WO2021175089A1 - 反应腔室 - Google Patents

反应腔室 Download PDF

Info

Publication number
WO2021175089A1
WO2021175089A1 PCT/CN2021/075520 CN2021075520W WO2021175089A1 WO 2021175089 A1 WO2021175089 A1 WO 2021175089A1 CN 2021075520 W CN2021075520 W CN 2021075520W WO 2021175089 A1 WO2021175089 A1 WO 2021175089A1
Authority
WO
WIPO (PCT)
Prior art keywords
air inlet
cavity
hole
insulating block
reaction chamber
Prior art date
Application number
PCT/CN2021/075520
Other languages
English (en)
French (fr)
Inventor
徐刚
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to US17/802,843 priority Critical patent/US11773505B2/en
Priority to EP21764062.2A priority patent/EP4116467A4/en
Priority to KR1020227029506A priority patent/KR102527246B1/ko
Publication of WO2021175089A1 publication Critical patent/WO2021175089A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/02Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using electric fields, e.g. electrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the technical field of semiconductor equipment, in particular to a reaction chamber.
  • MOVCD Metal-organic Chemical Vapor Deposition
  • vapor phase epitaxial growth technology developed on the basis of vapor phase epitaxial growth. It uses organic compounds of group III and group II elements and hydrides of group V and group VI elements as crystal growth source materials, and conducts vapor phase epitaxy on the substrate by means of thermal decomposition reaction to grow various groups of III-V and II. -VI group compound semiconductors and their multi-element solid solution thin layer single crystal materials.
  • the process gas flows through the uniform flow chamber and then enters between the two plate electrodes, and is excited to form plasma under the action of the radio frequency electric field.
  • the plasma and the substrate surface are generated by MOCVD The material reacts, thereby reducing the resistivity of the film on the surface of the substrate.
  • the invention discloses a reaction chamber to solve the problem that accidental ignition occurs easily inside the existing reaction chamber.
  • the present invention adopts the following technical solutions:
  • a reaction chamber includes:
  • a cavity, the cavity is grounded
  • the upper cover is electrically connected to the electrode, the cavity is connected to the upper cover through an insulating part, and the cavity and the upper cover form an inner cavity, and the upper cover is opened with the inner A through hole connected to the cavity;
  • An air intake mechanism the air intake mechanism includes an insulating body at least partially disposed in the through hole, the insulating body is provided with an air inlet channel, and a side of the insulating body facing away from the inner cavity is provided with a method
  • the flange part is grounded and used to connect the inlet end of the inlet passage with the outlet end of the inlet pipe for conveying reaction gas; the outlet end of the inlet passage is connected to the inner
  • the cavities are in communication; and, the air inlet passage includes at least two passage sections that are sequentially connected in the axial direction of the through hole, and any two adjacent passage sections are perpendicular to the axial direction of the through hole.
  • the orthographic projections on the plane are staggered.
  • the insulating body includes at least two insulating blocks sequentially arranged in the axial direction of the through hole, and each of the insulating blocks is provided with an air inlet used as the passage section.
  • insulating blocks there are two insulating blocks, a first insulating block close to the inner cavity and a second insulating block away from the inner cavity, wherein the first insulating block is provided with a channel for use as the channel Section of the first air inlet hole, and the side of the first insulating block away from the inner cavity is provided with a receiving space, the second insulating block is arranged in the receiving space, and the second insulating block A second air inlet hole used as the passage section is opened.
  • an air inlet groove is formed on the outer peripheral surface of the second insulating block, and the air inlet groove and the inner wall of the containing space form the second air inlet hole.
  • the second insulating block is provided with a first groove facing one side of the inner cavity, the first groove and the inner wall of the accommodating space form a first air cavity, and the first air inlet Both the hole and the second air inlet are in communication with the first air cavity.
  • each of the second air inlet holes there are a plurality of second air inlet holes, which are distributed at intervals along the circumferential direction of the first groove; and, the inner circumferential surface of the first groove is perpendicular to the axis of the through hole.
  • the orthographic projection of each of the second air inlet holes on the plane perpendicular to the axial direction of the through hole partially overlaps.
  • the first air inlet holes there are a plurality of the first air inlet holes, and they are arranged on the first insulating block at intervals.
  • a side of the second insulating block away from the inner cavity (110) is provided with a second groove, the second groove and the flange member form a second air cavity, and the second The air chambers are respectively communicated with the inlet end of the inlet passage and the outlet end of the inlet pipe.
  • a third groove is formed on a side of the flange member facing the second insulating block, and the third groove is butted with the second groove to form the second air cavity.
  • the air intake mechanism further includes a limiting structure disposed between the outer circumferential surface of the second insulating block and the inner wall of the accommodating space to limit the second insulating block Rotate in the accommodating space.
  • the reaction chamber is a metal organic compound chemical vapor deposition process chamber.
  • the orthographic projections of any two adjacent channel sections of the air inlet channel on a plane perpendicular to the axial direction of the through hole are staggered with each other.
  • the electrode when the upper cover passes through
  • the uniformity and stability of the bottom surface material when the upper cover passes through When the electrode is energized, it is difficult to form a radio frequency electric field between the grounded flange part and the upper cover and the live parts in the upper cover, which can reduce the occurrence of accidental discharge, thereby reducing the risk of sparking, and ultimately improving the lining.
  • the uniformity and stability of the bottom surface material when the upper cover passes through When the electrode is energized, it is difficult to form a radio frequency electric field between the grounded flange part and the upper cover and the live parts in the upper cover, which can
  • Figure 1 is a cross-sectional view of the reaction chamber disclosed in the first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of the insulating body in the reaction chamber disclosed in the first embodiment of the present invention
  • FIG. 3 is a top view of the insulating body in the reaction chamber disclosed in the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the first insulating block in the reaction chamber disclosed in the first embodiment of the present invention.
  • FIG. 5 is a top view of the first insulating block in the reaction chamber disclosed in the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the second insulating block in the reaction chamber disclosed in the first embodiment of the present invention.
  • FIG. 7 is a bottom view of the second insulating block in the reaction chamber disclosed in the first embodiment of the present invention.
  • FIG. 8 is a top view of the insulating body in the reaction chamber disclosed in the second embodiment of the present invention.
  • Fig. 9 is a cross-sectional view of the insulating body in the reaction chamber disclosed in the second embodiment of the present invention along the line A-A in Fig. 8.
  • 500-insulating body 510-first insulating block, 511-accommodating space, 512-first air inlet, 513-body part, 514-limiting part, 520-second insulating block, 521-second air inlet , 522a-first groove, 522b-second groove, 530-intake pipe, 540-flange part, 541-third groove, 550-convex part, D1-diameter of first groove 522a, D2- The diameter of the inscribed circle formed by the inner sides of the multiple air intake slots;
  • 500'-insulating main body 501-intake passage, 501a-first passage section, 501b-second passage section, 501c-third passage section, 502a-first connecting passage, 502b-second connecting passage, 503a-th An insulating block, 503b-the second insulating block, and 503c-the third insulating block.
