WO2020211582A1 - 空调器的分液器 - Google Patents

空调器的分液器 Download PDF

Info

Publication number
WO2020211582A1
WO2020211582A1 PCT/CN2020/079720 CN2020079720W WO2020211582A1 WO 2020211582 A1 WO2020211582 A1 WO 2020211582A1 CN 2020079720 W CN2020079720 W CN 2020079720W WO 2020211582 A1 WO2020211582 A1 WO 2020211582A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
refrigerant
passage
mixing
mixing structure
Prior art date
Application number
PCT/CN2020/079720
Other languages
English (en)
French (fr)
Inventor
孟亚飞
杜路明
王红
刘庆赟
刘卫兵
刘涛
李国庆
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020211582A1 publication Critical patent/WO2020211582A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the invention belongs to the technical field of air conditioners, and in particular relates to a liquid distributor of an air conditioner.
  • the liquid separator is an auxiliary device set between the throttling device and the evaporator in the refrigeration system. It is mainly used to make the gas-liquid two-phase saturated refrigerant passing through the throttling device evenly and equally divide into multiple parts into the evaporator In each flow path, ensure the good heat exchange efficiency of the air conditioner.
  • the liquid separator includes a liquid inlet header and a plurality of liquid separating branches connected to the liquid inlet header. Among them, between the liquid inlet header and the liquid separating branch A mixing cavity is provided, and the gas-liquid two-phase refrigerant can be inverted and mixed in the mixing cavity and then enters the multiple liquid separation branches.
  • the disadvantage of the above-mentioned liquid separator is that it is difficult for the refrigerant to be fully mixed in the mixing chamber before entering the liquid separation branch, and the equalization effect of the refrigerant is not ideal, which makes the flow of liquid refrigerant in the partial flow path of the evaporator uneven and causes the air conditioner The problem that the temperature of multiple air outlets is different, and the user experience is poor.
  • the present invention provides a liquid distributor of the air conditioner ,
  • the dispenser includes a liquid inlet member, a liquid dispensing member and a liquid passing member,
  • the liquid dispensing member includes a mixing structure and a plurality of liquid dispensing tubes connected to the mixing structure, and the liquid inlet member is connected to the The mixing structure, the liquid passing member is arranged between the liquid inlet member and the mixing structure, and the liquid passing member is arranged to enable the refrigerant in the liquid inlet member to flow into the mixing structure in a swirling manner And therefore make the gas-liquid two-phase refrigerant mix uniformly.
  • the liquid passing member includes a body and a swirl channel provided on the body, and the body is clamped to the liquid outlet of the liquid inlet member and the mixing structure. In between, the swirl channel connects the liquid outlet and the mixing structure.
  • the radial size of the swirling channel is smaller than the radial size of the liquid outlet.
  • the mixing structure is provided with a cylindrical cavity connected to the plurality of liquid distributor pipes, and the swirl channel includes a first liquid passage port provided on the body , A second liquid passage and a liquid passage connected between the first liquid passage and the second liquid passage, the first liquid passage is in communication with the liquid outlet, the second The liquid passage is in communication with the cylindrical cavity, at least a part of the liquid passage is a spiral pipe, and the portion of the spiral pipe close to the second liquid passage is arranged along the tangential direction of the cylindrical cavity.
  • the body is a cylindrical structure
  • the cylindrical structure includes a first side surface and a second side surface opposite to each other, the first side surface is disposed close to the liquid outlet, and the first side surface Two side surfaces are arranged close to the cylindrical cavity, and the second liquid passing port is arranged on the second side surface and close to the edge of the second side surface.
  • the first liquid passage opening is arranged on the first side surface and is arranged close to the center of the first side surface.
  • the number of the swirling channels is multiple, the multiple first liquid passages are distributed on the second side surface in a symmetrical manner, and/or multiple The second liquid passage openings are distributed on the first side surface in a symmetrical manner.
  • the liquid distributor pipe is arranged obliquely.
  • the liquid distribution pipe includes a first pipe section and a second pipe section that are communicated with each other, the second pipe section is connected to the mixing structure through the first pipe section, and the first pipe section is connected to the mixing structure.
  • the pipe diameter of the pipe section is smaller than the pipe diameter of the second pipe section.
  • the mixing structure is integrally provided with the plurality of liquid distributor pipes.
  • the dispenser of the present invention includes a liquid inlet member, a liquid dispensing member and a liquid passing member, wherein the liquid dispensing member includes a mixing structure communicating with the liquid inlet member and a mixing structure communicating with the mixing structure. Multiple dispensing tubes.
  • the liquid passing member is arranged to enable the refrigerant flowing through the liquid inlet member to flow into the mixing structure in a swirling manner, thereby mixing the gas-liquid two-phase refrigerant uniformly.
  • the gas-liquid two-phase refrigerant entering the mixing structure can be uniformly mixed in the process of rotating flow, which greatly improves the degree of overturning of the refrigerant in the mixing structure, and effectively avoids the gas-liquid two-phase The refrigerant stratifies before the split flow.
  • the difficulty of equalizing the refrigerant is reduced, making it easier to enter the same amount of liquid refrigerant in each splitting pipe, so that each flow path of the evaporator can be exchanged evenly.
