WO2020211316A1 - 不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用 - Google Patents

不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用 Download PDF

Info

Publication number
WO2020211316A1
WO2020211316A1 PCT/CN2019/112077 CN2019112077W WO2020211316A1 WO 2020211316 A1 WO2020211316 A1 WO 2020211316A1 CN 2019112077 W CN2019112077 W CN 2019112077W WO 2020211316 A1 WO2020211316 A1 WO 2020211316A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
electron transport
organic
dichloromethane
bromine
Prior art date
Application number
PCT/CN2019/112077
Other languages
English (en)
French (fr)
Inventor
朱旭辉
陈玲玲
彭俊彪
曹镛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020211316A1 publication Critical patent/WO2020211316A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65583Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system each of the hetero rings containing nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms

Definitions

  • the invention belongs to the technical field of organic small molecule functional materials, and relates to electron transport materials, in particular to an asymmetrically substituted soluble pyridine derivative and a preparation method thereof, an n-doped electron transport layer and application.
  • the asymmetrically substituted soluble pyridine derivatives are used in organic electron transport materials, and an n-doped electron transport layer is obtained by n-doping the asymmetrically substituted soluble pyridine derivatives.
  • the application of the organic electron transport layer and the n-doped electron transport layer in organic light emitting diodes.
  • OLEDs Organic light-emitting diodes
  • the electron transport material is very important for organic light emitting diodes, assisting the injection of electrons from the cathode to the light emitting layer, and blocking direct contact between the electrode and the light emitting layer.
  • the design of high-purity, high-performance OLED electron transport materials is challenging, and many factors and complex trade-offs between them need to be considered, such as glass transition temperature, carrier mobility, triplet energy level, electron injection, and holes Blocking characteristics.
  • the pursuit of high mobility often results in insoluble electron transport materials and difficult purification.
  • the purpose of the present invention is to provide an asymmetrically substituted soluble pyridine derivative and a preparation method thereof.
  • the asymmetrically substituted soluble pyridine derivatives of the present invention are simple to prepare and soluble, have a high glass transition temperature, are used as organic electron transport materials, and can obtain high-efficiency and high-stability organic electroluminescent devices.
  • Another object of the present invention is to provide the use of the above-mentioned asymmetrically substituted soluble pyridine derivatives.
  • the asymmetrically substituted soluble pyridine derivatives are used to prepare organic electron transport materials.
  • the organic electron transport material is one or more of the above-mentioned asymmetrically substituted soluble pyridine derivatives.
  • the organic electron transport material of the present invention has a high glass transition temperature, is used for preparing electronic devices, and can obtain high-efficiency and high-stability organic electroluminescent devices.
  • Another object of the present invention is to provide an n-doped electron transport layer.
  • the n-doped electron transport layer is obtained by n-doping using the above organic electron transport material.
  • the organic small molecule electron transport material provided by the invention is n-doped and has high electron mobility.
  • Another object of the present invention is to provide the application of the above-mentioned n-doped electron transport layer in organic electroluminescence devices.
  • An asymmetrically substituted soluble pyridine derivative is one or more of the following formula I or formula II:
  • the preparation method of the asymmetrically substituted soluble pyridine derivatives includes the following steps:
  • diphenylphosphonium chloride is reacted with dihalogenated benzene, followed by subsequent processing to obtain an unoxidized bromine-containing intermediate product;
  • the dihalogenated benzene is m-dibromobenzene , M-diiodobenzene or 1-bromo-3-iodobenzene;
  • step (2) Using the non-oxidized bromine-containing intermediate product obtained in step (1) of hydrogen peroxide oxidation treatment, and subsequent processing to obtain an oxidized bromine-containing intermediate product;
  • step (3) reacting the oxidized bromine-containing intermediate product obtained in step (2) with divaleryl diboron under the action of a palladium catalyst to obtain an intermediate product containing borate;
  • the pyridine-containing bromide of step (4) and the borate intermediate of step (6) are subjected to a coupling reaction, followed by subsequent treatment, to obtain an asymmetrically substituted soluble pyridine derivative TRZ- Py-TPO (Formula I) or BPTRZ-Py-TPO (Formula II).
  • the conditions of the reaction in step (1) are room temperature reaction for 8-16h; the molar ratio of dihalobenzene, n-butyllithium and diphenylphosphine chloride is 1:(1.1 ⁇ 1.3):(1.3 ⁇ 1.5)
  • the reaction uses an organic solvent as the reaction medium; the organic solvent is preferably tetrahydrofuran;
  • step (1) under a protective atmosphere, dissolve dihalobenzene in an organic solvent, lower the temperature to -70 to -78°C, add n-butyl lithium and mix uniformly, and add diphenylphosphine chloride.
  • the reaction conditions in step (2) are room temperature reaction for 10-12 hours, and the reaction uses an organic solvent as the reaction medium; the organic solvent is preferably dichloromethane;
  • the conditions of the reaction in step (3) are 68-80°C for 3 to 4 hours, and the molar ratio of the oxidized bromine-containing intermediate product to divaleryl diboron is 1: (1.3 to 1.5);
  • the palladium catalyst is double (Triphenylphosphine) palladium dichloride;
  • the molar ratio of the oxidized bromine-containing intermediate to the palladium catalyst is 1: (0.01-0.03);
  • the reaction uses an organic solvent as the reaction medium; the organic solvent is preferably Tetrahydrofuran;
  • the reaction system also includes a basic compound, and the basic compound is preferably potassium acetate.
  • the molar ratio of the borate-containing intermediate product, 2,6-dibromopyridine and the palladium catalyst is 1:(1.0 ⁇ 1.1):(0.01 ⁇ 0.03); the palladium catalyst is tetrakis(triphenyl) Base phosphine) palladium;
  • the coupling reaction system also includes an alkaline aqueous solution and a phase transfer agent, the alkaline aqueous solution is preferably an aqueous sodium carbonate solution, and the phase transfer agent is ethanol;
  • the reaction conditions are 80-90°C for 10-12 hours, and the reaction uses an organic solvent as the reaction medium, and the organic solvent is preferably toluene.
  • step (5) 2-chloro-4,6-diphenyl-1,3,5-triazine or 2,4-bis([1,1'-biphenyl]-4-yl)-6-chloro
  • the molar ratio of -1,3,5-triazine to 3-bromophenylboronic acid is 1:(1.0-1.1)
  • the coupling reaction is carried out in a catalytic system, and the catalytic system includes a catalyst, and the catalyst is a palladium catalyst,
  • the palladium catalyst is tetrakis(triphenylphosphine) palladium, and the molar ratio of the 3-bromophenylboronic acid to the catalyst is (1.0 ⁇ 1.1): (0.01 ⁇ 0.03)
  • the catalytic system also includes an alkaline aqueous solution and a phase A transfer agent, the alkaline aqueous solution is preferably an aqueous sodium carbonate solution, and the phase transfer agent is ethanol;
  • the conditions of the reaction in step (6) are 80-90°C for 3 to 4 hours; the molar ratio of the bromine-containing intermediate to the diboronic acid pinacol ester is 1: (1.1-1.5); the reaction is catalyzing
  • the catalyst system includes a palladium catalyst, the palladium catalyst is bis(triphenylphosphine) palladium dichloride; the molar ratio of the bromine-containing intermediate to the palladium catalyst is 1: (0.01-0.03);
  • the reaction uses an organic solvent as the reaction medium, and the organic solvent is tetrahydrofuran; the catalytic system also includes a basic compound, and the basic compound is preferably potassium acetate.
  • the catalytic system includes a catalyst, the catalyst is a palladium catalyst, and the palladium catalyst is tetrakis(triphenylphosphine) palladium; the catalytic system also includes an alkaline aqueous solution and a phase transfer agent, the alkali
  • the aqueous solution is potassium carbonate solution or sodium carbonate aqueous solution, and the phase transfer agent is ethanol; the molar ratio of pyridine-containing bromide to borate intermediate in step (7) is (1 ⁇ 1.2):1; step (7)
  • the conditions of the coupling reaction in) are 90-100°C for 10-16 hours, and the reaction uses an organic solvent as the reaction medium, and the organic solvent is preferably toluene.