  • the first embodiment of the present invention discloses a reaction chamber.
  • the disclosed reaction chamber may be a MOCVD (Metal-organic Chemical Vapor Deposition) process chamber ,
  • MOCVD Metal-organic Chemical Vapor Deposition
  • the disclosed reaction chamber includes a cavity 100, an upper cover 200 and an air inlet mechanism.
  • the cavity 100 is grounded.
  • the upper cover 200 is electrically connected to the electrode 300.
  • One end of the electrode 300 may be disposed on the upper cover 200, and the other end is electrically connected to a radio frequency source, so as to load the radio frequency power output by the radio frequency source onto the upper cover 200.
  • the cavity 100 and the upper cover 200 are connected by an insulating part 400.
  • the cavity 100 and the upper cover 200 form an inner cavity 110, and the part of the inner cavity 110 corresponding to the cavity 100 is
  • the first cavity corresponds to the part of the upper cover 200 as the second cavity, wherein a heater 120 is provided in the first cavity for supporting the substrate and heating the substrate.
  • organic compounds of group III and group II elements and hydrides of group V and group VI elements are used as crystal growth source materials, and vapor phase epitaxy is performed on heater 120 by means of thermal decomposition reaction.
  • Various III-V group, II-VI group compound semiconductors and their multi-element solid solutions are thin single crystal materials.
  • the heater 120 is grounded through the cavity 100.
  • the second cavity is provided with a flow plate 220 and a showerhead 230.
  • the flow plate 220 and the showerhead 230 are arranged opposite to each other, and the sprayer 230 is arranged opposite to the heater 120.
  • the uniform flow plate 220 in the second cavity can uniformly flow the reaction gas flowing therethrough, so that the reaction gas flowing out of the uniform flow plate 220 is more uniform.
  • the reaction gas flowing out of the uniform flow plate 220 will flow into the sprayer 230, and the sprayer 230 can spray the flowing reaction gas onto the surface of the substrate on the heater 120 for gas phase epitaxial reaction, and then on the surface of the substrate Generate the required materials.
  • the sprayer 230 is electrically connected to the upper cover 200.
  • the sprayer 230 is charged, and a radio frequency electric field is formed between the charged sprayer 230 and the grounded heater 120.
  • the radio frequency electric field can reduce the surface of the substrate. The resistivity of the resulting material.
  • the upper cover 200 is provided with a through hole 210 communicating with the inner cavity 110, and the air intake mechanism includes an insulating body 500 at least partially disposed in the through hole 210.
  • the insulating body 500 is provided with an air inlet channel.
  • the outlet end of the passage is connected to the inner cavity 110; the side of the insulating body 500 away from the inner cavity 110 is provided with a flange part 540, which is grounded and used to connect the inlet end of the inlet passage to the The outlet end of the inlet pipe 530 for conveying the reaction gas is communicated.
  • the flange member 540 is sealed to the inlet pipe 530 so that the outlet end of the inlet pipe 530 can communicate with the inlet end of the inlet passage.
  • the other end of the gas inlet pipe 530 may be connected to the container containing the reaction gas.
  • the insulating body 500 may have a variety of structures.
  • the insulating body 500 includes two insulating blocks arranged in sequence in the axial direction of the through hole 210, namely the first insulating block 510 and the first insulating block 510 and The second insulating block 520 facing away from the inner cavity 110, wherein at least part of the first insulating block 510 is located in the through hole 210.
  • the second insulating block 520 is disposed in the accommodating space 511. As shown in FIG.
  • the second insulating block 520 is provided with a second air inlet 521
  • the first insulating block 510 is provided with a first air inlet 512.
  • the first air inlet 512 and the second air inlet 521 respectively constitute the two passage sections of the aforementioned air inlet passage.
  • the reaction gas in the inlet pipe 530 can pass through the second inlet hole 521 and the first inlet hole 512 in sequence, and then flow into the inner cavity 110.
  • the orthographic projections of the first air inlet 512 and the second air inlet 521 are staggered, that is, the axis of the first air inlet 512 and the first air inlet 512 are offset from each other.
  • the axes of the two air inlet holes 521 are not a straight line.
  • the orthographic projection of the first air inlet hole 512 is outside the orthographic projection of the second air inlet hole 521.
  • an air inlet groove is formed on the outer circumferential surface of the second insulating block 520, and the air inlet groove and the inner wall of the accommodating space 511 may form a second air inlet hole 521.
  • the arrangement of the air inlet groove is easier to process and shape.
  • this way makes the second air inlet 521 in the edge area of the second insulating block 520 , Thereby making the orthographic projection of the second air inlet hole 521 on a plane perpendicular to the axial direction of the through hole 210 easier to be outside the orthographic projection of the first air inlet hole 512 on a plane perpendicular to the axial direction of the through hole 210 , In turn, the effect of staggering the second air inlet 521 and the first air inlet 512 is better.
  • the side of the second insulating block 520 facing the inner cavity 110 may be provided with a first groove 522a, and the first groove 522a may be connected to the accommodating space 511.
  • the inner wall forms a first air cavity through which the first air inlet hole 512 and the second air inlet hole 521 are communicated.
  • the reaction gas first enters the first air cavity through the second air inlet hole 521.
  • the reaction gas entering the first gas cavity flows into the inner cavity 110 through the first air inlet 512.
  • This method not only facilitates the communication between the first air inlet 512 and the second air inlet 521, but also enables other parts of the second insulating block 520 on the side facing the inner cavity 110 to be better supported in the accommodating space 511. Conducive to the overall assembly. Of course, in practical applications, any other structure can also be used to realize the communication between the first air inlet 512 and the second air inlet 521.
  • the holes 521 can increase the flow rate of the reaction gas.
  • the diameters of the plurality of second air inlet holes 521 can be smaller, so that it is difficult to generate a gap between the flange 540 and the upper cover 200 and the live parts in the upper cover 200.
  • the radio frequency electric field can better prevent accidental discharge.
  • the orthographic projection of the inner peripheral surface of the first groove 522a on a plane perpendicular to the axial direction of the through hole 210 and the orthographic projection portion of each second air inlet hole 521 on a plane perpendicular to the axial direction of the through hole 210 overlapping.
  • the outer peripheral surface of the second insulating block 520 is provided with a plurality of air inlet grooves spaced along its circumferential direction, and each air inlet groove and the inner wall of the containing space 511 may form a plurality of second air inlet holes 521, as shown in the figure
  • the diameter D1 of the first groove 522a is larger than the diameter D2 of the inscribed circle formed by the inner sides of the multiple air inlet grooves, so that the first groove 522a is connected to each air inlet groove.
  • the side of the second insulating block 520 away from the inner cavity 110 may be provided with a second groove 522b, and the second groove 522b may form a second groove 522b with the flange member 540.
  • the air inlet pipe 530 does not need to be directly connected to the second air inlet hole 521, thereby reducing the difficulty of assembly.
  • the above-mentioned second air cavity allows the reaction gas flowing out of the air inlet pipe 530 to flow into each second air inlet hole 521, thereby improving the flow rate of the reaction gas. At the same time, it can also prevent accidental discharge.
  • the flange member 540 is provided with a third groove 541 facing one side of the second insulating block 520, and the third groove 541 is butted with the second groove 522b to form the second air cavity.