  • Heat to ensure that the temperature of each outlet of the air conditioner is consistent, improve the overall working performance of the air conditioner, and have a good user experience.
  • the liquid passing member includes a body and a swirl channel provided on the body, and the swirl channel connects the liquid inlet member and the mixing structure.
  • the swirling channel enables the refrigerant to rotate and flow, so that the refrigerant is uniformly mixed under the action of centrifugal force.
  • the swirling channel extends the flow path of the refrigerant before the split, so that the mixing process of the refrigerant is prolonged.
  • the arrangement of the swirling channel not only enables the two-phase refrigerant to be mixed in the process of flowing in the mixing structure in the form of swirling flow, but also enables the two-phase refrigerant to form a swirling flow and enables the refrigerant to take advantage of the forming process mixing.
  • the diameter of the above-mentioned swirl channel is smaller than the diameter of the liquid outlet of the liquid inlet member.
  • the above-mentioned variable diameter setting can increase the flow rate of the refrigerant during the flow process, which not only enables the refrigerant to have a larger tangential velocity, is conducive to the formation of swirling flow of the refrigerant, but also can increase the impact and extrusion of the refrigerant and the inner wall of the swirling channel , Further improve the uniformity of the mixing of the two-phase refrigerant.
  • the inside of the mixing structure is provided with a cylindrical cavity connected to a plurality of liquid distribution pipes
  • the swirling channel includes a liquid passing pipe connected between the liquid outlet of the liquid inlet member and the cylindrical cavity.
  • At least a part of the liquid pipe is a spiral pipe and the spiral pipe is arranged tangentially to the cylindrical cavity, so that the swirling direction of the refrigerant flowing through the spiral pipe to form a swirl is compatible with the cylindrical cavity, so that the swirling flow can move along the cylindrical cavity after entering the cylindrical cavity.
  • the inner wall of the cylindrical cavity rotates and the swirling time is extended by the inner wall of the cylindrical cavity, so that the two-phase refrigerant can have a longer swirling process, and the uniformity of mixing is guaranteed.
  • the body of the above-mentioned liquid passing member is a cylindrical structure, and a liquid passing port of the above-mentioned swirling flow channel is arranged on the circular side of the cylindrical structure close to the cylindrical cavity and is arranged close to the edge of the side, so as to flow into the swirling of the cylindrical cavity.
  • the refrigerant in the flow state can be close to the cavity wall of the cylindrical cavity, so that the squeeze collision between the cavity wall and the swirling flow further promotes the mixing of the two-phase refrigerant and prolongs the process of the swirling flow of the refrigerant.
  • the other liquid passing port of the above-mentioned swirling flow channel is arranged on the circular side of the cylindrical structure close to the liquid outlet and close to the center of the side, so that the refrigerant in the liquid inlet member can easily enter the swirling channel and reduce The body of the liquid passing member hinders the flow of refrigerant.
  • the number of the above-mentioned swirling flow passages is multiple, so that the refrigerant in the liquid inlet member can form multiple swirling flows.
  • the increase in the number of swirling flows can more promote the mixing of the two-phase refrigerant, on the other hand, it is small.
  • the squeezing flow when the strands of refrigerant respectively enter the swirling channel can further promote the mixing of this part of the refrigerant.
  • the above arrangement enables the refrigerant to be divided into multiple strands for pre-mixing, and then merged into a space for overall mixing, which improves the mixing efficiency.
  • the arrangement of multiple swirling channels makes the diameter-reducing setting between the swirling channel and the liquid inlet member more obvious, further increases the rotation speed of the swirling flow, and is more conducive to the uniform mixing of the two-phase refrigerant.
  • Figure 1 is a schematic diagram of the overall structure of the dispenser of the present invention.
  • Figure 2 is a schematic diagram of the structure of the liquid passing member of the liquid dispenser of the present invention.
  • FIG. 3 is a schematic structural view of the downstream surface of the liquid passing member of the liquid separator of the present invention.
  • Fig. 4 is a schematic structural view of the upstream surface of the liquid passing member of the liquid separator of the present invention.
  • Liquid inlet member 2. Liquid passing member; 21, body; 211, circular bottom surface; 212, circular top surface; 22, swirling channel; 221, first liquid passing port; 222, section Two liquid outlets; 223, liquid pipe; 3. liquid distribution component; 31, mixing structure; 32, liquid distribution pipe; 321, first pipe section; 322, second pipe section.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • Figure 1 is a schematic diagram of the overall structure of the dispenser of the present invention
  • Figure 2 is a schematic diagram of the structure of the liquid-passing member of the dispenser of the present invention.
  • the arrow directions in Figures 1 and 2 are The refrigerant flow direction.
  • the evaporator of the air conditioner includes a plurality of refrigerant flow paths
  • the heat exchanger of the present invention is arranged between the plurality of refrigerant flow paths and the throttling device of the air conditioner so as to flow through the throttle.
  • the refrigerant of the flow device is divided into multiple parts and flows into each refrigerant flow path to meet the heat exchange requirements of the heat exchanger.
  • the liquid dispenser of the present invention includes a liquid inlet member 1, a liquid passing member 2 and a liquid dispensing member 3.
  • the liquid dispensing member 3 includes a mixing structure 31 and a plurality of liquid dispensing tubes 32 connected to the mixing structure 31.