  • the subsequent treatment in step (1) means that after the reaction is completed, ethanol is added to terminate the reaction, distillation under reduced pressure, mixing with water, extraction with dichloromethane, drying the organic layer with anhydrous magnesium sulfate, filtering, and distillation under reduced pressure
  • the dichloromethane was removed and separated by column chromatography.
  • the subsequent treatment in step (2) refers to adding sodium sulfite aqueous solution to the reaction product to reduce excess hydrogen peroxide, and extracting it with dichloromethane, drying the organic layer with anhydrous magnesium sulfate and filtering, distilling under reduced pressure to remove dichloromethane, using a column Chromatographic separation.
  • step (3) refers to the reaction product being distilled under reduced pressure, mixed with water, extracted with dichloromethane, the organic layer is dried over anhydrous magnesium sulfate and then filtered, and dichloromethane is removed by distillation under reduced pressure. Column chromatography separation.
  • the subsequent treatment in step (4) refers to adding distilled water to the reaction product, separating the organic layer, extracting the aqueous layer with dichloromethane, drying the extracted organic layer with anhydrous magnesium sulfate and filtering, and distilling under reduced pressure to remove the dichloromethane , Separated by column chromatography.
  • the subsequent treatment in step (5) refers to adding distilled water to the reaction product, separating the organic layer, extracting the aqueous layer with dichloromethane, drying the extracted organic layer with anhydrous magnesium sulfate and filtering, and distilling under reduced pressure to remove the dichloromethane , Separated by column chromatography.
  • the follow-up treatment in step (6) means to distill the reaction product under reduced pressure, dissolve it with dichloromethane, add distilled water and extract with dichloromethane, dry the organic layer with anhydrous magnesium sulfate, filter, and distill under reduced pressure to remove Dichloromethane, separated by column chromatography.
  • the subsequent treatment in step (7) refers to adding distilled water to the reaction product, separating the organic layer, extracting the aqueous layer with dichloromethane, drying the extracted organic layer with anhydrous magnesium sulfate and filtering, and distilling under reduced pressure to remove the dichloromethane , Separated by column chromatography.
  • An organic electron transport material comprising more than one asymmetrically substituted soluble pyridine derivatives, preferably more than one asymmetrically substituted soluble pyridine derivatives in the above formula I or formula II.
  • the n-doped electron transport layer is obtained by n-doping the above-mentioned organic electron transport material with a dopant.
  • the dopant is preferably a lithium 8-quinolinolate complex (Liq); the doping amount of the dopant satisfies the following condition: the mass ratio of the dopant to the organic electron transport material is (0.3-2):1.
  • the present invention introduces 2,4,6-triphenyl-1,3,5-triazine on the diphenyl(3-(pyridin-2-yl)phenyl) phosphine oxide group Or 2,4-bis([1,1'-biphenyl]-4-yl)-6-phenyl-1,3,5-triazine
  • the unit obtained the organic small molecule electron transport materials TRZ-Py-TPO and BPTRZ-Py-TPO.
  • the 5-triazine unit makes organic small molecule electron transport materials have higher mobility; and the aryl phosphine group can improve the solubility of the compound in common organic solvents (such as dichloromethane, chloroform, ethanol and ethyl acetate) Etc.), which is beneficial to the purification of materials.
  • the present invention has the following advantages and beneficial effects:
  • the organic electron transport material of the present invention has good thermal stability.
  • the temperature of 1% weight loss of TRZ-Py-TPO is 370°C, and the temperature of 1% weight loss of BPTRZ-Py-TPO is 470°C;
  • the glass transition temperature is 102°C and 123°C respectively;
  • the organic electron transport material of the present invention has the characteristics of simple structure and synthesis preparation, and has good solubility, such as the solubility in dichloromethane is greater than 100mg/ml, and the solubility in ethanol is greater than 10mg/ml ;
  • the organic electron transport material of the present invention has higher electron mobility after n-doping Liq, and the electron mobility of TRZ-Py-TPO is 4.99 ⁇ 10 -6 -4.58 ⁇ 10 -5 cm 2 ⁇ V -1 ⁇ s (@ 2-5 ⁇ 10 5 V ⁇ cm -1) -1, BPTRZ-Py-TPO having a higher electron mobility (4.66 ⁇ 10 -5 -3.21 ⁇ 10 -4 cm 2 ⁇ V - 1 ⁇ s -1 @2-5 ⁇ 10 5 V ⁇ cm -1 ), which are all higher than the mobility of Phen-NaDPO: Liq (9.3 ⁇ 10 -7 -6.6 ⁇ 10 -6 cm 2 ⁇ V -1 ⁇ s -1 @2-5 ⁇ 10 5 V ⁇ cm -1 ; Patent ZL201310275234.2, a type of alcohol-soluble cathode buffer layer molecular material containing triarylphosphorus oxygen and nitrogen heterocyclic functional groups and its synthesis method);
  • the organic electron transport material of the present invention is applied to green phosphorescent devices after n-doped Liq to obtain higher device efficiency and stability: at a brightness of 1000 cd ⁇ m -2 , TRZ-Py-TPO devices
  • the current efficiency and power efficiency of the BPTRZ-Py-TPO device reached 72.1cd/A, 75.5m/W, respectively, and the current efficiency and power efficiency of the BPTRZ-Py-TPO device were 77.4cd/A, 86.8lm/W;
  • the brightness is basically not attenuated.
  • Figure 1 is a proton nuclear magnetic resonance spectrum of the organic electron transport material TRZ-Py-TPO of Example 1;
  • Fig. 2 is the thermal stability curve of the organic electron transport material TRZ-Py-TPO of Example 1;
  • Fig. 2a and Fig. 2b are the thermal weight loss curve and the differential of the organic electron transport material TRZ-Py-TPO of Example 1, respectively Scanning calorimetry curve;
  • Figure 5 is a current density-voltage-luminance curve of a top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material TRZ-Py-TPO prepared in Example 1;
  • FIG. 6 is a current efficiency-brightness curve (that is, a luminous efficiency-brightness curve) of a top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material TRZ-Py-TPO prepared in Example 1;
  • FIG. 7 is a power efficiency-brightness curve of a top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material TRZ-Py-TPO prepared in Example 1;
  • FIG. 8 is a brightness-time curve of a top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material TRZ-Py-TPO prepared in Example 1;
  • Figure 9 is a hydrogen nuclear magnetic resonance spectrum of BPTRZ-Py-TPO of Example 2.
  • Figure 10 is the thermal stability curve of the organic small molecule electron transport material BPTRZ-Py-TPO of Example 2; wherein Figures 10a and 10b are the thermal weight loss of the organic small molecule electron transport material BPTRZ-Py-TPO of Example 2, respectively Curves and differential scanning calorimetry curves;
  • FIG. 12 is an electron mobility-electric field intensity characteristic curve of the organic electron transport material BPTRZ-Py-TPO prepared in Example 2 and Liq at a mass ratio of 1:1 n-doping;
  • FIG. 13 is a current density-voltage-luminance curve of a top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material BPTRZ-Py-TPO prepared in Example 2;
  • Example 15 is a power efficiency-brightness curve of a top-emission green phosphorescent organic electroluminescent device using the organic electron transport material BPTRZ-Py-TPO prepared in Example 2;
  • FIG. 16 is a brightness-time curve of a top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material BPTRZ-Py-TPO prepared in Example 2.
  • 1,3-dibromobenzene (3.5g, 15.04mmol) was dissolved in dry tetrahydrofuran (200mL) and cooled to -78°C; then, n-butyllithium (2.5M Hexane solution, 7.8mL, 19.55mmol); After 30 minutes, diphenylphosphine chloride (4.1mL, 22.56mmol)) was added via a syringe; the mixture was returned to room temperature and stirred for 12 hours; when the reaction was over, ethanol was added to terminate the reaction After the solvent was removed under reduced pressure, the reaction mixture was poured into water and extracted with dichloromethane; the organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure, and then separated with a silica gel column. The eluent was petroleum ether and dichloride. A mixed solvent of methane (4:1 v/v) to obtain a white solid (3-bromophen
  • Fig. 1 is a hydrogen nuclear magnetic resonance spectrum of the organic electron transport material TRZ-Py-TPO of Example 1.
  • TGA Thermogravimetric analysis
  • TGA2050 thermogravimetric analyzer with nitrogen protection at a heating rate of 20°C/min
  • DSC differential scanning calorimetry
  • Fig. 2 is the thermal stability curve of the organic electron transport material TRZ-Py-TPO of Example 1
  • Fig. 2a and Fig. 2b are the thermal weight loss curve and the differential of the organic electron transport material TRZ-Py-TPO of Example 1, respectively Scan the calorimetry curve.
  • the thermal weight loss curve in Fig. 2a shows that the temperature of TRZ-Py-TPO at 1% weight loss is 370°C, which has high thermal stability.
  • the differential scanning calorimetry curve of Fig. 2b shows that in the first round of heating, the compound TRZ-Py-TPO has an obvious melting peak, and the corresponding melting point is 214°C.
  • the organic small molecule electron transport material TRZ-Py-TPO showed an unidentified crystallization peak and a melting peak, but a clear glass transition occurred at 102°C.
  • Fig. 3 is the ultraviolet-visible absorption spectrum of the organic electron transport material TRZ-Py-TPO prepared in Example 1 (luminous intensity-wavelength corresponds to emission, absorbance-wavelength corresponds to absorption). From the absorption spectrum in Figure 3, the optical band gap can be determined to be 3.63 eV based on the absorption edge.
  • a single electron device (ITO/TRZ-Py-TPO:Liq (50%wt, 150nm)/Al) was prepared, and the electron mobility was calculated by the space charge limited current SCLC method according to the current density-voltage curve.
  • Liq is an 8-hydroxyquinolate lithium complex. 50%wt means that the mass ratio of Liq to TRZ-Py-TPO is 1:1.
  • ITO indium tin oxide
  • the indium tin oxide (ITO) conductive glass substrate with a resistance of 10-20 ⁇ /port was ultrasonically cleaned with deionized water, acetone, detergent, deionized water and isopropanol for 20 minutes. After drying in an oven, the treated ITO glass substrate was vapor-deposited with various organic functional layers and a metal Al cathode under a vacuum of 3 ⁇ 10 -4 Pa. The thickness of the film was measured with a Veeco Dektak150 step meter. The deposition rate and thickness of the metal electrode vapor deposition were measured with Sycon Instrument's thickness/speed meter STM-100. 4 is a curve of electron mobility-electric field intensity of the organic electron transport material TRZ-Py-TPO and Liq prepared in Example 1 n-doped at a mass ratio of 1:1.
  • the electron mobility of the organic small molecule electron transport material TRZ-Py-TPO of this embodiment is 4.99 ⁇ 10 -6 -4.58 ⁇ 10 -5 cm 2 ⁇ V -1 ⁇ s -1 (@2-5 ⁇ 10 5 V ⁇ cm -1 ).
  • the device structure was prepared: Ag/ITO/P008:F4-TCNQ(147nm, 4%)/NPB(15nm )/EBL-1(5nm)/HOST-09:HOST-08:GD-L1(30nm,0.5:0.5:15%)/TRZ-Py-TPO:Liq(30nm,1:1)/Mg:Ag( 15nm, 1:9)/CP501 (70nm).
  • organic electron transport materials other organic materials used can be purchased directly commercially.
  • P008:F4-TCNQ is used as the hole injection layer (Beijing Dingcai Technology Co., Ltd.)
  • NPB is used as the hole transport layer
  • Host09:Host08:GD-L1 is used as the light-emitting layer
  • GD-L1 is a green phosphorescent complex
  • Host09 /Host08 is the main material
  • GD-L1 was purchased from Luminescence Technology Crop.
  • Host09/Host08 was purchased from Taiwan Yulei Optoelectronic Materials Co., Ltd.
  • CP501 was used as the light extraction layer (purchased from Beijing Dingcai Technology Co., Ltd.
  • TRZ-Py-TPO Liq as the electron transport layer.
  • P008 4wt% F4-TCNQ (purchased from Beijing Dingcai Technology Co., Ltd.)
  • the conductivity of the film is about 2.65 ⁇ 10 -4 S m -1 .
  • ITO indium tin oxide
  • acetone acetone
  • detergent deionized water
  • isopropanol 20 minutes.
  • the treated ITO glass substrate was vapor-deposited with various organic functional layers and a metal Al cathode under a vacuum of 3 ⁇ 10 -4 Pa.
  • the thickness of the film was measured with a Veeco Dektak150 step meter.
  • the deposition rate and thickness of the metal electrode vapor deposition were measured with Sycon Instrument's thickness/speed meter STM-100.
  • the performance test results of organic electroluminescent devices are shown in Figures 5-8.
  • Fig. 5 is the current density-voltage-brightness curve of the top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material TRZ-Py-TPO prepared in Example 1;
  • Fig. 6 is the organic electron transport prepared in Example 1 The current efficiency-brightness curve of the top-emitting green phosphorescent organic electroluminescent device of the material TRZ-Py-TPO;
  • Figure 7 is the top-emitting green phosphorescent organic electroluminescence of the organic electron transport material TRZ-Py-TPO prepared in Example 1.
  • FIG. 8 is the brightness-time curve of the top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material TRZ-Py-TPO prepared in Example 1.
  • the organic electroluminescent device made by vacuum evaporation method adopts the electron transport material TRZ-Py-TPO n-doped Liq as the electron transport layer, and the brightness is 1000cd ⁇ m -2 , The current efficiency and power efficiency of green phosphorescence reached 72.1cd/A and 75.5m/W respectively.
  • Preliminary device stability test shows (as shown in Figure 8), the top-emitting green phosphorescent device prepared by TRZ-Py-TPO, under constant current drive, the brightness is basically not after working for about 640 hours at the initial brightness of 1000cd ⁇ m -2 attenuation.
  • Steps 1-4 are the same as in Example 1.
  • Step 7 (3-(6-(3-(4,6-bis([1,1'-biphenyl]-4-yl)-1,3,5-triazin-2-yl)phenyl)
  • BPTRZ-Py-TPO pyridin-2-yl
  • TGA Thermogravimetric analysis
  • TGA2050 thermogravimetric analyzer with nitrogen protection at a heating rate of 20°C/min
  • DSC differential scanning calorimetry
  • NETZSCH DSC 204 F1 thermal analyzer In a nitrogen atmosphere, start from -30°C with a heating rate of 10°C/min to 450°C, then reduce the temperature to -30°C at 20°C/min, keep the temperature for 5 minutes, and then test again with a heating rate of 10°C/min to 450°C .
  • the test result is shown in Figure 10.
  • Figure 10 is the thermal stability curve of the organic electron transport material BPTRZ-Py-TPO of Example 2; wherein Figures 10a and 10b are the thermal weight loss curve and the differential of the organic electron transport material BPTRZ-Py-TPO of Example 2 respectively Scan the calorimetry curve.
  • the thermal weight loss curve shown in Fig. 10a shows that the temperature at 1% weight loss of BPTRZ-Py-TPO is 470°C, which has high thermal stability.
  • the differential scanning calorimetry curve in Fig. 10b shows that in the first round of heating, the compound BPTRZ-Py-TPO has an obvious melting peak, and the corresponding melting point is 262°C.
  • the organic small molecule electron transport material BPTRZ-Py-TPO showed obvious crystallization and melting peaks. The crystallization temperature was 209°C and the melting point was 261°C.
  • BPTRZ-Py-TPO shows a clear glass transition, and the corresponding glass transition temperature is 123°C.
  • the optical band gap can be determined to be 3.38 eV based on the absorption edge.
  • Fig. 12 is a curve of electron mobility-electric field intensity of the organic electron transport material BPTRZ-Py-TPO prepared in Example 2 and Liq at a mass ratio of 1:1 n-doped.
  • an organic electron transporting material BPTRZ-Py-TPO of the present embodiment is an electron mobility of 4.66 ⁇ 10 -5 -3.21 ⁇ 10 -4 cm 2 ⁇ V -1 ⁇ s - 1 (@2-5 ⁇ 10 5 V ⁇ cm 1 ).
  • the device structure was prepared: Ag/ITO/P008:F4-TCNQ(147nm, 4%)/NPB(15nm )/EBL-1(5nm)/HOST-09:HOST-08:GD-L1(30nm,0.5:0.5:15%)/BPTRZ-Py-TPO:Liq(30nm,1:1)/Mg:Ag( 15nm, 1:9)/CP501 (70nm).
  • the preparation process of the device is the same as in Example 1, and the performance test results of the organic electroluminescent device are shown in Figures 13-16.
  • Figure 13 is the current density-voltage-luminance curve of the top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material BPTRZ-Py-TPO prepared in Example 2;
  • Figure 14 is the organic electron transport prepared in Example 2 The current efficiency-brightness curve of the top-emitting green phosphorescent organic electroluminescent device made of BPTRZ-Py-TPO;
  • Figure 15 is the top-emitting green phosphorescent organic electroluminescence of the organic electron transport material BPTRZ-Py-TPO prepared in Example 2 The power efficiency-brightness curve of the electroluminescent device;
  • Figure 16 is the brightness-time curve of the top-emitting green phosphorescent organic electroluminescent device using the organic electron transport material BPTRZ-Py-TPO prepared in Example 2
  • the organic electroluminescent device made by vacuum evaporation method uses the electron transport material BPTRZ-Py-TPO n-doped Liq as the electron transport layer, and the brightness is 1000cd ⁇ m -2 , The current efficiency and power efficiency of green phosphorescence reached 77.4cd/A and 86.8lm/W respectively.
  • the top-emitting green phosphorescent device prepared by BPTRZ-Py-TPO, under constant current driving, has an initial brightness of 1000 cd ⁇ m -2 for about 640 hours after working for about 640 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机小分子功能材料,涉及不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用。所述不对称取代的可溶性吡啶类衍生物为式I或式II中一种以上。还公开了不对称取代的可溶性吡啶类衍生物的制备方法。所述不对称取代的可溶性吡啶类衍生物用于制备有机电子传输材料。所述有机电子传输材料包括上述不对称取代的可溶性吡啶类衍生物中一种以上。所述n-掺杂电子传输层是将有机电子传输材料通过n-掺杂得到。有机电子传输材料具有较高的电子迁移率,通过n-掺杂所形成的电子传输层,用于有机电致发光器件,具有高发光效率与高稳定性。n-掺杂电子传输层在有机电致发光器件中的应用。

Description

不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用 技术领域
本发明属于有机小分子功能材料的技术领域,涉及电子传输材料,具体涉及一种不对称取代的可溶性吡啶类衍生物及其制备方法、n-掺杂电子传输层与应用。所述不对称取代的可溶性吡啶类衍生物用于有机电子传输材料,并通过将不对称取代的可溶性吡啶类衍生物进行n-掺杂获得n-掺杂电子传输层。所述有机电子传输层、n-掺杂电子传输层在有机发光二极管中的应用。
背景技术
有机发光二极管(OLEDs)在电致发光显示以及照明领域具有重要的应用。其中,电子传输材料对于有机发光二极管至关重要,协助电子从阴极注入到发光层,并阻隔电极与发光层直接接触。通常,设计高纯度、高性能OLED电子传输材料具有挑战性,需要考虑诸多因素及其之间复杂的权衡关系,如玻璃化温度、载流子迁移率、三重态能级、电子注入以及空穴阻挡特性。其中,对于高迁移率的追求,往往导致电子传输材料难溶,不易纯化。另外近期的研究表明,电子传输材料中,即使微量的卤素端基残留,对于OLED器件的稳定性也将产生致命的影响(H.Fujimoto等,Influence of material impurities in the hole-blocking layer on the lifetime of organic light-emitting diodes,Appl.Phys.Lett.2016年,109卷)。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种不对称取代的可溶性吡啶类衍生物及其制备方法。本发明的不对称取代的可溶性吡啶类衍生物制备简单且可溶,具有高玻璃化温度,用作有机电子传输材料,可获得高效率、高稳定有机电致发光器件。
本发明的另一目的在于提供上述不对称取代的可溶性吡啶类衍生物的应用。所述不对称取代的可溶性吡啶类衍生物用于制备有机电子传输材料。所述有机电子传输材料,为上述不对称取代的可溶性吡啶类衍生物中一种以上。本发明的有机电子传输材料具有高玻璃化温度,用于制备电子器件,可获得高效率、高稳定有机电致发光器件。
本发明的再一目的在于提供一种n-掺杂电子传输层。所述n-掺杂电子传输层是利用上述有机电子传输材料通过n-掺杂获得。本发明所提供的有机小分子电子传输材料,经n-掺杂,具有高电子迁移率。
本发明的再一目的在于提供上述n-掺杂电子传输层在有机电致发光等器件中应用。
本发明的目的通过以下技术方案实现:
一种不对称取代的可溶性吡啶类衍生物为以下式I或式II中一种以上:
Figure PCTCN2019112077-appb-000001
所述不对称取代的可溶性吡啶类衍生物的制备方法,包括以下步骤:
(1)在正丁基锂的作用下,将二苯基氯化膦与二卤代苯反应,后续处理,获得未氧化的含溴的中间产物;所述二卤代苯为间二溴苯、间二碘苯或1-溴-3-碘苯;
所述未氧化的含溴中间产物的结构为
Figure PCTCN2019112077-appb-000002
(2)采用双氧水氧化处理步骤(1)所得的未氧化的含溴中间产物,后续处理,得到氧化的含溴中间产物;
所述氧化的含溴中间产物的结构式为
Figure PCTCN2019112077-appb-000003
(3)在钯催化剂的作用下,将步骤(2)所得的氧化的含溴中间产物与双戊酰二硼反应,得到含有硼酸酯的中间产物;
所述含有硼酸酯的中间产物的结构为
Figure PCTCN2019112077-appb-000004
(4)通过钯催化剂的作用,将步骤(3)所得的含硼酸酯的中间产物与2,6-二溴吡啶进行偶联反应,得到含吡啶的溴化物;
所述含吡啶的溴化物的结构为
Figure PCTCN2019112077-appb-000005
(5)以2-氯-4,6-二苯基-1,3,5-三嗪或2,4-二([1,1'-联苯]-4-基)-6-氯-1,3,5-三嗪与3-溴苯硼酸进行偶联反应,后续处理,得到含溴中间体;
所述含溴中间体的结构为
Figure PCTCN2019112077-appb-000006
(6)将步骤(5)中含溴中间体与联硼酸频哪醇脂进行Suzuki反应,后续处理,得到硼酸酯中间体;
所述硼酸酯中间体的结构为
Figure PCTCN2019112077-appb-000007
(7)在催化体系中,将步骤(4)的含吡啶的溴化物与步骤(6)的硼酸酯中间体进行偶联反应,后续处理,得到不对称取代的可溶性吡啶类衍生物TRZ-Py-TPO(式I)或BPTRZ-Py-TPO(式II)。
步骤(1)中所述反应的条件为室温反应8~16h;二卤代苯、正丁基锂与氯化二苯基膦的摩尔比为1:(1.1~1.3):(1.3~1.5);所述反应以有机溶剂为反应介质;所述有机溶剂优选为四氢呋喃;
步骤(1)的具体步骤:在保护性氛围下,将二卤代苯溶于有机溶剂中,降温至-70~-78℃,加入正丁基锂混合均匀,加入氯化二苯基膦。
步骤(2)所述反应条件为室温反应10~12h,所述反应以有机溶剂为反应介质;所述有机溶剂优选为二氯甲烷;
步骤(3)中所述反应的条件为68~80℃反应3~4h,氧化的含溴中间产物与双戊酰二硼的摩尔比为1:(1.3~1.5);所述钯催化剂为双(三苯基膦)二氯化钯;所述氧化的含溴中间体与钯催化剂的摩尔比为1:(0.01~0.03);所述反应以有机溶剂为反应介质;所述有机溶剂优选为四氢呋喃;所述反应的体系还包括碱性化合物,所述碱性化合物优选为醋酸钾。
步骤(4)中含硼酸酯的中间产物、2,6-二溴吡啶与钯催化剂的摩尔比为1:(1.0~1.1):(0.01~0.03);所述钯催化剂为四(三苯基膦)钯;所述偶联反应的体系还包括碱性水溶液和相转移剂,所述碱性水溶液优选为碳酸钠水溶液,所述相转移剂为乙醇;步骤(4)中所述偶联反应的条件为80~90℃反应10~12h,所述反应以有机溶剂为反应介质,所述有机溶剂优选为甲苯。
步骤(5)中2-氯-4,6-二苯基-1,3,5-三嗪或2,4-二([1,1'-联苯]-4-基)-6-氯-1,3,5-三嗪与3-溴苯硼酸的摩尔比为1:(1.0~1.1),所述偶联反应在催化体系中进行,催化体系包括催化剂,所述催化剂为钯催化剂,所述钯催化剂为四(三苯基膦)钯,所述3-溴苯硼酸与催化剂的摩尔比为(1.0~1.1):(0.01~0.03);所述催化体系还包括碱性水溶液和相转移剂,所述碱性水溶液优选为碳酸钠水溶液,所述相转移剂为乙醇;步骤(5)中所述偶联反应的条件为80~90℃反应10~12h;所述反应以有机溶剂为反应介质,所述有机溶剂优选为甲苯。
步骤(6)中所述反应的条件为80~90℃反应3~4h;所述含溴中间体与联硼酸频哪醇脂的摩尔比为1:(1.1~1.5);所述反应在催化体系中进行,催化体系包括钯催化剂,所述钯催化剂为双(三苯基膦)二氯化钯;所述含溴中间体与钯催化剂的摩尔比为1:(0.01~0.03);所述反应以有机溶剂为反应介质,所述有机溶剂为四氢呋喃;所述催化体系还包括碱性化合物,所述碱性化合物优选为醋酸钾。
步骤(7)中所述催化体系包括催化剂,所述催化剂为钯催化剂,所述钯催化剂为四(三苯基膦)钯;所述催化体系还包括碱性水溶液和相转移剂,所述碱性水溶液为碳酸钾溶液或碳酸钠水溶液,所述相转移剂为乙醇;步骤(7)中含吡啶的溴化物与硼酸酯中间体的摩尔比为(1~1.2):1;步骤(7)中所述偶联反应的条件为90~100℃反应10~16h,所述反应以有机溶剂为反应介质,所述有机溶剂优选为甲苯。
步骤(1)中所述后续处理是指将反应结束后,加入乙醇终止反应,减压蒸馏,与水混合,用二氯甲烷萃取,将有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离。
步骤(2)中所述后续处理是指向反应产物中加入亚硫酸钠水溶液还原过量的双氧水,并用二氯甲烷萃取,将有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离。
步骤(3)中所述后续处理是指将反应产物进行减压蒸馏,与水混合,用二氯甲烷萃取,将有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离。
步骤(4)中所述后续处理是指向反应产物中加入蒸馏水,分离有机层,用二氯甲烷萃取水层,将萃取后有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离。
步骤(5)中所述后续处理是指向反应产物中加入蒸馏水,分离有机层,用二氯甲烷萃取水层,将萃取后有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离。
步骤(6)中所述后续处理是指指将反应产物进行减压蒸馏,用二氯甲烷溶解,加入蒸馏水并用二氯甲烷萃取,将有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离。
步骤(7)中所述后续处理是指向反应产物中加入蒸馏水,分离有机层,用二氯甲烷萃取水层,将萃取后有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离。
一种有机电子传输材料,包括上述不对称取代的可溶性吡啶类衍生物中一种以上,优选为上述式I或式II中一种以上不对称取代的可溶性吡啶类衍生物。
所述n-掺杂电子传输层是通过掺杂剂上述有机电子传输材料进行n-掺杂得到。
所述掺杂剂优选为8-羟基喹啉锂配合物(Liq);掺杂剂的掺杂量满足以下条件:掺杂剂与有机电子传输材料的质量比为(0.3~2):1。
所述有机电子传输材料在有机电致发光器件中的应用,特别是在磷光器件中的应用。
所述n-掺杂电子传输层在有机电致发光器件中的应用。
本发明的原理如下:
本发明在二苯基(3-(吡啶-2-基)苯基)氧化膦基团上引入2,4,6-三苯基-1,3,5-三嗪
Figure PCTCN2019112077-appb-000008
或2,4-二([1,1'-联苯]-4-基)-6-苯基-1,3,5-三嗪
Figure PCTCN2019112077-appb-000009
单元得到了有机小分子电子传输材料TRZ-Py-TPO和BPTRZ-Py-TPO。2,4,6-三苯基-1,3,5-三嗪单元和2,4-二([1,1'-联苯]-4-基)-6-苯基-1,3,5-三嗪单元使得有机小分子电子传输材料具有较高的迁移率;而芳基膦氧基团能够改善化合物在常用有机溶剂中的溶解性(如二氯甲烷,氯仿,乙醇和乙酸乙酯等),有利于材料的提纯。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的有机电子传输材料具有良好的热稳定性,TRZ-Py-TPO失重1%的温度为370℃,BPTRZ-Py-TPO的失重1%的温度为470℃;两个化合物的玻璃化转变温度分别为102℃和123℃;
(2)本发明的有机电子传输材料具有结构与合成制备简单的特点,且具有良好的溶解性,如在二氯甲烷中的溶解性大于100mg/ml,在乙醇中的溶解性大于10mg/ml;
(3)本发明的有机电子传输材料经n-掺杂Liq后具有较高的电子迁移率,TRZ-Py-TPO的电子迁移率为4.99×10 -6-4.58×10 -5cm 2·V -1·s -1(@2-5×10 5V·cm -1),BPTRZ-Py-TPO具有更高的电子迁移率(4.66×10 -5-3.21×10 -4cm 2·V -1·s -1@2-5×10 5V·cm -1),均高于Phen-NaDPO:Liq的迁移率(9.3×10 -7-6.6×10 -6cm 2·V -1·s -1@2-5×10 5V·cm -1;专利ZL201310275234.2,一类含有三芳基磷氧及氮杂环功能基团的醇溶性阴极缓冲层分子型材料及其合成方法);
(4)本发明的有机电子传输材料经n-掺杂Liq后应用于绿光磷光器件中获得较高的器件效率和稳定性:在1000cd·m -2的亮度下,TRZ-Py-TPO器件的电流效率和功率效率分别达 到了72.1cd/A,75.5m/W,BPTRZ-Py-TPO器件的电流效率和功率效率分别为77.4cd/A,86.8lm/W;恒定电流驱动下,在起始亮度为1000cd·m -2的亮度下工作约640h后,亮度基本没有衰减。
附图说明
图1为实施例1的有机电子传输材料TRZ-Py-TPO的核磁共振氢谱图;
图2为实施例1的有机电子传输材料TRZ-Py-TPO的热稳定性曲线;其中图2a和图2b分别为实施例1的有机电子传输材料TRZ-Py-TPO的热失重曲线和差示扫描量热曲线;
图3为实施例1的有机电子传输材料TRZ-Py-TPO的紫外-可见吸收光谱;
图4为实施例1制备的有机电子传输材料TRZ-Py-TPO与Liq按质量比1:1n-掺杂的电子迁移率-电场强度特性曲线;
图5为采用实施例1制备的有机电子传输材料TRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的电流密度-电压-亮度曲线;
图6为采用实施例1制备的有机电子传输材料TRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的电流效率-亮度曲线(即发光效率-亮度曲线);
图7为采用实施例1制备的有机电子传输材料TRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的功率效率-亮度曲线;
图8为采用实施例1制备的有机电子传输材料TRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的亮度-时间曲线;
图9为实施例2的BPTRZ-Py-TPO的核磁共振氢谱图;
图10为实施例2的有机小分子电子传输材料BPTRZ-Py-TPO的热稳定性曲线;其中图10a和图10b分别为实施例2的有机小分子电子传输材料BPTRZ-Py-TPO的热失重曲线和差示扫描量热曲线;
图11为实施例2的有机电子传输材料BPTRZ-Py-TPO的紫外-可见吸收光谱;
图12为实施例2制备的有机电子传输材料BPTRZ-Py-TPO与Liq按质量比1:1n-掺杂的电子迁移率-电场强度特性曲线;
图13为采用实施例2制备的有机电子传输材料BPTRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的电流密度-电压-亮度曲线;
图14为采用实施例2制备的有机电子传输材料BPTRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的电流效率-亮度曲线(即发光效率-亮度曲线);
图15为采用实施例2制备的有机电子传输材料BPTRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的功率效率-亮度曲线;
图16为采用实施例2制备的有机电子传输材料BPTRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的亮度-时间曲线。
具体实施方式
下面结合实施例和附图,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施例1
本实施例的有机电子传输材料TRZ-Py-TPO的结构式:
Figure PCTCN2019112077-appb-000010
本实施例的有机电子传输材料TRZ-Py-TPO的制备方法,包括以下步骤:
步骤1,(3-溴苯基)二苯基膦(1)的制备
Figure PCTCN2019112077-appb-000011
在N 2气氛下,将1,3-二溴苯(3.5g,15.04mmol)溶于干燥的四氢呋喃(200mL)中,冷却到-78℃;随后,通过注射器滴加入正丁基锂(2.5M正己烷溶液,7.8mL,19.55mmol);30分钟后氯化二苯基膦(4.1mL,22.56mmol))通过注射器加入;混合液恢复到室温下继续搅拌12h;待反应结束,加入乙醇终止反应,减压除去溶剂后,将反应混合物倒入水中,并用二氯甲烷萃取;有机层用无水硫酸镁干燥,过滤,减压除去溶剂后用硅胶柱分离,洗脱剂为石油醚和二氯甲烷(4:1v/v)的混合溶剂,得到白色固体(3-溴苯基)二苯基膦(1)。
步骤2,(3-溴苯基)二苯基氧化膦(2)的制备
Figure PCTCN2019112077-appb-000012
向化合物(1)(3-溴苯基)二苯基膦(4.18g,12.29mmol)的二氯甲烷(20mL)溶液中加入质量浓度为30%双氧水(6mL),在室温下搅拌12h;待反应结束,向反应混合物中倒入亚硫酸钠水溶液以还原过量的双氧水,并用二氯甲烷萃取;有机层用无水硫酸镁干燥,过滤,减压除去溶剂后用硅胶柱分离,洗脱剂为二氯甲烷,得到白色固体(3-溴苯基)二苯基氧化膦(2),产率96%(4.2g)。
步骤3,二苯基(3-(4,4,5,5-四甲基-1,3,2-2-二氧杂硼烷基)苯基)氧化膦(3)的制备
Figure PCTCN2019112077-appb-000013
在N 2气氛下,将双(三苯基膦)二氯化钯(80mg,0.11mmol)加入到化合物(2)(3-溴苯基)二苯基氧化膦(2.3g,6.44mmol)、双戊酰二硼(2.45g,9.66mmol)和醋酸钾(1.9g,19.32mmol)的四氢呋喃(60mL)混合液中,加热回流反应3小时;待冷却到室温,减压除去溶剂后,将反应混合物倒入水中,并用二氯甲烷萃取;有机层用无水硫酸镁干燥,过滤,减压除去溶剂后用硅胶柱分离,洗脱剂为二氯甲烷和乙酸乙酯(4:1v/v)的混合溶剂,得到白色固体二苯基(3-(4,4,5,5-四甲基-1,3,2-2-二氧杂硼烷基)苯基)氧化膦(化合物3),产率94%(2.44g)。
步骤4,(3-(6-溴吡啶-2-基)苯基)二苯基氧化膦(4)的制备
Figure PCTCN2019112077-appb-000014
在N 2气氛下,将四(三苯基膦)钯(70mg)加入到化合物(3)(2.44g,6.03mmol)、2,6-二溴吡啶(1.43g,6.03mmol)、乙醇(8ml)和碳酸钠水溶液(2M,8ml)的甲苯(100ml)混合液中,在90℃下搅拌反应12小时;待反应结束后,向反应混合物加入蒸馏水分离甲苯层,用二氯甲烷萃取水层,将萃取后的有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,得到的粗产物用柱层析法分离,洗脱剂为二氯甲烷和乙酸乙酯(3:1v/v)的混合溶剂,得到白色固体(化合物4),产率80%(2.1g)。
步骤5,2-(3-溴苯基)-4,6-二苯基-1,3,5-三嗪(5)的制备
Figure PCTCN2019112077-appb-000015
在N 2气氛下,将四(三苯基膦)钯(110mg)加入到2-氯-4,6-二苯基-1,3,5-三嗪(4.0g,14.94mmol)、3-溴-苯硼酸(3.0g,14.94mmol)、乙醇(15ml)和碳酸钠水溶液(2M,15ml)的甲苯(100ml)混合液中,在90℃下搅拌反应12小时;待反应结束后,向反应混合物加入蒸馏水分离甲苯层,用二氯甲烷萃取水层,将萃取后的有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,得到的粗产物用柱层析法分离,洗脱剂为石油醚,得到白色固体(化合物5),产率77.6%(4.5g)。
步骤6,2,4-二苯基-6-(3-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)苯基)-1,3,5-三嗪(6)的制备
Figure PCTCN2019112077-appb-000016
在N 2气氛下,将双(三苯基膦)二氯化钯(80mg,0.11mmol)加入到化合物5(4.5g,11.59mmol)、联硼酸频哪醇脂(4.3g,17.38mmol)、醋酸钾(3.41g,34.77mmol)的四氢呋喃(100ml)混合液中,在80℃下搅拌反应3小时;待反应结束后,减压蒸馏除去四氢呋喃,用二氯甲烷溶解,加入蒸馏水并用二氯甲烷萃取,得到的有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,得到的粗产物用柱层析法分离,洗脱剂为石油醚与二氯甲烷(2:1v/v)的混合溶剂,得到白色固体(化合物6),产率93%(4.7g)。
步骤7,(3-(6-(3-(6,6-二苯基-1,3,5-三嗪-2-基)苯基)吡啶-2-基)苯基)二苯基氧化膦(TRZ-Py-TPO)的制备
Figure PCTCN2019112077-appb-000017
在N 2气氛下,将四(三苯基膦)钯(110mg)加入到化合物4(2.99g,6.89mmol)、化合物6(3.0g,6.89mmol)、乙醇(7ml)和碳酸钾水溶液(2M,7ml)的甲苯(50ml)混合液中,在90℃下搅拌反应16小时;待反应结束后,向反应混合物加入蒸馏水分离甲苯层,用二氯甲烷萃取水层,将萃取后的有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,得到的粗产物用柱层析法分离,洗脱剂为二氯甲烷和乙酸乙酯(4:1v/v)的混合溶剂,得到白色固体(TRZ-Py-TPO),产率61%(2.8g)。
下面对实施例1制备的有机小分子电子传输材料TRZ-Py-TPO进行结构表征和性能测试:
(1)核磁共振氢谱
1H NMR(400MHz,CDCl 3)δ9.43(s,1H),8.83(ddd,J=12.8,8.0,1.5Hz,5H),8.54(dd,J=7.7,1.3Hz,1H),8.47(d,J=12.7Hz,1H),8.38(dd,J=7.7,1.1Hz,1H),7.96–7.86(m,2H),7.80–7.68(m,7H),7.67–7.53(m,9H),7.53–7.43(m,4H).
图1为实施例1的有机电子传输材料TRZ-Py-TPO的核磁共振氢谱图。
(2)热力学性质
热失重分析(TGA)是在TGA2050(TA instruments)热重分析仪上通氮气保护以20℃/min的升温速率测定的;差示扫描量热分析(DSC)使用NETZSCH DSC 204 F1热分析仪,在氮气气氛中,从-30℃开始以10℃/min的升温速率到350℃,然后以20℃/min降温到-30℃,恒温5min,再次以10℃/min的升温速率到350℃测试。测试结果如图2所示。图2为实施例1的有机电子传输材料TRZ-Py-TPO的热稳定性曲线;其中图2a和图2b分别为实施例1的有机电子传输材料TRZ-Py-TPO的热失重曲线和差示扫描量热曲线。
由图2a热失重曲线表明,TRZ-Py-TPO失重1%时的温度为370℃,具有较高的热稳定性。
由图2b差示扫描量热曲线表明,在第一轮加热,化合物TRZ-Py-TPO出现了明显的熔融峰,对应的熔点为214℃。在第一轮降温和第二轮升温过程中有机小分子电子传输材料TRZ-Py-TPO出现了未的结晶峰和熔融峰,而是在102℃时出现了明显的玻璃化转变。
(3)光物理性能
图3为实施例1制备的有机电子传输材料TRZ-Py-TPO的紫外-可见吸收光谱(发光强度-波长对应发射,吸光度-波长对应吸收)。从图3中的吸收光谱中,根据吸收边可确定光学带隙为3.63eV。
(4)电子迁移率
制备单电子器件(ITO/TRZ-Py-TPO:Liq(50%wt,150nm)/Al),根据电流密度-电压曲线,通过空间电荷限制电流SCLC法计算电子迁移率。Liq为8-羟基喹啉锂配合物。50%wt表示Liq与TRZ-Py-TPO的质量比为1:1。
单电子器件详细制备过程如下:
将电阻为10–20Ω/口的氧化铟锡(ITO)导电玻璃基片依次经去离子水、丙酮、洗涤剂、去离子水和异丙醇分别超声清洗20min。在烘箱干燥后,将上述处理过的ITO玻璃基片在3×10 -4Pa的真空下,蒸镀各个有机功能层及金属Al阴极。薄膜厚度用Veeco Dektak150台阶仪测定。金属电极蒸镀的沉积速率及其厚度用Sycon Instrument的厚度/速度仪STM–100测定。图4为实施例1制备的有机电子传输材料TRZ-Py-TPO与Liq按质量比1:1n-掺杂的电子迁移率-电场强度曲线。
如图4所示,根据SCLC计算得出,本实施例的有机小分子电子传输材料TRZ-Py-TPO的电子迁移率为4.99×10 -6-4.58×10 -5cm 2·V -1·s -1(@2-5×10 5V·cm -1)。
(5)作为n-掺杂的电子传输材层,采用真空蒸镀法的有机电致发光器件的表征
采用实施例1制备的有机小分子电子传输材料TRZ-Py-TPO n-掺杂Liq作为电子传输层,制备器件结构:Ag/ITO/P008:F4-TCNQ(147nm,4%)/NPB(15nm)/EBL-1(5nm)/HOST-09:HOST-08:GD-L1(30nm,0.5:0.5:15%)/TRZ-Py-TPO:Liq(30nm,1:1)/Mg:Ag(15nm,1:9)/CP501(70nm)。除有机电子传输材料之外所用的其他有机材料可以商业化直接购买。其中,P008:F4-TCNQ作为空穴注入层(北京鼎材科技有限公司),NPB作为空穴传输层,Host09:Host08:GD-L1作为发光层(GD-L1为绿光磷光配合物,Host09/Host08为主体材料)(GD-L1购自台湾机光科技有限公司Luminescence Technology Crop.,Host09/Host08购自台湾昱镭光电材料有限公司),CP501作为光取出层(购自北京鼎材科技有限公司),TRZ-Py-TPO:Liq作为电子传输层。P008:4wt%F4-TCNQ(购自北京鼎材科技有限公司)薄膜导电率约为2.65×10 -4S m -1
器件详细制备过程如下:
将电阻为10–20Ω/口的氧化铟锡(ITO)导电玻璃基片依次经去离子水、丙酮、洗涤剂、去离子水和异丙醇分别超声清洗20min。在烘箱干燥后,将上述处理过的ITO玻璃基片在3×10 -4Pa的真空下,蒸镀各个有机功能层及金属Al阴极。薄膜厚度用Veeco Dektak150台阶仪测定。金属电极蒸镀的沉积速率及其厚度用Sycon Instrument的厚度/速度仪STM–100测定。有机电致发光器件的性能测试结果如图5~8所示。
图5为采用实施例1制备的有机电子传输材料TRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的电流密度-电压-亮度曲线;图6为采用实施例1制备的有机电子传输材料TRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的电流效率-亮度曲线;图7为采用实施例1制备的有机电子传输材料TRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的功率效率-亮度曲线;图8为采用实施例1制备的有机电子传输材料TRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的亮度-时间曲线。
如图5-7所示,以真空蒸镀方法制作的有机电致发光器件,采用电子传输材料TRZ-Py-TPO n-掺杂Liq作为电子传输层后,在1000cd·m -2的亮度下,绿光磷光的电流效率和功率效率分别达到了72.1cd/A,75.5m/W。
初步器件稳定性测试表明(如图8),TRZ-Py-TPO制备的顶发射绿光磷光器件,在恒电流驱动下,在起始亮度1000cd·m -2下工作约640小时后亮度基本未衰减。
上述结果表明上述掺杂型电子传输材料TRZ-Py-TPO可获得高发光效率和高稳定性。
实施例2
本实施例的有机分子电子传输材料BPTRZ-Py-TPO的结构式如下:
Figure PCTCN2019112077-appb-000018
本实施例的有机分子电子传输材料BPTRZ-Py-TPO的制备方法,包括以下步骤:
步骤1-4与实施例1相同。
步骤5,2,4-二([1,1'-联苯]-4-基)-6-(3-溴苯基)-1,3,5-三嗪(5)的制备
Figure PCTCN2019112077-appb-000019
操作方法与实施例1中相似,在此不再赘述,产率为78%(5.0g)。
步骤6,2,4-二([1,1'-联苯]-4-基)-6-(3-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)苯基)-1,3,5-三嗪(6)的制备
Figure PCTCN2019112077-appb-000020
操作方法与实施例1中相似,在此不再赘述,产率为81.5%(4.4g)。
步骤7,(3-(6-(3-(4,6-二([1,1'-联苯]-4-基)-1,3,5-三嗪-2-基)苯基)吡啶-2-基)苯基)二苯基氧化膦(BPTRZ-Py-TPO)的制备
Figure PCTCN2019112077-appb-000021
操作方法与实施例1中相似,在此不再赘述,产率77%(3.2g)。
下面对实施例2制备的有机小分子电子传输材料BPTRZ-Py-TPO进行结构表征和性能测试:
(1)核磁共振氢谱
1H NMR(400MHz,CDCl 3)δ9.43(s,1H),8.87(m,J=8.1,6.4Hz,5H),8.51(m,J=21.3,10.2Hz,2H),8.40(d,J=7.9Hz,1H),7.92(m,J=7.8Hz,2H),7.82(d,J=8.5Hz,4H),7.79–7.69(m,11H),7.66(td,J=7.6,3.2Hz,1H),7.57(m,J=7.3,1.4Hz,2H),7.54–7.46(m,8H),7.46–7.39(m,2H).
图9为实施例2的有机电子传输材料BPTRZ-Py-TPO的核磁共振氢谱图。
(2)热力学性质
热失重分析(TGA)是在TGA2050(TA instruments)热重分析仪上通氮气保护以20℃/min的升温速率测定的;差示扫描量热分析(DSC)使用NETZSCH DSC 204 F1热分析仪,在氮气气氛中,从-30℃开始以10℃/min的升温速率到450℃,然后以20℃/min降温到-30℃,恒温5min,再次以10℃/min的升温速率到450℃测试。测试结果如图10所示。图10为实施例2的有机电子传输材料BPTRZ-Py-TPO的热稳定性曲线;其中图10a和图10b分别为实施例2的有机电子传输材料BPTRZ-Py-TPO的热失重曲线和差示扫描量热曲线。
由图10a热失重曲线表明,BPTRZ-Py-TPO失重1%时的温度为470℃,具有较高的热稳定性。
由图10b差示扫描量热曲线表明,在第一轮加热,化合物BPTRZ-Py-TPO出现了明显的熔融峰,对应的熔点为262℃。在第二轮加热过程中有机小分子电子传输材料BPTRZ-Py-TPO出现了明显的结晶峰和熔融峰,结晶温度为209℃,熔点为261℃。此外BPTRZ-Py-TPO表现出明显的玻璃化转变,对应的玻璃化转变温度为123℃。
(3)光物理性能
图11为实施例2制备的有机电子传输材料BPTRZ-Py-TPO的紫外-可见吸收光谱。从图11中的吸收光谱中,根据吸收边可确定光学带隙为3.38eV。
(4)电子迁移率
图12为实施例2制备的有机电子传输材料BPTRZ-Py-TPO与Liq按质量比1:1n-掺杂的电子迁移率-电场强度曲线。
如图12所示,根据SCLC计算得出,本实施例的有机电子传输材料BPTRZ-Py-TPO的电子迁移率为4.66×10 -5-3.21×10 -4cm 2·V -1·s -1(@2-5×10 5V·cm 1)。
(5)作为n-掺杂的电子传输材层,采用真空蒸镀法的有机电致发光器件的表征
采用实施例2制备的有机小分子电子传输材料BPTRZ-Py-TPO n-掺杂Liq作为电子传输层,制备器件结构:Ag/ITO/P008:F4-TCNQ(147nm,4%)/NPB(15nm)/EBL-1(5nm)/HOST-09:HOST-08:GD-L1(30nm,0.5:0.5:15%)/BPTRZ-Py-TPO:Liq(30nm,1:1)/Mg:Ag(15nm,1:9)/CP501(70nm)。
器件的制备过程与实施例1相同,有机电致发光器件的性能测试结果如图13~16所示。
图13为采用实施例2制备的有机电子传输材料BPTRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的电流密度-电压-亮度曲线;图14为采用实施例2制备的有机电子传输材料BPTRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的电流效率-亮度曲线;图15为采用实施例2制备的有机电子传输材料BPTRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的功率效率-亮度曲线;图16为采用实施例2制备的有机电子传输材料BPTRZ-Py-TPO的顶发射绿光磷光有机电致发光器件的亮度-时间曲线
如图13-15所示,以真空蒸镀方法制作的有机电致发光器件,采用电子传输材料BPTRZ-Py-TPO n-掺杂Liq作为电子传输层后,在1000cd·m -2的亮度下,绿光磷光的电流效率和功率效率分别达到了77.4cd/A,86.8lm/W。
如图16所示,BPTRZ-Py-TPO制备的顶发射绿光磷光器件,在恒电流驱动下,在起始亮度1000cd·m -2下工作约640小时后亮度基本没有衰减。
上述结果表明上述掺杂型电子传输材料BPTRZ-Py-TPO可获得高发光效率和高稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种不对称取代的可溶性吡啶类衍生物,其特征在于:为以下式I或式II中一种以上:
    Figure PCTCN2019112077-appb-100001
  2. 根据权利要求1所述不对称取代的可溶性吡啶类衍生物的制备方法,其特征在于:包括以下步骤:
    (1)在正丁基锂的作用下,将二苯基氯化膦与二卤代苯反应,后续处理,获得未氧化的含溴的中间产物;所述二卤代苯为间二溴苯、间二碘苯或1-溴-3-碘苯;
    所述未氧化的含溴中间产物的结构为
    Figure PCTCN2019112077-appb-100002
    (2)采用双氧水氧化处理步骤(1)所得的未氧化的含溴中间产物,后续处理,得到氧化的含溴中间产物;
    所述氧化的含溴中间产物的结构式为
    Figure PCTCN2019112077-appb-100003
    (3)在钯催化剂的作用下,将步骤(2)所得的氧化的含溴中间产物与双戊酰二硼反应,得到含有硼酸酯的中间产物;
    所述含有硼酸酯的中间产物的结构为
    Figure PCTCN2019112077-appb-100004
    (4)通过钯催化剂的作用,将步骤(3)所得的含硼酸酯的中间产物与2,6-二溴吡啶进行偶联反应,得到含吡啶的溴化物;
    所述含吡啶的溴化物的结构为
    Figure PCTCN2019112077-appb-100005
    (5)以2-氯-4,6-二苯基-1,3,5-三嗪或2,4-二([1,1'-联苯]-4-基)-6-氯-1,3,5-三嗪与3-溴苯硼酸进行偶联反应,后续处理,得到含溴中间体;
    所述含溴中间体的结构为
    Figure PCTCN2019112077-appb-100006
    (6)将步骤(5)中含溴中间体与联硼酸频哪醇脂进行Suzuki反应,后续处理,得到硼酸酯中间体;
    所述硼酸酯中间体的结构为
    Figure PCTCN2019112077-appb-100007
    (7)在催化体系中,将步骤(4)的含吡啶的溴化物与步骤(6)的硼酸酯中间体进行偶联反应,后续处理,得到不对称取代的可溶性吡啶类衍生物记为TRZ-Py-TPO,其结构为式I或记为BPTRZ-Py-TPO,其结构为式II;
    Figure PCTCN2019112077-appb-100008
  3. 根据权利要求2所述不对称取代的可溶性吡啶类衍生物的制备方法,其特征在于:步骤(1)中所述反应的条件为室温反应8~16h;二卤代苯、正丁基锂与氯化二苯基膦的摩尔比为1:(1.1~1.3):(1.3~1.5);所述反应以有机溶剂为反应介质;
    步骤(2)所述反应条件为室温反应10~12h,所述反应以有机溶剂为反应介质;
    步骤(3)中所述反应的条件为68~80℃反应3~4h,氧化的含溴中间产物与双戊酰二硼的摩尔比为1:(1.3~1.5);所述钯催化剂为双(三苯基膦)二氯化钯;所述氧化的含溴中间体与钯催化剂的摩尔比为1:(0.01~0.03);所述反应以有机溶剂为反应介质;所述反应的体系还包括碱性化合物;
    步骤(4)中含硼酸酯的中间产物、2,6-二溴吡啶与钯催化剂的摩尔比为1:(1.0~1.1):(0.01~0.03);所述钯催化剂为四(三苯基膦)钯;所述偶联反应的体系还包括碱性水溶液和相转移剂;步骤(4)中所述偶联反应的条件为80~90℃反应10~12h,所述反应以有机溶剂为反应介质;
    步骤(5)中2-氯-4,6-二苯基-1,3,5-三嗪或2,4-二([1,1'-联苯]-4-基)-6-氯-1,3,5-三嗪与3-溴苯硼酸的摩尔比为1:(1.0~1.1),所述偶联反应在催化体系中进行,催化体系包括催化剂,所述催化剂为钯催化剂,所述钯催化剂为四(三苯基膦)钯,所述3-溴苯硼酸与催化剂的摩尔比为(1.0~1.1):(0.01~0.03);所述催化体系还包括碱性水溶液和相转移剂;步骤(5)中所述偶联反应的条件为80~90℃反应10~12h;所述反应以有机溶剂为反应介质;
    步骤(6)中所述反应的条件为80~90℃反应3~4h;所述含溴中间体与联硼酸频哪醇脂的摩尔比为1:(1.1~1.5);所述反应在催化体系中进行,催化体系包括钯催化剂,所述钯催化剂为双(三苯基膦)二氯化钯;所述含溴中间体与钯催化剂的摩尔比为1:(0.01~0.03);所述反应以有机溶剂为反应介质;所述催化体系还包括碱性化合物;
    步骤(7)中所述催化体系包括催化剂,所述催化剂为钯催化剂,所述钯催化剂为四(三苯基膦)钯;所述催化体系还包括碱性水溶液和相转移剂,步骤(7)中含吡啶的溴化物与硼酸酯中间体的摩尔比为(1~1.2):1;步骤(7)中所述偶联反应的条件为90~100℃反应10~16h,所述反应以有机溶剂为反应介质。
  4. 根据权利要求3所述不对称取代的可溶性吡啶类衍生物的制备方法,其特征在于:步骤(3)中所述碱性化合物为醋酸钾;
    步骤(4)中所述碱性水溶液为碳酸钠水溶液,所述相转移剂为乙醇;
    步骤(5)中所述碱性水溶液为碳酸钠水溶液,所述相转移剂为乙醇;
    步骤(6)中所述碱性化合物为醋酸钾;
    步骤(7)中所述碱性水溶液为碳酸钾溶液或碳酸钠水溶液,所述相转移剂为乙醇。
  5. 根据权利要求2所述不对称取代的可溶性吡啶类衍生物的制备方法,其特征在于:步骤(1)中所述后续处理是指将反应结束后,加入乙醇终止反应,减压蒸馏,与水混合,用二氯甲烷萃取,将有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离;
    步骤(2)中所述后续处理是指向反应产物中加入亚硫酸钠水溶液还原过量的双氧水,并用二氯甲烷萃取,将有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离;
    步骤(3)中所述后续处理是指将反应产物进行减压蒸馏,与水混合,用二氯甲烷萃取,将有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离;
    步骤(4)中所述后续处理是指向反应产物中加入蒸馏水,分离有机层,用二氯甲烷萃取水层,将萃取后有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离;
    步骤(5)中所述后续处理是指向反应产物中加入蒸馏水,分离有机层,用二氯甲烷萃取水层,将萃取后有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离;
    步骤(6)中所述后续处理是指指将反应产物进行减压蒸馏,用二氯甲烷溶解,加入蒸馏水并用二氯甲烷萃取,将有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离;
    步骤(7)中所述后续处理是指向反应产物中加入蒸馏水,分离有机层,用二氯甲烷萃取水层,将萃取后有机层用无水硫酸镁干燥后过滤,减压蒸馏除去二氯甲烷,用柱层析法分离。
  6. 一种有机电子传输材料,其特征在于:包括权利要求1所定义的不对称取代的可溶性吡啶类衍生物中一种以上。
  7. 根据权利要求6所述有机电子传输材料在有机电致发光器件中的应用。
  8. 一种n-掺杂电子传输层,其特征在于:是通过掺杂剂对有机电子传输材料进行n-掺杂得到,所述有机电子传输材料如权利要求6所定义。
  9. 根据权利要求8所述n-掺杂电子传输层,其特征在于:所述掺杂剂为8-羟基喹啉锂配合物。
  10. 根据权利要求8或9所述n-掺杂电子传输层在有机电致发光器件中的应用。
PCT/CN2019/112077 2019-04-18 2019-10-21 不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用 WO2020211316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910313376.0 2019-04-18
CN201910313376.0A CN110016053B (zh) 2019-04-18 2019-04-18 不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用

Publications (1)

Publication Number Publication Date
WO2020211316A1 true WO2020211316A1 (zh) 2020-10-22

Family

ID=67191802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112077 WO2020211316A1 (zh) 2019-04-18 2019-10-21 不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用

Country Status (2)

Country Link
CN (1) CN110016053B (zh)
WO (1) WO2020211316A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336800A (zh) * 2021-06-03 2021-09-03 广西民族大学 金属有机配合物及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016053B (zh) * 2019-04-18 2020-08-18 华南理工大学 不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用
CN111205323B (zh) * 2020-01-17 2021-09-21 华南理工大学 一种不对称取代的蒽基衍生物及其制备与应用
CN113013345B (zh) * 2021-02-25 2022-11-18 华南理工大学 一种低折射率有机电子传输材料在顶发射有机发光二极管器件中的应用
CN115838471A (zh) * 2023-01-05 2023-03-24 福州大学 三唑氮基聚合物的制备及其在光催化反应中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374040A (zh) * 2013-07-02 2013-10-30 华南理工大学 一类含有三芳基磷氧及氮杂环功能基团的醇溶性阴极缓冲层分子型材料及其合成方法与应用
CN104860883A (zh) * 2014-02-26 2015-08-26 三星显示有限公司 稠环化合物及包含它的有机发光装置
US20160005979A1 (en) * 2014-07-02 2016-01-07 Samsung Display Co., Ltd. Organic light-emitting device
US20160013427A1 (en) * 2014-07-10 2016-01-14 Samsung Display Co., Ltd. Organic light-emitting device
KR101652323B1 (ko) * 2015-04-27 2016-08-31 (주)더블유에스 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
KR101652325B1 (ko) * 2015-04-27 2016-08-31 (주)더블유에스 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
CN108409730A (zh) * 2018-02-26 2018-08-17 华南理工大学 有机小分子电子传输材料及制备,n-掺杂电子传输层与应用
CN110016053A (zh) * 2019-04-18 2019-07-16 华南理工大学 不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087103B (zh) * 2013-01-28 2015-07-29 苏州纳凯科技有限公司 用于有机电致发光器件的有机半导体材料及其制备方法和用途
CN105693773B (zh) * 2016-02-29 2018-05-15 华南理工大学 一种具有高三重态能级的有机分子电子传输材料及其制备方法、应用
CN106883268B (zh) * 2017-02-20 2019-04-26 黑龙江大学 基于膦氧、咔唑的三嗪类激基复合物材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374040A (zh) * 2013-07-02 2013-10-30 华南理工大学 一类含有三芳基磷氧及氮杂环功能基团的醇溶性阴极缓冲层分子型材料及其合成方法与应用
CN104860883A (zh) * 2014-02-26 2015-08-26 三星显示有限公司 稠环化合物及包含它的有机发光装置
US20160005979A1 (en) * 2014-07-02 2016-01-07 Samsung Display Co., Ltd. Organic light-emitting device
US20160013427A1 (en) * 2014-07-10 2016-01-14 Samsung Display Co., Ltd. Organic light-emitting device
KR101652323B1 (ko) * 2015-04-27 2016-08-31 (주)더블유에스 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
KR101652325B1 (ko) * 2015-04-27 2016-08-31 (주)더블유에스 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
CN108409730A (zh) * 2018-02-26 2018-08-17 华南理工大学 有机小分子电子传输材料及制备,n-掺杂电子传输层与应用
CN110016053A (zh) * 2019-04-18 2019-07-16 华南理工大学 不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336800A (zh) * 2021-06-03 2021-09-03 广西民族大学 金属有机配合物及其制备方法和应用
CN113336800B (zh) * 2021-06-03 2023-06-20 广西民族大学 金属有机配合物及其制备方法和应用

Also Published As

Publication number Publication date
CN110016053B (zh) 2020-08-18
CN110016053A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2020211316A1 (zh) 不对称取代的可溶性吡啶类衍生物及制备、n-掺杂电子传输层与应用
JP5490397B2 (ja) アントラセン系化合物及びこれを利用した有機電界発光素子
CN104804045B (zh) 近红外发光材料及有机电致发光器件
CN108409730B (zh) 有机小分子电子传输材料及制备,n-掺杂电子传输层与应用
TWI498321B (zh) 電子輸送材料及使用其的有機電場發光元件
CN106432343B (zh) 铱配合物和有机电致发光器件
CN110831949A (zh) 新化合物和包含其的有机发光器件
JP5799772B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
Ban et al. Spirobifluorene/sulfone hybrid: highly efficient solution-processable material for UV–violet electrofluorescence, blue and green phosphorescent OLEDs
CN112174835B (zh) 一种有机电致发光材料及其制备方法和应用
CN105693773A (zh) 一种具有高三重态能级的有机分子电子传输材料及其制备方法、应用
WO2007046651A9 (en) Indene derivatives and organic light emitting diode using the same
KR101599965B1 (ko) 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
CN108899431A (zh) 一种有机发光器件
KR101968353B1 (ko) 1,2,4,5-치환 페닐 유도체와 그 제조 방법, 그리고 유기 전계 발광 소자
CN110283135B (zh) 含萘基蒽基取代的三嗪衍生物及其制备方法与应用
Zhang et al. Triphenyl phosphine oxide-bridged bipolar host materials for green and red phosphorescent organic light-emitting diodes
Ding et al. Novel spiro-based host materials for application in blue and white phosphorescent organic light-emitting diodes
JP5325242B2 (ja) トリフェニレンベースの芳香族化合物およびそれを用いた有機発光ダイオード
US20160155958A1 (en) Bicyclic iridium complex and process for preparing same, organic light emitting device and process for preparing same
CN108922976A (zh) 一种有机电致发光器件
JP6428762B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP6136311B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
CN114409701B (zh) 基于二苯基砜的热激发延迟荧光芳香膦氧材料及其合成方法和应用
CN112321585B (zh) 不对称取代的二苯基吡啶类化合物及其制备与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19925466

Country of ref document: EP

Kind code of ref document: A1