  • the third groove 541 is butted with the second groove 522b to form the second air cavity.
  • first air intake holes 512 there are a plurality of first air intake holes 512 and are arranged on the first insulating block 510 at intervals.
  • the multiple first air inlet holes 512 can enable the gas flowing out of the second air inlet hole 521 to flow into the inner cavity 110 faster.
  • the diameters of the multiple first air inlet holes 512 can be smaller, so that It is difficult to generate a radio frequency electric field between the flange 540 and the upper cover 200 and the live parts in the upper cover 200, so that accidental discharge can be better prevented.
  • the second insulating block 520 may be provided with a plurality of second air inlet holes 521 spaced apart, and the plurality of second air inlet holes 521 may communicate with the plurality of first air inlet holes 512, thereby improving The flow rate of the reaction gas.
  • the air intake mechanism may further include a limiting structure, which is disposed between the outer circumferential surface of the second insulating block 520 and the inner wall of the accommodating space 511 to limit the second insulating block 520 in the accommodating space. Rotate within 511.
  • the limiting structure can have various structures.
  • the convex part 550 cooperates with the concave part to prevent the second insulating block 520 from rotating in the accommodating space 511.
  • the convex part 550 and the second insulating block 520 may be an integral structure.
  • the housing The inner wall of the space 511 is provided with a mounting groove, and the convex portion 550 can be at least partially located in the mounting groove.
  • the first insulating block 510 may include a main body portion 513 and a limiting portion 514.
  • the main body portion 513 is connected to the limiting portion 514, the main body 513 is disposed in the through hole 210, and the limiting portion 514 is connected to the through hole 210.
  • a side of the hole 210 facing away from the inner cavity 110 is in position-limiting fit. This method facilitates the connection between the first insulating block 510 and the through hole 210.
  • the limiting portion 514 not only plays a role of limiting and cooperating with the side of the through hole 210 away from the inner cavity 110, but the limiting portion 514 also has a larger size.
  • the outer surface of the housing is convenient for opening the accommodating space 511.
  • the reaction chamber provided by the second embodiment of the present invention differs only in that the structure of the insulating body is different. Specifically, please refer to FIGS. 8 and 9 together.
  • an air inlet channel is provided in the insulating body 500', and the insulating body 500' includes a vertical direction (ie, the same as the through hole in FIG. 210 in the same direction as the axial direction), which are the first insulating block 503a, the second insulating block 503b and the third insulating block 503c which are arranged in sequence along the direction close to the inner cavity 110, respectively.
  • the insulating blocks are sequentially stacked in the axial direction of the through hole 210, wherein the third insulating block 503c is provided with a third air inlet 501c, the second insulating block 503b is provided with a second air inlet 501b, and the first insulating block 503a is provided with There is a first air inlet 501a, and the first air inlet 501a, the second air inlet 501b, and the third air inlet 501c respectively constitute three passage sections of the air inlet passage.
  • the outlet end of the third air inlet hole 501c is communicated with the inner cavity 110, and the air inlet end of the third air inlet hole 501c is communicated with the air outlet end of the second air inlet hole 501b.
  • the second connecting passage 502b in the second air inlet is connected; the air inlet end of the second air inlet hole 501b is communicated with the air outlet end of the first air inlet hole 501a, for example, it can be connected through the first connecting channel 502a provided in the insulating body 500'
  • the inlet end of the first inlet hole 501a is communicated with the outlet end of the inlet pipe for conveying reaction gas through a flange part.
  • the flange part and the inlet pipe can be the same as the flange part shown in FIG. 1 540 has the same structure as the intake pipe 530. In this way, the reaction gas in the inlet pipe 530 can sequentially pass through the first inlet hole 501a, the second inlet hole 501b, and the third inlet hole 501c, and then flow into the inner cavity 110.
  • the orthographic projections of the first air inlet 501a, the second air inlet 501b, and the third air inlet 501c are staggered, that is, Any two of the axis of the first air inlet 501a, the axis of the second air inlet 501b, and the axis of the third air inlet 501c are not a straight line.
  • the orthographic projection of the second air inlet 501b is at The orthographic projection of the third air inlet 501c is outside; the orthographic projection of the first air inlet 501a is outside the orthographic projection of the second air inlet 501b.
  • grooves are respectively provided on the two opposite surfaces of the second insulating block 503b and the third insulating block 503c, and the two grooves are butted to form the above-mentioned first connecting channel 502a;
  • two opposite surfaces of the second insulating block 503b and the first insulating block 503a are respectively provided with grooves, and the two grooves are butted to form the aforementioned second connecting channel 502b.
  • any other methods may be used to realize the communication between the first air inlet 501a and the second air inlet 501b, and the communication between the second air inlet 501b and the third air inlet 501c.
  • the implementation of the present invention There are no special restrictions on this.
  • first air inlet holes 501a there are multiple first air inlet holes 501a, and are arranged at intervals along the circumferential direction of the insulating body 500'; similarly, there are multiple second air inlet holes 501b. , And are arranged at intervals along the circumferential direction of the insulating body 500', and the plurality of second air inlet holes 501b are located inside the plurality of first air inlet holes 501a; the third air inlet holes 501c are multiple and are arranged at intervals Inside the second air inlet 501b. In this way, the flow rate of the reaction gas can be increased.
  • the insulating body 500' includes three insulating blocks sequentially stacked in the vertical direction (that is, the same direction as the axial direction of the through hole 210 in FIG. 1), so as to facilitate separate
  • the three insulating blocks are processed with air inlet holes and corresponding grooves to finally form a continuous air inlet channel, and the vertical projections of any two adjacent channel sections of the air inlet channel are staggered with each other.
  • the embodiment of the present invention is not limited to this. In practical applications, the insulating body can be divided into a plurality of sub-parts in any manner, as long as the air inlet passage with the above structure can be processed.
  • the insulating main body can also adopt an integrated structure, and the air intake passage of the above structure can be formed in the integrated insulating main body by using existing processing means. For example, opening holes in different directions of the insulating body, and further processing the mutually staggered channel sections and the connecting channel connecting two adjacent channel sections through the openings, and then the opening can be blocked again to obtain Closed intake passage.
  • reaction chamber provided by the second embodiment of the present invention are the same as the above-mentioned first embodiment, so they will not be described again here.
  • the number of insulating blocks included in the insulating body may also be four or more than four according to specific needs.
  • the arrangement method between any two adjacent insulating blocks is not limited to the nesting method (that is, the upper insulating block is arranged in the accommodation space of the lower insulating block) and the stacking method in the above-mentioned embodiment. In practical applications, it can also be set in any other way, such as concentric surrounding settings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开一种反应腔室,包括:腔体,腔体与上盖通过绝缘部相连,且腔体与上盖形成内腔,上盖开设有与内腔连通的通孔;进气机构包括至少部分设置在通孔中的绝缘主体,绝缘主体中设置有进气通道,绝缘主体的背离内腔的一侧设置有法兰部件,法兰部件接地,且用于将进气通道的进气端与用于输送反应气体的进气管的出气端相连通;进气通道的出气端与内腔相连通;并且,进气通道包括至少两个在通孔的轴向上依次连通的通道段,且任意相邻两个通道段在垂直于通孔的轴向的平面上的正投影相互错开。本方案解决现有的反应腔室内部容易发生意外打火的问题。