  • One end of the liquid inlet member 1 is in communication with the throttling device, and the other end is in communication with the mixing structure 31, so as to guide the refrigerant flowing through the throttling device into the mixing structure 31, so that the gas-liquid two-phase refrigerant is mixed in the mixing structure 31 .
  • Each liquid distribution tube 32 is connected to a refrigerant flow path, and the mixing structure 31 is connected to a plurality of refrigerant flow paths through a plurality of liquid distribution tubes 32, so that the uniformly mixed refrigerant can be divided into equal parts into each refrigerant flow. In the road.
  • the liquid passing member 2 is arranged between the liquid inlet member 1 and the mixing structure 31, and the liquid passing member 2 is arranged to enable the refrigerant in the liquid inlet member 1 to flow into the mixing structure 31 in a swirling manner, thereby causing gas-liquid two-phase
  • the refrigerant is uniformly mixed so that the refrigerant can quickly rotate and roll in the mixing structure 31, thereby promoting the uniform mixing of the gaseous refrigerant and the liquid refrigerant before the splitting, and avoiding the gas and liquid stratification of the gas-liquid two-phase refrigerant before the splitting.
  • the distribution of refrigerant is uneven and it is difficult to evenly distribute the refrigerant.
  • the liquid passing member 2 is arranged between the liquid inlet member 1 and the mixing structure 31
  • the liquid passing member 2 can separate the liquid inlet member 1 and the mixing structure 31 on the flow path of the refrigerant.
  • the refrigerant in the liquid inlet member 1 can enter the mixing structure 31 only after flowing through the liquid member 2, that is, the liquid passing member 2 is arranged between the liquid passing member 2 and the mixing structure 31 on the refrigerant flow path, not the liquid passing member
  • the setting position of 2 is strictly located between the liquid inlet member 1 and the mixing structure 31 in terms of structural form. For example, in the dispenser shown in FIG.
  • the liquid passing member 2 includes a main body 21 and a swirl channel 22 provided on the main body 21.
  • the body 21 is clamped between the liquid outlet of the liquid inlet member 1 and the mixing structure 31.
  • the swirl channel 22 connects the liquid outlet of the liquid inlet member 1 with the mixing structure 31, so that the liquid inlet member 1 and the mixing structure 31 can be connected It is separated by the body 21 and communicated only by the swirl channel 22, so that the refrigerant can only enter the mixing structure 31 through the swirl channel 22 after flowing into the liquid inlet member 1, so that all the refrigerant flowing through the liquid separator can be
  • the swirling flow is mixed and then divided into the evaporator to ensure the uniform mixing degree of the refrigerant.
  • the radial dimension of the swirl channel 22 is smaller than the radial dimension of the liquid outlet of the liquid inlet member 1, so that there is a variable diameter arrangement between the liquid inlet member 1 and the swirl channel 22, so that the inside of the liquid inlet member 1
  • the refrigerant can be accelerated and decompressed due to the Venturi effect, making it easier for the refrigerant to form a swirling flow with a higher speed, so that the refrigerant can roll more violently, and further improve the uniform mixing of the gas-liquid two-phase refrigerant.
  • the mixing structure 31 includes a base body and a cylindrical cavity arranged inside the base body. One end of the cylindrical cavity is connected with the swirl channel 22, and the other end of the cylindrical cavity is connected with a plurality of liquid distribution tubes 32.
  • the main body 21 is a cylindrical structure that is clamped into the cylindrical cavity. As shown in the orientation of Figure 2, the circular bottom surface 211 of the cylindrical structure (ie, the first side surface in the claims, the upstream surface of the body 21 of the liquid passing member 2) is set close to the liquid outlet of the liquid inlet member 1, and the circular cylindrical structure
  • the top surface 212 that is, the second side surface in the claims, the downstream surface of the body 21 of the liquid passing member 2 is disposed close to the mixing structure 31.
  • the swirl channel 22 includes a first liquid passage opening 221 provided on the circular bottom surface 211, a second liquid passage opening 222 provided on the circular top surface 212, and a cylindrical structure connected to the first liquid passage opening.
  • the liquid passage 223 between 221 and the second liquid passage 222 (in order to facilitate the observation of the specific structure of the swirl channel 22 in the figure, only two liquid passage pipes 223 are shown in FIG. 2).
  • the first liquid outlet 221 is in communication with the liquid outlet of the liquid inlet member 1.
  • the second liquid passage 222 communicates with the cylindrical cavity.
  • At least a part of the liquid passing pipe 223 is a spiral pipe, and the portion of the spiral pipe close to the second liquid passing port 222 is arranged along the tangential direction of the cylindrical cavity, so that the refrigerant flowing through the spiral pipe and entering the cylindrical cavity has a tangential acceleration, thereby The refrigerant flows in a swirling manner in the cylindrical cavity, so that the gaseous refrigerant and the liquid refrigerant contained in the refrigerant can be fully mixed in the process of rotating and tumbling.
  • the entire liquid passage 223 is configured as a spiral pipe structure.
  • the spiral pipe shown in the figure is a part of a spiral circumference (that is, an arc-shaped pipe with only a spiral curvature).
  • the body 21 is not limited to a cylindrical structure.
  • the main body 21 can also have any other structure.
  • the location of the first liquid passage 221 and the second liquid passage 222 can also be changed with the structure of the main body 21 And make adjustments.
