WO2023213128A1 - 用于薄膜沉积的系统、设备和方法 - Google Patents

用于薄膜沉积的系统、设备和方法 Download PDF

Info

Publication number
WO2023213128A1
WO2023213128A1 PCT/CN2023/079570 CN2023079570W WO2023213128A1 WO 2023213128 A1 WO2023213128 A1 WO 2023213128A1 CN 2023079570 W CN2023079570 W CN 2023079570W WO 2023213128 A1 WO2023213128 A1 WO 2023213128A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
valve
pipeline
output channel
annular groove
Prior art date
Application number
PCT/CN2023/079570
Other languages
English (en)
French (fr)
Inventor
黄明策
野沢俊久
李晶
柴雪
Original Assignee
拓荆科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拓荆科技股份有限公司 filed Critical 拓荆科技股份有限公司
Publication of WO2023213128A1 publication Critical patent/WO2023213128A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the present application relates generally to semiconductor device manufacturing, and more particularly, to systems, apparatus, and methods for thin film deposition.
  • Thin film deposition processes generally include PECVD (Plasma Enhanced Chemical Vapor Deposition), ALD (Atomic Layer Deposition), CVD (Chemical Vapor Deposition) and PEALD (Plasma Enhanced Atomic Layer Deposition).
  • PECVD Pullasma Enhanced Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • CVD Chemical Vapor Deposition
  • PEALD Plasma Enhanced Atomic Layer Deposition
  • the rate of gas provided to the reaction chamber can affect the thickness and thickness uniformity of the deposited film, with lower gas rates leading to poorer film uniformity. Furthermore, it is also desirable to reduce the rate of precursor-carrying gas to control precursor consumption and thereby reduce costs.
  • This application proposes a system for thin film deposition that can increase productivity and improve film performance while ensuring cost, such as optimizing particulate matter and improving film uniformity.
  • the present application provides a system for thin film deposition, which includes: a pipeline system including a first pipeline; a liquid tank including a valve group configured to transfer the first gas delivered to the first pipeline; a heating device configured to heat the second gas and provide the heated second gas to the first pipeline; and a reaction device including a gas mixing device, The gas mixing device is configured to receive the first gas and the heated second gas from a first pipeline.
  • the reaction device further includes a cavity located below the gas mixing device, and wherein the gas mixing device includes an annular groove and an air inlet, and the air inlet is connected to the piping system.
  • the gas mixing device includes an annular groove and an air inlet, and the air inlet is connected to the piping system.
  • the corresponding pipeline and the annular groove are connected to the piping system.
  • the air inlet includes a first air inlet connected to a first annular groove of the annular groove, the first annular groove configured to guide The first gas collected by the first pipeline and The heated second gas.
  • the reaction equipment further includes a spray plate located in the chamber and a heating plate located below the spray plate, wherein the spray plate is connected to the gas mixing device to output the gas from the The gas of the gas mixing device.
  • the liquid tank further includes a source bottle containing a precursor, and wherein the first gas is composed of a carrier gas and the precursor.
  • the valve set includes a first valve configured to act as a purge valve.
  • the valve set further includes a second valve, and wherein the valve set is configured to: open the second valve and close the first valve at a first time such that the carrier gas Entering the source bottle to generate the first gas and providing the first gas to the first pipeline; and opening the first valve and closing the second valve at a second time to transfer the The carrier gas is directly provided to the first pipeline.
  • the valve set further includes a second valve and a third valve, and wherein the valve set is configured to: open the second valve and the third valve at a first time and close the a first valve to allow the carrier gas to enter the source bottle to generate the first gas and provide the first gas to the first pipeline; and open the first valve at a second time and The second valve and the third valve are closed to provide the carrier gas directly to the first pipeline.
  • the gas mixing device further includes an output channel, the annular groove is arranged around the output channel and communicates with the output channel via an opening or a plurality of side wall through holes of the output channel. , and wherein the plurality of sidewall through holes are generally evenly distributed along a circumferential direction of the cross-section of the output channel.
  • the second gas is a diluent gas.
  • the second gas includes reactant gas and diluent gas.
  • the piping system further includes a second piping configured to deliver a third gas to the gas mixing device of the reaction device, and wherein the third The gas is the reactant gas.
  • the annular groove includes a second annular groove and the air inlet hole includes a second air inlet hole, the second air inlet hole is connected to the second pipeline, and the mixing The gas device is further configured to guide the first gas converged by the first conduit and the heated second gas through the second annular groove while directing it through the first annular groove. the third gas.
  • the outlet of the heating device is connected to a side of the first pipeline close to the first valve.
  • the outlet of the heating device is connected to a portion of the first pipeline close to the gas mixing device. side.
  • first conduit and/or the second conduit are further configured to be covered by a heating element to provide heat to the first conduit and/or the second conduit.
  • the heating element includes a heating tape.
  • the present application provides an equipment for thin film deposition, which includes: a cavity; and a gas mixing device located above the cavity, the gas mixing device including: at least one air inlet hole, One end is connected to at least one gas pipeline and the other end leads to the output channel; the output channel is configured to output the corresponding gas from the at least one gas pipeline; and wherein one of the at least one gas inlet hole
  • the heater is configured to receive heated gas provided by the heating device through the corresponding gas line.
  • the mixing device further includes a first component and a second component, the first component being configured to be removably mounted on the second component, wherein the first component and the The second component is a one-piece component.
  • the integrally formed first component includes a support portion and the output channel, and wherein the integrally formed second component includes the at least one air inlet and an interior space.
  • the support portion when the first component is mounted on the second component, the support portion is secured to the second component and the output channel is configured to insert into the second component
  • the inner space thereby forms at least one annular groove between the outer wall of the output channel and the inner wall of the inner space, and wherein the longitudinal length of the output channel is less than or equal to the longitudinal length of the inner space.
  • the at least one annular groove is arranged around the output channel, the other end of the at least one air inlet is connected to the bottom of the at least one annular groove, and wherein the at least one One annular channel is configured to direct the respective gas from the bottom of the at least one annular channel to a top of the at least one annular channel.
  • the respective gases are directed into the output channel via an opening of the output channel or a plurality of sidewall through-holes substantially along a cross-section of the output channel. Evenly distributed in the circumferential direction, and wherein the respective gases are guided to the opening of the output channel through a plurality of longitudinal pores of the first component disposed between the support portion and the output channel .
  • one of the at least one air inlet holes is in direct communication with the interior of the output channel through a side wall of the output channel.
  • the apparatus further includes a shower plate configured to output the respective gas from the gas mixing device over a heating plate of the apparatus.
  • the present application provides a method for thin film deposition, which includes: delivering a first gas to a first pipeline; heating the second gas through a heating device; and delivering the first gas to the first pipeline while delivering the heated second gas to the first pipeline; and transporting the first gas from the first pipeline and the heated second gas The gas is transported to the reaction equipment.
  • the method further includes providing the first gas and the heated second gas from the first pipeline to a gas mixing device of the reaction equipment.
  • the method further includes guiding the first gas collected by the first pipeline and the heated second gas through a first annular groove of the gas mixing device to be transported to The reaction chamber of the reaction equipment.
  • the first gas consists of a carrier gas and a precursor
  • delivering the first gas to the first pipeline further includes periodically operating a valve set coupled to the first pipeline , the valve group includes a first valve as a purge valve.
  • periodically operating the valve set further includes: opening a second valve and closing the first valve at a first time to provide the first gas to the first pipeline; and The first valve is opened and the second valve is closed at a second time to provide the carrier gas directly to the first pipeline.
  • periodically operating the valve set further includes opening a second valve and a third valve and closing the first valve at a first time to provide the first gas to the first pipeline; and opening the first valve and closing the second valve and the third valve at a second time to provide the carrier gas directly to the first pipeline.
  • the second gas is a diluent gas.
  • the second gas includes reactant gas and diluent gas.
  • the method further includes: transporting a third gas to a second annular groove of the gas mixing device via a second pipeline, wherein the third gas is a reactant gas; and using the The first annular groove guides the first gas and the heated second gas collected by the first pipeline while using the second annular groove to guide the third gas.
  • the method further includes providing the heated second gas to the first pipeline on a side of the first pipeline proximate the first valve.
  • the method further includes providing the heated second gas to the first pipeline on a side of the first pipeline close to the gas mixing device.
  • the method further includes using an opening or a plurality of sides of the output channel of the gas mixing device Wall through holes communicate the first annular groove and the second annular groove with the output channel, wherein the plurality of side wall through holes are generally uniform along a circumferential direction of the cross-section of the output channel geographically distributed.
  • the method further includes the first gas collected by the first pipeline and the heated gas through an air inlet hole directly connected to a side wall of the output channel of the gas mixing device.
  • the second gas is delivered directly to the interior of the output channel.
  • FIG. 1 to 4 are schematic diagrams of thin film deposition systems according to some embodiments of the present application.
  • FIGS 5, 6 and 7 are partial schematic diagrams of the gas mixing device of the thin film deposition system.
  • connection shall be understood to encompass “directly connected” as well as “connected via one or more intermediate components.”
  • the names of various components used in this manual are for illustrative purposes only and do not have a limiting effect. Different manufacturers may use different names to refer to components with the same function.
  • FIGS. 1 to 4 of this application only show the case of two reaction devices 100 . However, a greater number of reaction devices 100 may be desirable.
  • a reaction equipment 100 As shown in FIG. 1 , taking a reaction equipment 100 as an example, it has a cavity 101 , a gas mixing device 102 located above the cavity, and a spray plate 103 and a heating plate 104 located in the cavity 101 .
  • the spray plate 103 outputs the gas from the gas mixing device 102 toward the heating plate 104, thereby forming a deposited film on the heating plate 104.
  • Piping system 300 is configured to provide precursor gases and reactant gases to reaction device 100 .
  • the liquid tank 200 includes a source bottle 204 containing a liquid precursor.
  • the liquid tank 200 is connected to the gas source S1.
  • the gas source S1 inputs carrier gas into the source bottle 204 to carry out the precursor in the source bottle 204.