Description

反应腔室 技术领域
本发明涉及半导体设备技术领域,尤其涉及一种反应腔室。
背景技术
半导体设备技术领域中,MOVCD(Metal-organic Chemical Vapor Deposition,金属有机化合物化学气相淀积)是在气相外延生长的基础上发展起来的一种新型气相外延生长技术。它以III族、II族元素的有机化合物和V族、VI族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种III-V族、II-VI族化合物半导体以及它们的多元固溶体的薄层单晶材料。
通常情况下,腔室中具有两块相距一定距离且相互平行的平板电极,其中一块平板电极接射频,另一块平板电极接地。在衬底表面生成所需要的材料后,工艺气体经过匀流室匀流后进入两块平板电极之间,并在射频电场的作用下激发形成等离子体,等离子体和衬底表面上通过MOCVD生成的材料发生反应,从而降低衬底表面膜层的电阻率。
在具体的应用过程中,由于不同材料所需要的膜层电阻率不同,进而需要调整不同的射频功率来进行反应。但是,在提高射频功率后,经常因为射频电极与腔室上的金属进气口之间发生意外放电,而发生打火现象,进而影响衬底表面材料的电阻率的均匀性。
发明内容
本发明公开一种反应腔室,以解决现有的反应腔室内部容易发生意外打火的问题。
为了解决上述问题,本发明采用下述技术方案:
一种反应腔室,包括:
腔体,所述腔体接地;
上盖,所述上盖与电极电连接,所述腔体与所述上盖通过绝缘部相连,且所述腔体与所述上盖形成内腔,所述上盖开设有与所述内腔连通的通孔;
进气机构,所述进气机构包括至少部分设置在所述通孔中的绝缘主体,所述绝缘主体中设置有进气通道,所述绝缘主体的背离所述内腔的一侧设置有法兰部件,所述法兰部件接地,且用于将所述进气通道的进气端与用于输送反应气体的进气管的出气端相连通;所述进气通道的出气端与所述内腔相连通;并且,所述进气通道包括至少两个在所述通孔的轴向上依次连通的通道段,且任意相邻两个所述通道段在垂直于所述通孔的轴向的平面上的正投影相互错开。
可选的,所述绝缘主体包括在所述通孔的轴向上依次设置的至少两个绝缘块,每个所述绝缘块均设置有用作所述通道段的进气孔。
可选的,所述绝缘块为两个,分别为靠近所述内腔的第一绝缘块和背离所述内腔的第二绝缘块,其中,所述第一绝缘块开设有用作所述通道段的第一进气孔,且所述第一绝缘块的背离所述内腔的一侧开设有容纳空间,所述第二绝缘块设置在所述容纳空间中,且所述第二绝缘块开设有用作所述通道段的第二进气孔。
可选的,所述第二绝缘块的外周面开设有进气槽,所述进气槽与所述容纳空间的内壁形成所述第二进气孔。
可选的,所述第二绝缘块朝向所述内腔的一侧开设有第一凹槽,所述第一凹槽与所述容纳空间的内壁形成第一气腔,所述第一进气孔和所述第二进气孔均与所述第一气腔连通。
可选的,所述第二进气孔为多个,且沿所述第一凹槽的周向间隔分布; 并且,所述第一凹槽的内周面在垂直于所述通孔的轴向的平面上的正投影与各个所述第二进气孔在垂直于所述通孔的轴向的平面上的正投影部分重叠。
可选的,所述第一进气孔为多个,且间隔设置于所述第一绝缘块上。
可选的,所述第二绝缘块背离所述内腔(110)的一侧开设有第二凹槽,所述第二凹槽与所述法兰部件形成第二气腔,所述第二气腔分别与所述进气通道的进气端和所述进气管的出气端相连通。
可选的,所述法兰部件朝向所述第二绝缘块的一侧开设有第三凹槽,所述第三凹槽与所述第二凹槽对接形成所述第二气腔。
可选的,所述进气机构还包括限位结构,所述限位结构设置在所述第二绝缘块的外周面与所述容纳空间的内壁之间,用以限制所述第二绝缘块在所述容纳空间内转动。
可选的,所述反应腔室为金属有机化合物化学气相淀积工艺腔室。
本发明采用的技术方案能够达到以下有益效果:
本发明实施例公开的反应腔室中,进气通道的任意相邻两个通道段在垂直于所述通孔的轴向的平面上的正投影相互错开,此种情况下,当上盖通过电极通电时,接地的法兰部件与上盖以及上盖中的带电部件之间较难形成射频电场,从而可以减少意外放电现象的发生,进而能够降低产生打火现象的风险,最终可以提高衬底表面材料的均匀性和稳定性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明第一实施例公开的反应腔室的剖视图;
图2为本发明第一实施例公开的反应腔室中的绝缘主体的局部剖视图;
图3为本发明第一实施例公开的反应腔室中的绝缘主体的俯视图;
图4为本发明第一实施例公开的反应腔室中的第一绝缘块的剖视图;
图5为本发明第一实施例公开的反应腔室中的第一绝缘块的俯视图;
图6为本发明第一实施例公开的反应腔室中的第二绝缘块的剖视图;
图7为本发明第一实施例公开的反应腔室中的第二绝缘块的仰视图;
图8为本发明第二实施例公开的反应腔室中的绝缘主体的俯视图;
图9为本发明第二实施例公开的反应腔室中的绝缘主体沿图8中A-A线的剖视图。
附图标记说明:
100-腔体、110-内腔、120-加热器;
200-上盖、210-通孔、220-匀流板、230-喷洒器;
300-电极;
400-绝缘部;
500-绝缘主体;510-第一绝缘块、511-容纳空间、512-第一进气孔、513-主体部、514-限位部、520-第二绝缘块、521-第二进气孔、522a-第一凹槽、522b-第二凹槽、530-进气管、540-法兰部件、541-第三凹槽、550-凸部、D1-第一凹槽522a的直径、D2-多个进气槽的内侧边构成的内切圆的直径;
500’-绝缘主体;501-进气通道、501a-第一通道段、501b-第二通道段、501c-第三通道段、502a-第一连接通道、502b-第二连接通道、503a-第一绝缘块、503b-第二绝缘块、503c-第三绝缘块。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合附图,详细说明本发明各个实施例公开的技术方案。
第一实施例
如图1~图7所示,本发明第一实施例公开一种反应腔室,所公开的反应腔室可以为MOCVD(Metal-organic Chemical Vapor Deposition,金属有机化合物化学气相淀积)工艺腔室,所公开的反应腔室包括腔体100、上盖200和进气机构。
其中,请参考图1,腔体100接地。上盖200与电极300电连接,该电极300的一端例如可以设置在上盖200上,另一端与射频源电连接,用以将射频源输出的射频功率加载至上盖200。腔体100与上盖200通过绝缘部400相连,在腔体100与上盖200相连的情况下,腔体100与上盖200形成内腔110,该内腔110中对应腔体100的部分为第一空腔,对应上盖200的部分为第二空腔,其中,第一空腔中设置有加热器120,用于承载衬底,并对衬底进行加热。在进行化学气相沉淀的过程中,III族、II族元素的有机化合物和V族、VI族元素的氢化物等作为晶体生长源材料,以热分解反应方式在加热器120上进行气相外延,生长各种III-V族、II-VI族化合物半导体以及它们的多元固溶体的薄层单晶材料,同时,为了降低材料的电阻率,加热器120通过腔体100接地。
请再次参考图1,第二空腔中设置有匀流板220和喷洒器(showerhead)230,匀流板220与喷洒器230相对设置,而喷洒器230与加热器120相对设置,在进行工艺时,反应气体首先流入到第二空腔中,该第二空腔中的匀流板220能够对流经的反应气体进行匀流,以使从匀流板220中流出的反应气体较均匀。之后,从匀流板220中流出的反应气体会流入喷洒器230,该喷洒器230能够将流经的反应气体喷淋至加热器120上的衬底表面进行气相外 延反应,进而在衬底表面生成所需要的材料。另外,喷洒器230与上盖200电连接,在上盖200带电时,喷洒器230带电,带电的喷洒器230与接地的加热器120之间形成射频电场,该射频电场能够降低衬底表面所生成材料的电阻率。
相应地,上盖200开设有与内腔110连通的通孔210,进气机构包括至少部分设置在该通孔210中的绝缘主体500,该绝缘主体500中设置有进气通道,该进气通道的出气端与内腔110相连通;绝缘主体500的背离内腔110的一侧设置有法兰部件540,该法兰部件540接地,且用于将进气通道的进气端与用于输送反应气体的进气管530的出气端相连通,具体地,法兰部件540与进气管530密封连接,以便于进气管530的出气端能够与进气通道的进气端相连通。进气管530的另一端可以连通装有反应气体的容器。
上述绝缘主体500的结构可以有多种,本发明实施例中,绝缘主体500包括在通孔210的轴向上依次设置的两个绝缘块,分别为靠近内腔110的第一绝缘块510和背离内腔110的第二绝缘块520,其中,第一绝缘块510的至少部分处于通孔210中,如图4所示,第一绝缘块510的背离内腔110的一侧开设有容纳空间511,第二绝缘块520设置于容纳空间511中,如图1所示,法兰部件540设置于第一绝缘块510的背离内腔110的一侧表面,且封堵容纳空间511的开口。
其中,第二绝缘块520开设有第二进气孔521,第一绝缘块510开设有第一进气孔512,该第一进气孔512的进气端与第二进气孔521的出气端相连通,第一进气孔512的出气端与内腔110相连通,此种情况下,第一进气孔512和第二进气孔521分别构成了上述进气通道的两个通道段。进气管530中的反应气体能够依次通过第二进气孔521、第一进气孔512,进而流入到内腔110中。本发明实施例中,在垂直于通孔210的轴向的平面上,第一进气孔512和第二进气孔521的正投影相互错开,即,第一进气孔512的轴线与 第二进气孔521的轴线不为一条直线,例如,第一进气孔512的正投影处于第二进气孔521的正投影之外。这样,当上盖通过电极通电时,接地的法兰部件与上盖以及上盖中的带电部件之间较难形成射频电场,从而可以减少意外放电现象的发生,进而能够降低产生打火现象的风险,最终可以提高衬底表面材料的均匀性和稳定性。