  • the top center of the body 21 may also be provided with a cylindrical step structure, and the second liquid passage 222 is provided on the circumferential side of the step structure along the tangential direction of the cylindrical cavity.
  • the dispenser in the above embodiment is described in conjunction with the mixing structure 31, the liquid passing member 2 and the liquid inlet member 1, this is only a preferred embodiment of the present invention and should not constitute any protection for the present invention.
  • the liquid passing member 2 may also be a liquid passing structure arranged at the position of the liquid outlet of the liquid inlet member 1.
  • the liquid dispenser only includes the liquid inlet member 1 and the liquid distributing member 3. The technical solution adjusted in this way does not deviate from the basic principle of the present invention, and therefore will fall within the protection scope of the present invention.
  • the number of swirl channels 22 is multiple (ie two or more), so that the refrigerant flowing through the liquid member 2 can form multiple swirls. Flow into the mixing structure 31 to further enhance the mixing effect of the refrigerant.
  • the number of swirl channels 22 is four.
  • FIG. 3 is a structural schematic diagram of the downstream surface (specifically, the downstream surface of the main body 21) of the liquid passing member of the dispenser of the present invention.
  • the second liquid passages 222 of the four swirling channels 22 are all arranged close to the edge of the circular top surface 212, so that the swirling state of the refrigerant It can have a larger rotation range to avoid direct convergence of multiple swirling currents and reduce the rolling effect.
  • the second liquid passage 222 with the above-mentioned setting position will be close to the cavity wall of the circular cavity, and the swirling flow of the refrigerant flowing into the cylindrical cavity can further accelerate the mixing process through the impact with the cavity wall of the circular cavity and improve the mixing effect.
  • FIG. 4 is a structural schematic diagram of the upstream surface (specifically, the upstream surface of the body 21) of the liquid passing member of the dispenser of the present invention.
  • the first liquid passing ports 221 of the four swirling passages 22 are all set close to the center of the circular bottom surface 211, so that the refrigerant in the liquid passing member 1 can easily enter the swirling flow.
  • the obstruction of the main body 21 to the flow of the refrigerant is reduced.
  • the plurality of first liquid passing ports 221 are distributed on the circular bottom surface 211 in a centrally symmetrical manner, so that the refrigerant can quickly enter each swirling channel through the evenly distributed inlets, so that the position of the liquid outlet of the liquid passing member 1
  • the refrigerant flows uniformly;
  • the plurality of second liquid passage ports 222 are distributed to the circular top surface 212 in a centrally symmetrical manner, so that the multiple swirling flows can evenly flow into the mixing structure 31, avoiding the premature influence of the confluence of some swirling flows. Tangential acceleration.
  • the liquid distribution pipe 32 is arranged obliquely. According to the orientation shown in FIG. 1, after the refrigerant is mixed and divided, the inclined liquid distribution pipe 32 is more convenient for the refrigerant to overcome its own gravity.
  • the tube body flows upward.
  • the above-mentioned multiple liquid distribution pipes 32 are respectively inclined outwardly in a divergent manner, so that the remaining guide members communicating with each refrigerant flow path of the evaporator are connected to each liquid distribution pipe 32.
  • the dispensing tube 32 and the mixing structure 31 are integrally provided.
  • the lower part of the base of the liquid separating member 3 is provided with a cylindrical cavity
  • the upper part is provided with a plurality of outwardly inclined tube structures (ie, the liquid separating tube 32), and the plurality of tube structures are respectively connected to the cylindrical cavity.
  • the above-mentioned pipe structure includes a first pipe section 321 and a second pipe section 322 communicating with each other.
  • the second pipe section 322 is connected to the cylindrical cavity through the first pipe section 321, wherein the pipe diameter of the first pipe section 321 is smaller than the pipe diameter of the second pipe section 322.
  • the small diameter of the first pipe section 321 can form a venturi structure with the cylindrical cavity, so that the divided refrigerant can quickly flow to the evaporator position.
  • the large pipe diameter of the second pipe section 322 is more convenient for its connection and assembly with the flow guiding member.
  • the liquid dispenser of the present invention includes a liquid inlet member 1, a liquid passing member 2 and a liquid distributing member 3.
  • the liquid distributing member 3 includes a mixing structure 31 communicating with the liquid inlet member 1 and a plurality of liquid distributing tubes 32 communicating with the mixing structure 31.
  • the liquid passing member 2 includes a body 21 that is clamped between the liquid inlet member 1 and the mixing structure 31 and a plurality of swirl channels 22 provided in the body 21.
  • the refrigerant in the liquid inlet member 1 can flow into the mixing structure 31 in a swirling manner, so that the refrigerant can rotate and tumble in the mixing structure 31 before splitting, so as to promote the mixing of the gas-liquid two-phase refrigerant Uniformity, which greatly improves the degree of overturning of the refrigerant in the mixing structure 31, effectively avoids the phenomenon of stratification of the gas-liquid two-phase refrigerant before the split flow, making it easier for each liquid splitting pipe 32 to enter the same amount of liquid
  • the refrigerant improves the overall working performance of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种空调器的分液器,分液器具有能够使冷媒以旋流方式进入混合结构(31)内的过渡构件(2),使得进入混合结构(31)内的气液两相的冷媒能够在旋转流动的过程中均匀混合,极大程度地提升了冷媒在混合结构(31)内的翻转程度,有效地避免了气液两相的冷媒在分流之前出现分层的现象,通过提升气态冷媒与液态冷媒混合效果的方式降低冷媒的均分难度,使得各分液管(32)内更易进入等量的液态冷媒,从而使蒸发器各流路均匀换热,保证了空调器各出风口的温度一致,提升了空调器的整体工作性能,用户体验好。

Description

空调器的分液器 技术领域
本发明属于空调器技术领域,具体涉及一种空调器的分液器。
背景技术
分液器是制冷系统中设置于节流装置与蒸发器之间的一个辅助设备,主要用于使经过节流装置的气液两相饱和状态的冷媒均匀而等量地分成多份进入蒸发器的各个流路中,保证空调器的良好换热效率。
目前,分液器多为降压型分液器,该分液器包括一个进液总管以及与该进液总管相连的多个分液支路,其中,进液总管和分液支路之间设置有混合腔,气液两相的冷媒能够在该混合腔内翻转混合后再进入多个分液支路内。上述分液器的弊端在于冷媒在进入分液支路之前很难在混合腔内充分混合,冷媒的均分效果不理想,使得蒸发器的局部流路内的液态冷媒流量不匀进而导致空调器多个出风口的温度不同的问题,用户体验较差。
相应地,本领域需要一种新的空调器的分液器来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有空调器的分液器难以混匀两相冷媒、均分冷媒的效果较差的问题,本发明提供了一种空调器的分液器,所述分液器包括进液构件、分液构件和过液构件,所述分液构件包括混合结构和与所述混合结构相连的多个分液管,所述进液构件连接至所述混合结构,所述过液构件设置于所述进液构件与所述混合结构之间,所述过液构件设置为能够使所述进液构件内的冷媒以旋流方式流入所述混合结构内并因此使气液两相的冷媒混合均匀。
在上述分液器的优选技术方案中,所述过液构件包括本体以及设置于所述本体上的旋流通道,所述本体卡接至所述进液构件的出液口与所述混合结构之间,所述旋流通道将所述出液口和所述混合结构连通。
在上述分液器的优选技术方案中,所述旋流通道的径向尺寸小于所述出液口的径向尺寸。
在上述分液器的优选技术方案中,所述混合结构的内部设置有与所述多 个分液管相连的圆柱腔,所述旋流通道包括设置于所述本体上的第一过液口、第二过液口以及连通至所述第一过液口与所述第二过液口之间的过液管道,所述第一过液口与所述出液口连通,所述第二过液口与所述圆柱腔连通,所述过液管道的至少一部分为螺旋管道,所述螺旋管道靠近所述第二过液口的部分沿所述圆柱腔的切向设置。
在上述分液器的优选技术方案中,所述本体为圆柱结构,所述圆柱结构包括彼此相对的第一侧面和第二侧面,所述第一侧面靠近所述出液口设置,所述第二侧面靠近所述圆柱腔设置,所述第二过液口设置于所述第二侧面上并且靠近所述第二侧面的边缘设置。
在上述分液器的优选技术方案中,所述第一过液口设置于所述第一侧面上并且靠近所述第一侧面的中心设置。
在上述分液器的优选技术方案中,所述旋流通道的数量为多个,多个所述第一过液口以中心对称的方式分布至所述第二侧面上,并且/或者多个所述第二过液口以中心对称的方式分布至所述第一侧面上。
在上述分液器的优选技术方案中,所述分液管倾斜设置。
在上述分液器的优选技术方案中,所述分液管包括彼此连通的第一管段和第二管段,所述第二管段通过所述第一管段连通至所述混合结构,所述第一管段的管径尺寸小于所述第二管段的管径尺寸。
在上述分液器的优选技术方案中,所述混合结构与所述多个分液管一体设置。
本领域技术人员能够理解的是,本发明的分液器包括进液构件、分液构件和过液构件,其中,分液构件包括与进液构件相连通的混合结构以及与混合结构相连通的多个分液管。过液构件设置为能够使流经进液构件的冷媒以旋流方式流入混合结构内并因此使气液两相的冷媒混合均匀。通过上述设置,使得进入混合结构内的气液两相的冷媒能够在旋转流动的过程中均匀混合,极大程度地提升了冷媒在混合结构内的翻转程度,有效地避免了气液两相的冷媒在分流之前出现分层的现象,通过提升气态冷媒与液态冷媒混合效果的方式降低冷媒的均分难度,使得各分液管内更易进入等量的液态冷媒,从而使蒸发器各流路均匀换热,保证了空调器各出风口的温度一致,提升了空调器的整体工作性能,用户体验好。
优选地,过液构件包括本体以及设置于本体上的旋流通道,该旋流通道 将进液构件和混合结构连通。一方面,旋流通道使得冷媒能够旋转流动,使得冷媒在离心力的作用下混合均匀。另一方面,旋流通道延长了冷媒在分流之前的流动路程,使得冷媒的混合过程得到延长。也就是说,旋流通道的设置,不仅使得两相冷媒能够在以旋流形式于混合结构内流动的过程中混合,还能够使两相冷媒具有形成旋流的过程并使得冷媒借助该形成过程混合。
更优选地,上述旋流通道的直径小于进液构件的出液口的直径。上述变径设置能够使得冷媒在流动过程中流速增大,不仅使冷媒能够具有较大的切向速度、有利于冷媒形成旋流,还能够增大冷媒与旋流通道内壁的撞击、挤压作用,进一步提升了两相冷媒的混合均匀度。
优选地,上述混合结构的内部设置有与多个分液管相连的圆柱腔,上述旋流通道包括连通至所述进液构件的出液口与该圆柱腔之间的过液管道,该过液管道的至少一部分为螺旋管道并且该螺旋管道沿圆柱腔的切向设置,以便使冷媒流经螺旋管道形成旋流后的旋流方向与圆柱腔相适应,使得旋流进入圆柱腔后能够沿圆柱腔的内壁旋转流动、借助圆柱腔的内壁延长旋流时间,使得两相冷媒能够具有较长的旋流过程,混合的均匀程度得到保障。
优选地,上述过液构件的本体为圆柱结构,上述旋流通道的一个过液口设置于该圆柱结构的靠近圆柱腔的圆形侧面上并靠近该侧面的边缘设置,以便流入圆柱腔的旋流状态的冷媒能够靠近圆柱腔的腔壁,从而借助该腔壁与旋流之间的挤压碰撞作用进一步促进两相冷媒的混合、延长冷媒旋转流动的过程。
进一步地,上述旋流通道的另一个过液口设置于圆柱结构的靠近出液口的圆形侧面上并且靠近该侧面的中心设置,以便易于进液构件内的冷媒进入旋流通道内,减小过液构件的本体对冷媒流动的阻碍作用。
优选地,上述旋流通道的数量为多个,以使进液构件内的冷媒能够形成多股旋流,一方面,旋流数量的增加能够更加促进两相冷媒的混合,另一方面,小股冷媒分别进入旋流通道内时的挤压流动能够进一步促进该部分冷媒的混合。也就是说,上述设置使得冷媒能够先被分成多股预先混合,再汇合至一个空间内整体混合,提升了混合效率。此外,多个旋流通道的设置使得旋流通道与进液构件之间的变径设置更加明显,进一步提升了旋流的转速,更有利于两相冷媒的均匀混合。
附图说明
下面参照附图来描述本发明的优选实施方式。
附图中:
图1是本发明的分液器的整体结构示意图;
图2是本发明的分液器的过液构件的结构示意图;
图3是本发明的分液器的过液构件的下游面的结构示意图;
图4是本发明的分液器的过液构件的上游面的结构示意图。
附图中:1、进液构件;2、过液构件;21、本体;211、圆形底面;212、圆形顶面;22、旋流通道;221、第一过液口;222、第二过液口;223、过液管道;3、分液构件;31、混合结构;32、分液管;321、第一管段;322、第二管段。
具体实施方式
本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参阅图1和图2,图1是本发明的分液器的整体结构示意图,图2是本发明的分液器的过液构件的结构示意图,图1和图2中的箭头方向即为冷媒流向。如图1和图2所示,空调器的蒸发器包括多条冷媒流路,本发明 的换热器设置于该多条冷媒流路与空调器的节流装置之间,以便将流经节流装置的冷媒分成多份流入各冷媒流路中,满足换热器的换热需求。本发明的分液器包括进液构件1、过液构件2和分液构件3。具体地,分液构件3包括混合结构31和与混合结构31相连的多个分液管32。进液构件1的一端与节流装置连通,另一端与混合结构31连通,以便将流经节流装置的冷媒引导至混合结构31内、使气液两相的冷媒在混合结构31内进行混合。每个分液管32分别连接至一条冷媒流路,混合结构31通过多个分液管32与多个冷媒流路连通,以便混合均匀后的冷媒能够分成等量的多份分别进入各冷媒流路中。其中,过液构件2设置于进液构件1与混合结构31之间,过液构件2设置为能够使进液构件1内的冷媒以旋流方式流入混合结构31内并因此使气液两相的冷媒混合均匀,以便使冷媒能够在混合结构31内快速旋转翻滚,从而促进气态冷媒和液态冷媒在分流之前混合均匀,避免气液两相的冷媒在分流之前出现气、液分层的现象进而导致冷媒分配不均、冷媒的均分难度大。
需要理解的是,上述“过液构件2设置于进液构件1与混合结构31之间”是指:在冷媒的流动路径上,过液构件2能够将进液构件1与混合结构31分隔开,进液构件1内的冷媒只有流经过液构件2后才能进入混合结构31内,即过液构件2设置在冷媒流路上的过液构件2与混合结构31之间,而不是过液构件2的设置位置在结构形式上严格位于进液构件1与混合结构31之间。例如,图1所示出的分液器中,在进液构件1的端部插入至混合结构31内的情形下,虽然该液器的具体构件装配位置关系为:进液构件1的端部和过液构件2均位于混合结构31内,过液构件2并未严格位于进液构件1与混合结构31之间,但是该分液器的冷媒流动路径仍是进液构件1-过液构件2-混合结构31,与本发明限定的冷媒流动路径相符。
继续参阅图1和图2,优选地,过液构件2包括本体21及设置于本体21上的旋流通道22。本体21卡接至进液构件1的出液口与混合结构31间,旋流通道22将进液构件1的出液口和混合结构31连通,以便进液构件1与混合结构31之间能够被本体21分隔开并且仅通过旋流通道22连通,使得冷媒流入进液构件1内后只能通过旋流通道22进入混合结构31内,从而使所有流经分液器的冷媒均能够以旋流方式混合后再分流流入至蒸发器位置,保证了冷媒的均匀混合程度。
更优选地,旋流通道22的径向尺寸小于进液构件1的出液口的径向尺寸,以便进液构件1与旋流通道22之间存在变径设置,使得进液构件1内的冷媒能够由于文丘里效应而增速、减压,使得冷媒更易于形成转速较大的旋流,从而使冷媒能够更加剧烈地翻滚旋转,进一步提升了气液两相冷媒的均匀混合程度。
进一步地,混合结构31包括基体以及设置于基体内部的圆柱腔,该圆柱腔的一端与旋流通道22连通,该圆柱腔的另一端与多个分液管32相连。本体21为卡接至该圆柱腔内的圆柱结构。按照图2方位所示,圆柱结构的圆形底面211(即权利要求中的第一侧面、过液构件2的本体21的上游面)靠近进液构件1的出液口设置,圆柱结构的圆形顶面212(即权利要求中的第二侧面、过液构件2的本体21的下游面)靠近混合结构31设置。旋流通道22包括设置于圆形底面211上的第一过液口221、设置于圆形顶面212上的第二过液口222以及设置于圆柱结构内部的、连通至第一过液口221与第二过液口222之间的过液管道223(为了便于观察图中的旋流通道22的具体结构,图2中仅示出两条过液管道223)。第一过液口221与进液构件1的出液口连通。第二过液口222与圆柱腔连通。过液管道223的至少一部分为螺旋管道,并且该螺旋管道靠近第二过液口222的部分沿圆柱腔的切向设置,以便使流经该螺旋管道进入圆柱腔的冷媒具有切向加速度,从而使冷媒在圆柱腔内以旋流方式流动,进而使冷媒中包含的气态冷媒和液态冷媒能够在旋转翻滚的过程中充分混合。
更进一步地,过液通道223整体均设置为螺旋管道结构。作为示例,图中示出的螺旋管道为一个螺旋圆周中的一部分(即仅具有螺旋弯曲弧度的弧形管道)。
关于上述,需要说明的是,本体21并不局限于圆柱结构。实际上,在本体21能够满足隔离需求的装配需求下,本体21还可以是其他任意结构,相应地,第一过液口221和第二过液口222设置位置也可以随本体21的结构变化而进行调整。例如,本体21的顶部中心还可以设置一个圆柱形的台阶结构,第二过液口222沿圆柱腔的切向设置于该台阶结构的周向侧面上。此外,尽管上述实施方式中的分液器是结合混合结构31、过液构件2和进液构件1来描述的,但是,这仅仅是本发明的优选实施方式,不应对本发明的保护构成任何限制。在不偏离本发明的基本原理的前提下,本领域技术人员 可以对该实施方式作出调整,以便适应具体的应用场合。例如,过液构件2还可以是设置于进液构件1的出液口位置的过液结构,此时,分液器仅包括进液构件1和分液构件3。按照这种方式调整的技术方案没有偏离本发明的基本原理,因此将落入本发明的保护范围之内。
如图1和图2所示,在一种优选的实施方式中,旋流通道22的数量为多个(即两个或者两个以上),以便流经过液构件2的冷媒能够形成多股旋流进入混合结构31内,进一步提升冷媒的混合效果。作为示例,旋流通道22的数量为四个。
下面结合上述多条旋流通道22的实施方式对本发明的优选技术方案作进一步阐述。
再参阅图3并继续参阅图1和图2,图3是本发明的分液器的过液构件的下游面(具体是本体21的下游面)的结构示意图。如图1、图2和图3所示,在一种优选的实施方式中,四条旋流通道22的第二过液口222均靠近圆形顶面212的边缘设置,使得旋流状态的冷媒能够具有较大的转动范围,以避免多股旋流直接汇聚降低翻滚效果。此外,采用上述设置位置的第二过液口222会靠近圆形腔的腔壁,冷媒旋流流入圆柱腔后能够通过与圆形腔的腔壁的撞击作用进一步加速混合过程,提升混合效果。
接下来参阅图4并继续参阅图1和图2,图4是本发明的分液器的过液构件的上游面(具体是本体21的上游面)的结构示意图。如图1、图2和图4所示,进一步地,四条旋流通道22的第一过液口221均靠近圆形底面211的中心设置,以使过液构件1内的冷媒更易进入旋流通道22内,减小本体21对冷媒的流动阻碍。
优选地,多个第一过液口221以中心对称的方式分布至圆形底面211上,使得冷媒能够通过均匀分布的入口快速进入各旋流通道内,使过液构件1的出液口位置的冷媒流动均匀;多个第二过液口222以中心对称的方式分布至圆形顶面212上,使得多股旋流能够均匀地流入混合结构31内,避免部分旋流交汇过早影响各自的切向加速度。
如图1所示,在一种优选的实施方式中,分液管32倾斜设置,按照图1的方位所示,在冷媒混合并分流后,倾斜的分液管32更便于冷媒克服自身重力沿管体向上流动。当然,考虑到管道布置空间的因素,上述多个分液管32分别向外扩散式倾斜,以便于其余与蒸发器的各冷媒流路相连通的导流构 件连接至各分液管32。
作为示例,分液管32与混合结构31一体设置。具体地,分液构件3的基体下部设置有圆柱腔,上部设置有多个向外倾斜的管结构(即分液管32),且该多个管结构分别连通至圆柱腔。更具体地,上述管结构包括与彼此连通的第一管段321和第二管段322。第二管段322通过第一管段321连通至圆柱腔,其中,第一管段321的管径尺寸小于第二管段322管径尺寸。一方面,第一管段321的小管径设置能够与圆柱腔之间形成文丘里管结构,使得分流后的冷媒能够快速流向蒸发器位置。另一方面,第二管段322的大管径设置更便于其与其于导流构件的连接装配。
综上所述,本发明的分液器包括进液构件1、过液构件2和分液构件3。分液构件3包括与进液构件1相连通的混合结构31以及与混合结构31相连通的多个分液管32。过液构件2包括卡接至进液构件1与混合结构31之间的本体21以及设置于本体21内的多条旋流通道22。通过旋流通道22的设置,使得进液构件1内的冷媒能够以旋流方式流入混合结构31内,使得冷媒能够在分流前在混合结构31内旋转翻滚,以便促使气液两相的冷媒混合均匀,极大程度地提升了冷媒在混合结构31内的翻转程度,有效地避免了气液两相的冷媒在分流之前出现分层的现象,使得各分液管32内更易进入等量的液态冷媒,提升了空调器的整体工作性能。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器的分液器,其中,所述分液器包括进液构件、分液构件和过液构件,所述分液构件包括混合结构和与所述混合结构相连的多个分液管,所述进液构件连接至所述混合结构,所述过液构件设置于所述进液构件与所述混合结构之间,
    所述过液构件设置为能够使所述进液构件内的冷媒以旋流方式流入所述混合结构内并因此使气液两相的冷媒混合均匀。
  2. 根据权利要求1所述的分液器,其中,所述过液构件包括本体以及设置于所述本体上的旋流通道,所述本体卡接至所述进液构件的出液口与所述混合结构之间,所述旋流通道将所述出液口和所述混合结构连通。
  3. 根据权利要求2所述的分液器,其中,所述旋流通道的径向尺寸小于所述出液口的径向尺寸。
  4. 根据权利要求2所述的分液器,其中,所述混合结构的内部设置有与所述多个分液管相连的圆柱腔,所述旋流通道包括设置于所述本体上的第一过液口、第二过液口以及连通至所述第一过液口与所述第二过液口之间的过液管道,所述第一过液口与所述出液口连通,所述第二过液口与所述圆柱腔连通,
    所述过液管道的至少一部分为螺旋管道,所述螺旋管道靠近所述第二过液口的部分沿所述圆柱腔的切向设置。
  5. 根据权利要求4所述的分液器,其中,所述本体为圆柱结构,所述圆柱结构包括彼此相对的第一侧面和第二侧面,所述第一侧面靠近所述出液口设置,所述第二侧面靠近所述圆柱腔设置,
    所述第二过液口设置于所述第二侧面上并且靠近所述第二侧面的边缘设置。
  6. 根据权利要求5所述的分液器,其中,所述第一过液口设置于所述第一侧面上并且靠近所述第一侧面的中心设置。
  7. 根据权利要求5所述的分液器,其中,所述旋流通道的数量为多个,
    多个所述第一过液口以中心对称的方式分布至所述第二侧面上,并且/或者
    多个所述第二过液口以中心对称的方式分布至所述第一侧面上。
  8. 根据权利要求1至7中任一项所述的分液器,其中,所述分液管倾斜 设置。
  9. 根据权利要求1至7中任一项所述的分液器,其中,所述分液管包括彼此连通的第一管段和第二管段,所述第二管段通过所述第一管段连通至所述混合结构,
    所述第一管段的管径尺寸小于所述第二管段的管径尺寸。
  10. 根据权利要求9所述的分液器,其中,所述混合结构与所述多个分液管一体设置。
PCT/CN2020/079720 2019-04-16 2020-03-17 空调器的分液器 WO2020211582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910304922.4A CN109945555A (zh) 2019-04-16 2019-04-16 空调器的分液器
CN201910304922.4 2019-04-16