  • the gas carrying the precursor may be provided to the gas mixing device 102 via corresponding pipelines.
  • the thin film deposition system 10 shown in FIG. 1 has a gas source S2, and the gas 302 provided by the gas source S2 may be a dilution gas.
  • the thin film deposition system 10 also includes a gas source S3, which provides reactant gas to the gas mixing device 102 through corresponding pipelines.
  • At least one of the carrier gas, the diluent gas and the reactant gas may include Ar/O2, and the diluent gas may be Ar or O2. It should be emphasized that the diluting gas is not limited to only Ar and O2.
  • the liquid tank 200 also includes a valve group consisting of a valve 201, a valve 202 and a valve 203.
  • the valves (201, 202 and 203) may preferably be diaphragm valves.
  • the valve set is controlled by the controller to provide gas periodically (or at intervals), such as providing precursor-carrying gas or only carrier gas (ie, not carrying precursor) to the corresponding pipeline of the pipeline system 300 .
  • valve bank The operation of the valve bank is now described, which may be cyclic. Specifically, during the first time period, the valves 202 and 203 are opened and the valve 201 is closed, thereby providing the gas carrying the precursor to the corresponding pipeline of the pipeline system 300. At this time, the gas flows to, for example, the gas in the liquid tank 200. As shown by the hollow arrow; during the second time period, the valve 202 and the valve 203 are closed and the valve 201 is opened, thereby only providing the carrier gas from the gas source S1 to the pipeline of the pipeline system 300. At this time, the gas flow direction can be as follows: liquid tank Indicated by the solid arrow within 200.
  • the valve group may consist of only two valves.
  • the valve group may include only valve 202 and valve 201; or the valve group may include only valve 203 and valve 201.
  • valve 202 is open and valve 201 is closed, thereby providing precursor-carrying gas to corresponding pipelines of pipeline system 300 ; during a second time period, the valve 202 is closed and the valve 201 is opened, thereby only providing the carrier gas from the gas source S1 to the pipelines of the pipeline system 300 .
  • valve 203 is open and valve 201 is closed, thereby supplying water to piping system 300
  • the corresponding pipeline of the pipeline system 300 provides the gas carrying the precursor; during the second time period, the valve 203 is closed and the valve 201 is opened, thereby only providing the carrier gas from the gas source S1 to the pipeline of the pipeline system 300 .
  • the reactant gas from the gas source S3 and the precursor-carrying gas from the liquid tank 200 are mixed in the gas mixing device 102 .
  • the carrier gas provided during the second time period can be used to purge the precursor in the chamber 101. Therefore, the valve 201 is also called a purge valve.
  • the flow rate of the gas provided by the gas source S1 and the gas source S3 is in the range of about 1000-5000 sccm (standard cubic centimeters per minute, that is: standard milliliters per minute).
  • the ALD or PEALD process requires the valves of the valve group of the above-mentioned thin film deposition system to be switched at an extremely fast speed, which prevents the gases in the above-mentioned gas flow rate range from completing the purge operation optimally, thereby affecting the uniformity of the deposited film.
  • One solution is to increase the flow rate of the gas source S1, but this will also result in more precursors being carried out from the source bottle 204 under the same conditions, thereby increasing costs.
  • the thin film deposition system 10 shown in FIGS. 1 to 4 can establish a continuous purge gas with a stable flow rate, and ensure the film performance (for example, ensure the uniformity of the film and reduce the impact of particles on the film performance) without causing Eliminate excessive waste of precursors, thereby increasing production capacity and ensuring product performance while maintaining cost.
  • the precursor-laden gas provided during a first time period is shown as gas 301 .
  • the gas 301 is provided from the outlet pipeline of the liquid tank 200 to the first pipeline 304 of the pipeline system 300 .
  • the thin film deposition system 10 has a gas source S2 and a heating device 310 .
  • the gas 302 is heated by the heating device 310 and provided to the first pipeline 304 .
  • the heating device 310 is located outside the liquid tank 200 . Specifically, the outlet of the heating device 310 is connected to the side of the first pipeline 304 close to the gas mixing device 102 .
  • the gas 302 provided by the gas source S2 may be a dilution gas.
  • the heating device 310 may be a heating belt or a heat exchanger.
  • both the precursor-carrying gas 301 and the heated gas 302 are provided to the first pipeline 304 and are collected in the first pipeline 304 before entering the gas mixing device 102 .
  • Gas 302 is heated to a temperature high enough to avoid condensation of the precursor after converging with gas 301 .
  • the temperature of the heated gas 302 is higher than the temperature of the carrier gas provided by the gas source S1.
  • the temperature of heated gas 302 may be approximately 150°C.
  • the temperature of heated gas 302 may be approximately 200°C.
  • the temperature of the carrier gas may be approximately 120°C.
  • the temperature of the heated gas 302 may be greater than 60°C, and the temperature of the carrier gas may be greater than 60°C.
  • the first pipeline 304 may be covered by other heating elements to ensure the temperature of the gas in the pipeline.
  • a heating tape may be used to cover the first pipeline 304 to provide heat to the first pipeline 304 .
  • the first pipeline 304 covered with a heating tape or other heating element can ensure that the temperature of the gas collected in it is not lower than 120°C, and the temperature of the gas delivered to the cavity 101 is not low. at 80°C.
  • all pipelines of the pipeline system 300 can be covered by other heating elements to ensure the temperature of the gas in the corresponding pipelines.
  • the first pipeline 304 is connected to the gas mixing device 102 of the reaction equipment 100 . It will be understood by those skilled in the art that the gas provided by the corresponding pipelines of the pipeline system 300 can be transported to one or more reaction devices 100 through a cascade of pipelines. Taking a reaction device 100 as an example, the first pipeline 304 is connected to the air inlet (for example, the first air inlet 110 ) of the gas mixing device 102 .
  • the heating device 310 is configured to continuously and stably provide heated gas 302 to the gas mixing device 102
  • the valve set of the liquid tank 200 is configured to deliver the gas 301 to the gas mixing device 102 . Therefore, in the gas mixing device 102 , the gas 301 collected by the first pipeline 304 and the heated gas 302 are delivered to the shower plate 103 together.
  • the gas mixing device 102 in FIG. 1 has an air inlet 110 and an air inlet 120 corresponding to two channels of gas
  • the pipeline system 300 may only provide one channel of gas to the gas mixing device 102 .
  • the gas mixing device 102 may only have an air inlet hole corresponding to one channel of gas or only open an air inlet hole corresponding to one channel of gas.
  • one end of the second pipeline 305 is connected to the air source S3 and the other end is connected to the second air inlet 120 of the air mixing device 102 .
  • the gas 303 from the gas source S3 is provided to the gas mixing device 102 via the second pipeline 305 .
  • gas 303 may be a reactant gas.
  • the second pipeline 305 continuously and stably delivers the gas 303 from the gas source S3 to the gas mixing device 102 .
  • the gas mixing device 102 guides the gas 301 and the heated gas 302 gathered by the first pipeline 304 while guiding the gas 303 delivered by the second pipeline 305, thereby combining the above gases together.
  • the thin film deposition system 10 shown in FIG. 1 adds heated gas 302 as a continuous and stable purge gas source for the reaction device 100.
  • the gas 302 provided by the gas source S2 Can be diluent gas.
  • the flow rate of the gas provided by the gas source S1 may be from 0 to about 10,000 sccm
  • the flow rate of the gas 301 may be from 0 to about 10,000 sccm
  • the flow rate of the heated gas 302 may be from 0 to about 20,000 sccm.
  • the flow rate of the gas collected in the first pipeline 304 may be from 0 to about 30,000 sccm.
  • the flow rate of the carrier gas may be approximately 5000 sccm, and the flow rate of the heated diluent gas may be above 1000 sccm. In one embodiment of the present application, the flow rate of the heated dilution gas may be stabilized at 2000 sccm. In another embodiment of the present application, the flow rate of the heated dilution gas may be stabilized at 5000 sccm.
  • a continuous and stable heated gas 302 is additionally provided to the reaction device 100 without increasing the carrier gas flow.
  • the efficiency of the purge step performed in the chamber 101 and the pipeline system 300 is improved without increasing the consumption of precursors. Therefore, the thin film deposition system 10 shown in FIG. 1 can increase thin film production capacity and reduce the impact of particles on thin film performance on the basis of cost saving, and improve the uniformity of the deposited thin film.
  • FIGs 2 to 4 are now described, which are thin film deposition systems 10 according to other embodiments of the present application.
  • the systems, equipment, components and gases in Figures 2 to 4 that are the same as those in Figure 1 will not be labeled and described again.
  • FIG. 2 is another thin film deposition system 10 according to the present application, in which the heating device 310 is located inside the liquid tank 200 . As will be further described below, in other embodiments of the present application, the heating device 310 may also be located outside the liquid tank 200 .
  • the outlet of the heating device 310 is connected to the side of the first pipeline 304 close to the valve 201 . Therefore, the position where the heated gas 302 flows into the first pipeline 304 is closer to the purge valve (ie, the valve 201 ), thereby further shortening the time required for the purge operation and improving the particle purge effect.
  • Figure 3 is another thin film deposition system 10 according to the present application. Similar to FIG. 1 , the heating device 310 in FIG. 3 is located outside the liquid tank 200 , so the position where the heated gas 302 merges into the first pipeline 304 is closer to the gas mixing device 102 . As described above, the heating device 310 may also be located inside the liquid tank 200 . Different from FIG. 1 , in FIG. 3 only the first pipeline 304 delivers gas to the gas mixing device 102 . Specifically, the gas provided by the gas source S3 is heated by the heating device 310 to generate the heated gas 303 and continuously and stably provide it to the first pipeline 304 . At the same time, the liquid tank 200 delivers the gas 301 composed of the carrier gas and the precursor to the first pipeline 304 . Before being transported to the gas mixing device 102, the gas 301 and the gas 303 are gathered in the first pipeline 304 and premixed. In the embodiment shown in Figure 3, gas 303 may include reactant gas and diluent gas.
  • the embodiment shown in Figure 3 uses the corresponding gas from the gas source S3 as a stable and continuous purge gas source. Scavenge air source. Therefore, the thin film deposition system 10 shown in FIG. 3 does not need to add additional gas sources and pipelines, thereby further reducing costs while ensuring the purging effect.
  • the flow rate of the gas provided by the gas source S1 may be from 0 to about 10,000 sccm
  • the flow rate of the gas 301 may be from 0 to about 10,000 sccm
  • the flow rate of the heated gas 303 may be from 0 to about 20,000 sccm.
  • the flow rate of the gas collected in the first pipeline 304 may be from 0 to about 30,000 sccm. In other embodiments of the present application, the flow rate of the carrier gas may be approximately 5000 sccm, and the flow rate of the heated gas 303 may be above 1000 sccm. Specifically, the flow rate of the gas 303 may be approximately 5000 sccm.
  • Figure 4 is another thin film deposition system 10 according to the present application. Similar to Figure 3, it uses the corresponding gas from gas source S3 as a stable and continuous purge gas source. Different from FIG. 3 , the heating device 310 in FIG. 4 is located inside the liquid tank 200 . As described above, the heating device 310 may also be located outside the liquid tank 200 . Referring to FIG. 4 , the outlet of the heating device 310 is connected to the side of the first pipeline 304 close to the valve 201 .