本发明实施例中,可选地,如图3所示,第二绝缘块520的外周面开设有进气槽,该进气槽与容纳空间511的内壁可以形成第二进气孔521。相比于在第二绝缘块520中直接开设第二进气孔521,进气槽的设置更容易加工成型,同时,此种方式使得第二进气孔521处于第二绝缘块520的边缘区域,进而使得第二进气孔521在垂直于通孔210的轴向的平面上的正投影更容易处于第一进气孔512在垂直于通孔210的轴向的平面上的正投影之外,进而使得第二进气孔521与第一进气孔512的错开效果更好。
本发明公开的实施例中,如图6和图7所示,第二绝缘块520朝向内腔110的一侧可以开设有第一凹槽522a,该第一凹槽522a可以与容纳空间511的内壁形成第一气腔,第一进气孔512与第二进气孔521通过该第一气腔连通,在进行工艺时,反应气体首先通过第二进气孔521进入到第一气腔,进入到第一气腔中的反应气体通过第一进气孔512流入到内腔110中。此种方式不仅便于第一进气孔512与第二进气孔521的连通,还使得第二绝缘块520朝向内腔110的一侧的其他部分可以更好地支撑于容纳空间511,进而有利于整体装配。当然,在实际应用中,还可以采用其他任意结构实现第一进气孔512与第二进气孔521的连通。
本发明实施例中,在一种可选的方案中,如图7所示,第二进气孔521为多个,且沿第一凹槽522a的周向间隔分布,多个第二进气孔521能够提高反应气体的流通速率,同时,多个第二进气孔521的直径均可以较小,以使法兰盘540与上盖200以及上盖200中的带电部件之间较难产生射频电场, 从而还能够较好地防止产生意外放电。
并且,第一凹槽522a的内周面在垂直于通孔210的轴向的平面上的正投影与各个第二进气孔521在垂直于通孔210的轴向的平面上的正投影部分重叠。例如,第二绝缘块520的外周面开设有沿其周向间隔分布的多个进气槽,各个进气槽与容纳空间511的内壁可以形成多个第二进气孔521,并且,如图7所示,第一凹槽522a的直径D1大于多个进气槽的内侧边构成的内切圆的直径D2,从而实现第一凹槽522a与各个进气槽相连通。
本发明公开的实施例中,如图6所示,第二绝缘块520的背离内腔110的一侧可以开设有第二凹槽522b,该第二凹槽522b可以与法兰部件540形成第二气腔,上述进气管530的出气端与第二进气孔521的进气端通过该第二气腔连通,在进行工艺时,进气管530中的反应气体首先进入第二气腔,然后经过该第二气腔进入第二进气孔521中。此种方式便于进气管530与第二进气孔521的连通。此种情况下,进气管530无需直接与第二进气孔521相连,从而降低装配难度。与此同时,在第二进气孔521为多个的情况下,上述第二气腔使得进气管530中流出的反应气体可以流入各个第二进气孔521,从而在提高反应气体流通速率的同时,还能够防止产生意外放电现象。
可选地,如图1所示,法兰部件540朝向第二绝缘块520的一侧开设有第三凹槽541,该第三凹槽541与第二凹槽522b对接形成上述第二气腔,以实现进气管530与第二进气孔521的连通。当然,在实际应用中,也可以仅设置第二凹槽522b,或者仅设置第三凹槽541。
类似地,第一进气孔512为多个,且间隔设置在第一绝缘块510上。多个第一进气孔512可以使得第二进气孔521流出的气体能够较快地流入到内腔110中,同样地,多个第一进气孔512的直径均可以较小,以使法兰盘540与上盖200以及上盖200中的带电部件之间较难产生射频电场,从而还能够较好地防止产生意外放电。可选地,在此情况下,第二绝缘块520可以间隔 开设有多个第二进气孔521,多个第二进气孔521可以与多个第一进气孔512连通,从而能够提高反应气体的流通速率。
本发明实施例中,进气机构还可以包括限位结构,该限位结构设置在第二绝缘块520的外周面与容纳空间511的内壁之间,用以限制第二绝缘块520在容纳空间511内转动。限位结构的结构可以有多种,例如,如图2所示,限位结构包括设置在第二绝缘块520的外周面上的凸部550和设置在容纳空间511的内壁上的凹部,该凸部550与所述凹部相配合,以防止第二绝缘块520在容纳空间511中产生转动,可选地,凸部550可以与第二绝缘块520为一体式结构,此种情况下,容纳空间511的内壁上开设有安装槽,凸部550至少部分可以处于安装槽内。
本发明公开的实施例中,第一绝缘块510可以包括主体部513和限位部514,主体部513与限位部514相连,主体部513设置在通孔210中,限位部514与通孔210背离内腔110的一侧限位配合。此种方式便于第一绝缘块510与通孔210的连接,同时,限位部514不仅起到与通孔210背离内腔110的一侧限位配合的作用,限位部514也具有较大的外表面,进而便于开设容纳空间511。
第二实施例
本发明第二实施例提供的反应腔室,其与上述第一实施例相比,其区别仅在于,绝缘主体的结构不同。具体地,请一并参阅图8和图9,本发明实施例中,绝缘主体500’中设置有进气通道,且该绝缘主体500’包括在竖直方向(即,与图1中通孔210的轴向相同的方向)上依次设置的三个绝缘块,分别为沿靠近内腔110的方向依次设置的第一绝缘块503a、第二绝缘块503b和第三绝缘块503c,这三个绝缘块在通孔210的轴向上依次叠置,其中,第三绝缘块503c开设有第三进气孔501c,第二绝缘块503b开设有第二进气孔501b,第一绝缘块503a开设有第一进气孔501a,上述第一进气孔501a、第 二进气孔501b和第三进气孔501c分别构成了上述进气通道的三个通道段。
其中,第三进气孔501c的出气端与内腔110相连通,第三进气孔501c的进气端与第二进气孔501b的出气端相连通,例如可以通过设置在绝缘主体500’中的第二连接通道502b相连通;第二进气孔501b的进气端与第一进气孔501a的出气端相连通,例如可以通过设置在绝缘主体500’中的第一连接通道502a相连通,第一进气孔501a的进气端通过法兰部件与用于输送反应气体的进气管的出气端相连通,该法兰部件和进气管可以采用与图1中示出的法兰部件540和进气管530相同的结构。这样,进气管530中的反应气体能够依次通过第一进气孔501a、第二进气孔501b和第三进气孔501c,进而流入到内腔110中。
本发明实施例中,如图8所示,在垂直于竖直方向的平面上,第一进气孔501a、第二进气孔501b和第三进气孔501c的正投影相互错开,即,第一进气孔501a的轴线、第二进气孔501b的轴线和第三进气孔501c的轴线中的任意两条轴线均不为一条直线,例如,第二进气孔501b的正投影处于第三进气孔501c的正投影之外;第一进气孔501a的正投影处于第二进气孔501b的正投影之外。这样,当上盖通过电极通电时,接地的法兰部件与上盖以及上盖中的带电部件之间较难形成射频电场,从而可以减少意外放电现象的发生,进而能够降低产生打火现象的风险,最终可以提高衬底表面材料的均匀性和稳定性。
本发明实施例中,如图9所示,在第二绝缘块503b和第三绝缘块503c彼此相对的两个表面上分别设置有凹槽,两个凹槽对接形成上述第一连接通道502a;类似的,在第二绝缘块503b和第一绝缘块503a彼此相对的两个表面上分别设置有凹槽,两个凹槽对接形成上述第二连接通道502b。当然,在实际应用中,也可以仅在第二绝缘块503b和第三绝缘块503c彼此相对的两个表面中的其中一个表面上设置凹槽,这同样可以形成上述第一连接通道 502a;以及,仅在第二绝缘块503b和第一绝缘块503a彼此相对的两个表面中的其中一个表面上设置凹槽,这同样可以形成上述第二连接通道502b。另外,在实际应用中,还可以采用其他任意方式实现第一进气孔501a与第二进气孔501b的连通,以及第二进气孔501b与第三进气孔501c的连通,本发明实施例对此没有特别的限制。
本发明实施例中,如图8所示,可选的,第一进气孔501a为多个,且沿绝缘主体500’的周向间隔设置;同样的,第二进气孔501b为多个,且沿绝缘主体500’的周向间隔设置,并且多个第二进气孔501b位于多个第一进气孔501a的内侧;第三进气孔501c为多个,且间隔设置在多个第二进气孔501b的内侧。这样,可以提高反应气体的流通速率。
需要说明的是,在本实施例中,绝缘主体500’包括在竖直方向(即,与图1中通孔210的轴向相同的方向)上依次叠置的三个绝缘块,以便于分别对三个绝缘块加工进气孔以及相应的凹槽,最终达到构成连续的进气通道,且该进气通道的任意相邻两个通道段在竖直方向上的正投影相互错开的目的,但是,本发明实施例并不局限于此,在实际应用中,绝缘主体可以采用任意方式划分成多个分体,只要能够加工获得上述结构的进气通道即可。或者,绝缘主体还可以采用一体式结构,利用现有的加工手段可以实现在一体式的绝缘主体中形成上述结构的进气通道。例如,在绝缘主体的不同方向上开孔,并通过该开孔进一步加工相互错开的通道段以及将相邻两个通道段连通的连接通道,之后,可以再将该开孔封堵,从而获得封闭的进气通道。
本发明第二实施例提供的反应腔室未提及的其他结构和功能,由于与上述第一实施例相同,在此不再重复描述。
需要说明的是,在实际应用中,根据具体需要,绝缘主体所包括的绝缘块的数量还可以为四个或者四个以上。此外,任意相邻的两个绝缘块之间的设置方式也不局限于采用上述实施例中的嵌套方式(即,将上方的绝缘块设 置在下方绝缘块的容纳空间中)以及叠置方式,在实际应用中,也可以采用其他任意方式设置,例如同心环绕设置。
本发明上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (11)