Publications (1)

Publication Number Publication Date
WO2020211582A1 true WO2020211582A1 (zh) 2020-10-22

Family

ID=67014310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079720 WO2020211582A1 (zh) 2019-04-16 2020-03-17 空调器的分液器

Country Status (2)

Country Link
CN (1) CN109945555A (zh)
WO (1) WO2020211582A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944755A (zh) * 2021-03-31 2021-06-11 哈尔滨商业大学 一种用于空调的制冷剂调节装置
CN113007928A (zh) * 2021-03-25 2021-06-22 青岛海尔空调器有限总公司 帽状分流元件和流体分配器
CN113007930A (zh) * 2021-03-25 2021-06-22 青岛海尔空调器有限总公司 曲面状分流元件和流体分配器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945555A (zh) * 2019-04-16 2019-06-28 青岛海尔空调器有限总公司 空调器的分液器
CN114055081B (zh) * 2021-11-13 2022-09-13 新昌县鸿立制冷有限公司 空调机组用分液管组件及其制造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095993A2 (en) * 2005-03-09 2006-09-14 Lg Electronics Inc. Refrigerant distributing device for multi-type air conditioner
CN200943980Y (zh) * 2006-03-07 2007-09-05 浙江盾安精工集团有限公司 汽液雾状流分配装置
CN201187922Y (zh) * 2008-01-26 2009-01-28 广东恒基金属制品实业有限公司 一种节流旋液分流器
CN201187921Y (zh) * 2008-01-22 2009-01-28 广东恒基金属制品实业有限公司 一种旋液分流器
CN201225797Y (zh) * 2008-06-17 2009-04-22 海信(山东)空调有限公司 空调器涡旋分液器及安装有该分液器的空调器
CN101493273A (zh) * 2008-01-26 2009-07-29 广东恒基金属制品实业有限公司 一种节流旋液分流器
US20130111946A1 (en) * 2009-12-18 2013-05-09 Danfoss A/S Expansion unit for a vapour compression system
CN205300060U (zh) * 2016-01-19 2016-06-08 诸暨市双姣制冷配件有限公司 一种旋转式分液头
CN106907879A (zh) * 2017-04-24 2017-06-30 新昌县华亿机械有限公司 内装射流孔板的分配器
CN107255380A (zh) * 2017-08-09 2017-10-17 苏州泰隆制冷有限公司 一种空调用黄铜分配器
CN208720590U (zh) * 2018-08-07 2019-04-09 广州新创机电设备有限公司 一种中央空调铜分液器
CN109945555A (zh) * 2019-04-16 2019-06-28 青岛海尔空调器有限总公司 空调器的分液器
CN209877422U (zh) * 2019-04-16 2019-12-31 青岛海尔空调器有限总公司 空调器的分液器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516722C (zh) * 2005-06-30 2009-07-22 乐金电子(天津)电器有限公司 一拖多式空调器的分支管
CN104154685A (zh) * 2014-08-28 2014-11-19 珠海格力电器股份有限公司 均流装置及具有其的空调器
CN207365518U (zh) * 2017-06-13 2018-05-15 珠海格力电器股份有限公司 分液器入口管、分流装置和空调器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095993A2 (en) * 2005-03-09 2006-09-14 Lg Electronics Inc. Refrigerant distributing device for multi-type air conditioner
CN200943980Y (zh) * 2006-03-07 2007-09-05 浙江盾安精工集团有限公司 汽液雾状流分配装置
CN201187921Y (zh) * 2008-01-22 2009-01-28 广东恒基金属制品实业有限公司 一种旋液分流器
CN201187922Y (zh) * 2008-01-26 2009-01-28 广东恒基金属制品实业有限公司 一种节流旋液分流器
CN101493273A (zh) * 2008-01-26 2009-07-29 广东恒基金属制品实业有限公司 一种节流旋液分流器
CN201225797Y (zh) * 2008-06-17 2009-04-22 海信(山东)空调有限公司 空调器涡旋分液器及安装有该分液器的空调器
US20130111946A1 (en) * 2009-12-18 2013-05-09 Danfoss A/S Expansion unit for a vapour compression system
CN205300060U (zh) * 2016-01-19 2016-06-08 诸暨市双姣制冷配件有限公司 一种旋转式分液头
CN106907879A (zh) * 2017-04-24 2017-06-30 新昌县华亿机械有限公司 内装射流孔板的分配器
CN107255380A (zh) * 2017-08-09 2017-10-17 苏州泰隆制冷有限公司 一种空调用黄铜分配器
CN208720590U (zh) * 2018-08-07 2019-04-09 广州新创机电设备有限公司 一种中央空调铜分液器
CN109945555A (zh) * 2019-04-16 2019-06-28 青岛海尔空调器有限总公司 空调器的分液器
CN209877422U (zh) * 2019-04-16 2019-12-31 青岛海尔空调器有限总公司 空调器的分液器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113007928A (zh) * 2021-03-25 2021-06-22 青岛海尔空调器有限总公司 帽状分流元件和流体分配器
CN113007930A (zh) * 2021-03-25 2021-06-22 青岛海尔空调器有限总公司 曲面状分流元件和流体分配器
CN112944755A (zh) * 2021-03-31 2021-06-11 哈尔滨商业大学 一种用于空调的制冷剂调节装置

Also Published As

Publication number Publication date
CN109945555A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2020211582A1 (zh) 空调器的分液器
CN107427790A (zh) 混合装置
CN211854540U (zh) 导流式分配器
CN105783349A (zh) 制冷剂管路分配器
CN104776654A (zh) 分流器、换热器及空调器
CN106322849B (zh) 换热器结构
CN204227763U (zh) 空调器及其平行流蒸发器
CN110530071A (zh) 扰流装置及分流器组件及空调机组
WO2016029608A1 (zh) 均流装置及具有其的空调器
CN208936597U (zh) 分流器及具有该分流器的制冷系统
CN214307717U (zh) 分配器及空调设备
CN104315758A (zh) 空调器及其平行流蒸发器
CN209877422U (zh) 空调器的分液器
CN112361662A (zh) 一种分流均匀的微通道换热器及空调
WO2015018184A1 (zh) 制冷剂分配装置和具有它的换热器
JP2013050221A (ja) 冷媒分配器およびそれを用いたヒートポンプ機器
CN106403406B (zh) 制冷系统及其分液器
CN206369373U (zh) 制冷系统及其分液器
CN210399595U (zh) 一种分流器及应用该分流器的空调器
CN210463678U (zh) 分流器及空调器
JPH11257801A (ja) 冷媒分流器
JP2746681B2 (ja) 冷媒分流器
JPH10246535A (ja) 冷媒分流器
CN202511527U (zh) 微通道换热器及包括该微通道换热器的空调器
CN202511536U (zh) 分液装置及包括该分液装置的空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791492

Country of ref document: EP

Kind code of ref document: A1