  • Figure 4 has The position where the heated gas 303 flows into the first pipeline 304 is closer to the purge valve (ie, the valve 201), which not only reduces the cost but also shortens the time required for the purge operation and improves the particle purge effect.
  • the purge valve ie, the valve 201
  • the gas mixing device may include a plurality of air inlet holes respectively corresponding to multiple channels of gas.
  • the gas mixing device may only include one air inlet corresponding to one channel of gas.
  • the gas mixing device includes a plurality of air inlet holes corresponding to multiple channels of gas, only one air inlet hole corresponding to one channel of gas is used during operation.
  • an air inlet should not be understood as a single hole, but as a gas input end corresponding to a path of gas. Without departing from the essence of the invention of this application, it can pass through any way to form the gas input end.
  • Figures 5 and 6 show partial views of the air mixing device 102.
  • the gas mixing device 102 located above the cavity 101 may include a first part 1001 (the longitudinal section of which is shown by a diagonal line toward the right in FIGS. 5 and 6 ) and a second part 1002 (the longitudinal section of which is shown in FIGS. 5 and 6 This is shown by the diagonal line towards the left in Figure 6).
  • the first component 1001 may be removably mounted on the second component 1002 by fastening means (eg, bolts).
  • the first component 1001 is an integrally formed component and includes an output channel 130, a support portion 140, and a plurality of longitudinal pores 150.
  • the plurality of longitudinal pores 150 are generally disposed between the output channel 130 and the support portion 140. are arranged in between and evenly around the output channel 130 .
  • the second component 1002 is an integral component and includes at least one air inlet hole (eg, the first air inlet hole 110 and the second air inlet hole 120) and an internal space.
  • a top cover (not shown) is also provided on the first part 1001 to close the air mixing device 102, and the lower part of the second part 1002 may also have corresponding components (not shown) to make the air mixing device 102 Connected to reaction device 100.
  • the first component 1001 and the second component 1002 may be manufactured by an integral molding process well known in the art.
  • the supporting part 140 is fixed on the second component 1002, and the output channel 130 is inserted into the internal space of the second component 1002 so that there is a gap between the outer wall of the output channel 130 and the inner wall of the internal space.
  • At least one annular groove (for example, the first annular groove 111 and the second annular groove 121) is formed therebetween.
  • the longitudinal length of the output channel 130 may be designed to be less than or equal to the longitudinal length of the interior space of the second component 1002 . As shown in FIGS. 5 and 6 , when the longitudinal length of the output channel 130 is less than the longitudinal length of the internal space of the second component 1002 , the output channel 130 and the internal space of the second component 1002 below it together form the gas of the gas mixing device 102 supply channel.
  • the output channel 130 is in gaseous communication with the first air inlet hole 110 and the second air inlet hole 120 .
  • the first annular groove 111 and the second annular groove 121 are circumferentially formed at different positions on the periphery of the output channel 130 .
  • One end of the first air inlet hole 110 is connected to the bottom of the first annular groove 111
  • one end of the second air inlet hole 120 is connected to the second annular groove. Bottom of 121. Gases from different inlet holes are guided to different annular grooves to enter the output channel 130 from different positions respectively.
  • the gas 301 and the gas 302 from the first air inlet 110 enter the first annular groove 111 from the bottom of the first annular groove 111 and flow out from the top of the first annular groove 111 .
  • the gas 301 and the gas 302 flowing out from the top of the first annular groove 111 enter the output channel 130 through the plurality of side wall through holes 132 on the side wall of the output channel 130, thereby guiding the gas 301 and the gas 302.
  • the plurality of sidewall through holes 132 are generally evenly distributed along the circumferential direction of the cross-section of the output channel 130 .
  • the gas 303 from the second air inlet hole 120 enters the second annular groove 121 from the bottom of the second annular groove 121 and flows out from the top of the second annular groove 121 .
  • the gas 303 flowing out from the top of the second annular groove 121 is guided through the plurality of longitudinal pores 150 to finally enter the output channel 130 through the opening 131 of the output channel 130, thereby guiding the gas 301, the gas 302 and the gas 303.
  • the gases from different annular grooves all enter the output channel 130 from sidewall through holes 132 coupled with them and located at different heights of the output channel 130 . Although not shown in the figure, these sidewall through holes with different heights are generally located in the upper half of the gas mixing device 102. This configuration can further improve the efficiency of the purging operation.
  • gas 301 and gas 302 may be guided to the output channel 130 via the second annular groove 121
  • gas 303 may be guided to the output channel 130 via the first annular groove 111 .
  • the gas mixing device 102 has a concentric and uniform gas flow by using a configuration of annular grooves and multiple sidewall through holes, thereby further improving the efficiency of the purging operation.
  • the air mixing device 102 may only include an air inlet hole and an annular groove.
  • the multiple gases including the steadily delivered heated gas have been premixed before entering the one air inlet of the gas mixing device 102 .
  • the gas is directed into the output channel 130 through the annular groove, the longitudinal aperture, and the top opening of the output channel 130 .
  • Figure 7 shows another embodiment of the air mixing device 102 of the present application.
  • the gas mixing device 102 may not include an annular groove, and the air inlet hole of the gas mixing device 102 may be directly connected to the interior of the output channel through the side wall of the output channel, so that the corresponding gas can be directly transported to the output channel. internal.
  • the side walls of the second component 1002 may be considered as side walls of the output channel.
  • the internal space of the second component 1002 can directly form the output channel without the need for the output channel 130 of the first component 1001 shown in Figures 5 and 6; the side wall of the second component 1002 is penetrated by the air inlet to directly reach the output.
  • the gas mixing device shown in FIG. 7 can further simplify the structure of the gas mixing device, reduce the cost of the device, and increase the speed of gas entering the reaction chamber 101.
  • the arrangement 102 may include a plurality of air inlet holes.
  • the first one or more air inlet holes may cooperate with the corresponding annular groove and the opening of the output channel to form a specific air inlet passage (as shown in FIGS. 5 and 6 )
  • the second one or more air inlets can cooperate with the corresponding annular groove and the side wall through hole of the output channel to form a specific air inlet passage (as shown in Figure 5)
  • the third one or more air inlets can cooperate with The output channels are directly connected to form a specific air intake path (as shown in Figure 7).
  • first component 1001 and the second component 1002 may be integrally molded to ensure airtightness and gas connectivity of the gas passage formed therein. As shown in Figures 5 and 6, when the first component 1001 is installed on the second component 1002, the communication between the corresponding air inlet and the corresponding annular groove, and the communication between the first annular groove 111 and the side wall through hole 132 can be ensured. communication and communication between the second annular groove 121 and the longitudinal aperture 150 .
  • the air tightness of the first annular groove 111 and the second annular groove 121 can also be ensured so that gas does not flow from the joint surface located at the bottom of the annular groove (ie: the outer wall of the output channel 130 and the inside of the second component 1002 The joint between the inner walls of the space) leaks.
  • the mixed gas from the gas mixing device 102 is further provided to the spray plate 103 so that the mixed gas is output over the heating plate 104 through the spray plate 103 .
  • the guiding efficiency of the input gas is improved, that is, the efficiency of the purging operation is improved when the gas flow rate is constant, thereby further reducing the impact of particles on film performance
  • the effect improves the uniformity of the deposited film.
  • Another aspect of the present application also provides a thin film deposition method.
  • the operation mode of the valve group will not be described in detail here.
  • the gas source S1 and the valve group are operated to deliver the gas 301 to the first pipeline 304.
  • the heated gas 302 is continuously and stably delivered to the first pipeline 304 by operating the gas source S2 and the heating device 310 .
  • the gas 301 and the heated gas 302 are gathered in the first pipeline 304 to be provided to the gas mixing device 102 .
  • the gas is further directed using various configurations of the gas mixing device 102 as described above.
  • the first annular groove 111 of the gas mixing device 102 is used to guide the gas 301 and the heated gas 302, which are further guided to the output channel 130 of the gas mixing device 102 for final input into the cavity. 101.
  • the above method further includes continuously and stably delivering the gas 303 from the gas source S3 to the second annular groove 121 of the gas mixing device 102 .
  • the gas 303 is guided using the second annular groove 121 while the gas 301 collected by the first pipe 304 and the heated gas 302 are guided using the first annular groove 111 .
  • the gas 303 is further directed to the output channel 130 for final input into the chamber 101 . In this manner, the output channel 130 can output gas 301, gas 302, and gas 303 simultaneously.
  • various gases guided by the plurality of annular grooves are delivered to the output channel 130 through the opening 131 or the plurality of side wall through holes 132 of the output channel 130 .
  • gas 302 is the diluent gas and gas 303 is the reactant gas.
  • the diluent gas and the reactant gas can be the same or different gases.
  • at least one of the diluent gas and the reactant gas may include Ar/O2.
  • the first pipeline 304 While delivering the first gas 301, the gas 303 provided by the gas source S3 is continuously and stably delivered to the air inlet of the gas mixing device 102.
  • the air inlet holes communicate with corresponding annular grooves to guide gas 303 into the output channel 130 through the opening 131 of the output channel 130 .
  • the manner in which gas enters the output channel 130 is not limited to through the opening 131 .
  • gas 303 may enter the output channel 130 through a plurality of sidewall through holes 132 of the output channel 130 .
  • the first pipeline 304 continuously and stably supplies the gas 303 provided by the gas source S3 while delivering the first gas 301 . sent to the air inlet of the air mixing device 102.
  • the air inlet hole may be directly connected to the interior of the output channel through the side wall of the output channel, thereby directly delivering the gas from the first pipeline 304 without the need to be guided through the annular groove. to the inside of the output channel.
  • a stable and independent purge gas source not only saves the cost of precursors, but also shortens the time required for the purge operation and improves the efficiency of the purge operation.
  • the position of the purge gas source input pipeline system can be adjusted based on the requirements of different processes to further improve the efficiency of the purge operation.
  • the efficiency of the purge operation can also be further improved by adjusting and/or restricting the gas flow direction in the gas mixing device through the groove structure in the gas mixing device.
  • the thin film deposition system, gas mixing device and related operating methods provided by this application can improve the efficiency of the purging operation and improve the uniformity of the deposited thin film at the same cost, thereby improving the film productivity and product performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本申请提供一种用于薄膜沉积的系统,其包括:管路系统,其包括第一管路;液箱,其包含阀门组,所述阀门组经配置以将第一气体输送至所述第一管路;加热装置,其经配置以加热第二气体并将经加热的所述第二气体提供至所述第一管路;以及反应设备,其包括混气装置,所述混气装置经配置以接收来自第一管路的所述第一气体和经加热的所述第二气体。

Description

用于薄膜沉积的系统、设备和方法 技术领域
本申请大体上涉及半导体设备制造,且更具体来说,涉及用于薄膜沉积的系统、设备和方法。
背景技术
薄膜沉积工艺大体包括PECVD(等离子体增强化学汽相沉积)、ALD(原子层沉积)、CVD(化学蒸汽沉积)和PEALD(等离子体增强原子层沉积)等。通常上述工艺需要在反应腔室内提供携带前驱物的气体以及在提供上述气体之后进行吹扫操作。
提供至反应腔室的气体的速率可影响经沉积的薄膜的厚度及厚度的均匀性,较低的气体速率会导致薄膜的均匀性变差。此外,还期望减小携带前驱物的气体的速率以控制前驱物的消耗,从而降低成本。
发明内容
本申请提出了一种用于薄膜沉积的系统,其可在保证成本的情况下提高产能并提高薄膜的性能,例如优化颗粒物及提高薄膜的均匀性。
在一个方面中,本申请提供一种用于薄膜沉积的系统,其包括:管路系统,其包括第一管路;液箱,其包含阀门组,所述阀门组经配置以将第一气体输送至所述第一管路;加热装置,其经配置以加热第二气体并将经加热的所述第二气体提供至所述第一管路;以及反应设备,其包括混气装置,所述混气装置经配置以接收来自第一管路的所述第一气体和经加热的所述第二气体。
在一些实施例中,所述反应装置进一步包括位于所述混气装置下方的腔体,且其中所述混气装置包括环形沟槽和进气孔,所述进气孔连接所述管路系统的相应管路与所述环形沟槽。
在一些实施例中,所述进气孔包括第一进气孔,所述第一进气孔连接至所述环形沟槽的第一环形沟槽,所述第一环形沟槽经配置以引导由所述第一管路汇聚的所述第一气体和 经加热的所述第二气体。
在一些实施例中,所述反应设备进一步包括位于所述腔体内的喷淋板以及位于所述喷淋板下方的加热盘,其中所述喷淋板连接至所述混气装置以输出来自所述混气装置的气体。
在一些实施例中,所述液箱进一步包括源瓶,所述源瓶内装有前驱物,且其中所述第一气体由载气和所述前驱物组成。
在一些实施例中,所述阀门组包括第一阀门,所述第一阀门经配置以作为吹扫阀门。
在一些实施例中,所述阀门组进一步包括第二阀门,且其中所述阀门组经配置以:在第一时间打开所述第二阀门且关闭所述第一阀门,以使所述载气进入所述源瓶从而产生所述第一气体并将所述第一气体提供至所述第一管路;以及在第二时间打开所述第一阀门且关闭所述第二阀门,以将所述载气直接提供至所述第一管路。
在一些实施例中,所述阀门组进一步包括第二阀门和第三阀门,且其中所述阀门组经配置以:在第一时间打开所述第二阀门和所述第三阀门且关闭所述第一阀门,以使所述载气进入所述源瓶从而产生所述第一气体并将所述第一气体提供至所述第一管路;以及在第二时间打开所述第一阀门且关闭所述第二阀门和所述第三阀门,以将所述载气直接提供至所述第一管路。
在一些实施例中,所述混气装置进一步包括输出通道,所述环形沟槽环绕所述输出通道而布置且经由所述输出通道的开口或多个侧壁通孔与所述输出通道相连通,且其中所述多个侧壁通孔大体上沿所述输出通道的横截面的周向方向均匀地分布。
在一些实施例中,所述第二气体为稀释气体。
在一些实施例中,所述第二气体包括反应物气体和稀释气体。
在一些实施例中,所述管路系统进一步包括第二管路,所述第二管路经配置以将第三气体输送至所述反应设备的所述混气装置,且其中所述第三气体为反应物气体。
在一些实施例中,所述环形沟槽包括第二环形沟槽且所述进气孔包括第二进气孔,所述第二进气孔连接至所述第二管路,且所述混气装置进一步经配置以在通过所述第一环形沟槽引导由所述第一管路汇聚的所述第一气体和经加热的所述第二气体的同时通过所述第二环形沟槽引导所述第三气体。
在一些实施例中,所述加热装置的出口连接至所述第一管路靠近所述第一阀门的一侧。
在一些实施例中,所述加热装置的出口连接至所述第一管路靠近所述混气装置的一 侧。
在一些实施例中,所述第一管路和/或所述第二管路进一步经配置以由加热元件覆盖从而向所述第一管路和/或所述第二管路提供热量。
在一些实施例中,所述加热元件包括加热带。
在另一个方面中,本申请提供一种用于薄膜沉积的设备,其包括:腔体;以及位于所述腔体上方的混气装置,所述混气装置包括:至少一个进气孔,其一端连接到至少一个气体管路而另一端通往所述输出通道;输出通道,其经配置以输出来自所述至少一个气体管路的相应气体;以及其中所述至少一个进气孔中的一者经配置以通过相应气体管路接收经加热的气体,所述经加热的气体由加热装置提供。
在一些实施例中,所述混气装置进一步包括第一部件和第二部件,所述第一部件经配置以可拆卸地安装在所述第二部件上,其中所述第一部件和所述第二部件是一体成型的部件。
在一些实施例中,一体成型的所述第一部件包括支撑部分和所述输出通道,且其中一体成型的所述第二部件包括所述至少一个进气孔和内部空间。
在一些实施例中,当所述第一部件安装于所述第二部件上时,所述支撑部分固定在所述第二部件上,且所述输出通道经配置以插入所述第二部件的所述内部空间从而在所述输出通道的外壁与所述内部空间的内壁之间形成至少一个环形沟槽,且其中所述输出通道的纵向长度小于或等于所述内部空间的纵向长度。
在一些实施例中,所述至少一个环形沟槽环绕所述输出通道而布置,所述至少一个进气孔的所述另一端连接至所述至少一个环形沟槽的底部,且其中所述至少一个环形沟槽经配置以将所述相应气体从所述至少一个环形沟槽的所述底部引导至所述至少一个环形沟槽的顶部。
在一些实施例中,经由所述输出通道的开口或多个侧壁通孔引导所述相应气体进入所述输出通道,所述多个侧壁通孔大体上沿所述输出通道的横截面的周向方向均匀地分布,且其中通过设置在所述支撑部分与所述输出通道之间的所述第一部件的多个纵向孔隙来将所述相应气体引导至所述输出通道的所述开口。
在一些实施例中,所述至少一个进气孔中的一者通过所述输出通道的侧壁与所述输出通道的内部直接连通。
在一些实施例中,所述设备进一步包括喷淋板,所述喷淋板经配置以在所述设备的加热盘上方输出来自所述混气装置的所述相应气体。
在另一个方面中,本申请提供一种用于薄膜沉积的方法,其包括:将第一气体输送至第一管路;通过加热装置对第二气体进行加热;在将所述第一气体输送至所述第一管路的同时将经加热的所述第二气体输送至所述第一管路;以及将来自所述第一管路的所述第一气体和经加热的所述第二气体输送至反应设备。
在一些实施例中,所述方法进一步包括将来自所述第一管路的所述第一气体和经加热的所述第二气体提供至所述反应设备的混气装置。
在一些实施例中,所述方法进一步包括通过所述混气装置的第一环形沟槽引导由所述第一管路汇聚的所述第一气体和经加热的所述第二气体以输送至所述反应设备的反应腔体。
在一些实施例中,所述第一气体由载气和前驱物组成,且其中将第一气体输送至所述第一管路进一步包括周期性地操作与所述第一管路耦合的阀门组,所述阀门组包括作为吹扫阀门的第一阀门。
在一些实施例中,周期性地操作所述阀门组进一步包括:在第一时间打开第二阀门且关闭所述第一阀门,以将所述第一气体提供至所述第一管路;以及在第二时间打开所述第一阀门且关闭所述第二阀门,以将所述载气直接提供至所述第一管路。
在一些实施例中,周期性地操作所述阀门组进一步包括:在第一时间打开第二阀门和第三阀门且关闭所述第一阀门,以将所述第一气体提供至所述第一管路;及在第二时间打开所述第一阀门且关闭所述第二阀门和所述第三阀门,以将所述载气直接提供至所述第一管路。
在一些实施例中,所述第二气体为稀释气体。
在一些实施例中,所述第二气体包括反应物气体和稀释气体。
在一些实施例中,所述方法进一步包括:经由第二管路将第三气体输送至所述混气装置的第二环形沟槽,其中所述第三气体为反应物气体;及在使用所述第一环形沟槽引导由所述第一管路汇聚的所述第一气体和经加热的所述第二气体的同时使用所述第二环形沟槽引导所述第三气体。
在一些实施例中,所述方法进一步包括在所述第一管路靠近所述第一阀门的一侧将经加热的所述第二气体提供至所述第一管路。
在一些实施例中,所述方法进一步包括在所述第一管路靠近所述混气装置的一侧将经加热的所述第二气体提供至所述第一管路。
在一些实施例中,所述方法进一步包括使用所述混气装置的输出通道的开口或多个侧 壁通孔将所述第一环形沟槽和所述第二环形沟槽与所述输出通道连通,其中所述多个侧壁通孔大体上沿所述输出通道的横截面的周向方向均匀地分布。
在一些实施例中,所述方法进一步包括通过与所述混气装置的输出通道的侧壁直接连通的进气孔将由所述第一管路汇聚的所述第一气体和经加热的所述第二气体直接输送至所述输出通道的内部。在以下附图及描述中阐述本申请的一或多个实例的细节。其它特征、目标及优势将根据所述描述及附图以及权利要求书而显而易见。
附图说明
本说明书中的公开内容提及且包含以下各图:
图1至图4为根据本申请的一些实施例的薄膜沉积系统的示意图。
图5、图6和图7为薄膜沉积系统的混气装置的局部示意图。
根据惯例,图示中所说明的各种特征可能并非按比例绘制。因此,为了清晰起见,可任意扩大或减小各种特征的尺寸。图示中所说明的各部件的形状仅为示例性形状,并非限定部件的实际形状。另外,为了清楚起见,可简化图示中所说明的实施方案。因此,图示可能并未说明给定设备或装置的全部组件。最后,可贯穿说明书和图示使用相同参考标号来表示相同特征。
具体实施方式
为更好地理解本申请的精神,以下结合本申请的部分实施例对其作进一步说明。
本说明书内使用的词汇“在一实施例”或“根据一实施例”并不必要参照相同具体实施例,且本说明书内使用的“在其他(一些/某些)实施例”或“根据其他(一些/某些)实施例”并不必要参照不同的具体实施例。其目的在于例如主张的主题包括全部或部分范例具体实施例的组合。本文所指“上”和“下”的意义并不限于图式所直接呈现的关系,其应包含具有明确对应关系的描述,例如“左”和“右”,或者是“上”和“下”的相反。本文所称的“连接”应理解为涵盖“直接连接”以及“经由一或多个中间部件连接”。本说明书中所使用的各种部件的名称仅出于说明的目的,并不具备限定作用,不同厂商可使用不同的名称来指代具备相同功能的部件。
以下详细地讨论本申请的各种实施方式。尽管讨论了具体的实施,但是应当理解,这些实施方式仅用于示出的目的。相关领域中的技术人员将认识到,在不偏离本申请的精神和保护范围的情况下,可以使用其他部件和配置。本申请的实施可不必包含说明书所描述 的实施例中的所有部件或步骤,也可根据实际应用而调节各步骤的执行顺序。
图1示出了根据本申请的一些实施例的薄膜沉积系统10。系统10大体可由反应设备100、液箱200和管路系统300组成。反应设备100可包含一个或多个反应设备,管路系统300可包含多条管路,液箱200通过管路系统300与反应设备100相连接。为了方便论述,本申请图1至图4仅示出了具有两个反应设备100的情况。然而,更多数目个反应设备100可为合意的。
如图1所示,以一个反应设备100为例,其具有腔体101、位于腔体上方的混气装置102以及位于腔体101内的喷淋板103和加热盘104。喷淋板103朝向加热盘104输出来自混气装置102的气体,从而在加热盘104上形成经沉积的薄膜。
管路系统300经配置以将前驱物气体和反应物气体提供至反应设备100。具体而言,液箱200包括装有液态前驱物的源瓶204。液箱200与气源S1相连,气源S1向源瓶204内输入载气以携带出源瓶204内的前驱物。携带前驱物的气体可经由相应管路提供至混气装置102。此外,图1所示的薄膜沉积系统10具有气源S2,气源S2提供的气体302可为稀释气体。薄膜沉积系统10还包括气源S3,其将反应物气体经由相应管路提供至混气装置102。在本申请的一些实施例中,载气、稀释气体和反应物气体中的至少一者可包括Ar/O2,稀释气体可为Ar、O2。需要强调的是,稀释气体并不局限于仅包括Ar和O2。
液箱200还包括由阀门201、阀门202和阀门203组成的阀门组,阀门(201、202和203)优选地可为隔膜阀。阀门组通过控制器控制以周期性地(或间隔地)提供气体,例如向管路系统300的相应管路提供携带前驱物的气体或仅提供载气(即不携带前驱物)。
现描述阀门组的操作方式,其可为周期性的。具体而言,在第一时间周期内,阀门202和阀门203开启且阀门201关闭,从而向管路系统300的相应管路提供携带前驱物的气体,此时气体流向可如液箱200内的空心箭头所示;在第二时间周期内,阀门202和阀门203关闭且阀门201开启,从而仅向管路系统300的管路提供来自气源S1的载气,此时气体流向可如液箱200内的实心箭头所示。
在本申请的另一些实施例中,阀门组可仅由两个阀门组成。参考图1,阀门组可仅包括阀门202和阀门201;或者阀门组可仅包括阀门203和阀门201。在仅包括阀门202和阀门201的实施例中,在第一时间周期内,阀门202开启且阀门201关闭,从而向管路系统300的相应管路提供携带前驱物的气体;在第二时间周期内,阀门202关闭且阀门201开启,从而仅向管路系统300的管路提供来自气源S1的载气。在仅包括阀门203和阀门201的实施例中,在第一时间周期内,阀门203开启且阀门201关闭,从而向管路系统300 的相应管路提供携带前驱物的气体;在第二时间周期内,阀门203关闭且阀门201开启,从而仅向管路系统300的管路提供来自气源S1的载气。
来自气源S3的反应物气体和来自液箱200的携带前驱物的气体在混气装置102内混合。在第二时间周期内提供的载气可用于吹扫腔体101内的前驱物,因此,阀门201又被称为吹扫阀门。通常,为了获得较短的吹扫时间,气源S1和气源S3所提供的气体的流速均在约1000-5000sccm(standard cubic centimeters per minute,即:标准毫升每分钟)的范围内。
由于仅基于第二时间周期内所提供的载气的吹扫过程是间歇性的,因而很难保证吹扫气体流量的稳定性。此外,ALD或PEALD工艺要求上述薄膜沉积系统的阀门组的阀门以极快的速度切换,这使得上述气体流速范围内的气体不能较佳地完成吹扫操作,从而影响经沉积薄膜的均匀性。一种解决方法是提高气源S1的流速,但这同样会导致在相同条件下从源瓶204内携带出更多的前驱物,从而造成成本的增加。
图1至图4所示的薄膜沉积系统10可以建立持续的具有稳定流量的吹扫气体,且在保证薄膜性能(例如,保证薄膜的均匀性并减少颗粒对薄膜性能的影响)的同时不造成前驱物的过度浪费,从而在成本不变的情况下提高产能并保证产品性能。
在图1中,第一时间周期内提供的携带前驱物的气体示为气体301。气体301由液箱200的出口管路提供至管路系统300的第一管路304。薄膜沉积系统10具有气源S2和加热装置310,气体302经加热装置310加热以提供至第一管路304。加热装置310位于液箱200的外侧。具体地,加热装置310的出口连接至第一管路304靠近混气装置102的一侧。气源S2提供的气体302可为稀释气体。在本申请的一些实施例中,加热装置310可为加热带或换热器。
可见,携带前驱物的气体301和经加热的气体302均被提供至第一管路304且在进入混气装置102之前在第一管路304内汇聚。气体302被加热至足够高的温度以在与气体301汇聚之后避免前驱物出现凝结。经加热的气体302的温度高于气源S1所提供的载气的温度。在本申请的一些实施例中,经加热的气体302的温度可约为150℃。在本申请的一些实施例中,经加热的气体302的温度可约为200℃。在本申请的一些实施例中,载气的温度可约为120℃。在本申请的另一些实施例中,经加热的气体302的温度可大于60℃,载气的温度可大于60℃。
在本申请的一些实施例中,第一管路304可被其它加热元件覆盖以保证管路内气体的温度。举例来说,可使用加热带覆盖第一管路304,从而向第一管路304提供热量。在本 申请的一些实施例中,经加热带或其它加热元件覆盖的第一管路304可保证在其内汇聚的气体的温度不低于120℃,经输送至腔体101内的气体的温度不低于80℃。在本申请的一些实施例中,管路系统300的所有管路均可由其它加热元件覆盖以保证相应管路内气体的温度。
第一管路304连接至反应设备100的混气装置102。本领域技术人员应理解,通过管路的级联,由管路系统300的相应管路提供的气体可以被输送至一个或多个反应设备100。以一个反应设备100为例,第一管路304连接至混气装置102的进气孔(例如,第一进气孔110)。在本申请的一些实施例中,加热装置310经配置以持续且稳定地将经加热的气体302提供至混气装置102,且液箱200的阀门组经配置以输送气体301至混气装置102。因此,在混气装置102内,由第一管路304汇聚的气体301和经加热的气体302被一起输送至喷淋板103。
尽管在图1中混气装置102具有对应于两路气体的进气孔110和进气孔120,在本申请的另一些实施例中,管路系统300可仅提供一路气体至混气装置102。例如,如下文将进一步描述的,混气装置102可仅具有对应于一路气体的进气孔或仅开启对应于一路气体的进气孔。
进一步参见图1,第二管路305的一端连接至气源S3,另一端连接至混气装置102的第二进气孔120。来自气源S3的气体303经由第二管路305被提供至混气装置102。在本申请的一些实施例中,气体303可为反应物气体。在本申请的一些实施例中,第二管路305将来自气源S3的气体303持续且稳定地输送至混气装置102。在本申请的一些实施例中,混气装置102在引导由第一管路304汇聚的气体301和经加热的气体302的同时引导由第二管路305输送的气体303,从而将上述气体一起输送至喷淋板103。与仅使用载气作为吹扫气源相比,图1所示的薄膜沉积系统10增加了经加热的气体302作为反应设备100的持续且稳定的吹扫气源,气源S2提供的气体302可为稀释气体。气源S1提供的气体的流量可为0至约10000sccm,气体301的流量可为0至约10000sccm,经加热的气体302的流量可为0至约20000sccm。在本申请的一些实施例中,第一管路304中汇聚的气体的流量可为0至约30000sccm。在本申请的一些实施例中,载气流量可约为5000sccm,且经加热的稀释气体的流量可为1000sccm以上。在本申请的一个实施例中,经加热的稀释气体的流量可稳定在2000sccm处。在本申请的另一个实施例中,经加热的稀释气体的流量可稳定在5000sccm处。
持续且稳定的经加热的气体302被额外地提供至反应设备100,从而在不增加载气流 量(即不增加前驱物的消耗)的情况下提高了腔体101以及管路系统300内执行的吹扫步骤的效率。因此,图1所示的薄膜沉积系统10可以在节约成本的基础上提高薄膜产能且减少颗粒对薄膜性能的影响,提高了经沉积薄膜的均匀性。
现描述图2至图4,它们是根据本申请的另一些实施例的薄膜沉积系统10。为方便论述,图2至图4中与图1相同的系统、设备、组件及气体在此不再重复标记和赘述。
图2是根据本申请的另一种薄膜沉积系统10,其中加热装置310位于液箱200的内侧。如下文将进一步描述的,在本申请的另一些实施例中,加热装置310还可位于液箱200的外侧。在图2中,加热装置310的出口连接至第一管路304靠近阀门201的一侧。因此,经加热的气体302汇入第一管路304的位置更靠近吹扫阀门(即阀门201),从而进一步缩短了吹扫操作所需的时间且提高了颗粒吹扫的效果。
图3是根据本申请的另一种薄膜沉积系统10。与图1类似,图3中的加热装置310位于液箱200的外侧,因此经加热的气体302汇入第一管路304的位置更靠近混气装置102。如上文所描述的,加热装置310还可位于液箱200的内侧。与图1不同的是,图3中仅第一管路304将气体输送至混气装置102。具体而言,由气源S3提供的气体经加热装置310加热以产生经加热的气体303并将其持续且稳定地提供至第一管路304。与此同时,液箱200将由载气和前驱物组成的气体301输送至第一管路304。在输送至混气装置102之前,气体301和气体303在第一管路304内汇聚并预混合。在图3所示的实施例中,气体303可包括反应物气体和稀释气体。
与图1所示的实施例使用来自气源S2的稀释气体作为稳定的且持续的吹扫气源不同,图3所示的实施例使用来自气源S3的相应气体作为稳定的且持续的吹扫气源。因此,图3所示的薄膜沉积系统10不需要增加额外的气源及管路,从而在保证吹扫效果的同时进一步降低了成本。参考图3,气源S1提供的气体的流量可为0至约10000sccm,气体301的流量可为0至约10000sccm,经加热的气体303的流量可为0至约20000sccm。在本申请的一些实施例中,第一管路304中汇聚的气体的流量可为0至约30000sccm。在本申请的另一些实施例中,载气流量可约为5000sccm,且经加热的气体303的流量可为1000sccm以上,具体地,气体303的流量可为约5000sccm。
图4是根据本申请的另一种薄膜沉积系统10。与图3类似,其使用来自气源S3的相应气体作为稳定的且持续的吹扫气源。与图3不同的是,图4中的加热装置310位于液箱200的内侧。如上文所描述的,加热装置310还可位于液箱200的外侧。参考图4,加热装置310的出口连接至第一管路304靠近阀门201的一侧。与图1和图3相比,图4中经 加热的气体303汇入第一管路304的位置更靠近吹扫阀门(即阀门201),从而不但降低了成本还缩短了吹扫操作所需的时间,提高了颗粒吹扫的效果。
本申请另一方面还提供了一种适配于薄膜沉积系统10的混气装置,其可有助于进一步提高吹扫操作的效率。如上文所描述的,在本申请的一些实施例中,混气装置可包括分别对应于多路气体的多个进气孔。在本申请的另一些实施例中,混气装置可仅包括对应于一路气体的一个进气孔。在本申请的另一些实施例中,混气装置虽然包括分别对应于多路气体的多个进气孔,但在操作时仅使用对应于一路气体的一个进气孔。在本申请说明书的描述中,一个进气孔不应被理解为单一的孔洞,而应被理解为对应于一路气体的气体输入端,在不脱离本申请的发明实质的基础上,可通过任何方式形成该气体输入端。
图5和图6示出了混气装置102的局部视图。位于腔体101上方的混气装置102可包括第一部件1001(其纵向截面在图5和图6中由朝向右侧的斜线示出)和第二部件1002(其纵向截面在图5和图6中由朝向左侧的斜线示出)。第一部件1001可通过紧固装置(例如,螺栓)可拆卸地安装在第二部件1002上。
在本申请的一些实施例中,第一部件1001是一体成型的部件,且包括输出通道130、支撑部分140以及多个纵向孔隙150,多个纵向孔隙150大体设置在输出通道130和支撑部分140之间且均匀地围绕输出通道130而布置。第二部件1002是一体成型的部件,且包括至少一个进气孔(例如,第一进气孔110和第二进气孔120)和内部空间。应理解,在第一部件1001之上还设有顶盖(未示出)以封闭混气装置102,且第二部分1002的下部还可具有相应组件(未示出)以使混气装置102连接至反应设备100。此外,可通过本领域熟知的一体成型工艺来制造第一部件1001和第二部件1002。
当第一部件1001安装于第二部件1002上时,支撑部分140固定在第二部件1002上,且输出通道130插入第二部件1002的内部空间从而在输出通道130的外壁与该内部空间的内壁之间形成至少一个环形沟槽(例如,第一环形沟槽111和第二环形沟槽121)。输出通道130的纵向长度可经设计以小于或等于第二部件1002的内部空间的纵向长度。如图5和图6所示,当输出通道130的纵向长度小于第二部件1002的内部空间的纵向长度时,输出通道130与其下方的第二部件1002的内部空间一起组成混气装置102的气体供应通道。
如图5所示,输出通道130与第一进气孔110和第二进气孔120气体地连通。在输出通道130外围的不同位置周向地形成第一环形沟槽111和第二环形沟槽121。第一进气孔110的一端连接至第一环形沟槽111的底部,第二进气孔120的一端连接至第二环形沟槽 121的底部。来自不同进气孔的气体被引导至不同环形沟槽以分别从不同位置进入输出通道130。
在本申请的一个实施例中,来自第一进气孔110的气体301和气体302从第一环形沟槽111的底部进入第一环形沟槽111内并从第一环形沟槽111的顶部流出。从第一环形沟槽111顶部流出的气体301和气体302经由输出通道130的侧壁上的多个侧壁通孔132进入输出通道130,从而引导气体301和气体302。如图5所示,多个侧壁通孔132大体上沿输出通道130的横截面的周向方向均匀地分布。在本申请的一个实施例中,来自第二进气孔120的气体303从第二环形沟槽121的底部进入第二环形沟槽121内并从第二环形沟槽121的顶部流出。从第二环形沟槽121顶部流出的气体303经多个纵向孔隙150的引导以最终通过输出通道130的开口131进入输出通道130,从而引导气体301、气体302和气体303。在本申请的另一实施例中,来自不同环形沟槽的气体均从与它们各自耦合的位于输出通道130不同高度的侧壁通孔132进入输出通道130。虽未在图中展示,这些具有不同高度的侧壁通孔大体位于混气装置102的上半部分,如此配置可进一步提高吹扫操作的效率。
在本申请的另一实施例中,气体301和气体302可经由第二环形沟槽121引导至输出通道130,而气体303可经由第一环形沟槽111引导至输出通道130。根据本申请的一些实施例,通过使用环形沟槽和多个侧壁通孔的配置使得混气装置102具有同心的均匀气体流动,从而进一步提高了吹扫操作的效率。
如图6所示,在本申请的另一实施例中,混气装置102可仅包含一个进气孔和一个环形沟槽。包括稳定地输送的经加热气体的多路气体在进入混气装置102的该一个进气孔之前已预先混合。气体经引导以通过环形沟槽、纵向孔隙和输出通道130的顶部开口进入输出通道130。
图7示出了本申请的混气装置102的另一实施例。如图所示,混气装置102可不包含环形沟槽,且混气装置102的进气孔可通过输出通道的侧壁与输出通道的内部直接连通从而使得相应气体可直接被输送至输出通道的内部。在此实施例中,第二部件1002的侧壁可视为输出通道的侧壁。此时,第二部件1002的内部空间可直接构成输出通道,而无需图5和图6所示的第一部件1001的输出通道130;第二部件1002的侧壁由进气孔贯穿以直达输出通道的内部。图7所示的混气装置可进一步简化混气装置的结构,在降低装置成本的同时提高了气体进入反应腔体101的速度。
应理解,上文所描述的多个实施例可经组合已形成不同的气体通路配置方式。混气装 置102可包括若干进气孔,例如,第一一或多个进气孔可与相应环形沟槽和输出通道的开口配合以形成特定的进气通路(如图5和图6所示),第二一或多个进气孔可与相应环形沟槽和输出通道的侧壁通孔配合以形成特定的进气通路(如图5所示),第三一或多个进气孔可与输出通道直接连通以形成特定的进气通路(如图7所示)。
此外,第一部件1001和第二部件1002可经一体成型以保证在其中形成的气体通路的气密性和气体连通性。如图5和图6所示,当第一部件1001安装于第二部件1002上时,可保证相应进气孔与相应环形沟槽的连通、第一环形沟槽111与侧壁通孔132的连通以及第二环形沟槽121与纵向孔隙150的连通。同时,还可保证第一环形沟槽111和第二环形沟槽121的气密性以使得气体不从位于环形沟槽底部的接合面(即:输出通道130的外壁与第二部件1002的内部空间的内壁之间的接合面)泄漏。来自混气装置102的经混合气体被进一步提供至喷淋板103,从而通过喷淋板103在加热盘104上方输出经混合气体。
通过使用进气孔、环形沟槽和输出通道的上述各种配置提高了输入气体的引导效率,即在气体流量不变的情况下提高了吹扫操作的效率,从而进一步减少了颗粒对薄膜性能的影响,提高了经沉积薄膜的均匀性。
本申请另一方面还提供了一种薄膜沉积方法。阀门组的操作方式在此不再赘述。参考图1和图5,通过操作气源S1和阀门组以将气体301输送至第一管路304。并行地,通过操作气源S2和加热装置310以将经加热的气体302持续且稳定地输送至第一管路304。气体301和经加热的气体302在第一管路304中汇聚以提供至混气装置102。使用如上文所描述的混气装置102的各种配置来进一步引导气体。在本申请的一些实施例中,使用混气装置102的第一环形沟槽111引导气体301和经加热的气体302,上述气体被进一步引导至混气装置102的输出通道130以最终输入腔体101。
进一步参考图1和图5,上述方法进一步包括将来自气源S3的气体303持续且稳定地输送至混气装置102的第二环形沟槽121。在使用第一环形沟槽111引导由第一管路304汇聚的气体301和经加热的气体302的同时使用第二环形沟槽121引导气体303。气体303被进一步引导至输出通道130以最终输入腔体101。以此方式,输出通道130可同时输出气体301、气体302和气体303。此外,通过输出通道130的开口131或多个侧壁通孔132将多个环形沟槽引导的多种气体输送至输出通道130。在此实施例中,气体302是稀释气体,气体303是反应物气体。稀释气体和反应物气体可为相同的或不同的气体。例如,稀释气体和反应物气体中的至少一者可包括Ar/O2。
参考图3和图6,在仅第一管路304连接至混气装置102的实施例中,第一管路304 在输送第一气体301的同时将由气源S3提供的气体303持续且稳定地输送至混气装置102的进气孔。进气孔与相应的环形沟槽连同通以引导气体303通过输出通道130的开口131进入输出通道130。气体进入输出通道130的方式不仅限于通过开口131。尽管未展示,在本申请的另一个实施例中,气体303可通过输出通道130的多个侧壁通孔132进入输出通道130。
参考图3和图7,在仅第一管路304连接至混气装置102的实施例中,第一管路304在输送第一气体301的同时将由气源S3提供的气体303持续且稳定地输送至混气装置102的进气孔。在本申请的一些实施例中,进气孔可通过输出通道的侧壁与输出通道的内部直接连通,从而在不需要经环形沟槽引导的情况下将来自第一管路304的气体直接输送至输出通道的内部。
由上文所描述的,稳定和独立的吹扫气源不仅节约了前驱物的成本,还可缩短吹扫操作所需的时间,提高吹扫操作的效率。可基于不同工艺的要求调整上述吹扫气源输入管路系统的位置从而进一步提高吹扫操作的效率。还可通过混气装置内的沟槽结构调整和/或约束混气装置内的气体流向从而进一步提高吹扫操作的效率。本申请所提供的薄膜沉积系统、混气装置及相关操作方法可以在成本不变的情况下提高吹扫操作的效率,提升经沉积的薄膜的均匀性,从而提高薄膜的产能和产品性能。
本说明书中的描述经提供以使所述领域的技术人员能够进行或使用本申请。所属领域的技术人员将易于显而易见对本申请的各种修改,且本说明书中所定义的一般原理可应用于其它变化形式而不会脱离本申请的精神或范围。因此,本申请不限于本说明书所述的实例和设计,而是被赋予与本说明书所揭示的原理和新颖特征一致的最宽范围。

Claims (38)

  1. 一种用于薄膜沉积的系统,其包括:
    管路系统,其包括第一管路;
    液箱,其包含阀门组,所述阀门组经配置以将第一气体输送至所述第一管路;
    加热装置,其经配置以加热第二气体并将经加热的所述第二气体提供至所述第一管路;以及
    反应设备,其包括混气装置,所述混气装置经配置以接收来自第一管路的所述第一气体和经加热的所述第二气体。
  2. 根据权利要求1所述的系统,其中所述反应装置进一步包括位于所述混气装置下方的腔体,且其中所述混气装置包括环形沟槽和进气孔,所述进气孔连接所述管路系统的相应管路与所述环形沟槽。
  3. 根据权利要求2所述的系统,其中所述进气孔包括第一进气孔,所述第一进气孔连接至所述环形沟槽的第一环形沟槽,所述第一环形沟槽经配置以引导由所述第一管路汇聚的所述第一气体和经加热的所述第二气体。
  4. 根据权利要求2所述的系统,其中所述反应设备进一步包括位于所述腔体内的喷淋板以及位于所述喷淋板下方的加热盘,其中所述喷淋板连接至所述混气装置以输出来自所述混气装置的气体。
  5. 根据权利要求1所述的系统,其中所述液箱进一步包括源瓶,所述源瓶内装有前驱物,且其中所述第一气体由载气和所述前驱物组成。
  6. 根据权利要求5所述的系统,其中所述阀门组包括第一阀门,所述第一阀门经配置以作为吹扫阀门。
  7. 根据权利要求6所述的系统,其中所述阀门组进一步包括第二阀门,且其中所述阀门组经配置以:
    在第一时间打开所述第二阀门且关闭所述第一阀门,以使所述载气进入所述源瓶从而产生所述第一气体并将所述第一气体提供至所述第一管路;以及
    在第二时间打开所述第一阀门且关闭所述第二阀门,以将所述载气直接提供至所述第一管路。
  8. 根据权利要求6所述的系统,其中所述阀门组进一步包括第二阀门和第三阀门,且其中所述阀门组经配置以:
    在第一时间打开所述第二阀门和所述第三阀门且关闭所述第一阀门,以使所述载气进入所述源瓶从而产生所述第一气体并将所述第一气体提供至所述第一管路;以及
    在第二时间打开所述第一阀门且关闭所述第二阀门和所述第三阀门,以将所述载气直接提供至所述第一管路。
  9. 根据权利要求2所述的系统,其中所述混气装置进一步包括输出通道,所述环形沟槽环绕所述输出通道而布置且经由所述输出通道的开口或多个侧壁通孔与所述输出通道相连通,且其中所述多个侧壁通孔大体上沿所述输出通道的横截面的周向方向均匀地分布。
  10. 根据权利要求6所述的系统,其中所述第二气体为稀释气体。
  11. 根据权利要求6所述的系统,其中所述第二气体包括反应物气体和稀释气体。
  12. 根据权利要求10所述的系统,其中所述管路系统进一步包括第二管路,所述第二管路经配置以将第三气体输送至所述反应设备的所述混气装置,且其中所述第三气体为反应物气体。
  13. 根据权利要求12所述的系统,其中所述环形沟槽包括第二环形沟槽且所述进气孔包括第二进气孔,所述第二进气孔连接至所述第二管路,且所述混气装置进一步经配置以在通过所述第一环形沟槽引导由所述第一管路汇聚的所述第一气体和经加热的所述第二气体的同时通过所述第二环形沟槽引导所述第三气体。
  14. 根据权利要求10或11所述的系统,其中所述加热装置的出口连接至所述第一管路靠近所述第一阀门的一侧。
  15. 根据权利要求10或11所述的系统,其中所述加热装置的出口连接至所述第一管路靠近所述混气装置的一侧。
  16. 根据权利要求12所述的系统,其中所述第一管路和/或所述第二管路进一步经配置以由加热元件覆盖从而向所述第一管路和/或所述第二管路提供热量。
  17. 根据权利要求16所述的系统,其中所述加热元件包括加热带。
  18. 一种用于薄膜沉积的设备,其包括:
    腔体;以及
    位于所述腔体上方的混气装置,所述混气装置包括:
    至少一个进气孔,其一端连接到至少一个气体管路而另一端通往所述输出通道;
    输出通道,其经配置以输出来自所述至少一个气体管路的相应气体;以及
    其中所述至少一个进气孔中的一者经配置以通过相应气体管路接收经加热的气体,所述经加热的气体由加热装置提供。
  19. 根据权利要求18所述的设备,所述混气装置进一步包括第一部件和第二部件,所述第一部件经配置以可拆卸地安装在所述第二部件上,其中所述第一部件和所述第二部件是一体成型的部件。
  20. 根据权利要求19所述的设备,其中一体成型的所述第一部件包括支撑部分和所述输出通道,且其中一体成型的所述第二部件包括所述至少一个进气孔和内部空间。
  21. 根据权利要求20所述的设备,其中当所述第一部件安装于所述第二部件上时,所述支撑部分固定在所述第二部件上,且所述输出通道经配置以插入所述第二部件的所述内部空间从而在所述输出通道的外壁与所述内部空间的内壁之间形成至少一个环形沟槽,且其中所述输出通道的纵向长度小于或等于所述内部空间的纵向长度。
  22. 根据权利要求21所述的设备,其中所述至少一个环形沟槽环绕所述输出通道而布置,所述至少一个进气孔的所述另一端连接至所述至少一个环形沟槽的底部,且其中所述至少一个环形沟槽经配置以将所述相应气体从所述至少一个环形沟槽的所述底部引导至所述至少一个环形沟槽的顶部。
  23. 根据权利要求22所述的设备,其中经由所述输出通道的开口或多个侧壁通孔引导所述相应气体进入所述输出通道,所述多个侧壁通孔大体上沿所述输出通道的横截面的周向方向均匀地分布,且其中通过设置在所述支撑部分与所述输出通道之间的所述第一部件的多个纵向孔隙来将所述相应气体引导至所述输出通道的所述开口。
  24. 根据权利要求18所述的设备,其中所述至少一个进气孔中的一者通过所述输出通道的侧壁与所述输出通道的内部直接连通。
  25. 根据权利要求18所述的设备,其进一步包括喷淋板,所述喷淋板经配置以在所述设备的加热盘上方输出来自所述混气装置的所述相应气体。
  26. 一种用于薄膜沉积的方法,其包括:
    将第一气体输送至第一管路;
    通过加热装置对第二气体进行加热;
    在将所述第一气体输送至所述第一管路的同时将经加热的所述第二气体输送至所述第一管路;以及
    将来自所述第一管路的所述第一气体和经加热的所述第二气体输送至反应设备。
  27. 根据权利要求26所述的方法,其进一步包括将来自所述第一管路的所述第一气体和经加热的所述第二气体提供至所述反应设备的混气装置。
  28. 根据权利要求27所述的方法,其进一步包括通过所述混气装置的第一环形沟槽引导由所述第一管路汇聚的所述第一气体和经加热的所述第二气体以输送至所述反应设备的反应腔体。
  29. 根据权利要求28所述的方法,其中所述第一气体由载气和前驱物组成,且其中将第一气体输送至所述第一管路进一步包括周期性地操作与所述第一管路耦合的阀门组,所述阀门组包括作为吹扫阀门的第一阀门。
  30. 根据权利要求29所述的方法,其中周期性地操作所述阀门组进一步包括:
    在第一时间打开第二阀门且关闭所述第一阀门,以将所述第一气体提供至所述第一管路;以及
    在第二时间打开所述第一阀门且关闭所述第二阀门,以将所述载气直接提供至所述第一管路。
  31. 根据权利要求29所述的方法,其中周期性地操作所述阀门组进一步包括:
    在第一时间打开第二阀门和第三阀门且关闭所述第一阀门,以将所述第一气体提供至所述第一管路;及
    在第二时间打开所述第一阀门且关闭所述第二阀门和所述第三阀门,以将所述载气直接提供至所述第一管路。
  32. 根据权利要求29所述的方法,其中所述第二气体为稀释气体。
  33. 根据权利要求29所述的方法,其中所述第二气体包括反应物气体和稀释气体。
  34. 根据权利要求32所述的方法,其进一步包括:
    经由第二管路将第三气体输送至所述混气装置的第二环形沟槽,其中所述第三气体为反应物气体;及
    在使用所述第一环形沟槽引导由所述第一管路汇聚的所述第一气体和经加热的所述第二气体的同时使用所述第二环形沟槽引导所述第三气体。
  35. 根据权利要求32或33所述的方法,其进一步包括在所述第一管路靠近所述第一阀门的一侧将经加热的所述第二气体提供至所述第一管路。
  36. 根据权利要求32或33所述的方法,其进一步包括在所述第一管路靠近所述混气装置的一侧将经加热的所述第二气体提供至所述第一管路。
  37. 根据权利要求34所述的方法,其进一步包括使用所述混气装置的输出通道的开口或多个侧壁通孔将所述第一环形沟槽和所述第二环形沟槽与所述输出通道连通,其中所述多个侧壁通孔大体上沿所述输出通道的横截面的周向方向均匀地分布。
  38. 根据权利要求27所述的方法,其进一步包括通过与所述混气装置的输出通道的侧壁直接连通的进气孔将由所述第一管路汇聚的所述第一气体和经加热的所述第二气体直接输送至所述输出通道的内部。
PCT/CN2023/079570 2022-05-05 2023-03-03 用于薄膜沉积的系统、设备和方法 WO2023213128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210479646.7 2022-05-05
CN202210479646.7A CN117051376A (zh) 2022-05-05 2022-05-05 用于薄膜沉积的系统、设备和方法

Publications (1)

Publication Number Publication Date
WO2023213128A1 true WO2023213128A1 (zh) 2023-11-09

Family

ID=88646201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079570 WO2023213128A1 (zh) 2022-05-05 2023-03-03 用于薄膜沉积的系统、设备和方法

Country Status (3)

Country Link
CN (1) CN117051376A (zh)
TW (1) TW202345266A (zh)
WO (1) WO2023213128A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117737687A (zh) * 2024-02-09 2024-03-22 上海谙邦半导体设备有限公司 一种用于钨沉积设备的混气结构及混气方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208218961U (zh) * 2018-05-07 2018-12-11 西安航空制动科技有限公司 一种化学气相沉积炉气体预热装置
CN109609931A (zh) * 2018-12-27 2019-04-12 北京北方华创微电子装备有限公司 原子层沉积装置及方法
TW202012694A (zh) * 2018-09-29 2020-04-01 大陸商北京北方華創微電子裝備有限公司 用於原子層沉積製程的進氣裝置及原子層沉積設備
CN111218668A (zh) * 2018-11-27 2020-06-02 北京北方华创微电子装备有限公司 半导体处理设备及薄膜沉积方法
CN113430502A (zh) * 2021-06-18 2021-09-24 北京北方华创微电子装备有限公司 半导体工艺设备及其混合进气装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208218961U (zh) * 2018-05-07 2018-12-11 西安航空制动科技有限公司 一种化学气相沉积炉气体预热装置
TW202012694A (zh) * 2018-09-29 2020-04-01 大陸商北京北方華創微電子裝備有限公司 用於原子層沉積製程的進氣裝置及原子層沉積設備
CN111218668A (zh) * 2018-11-27 2020-06-02 北京北方华创微电子装备有限公司 半导体处理设备及薄膜沉积方法
CN109609931A (zh) * 2018-12-27 2019-04-12 北京北方华创微电子装备有限公司 原子层沉积装置及方法
CN113430502A (zh) * 2021-06-18 2021-09-24 北京北方华创微电子装备有限公司 半导体工艺设备及其混合进气装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117737687A (zh) * 2024-02-09 2024-03-22 上海谙邦半导体设备有限公司 一种用于钨沉积设备的混气结构及混气方法
CN117737687B (zh) * 2024-02-09 2024-05-10 上海谙邦半导体设备有限公司 一种用于钨沉积设备的混气结构及混气方法

Also Published As

Publication number Publication date
TW202345266A (zh) 2023-11-16
CN117051376A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
US20200149166A1 (en) Flow control features of cvd chambers
US8372201B2 (en) High temperature ALD inlet manifold
US5916369A (en) Gas inlets for wafer processing chamber
US6500734B2 (en) Gas inlets for wafer processing chamber
TWI612174B (zh) 化學氣相沉積設備、設備、以及化學氣相沉積之方法
WO2023213128A1 (zh) 用于薄膜沉积的系统、设备和方法
JP2017226863A (ja) ガス混合装置および基板処理装置
JPH07193015A (ja) ウェハ処理チャンバ用ガス入口
US11118262B2 (en) Substrate processing apparatus having a gas-mixing manifold
TWI733196B (zh) 用於原子層沉積製程的進氣裝置及原子層沉積設備
CN112941626B (zh) 工艺腔室的进气组件、进气装置及半导体加工设备
CN114150381B (zh) 一种碳化硅外延生长装置
US20220145458A1 (en) Reaction gas supply system and control method thereof
WO2023134039A1 (zh) 半导体工艺设备及其承载装置
WO2020062607A1 (zh) 进气系统、原子层沉积设备和方法
CN115537779A (zh) 气体输送结构及气相沉积设备
WO2024094175A1 (zh) 原子层沉积设备
JP6629248B2 (ja) エピタキシャルチャンバへのガス注入装置
TW202109798A (zh) 用於供應氣體的裝置及使用其處理基板的裝置
CN215856322U (zh) 特气管路及平板式pecvd设备
CN220224327U (zh) 包括气体混合装置的处理设备
CN220952044U (zh) 一种喷淋装置及处理设备
CN218756027U (zh) 一种气相沉积设备的气体组件及气相沉积设备
CN115896745A (zh) 成膜装置
CN115652284A (zh) 半导体设备喷淋头及气体输送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799117

Country of ref document: EP

Kind code of ref document: A1