  1. 一种反应腔室,其特征在于,包括:
    腔体,所述腔体接地;
    上盖,所述上盖与电极电连接,所述腔体与所述上盖通过绝缘部相连,且所述腔体与所述上盖形成内腔,所述上盖开设有与所述内腔连通的通孔;
    进气机构,所述进气机构包括至少部分设置在所述通孔中的绝缘主体,所述绝缘主体中设置有进气通道,所述绝缘主体的背离所述内腔的一侧设置有法兰部件,所述法兰部件接地,且用于将所述进气通道的进气端与用于输送反应气体的进气管的出气端相连通;所述进气通道的出气端与所述内腔相连通;并且,所述进气通道包括至少两个在所述通孔的轴向上依次连通的通道段,且任意相邻两个所述通道段在垂直于所述通孔的轴向的平面上的正投影相互错开。
  2. 根据权利要求1所述的反应腔室,其特征在于,所述绝缘主体包括在所述通孔的轴向上依次设置的至少两个绝缘块,每个所述绝缘块均设置有用作所述通道段的进气孔。
  3. 根据权利要求2所述的反应腔室,其特征在于,所述绝缘块为两个,分别为靠近所述内腔的第一绝缘块和背离所述内腔的第二绝缘块,其中,所述第一绝缘块开设有用作所述通道段的第一进气孔,且所述第一绝缘块的背离所述内腔的一侧开设有容纳空间,所述第二绝缘块设置在所述容纳空间中,且所述第二绝缘块开设有用作所述通道段的第二进气孔。
  4. 根据权利要求3所述的反应腔室,其特征在于,所述第二绝缘块的外周面开设有进气槽,所述进气槽与所述容纳空间的内壁形成所述第二进气孔。
  5. 根据权利要求4所述的反应腔室,其特征在于,所述第二绝缘块朝向所述内腔的一侧开设有第一凹槽,所述第一凹槽与所述容纳空间的内壁形成第一气腔,所述第一进气孔和所述第二进气孔均与所述第一气腔连通。
  6. 根据权利要求5所述的反应腔室,其特征在于,所述第二进气孔为多个,且沿所述第一凹槽的周向间隔分布;并且,所述第一凹槽的内周面在垂直于所述通孔的轴向的平面上的正投影与各个所述第二进气孔在垂直于所述通孔的轴向的平面上的正投影部分重叠。
  7. 根据权利要求3所述的反应腔室,其特征在于,所述第一进气孔为多个,且间隔设置于所述第一绝缘块上。
  8. 根据权利要求3所述的反应腔室,其特征在于,所述第二绝缘块背离所述内腔(110)的一侧开设有第二凹槽,所述第二凹槽与所述法兰部件形成第二气腔,所述第二气腔分别与所述进气通道的进气端和所述进气管的出气端相连通。
  9. 根据权利要求8所述的反应腔室,其特征在于,所述法兰部件朝向所述第二绝缘块的一侧开设有第三凹槽,所述第三凹槽与所述第二凹槽对接形成所述第二气腔。
  10. 根据权利要求3所述的反应腔室,其特征在于,所述进气机构还包括限位结构,所述限位结构设置在所述第二绝缘块的外周面与所述容纳空间的内壁之间,用以限制所述第二绝缘块在所述容纳空间内转动。
  11. 根据权利要求1所述的反应腔室,其特征在于,所述反应腔室为金 属有机化合物化学气相淀积工艺腔室。
PCT/CN2021/075520 2020-03-06 2021-02-05 反应腔室 WO2021175089A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/802,843 US11773505B2 (en) 2020-03-06 2021-02-05 Reaction chamber
EP21764062.2A EP4116467A4 (en) 2020-03-06 2021-02-05 REACTION CHAMBER
KR1020227029506A KR102527246B1 (ko) 2020-03-06 2021-02-05 반응 챔버

