SG11202111300PA (zh)
TW (1) TWI735196B (zh)
WO (1) WO2020211630A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176414B (zh) 2019-04-16 2020-10-16 北京北方华创微电子装备有限公司 反应气体供应系统及其控制方法
CN110965050A (zh) * 2019-12-25 2020-04-07 北京北方华创微电子装备有限公司 半导体设备及其供气系统
CN113701050B (zh) * 2021-09-01 2022-12-23 广州粤芯半导体技术有限公司 供气系统及离子源的供气方法
CN115193277A (zh) * 2022-06-17 2022-10-18 深圳市德明利光电有限公司 一种用于氧化制程的气体混合装置及处理设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251220A (zh) * 2010-05-19 2011-11-23 鸿富锦精密工业(深圳)有限公司 混合气体供给系统、溅镀装置及溅镀方法
CN102597311A (zh) * 2009-09-04 2012-07-18 东洋炭素株式会社 气体供给系统
CN103681412A (zh) * 2012-09-04 2014-03-26 阿斯莫Ip控股公司 含多反应器的半导体处理装置及为其提供处理气体的方法
CN107400878A (zh) * 2017-07-26 2017-11-28 北京芯微诺达科技有限公司 一种原子层沉积设备的进气系统及其方法
US20180301342A1 (en) * 2017-04-14 2018-10-18 Asm Ip Holding B.V. Methods for manufacturing semiconductor devices
CN109576674A (zh) * 2018-12-25 2019-04-05 北京北方华创微电子装备有限公司 原子层沉积设备
CN110176414A (zh) * 2019-04-16 2019-08-27 北京北方华创微电子装备有限公司 反应气体供应系统及其控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478935U (zh) * 1990-11-20 1992-07-09
US6863019B2 (en) * 2000-06-13 2005-03-08 Applied Materials, Inc. Semiconductor device fabrication chamber cleaning method and apparatus with recirculation of cleaning gas
JP2002129337A (ja) * 2000-10-24 2002-05-09 Applied Materials Inc 気相堆積方法及び装置
US6413321B1 (en) * 2000-12-07 2002-07-02 Applied Materials, Inc. Method and apparatus for reducing particle contamination on wafer backside during CVD process
EP1271666A3 (en) * 2001-06-22 2006-01-25 Fujikura Ltd. Oxide superconductor layer and its production method
WO2003041881A1 (en) * 2001-11-15 2003-05-22 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Source liquid supply apparatus having a cleaning function
JP2007211326A (ja) * 2006-02-13 2007-08-23 Nec Electronics Corp 成膜装置および成膜方法
US8235001B2 (en) * 2007-04-02 2012-08-07 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
US8496756B2 (en) * 2010-04-30 2013-07-30 Applied Materials, Inc. Methods for processing substrates in process systems having shared resources
US9238865B2 (en) * 2012-02-06 2016-01-19 Asm Ip Holding B.V. Multiple vapor sources for vapor deposition
WO2014074589A1 (en) * 2012-11-06 2014-05-15 Applied Materials, Inc. Apparatus for spatial atomic layer deposition with recirculation and methods of use
CN203653697U (zh) * 2013-12-31 2014-06-18 中国科学院微电子研究所 一种pecvd系统
CN106756872B (zh) * 2016-12-21 2019-05-10 电子科技大学 一种高通量cvd制备硅碳氧薄膜的装置
JP6925196B2 (ja) * 2017-07-31 2021-08-25 東京エレクトロン株式会社 処理装置及び処理方法
CN109321895B (zh) * 2017-07-31 2023-06-16 北京北方华创微电子装备有限公司 一种用于ald工艺的气体传输装置及其进气方法
JP6719523B2 (ja) * 2018-09-18 2020-07-08 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法および記録媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597311A (zh) * 2009-09-04 2012-07-18 东洋炭素株式会社 气体供给系统
CN102251220A (zh) * 2010-05-19 2011-11-23 鸿富锦精密工业(深圳)有限公司 混合气体供给系统、溅镀装置及溅镀方法
CN103681412A (zh) * 2012-09-04 2014-03-26 阿斯莫Ip控股公司 含多反应器的半导体处理装置及为其提供处理气体的方法
US20180301342A1 (en) * 2017-04-14 2018-10-18 Asm Ip Holding B.V. Methods for manufacturing semiconductor devices
CN107400878A (zh) * 2017-07-26 2017-11-28 北京芯微诺达科技有限公司 一种原子层沉积设备的进气系统及其方法
CN109576674A (zh) * 2018-12-25 2019-04-05 北京北方华创微电子装备有限公司 原子层沉积设备
CN110176414A (zh) * 2019-04-16 2019-08-27 北京北方华创微电子装备有限公司 反应气体供应系统及其控制方法

Also Published As

Publication number Publication date
CN110176414A (zh) 2019-08-27
US11708636B2 (en) 2023-07-25
CN110176414B (zh) 2020-10-16
TWI735196B (zh) 2021-08-01
SG11202111300PA (en) 2021-11-29
US20220145458A1 (en) 2022-05-12
JP2022526453A (ja) 2022-05-24
TW202105562A (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
WO2020211630A1 (zh) 反应气体供应系统及其控制方法
CN103649367A (zh) 半导体制造装置的原料气体供给装置
JP2013229001A (ja) 流体制御システム、流体制御方法
TW200844700A (en) Method and apparatus for pressure and mix ratio control
CN105316660A (zh) 气相生长装置及气相生长方法
CN111394789A (zh) 化学气相沉积设备的进气结构、进气方法及设备
CN104975270A (zh) 用于在化学气相沉积反应器上净化废气的设备和方法
CN113416945B (zh) 原子层沉积设备的进气装置及原子层沉积设备
WO2020062607A1 (zh) 进气系统、原子层沉积设备和方法
JP2024511818A (ja) プラズマ増強原子層堆積装置及び方法
WO2023213128A1 (zh) 用于薄膜沉积的系统、设备和方法
CN111996501B (zh) 原料气化装置和镀膜设备及其气化方法
CN109423695A (zh) 掺杂源供应管路及化学气相沉积系统
CN107075660A (zh) 具有在多个位置处进料的稀释气体流的经调温的导气管
CN110541159A (zh) 原子层沉积设备及方法
WO2004070801A1 (ja) 流体制御装置および熱処理装置
CN101457351B (zh) 气体分配系统和应用该气体分配系统的半导体处理设备
CN110777428B (zh) 一种气体输运系统
TWI719638B (zh) 液體輸送設備、液體輸送及蒸發方法、以及半導體製造系統
TW200413666A (en) Fluid controller and heat treatment device
TW201020445A (en) Gas supply system, pumping system, coating system, gas supply method, and pumping method
CN111863589A (zh) 吹扫方法及结构、沉积工艺及进气系统
CN220926927U (zh) Mad设备的进气系统
US11107704B2 (en) Gas input system for a substrate processing chamber
CN117612920B (zh) 反应气体切换系统及等离子体处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791253

Country of ref document: EP

Kind code of ref document: A1