WO2023134039A1 - 半导体工艺设备及其承载装置 - Google Patents

半导体工艺设备及其承载装置 Download PDF

Info

Publication number
WO2023134039A1
WO2023134039A1 PCT/CN2022/086320 CN2022086320W WO2023134039A1 WO 2023134039 A1 WO2023134039 A1 WO 2023134039A1 CN 2022086320 W CN2022086320 W CN 2022086320W WO 2023134039 A1 WO2023134039 A1 WO 2023134039A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
flow
base
uniform flow
uniform
Prior art date
Application number
PCT/CN2022/086320
Other languages
English (en)
French (fr)
Inventor
田西强
叶华
陈智勇
王冲
朱磊
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2023134039A1 publication Critical patent/WO2023134039A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of semiconductor processing, and in particular, the present application relates to a semiconductor process equipment and a supporting device thereof.
  • CVD chemical vapor deposition
  • the supporting device used to carry the wafer for the thin film deposition process usually has an edge purge (Edge Purge) function, which is used to blow away the reactive gas near the back and side of the wafer to avoid back and side plating of the wafer.
  • Edge Purge edge purge
  • the material of the top plate used to carry the wafer in the carrier device has changed from metal aluminum and stainless steel to ceramic material with high temperature resistance, good particle performance and less metal pollution.
  • the present application proposes a semiconductor process equipment and its supporting device to solve the technical problems in the prior art that the manufacturing cost is high and cannot meet the requirement of wafer edge purge and uniform gas blowing.
  • a carrier device for semiconductor process equipment which is arranged in the process chamber of the semiconductor process equipment, including: a base, a carrier and a limiting ring structure; wherein,
  • the top surface of the base is used to carry the wafer; the limit ring structure is sleeved on the outer periphery of the base to limit the position of the wafer, and the inner peripheral wall of the limit ring structure is in contact with the A blowing channel and a first uniform flow space are formed between the outer peripheral walls of the base, and the first uniform flow space communicates with the blowing channel; the carrier and the base are stacked and located Below the base, and an air channel structure is provided between the carrier and the base; a connecting channel is provided in the base, and the air channel structure is connected to the first uniform through the connecting channel. flow space connectivity;
  • the gas channel structure is used to transport the purge gas to the first uniform flow space through the connecting flow channel; the first uniform flow space is used to uniform the flow of the purge gas flowing through; the The blowing channel is used for blowing out the uniform flow of the purge gas, so as to purge the bottom surface and the side surface of the wafer.
  • the air channel structure includes a flow guide structure and a second flow uniform space, wherein the flow guide structure communicates with the second flow uniform space, and the second flow uniform space passes through the connection The flow channel communicates with the first uniform flow space;
  • the channel structure is used to transport the purge gas to the second uniform flow space; the second uniform flow space is used to uniform flow the purge gas flowing through.
  • the volume of the second uniform flow space is larger than the volume of the first uniform flow space; and/or, the ventilation cross section of the connecting channel is smaller than the first uniform flow space and the second uniform flow space. Ventilation cross-section of the flow space.
  • the connecting channel includes a plurality of restricting holes passing through the base, and the plurality of restricting holes are evenly arranged along the circumference of the base, each of the restricting holes The two ends communicate with the first uniform flow space and the second uniform flow space respectively.
  • each of the restricting holes includes a first through hole and a second through hole arranged in sequence along the vertical direction, the first through hole is located above the second through hole, and the The diameter of the first through hole is smaller than the diameter of the second through hole.
  • the guide channel structure includes at least one guide channel and at least one vent hole penetrating through the carrier, wherein each of the vent holes communicates with the intake end of at least one of the guide channels,
  • the ventilation hole is used to communicate with the purge gas source; the gas outlet ends of the flow guiding channel are arranged at intervals and evenly along the circumference of the second uniform flow space, and all communicate with the second uniform flow space.
  • one of the side of the carrier facing the base and the side of the base facing the carrier is provided with an annular groove and a plurality of linear grooves, and the carrier faces the One side of the base and the other side of the base facing the carrier cooperate with the annular groove to form the second flow uniform space, and cooperate with each of the linear grooves to form the the flow guide; or,
  • the side of the carrier facing the base and the side of the base facing the carrier are both provided with an annular groove and a plurality of linear grooves, and the carrier and the The annular grooves are correspondingly matched to form the second flow uniform space, and the bearing member is correspondingly matched to the plurality of linear grooves on the base to form the flow guiding channel.
  • the bearing device further includes a support shaft, the support shaft is located below the bearing and is used to support the bearing; the side of the support shaft facing the bearing is provided with a first uniform flow
  • the first uniform flow channel structure communicates with the inlet end of each of the vent holes correspondingly, and the first uniform flow channel structure communicates with the purge gas source.
  • the first uniform flow channel structure includes at least one first arc channel, and the first arc channel extends along the circumference of the support shaft; each of the first arc channels The flow channels are all set corresponding to two of the air holes, and the inlet ends of the two air holes communicate with the two ends of the first arc flow channel; the first arc flow channel is at the midpoint A gas inlet in communication with the source of purge gas is provided at the location.
  • the base is also provided with a plurality of first adsorption holes passing through the base, and the plurality of first adsorption holes are evenly distributed along the circumference of the base;
  • the side of the support shaft facing the carrier is also provided with a second uniform flow channel structure, the second uniform flow channel structure communicates with the inlet ends of the second adsorption holes correspondingly, and the first The second uniform flow channel structure communicates with the vacuum adsorption device.
  • the second uniform flow channel structure includes at least one second arc channel, and the second arc channel extends along the circumference of the support shaft; each of the second arc channels The flow channels are all arranged correspondingly to two of the second adsorption holes, and the inlet ends of the two second adsorption holes are respectively communicated with the two ends of the second arc flow channel; the second arc flow The channel is provided with an air inlet in communication with the vacuum adsorption device at the midpoint.
  • the second uniform flow channel structure further includes a third arc channel, the third arc channel extends along the circumference of the support shaft, and the two ends of the third arc channel are respectively
  • the midpoint of the two second arc flow channels communicates with the two second arc flow channels; the third arc flow channel communicates with the vacuum adsorption device at the midpoint.
  • the limiting ring structure includes a ring-shaped main body, the inner peripheral wall of the ring-shaped main body is provided with a cover ring protruding toward the outer peripheral wall of the base, the inner peripheral wall of the cover ring is connected to the The outer peripheral wall of the base has a gap to form the blowing flow channel.
  • a diversion groove is provided at the joint between the top surface and the inner peripheral surface of the cover ring, the diversion groove is annular, and is arranged around the circumference of the cover ring, and the diversion groove
  • the bottom surface of the base is lower than the top surface of the base, and the diameter of the circumferential side of the guide groove is larger than the diameter of the wafer;
  • the guide groove communicates with the blowing flow channel, and is used for guiding the purge gas blown out by the blowing flow channel to the bottom surface and the side surface of the wafer.
  • the base includes a base body, the outer peripheral wall of the base body is provided with a bearing ring protruding toward the inner peripheral wall of the annular body, and the inner peripheral wall of the annular body is located The area below the cover ring is also provided with a lap ring protruding toward the base body;
  • the overlapping ring is superimposed on the carrying ring, and there is a gap between the overlapping ring and the outer peripheral wall of the base body to form the first uniform flow space.
  • a positioning structure is provided between the two overlapping surfaces of the overlapping ring and the bearing ring, the positioning structure includes a positioning convex part and a positioning concave part, and the positioning convex part and the positioning concave part Cooperate with each other, and are used to define the relative position of the overlapping ring and the carrying ring.
  • a protruding restrictor ring is provided on the outer peripheral wall of the base body and between the bearing ring and the cover ring, and there is a gap between the restrictor ring and the cover ring The gap is used to form a flow-limiting channel, and the flow-limiting channel is used to communicate with the blowing flow channel and the first uniform flow space.
  • the ventilation section of the restricted flow channel is smaller than the ventilation section of the blowing channel, and the ventilation section of the blowing channel is smaller than the ventilation section of the first uniform flow space;
  • the ventilation section of the connecting channel is larger than the ventilation section of the restricting channel.
  • the base, the bearing member and the limiting ring structure are all made of aluminum nitride ceramics.
  • an embodiment of the present application further provides a semiconductor process equipment, including a process chamber and the above-mentioned carrying device provided in the embodiment of the present application, and the carrying device is arranged in the process chamber.
  • a limiting ring structure is provided on the outer periphery of the base, and a blowing flow channel and a first uniform flow space are formed between the inner peripheral wall of the limiting ring structure and the outer peripheral wall of the base, and An air channel structure is formed between the base and the carrier, and the air channel structure is used to deliver the purge gas to the first uniform flow space through the connecting channel in the base, and the first uniform flow space is used for purging The gas is uniformly flowed, and the purge gas after the uniform flow is blown out through the blowing flow channel to purge the bottom surface and the side surface of the wafer.
  • the blowing channel can evenly blow out the gas, thereby ensuring that the influence of the edge blowing on the bottom surface and side airflow field of the wafer is consistent, thereby greatly improving the process.
  • the consistency of film formation can greatly improve the process yield.
  • the air blowing channel and the first uniform flow space are both formed between the base and the limiting ring structure, and the air channel structure is formed between the base and the carrier, the structure is simple and easy to process and manufacture, thereby greatly reducing the application and manufacturing cost.
  • the semiconductor process equipment provided in the embodiment of the present application can not only reduce the manufacturing cost, but also improve the consistency of film formation in the process by using the above-mentioned carrying device provided in the embodiment of the present application, thereby greatly improving the process yield.
  • FIG. 1 is a schematic cross-sectional view of a carrying device provided in the first embodiment of the present application
  • FIG. 2 is a structural diagram of the bottom surface of the base used in the first embodiment of the present application.
  • Fig. 3 is another schematic cross-sectional view of the carrying device provided by the first embodiment of the present application.
  • FIG. 4A is a positional relationship diagram between the carrying device and the process chamber provided by the first embodiment of the present application.
  • Fig. 4B is a top structural view of the support shaft used in the first embodiment of the present application.
  • Fig. 5 is another schematic cross-sectional view of the carrying device provided by the first embodiment of the present application.
  • FIG. 6 is a top structural view of the base used in the first embodiment of the present application.
  • FIG. 7 is a top structural view of the carrier used in the first embodiment of the present application.
  • Fig. 8 is a partial cross-sectional schematic diagram of the carrying device in Fig. 1;
  • Fig. 9A is a schematic diagram of the simulation results of the airflow field in the second uniform flow space provided by the first embodiment of the present application.
  • Fig. 9B is a schematic diagram of the simulation results of the airflow field in the first uniform flow space provided by the first embodiment of the present application.
  • FIG. 9C is a schematic diagram of the simulation results of the airflow field of the flow-restricting channel provided in the first embodiment of the present application.
  • FIG. 9D is a schematic diagram of the simulation results of the airflow field of the blowing channel provided in the first embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional view of a carrying device provided in a second embodiment of the present application.
  • Fig. 11 is a partially enlarged schematic cross-sectional view of the carrying device provided by the second embodiment of the present application.
  • Fig. 12 is another partially enlarged schematic cross-sectional view of the carrying device provided by the second embodiment of the present application.
  • FIG. 13 is a structural diagram of the bottom surface of the base used in the second embodiment of the present application.
  • Fig. 14 is a top structural view of the carrier used in the second embodiment of the present application.
  • FIG. 15 is another top structural view of the carrier used in the second embodiment of the present application.
  • Fig. 16A is a schematic diagram of the simulation results of the airflow field in the second uniform flow space provided by the second embodiment of the present application;
  • Fig. 16B is a schematic diagram of the simulation results of the airflow field in the first uniform flow space provided by the second embodiment of the present application;
  • FIG. 16C is a schematic diagram of the simulation results of the airflow field of the flow-restricting channel provided by the second embodiment of the present application.
  • FIG. 16D is a schematic diagram of the simulation results of the airflow field of the blowing channel provided in the second embodiment of the present application.
  • FIG. 1 An embodiment of the present application provides a carrier device for semiconductor process equipment, which is arranged in a process chamber (such as the process chamber 7 shown in FIG. 4A ).
  • the structural diagram of the carrier device is shown in FIG. 1 , including: Seat 1, carrier 2 and limit ring structure 3; Wherein, the top surface of base 1 is used for carrying wafer 100; Optionally, this base 1 comprises base main body 14, and the top surface of this base main body 14 Used to carry the wafer 100; the limit ring structure 3 is sleeved on the outer periphery of the base 1 to limit the position of the wafer 100, and there is formed between the inner peripheral wall of the limit ring structure 3 and the outer peripheral wall of the base 1 Blowing channel 51 and the first uniform flow space 52, the first uniform flow space 52 communicates with the blowing channel 51; the carrier 2 and the base 1 are stacked on each other and are located below the base 1, and the carrier 2 and the base 1 is provided with an air channel structure 4; the base 1 is provided with a connecting flow channel 15,
  • the semiconductor process equipment can be used to perform a chemical vapor deposition process on the wafer 100 , but the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting according to the actual situation.
  • the base 1 can be made of ceramic material into a disk-shaped structure, the top surface of the base 1 can be used to carry the wafer 100 , and the diameter of the top surface of the base 1 can be smaller than the diameter of the wafer 100 .
  • a radio frequency grounding electrode 101 may also be provided in the base 1 for electrical connection with a radio frequency power supply, or grounding.
  • the carrier 2 can adopt a disc-shaped plate structure made of ceramic material.
  • the carrier 2 is stacked on the bottom of the base 1, and is arranged in the process chamber through the support shaft 6.
  • the support shaft 6 can be lifted. And the lower end of the support shaft 6 can protrude from the bottom of the process chamber, so as to be able to be connected with the external lifting drive source, in addition, the support shaft 6 is sleeved with a bellows for the connection between the support shaft 6 and the process chamber. The gap is sealed to ensure the sealing of the process chamber.
  • a heating tube 21 may be provided in the carrier 2 for heating the wafer 100, and the heating tubes 21 may be respectively arranged corresponding to different regions of the carrier 2. For example, as shown in FIG.
  • the heating tube 21 is Two, and respectively set corresponding to the central area and the edge area of the carrier 2, so as to realize zoned temperature control.
  • an air channel structure 4 may be provided between the carrier 2 and the base 1, and the air channel structure 4 is used to connect with the gas source to let in the purge gas, and deliver the purge gas to the first uniform flow space 52.
  • the limit ring structure 3 can adopt a sleeve structure made of ceramic material, and the limit ring structure 3 can be sleeved on the outer periphery of the base 1 to limit the position of the wafer 100 on the base 1, but the embodiment of the present application It is not limited to this.
  • the inner peripheral wall of the limiting ring structure 3 and the outer peripheral wall of the base 1 can form a blowing flow channel 51 and a first uniform flow space 52, for example, the blowing flow channel 51 and the first uniform flow space 52 are arranged sequentially from top to bottom, And the top of the first uniform flow space 52 is communicated with the blowing flow channel 51, and the bottom can be connected with the flow channel structure 4 through the connecting flow channel 15, so as to evenly flow the purge gas introduced into the flow channel structure 4;
  • the channel 51 is used to blow out the uniform flow of purge gas to purge the bottom surface and the side surface of the wafer 100 .
  • the purge gas blown out by the blowing channel 51 can flow through the exposed area of the bottom surface and the side surface of the wafer 100, thereby realizing uniform cleaning of the bottom surface and the side surface of the wafer 100. purge.
  • a limiting ring structure 3 is sheathed on the outer periphery of the base 1, and a blowing flow channel 51 and a first A uniform flow space 52, and an air channel structure 4 is formed between the bottom surface of the base 1 and the top surface of the carrier 2, and the air channel structure 4 is used to deliver the purge gas through the connecting channel 15 in the base 1 to
  • the first uniform flow space 52, the first uniform flow space 52 can make the incoming purge gas diffuse along the circumferential direction of the base 1 faster, so as to play the role of uniform flow of the purge gas, after uniform flow
  • the purge gas is then blown out through the purge channel to purge the bottom and side surfaces of the wafer 100 .
  • the blowing channel 51 can evenly blow out the gas, thereby ensuring that the influence of the edge blowing on the bottom surface and the side airflow field of the wafer 100 is consistent, thereby greatly The consistency of the process film formation is improved to greatly improve the process yield.
  • the blowing flow channel 51 and the first uniform flow space 52 are both formed between the base and the limiting ring structure, and the air flow channel structure is formed between the base and the carrier, the structure is simple and easy to manufacture, thereby greatly reducing the application and manufacturing costs.
  • the air flow channel structure 4 includes a flow guiding channel structure and a second uniform flow space 41, wherein the flow guiding channel structure communicates with the second uniform flow space 41,
  • the second uniform flow space 41 communicates with the first uniform flow space 52 through the above-mentioned connecting flow channel 15.
  • the second uniform flow space 41 is annular and opposite to the first uniform flow space 52 in the vertical direction. set, and the volume of the second uniform flow space 41 is larger than the volume of the first uniform flow space 52 .
  • the flow guiding channel structure is used to deliver the purge gas to the second uniform flow space 41; the second uniform flow space 41 is used to uniform the flow of the purge gas passing through.
  • the purge gas output through the guide channel structure is firstly uniformly flowed through the second uniform flow space 41, then secondly uniformly flowed through the first uniform flow space 52, and finally directed toward the wafer through the blowing flow channel 51.
  • the bottom and sides of the circle 100 are blown out.
  • the above-mentioned second uniform flow space 41 is closer to the gas source than the first uniform flow space 52.
  • the purge gas enters the second uniform flow space 41, the gas flow speed is faster and the unevenness is larger. Therefore, by using The volume of the second uniform flow space 41 is larger than the volume of the first uniform flow space 52, and the larger volume of the second uniform flow space 41 can be used for the first-stage uniform flow, which can better buffer the air flow, so that the purge gas passes through the second uniform flow.
  • entering the first flow uniformity space 52 can achieve better gas uniformity and improve the uniformity of the purge gas.
  • the ventilation cross-section of the connecting channel 15 is smaller than the ventilation cross-sections of the first uniform flow space 52 and the second uniform flow space 41 .
  • the connecting channel 15 includes a plurality of restricting holes that run through the base 1, and the plurality of restricting holes are evenly arranged along the circumference of the base 1, and the two ends of each restricting hole are respectively connected to the first uniform flow The space 52 communicates with the second even flow space 41 .
  • each restrictor hole runs through the base 1 in the vertical direction.
  • the above-mentioned connecting channel 15 adopts flow-restricting holes, which makes the processing of the embodiment of the present application simple, thereby greatly improving the yield of processing, and further reducing application and maintenance costs.
  • the ventilation section of the above-mentioned connecting channel 15 (that is, the ventilation section of each restrictor hole) is smaller than the ventilation section of the first uniform flow space 52 and the second uniform flow space 41, that is, the connection channel 15 is tangential to the air flow.
  • the direction section is smaller than the sections tangent to the airflow direction of the first flow uniform space 52 and the second flow uniform space 41 .
  • the above-mentioned connecting channel 15 can pressurize the purge gas output through the second uniform flow space 41, combined with the uniform flow effect of the first uniform flow space 52, the uniformity of the purge gas can be further improved, thereby improving The uniformity and process yield of the wafer 100.
  • the above-mentioned guide channel structure includes at least one guide channel 44 and at least one vent hole 22 penetrating the carrier 2, wherein each vent hole 22 is connected to The inlet end 44a of at least one flow guide channel 44 communicates, and the vent holes 22 are used to communicate with the purge gas source;
  • the purge gas can be delivered to the inlet ends 44a of each flow guiding channel 44 at the same time, so that the uniformity of the purge gas can be ensured.
  • the gas outlet ends 44 b of the flow guiding channels 44 are uniformly arranged at intervals along the circumferential direction of the second flow uniform space 41 , and all communicate with the second flow uniform space 41 .
  • the two vent holes 22 are located at or near the center of the base 1 for communicating with the purge gas source; each vent hole 22 is connected to
  • the air inlet ends 44 a of the four flow guiding channels 44 are connected, that is, the air inlet ends 44 a of the four flow guiding channels 44 converge at the same air hole 22 and communicate with it.
  • the channel structure can transport the purge gas from the center position close to the base 1 to the edge position of the base 1 in different directions, and reach different positions in the circumferential direction of the second uniform flow space 41, so that not only The path of the purge gas can be shortened, the flow rate of the purge gas can be increased, and the uniformity of the purge gas can be further improved.
  • the four guide channels 44 communicating with one of the vent holes 22 and the four guide channels 44 communicating with the other vent hole 22 can be relative to the axis of the base 1 Symmetrically distributed, and the lengths of all flow guides 44 (that is, eight flow guides 44) are approximately the same, and the gas outlets 44b (that is, eight gas outlets 44b) of all flow guides 44 are along the second uniform flow space 41 evenly distributed around the circumference.
  • the purge gas flowing into each flow guiding channel 44 from the inlet port 44a can flow to each gas outlet port 44b at the same time along the path of the same length, and can evenly flow into the second uniform flow space 41 from each gas outlet port 44b, Therefore, the uniformity of the purge gas can be further improved.
  • three or more sets of guide channels can be used, and the embodiment of the present application does not limit the number and layout of the air holes 22 and the guide channels 44, and those skilled in the art can make their own according to the actual situation. Adjust settings.
  • annular groove and a plurality of linear grooves are provided on the side of the base 1 facing the carrier 2 (that is, the bottom surface 14a). 2
  • the side facing the base 1 (that is, the top surface) cooperates to form the above-mentioned second uniform flow space 41, and each linear groove cooperates with the side (that is, the top surface) of the carrier 2 facing the base 1 to form the above-mentioned guide Runner 44.
  • annular groove and a plurality of linear grooves may also be provided on the side (that is, the top surface) of the carrier 2 facing the base 1, the annular groove and the base 1 facing the carrier 2 (i.e., the bottom surface 14a) cooperates to form the above-mentioned second flow uniform space 41, and each linear groove cooperates with the side of the base 1 facing the carrier 2 (i.e., the bottom surface 14a) to form the above-mentioned guide Runner 44.
  • the side of the base 1 facing the carrier 2 (that is, the bottom surface 14a) and the side of the carrier 2 facing the base 1 (that is, the top surface) are all provided with annular grooves and a plurality of linear grooves, the base 1
  • the annular groove on the side facing the carrier 2 (that is, the bottom surface 14a) cooperates with the annular groove on the side of the carrier 2 facing the base 1 to form a second uniform flow space 41, and the base 1 faces the carrier 2
  • Each linear groove on one side (ie, the bottom surface 14 a ) of the carrier 2 cooperates with each linear groove on the side (ie, the top surface) of the carrier 2 facing the base 1 to form a guide channel 44 .
  • the bearing device further includes a support shaft 6, which is located below the bearing member 2 and is used to support the bearing member 2.
  • a support shaft 6 which is located below the bearing member 2 and is used to support the bearing member 2.
  • the bottom of the process chamber 7 is provided with a through hole 71, and the lower end of the support shaft 6 extends to the outside of the process chamber 7 through the through hole 71, so as to be able to be connected with the lifting drive source (not shown in the figure) .
  • a bellows 9 is provided outside the process chamber 7. The bellows 9 is sheathed on the support shaft 6, and the lower end of the bellows 9 is in sealing connection with the lower flange 8.
  • the upper end of the bellows 9 passes through the upper flange.
  • the flange 10 is in sealing connection with the bottom of the process chamber 7 , and the bellows 9 is used for sealing the above-mentioned through hole 71 , so as to ensure the tightness inside the process chamber 7 .
  • the side of the support shaft 6 facing the carrier 2 (that is, the top surface 6a) is provided with a first uniform flow channel structure, and the first uniform flow channel structure communicates with the air inlet ends of the air holes 22 correspondingly, and the second A uniform flow channel structure communicates with the purge gas source.
  • the first uniform flow channel structure is used to achieve a uniform flow effect on the sweeping gas flowing through it.
  • the above-mentioned first uniform flow channel structure may include at least one first arc flow channel 61, and the first arc flow channel 61 extends along the circumference of the support shaft 6;
  • An arc flow channel 61 is correspondingly arranged with two air holes 22, and the inlet ends of the two air holes 22 communicate with the two ends 61a of the first arc flow channel 61 respectively; the first arc flow channel 61 is in the middle
  • a gas inlet 61b communicating with a purge gas source is provided at the dot position.
  • the purge gas provided by the purge gas source first enters the first arc flow channel 61 from the inlet 61b of the first arc flow channel 61, and then splits to both ends 61a of the first arc flow channel 61 at the same time, and then respectively flow into the corresponding guide channel 44 through the corresponding two vent holes 22 .
  • the above-mentioned first arc flow channel 61 can not only have a uniform flow effect on the flowing purge gas, but also can make the path of the purge gas flow to each vent hole 22 the same, so as to realize the uniform distribution of the purge gas.
  • At least one first arc flow channel 61 is arranged between the side of the support shaft 6 facing the carrier 2 (that is, the top surface 6a) and the bottom surface of the carrier 2, which can further simplify the structure and reduce the difficulty of manufacturing, thereby greatly reducing the application and manufacturing costs.
  • first arc flow channel 61 is provided corresponding to the two vent holes 22, but the embodiment of the present application is not limited to Therefore, in practical applications, the number and layout of the first arc flow channels 61 can be set according to the specific number of vent holes 21 , and those skilled in the art can adjust the setting according to the actual situation.
  • a plurality of through bases 1 are also provided in the base 1 (such as the base body 14).
  • the base 1 such as the base body 14
  • first adsorption holes 16 are shown in FIG. 6, and a plurality of first adsorption holes 16 are evenly distributed along the circumference of the base 1; and, as shown in FIG. 7, the carrier 2 is also provided with a plurality of second adsorption holes 23 penetrating through the carrier 2, the number of the second adsorption holes 23 is the same as the number of the first adsorption holes 16, and they are provided in a one-to-one correspondence.
  • FIG. 6 shows four first adsorption holes 16 in FIG. 6, and a plurality of first adsorption holes 16 are evenly distributed along the circumference of the base 1; and, as shown in FIG. 7, the carrier 2 is also provided with a plurality of second adsorption holes 23 penetrating through the carrier 2, the number of the second adsorption holes 23 is the same as the number of the first adsorption holes 16, and
  • the side of the support shaft 6 facing the carrier 2 (that is, the top surface 6a) is also provided with a second uniform flow channel structure, and the second uniform flow channel structure is connected with each second adsorption hole 23
  • the air inlet end is correspondingly communicated, and the second uniform flow channel structure is communicated with the vacuum adsorption device.
  • the second uniform flow channel structure is used to achieve a uniform flow effect on the gas flowing through it.
  • the above-mentioned second uniform flow channel structure may include at least one second arc flow channel 62, and the second arc flow channel 62 extends along the circumference of the support shaft 6; as shown in FIG.
  • each second arc flow channel 62 is correspondingly arranged with two of the second adsorption holes 23, and the inlet ends of the two second adsorption holes 23 communicate with the two ends 62a of the second arc flow channel 62 respectively;
  • the second arc flow channel 62 is provided with an air inlet connected to the vacuum adsorption device at the midpoint.
  • every two second adsorption holes 23 correspond to a second arc flow channel 62, and there are two second arc flow channels 62 in total. It is distributed symmetrically to the axis of the base 1.
  • the above-mentioned second uniform flow passage structure further includes a third arc flow passage 63, which extends along the circumference of the support shaft 6, And the two ends 63a of the third arc flow channel 63 communicate with the two second arc flow channels 62 at the midpoint positions of the two second arc flow channels 62 respectively; the third arc flow channel 63 is at the midpoint The position is connected with the vacuum adsorption device.
  • the third circular-arc flow channel 63 for example, can be communicated with the vacuum adsorption device through a straight channel 64, the gas outlet end 64a of the straight channel 64 is connected with the midpoint position of the third circular-arc flow channel 63, and the inlet end 64b of the straight channel 64 Connected with vacuum suction device.
  • the number of the second arc flow channel 62 and the third arc flow channel 63 can be set according to the specific number of the second adsorption holes 23 Quantity and layout mode, those skilled in the art can adjust settings by themselves according to the actual situation.
  • the third arc flow channel 63 can be omitted.
  • the isolation between the vacuum adsorption gas path and the edge purge gas path can be realized, and the opposite blowing can be realized. Sweep and vacuum flow are evenly distributed.
  • the limiting ring structure 3 includes a ring-shaped main body 33, and the inner peripheral wall of the ring-shaped main body 33 is provided with a ) a protruding cover ring 31 , the inner peripheral wall of the cover ring 31 has a gap with the outer peripheral wall of the base 1 to form a blowing flow channel 51 .
  • the annular body 33 can adopt a circular sleeve structure, and the top of the inner peripheral wall of the annular body 33 can be integrally formed with a cover ring 31, the inner peripheral wall of the cover ring 31 surrounds the outer peripheral wall of the base 1, and has a gap , the gap is used to form an annular blowing channel 51, because the diameter of the top surface of the susceptor 1 is smaller than the diameter of the wafer 100, which allows the purge gas blown out by the blowing channel 51 to flow through the exposed bottom surface and sides of the wafer 100.
  • the embodiment of the present application not only has a simple structure, but also greatly improves the yield of the carrying device due to the simple structure, thereby further reducing application and maintenance costs. It should be noted that the embodiment of the present application does not limit the specific implementation of the cover ring 31 and the limiting ring structure 3 , for example, the two are split structures and are fixedly connected by welding. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • the outer peripheral wall of the base body 14 is provided with a bearing ring 11 protruding toward the inner peripheral wall of the annular body 33 , and the inner peripheral wall of the annular body 33
  • the area above and below the cover ring 31 is also provided with a lap ring 32 protruding toward the base body 14.
  • the lap ring 32 is superimposed on the carrier ring 11, and the lap ring 32 is in contact with the outer peripheral wall of the base body 14. There are gaps to form a first uniform flow space 52 .
  • the inner diameter of the lap ring 32 is larger than the inner diameter of the cover ring 31 , that is, the cover ring 31 and the lap ring 32 are integrally formed on the inner peripheral wall of the annular body 33 and form a stepped structure.
  • the relative position between the overlapping ring 32 and the carrying ring 11 can be limited by a limiting structure, for example, a pin can be used to fix the two.
  • the embodiment of the present application can form the first uniform flow space 52 with a relatively simple structure, which is not only easy to process and manufacture, but also makes the structure of the present application stable to prolong the service life.
  • the embodiment of the present application does not limit the specific implementation of the first flow uniform space 52, for example, a groove is opened on the inner peripheral wall of the annular body 33, or a concave hole is opened on the outer peripheral wall of the base body 14. Grooves, the two grooves form the first uniform flow space 52 independently or in cooperation with each other. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • a protruding restrictor ring 12 is provided on the outer peripheral wall of the base body 14 and between the bearing ring 11 and the cover ring 31 . There is a gap between the restrictor ring 12 and the cover ring 31 to form a restrictor channel 53 for communicating with the blowing channel 51 and the first uniform flow space 52 .
  • a flow-limiting ring 12 is integrally formed on the outer peripheral wall of the base body 14, and the flow-limiting ring 12 can be located on the top of the bearing ring 11, and its outer diameter is smaller than the outer diameter of the bearing ring 11, that is, the diameter of the base body 14.
  • the outer peripheral wall forms two steps from top to bottom, and the top surface of the restrictor ring 12 and the top surface of the bearing ring 11 are step surfaces of two steps respectively, so that the structure of the embodiment of the present application is simple.
  • the inner peripheral wall of the lap ring 32, the top surface of the bearing ring 11, the outer peripheral wall of the current limiting ring 12 and the bottom surface of the cover ring 31 cooperate to form the first uniform flow space 52, and the bottom surface of the cover ring 31 is in contact with the current limiting
  • There is a gap between the top surfaces of the ring 12 and the gap is used to form a restricting channel 53 , one end of the restricting channel 53 communicates with the first uniform flow space 52 , and the other end communicates with the bottom of the blowing channel 51 .
  • the flow of the purge gas flowing out of the first uniform flow space 52 can be pressurized and limited, so as to increase the uniform flow time of the purge gas in the first uniform flow space 52, so as to improve the uniform flow effect, Therefore, the uniformity of purging of the blowing channel 51 is further improved, so as to further improve the uniformity and process yield of the wafer.
  • a blocking structure may be provided at the connection between the blowing channel 51 and the first flow-evening space 52, so as to increase the first flow-evening space 52 internal pressure, so as to improve the uniform flow effect. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • the ventilation section of the restrictor channel 53 is smaller than that of the blowing channel 51 , and the ventilation section of the blowing channel 51 is smaller than that of the first uniform flow space 52 .
  • the ventilation section of the restrictor channel 53 is smaller than the ventilation section of the blowing channel 51
  • the ventilation section of the blowing channel 51 is smaller than the ventilation section of the first uniform flow space 52
  • the ventilation section is specifically tangent to the airflow direction cross-section, so that the airflow pressure in the first uniform flow space 52 is higher, thereby further improving the uniform flow efficiency and effect.
  • the ventilation cross section of the connecting channel 15 may be smaller than the ventilation cross sections of the first flow uniform space 52 and the second flow uniform space 41 , and larger than the ventilation cross section of the restrictor channel 53 . In this way, the air flow rate can be increased while satisfying the pressurization and uniform flow of the second uniform flow space 41 , thereby improving the edge cleaning efficiency.
  • the function of the connecting channel 15 makes the purge gas in the second uniform flow space 41 pressurized and uniform, and then enters the first uniform flow space 52 through the connecting channel 15.
  • the limiting flow channel 53 is used The purge gas in the first uniform flow space 52 is pressurized and uniformly flowed, and finally the bottom and side surfaces of the wafer 100 are purged through the flow limiting channel 53 and the blowing flow channel 51 .
  • the first uniform flow space 52, the second uniform flow space 41, the connecting flow channel 15 and the flow limiting channel 53 in combination a two-stage pressurized uniform flow can be realized, thereby further improving the uniformity of the purge gas, and further improving crystal clearness.
  • the uniformity and process yield of round 100 is used.
  • FIGS. 9A to 9D a simulation test of a specific implementation manner of the present application is carried out below in conjunction with FIGS. 9A to 9D .
  • two air holes 22 and eight flow guide channels 44 are selected as examples to carry out the simulation of the air flow field.
  • the specific simulation results are shown in FIG. 9A .
  • the airflow distribution in the second uniform flow space 41 is not completely uniform, that is, the airflow velocity at the air outlet of the guide channel 44 is large, The air velocity at the air outlet away from the guide channel 44 is small, and the flow velocity difference in different areas of the second uniform flow space 41 is large and the air flow is uneven.
  • the purge gas flows uniformly through the second uniform flow space 41, it enters the first uniform flow space 52 after being restricted and pressurized through the flow-limiting holes in the connecting channel 15, and performs secondary uniform flow after reaching the first uniform flow space 52.
  • the simulation results of the airflow field in the first uniform flow space 52 are shown in Figure 9B.
  • the airflow uniformity inside the space is improved compared with the second uniform flow space 41, so that the airflow becomes relatively uniform.
  • the purge gas passes through the flow-limiting channel 53 for secondary flow-limiting pressurization.
  • the simulation results of the airflow field of the flow-limiting channel 53 are shown in FIG.
  • the gas is uniform, as shown in the black part in Fig. 9C.
  • the flow velocity of the air flow in the blowing channel 51 is basically the same, so that the blowing channel 51 blows the edge of the wafer more uniformly.
  • the base 1 , the carrier 2 and the limiting ring structure 3 are all made of aluminum nitride ceramics.
  • the substrate, the carrier 2 and the limit ring structure 3 are all made of aluminum nitride ceramics, so that the embodiment of the present application can realize the uniform blowing of the edge of the wafer 100, and at the same time make the carrier device have high temperature resistance. , less particle pollution and greatly reduced metal pollution, which can not only improve the yield of the wafer, but also greatly improve the uniformity of the wafer process.
  • the embodiment of the present application does not limit the specific materials of the above components, for example, other types of ceramic materials are used as long as the above requirements can be met. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • the carrying device of the semiconductor process equipment provided by the embodiment of the present application also includes a base 1, a carrying part 2 and a limiting ring structure 3, and the structures and functions of these components are the same as those of the above-mentioned first embodiment
  • the example is the same, and only the differences between the present embodiment and the above-mentioned first embodiment will be described in detail below.
  • heating tubes 13 are provided in the base 1 for heating the wafer 100, and the heating tubes 13 can be respectively provided corresponding to different regions of the base 1, for example, as As shown in FIG. 10 , there are two heating pipes 13 , which are respectively arranged corresponding to the central area and the edge area of the base 1 , so as to realize zoned temperature control.
  • a diversion groove 311 is provided at the connection between the top surface and the inner peripheral surface of the cover ring 31 , and the diversion groove 311 is annular, and along the Circumferentially arranged, the bottom surface of the flow guide groove 311 is lower than the top surface of the base 1 (such as the base body 14), and the diameter of the circumferential side of the flow guide groove 311 is greater than the diameter of the wafer 100, the flow guide groove 311 and
  • the blowing flow channel 51 is connected to direct the purge gas blown out by the blowing flow channel 51 to the bottom surface and the side surface of the wafer 100 .
  • the cover ring 31 defines a diversion groove 311 near the inner peripheral wall, for example, an open groove is formed between the top surface of the cover ring 31 and the inner peripheral wall to form the diversion groove 311 .
  • the top surface of the cover ring 31 can be arranged flush with the top surface of the base 1, and the bottom surface of the guide groove 311 is lower than the top surface of the base 1, that is, when the top surface of the base 1 carries a wafer 100 , the flow guide groove 311 can limit the wafer 100 inside, and form a flow guide gap with the bottom surface and the side surface of the wafer 100 .
  • the purge gas of the purge flow channel 51 When the purge gas of the purge flow channel 51 is purged to the bottom surface of the wafer 100, the purge gas can be guided to the side of the wafer 100 under the action of the flow guide groove 311, thereby preventing the formation of back plating and side surfaces.
  • Plating is to prevent the deposition of thin films on the bottom and side surfaces of the wafer 100, thereby improving the yield of the wafer 100.
  • the embodiment of the present application is not limited to include the guide groove 311, for example, the top surface of the cover ring 31 is lower than the top surface of the base 1, so that the distance between the cover ring 31 and the bottom surface of the wafer 100 There is a gap between them, so as to realize the function similar to the diversion groove 311. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • a positioning structure is provided between the two overlapping surfaces of the overlapping ring 32 and the carrying ring 11, and the positioning structure includes a positioning convex portion and a positioning concave portion.
  • the cooperation is used to define the relative position of the overlapping ring 32 and the carrying ring 11 , so as to realize the positioning of the limiting ring structure 3 and the base 1 .
  • the above-mentioned positioning protrusion is, for example, a positioning protrusion 321 protruding from the bottom surface of the lap ring 32
  • the above-mentioned positioning recess is, for example, a positioning groove 111 provided on the top surface of the carrier ring 11.
  • the positioning protrusion 321 and the positioning recess The groove 111 cooperates to define the relative position between the limiting ring structure 3 and the base 1 .
  • the plurality of positioning protrusions are distributed evenly and at intervals along the circumferential direction of the carrier ring 11; the number of the positioning recesses is the same as the number of positioning protrusions, and one One-to-one correspondence is set.
  • each restrictor hole in the connecting channel 15 is a straight through hole, however, the embodiment of the present application is not limited thereto, for example, as shown in Fig. 12 As shown, each restrictor hole in the connecting channel 15 includes a first through hole 151 and a second through hole 152 arranged in sequence along the vertical direction, the first through hole 151 is located above the second through hole 152, And the diameter of the first through hole 151 is smaller than the diameter of the second through hole 152 .
  • the connecting channel 15 adopts a different diameter structure, which makes the first through hole with a smaller diameter
  • the hole 151 can further reduce the flow rate of the purge gas, so as to further enhance the pressure and flow uniformity of the purge gas in the second uniform flow space 41 , thereby further improving the uniformity of edge purge.
  • the embodiment of the present application does not limit the specific structure of each restricting hole in the connecting flow channel 15, for example, the restricting hole can also be more steps of stepped holes, or tapered holes for The second uniform flow space 41 performs pressurization and flow restriction. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • each vent hole 22 is set through the carrier 2, for example, two vent holes 22 can be opened in the middle of the carrier 2, and each vent hole 22 can be It communicates with the second uniform flow space 41 in a straight line through three guide channels 44 .
  • One end of the three guide channels 44 communicates with the vent hole 22 , and the other end communicates with the second uniform flow space 41 , and the guide channels 44 can communicate with the vent hole 43 and the second uniform flow space 41 in a straight line.
  • the path of the purge gas is relatively short, and the uniformity is relatively good, so that not only the purge gas can be improved.
  • the flow rate of the invention can also greatly increase the application and maintenance costs of the implementation of the present application. It should be noted that the embodiment of the present application does not limit the number and positions of the vent holes 22 and flow guiding channels 44 , and those skilled in the art can adjust the settings by themselves according to the actual situation.
  • one vent hole 22 may be provided and located on one side of the center position of the bearing member 2, and one end of the three guide channels 44 are all communicated with the vent hole 22, and The other ends of the three flow guiding channels 44 are all in communication with the second flow uniform space 41 and arranged at intervals along the circumferential direction. Since the carrier 2 is made of ceramic material, reducing the number of vent holes 22 can further improve the yield of the carrier 2, thereby further reducing the application and maintenance costs of the embodiment of the present application.
  • annular groove and a plurality of linear grooves are provided on the side (that is, the top surface) of the carrier 2 facing the base 1, and the annular groove and the base 1
  • the side (ie, the bottom surface) facing the carrier 2 cooperates to form the above-mentioned second flow uniform space 41
  • each linear groove cooperates with the side (ie, the bottom surface) of the base 1 facing the carrier 2 to form the above-mentioned flow guiding channel 44.
  • an annular groove may be provided on the side of the carrier 2 facing the base 1 (ie, the top surface), and the annular groove is arranged coaxially with the carrier 2 and near the edge of the carrier 2 .
  • the annular groove cooperates with the side of the base 1 facing the carrier 2 (i.e., the bottom surface) to form a second uniform flow space 41.
  • This design can make the application implement
  • the example has a simple structure and is easy to process and manufacture, thereby greatly reducing application and maintenance costs.
  • a plurality of linear grooves are also provided on the side (that is, the top surface) of the carrier 2 facing the base 1, and the linear grooves are located between the vent holes 22 and the annular grooves, and the linear grooves are connected to the base. 1 facing the carrier 2 (ie, the bottom surface) cooperates to form a plurality of guide channels 44 for communicating with the air hole 22 and the second uniform flow space 41.
  • the embodiment of the present application does not limit the specific structure of the second flow uniform space 41 and the guide channel 44.
  • the annular groove and the linear groove are all formed on the side (ie, the bottom surface) of the base 1 facing the carrier 2.
  • the side of the base 1 facing the carrier 2 ie, the bottom surface
  • the side of the carrier 2 facing the base 1 ie, the top surface
  • the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • FIGS. 16A to 16D a simulation test of a specific implementation manner of the present application is carried out below in conjunction with FIGS. 16A to 16D .
  • two ventilation holes 22 and six diversion channels 44 were chosen as examples to simulate the airflow field.
  • the specific simulation results are shown in FIG. 16A .
  • the airflow distribution in the second uniform flow space 41 is not completely uniform, that is, the airflow velocity at the air outlet of the flow guide channel 44 is high, far away from the guide channel
  • the airflow velocity at the air outlet of the flow channel 44 is small, and the flow velocity difference in different areas of the second uniform flow space 41 is large and the airflow is uneven.
  • the purge gas flows uniformly through the second uniform flow space 41, it enters the first uniform flow space 52 after being restricted and pressurized through the flow-limiting holes in the connecting channel 15, and performs secondary uniform flow after reaching the first uniform flow space 52.
  • the simulation results of the airflow field in the first uniform flow space 52 are shown in Figure 16B.
  • the airflow uniformity inside the space is improved compared with the second uniform flow space 41, so that the airflow becomes relatively uniform.
  • the purge gas is subjected to secondary flow-limiting pressurization through the flow-limiting channel 53.
  • the simulation result of the airflow field of the flow-limiting channel 53 is shown in FIG.
  • the gas is uniform, as shown in the black part in Fig. 16C.
  • the simulation results of the airflow field after the purge gas reaches the blowing channel 51 are shown in FIG. 16D , and the flow velocity of the air flow in the blowing channel 51 is basically the same, so that the blowing channel 51 blows on the edge of the wafer more uniformly.
  • a limiting ring structure is provided on the outer periphery of the base, and a blowing flow channel and a first A uniform flow space, and an air channel structure is formed between the base and the carrier, the air channel structure is used to transport the purge gas to the first uniform flow space through the connecting channel in the base, and the first uniform flow space It is used to evenly flow the purge gas, and the evenly flowed purge gas is then blown out through the blowing channel to purge the bottom and side surfaces of the wafer.
  • the blowing channel can evenly blow out the gas, thereby ensuring that the influence of the edge blowing on the bottom surface and side airflow field of the wafer is consistent, thereby greatly improving the process.
  • the consistency of film formation can greatly improve the process yield.
  • the air blowing channel and the first uniform flow space are both formed between the base and the limiting ring structure, and the air channel structure is formed between the base and the carrier, the structure is simple and easy to process and manufacture, thereby greatly reducing the application and manufacturing cost.
  • an embodiment of the present application provides a semiconductor process equipment, including a process chamber and a carrying device as provided in the above-mentioned embodiments.
  • a carrying device including but not limited to the base 1 and the carrying member 2 ) is disposed in the process chamber 7 for carrying the wafer.
  • the semiconductor process equipment provided in the embodiment of the present application can not only reduce the manufacturing cost, but also improve the consistency of film formation in the process by using the above-mentioned carrying device provided in the embodiment of the present application, thereby greatly improving the process yield.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

本申请实施例提供了一种半导体工艺设备的承载装置。该承载装置设置于工艺腔室内,包括:基座、承载件以及限位环结构;限位环结构套设于基座的外周,内周壁与基座的外周壁之间形成有吹气流道及第一匀流空间,第一匀流空间与吹气流道连通;承载件与基座相互叠置且位于基座的下方,并且承载件与基座之间设置有气流道结构;气流道结构通过连接流道与第一匀流空间连通;气流道结构用于将吹扫气体通过连接流道输送至第一匀流空间;第一匀流空间用于对吹扫气体进行匀流;吹气流道用于将匀流后的吹扫气体吹出,以对晶圆的底面及侧面进行吹扫。本申请实施例实现了边缘吹气对晶圆的底面及侧面气流场影响是一致的,从而大幅提高了工艺均匀性及工艺良率。

Description

半导体工艺设备及其承载装置 技术领域
本申请涉及半导体加工技术领域,具体而言,本申请涉及一种半导体工艺设备及其承载装置。
背景技术
目前,化学气相沉积(Chemical Vapor Deposition,CVD)是一种通过气体化学反应在晶圆(Wafer)表面生成固体薄膜的工艺。用于承载晶圆进行薄膜沉积工艺的承载装置通常具有边缘吹扫(Edge Purge)功能,用于将晶圆背面和侧面附近的反应气体吹走,以避免晶圆有背镀和侧镀。随着工艺温度、金属污染和颗粒要求的提高,承载装置中用于承载晶圆的顶板的材质从金属铝及不锈钢变为耐高温、颗粒表现好以及金属污染少的陶瓷材质。
但是,由于采用陶瓷材质制成的顶板的加工较为困难,这就给在顶板中加工用于边缘吹扫的管路结构带来困难,从而导致制造成本较高,无法满足在薄膜沉积工艺中晶圆边缘均匀吹气的需求,从而造成产品质量无法得到保证。
发明内容
本申请针对现有方式的缺点,提出一种半导体工艺设备及其承载装置,用以解决现有技术存在制造成本较高,且无法满足晶圆边缘吹扫均匀吹气需求的技术问题。
为实现本发明的目的而提供一种用于半导体工艺设备的承载装置,设置于所述半导体工艺设备的工艺腔室内,包括:基座、承载件以及限位环结构;其中,
所述基座的顶面用于承载晶圆;所述限位环结构套设于所述基座的外周,用于限定所述晶圆的位置,并且所述限位环结构的内周壁与所述基座的外周壁之间形成有吹气流道及第一匀流空间,所述第一匀流空间与所述吹气流道连通;所述承载件与所述基座相互叠置且位于基座下方,并且所述承载件与所述基座之间设置有气流道结构;所述基座中设置有连接流道,所述气流道结构通过所述连接流道与所述第一匀流空间连通;
所述气流道结构用于将吹扫气体通过所述连接流道输送至所述第一匀流空间;所述第一匀流空间用于对流经的所述吹扫气体进行匀流;所述吹气流道用于将匀流后的所述吹扫气体吹出,以对所述晶圆的底面及侧面进行吹扫。
可选的,所述气流道结构包括导流道结构和第二匀流空间,其中,所述导流道结构与所述第二匀流空间连通,所述第二匀流空间通过所述连接流道与所述第一匀流空间连通;
所述导流道结构用于将所述吹扫气体输送至所述第二匀流空间;所述第二匀流空间用于对流经的所述吹扫气体进行匀流。
可选的,所述第二匀流空间的体积大于所述第一匀流空间的体积;和/或,所述连接流道的通气截面小于所述第一匀流空间及所述第二匀流空间的通气截面。
可选的,所述连接流道包括多个贯穿所述基座的限流孔,且多个所述限流孔沿所述基座的周向均匀排布,每个所述限流孔的两端分别与所述第一匀流空间和所述第二匀流空间连通。
可选的,每个所述限流孔包括沿竖直方向依次设置的第一直通孔和第二直通孔,所述第一直通孔位于所述第二直通孔的上方,且所述第一直通孔的直径小于所述第二直通孔的直径。
可选的,所述导流道结构包括至少一个导流道和至少一个贯穿所述承载 件的通气孔,其中,每个所述通气孔与至少一个所述导流道的进气端连通,所述通气孔用于与吹扫气体源连通;所述导流道的出气端沿所述第二匀流空间的周向间隔且均匀设置,且均与所述第二匀流空间连通。
可选的,所述承载件朝向所述基座的一面和所述基座朝向所述承载件的一面中的一者开设有环形凹槽和多个直线凹槽,所述承载件朝向所述基座的一面和所述基座朝向所述承载件的一面中的另一者与所述环形凹槽配合构成所述第二匀流空间,且与每个所述直线凹槽配合以构成所述导流道;或者,
所述承载件朝向所述基座的一面和所述基座朝向所述承载件的一面上均开设有环形凹槽和多个直线凹槽,所述承载件与所述基座上的所述环形凹槽对应配合构成所述第二匀流空间,所述承载件与所述基座上的多个所述直线凹槽对应配合以构成所述导流道。
可选的,所述承载装置还包括支撑轴,所述支撑轴位于所述承载件的下方并用于支撑所述承载件;所述支撑轴面向所述承载件的一面设置有第一匀流流道结构,所述第一匀流流道结构与各所述通气孔的进气端对应连通,且所述第一匀流流道结构与吹扫气体源连通。
可选的,所述第一匀流流道结构包括至少一个第一圆弧流道,且所述第一圆弧流道沿所述支撑轴的周向延伸;每个所述第一圆弧流道均与其中两个所述通气孔对应设置,两个所述通气孔的进气端分别与所述第一圆弧流道的两端连通;所述第一圆弧流道在中点位置处设置有与所述吹扫气体源连通的进气口。
可选的,所述基座中还设置有多个贯通所述基座的第一吸附孔,且多个所述第一吸附孔沿所述基座的周向均匀分布;所述承载件中还设置有多个贯通所述承载件的第二吸附孔,所述第二吸附孔的数量与所述第一吸附孔的数量相同,且一一对应地设置;
所述支撑轴面向所述承载件的一面还设置有第二匀流流道结构,所述第 二匀流流道结构与各所述第二吸附孔的进气端对应连通,且所述第二匀流流道结构与真空吸附装置连通。
可选的,所述第二匀流流道结构包括至少一个第二圆弧流道,且所述第二圆弧流道沿所述支撑轴的周向延伸;每个所述第二圆弧流道均与其中两个所述第二吸附孔对应设置,两个所述第二吸附孔的进气端分别与所述第二圆弧流道的两端连通;所述第二圆弧流道在中点位置处设置有与真空吸附装置连通的进气口。
可选的,所述第二圆弧流道为两个,且相对于所述支撑轴的轴线对称分布;
所述第二匀流流道结构还包括第三圆弧流道,所述第三圆弧流道沿所述支撑轴的周向延伸,且所述第三圆弧流道的两端分别在两个所述第二圆弧流道的中点位置处与两个所述第二圆弧流道连通;所述第三圆弧流道在中点位置处与所述真空吸附装置连通。
可选的,所述限位环结构包括环状主体,所述环状主体的内周壁上设置有朝向所述基座的外周壁凸出的盖环,所述盖环的内周壁与所述基座的外周壁具有间隙以形成所述吹气流道。
可选的,所述盖环的顶面和内周面的连接处设置有导流槽,所述导流槽呈环状,且沿所述盖环的周向环绕设置,所述导流槽的底面低于所述基座的顶面,并且所述导流槽的周向侧面的直径大于所述晶圆的直径;
所述导流槽与所述吹气流道连通,用于将所述吹气流道吹出的吹扫气体导流至所述晶圆的底面及侧面。
可选的,所述基座包括基座主体,所述基座主体的外周壁上设置有朝向所述环状主体的内周壁凸出的承载环,所述环状主体的内周壁上且位于所述盖环下方的区域还设置有朝向所述基座主体凸出的搭接环;
所述搭接环叠置于所述承载环上,且所述搭接环与所述基座主体的外周 壁具有间隙以形成有所述第一匀流空间。
可选的,所述搭接环与所述承载环相互叠置的两个表面之间设置有定位结构,所述定位结构包括定位凸部和定位凹部,所述定位凸部与所述定位凹部相配合,用于限定所述搭接环与所述承载环的相对位置。
可选的,所述基座主体的外周壁上,且位于所述承载环和所述盖环之间还设置有凸出的限流环,所述限流环与所述盖环之间具有间隙以形成限流道,所述限流道用于连通所述吹气流道及所述第一匀流空间。
可选的,所述限流道的通气截面小于所述吹气流道的通气截面,并且所述吹气流道的通气截面小于所述第一匀流空间的通气截面;
所述连接流道的通气截面大于所述限流道的通气截面。
可选的,所述基座、所述承载件及所述限位环结构均采用氮化铝陶瓷材质制作。
作为另一个技术方案,本申请实施例还提供一种半导体工艺设备,包括工艺腔室及本申请实施例提供的上述承载装置,所述承载装置设置于所述工艺腔室内。
本申请实施例提供的技术方案带来的有益技术效果是:
本申请实施例提供的承载装置,在基座的外周套设有限位环结构,该限位环结构的内周壁与基座的外周壁之间形成有吹气流道及第一匀流空间,以及在基座与承载件之间形成有气流道结构,该气流道结构用于将吹扫气体通过基座中的连接通道输送至第一匀流空间,该第一匀流空间用于对吹扫气体进行匀流,匀流后的吹扫气体再经由吹气流道吹出,以对晶圆的底面及侧面进行吹扫。借助上述第一匀流空间对吹扫气体进行匀流,可以使吹气流道均匀地吹出气体,从而可以确保边缘吹气对晶圆的底面及侧面气流场影响是一致的,进而大幅提高了工艺成膜的一致性,以大幅提高工艺良率。另外,吹气流道及第一匀流空间均形成于基座及限位环结构之间,以及气流道结构形 成于基座与承载件之间,结构简单且易于加工制造,从而大幅降低应用及制造成本。
本申请实施例提供的半导体工艺设备,其通过采用本申请实施例提供的上述承载装置,不仅可以降低制造成本,而且可以提高工艺成膜的一致性,从而可以大幅提高工艺良率。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请第一实施例提供的承载装置的一种剖视示意图;
图2为本申请第一实施例采用的基座的底面结构图;
图3为本申请第一实施例提供的承载装置的另一种剖视示意图;
图4A为本申请第一实施例提供的承载装置与工艺腔室的位置关系图;
图4B为本申请第一实施例采用的支撑轴的顶面结构图;
图5为本申请第一实施例提供的承载装置的又一种剖视示意图;
图6为本申请第一实施例采用的基座的顶面结构图;
图7为本申请第一实施例采用的承载件的顶面结构图;
图8为图1中承载装置的局部剖视示意图;
图9A为本申请第一实施例提供的第二匀流空间的气流场仿真结果示意图;
图9B为本申请第一实施例提供的第一匀流空间的气流场仿真结果示意图;
图9C为本申请第一实施例提供的限流道的气流场仿真结果示意图;
图9D为本申请第一实施例提供的吹气流道的气流场仿真结果示意图;
图10为本申请第二实施例提供的承载装置的剖视示意图;
图11为本申请第二实施例提供的承载装置局部放大的一种剖视示意图;
图12为本申请第二实施例提供的承载装置局部放大的另一种剖视示意图;
图13为本申请第二实施例采用的基座的底面结构图;
图14为本申请第二实施例采用的承载件的一种顶面结构图;
图15为本申请第二实施例采用的承载件的另一种顶面结构图;
图16A为本申请第二实施例提供的第二匀流空间的气流场仿真结果示意图;
图16B为本申请第二实施例提供的第一匀流空间的气流场仿真结果示意图;
图16C为本申请第二实施例提供的限流道的气流场仿真结果示意图;
图16D为本申请第二实施例提供的吹气流道的气流场仿真结果示意图。
具体实施方式
下面详细描述本申请,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本申请的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。
第一实施例
本申请实施例提供了一种半导体工艺设备的承载装置,设置于工艺腔室(例如图4A中示出的工艺腔室7)内,该承载装置的结构示意图如图1所示,包括:基座1、承载件2以及限位环结构3;其中,基座1的顶面用于承载晶圆100;可选的,该基座1包括基座主体14,该基座主体14的顶面用于承载晶圆100;限位环结构3套设于基座1的外周,用于限定晶圆100的位置,并且限位环结构3的内周壁与基座1的外周壁之间形成有吹气流道51及第一匀流空间52,该第一匀流空间52与吹气流道51连通;承载件2与基座1相互叠置且位于基座1下方,并且承载件2与基座1之间设置有气流道结构4;基座1中设置有连接流道15,气流道结构4通过连接流道15与第一匀流空间52连通;气流道结构4用于将吹扫气体通过连接流道15输送至第一匀流空间52;第一匀流空间52用于对流经的吹扫气体进行匀流;吹气流道51用于将匀流后的吹扫气体吹出,以对晶圆100的底面及侧面(即,晶圆100边缘处的暴露部分)进行吹扫。
如图1所示,半导体工艺设备可以用于对晶圆100执行化学气相沉积工艺,但是本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。基座1可以采用陶瓷材质制成圆盘形结构,基座1的顶面可以用于承载晶圆100,并且基座1顶面的直径可以小于晶圆100的直径。可选的,在基座1中还可以设置有射频接地电极101,用于与射频电源电连接,或者接地。承载件2可以采用陶瓷材质制成的圆盘形板状结构,承载件2层叠设置于基座1的底部,并且通过支撑轴6设置于工艺腔室内,该支撑轴6可以是可升降的,并且支撑轴6的下端可以自工艺腔室的底部伸出,以能够与外部的升降驱动源连接,此外支撑轴6上套设有波纹管,用以对支撑轴6 与工艺腔室之间的间隙进行密封,从而保证工艺腔室的密封性。可选的,承载件2内可以设置有加热管21,用于对晶圆100进行加热,而且可以对应承载件2不同区域分别设置加热管21,例如如图1所示,该加热管21为两个,且分别与承载件2的中心区域和边缘区域对应设置,以实现分区控温。而且,承载件2与基座1之间可以设置有气流道结构4,该气流道结构4用于与气源连接以通入吹扫气体,并将该吹扫气体输送至第一匀流空间52。限位环结构3可以采用陶瓷材质制成的套筒结构,限位环结构3可以套设于基座1的外周,用于限定晶圆100在基座1上的位置,但是本申请实施例并不以此为限。限位环结构3的内周壁可以与基座1的外周壁之间形成吹气流道51及第一匀流空间52,例如吹气流道51与第一匀流空间52自上至下依次设置,并且第一匀流空间52的顶部与吹气流道51连通设置,底部可以通过连接流道15与气流道结构4连通,用于对气流道结构4通入的吹扫气体进行匀流;吹气流道51用于将匀流后的吹扫气体吹出,以吹扫晶圆100的底面及侧面。由于基座1的顶面直径小于晶圆100的直径,这使得吹气流道51吹出的吹扫气体可以流经晶圆100底面和侧面的暴露区域,从而实现对晶圆100底面及侧面进行均匀吹扫。
本申请实施例提供的承载装置,在基座1的外周套设有限位环结构3,该限位环结构3的内周壁与基座1的外周壁之间形成有吹气流道51及第一匀流空间52,以及在基座1的底面与承载件2的顶面之间形成有气流道结构4,该气流道结构4用于将吹扫气体通过基座1中的连接通道15输送至第一匀流空间52,该第一匀流空间52能够使进入的吹扫气体更快地沿基座1的周向扩散,从而起到对吹扫气体进行匀流的作用,匀流后的吹扫气体再经由吹气流道吹出,以对晶圆100的底面及侧面进行吹扫。借助上述第一匀流空间52对吹扫气体进行匀流,可以使吹气流道51均匀地吹出气体,从而可以确保边缘吹气对晶圆100的底面及侧面气流场影响是一致的,进而大幅提高了工艺 成膜的一致性,以大幅提高工艺良率。另外,吹气流道51及第一匀流空间52均形成于基座及限位环结构之间,以及气流道结构形成于基座与承载件之间,结构简单且易于加工制造,从而大幅降低应用及制造成本。
于本申请的一实施例中,如图1及图2所示,气流道结构4包括导流道结构和第二匀流空间41,其中,导流道结构与第二匀流空间41连通,该第二匀流空间41通过上述连接流道15与第一匀流空间52连通,可选的,第二匀流空间41呈环状,且与第一匀流空间52在竖直方向上相对设置,而且第二匀流空间41的体积大于第一匀流空间52的体积。上述导流道结构用于将吹扫气体输送至第二匀流空间41;该第二匀流空间41用于对流经的吹扫气体进行匀流。具体来说,经由导流道结构输出的吹扫气体先经由第二匀流空间41进行一次匀流,然后再经由第一匀流空间52进行二次匀流,最后经由吹气流道51朝向晶圆100的底面及侧面吹出。采用上述设计,由于经由两级匀流空间对吹扫气体进行二次匀流,这使得吹气流道51吹出的吹扫气体更加均匀,从而进一步提高晶圆边缘吹扫的均匀性,进一步提高晶圆的工艺均匀性以及提高工艺良率。
此外,上述第二匀流空间41相对于第一匀流空间52更接近于气源,吹扫气体进入第二匀流空间41时气流速度较快,不均匀性较大,为此,通过使第二匀流空间41的体积大于第一匀流空间52的体积,可以利用较大体积的第二匀流空间41进行第一级匀流,可以更好地缓冲气流,使得吹扫气体经过第二匀流空间41的缓冲后再进入第一匀流空间52可以更好地匀气,提高吹扫气体的均匀性。
于本申请的一实施例中,如图1和图8所示,连接流道15的通气截面小于第一匀流空间52及第二匀流空间41的通气截面。可选地,连接流道15包括多个贯穿基座1的限流孔,多个限流孔沿基座1的周向均匀排布,每个限流孔的两端分别与第一匀流空间52和第二匀流空间41连通。可选的,各 限流孔沿竖直方向贯穿基座1。
上述连接流道15通过采用限流孔,使得本申请实施例加工简单,从而大幅提高加工的成品率,进而降低应用及维护成本。进一步的,上述连接流道15的通气截面(即,各限流孔的通气截面)小于第一匀流空间52及第二匀流空间41的通气截面,即连接流道15的相切于气流方向截面小于第一匀流空间52及第二匀流空间41的相切于气流方向的截面。这样,上述连接流道15可以对经第二匀流空间41输出的吹扫气体进行增压作用,结合第一匀流空间52的匀流作用,可以进一步提高吹扫气体的均匀性,从而提高晶圆100的均匀性及工艺良率。
于本申请的一实施例中,如图2和图3所示,上述导流道结构包括至少一个导流道44和至少一个贯穿承载件2的通气孔22,其中,每个通气孔22与至少一个导流道44的进气端44a连通,通气孔22用于与吹扫气体源连通;借助上述各通气孔22,不仅可以将吹扫气体引入至至少一个导流道44中,而且还可以将吹扫气体同时输送至各个导流道44的进气端44a,从而可以保证吹扫气体的均匀性。
导流道44的出气端44b沿第二匀流空间41的周向间隔且均匀设置,且均与第二匀流空间41连通。例如,如图3所示,通气孔22为两个,可选的,两个通气孔22位于或者靠近基座1的中心位置,用于与吹扫气体源连通;每个通气孔22均与四个导流道44的进气端44a连通,即,四个导流道44的进气端44a汇聚在同一通气孔22处,并与之连通。四个导流道44沿第二匀流空间41的周向间隔设置,且四个导流道44的出气端44b均与上述第二匀流空间41连通。导流道结构通过采用上述结构,可以将吹扫气体从靠近基座1的中心位置沿不同方向朝向基座1的边缘位置输送,并到达第二匀流空间41周向上的不同位置,从而不仅可以缩短吹扫气体的路径,提高吹扫气体的流动速率,而且还可以进一步提高吹扫气体的均匀性。
作为一个优选的实施例,如图2所示,与其中一个通气孔22连通的四个导流道44和与另一个通气孔22连通的四个导流道44可以相对于基座1的轴线对称分布,且所有导流道44(即,8个导流道44)的长度大致相同,且所有导流道44的出气端44b(即,8个出气端44b)沿第二匀流空间41的周向均匀分布。这样,可以使自进气端44a流入各导流道44的吹扫气体能够沿相同长度的路径同时流动至各出气端44b,而且能够均匀地从各出气端44b流入第二匀流空间41,从而可以进一步提高吹扫气体均匀性。当然,在实际应用中,导流道组还可以三组或者更多组,而且本申请实施例不限定通气孔22、导流道44的数量及布局方式,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图2所示,基座1朝向承载件2的一面(即,底面14a)上开设有环形凹槽和多个直线凹槽,该环形凹槽与承载件2朝向基座1的一面(即,顶面)配合构成上述第二匀流空间41,且每个直线凹槽与承载件2朝向基座1的一面(即,顶面)配合以构成上述导流道44。但是,本申请实施例并不局限于此,也可以在承载件2朝向基座1的一面(即,顶面)上开设有环形凹槽和多个直线凹槽,该环形凹槽与基座1朝向承载件2的一面(即,底面14a)配合构成上述第二匀流空间41,且每个直线凹槽与基座1朝向承载件2的一面(即,底面14a)配合以构成上述导流道44。或者,还可以基座1朝向承载件2的一面(即,底面14a)和承载件2朝向基座1的一面(即,顶面)均开设有环形凹槽和多个直线凹槽,基座1朝向承载件2的一面(即,底面14a)上的环形凹槽和承载件2朝向基座1的一面上的环形凹槽配合构成第二匀流空间41,且基座1朝向承载件2的一面(即,底面14a)上的每个直线凹槽和承载件2朝向基座1的一面(即,顶面)上的每个直线凹槽配合以构成导流道44。
于本申请的一实施例中,如图3、图4A和图4B所示,承载装置还包括 支撑轴6,该支撑轴6位于承载件2的下方并用于支撑承载件2,可选的,如图4A所示,工艺腔室7的底部设置有通孔71,支撑轴6的下端通过通孔71延伸至工艺腔室7的外部,以能够与升降驱动源(图中未示出)连接。此外,在工艺腔室7的外部还设置有波纹管9,该波纹管9套设于支撑轴6上,且波纹管9的下端与下法兰8密封连接,波纹管9的上端通过上法兰10与工艺腔室7的底部密封连接,上述波纹管9用于上述通孔71密封,从而可以保证工艺腔室7内部的密封性。
并且,支撑轴6面向承载件2的一面(即,顶面6a)设置有第一匀流流道结构,该第一匀流流道结构与各通气孔22的进气端对应连通,且第一匀流流道结构与吹扫气体源连通。第一匀流流道结构用于对流经的吹扫气体起到匀流效果。在一些可选的实施例中,上述第一匀流流道结构可以包括至少一个第一圆弧流道61,且该第一圆弧流道61沿支撑轴6的周向延伸;每个第一圆弧流道61均与其中两个通气孔22对应设置,两个通气孔22的进气端分别与第一圆弧流道61的两端61a连通;第一圆弧流道61在中点位置处设置有与吹扫气体源连通的进气口61b。吹扫气体源提供的吹扫气体首先从第一圆弧流道61的进气口61b处进入第一圆弧流道61,然后同时分流至第一圆弧流道61的两端61a,再分别经由对应的两个通气孔22流入相应的导流道44。上述第一圆弧流道61不仅可以对流经的吹扫气体起到匀流效果,而且还可以使吹扫气体流向各个通气孔22的路径相同,从而实现对吹扫气体的均匀分配,此外通过在支撑轴6面向承载件2的一面(即,顶面6a)与承载件2的底面之间设置有至少一个第一圆弧流道61,可以进一步简化结构,降低加工制造难度,从而大幅降低应用及制造成本。
需要说明的是,在本实施例中,通气孔22共有两个,在这种情况下,对应两个通气孔22设置有一个第一圆弧流道61,但是本申请实施例并不局限于此,在实际应用中,可以根据通气孔21的具体数量,设定第一圆弧流道 61的数量和布局方式,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图4、图5及图6所示,为了实现承载装置的真空吸附功能,基座1(例如基座主体14)中还设置有多个贯通基座1的第一吸附孔16,例如图6中示出了四个第一吸附孔16,且多个第一吸附孔16沿基座1的周向均匀分布;并且,如图7所示,承载件2中还设置有多个贯通承载件2的第二吸附孔23,第二吸附孔23的数量与第一吸附孔16的数量相同,且一一对应地设置。而且,如图4B所示,支撑轴6面向承载件2的一面(即,顶面6a)还设置有第二匀流流道结构,该第二匀流流道结构与各第二吸附孔23的进气端对应连通,第二匀流流道结构与真空吸附装置连通。第二匀流流道结构用于对流经的气体起到匀流效果。在一些可选的实施例中,上述第二匀流流道结构可以包括至少一个第二圆弧流道62,且第二圆弧流道62沿支撑轴6的周向延伸;如图5所示,每个第二圆弧流道62均与其中两个第二吸附孔23对应设置,两个第二吸附孔23的进气端分别与第二圆弧流道62的两端62a连通;第二圆弧流道62在中点位置处设置有与真空吸附装置连通的进气口。以第二吸附孔23为四个为例,如图4所示,每两个第二吸附孔23对应一个第二圆弧流道62,共有两个第二圆弧流道62,二者相对于基座1的轴线对称分布,在这种情况下,上述第二匀流流道结构还包括第三圆弧流道63,该第三圆弧流道63沿支撑轴6的周向延伸,且第三圆弧流道63的两端63a分别在两个第二圆弧流道62的中点位置处与两个第二圆弧流道62连通;第三圆弧流道63在中点位置处与真空吸附装置连通。第三圆弧流道63例如可以通过一条直通道64与真空吸附装置连通,该直通道64的出气端64a与第三圆弧流道63的中点位置连接,直通道64的进气端64b与真空吸附装置连通。需要说明的是,在本实施例中,第二吸附孔23共有四个,在这种情况下,对应四个第二吸附孔23设置有两个第二圆弧流道62以及一个第三圆弧流道63,但是本申请实施例并不局限于此,在实际应用中, 可以根据第二吸附孔23的具体数量,设定第二圆弧流道62以及第三圆弧流道63的数量和布局方式,本领域技术人员可以根据实际情况自行调整设置。另外,如果第二圆弧流道62为一个,则可以省去第三圆弧流道63。通过结合使用第一圆弧流道61、第二圆弧流道62以及第三圆弧流道63,既可以实现真空吸附气路与边缘吹扫气路之间的隔离,又可以实现对吹扫气流和真空吸附气流进行均匀分配。
于本申请的一实施例中,如图1及图8所示,限位环结构3包括环状主体33,该环状主体33的内周壁上设置有朝向基座1(例如基座主体14)凸出的盖环31,该盖环31的内周壁与基座1的外周壁具有间隙以形成吹气流道51。具体来说,环状主体33可以采用圆形套筒结构,环状主体33的内周壁顶部可以一体形成有盖环31,该盖环31的内周壁环绕基座1的外周壁,且具有间隙,该间隙用于形成环形的吹气流道51,由于基座1的顶面直径小于晶圆100的直径,这使得吹气流道51吹出的吹扫气体可以流经晶圆100底面和侧面的暴露区域,并且由于吹气流道51为环形且沿基座1的周向环绕设置,这可以使吹气流道51在圆周方向上同时吹出吹扫气体,从而实现对晶圆100底面及侧面进行均匀吹扫。采用上述设计,使得本申请实施例不仅结构简单,而且由于结构简单还能大幅提高承载装置的成品率,从而进一步降低应用及维护成本。需要说明的是,本申请实施例并不限定盖环31与限位环结构3的具体实施方式,例如两者为分体式结构且采用焊接方式固定连接。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图1至图8所示,基座主体14的外周壁上设置有朝向环状主体33的内周壁凸出的承载环11,环状主体33的内周壁上且位于盖环31下方的区域还设置有朝向基座主体14凸出的搭接环32,搭接环32叠置于承载环11上,且搭接环32与基座主体14的外周壁具有间隙, 以形成有第一匀流空间52。具体来说,搭接环32的内径大于盖环31的内径,即盖环31与搭接环32均一体成形于环状主体33的内周壁上,且构成台阶结构。进一步的,搭接环32与承载环11之间可以通过限位结构限定二者之间的相对位置,例如两者之间可以采用销钉固定设置。采用上述设计,使得本申请实施例采用相对较为简单的结构即可以形成第一匀流空间52,不仅易于加工制造,而且还使得本申请实施结构稳定以延长使用寿命。需要说明的是,本申请实施例并不限定第一匀流空间52的具体实施方式,例如在环状主体33的内周壁上开设有凹槽,或者基座主体14的外周壁上开设有凹槽,两个凹槽单独或者相互配合形成第一匀流空间52。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图1至图8所示,基座主体14的外周壁上,且位于承载环11和盖环31之间还设置有凸出的限流环12,该限流环12与盖环31之间具有间隙以形成限流道53,该限流道53用于连通吹气流道51及第一匀流空间52。具体来说,基座主体14的外周壁上还一体形成有限流环12,该限流环12可以位于承载环11的顶部,并且外径小于承载环11的外径,即基座主体14的外周壁由上至下形成两级台阶,限流环12的顶面和承载环11的顶面分别为两级台阶的台阶面,以使得本申请实施例结构简单。进一步的,搭接环32的内周壁、承载环11的顶面、限流环12的外周壁及盖环31的底面共同配合形成第一匀流空间52,并且盖环31的底面与限流环12的顶面之间具有一间隙,该间隙用于形成限流道53,该限流道53的一端与第一匀流空间52连通,另一端与吹气流道51的底部连通。借助限流道53,可以对经由第一匀流空间52流出的吹扫气体进行增压限流,以增加吹扫气体在第一匀流空间52中的匀流时间,以提高匀流效果,从而进一步提高吹气流道51的吹扫均匀性,以进一步提高晶圆的均匀性及工艺良率。需要说明的是,本申请实施例并不限定限流道53的具体实施方式,例如吹气流道51与第一 匀流空间52连通处可以设置有阻挡结构,以用于增加第一匀流空间52内压力,从而提高匀流效果。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图8所示,限流道53的通气截面小于吹气流道51的通气截面,并且吹气流道51的通气截面小于第一匀流空间52的通气截面。具体来说,限流道53的通气截面小于吹气流道51的通气截面,吹气流道51的通气截面小于第一匀流空间52的通气截面,该通气截面具体来说为相切于气流方向的截面,以使得第一匀流空间52气流压力较大,从而进一步提高匀流效率及匀流效果。另外,可选的,连接流道15的通气截面可以小于第一匀流空间52及第二匀流空间41的通气截面,并且大于限流道53的通气截面。这样可以在满足对第二匀流空间41增压匀流的同时,还能提高气流速率,从而提高边缘吹扫效率。在实际应用时,连接流道15的作用使得第二匀流空间41内的吹扫气体增压匀流,然后再经由连接流道15进入第一匀流空间52内,此时限流道53用于对第一匀流空间52内的吹扫气体进行增压匀流,最后经由限流道53及吹气流道51对晶圆100的底面及侧面进行吹扫。通过将第一匀流空间52、第二匀流空间41、连接流道15和限流道53结合使用,可以实现两级增压匀流,从而进一步提高吹扫气体的均匀性,进而提高晶圆100的均匀性及工艺良率。
为了进一步说明本申请第一实施例有益效果,以下结合附图9A至图9D对本申请的一具体实施方式进行仿真测试。具体来说,选择两个通气孔22及八个导流道44为例进行气流场仿真模拟,具体仿真结果如图9A所示,吹扫气体经由各通气孔22进入各导流道44内速度很快,在到达第二匀流空间41后进行匀流,但是从仿真结果得出第二匀流空间41内的气流分布并不完全均匀,即导流道44的出气口处气流速度大,远离导流道44出气口气流速度小,第二匀流空间41不同区域流速差异大且气流不均匀。吹扫气体经过第 二匀流空间41匀流后,经由连接流道15中的各限流孔限流增压后进入第一匀流空间52,在到达第一匀流空间52进行二次匀流,该第一匀流空间52内的气流场仿真结果如图9B所示,在第一匀流空间52内气流速度差变小,气流变得较为均匀,由此可见第一匀流空间52内的气流均匀性相对于第二匀流空间41有所改善,使得气流变得相对均匀。吹扫气体经由限流道53进行二次限流增压,该限流道53的气流场仿真结果如图9C所示,气流在限流道53内的流速基本一致,流速差很小且吹气均匀,如图9C中黑色部分所示。吹扫气体在到达吹气流道51后气流场仿真结果如图9D所示,气流在吹气流道51流速基本一致,从而使得吹气流道51对于晶圆的边缘吹气较为均匀。
于本申请的一实施例中,基座1、承载件2及限位环结构3均采用氮化铝陶瓷材质。具体来说,基板、承载件2及限位环结构3均采用氮化铝陶瓷材质,使得本申请实施例在实现晶圆100边缘吹扫均匀吹气的同时,还能使得承载装置具有耐高温、颗粒污染较小以及大幅降低金属污染的优点,从而不仅能提高晶圆的良工艺率,并且还能大幅提高晶圆工艺均匀性。但是本申请实施例并不限定上述各部件具体材质,例如采用其它类型的陶瓷材质,只要能满足上述需求即可。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
第二实施例
本申请实施例提供的半导体工艺设备的承载装置,其与上述第一实施例相比,同样包括基座1、承载件2以及限位环结构3,这些部件的结构和功能与上述第一实施例相同,下面仅对本实施例与上述第一实施例的区别进行详细描述。
具体地,如图10所示,在本实施例中,在基座1内设置加热管13,用于对晶圆100进行加热,而且可以对应基座1不同区域分别设置加热管13,例如如图10所示,该加热管13为两个,且分别与基座1的中心区域和边缘 区域对应设置,以实现分区控温。
于本申请的一实施例中,如图11所示,盖环31的顶面和内周面的连接处设置有导流槽311,该导流槽311呈环状,且沿盖环31的周向环绕设置,导流槽311的底面低于基座1(例如基座主体14)的顶面,并且导流槽311的周向侧面的直径大于晶圆100的直径,导流槽311与吹气流道51连通,用于将吹气流道51吹出的吹扫气体导流至晶圆100的底面及侧面。具体来说,盖环31靠近内周壁处开设有导流槽311,例如盖环31的顶面与内周壁之间开设有开放式的凹槽,以用于形成导流槽311。进一步来说,盖环31的顶面可以与基座1的顶面平齐设置,导流槽311的底面低于基座1的顶面,即当基座1的顶面上承载有晶圆100时,导流槽311能够将晶圆100限定在其内侧,且与晶圆100的底面及侧面之间形成导流间隙。当吹气流道51的吹扫气体向晶圆100的底面进行吹扫时,在导流槽311的作用下能够将吹扫气体导流至晶圆100的侧面,从而可以防止形成背镀及侧镀,即防止晶圆100的底面及侧面沉积薄膜,进而提高晶圆100的良率。采用上述设计,不仅能使得气流场更加均匀,而且还能使得晶圆100边缘吹气更加均匀,从而进一步提高晶圆100的均匀性以及提高工艺良率。需要说明的是,本申请实施例并不限定必须要包括有导流槽311,例如盖环31的顶面相较于基座1的顶面低,以使得盖环31与晶圆100的底面之间具有间隙,以实现类似导流槽311的功能。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图11所示,搭接环32与承载环11相互叠置的两个表面之间设置有定位结构,该定位结构包括定位凸部和定位凹部,二者相配合用于限定搭接环32与承载环11的相对位置,从而实现限位环结构3与基座1的定位。具体地,上述定位凸部例如为凸设于搭接环32底面上的定位凸块321,上述定位凹部例如为开设于承载环11顶面上的定位凹槽 111,定位凸块321与定位凹槽111配合用于限定限位环结构3与基座1之间的相对位置。
可选的,上述定位凸部为多个,例如为三个,且多个定位凸部沿承载环11的周向均匀且间隔分布;上述定位凹部的数量与定位凸部的数量相同,且一一对应地设置。采用上述设计,不仅能提高限位环结构3与基座1之间的稳定性,而且还能降低加工难度,从而在延长使用寿命的同时,还能大大降低拆装维护成本。需要说明的是,本申请实施例并不限定位结构的具体实施方式,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图11和图13所示,连接流道15中的各限流孔均为直通孔,但是,本申请实施例并不局限于此,例如,如图12所示,连接流道15中的每个限流孔包括沿竖直方向依次设置的第一直通孔151和第二直通孔152,第一直通孔151位于第二直通孔152的上方,且第一直通孔151的直径小于第二直通孔152的直径。由于靠近承载环11顶部的第一直通孔151的直径小于靠近承载环11底部的第二直通孔152的直径,即连接流道15采用不同径结构,这使得直径较小的第一直通孔151可以进一步降低吹扫气体的流速,以进一步增强吹扫气体在第二匀流空间41内的压力及匀流效果,从而进一步提高边缘吹扫的均匀性。
需要说明的是,本申请实施例并不限定连接流道15中的每个限流孔的具体结构,例如限流孔还可以是更多级的阶梯孔,或者锥形孔,以用于对第二匀流空间41进行增压限流。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图11及图14所示,各通气孔22贯穿承载件2设置,例如承载件2的中部位置可以开设有两个通气孔22,每个通气孔22可以通过三个导流道44与第二匀流空间41直线连通。三个导流道44的一端与通气孔22连通设置,另一端与第二匀流空间41连通,并且导流道44 能采用直线连通的方式与通气孔43及第二匀流空间41。采用上述设计,由于多个通气孔22均通过多个导流道44与第二匀流空间41连通,使得吹扫气体的路径较短,并且均匀性相对较佳,从而不仅能提高吹扫气体的流动速率,而且还能大幅提高本申请实施的应用及维护成本。需要说明的是,本申请实施例并不限定通气孔22及导流道44的数量及位置,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图15所示,通气孔22可以设置为一个,并且位于承载件2居中位置的一侧,三个导流道44的一端均与通气孔22连通,以及三个导流道44的另一端均与第二匀流空间41连通,并且沿周向间隔排布。由于承载件2采用陶瓷材质制成,通气孔22的数量减少能进一步提高承载件2的成品率,从而进一步降低本申请实施例的应用及维护成本。
于本申请的一实施例中,如图14所示,承载件2朝向基座1的一面(即,顶面)上开设有环形凹槽和多个直线凹槽,该环形凹槽与基座1朝向承载件2的一面(即,底面)配合构成上述第二匀流空间41,且每个直线凹槽与基座1朝向承载件2的一面(即,底面)配合以构成上述导流道44。具体来说,承载件2朝向基座1的一面(即,顶面)上可以开设有环形凹槽,该环形凹槽与承载件2同轴设置,并且靠近承载件2的边缘设置。当承载件2层叠于基座1的底部时,环形凹槽与基座1朝向承载件2的一面(即,底面)相互配合以形成第二匀流空间41,采用该设计能使得本申请实施例结构简单且易于加工制造,从而大幅降低应用及维护成本。进一步的,承载件2朝向基座1的一面(即,顶面)上还设有多个直线凹槽,该直线凹槽位于通气孔22及环形凹槽之间,该直线凹槽与基座1朝向承载件2的一面(即,底面)配合以构成多个导流道44,以用于连通通气孔22及第二匀流空间41。采用该设计能使得本申请实施例易于加工制造,从而大幅降低应用及维护成本。但是本申请实施例并不限定第二匀流空间41及导流道44的具体结构,例如环形 凹槽及直线凹槽均形成于基座1朝向承载件2的一面(即,底面)上,或者基座1朝向承载件2的一面(即,底面)及承载件2朝向基座1的一面(即,顶面)上均形成有环形凹槽及直线凹槽。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
为了进一步说明本申请实施例有益效果,以下结合附图16A至图16D对本申请的一具体实施方式进行仿真测试。具体来说,选择两个通气孔22及六个导流道44为例进行气流场仿真模拟,具体仿真结果如图16A所示,吹扫气体经由通气孔22进入导流道44内速度很快,在到达第二匀流空间41后进行匀流,但是从仿真结果得出第二匀流空间41内的气流分布并不完全均匀,即导流道44的出气口处气流速度大,远离导流道44出气口气流速度小,第二匀流空间41不同区域流速差异大且气流不均匀。吹扫气体经过第二匀流空间41匀流后,经由连接流道15中的各限流孔限流增压后进入第一匀流空间52,在到达第一匀流空间52进行二次匀流,该第一匀流空间52内的气流场仿真结果如图16B所示,在第一匀流空间52内气流速度差变小,气流变得较为均匀,由此可见第一匀流空间52内的气流均匀性相对于第二匀流空间41有所改善,使得气流变得相对均匀。吹扫气体经由限流道53进行二次限流增压,该限流道53的气流场仿真结果如图16C所示,气流在限流道53内的流速基本一致,流速差很小且吹气均匀,如图16C中黑色部分所示。吹扫气体在到达吹气流道51后气流场仿真结果如图16D所示,气流在吹气流道51流速基本一致,从而使得吹气流道51对于晶圆的边缘吹气较为均匀。
综上所述,本申请实施例提供的承载装置,在基座的外周套设有限位环结构,该限位环结构的内周壁与基座的外周壁之间形成有吹气流道及第一匀流空间,以及在基座与承载件之间形成有气流道结构,该气流道结构用于将吹扫气体通过基座中的连接通道输送至第一匀流空间,该第一匀流空间用于对吹扫气体进行匀流,匀流后的吹扫气体再经由吹气流道吹出,以对晶圆的 底面及侧面进行吹扫。借助上述第一匀流空间对吹扫气体进行匀流,可以使吹气流道均匀地吹出气体,从而可以确保边缘吹气对晶圆的底面及侧面气流场影响是一致的,进而大幅提高了工艺成膜的一致性,以大幅提高工艺良率。另外,吹气流道及第一匀流空间均形成于基座及限位环结构之间,以及气流道结构形成于基座与承载件之间,结构简单且易于加工制造,从而大幅降低应用及制造成本。
基于同一发明构思,本申请实施例提供了一种半导体工艺设备,包括工艺腔室及如上述各实施例提供的承载装置。例如,如图4A所示,承载装置(包括但不限于基座1和承载件2)设置于工艺腔室7内,用于承载晶圆。
本申请实施例提供的半导体工艺设备,其通过采用本申请实施例提供的上述承载装置,不仅可以降低制造成本,而且可以提高工艺成膜的一致性,从而可以大幅提高工艺良率。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种用于半导体工艺设备的承载装置,设置于所述半导体工艺设备的工艺腔室内,其特征在于,包括:基座、承载件以及限位环结构;其中,
    所述基座的顶面用于承载晶圆;所述限位环结构套设于所述基座的外周,用于限定所述晶圆的位置,并且所述限位环结构的内周壁与所述基座的外周壁之间形成有吹气流道及第一匀流空间,所述第一匀流空间与所述吹气流道连通;所述承载件与所述基座相互叠置且位于所述基座的下方,并且所述承载件与所述基座之间设置有气流道结构;所述基座中设置有连接流道,所述气流道结构通过所述连接流道与所述第一匀流空间连通;
    所述气流道结构用于将吹扫气体通过所述连接流道输送至所述第一匀流空间;所述第一匀流空间用于对流经的所述吹扫气体进行匀流;所述吹气流道用于将匀流后的所述吹扫气体吹出,以对所述晶圆的底面及侧面进行吹扫。
  2. 如权利要求1所述的承载装置,其特征在于,所述气流道结构包括导流道结构和第二匀流空间,其中,所述导流道结构与所述第二匀流空间连通,所述第二匀流空间通过所述连接流道与所述第一匀流空间连通;
    所述导流道结构用于将所述吹扫气体输送至所述第二匀流空间;所述第二匀流空间用于对流经的所述吹扫气体进行匀流。
  3. 如权利要求2所述的承载装置,其特征在于,所述第二匀流空间的体积大于所述第一匀流空间的体积;和/或,所述连接流道的通气截面小于所述第一匀流空间及所述第二匀流空间的通气截面。
  4. 如权利要求2述的承载装置,其特征在于,所述连接流道包括多个贯穿所述基座的限流孔,且多个所述限流孔沿所述基座的周向均匀排布,每个 所述限流孔的两端分别与所述第一匀流空间和所述第二匀流空间连通。
  5. 如权利要求4所述的承载装置,其特征在于,每个所述限流孔包括沿竖直方向依次设置的第一直通孔和第二直通孔,所述第一直通孔位于所述第二直通孔的上方,且所述第一直通孔的直径小于所述第二直通孔的直径。
  6. 如权利要求2所述的承载装置,其特征在于,所述导流道结构包括至少一个导流道和至少一个贯穿所述承载件的通气孔,其中,每个所述通气孔与至少一个所述导流道的进气端连通,所述通气孔用于与吹扫气体源连通;所述导流道的出气端沿所述第二匀流空间的周向间隔且均匀设置,且均与所述第二匀流空间连通。
  7. 如权利要求6所述的承载装置,其特征在于,所述承载件朝向所述基座的一面和所述基座朝向所述承载件的一面中的一者开设有环形凹槽和多个直线凹槽,所述承载件朝向所述基座的一面和所述基座朝向所述承载件的一面中的另一者与所述环形凹槽配合构成所述第二匀流空间,且与每个所述直线凹槽配合以构成所述导流道;或者,
    所述承载件朝向所述基座的一面和所述基座朝向所述承载件的一面上均开设有环形凹槽和多个直线凹槽,所述承载件与所述基座上的所述环形凹槽对应配合构成所述第二匀流空间,所述承载件与所述基座上的多个所述直线凹槽对应配合以构成所述导流道。
  8. 如权利要求6所述的承载装置,其特征在于,所述承载装置还包括支撑轴,所述支撑轴位于所述承载件的下方并用于支撑所述承载件;所述支撑轴面向所述承载件的一面设置有第一匀流流道结构,所述第一匀流流道结构与各所述通气孔的进气端对应连通,且所述第一匀流流道结构与吹扫气体源连通。
  9. 如权利要求8所述的承载装置,其特征在于,所述第一匀流流道结构包括至少一个第一圆弧流道,且所述第一圆弧流道沿所述支撑轴的周向延伸;每个所述第一圆弧流道均与其中两个所述通气孔对应设置,两个所述通气孔的进气端分别与所述第一圆弧流道的两端连通;所述第一圆弧流道在中点位置处设置有与所述吹扫气体源连通的进气口。
  10. 如权利要求8所述的承载装置,其特征在于,所述基座中还设置有多个贯通所述基座的第一吸附孔,且多个所述第一吸附孔沿所述基座的周向均匀分布;所述承载件中还设置有多个贯通所述承载件的第二吸附孔,所述第二吸附孔的数量与所述第一吸附孔的数量相同,且一一对应地设置;
    所述支撑轴面向所述承载件的一面还设置有第二匀流流道结构,所述第二匀流流道结构与各所述第二吸附孔的进气端对应连通,且所述第二匀流流道结构与真空吸附装置连通。
  11. 如权利要求10所述的承载装置,其特征在于,所述第二匀流流道结构包括至少一个第二圆弧流道,且所述第二圆弧流道沿所述支撑轴的周向延伸;每个所述第二圆弧流道均与其中两个所述第二吸附孔对应设置,两个所述第二吸附孔的进气端分别与所述第二圆弧流道的两端连通;所述第二圆弧流道在中点位置处设置有与真空吸附装置连通的进气口。
  12. 如权利要求11所述的承载装置,其特征在于,所述第二圆弧流道为两个,且相对于所述支撑轴的轴线对称分布;
    所述第二匀流流道结构还包括第三圆弧流道,所述第三圆弧流道沿所述支撑轴的周向延伸,且所述第三圆弧流道的两端分别在两个所述第二圆弧流道的中点位置处与两个所述第二圆弧流道连通;所述第三圆弧流道在中点位置处与所述真空吸附装置连通。
  13. 如权利要求1所述的承载装置,其特征在于,所述限位环结构包括环状主体,所述环状主体的内周壁上设置有朝向所述基座的外周壁凸出的盖环,所述盖环的内周壁与所述基座的外周壁具有间隙以形成所述吹气流道。
  14. 如权利要求13所述的承载装置,其特征在于,所述盖环的顶面和内周面的连接处设置有导流槽,所述导流槽呈环状,且沿所述盖环的周向环绕设置,所述导流槽的底面低于所述基座的顶面,并且所述导流槽的周向侧面的直径大于所述晶圆的直径;
    所述导流槽与所述吹气流道连通,用于将所述吹气流道吹出的吹扫气体导流至所述晶圆的底面及侧面。
  15. 如权利要求13所述的承载装置,其特征在于,所述基座包括基座主体,所述基座主体的外周壁上设置有朝向所述环状主体的内周壁凸出的承载环,所述环状主体的内周壁上且位于所述盖环下方的区域还设置有朝向所述基座主体凸出的搭接环;
    所述搭接环叠置于所述承载环上,且所述搭接环与所述基座主体的外周壁具有间隙以形成有所述第一匀流空间。
  16. 如权利要求15所述的承载装置,其特征在于,所述搭接环与所述承载环相互叠置的两个表面之间设置有定位结构,所述定位结构包括定位凸部和定位凹部,所述定位凸部与所述定位凹部相配合,用于限定所述搭接环与所述承载环的相对位置。
  17. 如权利要求15所述的承载装置,其特征在于,所述基座主体的外周壁上,且位于所述承载环和所述盖环之间还设置有凸出的限流环,所述限流环与所述盖环之间具有间隙以形成限流道,所述限流道用于连通所述吹气流 道及所述第一匀流空间。
  18. 如权利要求17所述的承载装置,其特征在于,所述限流道的通气截面小于所述吹气流道的通气截面,并且所述吹气流道的通气截面小于所述第一匀流空间的通气截面;
    所述连接流道的通气截面大于所述限流道的通气截面。
  19. 如权利要求1所述的承载装置,其特征在于,所述基座、所述承载件及所述限位环结构均采用氮化铝陶瓷材质制作。
  20. 一种半导体工艺设备,其特征在于,包括工艺腔室及如权利要求1至19的任一所述的承载装置,所述承载装置设置于所述工艺腔室内。
PCT/CN2022/086320 2022-01-12 2022-04-12 半导体工艺设备及其承载装置 WO2023134039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210031074.6 2022-01-12
CN202210031074 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023134039A1 true WO2023134039A1 (zh) 2023-07-20

Family

ID=81600259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086320 WO2023134039A1 (zh) 2022-01-12 2022-04-12 半导体工艺设备及其承载装置

Country Status (3)

Country Link
CN (1) CN114520182B (zh)
TW (1) TWI818507B (zh)
WO (1) WO2023134039A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004928A (zh) * 2023-09-21 2023-11-07 上海谙邦半导体设备有限公司 一种化学气相沉积晶圆保护系统
CN117488398A (zh) * 2023-10-30 2024-02-02 希科半导体科技(苏州)有限公司 半导体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125517B (zh) * 2022-06-23 2023-09-08 北京北方华创微电子装备有限公司 气体分配装置及半导体工艺设备
CN117438277B (zh) * 2023-12-19 2024-04-12 北京北方华创微电子装备有限公司 匀流组件、进气装置及半导体设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888304A (en) * 1996-04-02 1999-03-30 Applied Materials, Inc. Heater with shadow ring and purge above wafer surface
US6040011A (en) * 1998-06-24 2000-03-21 Applied Materials, Inc. Substrate support member with a purge gas channel and pumping system
US6375748B1 (en) * 1999-09-01 2002-04-23 Applied Materials, Inc. Method and apparatus for preventing edge deposition
CN102112649A (zh) * 2008-08-05 2011-06-29 东京毅力科创株式会社 载置台构造
CN113308681A (zh) * 2021-05-21 2021-08-27 北京北方华创微电子装备有限公司 半导体工艺设备中的承载装置和半导体工艺设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159299A (en) * 1999-02-09 2000-12-12 Applied Materials, Inc. Wafer pedestal with a purge ring
JP4035627B2 (ja) * 2001-12-13 2008-01-23 東京エレクトロン株式会社 プラズマ処理装置及びフォーカスリング機構
WO2011114940A1 (ja) * 2010-03-16 2011-09-22 東京エレクトロン株式会社 成膜装置
JP6225837B2 (ja) * 2014-06-04 2017-11-08 東京エレクトロン株式会社 成膜装置、成膜方法、記憶媒体
TWI734770B (zh) * 2016-04-24 2021-08-01 美商應用材料股份有限公司 用於防止空間ald處理腔室中之背側沉積的設備
CN107974669A (zh) * 2016-10-24 2018-05-01 北京北方华创微电子装备有限公司 真空卡盘及工艺腔室
CN111364022B (zh) * 2020-03-10 2023-02-10 北京北方华创微电子装备有限公司 反应腔室
CN112593199B (zh) * 2020-11-25 2022-10-21 北京北方华创微电子装备有限公司 半导体工艺设备及承载装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888304A (en) * 1996-04-02 1999-03-30 Applied Materials, Inc. Heater with shadow ring and purge above wafer surface
US6040011A (en) * 1998-06-24 2000-03-21 Applied Materials, Inc. Substrate support member with a purge gas channel and pumping system
US6375748B1 (en) * 1999-09-01 2002-04-23 Applied Materials, Inc. Method and apparatus for preventing edge deposition
CN102112649A (zh) * 2008-08-05 2011-06-29 东京毅力科创株式会社 载置台构造
CN113308681A (zh) * 2021-05-21 2021-08-27 北京北方华创微电子装备有限公司 半导体工艺设备中的承载装置和半导体工艺设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004928A (zh) * 2023-09-21 2023-11-07 上海谙邦半导体设备有限公司 一种化学气相沉积晶圆保护系统
CN117004928B (zh) * 2023-09-21 2023-12-26 上海谙邦半导体设备有限公司 一种化学气相沉积晶圆保护系统
CN117488398A (zh) * 2023-10-30 2024-02-02 希科半导体科技(苏州)有限公司 半导体装置

Also Published As

Publication number Publication date
CN114520182B (zh) 2023-03-24
TWI818507B (zh) 2023-10-11
CN114520182A (zh) 2022-05-20
TW202328477A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
WO2023134039A1 (zh) 半导体工艺设备及其承载装置
TWI838594B (zh) 基板處理設備
CN111364021B (zh) 一种工艺腔室
TWI759741B (zh) 用於半導體處理的氣體分配噴頭
TW202105556A (zh) 基板處理裝置
WO2021197200A1 (zh) 半导体设备中的气体分配器和半导体设备
WO2022156495A1 (zh) 工艺腔室的进气组件、进气装置及半导体加工设备
JP2003504866A (ja) Cvdおよびpecvdプロセス中に基板に均一ガス送出を行う方法および装置
WO2021175089A1 (zh) 反应腔室
TWI806244B (zh) 半導體製程設備
WO2020063429A1 (zh) 用于原子层沉积工艺的进气装置及原子层沉积设备
TW202230471A (zh) 熱均勻的沉積站
WO2024125354A1 (zh) 喷淋板、喷淋方法及处理装置
US12018372B2 (en) Gas injector for epitaxy and CVD chamber
CN219342281U (zh) 喷淋冷却组件和气体喷淋装置
TW202345266A (zh) 用於薄膜沈積之系統、設備及方法
CN116447871A (zh) 炉管结构及加热炉
WO2023093455A1 (zh) 一种进气分配机构及具有其的 cvd 反应设备
CN116892015A (zh) 承载装置和半导体工艺设备
CN219385402U (zh) 导气结构、炉管装置及加热炉
US20200043704A1 (en) Gas box for cvd chamber
CN117457468B (zh) 工艺腔室及其进气组件
TWI809280B (zh) 實現均勻排氣的雙工位處理器及電漿處理設備
CN117467976B (zh) 用于气相沉积工艺腔室的上衬环、下衬环、进气衬体和内衬
CN220926934U (zh) 一种气体分配装置和气相沉积设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919682

Country of ref document: EP

Kind code of ref document: A1