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010152523.3 2020-03-06
CN202010152523.3A CN111321463B (zh) 2020-03-06 2020-03-06 反应腔室

Publications (1)

Publication Number Publication Date
WO2021175089A1 true WO2021175089A1 (zh) 2021-09-10

Family

ID=71169219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075520 WO2021175089A1 (zh) 2020-03-06 2021-02-05 反应腔室

Country Status (6)

Country Link
US (1) US11773505B2 (zh)
EP (1) EP4116467A4 (zh)
KR (1) KR102527246B1 (zh)
CN (1) CN111321463B (zh)
TW (1) TWI794736B (zh)
WO (1) WO2021175089A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517458A (zh) * 2022-02-23 2022-05-20 绿友集团新能源车辆有限公司 一种多功能电动洒水车

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321463B (zh) * 2020-03-06 2021-10-15 北京北方华创微电子装备有限公司 反应腔室
CN114203511B (zh) * 2021-12-10 2024-04-12 北京北方华创微电子装备有限公司 上电极组件及半导体工艺设备

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070002218A (ko) * 2005-06-30 2007-01-05 삼성전자주식회사 화학기상증착장치
CN101339895A (zh) * 2008-08-22 2009-01-07 北京北方微电子基地设备工艺研究中心有限责任公司 一种气体分配装置及应用该分配装置的等离子体处理设备
CN101345184A (zh) * 2008-08-22 2009-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体处理设备、气体分配装置以及气体输送方法
CN201924077U (zh) * 2010-12-22 2011-08-10 北京京东方光电科技有限公司 化学气相沉积设备及其气体扩散器
JP2013174023A (ja) * 2006-09-16 2013-09-05 Piezonics Co Ltd 反応気体の噴射速度を積極的に調節するシャワーヘッドを備えた化学気相蒸着装置およびその方法
CN103966574A (zh) * 2013-01-30 2014-08-06 纽富来科技股份有限公司 气相生长装置及气相生长方法
CN105103269A (zh) * 2012-12-27 2015-11-25 无限股份有限公司 基板加工设备
CN205388967U (zh) * 2015-08-25 2016-07-20 沈阳拓荆科技有限公司 一种防止半导体镀膜设备反应腔室内打火的装置
CN106337169A (zh) * 2015-07-07 2017-01-18 Asm知识产权私人控股有限公司 薄膜沉积装置
CN107180782A (zh) * 2016-03-09 2017-09-19 北京北方微电子基地设备工艺研究中心有限责任公司 一种基座和反应腔室
CN108538694A (zh) * 2017-03-02 2018-09-14 北京北方华创微电子装备有限公司 一种腔室和等离子体处理装置
CN108573891A (zh) * 2017-03-07 2018-09-25 北京北方华创微电子装备有限公司 进气机构及反应腔室
CN109487238A (zh) * 2018-12-17 2019-03-19 北京北方华创微电子装备有限公司 进气栅组件及原子层沉积设备
CN111321463A (zh) * 2020-03-06 2020-06-23 北京北方华创微电子装备有限公司 反应腔室

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245192B1 (en) * 1999-06-30 2001-06-12 Lam Research Corporation Gas distribution apparatus for semiconductor processing
EP1361604B1 (en) * 2001-01-22 2009-03-18 Tokyo Electron Limited Device and method for treatment
KR100776843B1 (ko) * 2001-02-09 2007-11-16 동경 엘렉트론 주식회사 성막 장치 및 Ti막 성막 장치
KR100400044B1 (ko) * 2001-07-16 2003-09-29 삼성전자주식회사 간격 조절 장치를 가지는 웨이퍼 처리 장치의 샤워 헤드
US6911391B2 (en) * 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
KR100674279B1 (ko) * 2003-03-25 2007-01-24 동경 엘렉트론 주식회사 처리장치 및 처리방법
US7712434B2 (en) * 2004-04-30 2010-05-11 Lam Research Corporation Apparatus including showerhead electrode and heater for plasma processing
KR100852200B1 (ko) * 2004-06-03 2008-08-13 도쿄엘렉트론가부시키가이샤 플라즈마 cⅴd 장치
US20060162661A1 (en) * 2005-01-22 2006-07-27 Applied Materials, Inc. Mixing energized and non-energized gases for silicon nitride deposition
WO2007142690A2 (en) * 2005-11-04 2007-12-13 Applied Materials, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
US20070187363A1 (en) * 2006-02-13 2007-08-16 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
CN201071403Y (zh) * 2007-06-27 2008-06-11 江苏大学 一种上进上出的垂直喷淋式mocvd反应器
CN101314844B (zh) * 2008-06-20 2010-11-17 江苏大学 一种水平切向进口、中心垂直出口的mocvd反应室
JP2010161316A (ja) * 2009-01-09 2010-07-22 Ulvac Japan Ltd プラズマ処理装置
CN201626981U (zh) * 2009-09-02 2010-11-10 中国科学院半导体研究所 一种化学气相淀积外延设备用的进气装置
CN102352493A (zh) * 2011-11-16 2012-02-15 上海卓锐材料科技有限公司 一种实现mocvd喷淋均匀性的装置及应用
US9263240B2 (en) * 2011-11-22 2016-02-16 Lam Research Corporation Dual zone temperature control of upper electrodes
CN102424956B (zh) * 2011-12-02 2013-07-10 彭继忠 用于金属有机化合物化学气相沉积设备的喷淋装置
CN102492937A (zh) * 2011-12-29 2012-06-13 中国科学院半导体研究所 用于金属化学气相沉积设备反应室的进气喷淋头
JP5848140B2 (ja) * 2012-01-20 2016-01-27 東京エレクトロン株式会社 プラズマ処理装置
TW201347035A (zh) * 2012-02-02 2013-11-16 Greene Tweed Of Delaware 用於具有延長生命週期的電漿反應器的氣體分散板
US9297489B2 (en) * 2013-01-17 2016-03-29 Canada Pipeline Accessories, Co. Ltd. Extended length flow conditioner
CN104498904B (zh) * 2014-12-29 2017-04-26 华中科技大学 一种用于mocvd设备的喷淋头
CN108293292B (zh) * 2016-03-30 2020-08-18 东京毅力科创株式会社 等离子电极以及等离子处理装置
CN106011792B (zh) * 2016-07-26 2019-01-29 北京中科优唯科技有限公司 旋转预混气的mocvd上下盘匀气组件
US10649006B2 (en) * 2017-10-06 2020-05-12 Lam Research Corporation Cathode RF asymmetry detection probe for semiconductor RF plasma processing equipment
CN110172682A (zh) * 2019-04-30 2019-08-27 中国科学院半导体研究所 气相沉积设备的进气喷淋头
KR20220021206A (ko) * 2020-08-13 2022-02-22 삼성전자주식회사 플라즈마 처리 장치

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070002218A (ko) * 2005-06-30 2007-01-05 삼성전자주식회사 화학기상증착장치
JP2013174023A (ja) * 2006-09-16 2013-09-05 Piezonics Co Ltd 反応気体の噴射速度を積極的に調節するシャワーヘッドを備えた化学気相蒸着装置およびその方法
CN101339895A (zh) * 2008-08-22 2009-01-07 北京北方微电子基地设备工艺研究中心有限责任公司 一种气体分配装置及应用该分配装置的等离子体处理设备
CN101345184A (zh) * 2008-08-22 2009-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体处理设备、气体分配装置以及气体输送方法
CN201924077U (zh) * 2010-12-22 2011-08-10 北京京东方光电科技有限公司 化学气相沉积设备及其气体扩散器
CN105103269A (zh) * 2012-12-27 2015-11-25 无限股份有限公司 基板加工设备
CN103966574A (zh) * 2013-01-30 2014-08-06 纽富来科技股份有限公司 气相生长装置及气相生长方法
CN106337169A (zh) * 2015-07-07 2017-01-18 Asm知识产权私人控股有限公司 薄膜沉积装置
CN205388967U (zh) * 2015-08-25 2016-07-20 沈阳拓荆科技有限公司 一种防止半导体镀膜设备反应腔室内打火的装置
CN107180782A (zh) * 2016-03-09 2017-09-19 北京北方微电子基地设备工艺研究中心有限责任公司 一种基座和反应腔室
CN108538694A (zh) * 2017-03-02 2018-09-14 北京北方华创微电子装备有限公司 一种腔室和等离子体处理装置
CN108573891A (zh) * 2017-03-07 2018-09-25 北京北方华创微电子装备有限公司 进气机构及反应腔室
CN109487238A (zh) * 2018-12-17 2019-03-19 北京北方华创微电子装备有限公司 进气栅组件及原子层沉积设备
CN111321463A (zh) * 2020-03-06 2020-06-23 北京北方华创微电子装备有限公司 反应腔室

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116467A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517458A (zh) * 2022-02-23 2022-05-20 绿友集团新能源车辆有限公司 一种多功能电动洒水车
CN114517458B (zh) * 2022-02-23 2022-12-16 绿友集团新能源车辆有限公司 一种多功能电动洒水车

Also Published As

Publication number Publication date
TW202134470A (zh) 2021-09-16
TWI794736B (zh) 2023-03-01
US11773505B2 (en) 2023-10-03
EP4116467A1 (en) 2023-01-11
KR102527246B1 (ko) 2023-04-28
CN111321463A (zh) 2020-06-23
EP4116467A4 (en) 2024-04-03
US20230028116A1 (en) 2023-01-26
CN111321463B (zh) 2021-10-15
KR20220129633A (ko) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2021175089A1 (zh) 反应腔室
US10822695B2 (en) Thin film deposition apparatus
JP5074741B2 (ja) 真空処理装置
TWI401367B (zh) 氣流擴散器
US8092598B2 (en) Apparatus and method for thin film deposition
KR100900596B1 (ko) 고 종횡비 피쳐를 식각하기에 적당한 진공 처리 챔버 및 그구성 부품
TWI794808B (zh) 半導體反應腔室及原子層等離子體蝕刻設備
US5556474A (en) Plasma processing apparatus
US20020072164A1 (en) Processing chamber with multi-layer brazed lid
WO2023134039A1 (zh) 半导体工艺设备及其承载装置
TW202230471A (zh) 熱均勻的沉積站
US20230402265A1 (en) Process chamber and semiconductor process device
US10593560B2 (en) Magnetic induction plasma source for semiconductor processes and equipment
US20180258531A1 (en) Diffuser design for flowable cvd
JP2000030894A (ja) プラズマ処理方法および装置
US11049699B2 (en) Gas box for CVD chamber
CN220520620U (zh) 一种反应腔体及化学气相沉积设备
US11818810B2 (en) Heater assembly with purge gap control and temperature uniformity for batch processing chambers
CN217202950U (zh) 底座以及成膜设备
WO2023093351A1 (zh) 成膜装置
JPH01180982A (ja) プラズマcvd装置
CN117966126A (zh) 适配器组件、薄膜沉积设备以及芯片制作设备
JPH11126753A (ja) ガス導入部

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021764062

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE