WO2020209118A1 - 可逆熱変色性筆記具用水性インキ組成物、ならびにそれを内蔵したレフィルおよび水性ボールペン - Google Patents

可逆熱変色性筆記具用水性インキ組成物、ならびにそれを内蔵したレフィルおよび水性ボールペン Download PDF

Info

Publication number
WO2020209118A1
WO2020209118A1 PCT/JP2020/014445 JP2020014445W WO2020209118A1 WO 2020209118 A1 WO2020209118 A1 WO 2020209118A1 JP 2020014445 W JP2020014445 W JP 2020014445W WO 2020209118 A1 WO2020209118 A1 WO 2020209118A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
hydroxyphenyl
ink composition
ink
acid
Prior art date
Application number
PCT/JP2020/014445
Other languages
English (en)
French (fr)
Inventor
直登 桝重
麻美子 小椋
いつ香 大野
Original Assignee
株式会社パイロットコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パイロットコーポレーション filed Critical 株式会社パイロットコーポレーション
Priority to CN202080033487.7A priority Critical patent/CN113785023B/zh
Priority to EP20786835.7A priority patent/EP3954745A4/en
Priority to KR1020217036406A priority patent/KR20210151150A/ko
Priority to US17/602,066 priority patent/US20220251406A1/en
Priority to JP2021513578A priority patent/JP7407802B2/ja
Publication of WO2020209118A1 publication Critical patent/WO2020209118A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K29/00Combinations of writing implements with other articles
    • B43K29/02Combinations of writing implements with other articles with rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K1/00Nibs; Writing-points
    • B43K1/08Nibs; Writing-points with ball points; Balls or ball beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K1/00Nibs; Writing-points
    • B43K1/08Nibs; Writing-points with ball points; Balls or ball beds
    • B43K1/086Nibs; Writing-points with ball points; Balls or ball beds with resilient supporting means for the ball, e.g. springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K7/00Ball-point pens
    • B43K7/01Ball-point pens for low viscosity liquid ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K7/00Ball-point pens
    • B43K7/02Ink reservoirs; Ink cartridges
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/16Writing inks
    • C09D11/17Writing inks characterised by colouring agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/16Writing inks
    • C09D11/18Writing inks specially adapted for ball-point writing instruments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks

Definitions

  • the present invention relates to a water-based ink composition for a reversible thermochromic writing instrument that retains either of them reversibly and reversibly, and a refill and a water-based ballpoint pen incorporating the same.
  • a water-based ink composition for a reversible thermochromic writing instrument capable of forming a handwriting that can alternately memorize and retain the state before and after discoloration in a certain temperature range such as a room temperature range
  • a writing instrument incorporating the composition have been proposed.
  • Such writing instruments have been widely proposed, such as ballpoint pens, marking pens, fountain pens, or solid cursive pens.
  • Reversible thermal discoloration Thermal discoloration is an important performance in writing instruments with a built-in water-based ink composition for writing instruments, but like general writing instruments, it also has various performances such as writing performance, handwriting density, and light resistance. Is desired.
  • the colorant used in the heat-discolorable composition is relatively special, it is difficult to obtain excellent characteristics even if the same materials and blending ratios as those in a general ink composition are adopted.
  • the reversible thermochromic composition uses a microcapsule pigment encapsulated in microcapsules, it may be necessary to increase the blending ratio of the pigment in order to achieve a high concentration, and conventional inks. It is difficult to apply the composition ratio as it is.
  • the water-based ink composition for reversible thermochromic writing instruments contains an organic material as a reversible thermochromic colorant, but interaction with other organic materials contained in the composition may occur. For example, agglomeration of organic colorant particles, an increase in the viscosity of the composition, a decrease in the handwriting concentration, deterioration of writeability, and the like may occur.
  • An object of the present invention is to solve a problem in a water-based ink composition for writing instruments containing a reversible thermochromic colorant and to improve various properties at the same time.
  • the reversible thermochromic water-based ink composition contains (a) an electron-donating color-forming organic compound, (b) an electron-accepting compound, and (c) a reaction medium that determines the temperature at which the color reaction of the components (a) and (b) occurs.
  • the reversible thermochromic composition is composed of a reversible thermochromic microcapsule pigment encapsulated in microcapsules made of an organic resin.
  • N-vinyl-2-pyrrolidone polymer having a degree of polymerization of 2 to 20 and With glycerin, water and, A reversible thermochromic water-based ink composition comprising Relative to the total weight of the ink composition, the reversible thermal discoloration microcapsule pigment, the N- vinyl-2-pyrrolidone polymers, and the content of the glycerin (mass%) P MC, and P PVP, and P G and when, 0.3 ⁇ P MC / (P PVP + P G) ⁇ 4, and 0.2 ⁇ P PVP / P G ⁇ 5 It is characterized by being.
  • the refill according to the present invention is characterized by incorporating the reversible thermochromic ink composition.
  • the water-based ballpoint pen according to the present invention is characterized by incorporating the reversible thermochromic ink composition.
  • thermochromic ink composition that has writability, particularly less blurring during writing even when the pen tip is dry. Further, this ink composition is also excellent in the effect of suppressing aggregation of organic colorant particles, increase in viscosity of the composition, decrease in handwriting density and the like.
  • FIG. 5 is a cross-sectional view showing an example of a ballpoint pen according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of a ballpoint pen according to a second embodiment of the present invention.
  • the cross-sectional view which shows the example of the ballpoint pen refill of this invention.
  • FIG. 5 is a cross-sectional view showing an example of a pen tip (ballpoint pen tip) provided in the ballpoint pen and the ballpoint pen refill of the present invention.
  • XX sectional view of FIG. Handwriting after evaluation of dry-up resistance when the ink composition of the example is used. Handwriting after evaluation of dry-up resistance when using the ink composition of the comparative example.
  • the water-based ink composition for reversible thermochromic writing instruments according to the present invention (hereinafter, may be simply referred to as "ink composition”) is a polymer of reversible thermochromic microcapsule pigment and N-vinyl-2-pyrrolidone. , Glycerin, and water. The details of each of these components are as follows.
  • thermochromic microcapsule pigment (hereinafter, may be simply referred to as "microcapsule pigment")
  • A Electron-donating color-forming organic compounds, It comprises (b) an electron-accepting compound and (c) a reaction medium that reversibly causes an electron transfer reaction by the components (a) and (b) in a specific temperature range.
  • microcapsule pigment those described in Japanese Patent Publication No. 51-44706, Japanese Patent Publication No. 51-44707, Japanese Patent Publication No. 1-293998, etc. can be used. These microcapsule pigments discolor before and after a predetermined temperature (discoloration point), and exhibit a decolorized state in a temperature range above the high temperature side discoloration point and a color development state in a temperature range below the low temperature side discoloration point. Is. Then, of the two states, only one specific state exists in the normal temperature range, and the other state is maintained as long as the heat or cold required for the state to appear is applied. It has the characteristic that it returns to the state exhibited at room temperature when the application of heat or cold heat is eliminated.
  • thermochromic composition The hysteresis characteristics in the color concentration-temperature curve of the reversible thermochromic composition will be explained in detail with reference to the figure as follows.
  • the vertical axis represents the color density and the horizontal axis represents the temperature.
  • the change in color density due to temperature change progresses along the arrow.
  • A is a point indicating the concentration at the temperature t 4 (hereinafter referred to as the complete decolorization temperature) at which the complete decolorization state is reached
  • B is the temperature t 3 (hereinafter, the decolorization start temperature) at which the decolorization starts.
  • It is a point indicating the density at (referred to as)
  • C is a point indicating the density at the temperature t 2 (hereinafter referred to as the color development start temperature) at which color development starts
  • D is the temperature t 1 (hereinafter referred to as complete) at which the color development state is reached.
  • It is a point indicating the density at (called the color development temperature).
  • Discoloration temperature region is a temperature region between t 1 and t 4, it is possible to exhibit any of the states of the colored state and the decolored state, the difference in color density large area of between t 2 and t 3 is
  • the temperature range is a substantially two-phase holding temperature range.
  • the length of the line segment EF is a measure showing the contrast of discoloration
  • the length of the line segment HG passing through the midpoint of the line segment EF is the hysteresis width ⁇ H. If this ⁇ H value is small, both states before and after discoloration. Of these, only one specific state can exist in the normal temperature range. Further, when the ⁇ H value is large, it becomes easy to maintain each state before and after discoloration.
  • a complete color development temperature t 1 can be obtained only in a freezer, a cold region, or the like, that is, -50 to 0 ° C, preferably -40 to -5. ° C., more preferably -30 ⁇ -10 ° C., and complete decoloring temperature t 4 the frictional heat generated by friction body, the temperature obtained from the hair dryer familiar heating body, i.e.
  • the component (a) of the present invention that is, the electron-donating color-developing organic compound is a component that determines a color and is a compound that donates an electron to a component (b) that is a color developer to develop a color.
  • Examples of the electron-donating color-developing organic compound include a phthalide compound, a fluorine compound, a stirinoquinolin compound, a diazarodamine lactone compound, a pyridine compound, a quinazoline compound, and a bisquinazoline compound, and among these, a phthalide compound and a fluorine compound are preferable. ..
  • phthalide compound examples include diphenylmethanephthalide compound, phenylindrillphthalide compound, indolylphthalide compound, diphenylmethaneazaphthalide compound, phenylindrillazaphthalide compound, and derivatives thereof, among these.
  • Phenylindrill azaphthalide compounds, and derivatives thereof are preferred.
  • fluorane compound examples include an aminofluorane compound, an alkoxyfluorane compound, and a derivative thereof.
  • a substituent for example, for example
  • a substituent on the phenyl group having the substituent on the phenyl group forming the xanthene ring and forming the lactone ring may be a compound having a blue or black color having an alkyl group such as a methyl group or a halogen atom such as a chloro group).
  • the component (b), that is, an electron-accepting compound is a compound that receives electrons from the component (a) and functions as a color developer of the component (a).
  • the electron-accepting compound includes a group of compounds having an active proton, a group of pseudo-acidic compounds (a group of compounds that are not acids but act as acids in the composition to develop color of component (a)), and electron vacancies.
  • a group of pseudo-acidic compounds a group of compounds that are not acids but act as acids in the composition to develop color of component (a)
  • electron vacancies There are compounds selected from the compound group and the like, and among these, the compound selected from the compound group having an active proton is preferable.
  • Examples of the compound group having an active proton include a compound having a phenolic hydroxyl group and its derivative, a carboxylic acid and its derivative, preferably an aromatic carboxylic acid and its derivative, an aliphatic carboxylic acid having 2 to 5 carbon atoms and its derivative.
  • Examples of the pseudoacid compound group include a metal salt of the compound having a phenolic hydroxyl group, the metal salt of the carboxylic acid, the metal salt of the acidic phosphoric acid ester, the metal salt of the sulfonic acid, and an aromatic carboxylic acid anhydride.
  • Aliphatic carboxylic acid anhydride, anhydride of mixed acid of aromatic carboxylic acid and sulfonic acid, cycloolefin dicarboxylic acid anhydride, urea and its derivative, thiourea and its derivative, guanidine and its derivative, halogenated alcohols, etc. Can be mentioned.
  • Examples of the compound group having electron vacancies include borates, boric acid esters, inorganic salts and the like.
  • a compound having a phenolic hydroxyl group is preferable because it can exhibit effective thermal discoloration characteristics.
  • the compound having a phenolic hydroxyl group is widely included from monophenol compounds to polyphenol compounds, and further includes bis-type, tris-type phenols and the like, phenol-aldehyde condensed resins and the like.
  • the compounds having a phenolic hydroxyl group those having at least two or more benzene rings are preferable.
  • these compounds may have a substituent, and examples of the substituent include an alkyl group, an aryl group, an acyl group, an alkoxycarbonyl group, a carboxy group, and an ester or amide group thereof, a halogen group and the like.
  • Examples of the metal contained in the metal salt of the compound having a phenolic hydroxyl group include sodium, potassium, calcium, zinc, zirconium, aluminum, magnesium, nickel, cobalt, tin, copper, iron, vanadium, titanium, lead, and the like. Examples include molybdenum.
  • Examples of the compound having two phenolic hydroxyl groups include resorcin. 2-Methylresorcin, 4-n-hexyl resorcin, 4-n-octylresorcin, 4-tert-octylresorcin, 4-Benzoyl resorcin, 4-Nitroresorcin, Methyl ⁇ -resorcinol, Benzyl ⁇ -resorcinol, 2-Chloro-4-pentanoyl resorcin, 6-Chloro-4-pentanoyl resorcin, 2-Chloro-4-hexanoylresorcin, 6-Chloro-4-hexanoylresorcin, 2-Chloro-4-propanoylresorcin, 6-Chloro-4-propanoyl resorcin, 2,6-dichloro-4-propanoyl resorcinol, 6-F
  • 1,1-bis (4-hydroxyphenyl) ethane 1,1-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) n-butane, 1,1-bis (4-hydroxyphenyl) n-pentane, 1,1-bis (4-hydroxyphenyl) n-hexane, 1,1-bis (4-hydroxyphenyl) n-heptane, 1,1-bis (4-hydroxyphenyl) n-octane, 1,1-bis (4-hydroxyphenyl) n-nonane, 1,1-bis (4-hydroxyphenyl) n-decane, 1,1-bis (4-hydroxy-3-methylphenyl) decane, 1,1-bis (4-hydroxyphenyl) n-dodecane, 1,1-bis (4-hydroxyphenyl) -2-methylpropane, 1,1-bis (4-hydroxyphenyl) -3-methylbutano, 1,1-bis (4-bis (4-bis (4-hydroxyphenyl)
  • Examples of the compound having three phenolic hydroxyl groups include pyrogallol, phloroglucinol, phloroglucinolcarboxylic acid, gallic acid, octyl gallate, and dodecyl gallate.
  • Examples of the acidic phosphoric acid ester compound include methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, isodecyl acid phosphate, isotridecyl acid phosphate, oleyl acid phosphate, and tetracosyl.
  • Examples thereof include acid phosphate, monobutyl phosphate, dibutyl phosphate, monoisodecyl phosphate, and bis (2-ethylhexyl) phosphate.
  • the compound having a phenolic hydroxyl group can exhibit the most effective thermal discoloration property, but is an aromatic carboxylic acid and an aliphatic carboxylic acid having 2 to 5 carbon atoms, a carboxylic acid metal salt, an acidic phosphoric acid ester and a metal thereof. It may be a compound selected from a salt, 1,2,3-triazole and a derivative thereof.
  • the component (c) which is a reaction medium that reversibly causes the electron transfer reaction by the components (a) and (b) in a specific temperature range, will be described.
  • Examples of the component (c) include esters, ketones, ethers, alcohols, and acid amides.
  • a large hysteresis characteristic (a curve plotting a change in coloring density due to a temperature change changes the temperature from a low temperature side to a high temperature side, and a case where the temperature changes from a high temperature side to a low temperature side.
  • a carboxylic acid ester containing a substituted aromatic ring in the molecule an ester of a carboxylic acid containing an unsubstituted aromatic ring and an aliphatic alcohol having 10 or more carbon atoms, a carboxylic acid ester containing a cyclohexyl group in the molecule, and a carboxylic acid ester having 6 or more carbon atoms.
  • Aliphatic ester compounds having a total carbon number of 17 to 23 obtained from group carboxylic acids are also effective.
  • ketones aliphatic ketones having a total carbon number of 10 or more are effective, and 2-decanone, 3-decanone, 4-decanone, 2-undecanone, 3-undecanone, 4-undecanone, 5-undecanone, 2 -Dodecanone, 3-Dodecanone, 4-Dodecanone, 5-Dodecanone, 2-Tridecanone, 3-Tridecanone, 2-Tetradecanone, 2-Pentadecanone, 8-Pentadecanone, 2-Hexadecanone, 3-Hexadecanone, 9-Heptadecanone, 2-Pentadecanone , 2-octadecanone, 2-nonadecanone, 10-nonadecanone, 2-eicosanone, 11-eikosanone, 2-heneicosanone, 2-docosanone, lauron, stearone and the like.
  • aliphatic ethers having a total carbon number of 10 or more are effective, and dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, dinonyl ether, didecyl ether, diundecyl ether, didodecyl ether, and ditri.
  • alcohols aliphatic monohydric saturated alcohols having 10 or more carbon atoms are effective, and decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, hexadecyl alcohol, and heptadecyl are effective. Alcohol, octadecyl alcohol, eikosyl alcohol, docosyl alcohol and the like can be mentioned.
  • acid amides examples include hexanoic acid amides, heptanic acid amides, octanoic acid amides, nonanoic acid amides, decanoic acid amides, undecanoic acid amides, lauric acid amides, tridecanoic acid amides, myristic acid amides, palmitic acid amides, stearic acid amides, Docosanic acid amide and the like can be mentioned.
  • a compound represented by the following general formula (1) can also be used.
  • R 1 indicates a hydrogen atom or a methyl group
  • q 1 indicates an integer of 0 to 2
  • one of X 1 is ⁇ (CH 2 ) k OCOR'or ⁇ (CH 2 ) k COOR'
  • the other indicates a hydrogen atom
  • k indicates an integer of 0 to 2
  • R' indicates an alkyl group or an alkenyl group having 4 or more carbon atoms
  • Y 1 independently indicates an alkyl group or a methoxy group having 1 to 4 carbon atoms, respectively.
  • Or halogen, and p1 independently indicates an integer of 0 to 3).
  • R 1 is a hydrogen atom
  • R 1a is an alkyl group or an alkenyl group having 8 or more carbon atoms, preferably an alkyl group having 10 to 24 carbon atoms, and more preferably an alkyl group having 12 to 22 carbon atoms.
  • the compounds include -4-benzyloxyphenylethyl octanoate, -4-benzyloxyphenylethyl nonanoate, -4-benzyloxyphenylethyl decanoate, -4-benzyloxyphenylethyl undecanoate, and dodecanoic acid.
  • a compound represented by the following general formula (2) can also be used.
  • R 2 indicates an alkyl group or an alkenyl group having 8 or more carbon atoms
  • p2 independently indicates an integer of 0 to 3
  • X 2 independently indicates an alkyl group or an alkenyl group having 1 to 4 carbon atoms. Indicates 1 to 4 alkoxy groups or halogens.
  • the compounds include 1,1-diphenylmethyl octanoate, 1,1-diphenylmethyl nonanoate, 1,1-diphenylmethyl decanoic acid, 1,1-diphenylmethyl undecanoic acid, and 1,1-dodecanoic acid.
  • Diphenylmethyl, 1,1-diphenylmethyl tridecanoic acid, 1,1-diphenylmethyl tetradecanoic acid, 1,1-diphenylmethyl pentadecanoic acid, 1,1-diphenylmethyl hexadecanoic acid, 1,1-diphenylmethyl heptadecanoic acid, octadecanoic acid 1,1-Diphenylmethyl can be exemplified.
  • a compound represented by the following general formula (3) can also be used.
  • X 3 independently represents an alkyl group, a methoxy group, or a halogen atom having 1 to 4 carbon atoms
  • p3 independently represents an integer of 0 to 3
  • q3 is 1 to 20. Indicates an integer.
  • Examples of the compound include a diester of malonic acid and 2- [4- (4-chlorobenzyloxy) phenyl)] ethanol, a diester of oxalic acid and 2- (4-benzyloxyphenyl) ethanol, and a diester of oxalic acid and 2-.
  • component (c) a compound represented by the following general formula (4) can also be used.
  • R 4 independently represents an alkyl group or an alkenyl group having 1 to 21 carbon atoms
  • p4 independently represents an integer of 1 to 3).
  • Examples of the compound include a diester of 1,3-bis (2-hydroxyethoxy) benzene and capric acid, a diester of 1,3-bis (2-hydroxyethoxy) benzene and undecanoic acid, and 1,3-bis (2).
  • Diester of -hydroxyethoxy) benzene and lauric acid diester of 1,3-bis (2-hydroxyethoxy) benzene and myristic acid, diester of 1,3-bis (2-hydroxyethoxy) benzene and palmitic acid, Diester of 1,3-bis (2-hydroxyethoxy) benzene and cyclohexanoic acid carboxylic acid, diester of 1,3-bis (2-hydroxyethoxy) benzene and cyclohexanoic acid propionic acid, 1,4-bis (hydroxymethoxy) ) Diester of benzene and butyric acid, diester of 1,4-bis (hydroxymethoxy) benzene and isovaleric acid, diester of 1,4-bis (2-hydroxyethoxy) benzene and acetic acid, 1,4-bis ( Diester of 2-hydroxyethoxy) benzene and propionic acid, diester of 1,4-bis (2-hydroxyethoxy) benzene and valerate, die
  • a compound represented by the following general formula (5) can also be used.
  • X 5 independently indicates an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom
  • p5 independently indicates an integer of 0 to 3
  • q5 indicates an integer from 1 to 20.
  • Examples of the compound include a diester of succinic acid and 2-phenoxyethanol, a diester of suberic acid and 2-phenoxyethanol, a diester of sebacic acid and 2-phenoxyethanol, and a diester of 1,10-decandycarboxylic acid and 2-phenoxyethanol. Examples thereof include a diester of 1,18-octadecanedicarboxylic acid and 2-phenoxyethanol.
  • a compound represented by the following general formula (6) can also be used.
  • R 6 indicates any of an alkyl group having 4 to 22 carbon atoms, a cycloalkyl alkyl group, a cycloalkyl group, and an alkoxy group having 4 to 22 carbon atoms
  • X 6 is a hydrogen atom and 1 to 4 carbon atoms. Indicates any of an alkyl group, an alkoxy group having 1 to 4 carbon atoms, and a halogen atom, and q6 indicates 0 or 1.
  • Examples of the compound include decyl 4-phenylbenzoate, lauryl 4-phenylbenzoate, myristyl 4-phenylbenzoate, cyclohexylethyl 4-phenylbenzoate, octyl 4-biphenylacetate, nonyl 4-biphenylacetate, and 4-biphenylacetic acid.
  • Decyl 4-biphenylacetate lauryl, 4-biphenylacetate myristyl, 4-biphenylacetate tridecyl, 4-biphenylacetate pentadecyl, 4-biphenylacetate cetyl, 4-biphenylacetate cyclopentyl, 4-biphenylacetate cyclohexylmethyl, 4-biphenylacetate hexyl , 4-Cyclohexylmethyl biphenylacetate can be exemplified.
  • a compound represented by the following general formula (7) can also be used.
  • R 7 indicates either an alkyl group having 3 to 18 carbon atoms or an aliphatic acyl group having 3 to 18 carbon atoms
  • X 7 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, and a carbon number of carbon atoms. Indicates either 1 or 2 alkoxy group or halogen atom
  • Y 7 indicates either hydrogen atom or methyl group
  • Z 7 is hydrogen atom, alkyl group having 1 to 4 carbon atoms, carbon atom 1 or 2 Indicates either the alkoxy group or the halogen atom of.
  • Examples of the compound include phenoxyethyl 4-butoxybenzoate, phenoxyethyl 4-pentyloxybenzoate, phenoxyethyl 4-tetradecyloxybenzoate, an ester of phenoxyethyl 4-hydroxybenzoate and dodecanoic acid, and phenoxyethyl vanillate.
  • Dodecyl ether can be exemplified.
  • a compound represented by the following general formula (8) can also be used.
  • R 8 represents an alkyl group having 4 to 22 carbon atoms, an alkenyl group having 4 to 22 carbon atoms, a cycloalkyl group, one of the cycloalkyl group, X 8 are each independently an alkyl group, an alkoxy Indicates either a group or a halogen atom, p8 indicates 0 or 1, q8 indicates 0 to 5, and r8 indicates 0 to 4).
  • Examples of the compound include benzoic acid ester of octyl p-hydroxybenzoate, benzoic acid ester of decyl p-hydroxybenzoate, p-methoxybenzoic acid ester of heptyl p-hydroxybenzoate, and o-decyl of dodecyl p-hydroxybenzoate.
  • Examples thereof include methoxybenzoic acid ester and benzoic acid ester of cyclomethylmethyl p-hydroxybenzoate.
  • a compound represented by the following general formula (9) can also be used.
  • R 9 represents an alkyl group having 3 to 17 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and a cycloalkylalkyl group having 5 to 8 carbon atoms
  • X 9 is a hydrogen atom and 1 to 5 carbon atoms. Indicates an alkyl group, a methoxy group, an ethoxy group, and a halogen atom, and p9 indicates an integer of 1 to 3.
  • Examples of the compound include a diester of 4-phenylphenol ethylene glycol ether and cyclohexanecarboxylic acid, a diester of 4-phenylphenol diethylene glycol ether and lauric acid, a diester of 4-phenylphenol triethylene glycol ether and cyclohexanecarboxylic acid, and 4 -Diester of phenylphenol ethylene glycol ether and octanoic acid, diester of 4-phenylphenol ethylene glycol ether and nonanoic acid, diester of 4-phenylphenol ethylene glycol ether and decanoic acid, 4-phenylphenol ethylene glycol ether and myristine Examples of diesters with acids can be illustrated.
  • a specific alkoxyphenol compound having a linear or side-chain alkyl group having 3 to 18 carbon atoms may be used (Japanese Patent Laid-Open No. 11-129623, JP-A-11-5973), or a specific one.
  • a hydroxybenzoic acid ester was used (Japanese Patent Laid-Open No. 2001-105732), a gallic acid ester or the like was used (Japanese Patent Laid-Open No. 51-44706, JP-A-2003-253149), and a heating color development type (color was developed by heating, It is also possible to apply a microcapsule pigment comprising a reversible thermochromic composition (which is decolorized by cooling).
  • the blending ratios of the components (a), (b), and (c) depend on the concentration, discoloration temperature, discoloration form, and type of each component, but in general, the component ratio at which the desired discoloration characteristics can be obtained is determined.
  • Component (b) 0.1 to 50 parts by mass, preferably 0.5 to 20 parts by mass
  • Component 1 to 800 parts by mass preferably 5 to 200 parts by mass with respect to 1 part by mass of the component. Is the range of.
  • a colorant such as a non-thermally discoloring dye or pigment may be blended in the microcapsule pigment or the ink to exhibit a reciprocal color change from colored (1) to colored (2). it can.
  • the method of encapsulating the reversible thermochromic composition in microcapsules is not particularly limited, but for example, from an interfacial polymerization method, an interfacial polycondensation method, an inSitu polymerization method, a submerged curing coating method, a phase separation method from an aqueous solution, or an organic solvent.
  • an interfacial polymerization method an interfacial polycondensation method
  • an inSitu polymerization method a submerged curing coating method
  • a phase separation method from an aqueous solution or an organic solvent.
  • There are a phase separation method, a melting dispersion cooling method, an aerial suspension coating method, a spray drying method, and the like which are appropriately selected according to the intended use.
  • Examples of the material of the capsule include organic resins such as epoxy resin, urea resin, urethane resin, and isocyanate resin.
  • organic resins such as epoxy resin, urea resin, urethane resin, and isocyanate resin.
  • the material of the capsule needs to be an organic material.
  • a secondary resin film can be provided on the surface of the microcapsules according to the purpose to impart durability, or the surface characteristics can be modified for practical use.
  • microcapsule pigment those having an average particle size preferably in the range of 0.1 to 5.0 ⁇ m, more preferably 0.1 to 4.0 ⁇ m, and further preferably 0.5 to 3.0 ⁇ m are used.
  • the average particle size of the microcapsule pigment exceeds 5.0 ⁇ m, it is difficult to obtain a smooth writing feeling when used in a writing instrument, and if the average value of the maximum outer diameter is less than 0.1 ⁇ m, it is difficult to exhibit high-concentration color development. ..
  • the ratio of the reversible thermochromic composition to the wall film is larger than the above range, the thickness of the wall film becomes too thin and the resistance to pressure and heat tends to decrease, and the ratio of the wall film to the reversible thermochromic composition.
  • the color density and sharpness at the time of color development are likely to decrease.
  • the particle area is determined using the image analysis type particle size distribution measurement software "MacView” manufactured by Mountech, and the projected area circle equivalent diameter (Heywood diameter) is calculated from the area of the particle area. It is a value calculated and measured as the average particle diameter of particles corresponding to equal volume spheres based on the value.
  • the particle size of all or most of the particles exceeds 0.2 ⁇ m, it is equivalent to an isovolume sphere by the Coulter method using a particle size distribution measuring device (manufactured by Beckman Coulter Co., Ltd., product name: Multisizer 4e). It is also possible to measure as the average particle size of the particles of.
  • a laser diffraction / scattering type particle size distribution measuring device (device name: LA-300, manufactured by Horiba Seisakusho Co., Ltd.) calibrated based on the numerical values measured using a standard sample or a measuring device by the Coulter method. It may be used to measure volume-based particle size and average particle size (median size).
  • the ink composition according to the present invention further comprises a polymer of N-vinyl-2-pyrrolidone (hereinafter, may be simply referred to as "PVP").
  • PVP has the effect of simultaneously completing various properties. Specifically, it has an effect of adjusting the viscosity of the ink composition, an effect of suppressing aggregation of microcapsule pigments, an effect of improving the adhesiveness and adhesiveness of ink components to paper, and the like. Furthermore, according to the studies by the present inventors, it was found that the ink composition containing the microcapsule pigment has an effect of suppressing dry-up.
  • the ink composition when used for a ballpoint pen or a marking pen, particularly a knock-type ballpoint pen, the pen tip is placed in a state where it is easy to dry. As a result, those writing instruments may become unwritable. Such a state is called dry-up, but according to the present invention, dry-up can be suppressed by using PVP in a specific ink composition, and excellent writability can be achieved.
  • the PVP is a polymer of N-vinyl-2-pyrrolidone, but it is necessary to use a PVP having a degree of polymerization of 2 to 20, preferably 2 to 10, and 2 to 6. Is more preferable.
  • the degree of polymerization is in such a range, when the water content in the ink composition evaporates, it is possible to suppress an increase in the viscosity of the ink composition and agglomeration of the microcapsule pigment. It should be noted that if PVP having an excessively high degree of polymerization is used, the viscosity of the ink composition may become excessively high, which may adversely affect the writing performance.
  • the ink composition according to the present invention further comprises glycerin.
  • Glycerin may be used as an organic solvent or viscosity modifier for common ink compositions.
  • glycerin performs a function that has not been known in the past. That is, by coexisting with the microcapsule pigment having an organic resin on the surface and PVP in a specific ratio, an interaction occurs between the three components, and a remarkable improvement in writing characteristics can be realized.
  • the ink composition according to the present invention is an aqueous ink composition and contains water as a main solvent.
  • the water used in the present invention is not particularly limited, and for example, ion-exchanged water, ultrafiltered water, distilled water, or the like can be used.
  • the content of the microcapsule pigment ( PMC ) with respect to the total mass of the ink composition needs to be 5 to 40% by mass, preferably 10 to 30% by mass, and more preferably 10 to 30% by mass. It can be blended in an amount of 10 to 25% by mass.
  • the amount of a general pigment blended is less than 10% by mass with respect to the total amount of the ink composition, but when a microcapsule pigment is used as a colorant, sufficient color development is performed. It is preferable to increase the blending amount in order to realize the above.
  • an ink composition having a high content of microcapsule pigment has a higher solid content than that of a general ink, so that performance such as dry-up performance may deteriorate.
  • the ink composition according to the present invention solves such a problem by blending a specific material in a specific ratio.
  • the content of PVP (P PVP ) with respect to the total mass of the ink composition is preferably 1 to 20% by mass, and preferably 2 to 10% by mass.
  • the content of glycerin to the total weight of the ink composition (P G) is based on the total weight of the ink composition is preferably 1 to 20 mass%, it is 2-10 wt% preferable.
  • the content of glycerin within this range, the ejection property of the ink composition from the pen tip is kept good, and a clear handwriting can be formed.
  • the ink composition of the present invention as essential components, a microcapsule pigment, PVP, glycerin, and is intended to include water, a microcapsule pigment, PVP, and the total content of glycerin (P MC + P PVP + P G) is It is preferably 20 to 50% by mass, more preferably 20 to 30% by mass.
  • P MC + P PVP + P G is within this range, while maintaining a high handwriting concentration, suppresses blurring during writing, it is possible to achieve both high writing characteristics.
  • the microcapsule pigment, PVP and glycerin are blended in a specific ratio.
  • 0.2 ⁇ P PVP / P G ⁇ 5 Need to meet, 0.5 ⁇ P MC / (P PVP + P G) ⁇ 2.5 or 0.3 ⁇ P PVP / P G ⁇ 2.5, Is preferable.
  • the expected effect is exhibited only when the microcapsule pigment, PVP and glycerin are blended within the above range.
  • the effects of the present invention are exhibited by the interaction when these three substances are blended in a specific ratio. That is, the ink composition according to the present invention simultaneously realizes writing density, dry-up resistance, stability over time, and the like.
  • PVP may be used as a material for improving the dry-up resistance of the ink composition.
  • the dry-up resistance may decrease due to the increase in the amount of PVP (see the section of Examples). ).
  • the effect of the present invention is not exhibited even if the pigment is blended in the ratio specified in the present invention.
  • the microcapsule pigment used in the present invention has an organic resin on the surface, so that an interaction occurs between the organic resin and PVP and glycerin to improve the stability over time and the writing characteristics. it is conceivable that. That is, in an ink composition in which microcapsule pigment, PVP and glycerin coexist, it was unexpected that an ink composition having excellent properties could be obtained when the ratio of these to each other was a specific ratio.
  • Polysaccharides can be used as one of the optional components. Polysaccharides bring about various effects, but mainly bring about effects such as adjusting ink viscosity (thickening agent), imparting shear thinning (thickening agent), and improving dry-up resistance.
  • shear thinning is a characteristic that has high viscosity when left standing and decreases in viscosity when shearing force is applied.
  • Some ballpoint pens contain an ink composition generally called gel ink.
  • the gel ink composition has a high viscosity when left standing without applying shear stress, is stably held in the writing instrument, and during writing, the ink near the ball is low due to the high shearing force generated by the high-speed rotation of the ball.
  • the ink is viscous, and as a result, the ink is ejected from the gap between the balls and the ball housing and transferred to the paper surface.
  • a gel ink can be obtained by combining an ink composition with a shear thinning agent.
  • suitable polysaccharides include seaweeds such as succinoglycan, xanthan gum, welan gum, guar gum, locust bean gum, carrageenan, and Daiyutan gum and its derivatives, cellulose derivatives, glycomannan, agar and caragenin. Examples thereof include dextrin, a thickening polysaccharide having a gelling ability to be extracted.
  • succinoglycan and xanthan gum are preferable because they have a large effect of imparting shear thinning, and succinoglycan is more preferable.
  • the glycosaminoglycan those having an average molecular weight of about 1 to 8 million can be preferably used.
  • the cellulose derivative includes hydroxymethyl cellulose and the like.
  • the content of succinoglycan or xanthan gum based on the total mass of the ink composition is preferably 0.01 to 1.0% by mass. .. By setting these contents in the range, it is possible to maintain the ink ejection characteristics from the pen tip at a high level and suppress the aggregation of the microcapsule pigment.
  • dextrin or a cellulose derivative when used as the polysaccharide, it may be possible to simultaneously obtain high improvement effects such as adjustment of ink viscosity, addition of shear thinning, and improvement of dry-up resistance. Of these, dextrin is preferable because it has a large effect of improving dry-up resistance.
  • the dextrin is preferably a sugar mixture containing a starch saccharified product having 8 or more sugars and / or a reduced product thereof.
  • the sugar mixture preferably contains 30% by mass or more of starch saccharified product having 8 or more sugars, more preferably 50% or more, and particularly preferably 70% or more. Since such dextrin is excellent in film-forming property, it is preferable when the ink composition is applied to a writing instrument because it has a great effect of suppressing water evaporation from the pen tip.
  • the content thereof based on the total mass of the ink composition is preferably 0.1 to 5% by mass.
  • polysaccharides can be used alone or in combination of two or more.
  • a thickener other than a polysaccharide can also be used.
  • Other materials that can be used as thickeners include alkyl esters of alginic acid, polymers containing alkyl esters of methacrylic acid as main components and polymers with a molecular weight of 100,000 to 150,000, benzylidene sorbitol and benziliden xylitol or derivatives thereof, and cross-linking.
  • Acrylic acid polymer inorganic fine particles, polyglycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyethylene glycol fatty acid ester, polyoxyethylene castor oil, polyoxyethylene lanolin, lanolin alcohol, beeswax derivative, polyoxyethylene alkyl ether, poly Examples thereof include nonionic surfactants having an HLB value of 8 to 12, such as oxypropylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, and fatty acid amides, and salts of dialkyl or dialkenyl sulfosuccinic acid.
  • Surfactant is one of the other optional ingredients.
  • any of a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant and the like can be preferably used.
  • the surfactant include a phosphate ester-based surfactant, a silicone-based surfactant, a surfactant having an acetylene bond in the structure, and a fluorine-based surfactant. These surfactants can be appropriately selected depending on the components and applications of the ink composition. For example, when the ink composition is used for an aqueous ballpoint pen, a phosphoric acid ester-based surfactant is preferable.
  • the phosphoric acid ester-based surfactant exerts a good lubricating effect on the chip and allows the ball to rotate smoothly.
  • Specific examples of the phosphoric acid ester-based surfactant include a phosphoric acid monoester of a polyoxyethylene alkyl ether or a polyoxyethylene alkyl aryl ether, a phosphoric acid diester of a polyoxyethylene alkyl ether or a polyoxyethylene alkyl aryl ether, or them. Examples thereof include metal salts, ammonium salts, amine salts, and alkanolamine salts.
  • the content thereof is preferably 0.1 to 2.0% by mass, preferably 0.3 to 1.5% by mass, based on the total mass of the ink composition. Is more preferable.
  • pH adjuster Various acids or bases can be used as pH regulators to adjust the pH of the ink composition to an appropriate range.
  • pH adjusters include (a) inorganic basic compounds such as ammonia and sodium hydroxide, (b) inorganic acidic compounds such as phosphoric acid, hydrochloric acid, sulfuric acid and nitrate, and (c) sodium carbonate and phosphoric acid.
  • Inorganic salt compounds such as sodium
  • water-soluble amine compounds such as triethanolamine and diethanolamine
  • urea derivatives such as urea, dimethylurea, diethylurea, hydroxymethylurea, hydroxyethylurea, acetamide, or N-methyl.
  • Examples thereof include organic basic compounds such as amide compounds such as acetamide, (e) organic acidic compounds such as lactic acid, citric acid and tartrate acid, and (f) organic salt compounds such as sodium acetate, baking soda and sodium tartrate.
  • the content of the pH adjuster is preferably 0.1 to 5% by mass, more preferably 0.5 to 2% by mass, based on the ink composition.
  • the ink composition according to the present invention (I) Anti-corrosive agents, such as benzotriazole, triltriazole, dicyclohexylammonium nitrate, diisopropylammonium nitrate, saponin, etc. (Ii) Preservatives or fungicides such as phenol, sodium salt of 1,2-benzthiazolin 3-one, sodium benzoate, sodium dehydroacetate, potassium sorbate, propyl paraoxybenzoate, 2,3,5 6-Tetrachloro-4- (methylsulfonyl) pyridine, etc. (Iii) Specific gravity adjusting agent, for example, sodium isotungstate, sodium metatungstate, sodium paratungstate, etc.
  • Anti-corrosive agents such as benzotriazole, triltriazole, dicyclohexylammonium nitrate, diisopropylammonium nitrate, saponin, etc.
  • Preservatives or fungicides such as
  • Bubble absorbers such as ascorbic acids, erythorbic acids, ⁇ -tocopherols, catechins, synthetic polyphenols, succinic acid, alkylhydroxylamines, oxime derivatives, ⁇ -glucosylrutin, ⁇ -lipoic acid, phosphonates, phosphinic acids. Salts, sulfites, sulfoxyphosphates, dithionates, thiosulfates, thiourea dioxide, etc.
  • Lubricants such as metal soaps, 2,5-dimercapto-1,3,4-thiazazole and salts and oligomers thereof.
  • Water-soluble organic solvents such as ethanol, propanol, butanol, sorbitol, glycol-based solvents, sulfolane, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-vinyl-2-piperidone oligomers, N-vinyl-2. -Pyrrolidone, N-cyclohexyl-2-pyrrolidone, ⁇ -caprolactam, N-vinyl- ⁇ -caprolactam, etc.
  • Glucol-based solvent for example, as a glycol-based solvent, ethylene glycol, diethylene glycol, thiodiethylene glycol, polyethylene glycol, propylene glycol, butylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene. Glycol monomethyl ether acetate, etc.
  • Water-soluble or water-insoluble resins such as polyamide resin, polyurethane resin, polyester resin, epoxy resin, melamine resin, phenol resin, silicone resin, polyvinyl alcohol, polyvinylpyrrolidone having a degree of polymerization of more than 20, polyvinyl chloride, polyvinyl chloride. Vinyl, polyvinyl chloride, polystyrene, acrylic acid resin, maleic acid resin, gum arabic, cellulose and the like, derivatives thereof, copolymers of the above-mentioned resins, etc.
  • Pigments other than microcapsule pigments such as aluminum powder and metal pigments whose surface is treated with a coloring resin, metallic glossy pigments having a metal vapor deposition film formed on a transparent or colored transparent film, phosphorescent pigments, and natural as a core material.
  • Bright pigments such as pearl pigments whose surfaces are coated with metal oxides such as titanium oxide, such as mica, synthetic mica, glass pieces, alumina, and transparent film pieces.
  • Other components such as casein, thioarophosphate triesters such as thioarophosphate tri (alkoxycarbonylmethyl ester) and thioarophosphate tri (alkoxycarbonylethyl ester) can also be combined.
  • the ink composition according to the present invention can be used for various writing instruments. At this time, the physical properties required for the ink composition differ depending on the type of writing instrument.
  • the ink composition according to the present invention when used for a ballpoint pen, its viscosity is preferably 1 to 2000 mPa ⁇ s when measured under the conditions of 20 ° C. and a rotation speed of 3.84 sec -1 .
  • the viscosity is more preferably 300 to 1500 mPa ⁇ s, and particularly preferably 500 to 1000 mPa ⁇ s.
  • it when measured under the conditions of 20 ° C. and a rotation speed of 384 sec -1 , it is preferably 1 to 200 mPa ⁇ s, and considering that the ink ejection property from the pen tip is good, 10 to 100 mPa ⁇ s.
  • the ink viscosity was adjusted to a shear rate of 3.84 sec-1 (1 rpm) and a shear rate of 384 sec -1 (100 rpm) in an environment of 20 ° C. using a DV-II viscometer (cone rotor CPE42) manufactured by Brookfield. The ink viscosity can be measured under the conditions.
  • the ink composition according to the present invention When the ink composition according to the present invention is used for a ballpoint pen, its surface tension is preferably 20 to 50 mN / m, more preferably 25 to 45 mN / m in an environment of 20 ° C. When the surface tension is within the above numerical range, when the ink composition is applied to the paper surface, the wettability of the ink composition to the applied surface can be improved, and bleeding and strike-through to the applied surface can be prevented. Tend to be able to.
  • the ink composition according to the present invention is used for a ballpoint pen, its pH is preferably 3 to 10, more preferably 4 to 9, and preferably 4 to 8, for example, at room temperature (25 ° C.). Especially preferable. By adjusting the pH to such a range, aggregation and precipitation of the contained microcapsule pigment in a low temperature range are suppressed.
  • the ink composition according to the present invention When the ink composition according to the present invention is used for a marking pen, its viscosity is preferably 1 to 30 mPa ⁇ s, preferably 2 to 20 mPa ⁇ s, when measured under the conditions of 20 ° C. and 30 rpm. More preferred.
  • the surface tension thereof is preferably 25 to 45 mN / m, more preferably 30 to 40 mN / m in an environment of 20 ° C.
  • the ink composition according to the present invention When the ink composition according to the present invention is used for a fountain pen, its viscosity is preferably 1 to 20 mPa ⁇ s, more preferably 1 to 10 mPa ⁇ s, when measured under the conditions of 20 ° C. and 30 rpm. preferable.
  • the surface tension thereof is preferably 30 to 65 mN / m, more preferably 35 to 55 mN / m in an environment of 20 ° C.
  • the viscosity of the ink composition can be measured using a BL type rotational viscometer (product name: TVB-M type viscometer, B type rotor, manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension can be measured by the vertical plate method using a surface tension measuring instrument manufactured by Kyowa Interface Science Co., Ltd. and a platinum plate.
  • the ink composition according to the present invention can be produced by any conventionally known method. Specifically, each of the above components can be blended in a required amount and mixed with various stirrers such as a propeller stirrer, a homodisper, or a homomixer, or various dispersers such as a bead mill to produce the product.
  • various stirrers such as a propeller stirrer, a homodisper, or a homomixer, or various dispersers such as a bead mill to produce the product.
  • the ink composition according to the present invention is used by filling a marking pen or a ballpoint pen with a marking pen tip or a ballpoint pen tip attached to a writing tip, a water-based ballpoint pen, a writing tool such as a brush pen, a fountain pen, or a calligraphy pen.
  • the structure and shape of the ballpoint pen itself are not particularly limited.
  • ink is directly stored inside the barrel, and the ink flow rate is adjusted by a comb groove-shaped ink flow rate adjusting member or a fiber bundle.
  • It has a ballpoint pen having a structure in which an ink flow rate adjusting member and a chip are connected with a member interposed therebetween, and an ink containing tube filled with ink in a barrel, and the ink containing tube communicates with a chip having a ball attached to the tip.
  • a ballpoint pen in which a liquid stopper for preventing backflow is in close contact with the end face of the ink can be exemplified.
  • a tip in which the ball is held in a ball holding portion in which the vicinity of the tip of a metal pipe is pressed and deformed inward from the outer surface, or a metal material is used.
  • the shape of such a ballpoint pen tip is, for example, one in which the entire ballpoint pen tip is made of a metal pipe having a straight cylindrical body, or a straight metal pipe at the tip portion, and an outer diameter and an outer diameter behind the straight metal pipe.
  • Examples thereof include those having a shape in which the inner diameter is expanded. Of these, the latter is preferable because it has good ink ejection properties.
  • balls generally made of cemented carbide, stainless steel, ruby, ceramics, resin, rubber, etc. are generally used.
  • the ball diameter is generally 0.2 to 3.0 mm, preferably 0.25 to 1.5 mm, more preferably 0.25 to 1.0 mm, and particularly preferably 0.25 to 0.5 mm.
  • the ink composition according to the present invention is applied to a ballpoint pen having a ball diameter of, for example, 0.25 to 1.0 mm, preferably 0.25 to 0.7 mm, particularly preferably 0.25 to 0.5 mm.
  • the ball diameter and the ink consumption satisfy a specific relationship.
  • the relationship is preferably 200 ⁇ A / B ⁇ 800, and 300 ⁇ A.
  • the relationship of / B ⁇ 700 is preferable. This is because, by setting the above range, the amount of ink consumed is appropriate for the ball diameter, the ink fluidity is improved, and the handwriting blurring is suppressed, so that good handwriting can be easily obtained. Is.
  • the movable amount (clearance) of the ball in the ballpoint pen tip in the vertical axis direction is preferably 20 to 60 ⁇ m, preferably 30 to 45 ⁇ m at the time of manufacturing or starting the use of the ballpoint pen. This is because if it is within the above range, good handwriting can be easily obtained by appropriately adjusting the ink ejection amount and suppressing line skipping and blurring, and if the clearance is within the above range, The ratio A / B described above is also easy to adjust. Further, although the ink composition contains a microcapsule pigment in the present invention, the ejection property of the ink may be improved by adjusting the clearance according to the average particle size thereof.
  • the ratio D / G of the average particle diameter D ( ⁇ m) of the microcapsules based on the clearance G ( ⁇ m) satisfies 1/150 ⁇ D / G ⁇ 1/3. It is more preferable to satisfy / 100 ⁇ D / G ⁇ 1/5.
  • the movable amount (clearance) of the ball of the ballpoint pen tip in the vertical axis direction indicates the distance that the ball can move in the vertical axis direction of the ballpoint pen tip body.
  • the movable amount generally increases with use because the ball and the ball seat are worn by use.
  • the movable amount is related to the ink ejection amount. Therefore, in general, the movable amount at the time of manufacturing or the start of use of the ballpoint pen is set in the above range, and therefore, in order to achieve stable writing characteristics, the movable amount is within the above range until the end of use of the ballpoint pen. It is preferable to have.
  • the ink accommodating tube for accommodating ink for example, a molded product made of a thermoplastic resin such as polyethylene, polypropylene, polyethylene terephthalate, or nylon is used. Further, in order to prevent the contained ink composition from being modified by oxygen, a molded product made of a resin having low oxygen permeability, for example, an ethylene vinyl alcohol copolymer resin, a vinylidene chloride resin, an acrylonitrile resin, a polyester resin, or the like is preferably used. .. Further, the ink storage tube may have a single-layer structure or a multi-layer structure.
  • an ink containing tube having a multi-layer structure it is preferable that at least one layer is made of an ethylene vinyl alcohol copolymer resin, a vinylidene chloride resin, an acrylonitrile resin, or a polyester resin. Further, when an ink storage tube having a multilayer structure of 3 or more is adopted and layers made of ethylene vinyl alcohol copolymer resin, vinylidene chloride resin, acrylonitrile resin, and polyester resin are combined, those layers are the outermost layer and the outermost layer. It is preferable to arrange it in a layer other than the innermost layer. In addition to directly connecting the chip to the ink storage tube, the ink storage tube and the chip may be connected via a connecting member.
  • the ink storage tube may be a form of refill in which the refill is housed in a shaft cylinder made of resin, metal, etc., or the shaft cylinder itself with a chip attached to the tip portion is used as an ink storage body in the shaft cylinder. May be filled with ink directly.
  • the ink backflow prevention body composition comprises a non-volatile liquid or a non-volatile liquid.
  • vaseline spindle oil, castor oil, olive oil, refined mineral oil, liquid paraffin, polybutene, ⁇ -olefin, ⁇ -olefin oligomer or co-oligomer, dimethyl silicone oil, methylphenyl silicone oil, amino-modified silicone oil, Examples thereof include polyether-modified silicone oil and fatty acid-modified silicone oil, and one or more of them can be used in combination.
  • a thickener for non-volatile liquids and / or non-volatile liquids, it is preferable to add a thickener to thicken the viscosity to a suitable viscosity.
  • a thickener silica having a hydrophobic surface treated or fine particle silica having a surface methylated , Aluminum silicate, swelling mica, clay-based thickeners such as bentonite and montmorillonite treated with hydrophobicity, fatty acid metal soaps such as magnesium stearate, calcium stearate, aluminum stearate, zinc stearate, trivendilidene sorbitol, fatty acid amide , Amide-modified polyethylene wax, hydrogenated castor oil, dextrin-based compounds such as fatty acid dextrin, cellulose-based compounds and the like.
  • a liquid ink backflow preventive body and a solid ink backflow preventive body can be used in combination.
  • the structure and shape of the marking pen itself are not particularly limited.
  • an ink reservoir made of a fiber bundle is built in the barrel to form pores.
  • a marking pen tip made of a fiber-processed body or a resin molded body is attached to a shaft cylinder directly or via a relay member, and the ink storage body of the marking pen in which the ink storage body and the tip are connected is impregnated with ink.
  • Marking pen or marking with a structure in which ink is directly stored inside the barrel an ink flow rate adjusting member composed of a comb groove-shaped ink flow rate adjusting member and a fiber bundle is interposed, and the ink flow rate adjusting member and a chip are connected.
  • An example is a marking pen in which a tip and an ink containing tube are arranged via a pen and a valve body that is opened by pressing the tip, and ink is directly stored in the ink containing tube.
  • the chip is a porous member of continuous ventilation holes selected from a conventional general-purpose porosity of about 30 to 70%, such as a resin processed body of fibers, a fused processed body of heat-meltable fibers, and a felt body, or the axial direction. It is an extruded body of synthetic resin having a plurality of ink lead-out holes extending to, and is put into practical use by processing one end into a shape suitable for a purpose such as a bullet shape, a rectangular shape, or a chisel shape.
  • the ink occlusion body is formed by bundling crimped fibers in the longitudinal direction and is embedded in a coating body such as a plastic cylinder or a film to adjust the porosity to approximately 40 to 90%. To.
  • valve body a general-purpose pumping type valve body can be used as a valve body, it is preferable to set a spring pressure that can be pressed and released by writing pressure.
  • the marking pen suitable for the ink composition according to the present invention is a marking pen tip made of a fiber processed body or a resin molded body in which an ink storage body made of a fiber bundle is built in a barrel and a capillary gap is formed.
  • a writing instrument provided with such a mechanism is required to have an ink composition having low cohesiveness of microcapsule pigment and easy flowability from the viewpoint of ink supply to a chip. Therefore, the ink composition according to the present invention is described above. It is particularly suitable for writing instruments having a mechanism, and can be preferably used as a reversible thermochromic water-based ink composition for marking pens.
  • the form of the ballpoint pen or marking pen is not limited to the above-mentioned ones, and a compound writing instrument (double-headed type or pen tip extension type) equipped with a tip having a different form or a pen tip for deriving ink having a different color tone is attached. Etc.).
  • the writing instrument having the above structure may be provided with a cap to protect the pen tip and prevent it from drying out.
  • an ink occlusion body impregnated with ink is housed in the ink storage tube, a pen body is attached to the tip of the writing to prepare a refill, the refill is housed in the shaft cylinder, and the shaft cylinder is operated by the operation of the indentation mechanism.
  • a haunting writing instrument having a structure in which the tip of the writing protrudes from the opening.
  • the ink composition according to the present invention is preferably used for such a haunting writing instrument because the writing characteristics are less deteriorated due to the drying of the pen tip.
  • Examples of the operation method of the haunting mechanism include knock type, rotary type, and slide type.
  • the handwriting formed from the writing instrument containing the ink composition can be discolored by rubbing with a finger or applying a heating tool or a cooling tool.
  • the heating tool examples include an energization heating discoloring tool equipped with a resistance heating element, a heating discoloring tool filled with hot water, and a hair dryer.
  • a friction member or a friction body that can be discolored by a simple method is preferable. Used.
  • an elastic body such as an elastomer or a plastic foam which is rich in elasticity and can generate an appropriate friction at the time of friction to generate frictional heat is preferable, but a plastic molded body, a stone material, etc. It may be wood, metal, or cloth.
  • the friction member as described above is preferably used.
  • silicone resin As the material of the friction member and the friction body, silicone resin, SEBS resin (styrene ethylene butadiene styrene block copolymer), SEPS resin (styrene ethylene propylene styrene block copolymer), polyester resin, EPDM (ethylene propylene diene rubber)
  • SEBS resin styrene ethylene butadiene styrene block copolymer
  • SEPS resin styrene ethylene propylene styrene block copolymer
  • polyester resin As the material of the friction member and the friction body, silicone resin, SEBS resin (styrene ethylene butadiene styrene block copolymer), SEPS resin (styrene ethylene propylene styrene block copolymer), polyester resin, EPDM (ethylene propylene diene rubber)
  • SEBS resin is more preferably used because the silicone resin tends to adhere to the portion erased by rubbing and
  • the friction member may be a member (friction body) having an arbitrary shape separate from the writing instrument, but it is excellent in portability by being fixed to the writing instrument.
  • the place where the friction member is fixed includes the tip of the cap (top) or the rear end of the barrel (the part where the writing tip is not provided).
  • cooling and heating tool examples include a cold and heat changing tool using a Peltier element, a cold and heat changing tool filled with a refrigerant such as cold water and ice pieces, and an application of a refrigerator or a freezer.
  • the ballpoint pen of the first embodiment is shown in FIG.
  • the ballpoint pen 1 includes a barrel 11, a ballpoint pen refill 2 movably housed in the barrel 11 in the front-rear direction, and an operation portion 12 provided on the outer surface of the barrel 11, and the operation portion 12 (clip) is moved forward.
  • the ballpoint pen tip 3 (pen tip) of the ballpoint pen refill 2 is configured to be able to appear and disappear from the front end hole of the barrel 11 by the sliding operation.
  • the shaft cylinder 11 includes a front shaft 11a and a rear shaft 11b to which the front shaft 11a is detachably screwed. By removing the front shaft 11a from the rear shaft 11b, the ballpoint pen refill 2 inside the shaft cylinder 11 is removed. Can be exchanged.
  • a friction body 13 made of an elastic material (for example, a synthetic resin having elasticity such as rubber or elastomer) is attached to the rear end of the shaft cylinder 11.
  • the friction body 13 can rub the handwriting of the heat-discoloring ink, and the frictional heat generated at that time can cause the handwriting to be thermally discolored (or decolorized).
  • the ballpoint pen 1 includes a shaft cylinder 11, a ballpoint pen refill 2 housed in the shaft cylinder 11, and a cap 14 that is detachably fitted to the outer surface of the shaft cylinder 11 on the ballpoint pen tip side (pen tip side).
  • the ballpoint pen tip 3 (pen tip) of the ballpoint pen refill 2 projects outward from the front end hole of the cylinder 11.
  • the shaft cylinder 11 includes a front shaft 11a and a rear shaft 11b to which the front shaft 11a is detachably screwed. By removing the front shaft 11a from the rear shaft 11b, the ballpoint pen refill 2 inside the shaft cylinder 11 is removed. Can be exchanged.
  • a friction body 13 made of an elastic material (for example, a synthetic resin having elasticity such as rubber or elastomer) is attached to the rear end of the shaft cylinder 11.
  • the friction body 13 rubs the brush strokes of the heat-discoloring ink.
  • the frictional heat generated at this time can cause the brush stroke to be thermally discolored (or decolorized).
  • FIGS. 5 to 7 The embodiment of the ballpoint pen refill 2 used for the ballpoint pen 1 is shown in FIGS. 5 to 7.
  • the ballpoint pen tip 3 rotatably holding the ball 5 at the front end portion, the spring 6 housed and arranged inside the ballpoint pen tip 3, and the ballpoint pen tip 3 are located at the front portion.
  • the holder 7 is press-fitted and fixed, and the ink storage cylinder 8 whose rear portion of the holder is press-fitted and fixed to the front end opening is provided.
  • “front” refers to the pen tip ball side
  • “rear” refers to the opposite side.
  • the ballpoint pen tip 3 is composed of a tip body 4 and a ball 5.
  • the chip body 3 has a straight-cylindrical small-diameter tubular portion 41 that rotatably holds the ball 5 at the front end, and a taper that is integrally connected to the rear of the small-diameter tubular portion 41 and gradually expands in diameter toward the rear. It is composed of a metal tubular body including a tubular portion 42 and a straight-cylindrical large-diameter tubular portion 43 integrally connected behind the tapered tubular portion 42.
  • the metal cylinder is obtained from, for example, austenitic stainless steel such as SUS304, SUS305, and SUS321.
  • a plurality of (for example, four) inward projecting portions 41b are formed at equal intervals in the circumferential direction on the inner surface near the front end of the small-diameter tubular portion 41 of the chip body 3 due to inward pressing deformation.
  • a ball receiving seat is formed by the inwardly projecting portion 41b.
  • an inwardly facing front end edge portion 41a is formed by being pressed and deformed inward in a circumferential shape.
  • a ball holding portion that rotatably holds the ball 5 is formed between the front surface of the inwardly projecting portion 41b (ball receiving seat) and the rear surface of the front end edge portion 41a.
  • Ink flow holes 41c extending radially outward from the central portion and penetrating in the axial direction are formed between the inwardly projecting portions 41b. That is, the ink flow hole 41c is formed in the ball receiving seat.
  • the ballpoint pen tip 3 may be of a type in which a ball receiving seat is formed by cutting at the front end portion of the metal tip body 3.
  • a straight-cylindrical inner surface is formed on the inner surface of the small-diameter tubular portion 41 behind the inwardly projecting portion 41b.
  • a right-sided cylindrical inner surface is formed on the inner surface of the large-diameter tubular portion 43.
  • a tapered inner surface (or conical inner surface) whose diameter gradually increases toward the rear is formed on the inner surface of the tapered cylinder portion 42.
  • the front rod portion 61 and the rear coil portion 62 are integrally connected by one metal wire rod (for example, a stainless steel wire rod having a wire diameter of 0.11 mm).
  • the rod portion 61 extends linearly in the axial direction and is inserted into the ink flow hole 41c of the ball receiving seat 41b.
  • the front end of the rod portion 61 is in contact with the substantially central portion of the rear surface of the ball 5, and the rod portion 61 directly urges the ball 5 forward.
  • the ball 5 is brought into close contact with the inner peripheral surface of the front end edge portion 41a, and ink leakage from the front end of the chip body 3 and ink evaporation can be prevented.
  • the coil portion 62 is formed by spirally winding a wire rod. At the front end and the rear end of the coil portion 62, close contact winding portions are formed in which the wires are in close contact with each other. An effective winding portion having a gap between the wires is formed in the intermediate portion excluding the front end portion and the rear end portion of the coil portion 62.
  • the elastic force of the spring 6 for urging the ball 5 forward is 14 to 25 grams (preferably 15 to 22 grams). Is set in the range of.
  • the holder 7 is a tubular body obtained by injection molding of a synthetic resin (for example, polypropylene).
  • the holder 7 is composed of a tapered front portion 71 to which the ballpoint pen tip 3 is attached, a flange portion 72 that abuts on the front end surface of the ink storage cylinder 8, and a rear portion 73 that is press-fitted into the front end opening of the ink storage cylinder 8. Become.
  • the rear portion of the chip body 3 is press-fitted and fixed to the mounting hole of the front portion 71 of the holder 7.
  • a step portion 74 is projected from the rear end of the inner surface of the mounting hole, the rear end of the chip body 3 is locked to the step portion 74, and the rear end of the spring 6 (rear end of the coil portion 62) is engaged with the step portion 74. The end) is locked.
  • the ink storage cylinder 8 is a cylindrical body having both ends opened, which is obtained by extrusion molding of a synthetic resin (for example, polypropylene).
  • the inside of the ink storage cylinder 8 is filled with an ink 81 and a follower 82 made of a high-viscosity fluid that advances with the consumption of the ink 81.
  • the tail plug 83 is press-fitted and fixed to the rear end opening of the ink containing cylinder 8.
  • the tail plug 83 has a vent hole that allows communication between the inside of the ink containing cylinder 8 and the outside air.
  • the ink 81 is a water-based ink composition according to the ballpoint pen of the present invention.
  • Examples of the follower 82 include a configuration composed of only a high-viscosity fluid, or a configuration in which a solid substance is contained in the high-viscosity fluid.
  • the ball 5 has a diameter A in the range of 0.25 mm to 0.7 mm (preferably 0.3 mm to 0.5 mm, more preferably 0.3 mm to 0.45 mm).
  • the balls 5 are prepared in a plurality of sizes according to the desired handwriting width, and for example, the balls have diameters of 0.25 mm, 0.3 mm, 0.4 mm, 0.5 mm, and 0.7 mm. Things are adopted.
  • the axially movable amount of the ball 5 of the ball holding portion is preferably in the range of 0.02 mm to 0.05 mm from the viewpoint of obtaining smooth ink outflow.
  • the amount of movement of the ball 5 in the ball holding portion in the axial direction varies depending on the diameter A of the ball 5, and is set in the range of 5% to 15% (preferably 8% to 12%) of the diameter A of the ball 5. As a result, smooth ink outflow and a sufficient amount of ball exposure can be obtained.
  • a metal or the like generally used for a ballpoint pen can be used.
  • titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, or carbides or nitrides of the above substances can be mentioned, and carbides of tungsten (tungsten carbide) are preferably used. It is also preferable to use a cemented carbide containing these materials as a base material and cobalt as a binder.
  • the binder may be composed of only cobalt or may contain a metal such as iron or nickel in addition to cobalt.
  • the content of cobalt is not particularly limited, but it may be 5 to 20% by mass based on the total mass of the cemented carbide in consideration of suppressing deterioration of the ball surface and maintaining good lubricity of the ball surface. It is preferably 8 to 15% by mass, more preferably 8 to 15% by mass.
  • Cobalt in the ball can be detected by energy dispersive X-ray spectroscopy analysis using a scanning electron microscope. An electron microscope (product name: MiniscopeTM-1000, manufactured by Hitachi High-Technologies Corporation) and an EDX analyzer (product name: ShiftED-TM, manufactured by Oxford University Press, UK) can be used for the measurement.
  • the amount E of the ball 5 exposed to the front in the axial direction is set in the range of 22% to 32% of the diameter A of the ball 5.
  • the amount E of the ball 5 exposed to the front in the axial direction pushes the ball 5 backward against the forward urging of the spring, and the ball 5 is in contact with each inward protrusion 41b (ball receiving seat). Measured at.
  • a common spring 6 is adopted. Will be done.
  • the inner diameter B of the rectangular inner surface of the small-diameter tubular portion 41 is the ball 5. It is set larger than the diameter A. Specifically, the inner diameter B of the small diameter tubular portion 41 is set to be 0.03 mm to 0.06 mm larger than the diameter A of the ball 5.
  • the axial length F of the linear cylindrical inner surface behind the inwardly protruding portion of the small diameter tubular portion 41 is set to be smaller than the diameter A of the ball 5.
  • the angle ⁇ ) of the inner surface of the conical surface is set to 30 to 40 degrees.
  • the axial length G of the tapered inner surface is set to be larger than the diameter A of the ball 5. Specifically, the axial length G of the tapered inner surface is set to 1.1 times to 5.0 times (preferably 2 times to 4.5 times) the diameter A of the ball 5.
  • the tapered cylinder portion 42 appropriately connects the small diameter cylinder portion 41 and the large diameter cylinder portion 43 so that smooth ink flowability can be obtained.
  • the inner diameter C of the rectangular inner surface of the large-diameter tubular portion 43 is 0. It is set to 9.9 mm or more (preferably 1 mm or more), and the outer diameter D of the rectangular inner surface of the large-diameter tubular portion 43 is set to 1.2 mm or more (preferably 1.3 mm or more).
  • the axial length H of the rectangular inner surface of the large-diameter tubular portion 43 is set in the range of 4.0 mm to 5.0 mm.
  • the diameter A of the balls 5 is in the above range (particularly, the diameter A of the balls 5 is 0.3 mm to 0.45 mm) and a plurality of types of balls 5 having different diameters are adopted to obtain a plurality of types of ball pen tips 3, respectively.
  • the inner diameter C of the large diameter tubular portion 43 is set to be the same, and the outer diameter D of each large diameter tubular portion 43 is set to be the same, whereby the shape of the attachment portion of the ball pen tip 3 to the holder 7 is common. It is possible to simplify the manufacturing process.
  • the ballpoint pen refill 2 of the present embodiment requires at least the following configuration.
  • the ballpoint pen tip 3 rotatably holding the ball 5 at the front end, the spring 6 housed and arranged inside the ballpoint pen tip 3, and the rear portion 73 of the ballpoint pen tip 3 are fixed to each other.
  • the holder 7 and the ink storage cylinder 8 in which the rear portion 73 of the holder 7 is fixed to the front end opening thereof are provided.
  • the inside of the ink storage cylinder 8 is filled with a heat-discoloring ink 81 and a follower 82 made of a high-viscosity fluid that advances with the consumption of the ink 81.
  • the ballpoint pen tip 3 has a straight cylindrical small-diameter tubular portion 41 in which the ball 5 is rotatably held at the front end, and a taper that is integrally connected to the rear of the small-diameter tubular portion 41 and gradually expands in diameter toward the rear.
  • the tip body 3 is made of a metal cylinder including a cylinder portion 42 and a straight-cylindrical large-diameter cylinder portion 43 integrally connected to the rear of the tapered cylinder portion 42.
  • the elastic force of the spring 6 that urges the ball 5 forward is set in the range of 14 g to 25 g.
  • the diameter A of the ball 5 is set in the range of 0.25 mm to 0.7 mm.
  • the axially movable amount of the ball 5 in the ball holding portion is set in the range of 0.02 mm to 0.05 mm.
  • the inner diameter B of the rectangular inner surface of the small-diameter tubular portion 41 behind the ball receiving seat 41b is set to be 0.03 mm to 0.06 mm larger than the diameter A of the ball 5.
  • the axial length F of the rectangular inner surface of the small-diameter tubular portion 41 behind the ball receiving seat 41b is set to be smaller than the diameter A of the ball 5.
  • the inner diameter C of the rectangular inner surface of the large-diameter tubular portion 43 is set to 0.9 mm or more.
  • the structure of such a ballpoint pen or ballpoint pen refill can provide excellent performance even when an ink composition other than the water-based ink composition specified in the present invention is combined.
  • the ink composition of a cemented carbide ball is strongly acidic, the surface of the ball may deteriorate and the lubricity of the ball surface may decrease.
  • the ink composition is strongly basic, the viscosity of the ink composition may increase due to the interaction with the thickener generally contained in the ink composition. Therefore, the pH of the above-mentioned ballpoint pen or ballpoint pen refill hateful ink composition is preferably 4 or more and less than 7, and preferably 4.5 or more and less than 7.
  • the ink composition is an ink composition containing a microcapsule pigment
  • a ballpoint pen or a ballpoint pen refill having excellent properties can be obtained. That is, even when an ink composition having a content of a reversible thermochromic microcapsule pigment, an N-vinyl-2-pyrrolidone polymer, and a glycerin outside the range specified by the present invention is used, the reversible thermochromic color change.
  • a ballpoint pen made of a superhard alloy containing a reversible thermochromic water-based ink composition containing a sex microcapsule pigment and a thickener and having a pH value of 4 or more and less than 7 and containing cobalt as a binder is inserted.
  • the ballpoint pen or ballpoint pen refill prepared for the above exhibits excellent characteristics.
  • the average particle size of the microcapsule pigment is calibrated based on the numerical value measured by the measuring device by the Coulter method (electrical detection band method).
  • the laser diffraction / scattering type particle size distribution measuring device Device name: LA-300, manufactured by Horiba Seisakusho Co., Ltd.
  • Average particle size (median size) based on volume.
  • thermochromic composition As an electron-donating color-forming organic compound (component (a)), 2- (2-chloroanilino) -6-di-n-butylaminofluorane 4.5 parts, an electron-accepting compound 4.5 parts of 1,1-bis (4-hydroxyphenyl) n-decane and 7.5 parts of 2,2-bis (4-hydroxyphenyl) hexafluoropropane as (component (b)), reaction medium (component) As (c)), a reversible thermochromic microcapsule pigment suspension containing 50.0 parts of 4-benzyloxyphenylethyl capricate (4-benzyloxyphenylethyl decanoate) containing a reversible thermochromic composition was prepared.
  • component (a) 2- (2-chloroanilino) -6-di-n-butylaminofluorane 4.5 parts, an electron-accepting compound 4.5 parts of 1,1-bis (4-hydroxyphenyl) n-decan
  • the suspension was centrifuged to isolate a reversible thermochromic microcapsule pigment.
  • the average particle size of the microcapsule pigment is 2.5 ⁇ m, and the hysteresis characteristics are t 1 : -20 ° C, t 2 : -9 ° C, t 3 : 40 ° C, t 4 : 57 ° C, and ⁇ H63 ° C. It showed the behavior of having, and the color changed reversibly from black to colorless and from colorless to black.
  • the suspension was centrifuged to isolate a reversible thermochromic microcapsule pigment.
  • the average particle size of the microcapsule pigment is 2.3 ⁇ m, and the behavior has hysteresis characteristics of t 1 : -14 ° C, t 2 : -6 ° C, t 3 : 48 ° C, t 4 : 60 ° C, and ⁇ H 64 ° C.
  • the color changed reversibly from blue to colorless and from colorless to blue.
  • Example 1 The following components were blended and mixed to obtain an ink composition.
  • the resulting ink composition pH is viscosity measured at 8.0,20 ° C. at 20 ° C., the rotational speed 3.84Sec -1 is, 780 MPa ⁇ s, the rotational speed 384Sec -1 is 35.0MPa ⁇
  • the surface tension at s and 20 ° C. was 37.0 mN / m.
  • Examples 2 to 12 Comparative Examples 1 to 8> The ink compositions of Examples 2 to 12 and Comparative Examples 1 to 8 were obtained in the same manner as in Example 1 except that the ink composition was changed to the composition shown in Table 1.
  • Example 1 ball diameter 0.5 mm
  • Example 2 ball diameter 0.5 mm
  • Comparative Examples 1 to 7 all with a ball diameter of 0.5 mm
  • the ink consumption was 230 mg.
  • the ink consumption of the ballpoint pen refill (ball diameter 0.5 mm) containing the ink composition of Comparative Example 8 per 100 m was 160 mg.
  • the amount of ink consumed was also examined when the ink composition was filled in another ballpoint pen refill.
  • a ballpoint pen refill in which balls having a ball diameter of 0.4 mm or 0.5 mm are combined is prepared, and an ink composition is filled therein.
  • the ink consumption was 220 mg, which was combined with the ballpoint pen refill of 0.5 mm.
  • the ink consumption was 300 mg in each case.
  • the dry-up resistance was evaluated according to the following criteria by counting the number of circles until handwriting was formed.
  • the ink composition may not be ejected normally at the start of writing, and the handwriting may be blurred. It can be said that the less the blurring at the start of writing, the better the dry-up resistance.
  • MC1 Microcapsule pigment MC1
  • MC2 Microcapsule pigment MC2
  • PIG1 Titanium oxide (trade name: CR-85, manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.25 ⁇ m)
  • P1 Polymer of N-vinyl-2-pyrrolidone (degree of polymerization 2 to 20)
  • P2 ⁇ -caprolactam
  • V1 Succinoglycan (trade name: Leozan, manufactured by Sansho Co., Ltd.)
  • V2 Xanthan gum (trade name: Kelzan, manufactured by Sansho Co., Ltd.)
  • D Dextrin (sugar mixture containing 94% starch saccharified product of 8 sugars or more, trade name: Sandec 30, manufactured by Sanwa Cornstarch Co., Ltd.)
  • S Phosphate ester-based surfactant (trade name: Plysurf AL, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.)
  • FIG. 8 is a diagram showing an example of handwriting in the dry-up performance evaluation.
  • FIG. 8 (A) is a photograph of the handwriting after the dry-up resistance evaluation when the ink composition of Example 1 was used, and FIG. 8 (B) is the writing portion (the upper left portion of FIG. 8 (A)).
  • FIG. 9 (A) is a photograph of the handwriting after the dry-up resistance evaluation when the ink composition of Comparative Example 1 was used, and FIG. 9 (B) is the writing portion (the upper left portion of FIG. 9 (A)).
  • Example 13 The following components were blended and mixed to obtain an ink composition.
  • Example 9 An ink was prepared in the same manner as in Example 13 except that the polymer of N-vinyl-2-pyrrolidone (degree of polymerization 2 to 20) (P1) and glycerin (G) were removed and water (ion-exchanged water) was supplemented.
  • P1 polymer of N-vinyl-2-pyrrolidone
  • G glycerin
  • Example 13 and Comparative Example 9 a ballpoint pen tip (trade name: friction ball 07, ball diameter 0.7 mm, clearance 46 ⁇ m) manufactured by Pilot Corporation was fitted to one end of a polypropylene pipe for each of the prepared ink compositions.
  • the ink containing tube was filled, and further, the ink backflow preventive body was closely attached to the rear end surface of the ink and filled to obtain a ballpoint pen refill.
  • the amount of ink consumed per 100 m of the ballpoint pen refill containing the ink composition of Example 13 was 340 mg.
  • Example 13 After each of the refills of Example 13 and Comparative Example 9 was allowed to stand at 50 ° C. for 15 days, the initial handwriting concentration and dry-up resistance were evaluated by the method of compatibility with Example 1. In Example 13, the initial density and the dry-up resistance were evaluated as A, whereas in Comparative Example 9, the initial density was evaluated as A, but the dry-up resistance was evaluated as D, and the ink composition of Example 13 was evaluated. Was confirmed to have excellent dry-up resistance.
  • aqueous ink composition was obtained by stirring and mixing the above reversible thermochromic microcapsule pigment with the following raw materials and blending amount at room temperature for 1 hour.
  • the pH value of the obtained water-based ink composition was measured using an IM-40S type pH meter (manufactured by DKK-TOA CORPORATION) and found to be 5.7 at 20 ° C.
  • the viscosity of the E-type rotary viscometer of the aqueous ink composition (trade name; DV-II viscometer manufactured by Brookfield, rotor: conical rotor CPE 42) was measured by at 20 ° C., the rotational speed 3.84Sec - The viscosity at 1 was 780 mPa ⁇ s, and the viscosity at a rotation speed of 384 sec -1 was 35.0 mPa ⁇ s.
  • the surface tension of the water-based ink composition was 37.0 mN / m when measured using a platinum plate with a surface tension measuring instrument (vertical plate method, manufactured by Kyowa Interface Science Co., Ltd. in an environment of 20 ° C.). ..
  • thermochromic microcapsule pigment 16% by mass
  • Thickener succinoglycan, trade name: Leozan, manufactured by Sansho Co., Ltd.
  • Sugar disextrin, trade name: Sandec 30, manufactured by Sanwa Cornstarch Co., Ltd.
  • -Phosphoric acid ester-based surfactant polyoxyethylene aryl ether phosphoric acid, trade name; Prysurf AL, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • Prysurf AL manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • Triethanolamine 0.2% by mass
  • Phosphoric acid 0.2% by mass -Preservative (benzoisothiazolin-3-one, trade name: Proxel XL-2 (S), manufactured by Lonza Japan Co., Ltd.) 0.2% by mass ⁇ Water 81.6% by mass
  • Reference Examples 2 to 10 and R1 to R6 Ink compositions of Reference Examples 2 to 10 and R1 to R6 were obtained by changing the types and amounts of the components to be blended with respect to Reference Example 1 as shown in Table 2. Details of the materials used in the above example are as follows.
  • thermochromic microcapsule pigment the microcapsule pigment MCA
  • -Pigment (2) [Titanium oxide (trade name: CR-85, manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.25 ⁇ m)] ⁇ Thickener (succinoglycan, trade name: Leozan, manufactured by Sansho Co., Ltd.) -Sugar (dextrin, trade name: Sandec 30, a sugar mixture containing 94% starch saccharified product of 8 sugars or more, manufactured by Sanwa Cornstarch Co., Ltd.) -Phosphoric acid ester-based surfactant (1) (Polyoxyethylene aryl ether phosphoric acid, trade name; Prysurf AL, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) -Phosphoric acid ester-based surfactant (2) (Polyoxyethylene aryl ether phosphoric acid, trade name: Dispersogen
  • the prepared water-based ink composition was evaluated as follows. The results obtained were as shown in Table 2.
  • the ballpoint pen of the first embodiment was prepared and used.
  • the ball diameter of the ballpoint pen was 0.4 mm, and the amount of ink incorporated in the ballpoint pen was 0.9 g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

[課題] 筆記性に優れ、着色剤の凝集、組成物の粘度上昇、または筆跡濃度の低下などの問題が少ない可逆熱変色性水性インキ組成物と、それを用いたレフィルまたは水性ボールペンの提供。 [解決手段] 可逆熱変色性組成物が、有機樹脂からなるマイクロカプセルに内包された可逆熱変色性マイクロカプセル顔料と、N-ビニル-2-ピロリドン重合体と、グリセリンと、水と、 を含んでなる可逆熱変色性水性インキ組成物であって、前記インキ組成物の総質量に対する、前記可逆熱変色性マイクロカプセル顔料、前記N-ビニル-2-ピロリドン重合体、および前記グリセリンの含有率(質量%)をPMC、PPVP、およびPとするとき、0.3≦PMC/(PPVP+P)≦4、かつ0.2≦PPVP/P≦5である、可逆熱変色性水性インキ組成物と、それを内蔵したレフィルまたは水性ボールペン。

Description

可逆熱変色性筆記具用水性インキ組成物、ならびにそれを内蔵したレフィルおよび水性ボールペン
 可逆熱変色性筆記具用水性インキ組成物、およびそれを内蔵したレフィルおよび水性ボールペンに関する。さらに詳細には、温度変化により大きなヒステリシス特性を示して発色と消色の可逆熱変色性を呈し、変色に要した熱又は冷熱の適用を取り去った後にあっても、着色状態と消色状態のいずれかを互変的且つ可逆的に保持する可逆熱変色性筆記具用水性インキ組成物、ならびにそれを内蔵したレフィルおよび水性ボールペンに関するものである。
 従来から、常温域など一定の温度域において、変色前後の状態を互変的に記憶保持できる筆跡等を形成できる、可逆熱変色性筆記具用水性インキ組成物、およびそれを内蔵した筆記具が提案されている。このような筆記具は、ボールペン、マーキングペン、万年筆、または固形筆記体など、多岐にわたって提案されている。可逆熱変色性筆記具用水性インキ組成物を内蔵する筆記具においては熱変色性が重要な性能であるが、一般的な筆記具と同様に、筆記性、筆跡濃度、耐光性など、様々な性能も高いことが望まれる。しかし、熱変色性組成物は、用いられる着色剤が比較的特殊であるため、一般的なインキ組成物と同様の材料や配合比率を採用しても、優れた特性を得ることが難しい。特に可逆熱変色性組成物がマイクロカプセルに内包されたマイクロカプセル顔料を用いた場合には、高い濃度を実現するために顔料の配合率を高くすることが必要となることがあり、従来のインキ組成比をそのまま適用することが困難である。
 特に可逆熱変色性筆記具用水性インキ組成物は、可逆熱変色性着色剤としての有機材料を含むが、組成物中に含まれるその他の有機材料との相互作用が起こることがある。例えば、有機着色剤粒子の凝集、組成物の粘度上昇、筆跡濃度の低下、筆記性の劣化などが起こることがある。
特開2009-292878号
 本発明は、可逆熱変色性着色剤を含む筆記具用水性インキ組成物における問題点を解決し、種々の特性を同時改良することを目的とする。
 本発明による可逆熱変色性水性インキ組成物は、
 (a)電子供与性呈色性有機化合物と、(b)電子受容性化合物と、(c)前記(a)成分および(b)成分の呈色反応の生起温度を決める反応媒体とを含んでなる可逆熱変色性組成物が、有機樹脂からなるマイクロカプセルに内包された可逆熱変色性マイクロカプセル顔料と、
 重合度が2~20であるN-ビニル-2-ピロリドン重合体と、
 グリセリンと、
 水と、
を含んでなる可逆熱変色性水性インキ組成物であって、
 前記インキ組成物の総質量に対する、前記可逆熱変色性マイクロカプセル顔料、前記N-ビニル-2-ピロリドン重合体、および前記グリセリンの含有率(質量%)をPMC、PPVP、およびPとするとき、
0.3≦PMC/(PPVP+P)≦4、かつ
0.2≦PPVP/P≦5
であることを特徴とするものである。
 また、本発明によるレフィルは、前記可逆熱変色性インキ組成物を内蔵したことを特徴とするものである。
 また、本発明による水性ボールペンは、前記可逆熱変色性インキ組成物を内蔵したことを特徴とするものである。
 本発明によれば、筆記性、特にペン先が乾燥した場合であっても書き出し時のかすれが少ない、可逆熱変色性インキ組成物が提供される。さらにこのインキ組成物は、有機着色剤粒子の凝集、組成物の粘度上昇、筆跡濃度の低下などを抑制する効果にも優れている。
感温変色性色彩記憶性組成物の色濃度-温度曲線におけるヒステリシス特性を説明するグラフ。 別の感温変色性色彩記憶性組成物の色濃度-温度曲線におけるヒステリシス特性を説明するグラフ。 本発明の第1の実施の形態のボールペンの例を示す断面図。 本発明の第2の実施の形態のボールペンの例を示す断面図。 本発明のボールペンレフィルの例を示す断面図。 本発明のボールペンおよびボールペンレフィルに備わるペン先(ボールペンチップ)の例を示す断面図。 図6のX-X断面図。 実施例のインキ組成物を用いた場合の耐ドライアップ性評価後の筆跡。 比較例のインキ組成物を用いた場合の耐ドライアップ性評価後の筆跡。
 以下、本発明の実施の形態について、詳細に説明する。
<<可逆熱変色性筆記具用水性インキ組成物>>
 本発明による可逆熱変色性筆記具用水性インキ組成物(以下、簡単に「インキ組成物」と表すことがある)は、可逆熱変色性マイクロカプセル顔料と、N-ビニル-2-ピロリドンの重合体と、グリセリンと、水とを含んでなる。これらの各成分について詳細に説明すると以下の通りである。
<可逆熱変色性マイクロカプセル顔料>
 本発明において可逆熱変色性マイクロカプセル顔料(以下、簡単に「マイクロカプセル顔料」と表すことがある)は、
(a)電子供与性呈色性有機化合物、
(b)電子受容性化合物、および
(c)前記(a)成分及び(b)成分による電子授受反応を特定温度域において可逆的に生起させる反応媒体
を含んでなる。
 マイクロカプセル顔料としては、特公昭51-44706号公報、特公昭51-44707号公報、特公平1-29398号公報等に記載されたものを用いることができる。これらのマイクロカプセル顔料は、所定の温度(変色点)を境としてその前後で変色し、高温側変色点以上の温度域で消色状態、低温側変色点以下の温度域で発色状態を呈するものである。そして、前記両状態のうち常温域では特定の一方の状態しか存在せず、もう一方の状態は、その状態が発現するのに要した熱または冷熱が適用されている間は維持されるが、熱または冷熱の適用がなくなれば常温域で呈する状態に戻るという特徴を有している。ここで、これらのマイクロカプセル顔料に含まれる組成物は、ヒステリシスの程度を示す温度幅(以下、ヒステリシス幅ΔHという)が比較的小さい特性(ΔH=1~7℃)を有する加熱消色型(加熱により消色し、冷却により発色する)の可逆熱変色性組成物である(図1参照)。
 また、特公平4-17154号公報、特開平7-179777号公報、特開平7-33997号公報、特開平8-39936号公報等に記載されているマイクロカプセル顔料を用いることもできる。これらのマイクロカプセル顔料は比較的大きなヒステリシス特性(ΔH=8~50℃)を示すものである。即ち、温度変化による着色濃度の変化をプロットした曲線の形状が、温度を変色温度域より低温側から上昇させていく場合と逆に変色温度域より高温側から下降させていく場合とで大きく異なる経路を辿って変色する(図2参照)。
 可逆熱変色性組成物の色濃度-温度曲線におけるヒステリシス特性について、図を参照しながら詳細に説明すると以下の通りである。
 図2において、縦軸に色濃度、横軸に温度が表されている。温度変化による色濃度の変化は矢印に沿って進行する。ここで、Aは完全消色状態に達する温度t(以下、完全消色温度と称す)における濃度を示す点であり、Bは消色を開始する温度t(以下、消色開始温度と称す)における濃度を示す点であり、Cは発色を開始する温度t(以下、発色開始温度と称す)における濃度を示す点であり、Dは完全発色状態に達する温度t(以下、完全発色温度と称す)における濃度を示す点である。
 変色温度域はtとt間の温度域であり、着色状態と消色状態のいずれかの状態を呈することができ、色濃度の差の大きい領域であるtとtの間の温度域が実質二相保持温度域である。
 また、線分EFの長さが変色のコントラストを示す尺度であり、線分EFの中点を通る線分HGの長さがヒステリシス幅ΔHであり、このΔH値が小さいと変色前後の両状態のうち常温域では特定の一方の状態しか存在しえない。また、ΔH値が大きいと変色前後の各状態の保持が容易となる。
 色彩記憶性を有する可逆熱変色性組成物として具体的には、完全発色温度tを冷凍室、寒冷地等でしか得られない温度、即ち-50~0℃、好ましくは-40~-5℃、より好ましくは-30~-10℃、かつ、完全消色温度tを摩擦体による摩擦熱、ヘアドライヤー等身近な加熱体から得られる温度、即ち45~95℃、好ましくは50~90℃、より好ましくは60~80℃の範囲に特定し、ΔH値を40~100℃に特定することにより、常態(日常の生活温度域)で呈する色彩の保持に有効に機能させることができる。
 以下に(a)、(b)、および(c)の各成分について具体的に化合物を例示する。
 本発明の(a)成分、即ち電子供与性呈色性有機化合物は、色を決める成分であって、顕色剤である(b)成分に電子を供与し、発色する化合物である。
 電子供与性呈色性有機化合物としては、フタリド化合物、フルオラン化合物、スチリノキノリン化合物、ジアザローダミンラクトン化合物、ピリジン化合物、キナゾリン化合物、ビスキナゾリン化合物等が挙げられ、これらのうちフタリド化合物およびフルオラン化合物が好ましい。
 フタリド化合物としては、例えばジフェニルメタンフタリド化合物、フェニルインドリルフタリド化合物、インドリルフタリド化合物、ジフェニルメタンアザフタリド化合物、フェニルインドリルアザフタリド化合物、およびそれらの誘導体などが挙げられ、これらの中でも、フェニルインドリルアザフタリド化合物、ならびにそれらの誘導体が好ましい。
 また、フルオラン化合物としては、例えば、アミノフルオラン化合物、アルコキシフルオラン化合物、およびそれらの誘導体が挙げられる。
 以下に(a)成分に用いることができる化合物を例示する。
 3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド、
 3-(4-ジエチルアミノフェニル)-3-(1-エチル-2-メチルインドール-3-イル)フタリド、
 3,3-ビス(1-n-ブチル-2-メチルインドール-3-イル)フタリド、
 3,3-ビス(2-エトキシ-4-ジエチルアミノフェニル)-4-アザフタリド、
 3-(2-エトキシ-4-ジエチルアミノフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、
 3-(2-ヘキシルオキシ-4-ジエチルアミノフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、
 3-〔2-エトキシ-4-(N-エチルアニリノ)フェニル〕-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、
 3-(2-アセトアミド-4-ジエチルアミノフェニル)-3-(1-プロピルインドール-3-イル)-4-アザフタリド、
 3,6-ビス(ジフェニルアミノ)フルオラン、
 3,6-ジメトキシフルオラン、
 3,6-ジ-n-ブトキシフルオラン、
 2-メチル-6-(N-エチル-N-p-トリルアミノ)フルオラン、
 3-クロロ-6-シクロヘキシルアミノフルオラン、
 2-メチル-6-シクロヘキシルアミノフルオラン、
 2-(2-クロロアミノ)-6-ジブチルアミノフルオラン、
 2-(2-クロロアニリノ)-6-ジ-n-ブチルアミノフルオラン、
 2-(3-トリフルオロメチルアニリノ)-6-ジエチルアミノフルオラン、
 2-(3-トリフルオロメチルアニリノ)-6-ジペンチルアミノフルオラン、
 2-(ジベンジルアミノ)-6-ジエチルアミノフルオラン、
 2-(N-メチルアニリノ)-6-(N-エチル-N-p-トリルアミノ)フルオラン、
 1,3-ジメチル-6-ジエチルアミノフルオラン、
 2-クロロ-3-メチル-6-ジエチルアミノフルオラン、
 2-アニリノ-3-メチル-6-ジエチルアミノフルオラン、
 2-アニリノ-3-メトキシ-6-ジエチルアミノフルオラン、
 2-アニリノ-3-メチル-6-ジ-n-ブチルアミノフルオラン、
 2-アニリノ-3-メトキシ-6-ジ-n-ブチルアミノフルオラン、
 2-キシリジノ-3-メチル-6-ジエチルアミノフルオラン、
 2-アニリノ-3-メチル-6-(N-エチル-N-p-トリルアミノ)フルオラン、
 1,2-ベンツ-6-ジエチルアミノフルオラン、
 1,2-ベンツ-6-(N-エチル-N-イソブチルアミノ)フルオラン、
 1,2-ベンツ-6-(N-エチル-N-イソアミルアミノ)フルオラン、
 2-(3-メトキシ-4-ドデコキシスチリル)キノリン、
 スピロ〔5H-(1)ベンゾピラノ(2,3-d)ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジエチルアミノ)-8-(ジエチルアミノ)-4-メチル、
 スピロ〔5H-(1)ベンゾピラノ(2,3-d)ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジ-n-ブチルアミノ)-8-(ジ-n-ブチルアミノ)-4-メチル、
 スピロ〔5H-(1)ベンゾピラノ(2,3-d)ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジ-n-ブチルアミノ)-8-(ジエチルアミノ)-4-メチル、
 スピロ〔5H-(1)ベンゾピラノ(2,3-d)ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジ-n-ブチルアミノ)-8-(N-エチル-N-i-アミルアミノ)-4-メチル、
 スピロ〔5H-(1)ベンゾピラノ(2,3-d)ピリミジン-5,1’(3’H)イソベンゾフラン〕-3’-オン,2-(ジブチルアミノ)-8-(ジペンチルアミノ)-4-メチル、
 4,5,6,7-テトラクロロ-3-〔4-(ジメチルアミノ)-2-メトキシフェニル〕-3-(1-ブチル-2-メチル-1H-インドール-3-イル)-1(3H)-イソベンゾフラノン、
 4,5,6,7-テトラクロロ-3-〔4-(ジエチルアミノ)-2-エトキシフェニル〕-3-(1-エチル-2-メチル-1H-インドール-3-イル)-1(3H)-イソベンゾフラノン、
 4,5,6,7-テトラクロロ-3-〔4-(ジエチルアミノ)-2-エトキシフェニル〕-3-(1-ペンチル-2-メチル-1H-インドール-3-イル)-1(3H)-イソベンゾフラノン、
 4,5,6,7-テトラクロロ-3-[4-(ジエチルアミノ)-2-メチルフェニル]-3-(1-エチル-2-メチル-1H-インドール-3-イル)-1(3H)-イソベンゾフラノン、
 3’,6’-ビス〔フェニル(2-メチルフェニル)アミノ〕-スピロ[イソベンゾフラン-1(3H),9’-〔9H〕キサンテン]-3-オン、
 3’,6’-ビス〔フェニル(3-メチルフェニル)アミノ〕-スピロ[イソベンゾフラン-1(3H),9’-〔9H〕キサンテン]-3-オン、
 3’,6’-ビス〔フェニル(3-エチルフェニル)アミノ〕-スピロ[イソベンゾフラン-1(3H),9’-〔9H〕キサンテン]-3-オン、
 2,6-ビス(2’-エチルオキシフェニル)-4-(4’-ジメチルアミノフェニル)ピリジン、
 2,6-ビス(2’,4’-ジエチルオキシフェニル)-4-(4’-ジメチルアミノフェニル)ピリジン、
 2-(4’-ジメチルアミノフェニル)-4-メトキシ-キナゾリン、
 4,4’-(エチレンジオキシ)-ビス〔2-(4-ジエチルアミノフェニル)キナゾリン〕
 なお、フルオラン類としては、キサンテン環を形成するフェニル基に置換基を有する化合物の他、キサンテン環を形成するフェニル基に置換基を有すると共にラクトン環を形成するフェニル基にも置換基(例えば、メチル基等のアルキル基、クロロ基等のハロゲン原子)を有する青色や黒色を呈する化合物であってもよい。
 前記(b)成分、即ち電子受容性化合物は、(a)成分から電子を受け取り、(a)成分の顕色剤として機能する化合物である。
 前記電子受容性化合物としては、活性プロトンを有する化合物群、偽酸性化合物群(酸ではないが、組成物中で酸として作用して(a)成分を発色させる化合物群)、電子空孔を有する化合物群等から選択される化合物があり、これらの中でも活性プロトンを有する化合物群から選択される化合物が好ましい。
 活性プロトンを有する化合物群としては、例えば、フェノール性水酸基を有する化合物及びその誘導体、カルボン酸及びその誘導体、好ましくは、芳香族カルボン酸及びその誘導体、炭素数2~5の脂肪族カルボン酸及びその誘導体、2-ヒドロキシカルボン酸誘導体、N-置換アミノ酸誘導体、酸性リン酸エステル及びその誘導体、アゾ-ル系化合物及びその誘導体、1,2,3-トリアゾール及びその誘導体、環状カルボスルホイミド類、炭素数2~5のハロヒドリン類、スルホン酸及びその誘導体、無機酸類等が挙げられる。
 偽酸性化合物群としては、例えば、前記フェノール性水酸基を有する化合物の金属塩、前記カルボン酸の金属塩、前記酸性リン酸エステルの金属塩、前記スルホン酸の金属塩、芳香族カルボン酸無水物、脂肪族カルボン酸無水物、芳香族カルボン酸とスルホン酸との混合酸の無水物、シクロオレフィンジカルボン酸無水物、尿素及びその誘導体、チオ尿素及びその誘導体、グアニジン及びその誘導体、ハロゲン化アルコール類等が挙げられる。
 電子空孔を有する化合物群としては、例えば、硼酸塩類、硼酸エステル類、無機塩類等が挙げられる。
 これらの中でも、有効な熱変色特性を発現させることができることから、フェノール性水酸基を有する化合物が好ましい。
 前記フェノール性水酸基を有する化合物はモノフェノール化合物からポリフェノール化合物まで広く含まれ、更にビス型、トリス型フェノール等及びフェノール-アルデヒド縮合樹脂等もこれに含まれる。フェノール性水酸基を有する化合物の中でも、少なくともベンゼン環を2以上有するものが好ましい。また、これら化合物は置換基を有していてもよく、置換基としてアルキル基、アリール基、アシル基、アルコキシカルボニル基、カルボキシ基、及びそのエステル又はアミド基、ハロゲン基等が挙げられる。
 前記フェノール性水酸基を有する化合物の金属塩等が含む金属としては、例えば、ナトリウム、カリウム、カルシウム、亜鉛、ジルコニウム、アルミニウム、マグネシウム、ニッケル、コバルト、スズ、銅、鉄、バナジウム、チタン、鉛、及びモリブデン等が挙げられる。
 フェノール性水酸基を1つ有する化合物としては、
 フェノール、
 o-クレゾール、
 m-クレゾール、
 p-クレゾール、
 4-エチルフェノール、
 4-n-プロピルフェノール、
 4-n-ブチルフェノール、
 2-tert-ブチルフェノール、
 3-tert-ブチルフェノール、
 4-tert-ブチルフェノール、
 4-n-ペンチルフェノール、
 4-tert-ペンチルフェノール、
 4-n-オクチルフェノール、
 4-tert-オクチルフェノール、
 4-n-ノニルフェノール、
 4-n-ドデシルフェノール、
 3-n-ペンタデシルフェノール、
 4-n-ステアリルフェノール、
 1-(4-ヒドロキシフェニル)デカン-1-オン、
 4-クロロフェノール、
 4-ブロモフェノール、
 4-トリフルオロメチルフェノール、
 4-メチルチオフェノール、
 4-ニトロフェノール、
 2-フェニルフェノール、
 4-フェニルフェノール、
 2-ベンジルフェノール、
 2-ベンジル-4-クロロフェノール、
 4-クミルフェノール、
 4-ヒドロキシベンゾフェノン、
 4,4′-ジヒドロキシベンゾフェノン、
 4-クロロ-4′-ヒドロキシベンゾフェノン、
 4-フルオロ-4′-ヒドロキシベンゾフェノン、
 4-シクロヘキシルフェノール、
 2-ヒドロキシベンジルアルコール、
 3-ヒドロキシベンジルアルコール、
 4-ヒドロキシベンジルアルコール、
 4-(2-ヒドロキシエチル)フェノール、
 3-メトキシフェノール、
 4-エトキシフェノール、
 4-n-プロポキシフェノール、
 4-n-ブトキシフェノール、
 4-n-ヘプチルオキシフェノール、
 4-(2-メトキシエチル)フェノール、
 α-ナフトール、
 β-ナフトール、
 2,3-ジメチルフェノール、
 2,4-ジメチルフェノール、
 2,6-ジメチルフェノール、
 2,6-ジ-tert-ブチルフェノール、
 2,4-ジクロロフェノール、
 2,4-ジフルオロフェノール、チモール、
 3-メチル-4-メチルチオフェノール、
 2-tert-ブチル-5-メチルフェノール、
 2,6-ビス(ヒドロキシメチル)-4-メチルフェノール、
 2,3,5-トリメチルフェノール、
 2,6-ビス(ヒドロキシメチル)-4-tert-オクチルフェノール、
 6-ヒドロキシ-1,3-ベンゾオキサチオール-2-オン、
 2,4-ビス(フェニルスルホニル)フェノール、
 2,4-ビス(フェニルスルホニル)-5-メチルフェノール、
 2,4-ビス(4-メチルフェニルスルホニル)フェノール、
 2-フェニルフェノール、
 4-フェニルフェノール、
 2,6-ジフェニルフェノール、
 3-ベンジルビフェニル-2-オール、
 3,5-ジベンジルビフェニル-4-オール、
 4-シアノ-4′-ヒドロキシビフェニル、
 1-ヒドロキシベンゾトリアゾール、
 1-ヒドロキシ-5-メチルベンゾトリアゾール、
 1-ヒドロキシ-5-クロロベンゾトリアゾール、
 1-ヒドロキシ-5-メトキシベンゾトリアゾール、
 1-ヒドロキシ-4-ベンゾイルアミノベンゾトリアゾール、
 1-ヒドロキシ-4,5,6,7-テトラクロロベンゾトリアゾール、
 1,4-ヒドロキシベンゾトリアゾール、
 1-ヒドロキシ-5-ニトロベンゾトリアゾール、
 1-ヒドロキシ-5-フェニルベンゾトリアゾール、
 1-ヒドロキシ-5-ベンジルベンゾトリアゾール、
 1-ヒドロキシ-5-エチルベンゾトリアゾール、
 1-ヒドロキシ-5-n-オクチルベンゾトリアゾール、
 1-ヒドロキシ-5-n-ブチルベンゾトリアゾール、
 4-ヒドロキシ安息香酸n-ブチル、
 4-ヒドロキシ安息香酸n-オクチル、
 4-ヒドロキシ安息香酸2-ヘプタデカフルオロオクチルエタン、
 4-ヒドロキシ安息香酸ベンジル、
 4-ヒドロキシ安息香酸ベンジルエステル、
 4-ヒドロキシ安息香酸-o-メチルベンジル、
 4-ヒドロキシ安息香酸-m-メチルベンジル、
 4-ヒドロキシ安息香酸-p-メチルベンジル、
 4-ヒドロキシ安息香酸-p-エチルベンジル、
 4-ヒドロキシ安息香酸-p-プロピルベンジル、
 4-ヒドロキシ安息香酸-p-tert-ブチルベンジル、
 4-ヒドロキシ安息香酸フェニルエチル、
 4-ヒドロキシ安息香酸-o-メチルフェニルエチル、
 4-ヒドロキシ安息香酸-m-メチルフェニルエチル、
 4-ヒドロキシ安息香酸-p-メチルフェニルエチル、
 4-ヒドロキシ安息香酸-p-エチルフェニルエチル、
 4-ヒドロキシ安息香酸-p-プロピルフェニルエチル、
 4-ヒドロキシ安息香酸-p-tert-ブチルフェニルエチル
等が挙げられる。
 フェノール性水酸基を2つ有する化合物としては、レゾルシン、
 2-メチルレゾルシン、
 4-n-ヘキシルレゾルシン、
 4-n-オクチルレゾルシン、
 4-tert-オクチルレゾルシン、
 4-ベンゾイルレゾルシン、
 4-ニトロレゾルシン、
 β-レゾルシン酸メチル、
 β-レゾルシン酸ベンジル、
 2-クロロ-4-ペンタノイルレゾルシン、
 6-クロロ-4-ペンタノイルレゾルシン、
 2-クロロ-4-ヘキサノイルレゾルシン、
 6-クロロ-4-ヘキサノイルレゾルシン、
 2-クロロ-4-プロパノイルレゾルシン、
 6-クロロ-4-プロパノイルレゾルシン、
 2,6-ジクロロ-4-プロパノイルレゾルシン、
 6-フルオロ-4-プロパノイルレゾルシン、
 2-クロロ-4-フェニルアセチルレゾルシン、
 4-フェニルアセチル-6-クロロレゾルシン、
 2-クロロ-4-β-フェニルプロパノイルレゾルシン、
 6-クロロ-4-β-フェニルプロパノイルレゾルシン、
 2-クロロ-4-フェノキシアセチルレゾルシン、
 6-クロロ-4-フェノキシアセチルレゾルシン、
 4-ベンゾイル-2-クロロレゾルシン、
 6-クロロ-4-m-メチルベンゾイルレゾルシン、
 4-〔1′,3′,4′,9′a-テトラヒドロ-6′-ヒドロキシスピロ(シクロヘキサン-1,9′-[9H]-キサンテン)-4′a-[2H]-イル〕-1,3-ベンゼンジオール、
 ヒドロキノン、
 メチルヒドロキノン、
 トリメチルヒドロキノン、カテコール、
 4-tert-ブチルカテコール、
 1,6-ジヒドロキシナフタレン、
 2,7-ジヒドロキシナフタレン、
 1,5-ジヒドロキシナフタレン、
 2,6-ジヒドロキシナフタレン、
 2,4-ジヒドロキシベンゾフェノン、
 2,4-ジヒドロキシ-2′-メチルベンゾフェノン、
 2,4-ジヒドロキシ-3′-メチルベンゾフェノン、
 2,4-ジヒドロキシ-4′-メチルベンゾフェノン、
 2,4-ジヒドロキシ-4′-エチルベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-プロピルベンゾフェノン、
 2,4-ジヒドロキシ-4′-イソプロピルベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-ブチルベンゾフェノン、2,4-ジヒドロキシ-4′-イソブチルベンゾフェノン、
 2,4-ジヒドロキシ-4′-tert-ブチルベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-ペンチルベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-ヘキシルベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-ヘプチルベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-オクチルベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-デシルベンゾフェノン、
 2,4-ジヒドロキシ-2′,3′-ジメチルベンゾフェノン、
 2,4-ジヒドロキシ-2′,4′-ジメチルベンゾフェノン、
 2,4-ジヒドロキシ-2′,5′-ジメチルベンゾフェノン、
 2,4-ジヒドロキシ-2′,6′-ジメチルベンゾフェノン、
 2,4-ジヒドロキシ-3′,4′-ジメチルベンゾフェノン、
 2,4-ジヒドロキシ-3′,5′-ジメチルベンゾフェノン、
 2,4-ジヒドロキシ-2′,4′,6′-トリメチルベンゾフェノン、
 2,4-ジヒドロキシ-2′-メトキシベンゾフェノン、
 2,4-ジヒドロキシ-3′-メトキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-メトキシベンゾフェノン、
 2,4-ジヒドロキシ-2′-エトキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-エトキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-プロポキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-イソプロポキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-ブトキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-イソブトキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-ペンチルオキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-ヘキシルオキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-ヘプチルオキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-オクチルオキシベンゾフェノン、
 2,4-ジヒドロキシ-4′-n-ノニルオキシベンゾフェノン、
 2,4-ジヒドロキシ-2′,3′-ジメトキシベンゾフェノン、
 2,4-ジヒドロキシ-2′,4′-ジメトキシベンゾフェノン、
 2,4-ジヒドロキシ-2′,5′-ジメトキシベンゾフェノン、
 2,4-ジヒドロキシ-2′,6′-ジメトキシベンゾフェノン、
 2,4-ジヒドロキシ-3′,4′-ジメトキシベンゾフェノン、
 2,4-ジヒドロキシ-3′,5′-ジメトキシベンゾフェノン、
 2,4-ジヒドロキシ-3′,4′-ジエトキシベンゾフェノン、
 2,4-ジヒドロキシ-2′,3′,4′-トリメトキシベンゾフェノン、
 2,4-ジヒドロキシ-2′,3′,6′-トリメトキシベンゾフェノン、
 2,4-ジヒドロキシ-3′,4′,5′-トリメトキシベンゾフェノン、
 2,4-ジヒドロキシ-3′,4′,5′-トリエトキシベンゾフェノン
等が挙げられる。
 更にビス型フェノールの化合物としては、
 1,1-ビス(4-ヒドロキシフェニル)エタン、
 1,1-ビス(4-ヒドロキシフェニル)プロパン、
 1,1-ビス(4-ヒドロキシフェニル)n-ブタン、
 1,1-ビス(4-ヒドロキシフェニル)n-ペンタン、
 1,1-ビス(4-ヒドロキシフェニル)n-ヘキサン、
 1,1-ビス(4-ヒドロキシフェニル)n-ヘプタン、
 1,1-ビス(4-ヒドロキシフェニル)n-オクタン、
 1,1-ビス(4-ヒドロキシフェニル)n-ノナン、
 1,1-ビス(4-ヒドロキシフェニル)n-デカン、
 1,1-ビス(4-ヒドロキシ-3-メチルフェニル)デカン、
 1,1-ビス(4-ヒドロキシフェニル)n-ドデカン、
 1,1-ビス(4-ヒドロキシフェニル)-2-メチルプロパン、
 1,1-ビス(4-ヒドロキシフェニル)-3-メチルブタン、
 1,1-ビス(4-ヒドロキシフェニル)-3-メチルペンタン、
 1,1-ビス(4-ヒドロキシフェニル)-2,3-ジメチルペンタン、
 1,1-ビス(4-ヒドロキシフェニル)-2-エチルブタン、
 1,1-ビス(4-ヒドロキシフェニル)-2-エチルヘキサン、
 1,1-ビス(4-ヒドロキシフェニル)-3,7-ジメチルオクタン、
 1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、
 1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、
 1,1-ビス(4-ヒドロキシ-3-メチル)シクロヘキサン、
 ジフェノール酸、
 1-フェニル-1,1-ビス(4-ヒドロキシフェニル)メタン、
 2,2-ビス(4-ヒドロキシフェニル)プロパン、
 2,2-ビス(4-ヒドロキシフェニル)n-ブタン、
 2,2-ビス(4-ヒドロキシフェニル)n-ペンタン、
 2,2-ビス(4-ヒドロキシフェニル)n-ヘキサン、
 2,2-ビス(4-ヒドロキシフェニル)n-へプタン、
 2,2-ビス(4-ヒドロキシフェニル)n-オクタン、
 2,2-ビス(4-ヒドロキシフェニル)n-ノナン、
 2,2-ビス(4-ヒドロキシフェニル)n-デカン、
 2,2-ビス(4-ヒドロキシフェニル)n-ドデカン、
 2,2-ビス(4-ヒドロキシフェニル)-6,10,14-トリメチルペンタデカン、
 1-フェニル-1,1-ビス(4-ヒドロキシフェニル)エタン、
 2,2-ビス(4-ヒドロキシフェニル)メチルプロピオネート、
 2,2-ビス(4-ヒドロキシフェニル)ブチルプロピオネート、
 2,2-ビス(4-ヒドロキシ-3-メチルフェニル)メチルプロピオネート、
 2,2-ビス(4-ヒドロキシフェニル)エチルプロピオネート、
 2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、
 2,2-ビス(4-ヒドロキシフェニル)-4-メチルヘキサン、
 2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、
 2,2-ビス(3,5-ジヒドロキシメチル-4-ヒドロキシフェニル)ヘキサフルオロプロパン、
 2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、
 2,2-ビス(4-ヒドロキシ-3-メチルフェニル)ブタン、
 2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、
 2,2-ビス(3-sec-ブチルフェニル-4-ヒドロキシ)プロパン、
 2,2-ビス(4-ヒドロキシ-3-フェニルフェニル)プロパン、
 2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、
 2,2-ビス(3-フルオロ-4-ヒドロキシフェニル)プロパン、
 2,2-ビス(3,5-ジヒドロキシメチル-4-ヒドロキシフェニル)プロパン、
 9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、
 1,3-ビス〔2-(4-ヒドロキシフェニル)-2-プロピル〕ベンゼン、
 1,4-ビス〔2-(4-ヒドロキシフェニル)-2-プロピル〕ベンゼン、
 3,3-ビス(4-ヒドロキシフェニル)オキシインドール、
 3,3-ビス(4-ヒドロキシ-3-メチルフェニル)オキシインドール、
 ビス(2-ヒドロキシフェニル)メタン、
 ビス(2-ヒドロキシ-5-メチルフェニル)メタン、
 ビス(2-ヒドロキシ-3-ヒドロキシメチル-5-メチル)メタン、
 4,4′-〔1,4-フェニレンビス(1-メチルエチリデン)〕ビス(2-メチルフェノール)、
 1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)シクロヘキサン、
 3,3-エチレンオキシジフェノール、
 1,4-ビス(4-ヒドロキシベンゾアート)-3-メチルベンゼン、
 4,4″-ジヒドロキシ-3″-メチル-p-ターフェニル、
 4,4″-ジヒドロキシ-3″-イソプロピル-p-ターフェニル、
 2,2-ジメチル-1,3-ビス(4-ヒドロキシベンゾイルオキシ)プロパン、
 2,2′-ビフェノール、
 4,4′″-ジヒドロキシ-p-クアテルフェニル、
 4,4-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニルチオエチル)エーテル
 ビス(4-ヒドロキシフェニル)スルホン、
 4-ベンジルオキシ-4′-ヒドロキシジフェニルスルホン、
 4-(4-メチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(4-エチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(4-n-プロピルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(4-イソプロピルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(4-n-ブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(4-イソブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(4-sec-ブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(4-tert-ブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(3-メチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(3-エチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(3-n-プロピルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(3-イソプロピルベンジルオキシ)-4′-ジヒドロキシフェニルスルホン、
 4-(3-n-ブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(3-イソブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(3-sec-ブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(3-tert-ブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(2-メチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(2-エチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(2-n-プロピルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(2-イソプロピルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(2-n-ブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(2-イソブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(2-sec-ブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(2-tert-ブチルベンジルオキシ)-4′-ヒドロキシジフェニルスルホン、
 2,4′-ジヒドロキシジフェニルスルホン、
 3,4′-ジヒドロキシジフェニルスルホン、
 4-ヒドロキシジフェニルスルホン、
 4-メチル-4′-ヒドロキジシフェニルスルホン、
 4-エチル-4′-ヒドロキシジフェニルスルホン、
 4-n-プロピル-4′-ヒドロキシジフェニルスルホン、
 4-イソプロピル-4′-ヒドロキシジフェニルスルホン、
 4-クロロ-4′-ヒドロキシジフェニルスルホン、
 4-フルオロ-4′-ヒドロキシジフェニルスルホン、
 4-クロロ-2-メチル-4′-ヒドロキシジフェニルスルホン、
 4-メトキシ-4′-ヒドロキシジフェニルスルホン、
 4-エトキシ-4′-ヒドロキシジフェニルスルホン、
 4-n-プロポキシ-4′-ヒドロキシジフェニルスルホン、
 4-イソプロポキシ-4′-ヒドロキシジフェニルスルホン、
 4-n-ブトキシ-4′-ヒドロキシジフェニルスルホン、
 4-イソブトキシ-4′-ヒドロキシジフェニルスルホン、
 4-sec-ブトキシ-4′-ヒドロキシジフェニルスルホン、
 4-tert-ブトキシ-4′-ヒドロキシジフェニルスルホン、
 4-n-ペンチルオキシ-4′-ヒドロキシジフェニルスルホン、
 4-イソペンチルオキシ-4′-ヒドロキシジフェニルスルホン、
 4-(1-プロペニルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(2-プロペニルオキシ)-4′-ヒドロキシジフェニルスルホン、
 4-ベンジルオキシ-4′-ヒドロキシジフェニルスルホン、
 4-(β-フェノキシエトキシ)-4′-ヒドロキシジフェニルスルホン、
 4-(β-フェノキシプロポキシル)-4′-ヒドロキシジフェニルスルホン、
 ビス(2-アリル-4-ヒドロキシジフェニル)スルホン、
 ビス〔4-ヒドロキシ-3-(2-プロペニル)フェニル〕スルホン、
 ビス(3,5-ジブロモ-4-ヒドロキシフェニル)スルホン、
 ビス(3,5-ジクロロ-4-ヒドロキシフェニル)スルホン、
 ビス(3-フェニル-4-ヒドロキシフェニル)スルホン、
 ビス(4-ヒドロキシ-3-n-プロピルフェニル)スルホン、
 ビス(4-ヒドロキシ-3-メチルフェニル)スルホン、
 3,4-ジヒドロキシジフェニルスルホン、
 3′,4′-ジヒドロキシ-4-メチルジフェニルスルホン、
 3,4,4′-トリヒドロキシジフェニルスルホン、
 ビス(3,4-ジヒドロキシフェニル)スルホン、
 2,3,4-トリヒドロキシジフェニルスルホン、
 4-イソプロポキシ-4′-ヒドロキシジフェニルスルホン、
 4-n-プロポキシ-4′-ヒドロキシジフェニルスルホン、
 4-アリルオキシ-4′-ヒドロキシジフェニルスルホン、
 4-ベンジルオキシ-4′-ヒドロキシジフェニルスルホン、
 4-(2-プロぺニルオキシ)-4′-ヒドロキシジフェニルスルホン、
 3-ベンジル-4-ベンジルオキシ-4′-ヒドロキシジフェニルスルホン、
 3-フェネチル-4-フェネチルオキシ-4′-ヒドロキシジフェニルスルホン、
 3-メチルベンジル-4-メチルベンジルオキシ-4′-ヒドロキシジフェニルスルホン、
 4-ベンジルオキシ-3′-ベンジル-4′-ヒドロキシジフェニルスルホン、
 4-フェネチルオキシ-3′-フェネチル-4′-ヒドロキシジフェニルスルホン、
 4-メチルベンジルオキシ-3′-メチルベンジル-4′-ヒドロキシジフェニルスルホン、
 α,α′-ビス{4-(p-ヒドロキシフェニルスルホン)フェノキシ}-p-キシレン、
 4,4′-{オキシビス(エチレンオキシド-p-フェニレンスルホニル)}ジフェノール
 ビス(4-ヒドロキシフェニル)スルフィド、
 ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、
 ビス(3,5-ジメチル-4-ヒドロキシフェニル)スルフィド、
 ビス(3-エチル-4-ヒドロキシフェニル)スルフィド、
 ビス(3,5-ジエチル-4-ヒドロキシフェニル)スルフィド、
 ビス(4-ヒドロキシ-3-n-プロピルフェニル)スルフィド、
 ビス(3,5-ジ-n-プロピル-4-ヒドロキシフェニル)スルフィド、
 ビス(3-tert-ブチル-4-ヒドロキシフェニル)スルフィド、
 ビス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)スルフィド、
 ビス(4-ヒドロキシ-3-n-ペンチルフェニル)スルフィド、
 ビス(3-n-ヘキシル-4-ヒドロキシフェニル)スルフィド、
 ビス(3-n-ヘプチル-4-ヒドロキシフェニル)スルフィド、
 ビス(5-tert-オクチル-2-ヒドロキシフェニル)スルフィド、
 ビス(2-ヒドロキシ-3-tert-オクチルフェニル)スルフィド、
 ビス(2-ヒドロキシ-5-n-オクチル-フェニル)スルフィド、
 ビス(5-クロロ-2-ヒドロキシフェニル)スルフィド、
 ビス(3-シクロヘキシル-4-ヒドロキシフェニル)スルフィド、
 ビス(4-ヒドロキシフェニルチオエトキシ)メタン、
 1,5-(4-ヒドロキシフェニルチオ)-3-オキシペンタン、
 1,8-ビス(4-ヒドロキシフェニルチオ)-3,6-ジオキサオクタン
等が挙げられる。
 フェノール性水酸基を3つ有する化合物としては、ピロガロール、フロログルシノール、フロログルシノールカルボン酸、没食脂酸、没食子酸オクチル、没食子酸ドデシル等が挙げられる。
 更に、トリス型フェノールの化合物としては、
 4,4′,4″-メチリジントリスフェノール、
 4,4′,4″-メチリジントリス(2-メチルフェノール)、
 4,4′-〔(2-ヒドロキシフェニル)メチレン〕ビス(2,3,5-トリメチルフェノール)、
 4,4′-〔(4-ヒドロキシフェニル)メチレン〕ビス(2-メチルフェノール)、
 4,4′-〔(4-ヒドロキシフェニル)メチレン〕ビス(2,6-ジメチルフェノール)、
 4,4′-〔(4-ヒドロキシ-3-メトキシフェニル)メチレン〕ビスフェノール、
 4,4′-〔(4-ヒドロキシフェニル)メチレン〕ビス(2-シクロヘキシル-5-メチルフェノール)、
 4,4′,4″-エチリジントリスフェノール、
 4,4′,4″-エチリジントリス(2-メチルフェノール)、
 4,4′-〔(2-ヒドロキシフェニル)メチレン〕ビス(2-シクロヘキシル-5-メチルフェノール)、
 2,6-ビス〔(2-ヒドロキシ-5-メチルフェニル)メチル〕-4-メチルフェノール、
 2,4-ビス〔(2-ヒドロキシ-5-メチルフェニル)メチル〕-6-シクロヘキシルフェノール、
 4,4′-[1-{4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}メチリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}プロピリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}ブチリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}ペンチリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}ヘキシリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}ヘプチリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}イソブチリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}ネオペンチリデン]ビスフェノール、
 2,2′-[1-{4-〔1-(2-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビスフェノール、
 3,3′-[1-{4-〔1-(3-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(3-フルオロ-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-フルオロフェノール)、
 4,4′-[1-{4-〔1-(3-クロロ-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-クロロフェノール)、
 4,4′-[1-{4-〔1-(3-ブロモ-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-ブロモフェノール)、
 4,4′-[1-{4-〔1-(4-ヒドロキシ-3-メチルフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-メチルフェノール)、
 4,4′-[1-{4-〔1-(3-エチル-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-エチルフェノール)、
 4,4′-[1-{4-〔1-(3-tert-ブチル-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-tert-ブチルフェノール)、
 4,4′-[1-{4-〔1-(4-ヒドロキシ-3-トリフルオロメチルフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-トリフルオロメチルフェノール)、
 1,1-ビス(4-ヒドロキシフェニル)-4-(4-ヒドロキシ-α-エチル)ベンジルシクロヘキサン、
 4,4′-〔(3-エトキシ-4-ヒドロキシシフェニル)メチレン〕ビスフェノール、
 4,4′-〔(3-ヒドロキシフェニル)メチレン〕ビス(2,6-ジメチルフェノール)、
 2,2′-〔(4-ヒドロキシフェニル)メチレン〕ビス(3,5-ジメチルフェノール)、
 4,4′-〔(4-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(2,6-ジメチルフェノール)、
 2,2′-〔(2-ヒドロキシフェニル)メチレン〕ビス(3,5,6-トリメチルフェノール)、
 4,4′-〔(3-ヒドロキシフェニル)メチレン〕ビス(2,3,6-トリメチルフェノール)、
 4,4′-〔(4-ヒドロキシフェニル)メチレン〕ビス(2,3,6-トリメチルフェノール)、
 4,4′-〔(3-ヒドロキシフェニル)メチレン〕ビス(2-シクロヘキシル-5-メチルフェノール)、
 4,4′-〔(4-ヒドロキシフェニル-3-メトキシ)メチレン〕ビス(2-シクロヘキシル-5-メチルフェノール)、
 1,1-ビス(4-ヒドロキシルフェニル)-4-ヒドロキシフェニルシクロヘキサン、
 4,4′-〔3-(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-3-フェニル)プロピリデン〕ビス(2-シクロヘキシル-5-メチルフェノール)、
 4,4′-〔(2-ヒドロキシフェニル)メチレン〕ビス(2-メチルフェノール)、
 2,4′,4″-メチリジントリスフェノール、
 4,4′-〔(2-ヒドロキシフェニル)メチレン〕ビス(3-メチルフェノール)、
 4,4′-〔4-(4-ヒドロキシフェニル)-sec-ブチリデン〕ビス(4-ヒドロキシフェノール)、
 2,2′-〔(3-ヒドロキシフェニル)メチレン〕ビス(3,5-ジメチルフェノール)、
 4,4′-〔(2-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(2,5-ジメチルフェノール)、
 4,4′-〔(2-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(2,6-ジメチルフェノール)、
 2,2′-〔(2-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(3,5-ジメチルフェノール)、
 2,2′-〔(3-ヒドロキシ-4-メトキシフェニル)メチレン〕ビス(3,5-ジメチルフェノール)、
 2,2′-〔(4-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(3,5-ジメチルフェノール)、
 4,4′-〔(2-ヒドロキシフェニル)メチレン〕ビス(2-イソプロピルフェノール)、
 4,4′-〔(3-ヒドロキシフェニル)メチレン〕ビス(2-イソプロピルフェノール)、
 4,4′-〔(4-ヒドロキシフェニル)メチレン〕ビス(2-イソプロピルフェノール)、
 2,2′-〔(3-ヒドロキシフェニル)メチレン〕ビス(3,5,6-トリメチルフェノール)、
 2,2′-〔(4-ヒドロキシフェニル)メチレン〕ビス(3,5,6-トリメチルフェノール)、
 2,2′-〔(4-3-エトキシ-4-ヒドロキシフェニル)メチレン〕ビス(3,5-ジメチルフェノール)、
 1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-4-(4-ヒドロキシフェニル)シクロヘキサン、
 4,4′-〔(2-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(2-イソプロピルフェノール)、
 4,4′-〔(3-ヒドロキシ-4-メトキシフェニル)メチレン〕ビス(2-イソプロピルフェノール)、
 4,4′-〔(4-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(2-イソプロピルフェノール)、
 2,2′-〔(2-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(3,5,6-トリメチルフェノール、
 2,2′-〔(3-ヒドロキシ-4-メトキシフェニル)メチレン〕ビス(3,5,6-トリメチルフェノール)、
 2,2′-〔(4-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(3,5,6-トリメチルフェノール)、
 4,4′-〔(3-エトキシ-4-ヒドロキシフェニル)メチレン〕ビス(2-イソプロピルフェノール)、
 2,2′-〔(3-エトキシ-4-ヒドロキシフェニル)メチレン〕ビス(3,5,6-トリメチルフェノール)、
 4,4′-〔(3-エトキシ-4-ヒドロキシフェニル)メチレン〕ビス(2,3,6-トリメチルフェノール)、
 1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-4-(4-ヒドロキシフェニル)シクロヘキサン、
 4,4′-〔(4-ヒドロキシ-3-メトキシフェニル)メチレン〕ビス(2-tert-ブチル-5-メチルフェノール)、
 4,4′-〔(2-ヒドロキシフェニル)メチレン〕ビス(2-シクロヘキシルフェノール)、
 4,4′-〔(3-ヒドロキシフェニル)メチレン〕ビス(2-シクロヘキシルフェノール)、
 4,4′-〔(3-エトキシ-4-ヒドロキシフェニル)メチレン〕ビス(2-tert-ブチル-6-メチルフェノール)、
 4,4′-〔(3-メトキシ-2-ヒドロキシフェニル)メチレン〕ビス(2-シクロヘキシルフェノール)、
 4,4′-〔(3-ヒドロキシ-4-メトキシフェニル)メチレン〕ビス(2-シクロヘキシルフェノール)、
 4,4′-[1-{4-〔1-(3-フルオロ-4-ヒドロキシロフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-tert-ブチルフェノール)、
 4,4′-[1-{4-〔1-(3,5-ジメチル-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2,6-ジメチルフェノール)、
 4,4′-〔(3-エトキシ-4-ヒドロキシフェニル)メチレン〕ビス(2-シクロヘキシル-5-メチルフェノール)、
 4,4′-〔(3-シクロヘキシル-4-ヒドロキシフェニル)エチリデン〕ビス(2-シクロヘキシルフェノール)、
 4,4′-〔(5-シクロヘキシル-4-ヒドロキシ-2-メトキシフェニル)エチリデン〕ビス(2-シクロヘキシル-5-メチルフェノール)、
 4,4′-[1-{4-〔1-(3-シクロヘキシル-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-シクロヘキシルフェノール)、
 4,4′-[1-{4-〔1-(3-フルオロ-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビスフェノール、
 4,4′-[1-{4-〔1-(3-フルオロ-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2-メチルフェノール)、
 4,4′-[1-{4-〔1-(3-フルオロ-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス(2,6-ジメチルフェノール)、
 2,6-ビス〔(5-フルオロ-2-ヒドロキシフェニル)メチル〕-4-メチルフェノール、
 2,6-ビス〔(3,5-ジメチル-4-ヒドロキシフェニル)メチル〕-4-メチルフェノール、
 2,6-ビス〔(4-ヒドロキシフェニル)メチル〕-4-メチルフェノール、
 2,6-ビス〔(4-ヒドロキシフェニル)メチル〕-4-エチルフェノール、
 2,4-ビス〔(4-ヒドロキシ-3-メチルフェニル)メチル〕-6-メチルフェノール、
 2,6-ビス〔(4-ヒドロキシ-3-メチルフェニル)メチル〕-4-メチルフェノール、
 2,6-ビス〔(4-ヒドロキシ-3-メチルフェニル)メチル〕-4-エチルフェノール、
 2,6-ビス〔(2-ヒドロキシ-5-メチルフェニル)メチル〕-4-エチルフェノール、
 2,6-ビス〔(3,5-ジメチル-2-ヒドロキシフェニル)メチル〕-4-メチルフェノール、
 2,6-ビス〔(2,4-ジメチル-6-ヒドロキシフェニル)メチル〕-4-メチルフェノール、
 2,4-ビス〔(4-ヒドロキシフェニル)メチル〕-6-シクロヘキシルフェノール、
 2,6-ビス〔(2,5-ジメチル-4-ヒドロキシフェニル)メチル〕-3,4-ジメチルフェノール、
 2,6-ビス〔(2,5-ジメチル-4-ヒドロキシフェニル)メチル〕-4-エチルフェノール、
 2,6-ビス〔(4-ヒドロキシ-2,3,6-トリメチルフェニル)メチル〕-4-メチルフェノール、
 2,4-ビス〔(4-ヒドロキシ-3-メチルフェニル)メチル〕-6-シクロヘキシルフェノール、
 2,6-ビス〔(4-ヒドロキシ-3-メチルフェニル)メチル〕-4-シクロヘキシルフェノール、
 2,6-ビス〔(2-ヒドロキシ-5-メチルフェニル)メチル〕-4-シクロヘキシルフェノール、
 2,6-ビス〔(4-ヒドロキシ-2,3,5-トリメチルフェニル)メチル〕-4-エチルフェノール、
 2,4-ビス〔(2,5-ジメチル-4-ヒドロキシフェニル)メチル〕-6-シクロヘキシルフェノール、
 4,4′,4″-メチリジントリス(2,6-ジメチルフェノール)、
 α-(4-ヒドロキシ-3-メチルフェニル)-α,α′-ビス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼン、
 α′-(4-ヒドロキシ-3-メチルフェニル)-α,α-ビス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼン、
 α,α-ビス(4-ヒドロキシ-3-メチルフェニル)-α′-(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼン、
 α,α′-ビス(4-ヒドロキシ-3-メチルフェニル)-α-(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼン、
 1,1-ビス(4-ヒドロキシフェニル)-4-〔1-(4-ヒドロキシフェニル)-1-メチルプロピル〕シクロヘキサン、
 2,6-ビス〔(3,5-ジメチル-4-ヒドロキシフェニル)メチル〕-4-エチルフェノール、
 1,1′-ビス(4-ヒドロキシフェニル)-4-〔1-(4-ヒドロキシフェニル)プロピル〕シクロヘキサン、
 1,1′-ビス(4-ヒドロキシ-3-メチルフェニル)-4-〔1-(4-ヒドロキシフェニル)プロピル〕シクロヘキサン、
 1,1′-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-4-〔1-(4-ヒドロキシフェニル)プロピル〕シクロヘキサン、
 1-(4-ヒドロキシフェニル)-1-〔4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル〕-4-イソプロピルシクロヘキサン、
 4,4′-〔3-(2,5-ジメチル-4-ヒドロキシフェニル)ブチレン〕ビス(2,5-ジメチルフェノール)、
 1,3,5-トリ(4-ヒドロキシ-3-フェニルフェニル)アダマンタン、
 1,3,5-トリ(3-シクロヘキシル-4-ヒドロキシフェニル)アダマンタン、
 2,4-ビス〔(3,5-ジメチル-4-ヒドロキシフェニル)メチル〕-6-シクロヘキシルフェノール、
 2,6-ビス〔(2,5-ジメチル-4-ヒドロキシフェニル)メチル〕-4-シクロヘキシルフェノール、
 2,4-ビス〔(3-シクロヘキシル-4-ヒドロキシフェニル)メチル〕-6-メチルフェノール、
 2,4-ビス〔(4-ヒドロキシ-2,3,5-トリメチルフェニル)メチル〕-6-シクロヘキシルフェノール、
 2,6-ビス〔(5-フルオロ-2-ヒドロキシフェニル)メチル〕-4-フルオロフェノール、
 2,6-ビス〔(3-フルオロ-4-ヒドロキシフェニル)メチル〕-4-フルオロフェノール、
 2,4-ビス〔(3-フルオロ-4-ヒドロキシフェニル)メチル〕-6-メチルフェノール、
 4,4′-〔3-(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-3-ビフェニルプロピリデン〕ビス(5-シクロヘキシル-2-メチルフェノール)、
 4,4′-〔3-(2,5-ジメチル-4-ヒドロキシフェニル)-3-フェニルプロピリデン〕ビス(2,5-ジメチルフェノール)、
 2,4-ビス〔(2,5-ジメチル-4-ヒドロキシフェニル)メチル〕-6-メチルフェノール、
 1,1,2-トリス(4-ヒドロキシフェニル)エタン、
 1,1,3-トリス(4-ヒドロキシフェニル)プロパン、
 1,1,4-トリス(4-ヒドロキシフェニル)ブタン、
 1,2,2-トリス(4-ヒドロキシフェニル)プロパン、
 1,2,2-トリス(4-ヒドロキシフェニル)ブタン、
 1,2,2-トリス(4-ヒドロキシフェニル)ペンタン、
 1,2,2-トリス(4-ヒドロキシフェニル)ヘキサン、
 1,2,2-トリス(4-ヒドロキシフェニル)へプタン、
 1,2,2-トリス(4-ヒドロキシフェニル)オクタン、
 1,2,2-トリス(4-ヒドロキシフェニル)-3-メチルブタン1,2,2-トリス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、
 1,2,2-トリス(4-ヒドロキシフェニル)-4,4-ジメチルペンタン、
 1,3,3-トリス(4-ヒドロキシフェニル)ブタン、
 1,3,3-トリス(4-ヒドロキシフェニル)ペンタン、
 1,3,3-トリス(4-ヒドロキシフェニル)ヘキサン、
 1,3,3-トリス(4-ヒドロキシフェニル)へプタン、
 1,3,3-トリス(4-ヒドロキシフェニル)オクタン、
 1,3,3-トリス(4-ヒドロキシフェニル)ノナン、
 1,4,4-トリス(4-ヒドロキシフェニル)ペンタン、
 1,4,4-トリス(4-ヒドロキシフェニル)ヘキサン、
 1,4,4-トリス(4-ヒドロキシフェニル)へプタン、
 1,4,4-トリス(4-ヒドロキシフェニル)オクタン、
 1,4,4-トリス(4-ヒドロキシフェニル)ノナン、
 1,4,4-トリス(4-ヒドロキシフェニル)デカン、
 1,2,2-トリス(2-ヒドロキシフェニル)プロパン、
 1,1,2-トリス(3-ヒドロキシフェニル)プロパン、
 1-(4-ヒドロキシフェニル)-2,2-ビス(2-ヒドロキシフェニル)プロパン、
 1,2,2-トリス(3-フルオロ-4-ヒドロキシフェニル)プロパン、
 1,2,2-トリス(3-クロロ-4-ヒドロキシフェニル)プロパン、
 1,2,2-トリス(3-ブロモ-4-ヒドロキシフェニル)プロパン、
 2,2-ビス(3-エチル-4-ヒドロキシフェニル)-1-(4-ヒドロキシフェニル)プロパン、
 2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)-1-(4-ヒドロキシフェニル)プロパン、
 2,2-ビス(2-ヒドロキシ-3-ビフェニリル)-1-(4-ヒドロキシフェニル)プロパン、
 2,2-ビス(3-トリフルオロメチル-4-ヒドロキシフェニル)-1-(4-ヒドロキシフェニル)プロパン、
 2-(3-メチル-4-ヒドロキシフェニル)-1,2-ビス(4-ヒドロキシフェニル)プロパン、
 1-(3-メチル-4-ヒドロキシフェニル)-2,2-ビス(4-ヒドロキシフェニル)プロパン、
 3-(3-メチル-4-ヒドロキシフェニル)-1,3-ビス(4-ヒドロキシフェニル)ブタン、
 1-(3-メチル-4-ヒドロキシフェニル)-3,3-ビス(4-ヒドロキシフェニル)ブタン、
 4-(3-メチル-4-ヒドロキシフェニル)-1,4-ビス(4-ヒドロキシフェニル)ペンタン、
 1-(3-メチル-4-ヒドロキシフェニル)-4,4-ビス(4-ヒドロキシフェニル)ペンタン、
 1,2-ビス(3-メチル-4-ヒドロキシフェニル)-2-(4-ヒドロキシフェニル)プロパン、
 3,3-ビス(3-メチル-4-ヒドロキシフェニル)-1-(4-ヒドロキシフェニル)ブタン、
 1,3-ビス(3-メチル-4-ヒドロキシフェニル)-3-(4-ヒドロキシフェニル)ブタン、
 4,4-ビス(3-メチル-4-ヒドロキシフェニル)-1-(4-ヒドロキシフェニル)ペンタン、
 1,4-ビス(3-メチル-4-ヒドロキシフェニル)-4-(4-ヒドロキシフェニル)ペンタン、
 1,1,2-トリス(3-メチル-4-ヒドロキシフェニル)エタン、
 1,2,2-トリス(3-メチル-4-ヒドロキシフェニル)プロパン、
 1,1,3-トリス(3-メチル-4-ヒドロキシフェニル)プロパン、
 1,3,3-トリス(3-メチル-4-ヒドロキシフェニル)ブタン、
 1,1,4-トリス(3-メチル-4-ヒドロキシフェニル)ブタン、
 1,4,4-トリス(3-メチル-4-ヒドロキシフェニル)ペンタン、
 4,4′-〔4-(4-ヒドロキシフェニル)-sec-ブチリデン〕ビス(2-メチルフェノール)
等が挙げられる。
 フェノール性水酸基を4つ以上有する化合物としては、
 ビス〔2-ヒドロキシ-3-(2-ヒドロキシ-5-メチルベンジル)-5-メチルフェニル〕メタン、
 4,6-ビス〔(4-ヒドロキシフェニル)メチル)-1,3-ベンゼンジオール、
 4,4′-〔(3,4-ジヒドロキシフェニル)メチレン〕ビス(2,6-ジメチルフェノール)、
 4,4′-〔(3,4-ジヒドロキシフェニル)メチレン〕ビス(2-シクロヘキシル-5-メチルフェノール)、
 4,4′-〔(3,4-ジヒドロキシフェニル)メチレン〕ビス(2-メチルフェノール)、
 4,4′-〔(3,4-ジヒドロキシフェニル)メチレン〕ビス(2,3,6-トリメチルフェノール)、
 1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、
 1,1,2,2-テトラキス(4-ヒドロキシ-3-メチルフェニル)エタン、
 1,1,2,2-テトラキス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、
 1,1,4,4-テトラキス(3,5-ジメチル-4-ヒドロキシフェニル)ベンゼン、
 2,2′-ビス〔4,4-(4-ヒドロキシ-3-メチルフェニル)シクロヘキシル〕プロパン、
 2,2′-〔(3,4-ジヒドロキシフェニル)メチレン〕ビス(3,5-ジメチルフェノール)、
 3,6-ビス〔(3,5-ジメチル-4-ヒドロキシフェニル)メチル)カテコール、
 4,6-ビス〔(3,5-ジメチル-4-ヒドロキシフェニル)メチル)-1,3-ベンゼンジオール、
 2,2′-〔(3,4-ジヒドロキシフェニル)メチレン〕ビス(3,5,6-トリメチルフェノール)、
 4,4′-〔(3,4-ジヒドロキシフェニル)メチレン〕ビス(2-シクロヘキシルフェノール)、
 ビス〔3-(2-ヒドロキシベンジル)-4-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(3-ヒドロキシベンジル)-4-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(4-ヒドロキシベンジル)-4-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(2-ヒドロキシベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(2-ヒドロキシベンジル)-3-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(2-ヒドロキシベンジル)-4-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(3-ヒドロキシ-2-メチルベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(4-ヒドロキシ-3-メチルベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(3-ヒドロキシ-4-メチルベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(2-ヒドロキシ-3-メチルベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 α,α′,α″,α′″-テトラキス(4-ヒドロキシフェニル)ベンゼン、ビス〔3-(3,6-ジメチル-2-ヒドロキシベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 〔3-(3,6-ジメチル-2-ヒドロキシベンジル)-2-ヒドロキシ-5-メチルフェニル〕〔3-(2,5-ジメチル-4-ヒドロキシベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(2,5-ジメチル-4-ヒドロキシベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(3,5-ジメチル-4-ヒドロキシベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔3-(2-ヒドロキシ-3,4,6-トリメチルベンジル)-2-ヒドロキシ-5-メチルフェニル〕メタン、
 ビス〔2-ヒドロキシ-3-(4-ヒドロキシ-2,3,5-トリメチルベンジル)-5-メチルフェニル〕メタン、
 4,4′,4″,4′″-テトラキス(4-ヒドロキシフェニル)-1,1′-ビシクロヘキシル、
 2,2′-ビス〔4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル〕プロパン、
 4,4′,4″,4′″-テトラキス(4-ヒドロキシ-3-メチルフェニル)-1,1′-ビシクロヘキシル、
 ビス〔3-(5-シクロヘキシル-4-ヒドロキシ-2-メチルベンジル)-4-ヒドロキシ-5-メチルフェニル〕メタン、
 4,4′,4″,4′″-テトラキス(3,5-ジメチル-4-ヒドロキシフェニル)-1,1′-ビシクロヘキシル、
 1,1-ビス〔3-(2-ヒドロキシ-5-メチルベンジル)-5-シクロヘキシル-4-ヒドロキシフェニル〕シクロヘキサン、
 1,1-ビス〔3-(3,5-ジメチル-4-ヒドロキシベンジル)-5-シクロヘキシル-4-ヒドロキシフェニル〕シクロヘキサン、
 1,1-ビス〔3-(5-シクロヘキシル-4-ヒドロキシ-2-メチルベンジル)-5-シクロヘキシル-4-ヒドロキシフェニル〕シクロヘキサン、
 4,6-ビス〔α-メチル-(4-ヒドロキシフェニル)ベンジル-1,3-ベンゼンジオール、
 2,2-ビス〔3-(4-ヒドロキシ-3-メチルベンジル)-4-ヒドロキシ-5-メチルフェニル〕プロパン、
 2,6-ビス〔(3,5-ジメチル-4-ヒドロキシフェニル)ベンジル〕-4-〔α-メチル-(3,5-ジメチル-4-ヒドロキシフェニル)ベンジル〕フェノール、
 4,4′,4″,4′″-テトラキス(4-ヒドロキシ-3-イソプロピルフェニル)-1,1′-ビシクロヘキシル、
 4,4′-ビス〔(3,4-ジヒドロキシフェニル)メチレン〕ビス(2-イソプロピルフェノール)
2,4,6-トリス(4-ヒドロキシベンジル)-1,3-ベンゼンジオール、
 4,6-ビス(3,5-ジメチル-4-ヒドロキシベンジル)ピロガロール、
 3,3′-〔(2-ヒドロキシフェニル)メチレン〕ビス(5-メチルカテコール)、
 2,6-ビス(2,4-ジヒドロキシベンジル)-4-エチルフェノール、
 2,4-ビス(2,4-ジヒドロキシベンジル)-6-シクロヘキシルフェノール、
 2,6-ビス(5-tert-ブチル-2,3-ジヒドロキシベンジル)-4-メチルフェノール、
 2,4,6-トリス(3,5-ジメチル-4-ヒドロキシベンジル)レゾルシン、
 2,4,6-トリス(3,5-ジメチル-2-ヒドロキシベンジル)レゾルシン、
 2,6-ビス(2,4-ジヒドロキシベンジル)-3,4-ジメチルフェノール、
 2,6-ビス〔3-(2-ヒドロキシ-5-メチルベンジル)-2,5-ジメチル-4-ヒドロキシベンジル〕-3,4-ジメチルフェノール、
 4,6-ビス(α-メチル-4-ヒドロキシベンジル)ピロガロール、
 4,4′-[1-{4-〔1-(3,5-ビス(4-ヒドロキシベンジル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(4-ヒドロキシベンジル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(4-ヒドロキシ-3-メチルベンジル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(4-ヒドロキシ-3-メチルベンジル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(3,5-ジメチル-4-ヒドロキシベンジル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(3,5-ジメチル-4-ヒドロキシベンジル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(4-ヒドロキシ-2,3,6-トリメチルベンジル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(4-ヒドロキシ-2,3,6-トリメチルベンジル)フェノール〕、
 ビス〔5-(2,4-ジヒドロキシベンジル)-4-ヒドロキシ-3-メチルフェニル〕メタン、ビス〔3-(2,4-ジヒドロキシベンジル)-2,5-ジメチル-4-ヒドロキシフェニル〕メタン、
 ビス〔3-(2,4-ジヒドロキシ-3-メチルベンジル)-2,5-ジメチル-4-ヒドロキシフェニル〕メタン、
 ビス〔5-(4-ヒドロキシベンジル)-2,3,4-トリヒドロキシフェニル〕メタン、
 1,1-ビス〔5-(4-ヒドロキシベンゾイル)-2,3,4-トリヒドロキシフェニル〕エタン、
 3,3′,5,5′-テトラキス(4-ヒドロキシベンジル)-4,4′-ジヒドロキシビフェニル、
 3,3′,5,5′-テトラキス(4-ヒドロキシ-3-メチルベンジル)-4,4′-ジヒドロキシビフェニル、
 3,3′,5,5′-テトラキス(2-ヒドロキシ-5-メチルベンジル)-4,4′-ジヒドロキシビフェニル、
 3,3′,5,5′-テトラキス(3,5-ジメチル-4-ヒドロキシベンジル)-4,4′-ジヒドロキシビフェニル、
 ビス〔3-(α,α-ビス(4-ヒドロキシ-3-メチルフェニル)メチル-4-ヒドロキシフェニル〕メタン、
 ビス〔3,5-ビス(2-ヒドロキシ-5-メチルベンジル)-4-ヒドロキシフェニル〕メタン、
 4,4′,4″-エチリジントリス{〔2-(2-ヒドロキシ-5-メチル)ベンジル〕-6-メチルフェノール}、
 2,2-ビス〔3,5-ビス(2-ヒドロキシ-5-メチルフェニルメチル)フェニル〕プロパン、ビス〔3-(α,α-ビス(2,5ージメチル-4-ヒドロキシフェニル)メチル-4-ヒドロキシフェニル〕メタン、
 ビス〔5-(3,5-ジメチル-4-ヒドロキシベンジル)-2,3,4-トリヒドロキシフェニル〕メタン、
 ビス〔3-(2,3,4-トリヒドロキシベンジル)-2,5-ジメチル-4-ヒドロキシフェニル〕メタン、
 1,1-ビス〔3-(2,3,4-トリヒドロキシベンジル)-5-シクロヘキシル-4-ヒドロキシフェニル〕シクロヘキサン、
 1,8,15,22-テトラノニル-3,5,10,12,17,19,24,26-オクタヒドロキシ[1,1,1,1]-メタシクロファン、
 4,4′-[1-{4-〔1-(3,5-ビス(4-ヒドロキシ-2-メチルベンジル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(4-ヒドロキシ-2-メチルベンジル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(2-ヒドロキシ-5-メチルベンジル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(2-ヒドロキシ-5-メチルベンジル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(3-エチル-4-ヒドロキシベンジル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(3-エチル-4-ヒドロキシベンジル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(3,5-ジメチル-2-ヒドロキシフェニル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(3,5-ジメチル-2-ヒドロキシフェニル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(4-ヒドロキシ-3-イソプロピルフェニル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(4-ヒドロキシ-3-イソプロピルフェニル)フェノール〕、
 ビス〔3-(α,α-ビス(3,5ージメチル-4-ヒドロキシフェニル)メチル-4-ヒドロキシフェニル〕メタン、
 ビス〔3-(α,α-ビス(5ーシクロヘキシル-4-ヒドロキシ-2-メチルフェニル)メチル-4-ヒドロキシフェニル〕メタン、
 4,4′-〔4-ヒドロキシ-3,5-ビス(2-ヒドロキシベンジル)メチレン〕ビス〔2,6-ビス(2-ヒドロキシベンジル)〕フェノール、
 4,4′-〔4-ヒドロキシ-3,5-ビス(4-ヒドロキシベンジル)メチレン〕ビス〔2,6-ビス(4-ヒドロキシベンジル)〕フェノール、
 4,4′,4″-エチリジントリス〔2,6-ビス(2-ヒドロキシベンジル)フェノール〕、
 4,4′,4″-エチリジントリス〔2,6-ビス(4-ヒドロキシベンジル)フェノール〕、
 2,2-ビス〔3,5-ビス(4-ヒドロキシ-3-メチルベンジル)-4-ヒドロキシフェニル〕プロパン、
 1,8,15,22-テトラエチル-3,5,10,12,17,19,24,26-オクタヒドロキシ[1,1,1,1]-メタシクロファン、
 α,α′,α″,α′″-テトラキス(3,5-ジメチル-4-ヒドロキシフェニル)-1,4-ジメチルベンゼン、
 4,4′-[1-{4-〔1-(3,5-ビス(2-ヒドロキシ-5-イソプロピルフェニル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(2-ヒドロキシ-5-イソプロピルフェニル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(4-ヒドロキシ-2,3,5-トリメチルフェニル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(4-ヒドロキシ-2,3,5-トリメチルフェニル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(3-sec-ブチル-4-ヒドロキシフェニル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(3-sec-ブチル-4-ヒドロキシフェニル)フェノール〕、
 4,4′-[1-{4-〔1-(3,5-ビス(3-tert-ブチル-4-ヒドロキシフェニル)-4-ヒドロキシフェニル)-1-メチルエチル〕フェニル}エチリデン]ビス〔2,6-ビス(3-tert-ブチル-4-ヒドロキシフェニル)フェノール〕、
 2,6-ビス{〔3-(2,4-ジヒドロキシベンジル)-2,5-ジメチル-4-ヒドロキシ〕ベンジル}-4-メチルフェノール、
 1,1-ビス〔5-(2,4-ジヒドロキシベンジル)-3-シクロヘキシル-4-ヒドロキシフェニル〕シクロヘキサン、
 1,1-ビス〔5-(2,3,4-トリヒドロキシベンジル)-3-シクロヘキシル-4-ヒドロキシフェニル〕シクロヘキサン、
 2,2-ビス〔4,4′,4″,4′″-テトラキス(3,5-ジヒドロキシメチル-4-ヒドロキシフェニル)シクロヘキシル〕プロパン
等が挙げられる。
 カルボン酸及びその誘導体としては、
 3,5-ジ(α-メチルベンジル)サリチル酸、
 4-(2-p-メトキシフェニルオキシエトキシ)サリチル酸、
 4-ヒドロキシフェニル安息香酸、
 p-クロロ安息香酸、
 4-〔2-(p-メトキシフェノキシ)エチルオキシ〕サリチル酸、
 4-〔3-(p-トリルスルホニル)プロピルオキシ〕サリチル酸、
 5-〔p-(2-p-メトキシフェノキシエトキシ)クミル〕サリチル酸、
 4-オクチルオキシカルボニルアミノサリチル酸、
 3,5-ジスチレン化サリチル酸、
 N-(p-トルエンスルホニル)-グリシン、
 N-(p-トルエンスルホニル)-アラニン、
 N-(p-トルエンスルホニル)-β-アラニン、
 N-フェニルアミノカルボニル-グリシン、
 N-フェニルアミノカルボニル-バリン、
 N-(m-トリルアミノカルボニル)-フェニルアラニン、
 N-(m-トリルアミノカルボニル)-システイン-S-ベンジル、
 N-(m-トリルアミノカルボニル)-メチオニン、
 N-(m-トリルアミノカルボニル)-チロシン、
 N-(p-トリルアミノカルボニル)-フェニルアラニン、
 N-(p-トリルアミノカルボニル)-システイン-S-ベンジル、
 N-(p-トリルアミノカルボニル)-メチオニン、
 N-(p-トリルアミノカルボニル)-メチオニン、
 N-(フェニルアミノカルボニル)-メチオニン、
 N-(p-トリルアミノカルボニル)-チロシン、
 N-(m-トリルアミノカルボニル)-メチオニン、
 N-(p-トリルアミノカルボニル)-メチオニン、
 N-(フェニルアミノカルボニル)-メチオニン、
 N-(m-トリルアミノカルボニル)-バリン、
 N-(m-トリルアミノカルボニル)-フェニルグリシン、
 N-(m-トリルアミノカルボニル)-チロシン、
 2-O-(フェニルアミノカルボニル)-マンデル酸、
 2-O-(p-トリルアミノカルボニル)-マンデル酸、
 2-O-(m-トリルアミノカルボニル)-マンデル酸、
 2-O-(o-トリルアミノカルボニル)-マンデル酸、
 2-O-(1-ナフチルアミノカルボニル)-マンデル酸、
 2-O-(3-イソプロペニル-α、α-ジメチルベンジルアミノカルボニル)-マンデル酸、
 2-O-(ベンジルアミノカルボニル)-マンデル酸、
 2-O-(フェネチルアミノカルボニル)-マンデル酸、
 2-O-(フェニルアミノカルボニル)-乳酸、
 2-O-(p-トリルアミノカルボニル)-乳酸、
 2-O-(m-トリルアミノカルボニル)-乳酸、
 2-O-(o-トリルアミノカルボニル)-乳酸、
 2-O-(1-ナフチルアミノカルボニル)-乳酸、
 2-O-(3-イソプロペニル-α、α-ジメチルベンジルアミノカルボニル)-乳酸、
 2-O-(ベンジルアミノカルボニル)-乳酸、
 2-O-(フェネチルアミノカルボニル)-乳酸
等が挙げられる。
 前記酸性リン酸エステル化合物としては、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ブトキシエチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、イソデシルアシッドホスフェート、イソトリデシルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、モノブチルホスフェート、ジブチルホスフェート、モノイソデシルホスフェート、ビス(2-エチルヘキシル)ホスフェート等が挙げられる。
 前記フェノール性水酸基を有する化合物が最も有効な熱変色特性を発現させることができるが、芳香族カルボン酸及び炭素数2~5の脂肪族カルボン酸、カルボン酸金属塩、酸性リン酸エステル及びその金属塩、1,2,3-トリアゾール及びその誘導体から選ばれる化合物等であってもよい。
 (a)および(b)成分による電子授受反応を特定温度域において可逆的に生起させる反応媒体である(c)成分について説明する。(c)成分としては、エステル類、ケトン類、エーテル類、アルコール類、酸アミド類を挙げることができる。
 (c)成分としては、色濃度-温度曲線に関し、大きなヒステリシス特性(温度変化による着色濃度の変化をプロットした曲線が、温度を低温側から高温側へ変化させる場合と、高温側から低温側へ変化させる場合で異なる)を示して変色する、色彩記憶性を示す可逆熱変色性組成物を形成できる5℃以上50℃未満のΔT値(融点-曇点)を示すカルボン酸エステル化合物、例えば、分子中に置換芳香族環を含むカルボン酸エステル、無置換芳香族環を含むカルボン酸と炭素数10以上の脂肪族アルコールのエステル、分子中にシクロヘキシル基を含むカルボン酸エステル、炭素数6以上の脂肪酸と無置換芳香族アルコールまたはフェノールのエステル、炭素数8以上の脂肪酸と分岐脂肪族アルコールとのエステル、ジカルボン酸と芳香族アルコールまたは分岐脂肪族アルコールのエステル、ケイ皮酸ジベンジル、ステアリン酸ヘプチル、アジピン酸ジデシル、アジピン酸ジラウリル、アジピン酸ジミリスチル、アジピン酸ジセチル、アジピン酸ジステアリル、トリラウリン、トリミリスチン、トリステアリン、ジミリスチン、ジステアリン等が用いられる。
 また、炭素数9以上の奇数の脂肪族一価アルコールと炭素数が偶数の脂肪族カルボン酸から得られる脂肪酸エステル化合物、n-ペンチルアルコールまたはn-ヘプチルアルコールと炭素数10~16の偶数の脂肪族カルボン酸より得られる総炭素数17~23の脂肪酸エステル化合物も有効である。
 具体的には、酢酸n-ペンタデシル、酪酸n-トリデシル、酪酸n-ペンタデシル、カプロン酸n-ウンデシル、カプロン酸n-トリデシル、カプロン酸n-ペンタデシル、カプリル酸n-ノニル、カプリル酸n-ウンデシル、カプリル酸n-トリデシル、カプリル酸n-ペンタデシル、カプリン酸n-ヘプチル、カプリン酸n-ノニル、カプリン酸n-ウンデシル、カプリン酸n-トリデシル、カプリン酸n-ペンタデシル、ラウリン酸n-ペンチル、ラウリン酸n-ヘプチル、ラウリン酸n-ノニル、ラウリン酸n-ウンデシル、ラウリン酸n-トリデシル、ラウリン酸n-ペンタデシル、ミリスチン酸n-ペンチル、ミリスチン酸n-ヘプチル、ミリスチン酸n-ノニル、ミリスチン酸n-ウンデシル、ミリスチン酸n-トリデシル、ミリスチン酸n-ペンタデシル、パルミチン酸n-ペンチル、パルミチン酸n-ヘプチル、パルミチン酸n-ノニル、パルミチン酸n-ウンデシル、パルミチン酸n-トリデシル、パルミチン酸n-ペンタデシル、ステアリン酸n-ノニル、ステアリン酸n-ウンデシル、ステアリン酸n-トリデシル、ステアリン酸n-ペンタデシル、エイコサン酸n-ノニル、エイコサン酸n-ウンデシル、エイコサン酸n-トリデシル、エイコサン酸n-ペンタデシル、ベヘニン酸n-ノニル、ベヘニン酸n-ウンデシル、ベヘニン酸n-トリデシル、ベヘニン酸n-ペンタデシル等を挙げることができる。
 ケトン類としては、総炭素数が10以上の脂肪族ケトン類が有効であり、2-デカノン、3-デカノン、4-デカノン、2-ウンデカノン、3-ウンデカノン、4-ウンデカノン、5-ウンデカノン、2-ドデカノン、3-ドデカノン、4-ドデカノン、5-ドデカノン、2-トリデカノン、3-トリデカノン、2-テトラデカノン、2-ペンタデカノン、8-ペンタデカノン、2-ヘキサデカノン、3-ヘキサデカノン、9-ヘプタデカノン、2-ペンタデカノン、2-オクタデカノン、2-ノナデカノン、10-ノナデカノン、2-エイコサノン、11-エイコサノン、2-ヘンエイコサノン、2-ドコサノン、ラウロン、ステアロン等を挙げることができる。
 また、総炭素数が12~24のアリールアルキルケトン類、例えば、n-オクタデカノフェノン、n-ヘプタデカノフェノン、n-ヘキサデカノフェノン、n-ペンタデカノフェノン、n-テトラデカノフェノン、4-n-ドデカアセトフェノン、n-トリデカノフェノン、4-n-ウンデカノアセトフェノン、n-ラウロフェノン、4-n-デカノアセトフェノン、n-ウンデカノフェノン、4-n-ノニルアセトフェノン、n-デカノフェノン、4-n-オクチルアセトフェノン、n-ノナノフェノン、4-n-ヘプチルアセトフェノン、n-オクタノフェノン、4-n-ヘキシルアセトフェノン、4-n-シクロヘキシルアセトフェノン、4-tert-ブチルプロピオフェノン、n-ヘプタフェノン、4-n-ペンチルアセトフェノン、シクロヘキシルフェニルケトン、ベンジル-n-ブチルケトン、4-n-ブチルアセトフェノン、n-ヘキサノフェノン、4-イソブチルアセトフェノン、1-アセトナフトン、2-アセトナフトン、シクロペンチルフェニルケトン等を挙げることができる。
 エーテル類としては、総炭素数10以上の脂肪族エーテル類が有効であり、ジペンチルエーテル、ジヘキシルエーテル、ジヘプチルエーテル、ジオクチルエーテル、ジノニルエーテル、ジデシルエーテル、ジウンデシルエーテル、ジドデシルエーテル、ジトリデシルエーテル、ジテトラデシルエーテル、ジペンタデシルエーテル、ジヘキサデシルエーテル、ジオクタデシルエーテル、デカンジオールジメチルエーテル、ウンデカンジオールジメチルエーテル、ドデカンジオールジメチルエーテル、トリデカンジオールジメチルエーテル、デカンジオールジエチルエーテル、ウンデカンジオールジエチルエーテル等を挙げることができる。
 アルコール類としては、炭素数10以上の脂肪族一価の飽和アルコールが有効であり、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、ヘキサデシルアルコール、ヘプタデシルアルコール、オクタデシルアルコール、エイコシルアルコール、ドコシルアルコール等を挙げることができる。
 酸アミド類としては、ヘキサン酸アミド、ヘプタン酸アミド、オクタン酸アミド、ノナン酸アミド、デカン酸アミド、ウンデカン酸アミド、ラウリル酸アミド、トリデカン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ドコサン酸アミド等を挙げることができる。
 また、(c)成分として、下記一般式(1)で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000001
(ここで、Rは水素原子又はメチル基を示し、q1は0~2の整数を示し、Xのいずれか一方は-(CHOCOR’又は-(CHCOOR’、他方は水素原子を示し、kは0~2の整数を示し、R’は炭素数4以上のアルキル基又はアルケニル基を示し、Yはそれぞれ独立に炭素数1~4のアルキル基、メトキシ基、又はハロゲンを示し、p1はそれぞれ独立に0~3の整数を示す。)
 式(1)で示される化合物のうち、Rが水素原子の場合、より広いヒステリシス幅を有する可逆熱変色性組成物が得られるため好適であり、更にRが水素原子であり、かつ、mが0の場合がより好適である。
 なお、式(1)で示される化合物のうち、より好ましくは下記一般式(1a)で示される化合物が用いられる。
Figure JPOXMLDOC01-appb-C000002
(ここでR1aは、炭素数8以上のアルキル基又はアルケニル基、好ましくは炭素数10~24のアルキル基、更に好ましくは炭素数12~22のアルキル基である。)
 前記化合物として具体的には、オクタン酸-4-ベンジルオキシフェニルエチル、ノナン酸-4-ベンジルオキシフェニルエチル、デカン酸-4-ベンジルオキシフェニルエチル、ウンデカン酸-4-ベンジルオキシフェニルエチル、ドデカン酸-4-ベンジルオキシフェニルエチル、トリデカン酸-4-ベンジルオキシフェニルエチル、テトラデカン酸-4-ベンジルオキシフェニルエチル、ペンタデカン酸-4-ベンジルオキシフェニルエチル、ヘキサデカン酸-4-ベンジルオキシフェニルエチル、ヘプタデカン酸-4-ベンジルオキシフェニルエチル、オクタデカン酸-4-ベンジルオキシフェニルエチルを例示できる。
 更に、(c)成分として、下記一般式(2)で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000003
(ここで、Rは炭素数8以上のアルキル基又はアルケニル基を示し、p2はそれぞれ独立に0~3の整数を示し、Xはそれぞれ独立に炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、又はハロゲンを示す。)
 前記化合物として具体的には、オクタン酸1,1-ジフェニルメチル、ノナン酸1,1-ジフェニルメチル、デカン酸1,1-ジフェニルメチル、ウンデカン酸1,1-ジフェニルメチル、ドデカン酸1,1-ジフェニルメチル、トリデカン酸1,1-ジフェニルメチル、テトラデカン酸1,1-ジフェニルメチル、ペンタデカン酸1,1-ジフェニルメチル、ヘキサデカン酸1,1-ジフェニルメチル、ヘプタデカン酸1,1-ジフェニルメチル、オクタデカン酸1,1-ジフェニルメチルを例示できる。
 更に、(c)成分として下記一般式(3)で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000004
(ここで、Xはそれぞれ独立に炭素数1~4のアルキル基、メトキシ基、又はハロゲン原子のいずれかを示し、p3はそれぞれ独立に0~3の整数を示し、q3は1~20の整数を示す。)
 前記化合物としては、マロン酸と2-〔4-(4-クロロベンジルオキシ)フェニル)〕エタノールとのジエステル、こはく酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、こはく酸と2-〔4-(3-メチルベンジルオキシ)フェニル)〕エタノールとのジエステル、グルタル酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、グルタル酸と2-〔4-(4-クロロベンジルオキシ)フェニル)〕エタノールとのジエステル、アジピン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、ピメリン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、スベリン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、スベリン酸と2-〔4-(3-メチルベンジルオキシ)フェニル)〕エタノールとのジエステル、スベリン酸と2-〔4-(4-クロロベンジルオキシ)フェニル)〕エタノールとのジエステル、スベリン酸と2-〔4-(2,4-ジクロロベンジルオキシ)フェニル)〕エタノールとのジエステル、アゼライン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、セバシン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、1,10-デカンジカルボン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、1,18-オクタデカンジカルボン酸と2-(4-ベンジルオキシフェニル)エタノールとのジエステル、1,18-オクタデカンジカルボン酸と2-〔4-(2-メチルベンジルオキシ)フェニル)〕エタノールとのジエステルを例示できる。
 更に、(c)成分として下記一般式(4)で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000005
(ここで、Rはそれぞれ独立に炭素数1~21のアルキル基又はアルケニル基を示し、p4はそれぞれ独立に1~3の整数を示す。)
 前記化合物としては、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとカプリン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとウンデカン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとラウリン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとミリスチン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとパルミチン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとシクロヘキサン酸カルボン酸とのジエステル、1,3-ビス(2-ヒドロキシエトキシ)ベンゼンとシクロヘキサン酸プロピオン酸とのジエステル、1,4-ビス(ヒドロキシメトキシ)ベンゼンと酪酸とのジエステル、1,4-ビス(ヒドロキシメトキシ)ベンゼンとイソ吉草酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンと酢酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとプロピオン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンと吉草酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとカプロン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとカプリル酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとカプリン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとラウリン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとミリスチン酸とのジエステル、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンとシクロヘキサンプロピオン酸とのジエステルを例示できる。
 更に、(c)成分として下記一般式(5)で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000006
 (ここで、Xはそれぞれ独立に炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、又はハロゲン原子のいずれかを示し、p5はそれぞれ独立に0~3の整数を示し、q5は1~20の整数を示す。)
 前記化合物としては、こはく酸と2-フェノキシエタノールとのジエステル、スベリン酸と2-フェノキシエタノールとのジエステル、セバシン酸と2-フェノキシエタノールとのジエステル、1,10-デカンジカルボン酸と2-フェノキシエタノールとのジエステル、1,18-オクタデカンジカルボン酸と2-フェノキシエタノールとのジエステルを例示できる。
 更に、(c)成分として下記一般式(6)で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000007
(ここで、Rは炭素数4~22のアルキル基、シクロアルキルアルキル基、シクロアルキル基、炭素数4~22のアルケニル基のいずれかを示し、Xは水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ハロゲン原子のいずれかを示し、q6は0又は1を示す。)
 前記化合物としては、4-フェニル安息香酸デシル、4-フェニル安息香酸ラウリル、4-フェニル安息香酸ミリスチル、4-フェニル安息香酸シクロヘキシルエチル、4-ビフェニル酢酸オクチル、4-ビフェニル酢酸ノニル、4-ビフェニル酢酸デシル、4-ビフェニル酢酸ラウリル、4-ビフェニル酢酸ミリスチル、4-ビフェニル酢酸トリデシル、4-ビフェニル酢酸ペンタデシル、4-ビフェニル酢酸セチル、4-ビフェニル酢酸シクロペンチル、4-ビフェニル酢酸シクロヘキシルメチル、4-ビフェニル酢酸ヘキシル、4-ビフェニル酢酸シクロヘキシルメチルを例示できる。
 更に、前記(c)成分として下記一般式(7)で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000008
 (ここで、Rは炭素数3~18のアルキル基、または炭素数3~18の脂肪族アシル基のいずれかを示し、Xは水素原子、炭素数1~3のアルキル基、炭素数1または2のアルコキシ基、ハロゲン原子のいずれかを示し、Yは水素原子、メチル基のいずれかを示し、Zは水素原子、炭素数1~4のアルキル基、炭素数1又または2のアルコキシ基、ハロゲン原子のいずれかを示す。)
 前記化合物としては、4-ブトキシ安息香酸フェノキシエチル、4-ペンチルオキシ安息香酸フェノキシエチル、4-テトラデシルオキシ安息香酸フェノキシエチル、4-ヒドロキシ安息香酸フェノキシエチルとドデカン酸とのエステル、バニリン酸フェノキシエチルのドデシルエーテルを例示できる。
 更に、(c)成分として下記一般式(8)で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000009
(ここで、Rは炭素数4~22のアルキル基、炭素数4~22のアルケニル基、シクロアルキルアルキル基、シクロアルキル基のいずれかを示し、Xは、それぞれ独立にアルキル基、アルコキシ基、ハロゲン原子のいずれかを示し、p8は0または1を示し、q8は0~5を示し、r8は0~4を示す。)
 前記化合物としては、p-ヒドロキシ安息香酸オクチルの安息香酸エステル、p-ヒドロキシ安息香酸デシルの安息香酸エステル、p-ヒドロキシ安息香酸ヘプチルのp-メトキシ安息香酸エステル、p-ヒドロキシ安息香酸ドデシルのo-メトキシ安息香酸エステル、p-ヒドロキシ安息香酸シクロヘキシルメチルの安息香酸エステルを例示できる。
 更に、(c)成分として下記一般式(9)で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000010
(ここで、Rは炭素数3~17のアルキル基、炭素数3~8のシクロアルキル基、炭素数5~8のシクロアルキルアルキル基を示し、Xは水素原子、炭素数1~5のアルキル基、メトキシ基、エトキシ基、ハロゲン原子を示し、p9は1~3の整数を示す。)
 前記化合物としては、4-フェニルフェノールエチレングリコールエーテルとシクロヘキサンカルボン酸とのジエステル、4-フェニルフェノールジエチレングリコールエーテルとラウリン酸とのジエステル、4-フェニルフェノールトリエチレングリコールエーテルとシクロヘキサンカルボン酸とのジエステル、4-フェニルフェノールエチレングリコールエーテルとオクタン酸とのジエステル、4-フェニルフェノールエチレングリコールエーテルとノナン酸とのジエステル、4-フェニルフェノールエチレングリコールエーテルとデカン酸とのジエステル、4-フェニルフェノールエチレングリコールエーテルとミリスチン酸とのジエステルを例示できる。
 更に、電子受容性化合物として炭素数3~18の直鎖または側鎖アルキル基を有する特定のアルコキシフェノール化合物を用いたり(特開平11-129623号公報、特開平11-5973号公報)、特定のヒドロキシ安息香酸エステルを用いたり(特開2001-105732号公報)、没食子酸エステル等を用いた(特公昭51-44706号公報、特開2003-253149号公報)加熱発色型(加熱により発色し、冷却により消色する)の可逆熱変色性組成物を内包してなるマイクロカプセル顔料を適用することもできる。
 (a)、(b)、および(c)成分の配合割合は、濃度、変色温度、変色形態や各成分の種類に左右されるが、一般的に所望の変色特性が得られる成分比は、(a)成分1質量部に対して、(b)成分0.1~50質量部、好ましくは0.5~20質量部、(c)成分1~800質量部、好ましくは5~200質量部の範囲である。
 ここで、マイクロカプセル顔料中、或いは、インキ中に非熱変色性の染料、顔料等の着色剤を配合して、有色(1)から有色(2)への互変的色変化を呈することもできる。
 可逆熱変色性組成物をマイクロカプセルに内包させる方法は特に限定されないが、例えば界面重合法、界面重縮合法、in Situ重合法、液中硬化被覆法、水溶液からの相分離法、有機溶媒からの相分離法、融解分散冷却法、気中懸濁被覆法、スプレードライング法等があり、用途に応じて適宜選択される。
 カプセルの材質としては、有機樹脂、例えばエポキシ樹脂、尿素樹脂、ウレタン樹脂、イソシアネート樹脂等が挙げられる。本発明においては、顔料粒子の表面が有機材料によって構成されていることにより、後述するN-ビニル-2-ピロリドンの重合体およびグリセリンとの三相互作用によって、優れた特性を示すものである。したがって、カプセルの材質は有機材料であることが必要である。
 更にマイクロカプセルの表面には、目的に応じて二次的な樹脂皮膜を設けて耐久性を付与したり、表面特性を改質させて実用に供することもできる。
 マイクロカプセル顔料は、平均粒子径が好ましくは0.1~5.0μm、より好ましくは0.1~4.0μm、さらに好ましくは0.5~3.0μmの範囲にあるものが用いられる。
 また、可逆熱変色性組成物とマイクロカプセル壁膜の質量比率は、可逆熱変色性組成物:壁膜=7:1~1:1(質量比)、好ましくは6:1~1:1の範囲を満たすことが好ましい。
 マイクロカプセル顔料の平均粒子径が5.0μmを越えると筆記具に用いた際に滑らかな筆記感が得られ難く、最大外径の平均値が0.1μm未満では高濃度の発色性を示し難くなる。
 平均粒子径が前記範囲、特には0.5~3.0μmの範囲にあるマイクロカプセル顔料は高濃度の発色性を示すとともに筆記具に用いた際には良好な吐出性が得られやすい。
 可逆熱変色性組成物の壁膜に対する比率が前記範囲より大になると、壁膜の厚みが肉薄となり過ぎ、圧力や熱に対する耐性の低下を生じ易く、壁膜の可逆熱変色性組成物に対する比率が前記範囲より大になると発色時の色濃度および鮮明性の低下を生じ易くなる。
 なお、平均粒子径の測定は、マウンテック社製の画像解析式粒度分布測定ソフトウェア「マックビュー」を用いて粒子の領域を判定し、粒子の領域の面積から投影面積円相当径(Heywood径)を算出し、その値による等体積球相当の粒子の平均粒子径として測定した値である。
 また、全ての粒子或いは大部分の粒子の粒子径が0.2μmを超える場合は、粒度分布測定装置(ベックマン・コールター株式会社製、製品名:Multisizer 4e)を用いてコールター法により等体積球相当の粒子の平均粒子径として測定することも可能である。さらに、標準試料またはコールター法による測定装置を用いて計測した数値を基にしてキャリブレーションを行ったレーザー回折/散乱式粒子径分布測定装置(装置名:LA-300、株式会社堀場製作所製)を用いて、体積基準の粒子径および平均粒子径(メジアン径)を測定してもよい。
<N-ビニル-2-ピロリドンの重合体>
 本発明によるインキ組成物はN-ビニル-2-ピロリドンの重合体(以下、簡単に「PVP」と表すことがある)をさらに含んでなる。本発明によるインキ組成物において、PVPは種々の特性を同時に完了する効果がある。具体的には、インキ組成物の粘度を調整する効果、マイクロカプセル顔料の凝集を抑制する効果、インキ成分の紙への固着性や粘着性を改良する効果などがある。さらに、本発明者らの検討によれば、マイクロカプセル顔料を含むインキ組成物においては、ドライアップ抑制の効果があることがわかった。例えば、インキ組成物をボールペンやマーキングペン、特にノック式ボールペンに用いた場合には、そのペン先は乾燥しやすい状況に置かれる。その結果、それらの筆記具は筆記不能になることがある。このような状態をドライアップというが、本発明によれば、PVPを特定のインキ組成物に用いることでドライアップを抑制することができ、優れた筆記性を達成することができる。
 PVPは、N-ビニル-2-ピロリドンが重合したものであるが、その重合度が2~20であるものを用いることが必要であり、2~10であることが好ましく、2~6であることがより好ましい。重合度がそのような範囲にあることで、インキ組成物中の水分が蒸発した場合、インキ組成物の粘度の上昇やマイクロカプセル顔料の凝集を抑制することができる。重合度が過度に高いPVPを用いると、インキ組成物の粘度も過度に高くなって筆記性能に悪影響を及ぼすことがあるので注意が必要である。
<グリセリン>
 本発明によるインキ組成物は、グリセリンをさらに含んでなる。グリセリンは、一般的なインキ組成物に対して有機溶剤や粘度調整剤として使用されることがある。しかし、本発明においてグリセリンは、従来知られていなかった機能を奏するものである。すなわち、有機樹脂を表面に有するマイクロカプセル顔料およびPVPと特定の比率で共存することで、三成分の間での相互作用が生じて、顕著な筆記特性の改良を実現できるのである。
<水>
 本発明によるインキ組成物は、水性インキ組成物であり、主たる溶媒として水を含んでなる。本発明に用いられる水としては、特に制限はなく、例えば、イオン交換水、限外ろ過水または蒸留水などを用いることができる。
<インキ組成物の組成>
 本発明において、インキ組成物の総質量に対するマイクロカプセル顔料の含有率(PMC)は、5~40質量%であることが必要であり、10~30質量%であることが好ましく、更に好ましくは10~25質量%配合することができる。例えばボールペンなどの用途にインキ組成物を用いる場合、一般的な顔料の配合量はインキ組成物全量に対して10質量%未満であるが、着色剤としてマイクロカプセル顔料を用いる場合は、十分な発色を実現するための配合量を多くすることが好ましい。そして、一般的にはマイクロカプセル顔料の含有率が高いインキ組成物は固形分含有率が一般的なインキに比べて高いためドライアップ性能などの性能が劣化することがある。しかしながら、本発明によるインキ組成物は特定の材料を特定の比率で配合することによって、そのような問題を解決している。
 本発明において、インキ組成物の総質量に対するPVPの含有率(PPVP)は、1~20質量%であることが好ましく、2~10質量%であることが好ましい。PVPの含有率をこの範囲内にすることで、インキ組成物のペン先からの吐出性が良好に保たれ、高い筆跡濃度を実現することができる。
 本発明において、インキ組成物の総質量に対するグリセリンの含有率(PG)は、インキ組成物の総質量に対し、1~20質量%であることが好ましく、2~10質量%であることが好ましい。グリセリンの含有率をこの範囲内にすることで、インキ組成物のペン先からの吐出性が良好に保たれ、鮮明な筆跡を形成させることができる。
 本発明のインキ組成物は、必須成分として、マイクロカプセル顔料、PVP、グリセリン、および水を含むものであるが、マイクロカプセル顔料、PVP、およびグリセリンの含有率の合計(PMC+PPVP+P)は、20~50質量%であることが好ましく、20~30質量%であることがより好ましい。PMC+PPVP+Pがこの範囲内にあることで、高い筆跡濃度を維持しながら、書き出し時のかすれを抑制し、高い筆記特性とを両立することができる。
 また、本発明においては、マイクロカプセル顔料、PVPおよびグリセリンが特定の比率で配合されている。具体的には、
0.3≦PMC/(PPVP+P)≦4、かつ
0.2≦PPVP/P≦5
を満たすことが必要であり、
0.5≦PMC/(PPVP+P)≦2.5、または
0.3≦PPVP/P≦2.5
であることが好ましい。
 本発明においては、マイクロカプセル顔料、PVPおよびグリセリンが、上記の範囲内となるように配合されたときにのみ、期待される効果が発現する。言い換えると、この3者が特定の比率によって配合されたときに、相互作用によって本発明の効果が発現するものと考えられる。すなわち、本発明によるインキ組成物は、筆記濃度、ドライアップ耐性、経時安定性などを同時に実現するものである。しかし、これは単に各成分の効果が発現したものではない。例えば、インキ組成物のドライアップ耐性を改良するための材料としてPVPを用いる場合がある。しかし、本発明者らの検討によれば、マイクロカプセルおよびグリセリンが共存する場合には、PVPの増量によって、ドライアップ耐性が低下していくこともあることがわかった(実施例の項を参照)。また、顔料として一般的な無機顔料を用いた場合には、本願発明において特定された比率で配合されたとしても、本願発明の効果が発現しない。これは、本願発明において用いられるマイクロカプセル顔料は表面に有機樹脂が存在するため、その有機樹脂と、PVPおよびグリセリンとの間に相互作用が生じて、経時安定性や筆記特性が改良されるものと考えられる。すなわち、マイクロカプセル顔料、PVPおよびグリセリンが共存するインキ組成物において、これらの相互の比率が特定の割合であるときに、優れた特性を有するインキ組成物が得られることは予想外であった。
<その他の成分>
 本発明によるインキ組成物は、上記した必須成分のほかに、本発明の効果を損なわない範囲で任意成分を組み合わせることができる。
 任意成分のひとつとして、多糖類を用いることができる。多糖類は、種々の効果をもたらすが、主に、インキ粘度の調整(増粘剤)、剪断減粘性の付与(剪断減粘性付与剤)、耐ドライアップ性能向上などの効果をもたらす。
 ここで、剪断減粘性とは、静置時には高粘度を有し、剪断力が加えられると粘度が低下する特性である。ボールペンのうち、一般にゲルインキと呼ばれるインキ組成物を内蔵するものがある。ゲルインキ組成物は、剪断応力が加わらない静置時には高粘度であり、筆記具内において安定的に保持されており、筆記時にあってはボールの高速回転によって生じる高剪断力によってボール近傍のインキが低粘度化し、その結果、インキはボールとボール収容部の間隙から吐出して紙面に転写されるものである。インキ組成物に対して、剪断減粘性付与剤を組み合わせることでゲルインキとすることができる。
 多糖類を用いる場合、適切な多糖類としては、サクシノグリカン、キサンタンガム、ウェランガム、グアーガム、ローカストビーンガム、カラギーナン、およびダイユータンガムならびにその誘導体、セルロース誘導体、グリコマンナン、寒天やカラゲニン等の海藻より抽出されるゲル化能を有する増粘多糖類、デキストリンが挙げられる。これらのうち、サクシノグリカンおよびキサンタンガムは、剪断減粘性の付与効果が大きいので好ましく、サクシノグリカンがより好ましい。サクシノグリカンとしては平均分子量が約100~800万のものが好適に用いることができる。また、セルロース誘導体としてはヒドロキシメチルセルロースなどが挙げられる。
 本発明によるインキ組成物がサクシノグリカンまたはキサンタンガムを含む場合、インキ組成物の総質量を基準としたサクシノグリカンまたはキサンタンガムの含有率は、0.01~1.0質量%であることが好ましい。これらの含有率をその範囲とすることで、ペン先からのインキ吐出特性を高いレベルで維持し、かつマイクロカプセル顔料の凝集を抑制することができる。
 また、多糖類としてデキストリンまたはセルロース誘導体を用いると、インキ粘度の調整、剪断減粘性の付与、耐ドライアップ性能向上などの高い改良効果を同時に得ることができる場合がある。これらのうち、デキストリンは耐ドライアップ性能向上効果が大きいので好ましい。
 デキストリンとしては、8糖以上の澱粉糖化物および/またはその還元物を含む糖混合物であることが好ましい。そして、この糖混合物は、8糖以上の澱粉糖化物等を30質量%以上含むことが好ましく、50%以上含むことがより好ましく、70%以上含むことが特に好ましい。このようなデキストリンは、皮膜形成性に優れるため、インキ組成物を筆記具に適用した場合、ペン先からの水分蒸発抑制の効果が大きいので好ましい。
 本発明によるインキ組成物がデキストリンまたはセルロース誘導体を含む場合、インキ組成物の総質量を基準としたそれらの含有率は、0.1~5質量%であることが好ましい。デキストリンまたはセルロース誘導体の含有率をその範囲とすることで、ペン先からのインキ吐出特性を高いレベルで維持し、かつインキ垂れ下がりやペン先からの水分蒸発を抑制することができる。
 これらの多糖類は、単独で、または2種類以上組み合わせて用いることができる。
 なお、増粘剤として多糖類以外のものを用いることもできる。増粘剤として用いることができるその他の材料としては、アルギン酸アルキルエステル類、メタクリル酸のアルキルエステルを主成分とする分子量10万~15万の重合体、ベンジリデンソルビトール及びベンジリデンキシリトール又はこれらの誘導体、架橋性アクリル酸重合体、無機質微粒子、ポリグリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンヒマシ油、ポリオキシエチレンラノリン・ラノリンアルコール・ミツロウ誘導体、ポリオキシエチレンアルキルエーテル・ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、脂肪酸アミド等のHLB値が8~12のノニオン系界面活性剤、ジアルキル又はジアルケニルスルホコハク酸の塩類が挙げられる。
 任意成分のほかのひとつとして、界面活性剤が挙げられる。界面活性剤は、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤など、何れも好ましく用いることができる。界面活性剤としてはリン酸エステル系界面活性剤、シリコーン系界面活性剤、アセチレン結合を構造中に有する界面活性剤、フッ素系界面活性剤などが挙げられる。これらの界面活性剤は、インキ組成物の成分や用途などに応じて適切に選択することができる。例えばインキ組成物を水性ボールペンに用いる場合には、リン酸エステル系界面活性剤が好ましい。リン酸エステル系界面活性剤はチップにおいて良好な潤滑効果を奏し、ボールを円滑に回転させることができるためである。リン酸エステル系界面活性剤の具体例として、ポリオキシエチレンアルキルエーテル又はポリオキシエチレンアルキルアリールエーテルのリン酸モノエステル、ポリオキシエチレンアルキルエーテル又はポリオキシエチレンアルキルアリールエーテルのリン酸ジエステル、或いは、それらの金属塩、アンモニウム塩、アミン塩、アルカノールアミン塩等が挙げられる。本発明によるインキ組成物が界面活性剤を含む場合、その含有率はインキ組成物の総質量を基準として0.1~2.0質量%が好ましく、0.3~1.5質量%であることがより好ましい。
 任意成分のほかのひとつとして、pH調整剤が挙げられる。インキ組成物のpHを適切な範囲に調整するために、各種の酸または塩基をpH調整剤として用いることができる。そのようなpH調整剤としては、(a)アンモニア、水酸化ナトリウムなどの無機塩基性化合物、(b)リン酸、塩酸、硫酸、硝酸、などの無機酸性化合物、(c)炭酸ナトリウム、リン酸ナトリウムなどの無機塩化合物、(d)トリエタノールアミンやジエタノールアミンなどの水溶性のアミン化合物、尿素、ジメチル尿素、ジエチル尿素、ヒドロキシメチル尿素、ヒドロキシエチル尿素、などの尿素誘導体、アセトアミド、またはN-メチルアセトアミド等のアミド化合物などの有機塩基性化合物、(e)乳酸、 クエン酸、酒石酸など有機酸性化合物、ならびに(f)酢酸ナトリウム、重曹、酒石酸ナトリウム等の有機塩化合物が挙げられる。pH調整剤の含有率は、インキ組成物に対して、0.1~5質量%であることが好ましく、0.5~2質量%であることがより好ましい。
 本発明によるインキ組成物は、そのほか、
(i)防錆剤、 、例えばベンゾトリアゾール、トリルトリアゾール、ジシクロヘキシルアンモニウムナイトライト、ジイソプロピルアンモニウムナイトライト、サポニンなど、
(ii)防腐剤、または防黴剤、例えばフェノール、1,2-ベンズチアゾリン3-オンのナトリウム塩、安息香酸ナトリウム、デヒドロ酢酸ナトリウム、ソルビン酸カリウム、パラオキシ安息香酸プロピル、2,3,5,6-テトラクロロ-4-(メチルスルフォニル)ピリジンなど、
(iii)比重調整剤、例えばイソタングステン酸ナトリウム、メタタングステン酸ナトリウム、パラタングステン酸ナトリウムなど、
(iv)気泡吸収剤、例えばアスコルビン酸類、エリソルビン酸類、α-トコフェロール、カテキン類、合成ポリフェノール、コウジ酸、アルキルヒドロキシルアミン、オキシム誘導体、α-グルコシルルチン、α-リポ酸、ホスホン酸塩、ホスフィン酸塩、亜硫酸塩、スルホキシル酸塩、亜ジチオン酸塩、チオ硫酸塩、二酸化チオ尿素など
(v)潤滑剤、例えば金属石鹸、2,5-ジメルカプト-1,3,4-チアジアゾールやその塩やオリゴマー、3-アミノ-5-メルカプト-1,2,4-トリアゾール、チオカルバミン酸塩、ジメチルジチオカルバミン酸塩、α-リポ酸、N-アシル-L-グルタミン酸とL-リジンとの縮合物やその塩、エチレンオキサイド付加型カチオン活性剤、N-アシルアミノ酸系界面活性剤、ジカルボン酸型界面活性剤、β-アラニン型界面活性剤など、
(vi)水溶性有機溶媒、例えばエタノール、プロパノール、ブタノール、ソルビトール、グリコール系溶剤、スルフォラン、2-ピロリドン、N-メチル-2-ピロリドン、N-ビニル-2-ピペリドンのオリゴマー、N-ビニル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、ε-カプロラクタム、N-ビニル-ε-カプロラクタムなど、
(vii)グルコール系溶媒、例えばグリコール系溶剤として
エチレングリコール、ジエチレングリコール、チオジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ブチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルアセテートなど、
(viii)水溶性または水不溶性樹脂、例えばポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、シリコーン樹脂、ポリビニルアルコール、重合度が20を超えるポリビニルピロリドン、ポリ酢酸ビニル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、アクリル酸樹脂、マレイン酸樹脂、アラビアゴム、セルロース等、およびそれらの誘導体、前記した樹脂の共重合体など、
(ix)マイクロカプセル顔料以外の顔料、例えばアルミニウム粉やアルミニウム粉表面を着色樹脂で処理した金属顔料、透明又は着色透明フィルムに金属蒸着膜を形成した金属光沢顔料、蓄光性顔料、芯物質として天然雲母、合成雲母、ガラス片、アルミナ、透明性フィルム片の表面を酸化チタン等の金属酸化物で被覆したパール顔料等の光輝性顔料、
(x)その他の成分、例えばカゼイン、チオ亜燐酸トリ(アルコキシカルボニルメチルエステル)やチオ亜燐酸トリ(アルコキシカルボニルエチルエステル)等のチオ亜燐酸トリエステルなど
を組み合わせることもできる。
<インキ組成物の物性>
 本発明によるインキ組成物は、各種の筆記具に用いることができる。このとき、インキ組成物に求められる物性は、筆記具の種類によって異なる。
 例えば、本発明によるインキ組成物がボールペンに用いられる場合、その粘度は、20℃、回転数3.84sec-1の条件で測定した場合、1~2000mPa・sであることが好ましい。マイクロカプセル顔料の沈降、凝集を抑制することを考慮すれば、粘度は、300~1500mPa・sであることがより好ましく、500~1000mPa・sであることが特に好ましい。また、20℃、回転数384sec-1の条件で測定した場合は、1~200mPa・sであることが好ましく、ペン先からのインキ吐出性を良好とすることを考慮すれば、10~100mPa・sであることがより好ましく、20~50mPa・sであることが特に好ましい。このような範囲を有することにより、分散安定性やボールペンの機構内における組成物の易流動性を高いレベルで維持することができる。
 なお、インキ粘度は、ブルックフィールド社製DV-II粘度計(コーンローター CPE42)を用いて20℃の環境下で、剪断速度3.84sec-1(1rpm)、剪断速度384sec-1(100rpm)の条件にてインキ粘度を測定することができる。
 また、本発明によるインキ組成物がボールペンに用いられる場合、その表面張力は、20℃環境下において、20~50mN/mであることが好ましく、25~45mN/mであることがより好ましい。表面張力が上記数値範囲内であれば、インキ組成物を紙面へ塗布した際、インキ組成物の塗布面への濡れ性を向上させることができるとともに、滲みや、塗布面への裏抜けを防ぐことができる傾向にある。
 本発明によるインキ組成物がボールペンに用いられる場合、そのpHは、例えば室温(25℃)において3~10であることが好ましく、4~9であることがより好ましく、4~8であることが特に好ましい。pHをこのような範囲に調整することによって、含有されるマイクロカプセル顔料の低温域での凝集、沈降が抑制される。
 本発明によるインキ組成物がマーキングペンに用いられる場合、その粘度は20℃、回転数30rpmの条件で測定した場合、1~30mPa・sであることが好ましく、2~20mPa・sであることがより好ましい。また、その表面張力は、20℃環境下において、25~45mN/mであることが好ましく、30~40mN/mであることがより好ましい。
 本発明によるインキ組成物が万年筆に用いられる場合、その粘度は20℃、回転数30rpmの条件で測定した場合、1~20mPa・sであることが好ましく、1~10mPa・sであることがより好ましい。また、その表面張力は、20℃環境下において、30~65mN/mであることが好ましく、35~55mN/mであることがより好ましい。
 なお、インキ組成物の粘度の測定は、BL型回転粘度計(製品名:TVB-M型粘度計、B型ローター、東機産業株式会社製)を用いて行うことができる。また、表面張力は、協和界面科学株式会社製の表面張力計測器を用い、白金プレートを用いて、垂直平板法によって測定することができる。
<<インキ組成物の製造方法>>
 本発明によるインキ組成物は、従来知られている任意の方法により製造することができる。具体的には、前記各成分を必要量配合し、プロペラ攪拌、ホモディスパー、またはホモミキサーなどの各種攪拌機やビーズミルなどの各種分散機などにて混合し、製造することができる。
<<筆記具>>
 本発明によるインキ組成物は、マーキングペンチップやボールペンチップを筆記先端部に装着したマーキングペンや水性ボールペンの他、筆ペン、万年筆、およびカリグラフィーペン等の筆記具に充填して用いられる。
 水性ボールペンに充填する場合、ボールペン自体の構造、形状は特に限定されるものではなく、例えば、軸筒内部に直接インキを収容し、櫛溝状のインキ流量調節部材や繊維束からなるインキ流量調節部材を介在させ、インキ流量調節部材とチップが連結されてなる構造を備えるボールペン、軸筒内にインキを充填したインキ収容管を有し、インキ収容管はボールを先端部に装着したチップに連通しており、さらにインキの端面には逆流防止用の液栓が密接しているボールペンを例示できる。
 ボールペンチップについて更に詳しく説明すると、金属製のパイプの先端近傍を外面より内方に押圧変形させたボール抱持部にボールを抱持してなるチップ(パイプ式ボールペンチップ)、あるいは、金属材料をドリル等による切削加工により形成したボール抱持部にボールを抱持してなるチップ、金属またはプラスチック製チップ内部に樹脂製のボール受け座を設けたチップ、あるいは、前記チップに抱持するボールをバネ体により前方に付勢させたもの等を適用できる。また、ボーペンチップが、少なくとも先端部がストレート状の円筒体(直管状円筒体)である金属製パイプを具備していることが好ましい。そのようなボールペンチップの形状として、例えば、ボールペンチップ全体がストレート状円筒体である金属製パイプからなるもの、または、先端部にストレート状の金属製パイプを有し、かつその後方に外径及び内径が拡径する形状を有するものが挙げられる。このうち、後者はインキ吐出性が良好であるので好ましい。
 又、ボールは、超硬合金、ステンレス鋼、ルビー、セラミック、樹脂、ゴム等からなるものが用いられるのが一般的である。またボール径は一般に0.2~3.0mm、好ましくは0.25~1.5mm、より好ましくは0.25~1.0mm、特に好ましくは0.25~0.5mmのものが適用できる。また、パイプ式ボールペンチップにおいては、ボール径が例えば0.25~1.0mm、好ましくは0.25~0.7mm、特に好ましくは0.25~0.5mmであるボールペンに本発明によるインキ組成物を組み合わせることにより、インキ吐出性およびドライアップ耐性に優れたボールペンを得ることができる。
 本発明によるインキ組成物を水性ボールペンに充填した場合、そのボール径とインキ消費量とは特定の関係を満たすことが好ましい。具体的には、水性ボールペンの100mあたりのインキ消費量をA(mg)、前記ボール径をB(mm)とした場合、200≦A/B≦800の関係とすることが好ましく、300≦A/B≦700の関係とすることが好ましい。これは、上記範囲とすることで、ボール径に対して、適正なインキ消費量とすることで、インキ流動性を良好とし、筆跡カスレなどを抑制することで、良好な筆跡が得られやすいためである。
 なお、インキ消費量については、20℃、筆記用紙JIS P3201筆記用紙上に筆記角度70°、筆記荷重100gの条件にて、筆記速度4m/分の速度で、試験サンプル5本を用いて、らせん筆記試験を行い、その100mあたりのインキ消費量の平均値を、100mあたりのインキ消費量と定義する。
 また、ボールペンチップにおけるボールの縦軸方向の移動可能量(クリアランス)は、ボールペンの製造時または使用開始時に、20~60μmとするのが好ましく、30~45μmとすることが好ましい。これは、上記範囲であれば、インキ吐出量を適切に調整し、線とびやカスレなどを抑制することで、良好な筆跡が得られやすいためであり、さらにクリアランスが上記範囲内であれば、前記の比A/Bも調整しやすい。また、本発明においてインキ組成物はマイクロカプセル顔料を含むが、その平均粒子径に応じて、クリアランスを調整することでインキの吐出性を改善できることがある。そのような観点から、クリアランスG(μm)を基準としたマイクロカプセルの平均粒子径D(μm)の比D/Gが、1/150≦D/G≦1/3を満たすことが好ましく、1/100≦D/G≦1/5を満たすことがより好ましい。
 ボールペンチップのボールの縦軸方向への移動可能量(クリアランス)とは、ボールがボールペンチップ本体の縦軸方向への移動可能な距離を示す。ここで、移動可能量は、ボールおよびボール座が使用によって摩耗するため、使用に応じて一般的に増大していく。そして、移動可能量はインク吐出量と関係する。したがって、一般的に、ボールペンの製造時または使用開始時における移動可能量は、上記の範囲に設定されるので、安定した筆記特性を達成するために、ボールペンの使用終了時まで、上記範囲内であることが好ましい。
 インキを収容するインキ収容管は、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン等の熱可塑性樹脂からなる成形体が用いられる。また、収容するインキ組成物が酸素によって変性するのを防ぐために、酸素透過性の低い樹脂、例えばエチレンビニルアルコール共重合樹脂、塩化ビニリデン樹脂、アクリロニトリル樹脂、ポリエステル樹脂などからなる成形体が好ましく用いられる。また、インキ収容管は、単層構造でも良く、多層構造であってもよい。多層構造のインキ収容管を採用する場合、少なくとも1層は、エチレンビニルアルコール共重合樹脂、塩化ビニリデン樹脂、アクリロニトリル樹脂、ポリエステル樹脂からなることが好ましい。また、インキ収容管が3以上の多層構造のインキ収容管を採用し、エチレンビニルアルコール共重合樹脂、塩化ビニリデン樹脂、アクリロニトリル樹脂、ポリエステル樹脂からなる層を組み合わせる場合は、それらの層は最外層および最内層以外に配置することが好ましい。
 インキ収容管にはチップを直接連結する他、接続部材を介して前記インキ収容管とチップを連結してもよい。
 尚、インキ収容管はレフィルの形態として、レフィルを樹脂製、金属製等の軸筒内に収容するものでもよいし、先端部にチップを装着した軸筒自体をインキ収容体として、軸筒内に直接インキを充填してもよい。
 インキ収容管に収容したインキの後端にはインキ逆流防止体が充填されることが好ましい。インキ逆流防止体組成物は不揮発性液体または難揮発性液体からなる。
 具体的には、ワセリン、スピンドル油、ヒマシ油、オリーブ油、精製鉱油、流動パラフィン、ポリブテン、α-オレフィン、α-オレフィンのオリゴマーまたはコオリゴマー、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、アミノ変性シリコーンオイル、ポリエーテル変性シリコーンオイル、脂肪酸変性シリコーンオイル等があげられ、一種または二種以上を併用することもできる。
 不揮発性液体および/または難揮発性液体は、増粘剤を添加して好適な粘度まで増粘させることが好ましく、増粘剤としては表面を疎水処理したシリカ、表面をメチル化処理した微粒子シリカ、珪酸アルミニウム、膨潤性雲母、疎水処理を施したベントナイトやモンモリロナイトなどの粘土系増粘剤、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛等の脂肪酸金属石鹸、トリベンジリデンソルビトール、脂肪酸アマイド、アマイド変性ポリエチレンワックス、水添ひまし油、脂肪酸デキストリン等のデキストリン系化合物、セルロース系化合物等を挙げることができる。更に、液状のインキ逆流防止体と、固体のインキ逆流防止体を併用することもできる。
 また、マーキングペンに充填する場合、マーキングペン自体の構造、形状は特に限定されるものではなく、例えば、軸筒内に繊維集束体からなるインキ吸蔵体を内蔵し、毛細間隙が形成された、繊維加工体または樹脂成型体からなるマーキングペンチップを直接或いは中継部材を介して軸筒に装着してなり、インキ吸蔵体とチップが連結されてなるマーキングペンのインキ吸蔵体にインキを含浸させたマーキングペンや、軸筒内部に直接インキを収容し、櫛溝状のインキ流量調節部材や繊維束からなるインキ流量調節部材を介在させ、インキ流量調節部材とチップが連結されてなる構造を備えるマーキングペン、およびチップの押圧により開放する弁体を介してチップとインキ収容管とを配置し、インキ収容管内にインキを直接収容させたマーキングペン等を例示できる。
 チップは、繊維の樹脂加工体、熱溶融性繊維の融着加工体、フェルト体等の従来より汎用の気孔率が概ね30~70%の範囲から選ばれる連通気孔の多孔質部材、または軸方向に延びる複数のインキ導出孔を有する合成樹脂の押出成型体であり、一端を砲弾形状、長方形状、チゼル形状等の目的に応じた形状に加工して実用に供される。
 インキ吸蔵体は、捲縮状繊維を長手方向に集束させたものであり、プラスチック筒体やフィルム等の被覆体に内在させて、気孔率が概ね40~90%の範囲に調整して構成される。
 また、弁体は、従来より汎用のポンピング式形態が使用できるが、筆圧により押圧開放可能なバネ圧に設定したものが好適である。
 本発明によるインキ組成物に好適なマーキングペンは、軸筒内に繊維集束体からなるインキ吸蔵体を内蔵し、毛細間隙が形成された、繊維加工体または樹脂成型体からなるマーキングペンチップを直接或いは中継部材を介して軸筒に装着してなり、インキ吸蔵体とチップが連結されてなるマーキングペンのインキ吸蔵体にインキを含浸させたマーキングペン、軸筒内部に直接インキを収容し、櫛溝状のインキ流量調節部材や繊維束からなるインキ流量調節部材を介在させ、インキ流量調節部材とチップが連結されてなる構造を備えるマーキングペンであり、より好ましくは、軸筒内に繊維集束体からなるインキ吸蔵体を内蔵し、毛細間隙が形成された、繊維加工体または樹脂成型体からなるマーキングペンチップを直接或いは中継部材を介して軸筒に装着してなり、インキ吸蔵体とチップが連結されてなるマーキングペンのインキ吸蔵体にインキを含浸させたマーキングペンである。このような機構を備える筆記具には、チップへのインキ供給性の観点から、マイクロカプセル顔料の凝集性が低く、易流動性を有するインキ組成物が求められるため、本発明によるインキ組成物は上記機構を有する筆記具に対して特に好適であり、マーキングペン用可逆熱変色性水性インキ組成物として好ましく用いることが可能である。
 更に、ボールペンやマーキングペンの形態は前述したものに限らず、相異なる形態のチップを装着させたり、相異なる色調のインキを導出させるペン先を装着させた複合筆記具(両頭式やペン先繰り出し式等)であってもよい。
 前記した構造の筆記具は、ペン先の保護や、乾燥防止のためにキャップを備えることもできる。
 また、インキ収容管内に、インキを含浸させたインキ吸蔵体を収容し、ペン体を筆記先端部に装着してレフィルを調製し、レフィルを軸筒内に収容して出没機構の作動によって軸筒開口部から筆記先端部が突出する構造の出没式筆記具とすることもできる。本発明によるインキ組成物は、ペン先の乾燥による筆記特性の劣化が少ないため、このような出没式筆記具に好ましく用いられる。
 出没機構の操作方法としては、例えば、ノック式、回転式、スライド式等が挙げられる。
 インキ組成物を収容した筆記具より形成される筆跡は、指による摩擦や加熱具または冷熱具の適用により変色させることができる。
 加熱具としては、抵抗発熱体を装備した通電加熱変色具、温水等を充填した加熱変色具、ヘアドライヤーの適用が挙げられるが、好ましくは、簡便な方法により変色可能な摩擦部材や摩擦体が用いられる。
 摩擦部材や摩擦体としては、弾性感に富み、摩擦時に適度な摩擦を生じて摩擦熱を発生させることのできるエラストマー、プラスチック発泡体等の弾性体が好適であるが、プラスチック成形体、石材、木材、金属、布帛であってもよい。
 なお、消しゴムを使用して筆跡を摩擦することもできるが、摩擦時に消しカスが発生するため、好ましくは前述のような摩擦部材が用いられる。
 摩擦部材や摩擦体の材質としては、シリコーン樹脂やSEBS樹脂(スチレンエチレンブタジエンスチレンブロック共重合体)、SEPS樹脂(スチレンエチレンプロピレンスチレンブロック共重合体)、ポリエステル系樹脂、EPDM(エチレンプロピレンジエンゴム)が好適に用いられるが、シリコーン樹脂は摩擦により消去した部分に樹脂が付着し易く、繰り返し筆記した際に筆跡がはじかれる傾向にあるため、SEBS樹脂がより好適に用いられる。
 摩擦部材は筆記具と別体の任意形状の部材(摩擦体)であってもよいが、筆記具に固着させることにより、携帯性に優れる。
 摩擦部材を固着する箇所は、キャップ先端部(頂部)、或いは、軸筒後端部(筆記先端部を設けていない部分)が挙げられる。
 冷熱具としては、ペルチエ素子を利用した冷熱変色具、冷水、氷片等の冷媒を充填した冷熱変色具、冷蔵庫や冷凍庫の適用が挙げられる。
 また、筆記具と、摩擦体とを組み合わせて筆記具セットを得ることもできる。
 以下に、本実施形態に係るボールペンおよびボールペンレフィルの好ましい構成を図を用いて説明する。
<<ボールペン(第1の実施の形態)>>
 第1の実施の形態のボールペンを図3に示す。
 ボールペン1は、軸筒11と、軸筒11内に前後方向に移動可能に収容されるボールペンレフィル2と、軸筒11外面に設けた操作部12とを備え、操作部12(クリップ)を前方にスライド操作することによって、軸筒11の前端孔よりボールペンレフィル2のボールペンチップ3(ペン先)が出没可能に構成されている。
 軸筒11は、前軸11aと、該前軸11aが着脱自在に螺着された後軸11bとを備え、前軸11aを後軸11bより取り外すことにより、軸筒11内部のボールペンレフィル2を交換することができる。
 軸筒11の後端には、弾性材料(例えば、ゴム、エラストマー等の弾性を有する合成樹脂)よりなる摩擦体13が取り付けられる。摩擦体13により、熱変色性インキの筆跡を摩擦しその際に発生する摩擦熱で該筆跡を熱変色(または消色)させることができる。
<<ボールペン(第2の実施の形態)>>
 第2の実施の形態のボールペンを図4に示す。
 ボールペン1は、軸筒11と、軸筒11内に収容されたボールペンレフィル2と、軸筒11のボールペンチップ側(ペン先側)外面に着脱自在に嵌合されるキャップ14とを備え、軸筒11の前端孔よりボールペンレフィル2のボールペンチップ3(ペン先)が外部に突出されている。
 軸筒11は、前軸11aと、該前軸11aが着脱自在に螺着された後軸11bとを備え、前軸11aを後軸11bから取り外すことにより、軸筒11内部のボールペンレフィル2を交換することができる。
 軸筒11の後端には、弾性材料((例えば、ゴム、エラストマー等の弾性を有する合成樹脂)よりなる摩擦体13が取り付けられる。摩擦体13により、熱変色性インキの筆跡を摩擦しその際に発生する摩擦熱で該筆跡を熱変色(または消色)させることができる。
<<ボールペンレフィル>>
 前記ボールペン1に用いるボールペンレフィル2の実施の形態を図5~7に示す。
本実施の形態のボールペンレフィル2は、前端部にボール5を回転可能に抱持したボールペンチップ3と、前記ボールペンチップ3の内部に収容配置されるスプリング6と、該ボールペンチップ3が前部に圧入固着されたホルダー7と、該ホルダーの後部が前端開口部に圧入固着されたインキ収容筒8とを備える。
尚、本実施の形態で「前」とはペン先ボール側を指し、「後」とはその反対側を指す。
・ボールペンチップ
 前記ボールペンチップ3は、チップ本体4とボール5とからなる。前記チップ本体3は、前端にボール5を回転可能に抱持する直円筒状の小径筒部41と、該小径筒部41より後方に一体に連設され且つ後方に向かうに従い漸次拡径するテーパ筒部42と、該テーパ筒部42より後方に一体に連設される直円筒状の大径筒部43とからなる金属製筒体よりなる。前記金属製筒体は、例えば、SUS304、SUS305、SUS321等のオーステナイト系ステンレス鋼により得られる。
 前記チップ本体3の小径筒部41の前端近傍内面には、内方への押圧変形により、複数(例えば、4個)の内方突出部41bが周方向に等間隔に形成される。前記内方突出部41bによりボール受け座が形成される。また、チップ本体3の前端には、周状に内方に押圧変形されることにより、内向きの前端縁部41aが形成される。前記内方突出部41b(ボール受け座)の前面と前記前端縁部41aの後面との間にはボール5を回転可能に抱持するボール抱持部が形成される。前記内方突出部41bの相互間には、中心部から径方向外方に延び且つ軸方向に貫通するインキ流通孔41cが形成される。即ち、前記ボール受け座には、前記インキ流通孔41cが形成される。前記ボールペンチップ3は、金属製のチップ本体3の前端部にボール受け座を切削加工によって形成するタイプであってもよい。
・直円筒状内面
 前記内方突出部41bより後方の前記小径筒部41の内面には、直円筒状内面が形成される。前記大径筒部43の内面には、直円筒状内面が形成される。
・テーパ状内面
 前記テーパ筒部42の内面には、後方に向かうに従い漸次拡径するテーパ状内面(または円錐面状内面)が形成される。
・スプリング
 前記スプリング6は、前部のロッド部61と、後部のコイル部62とが1本の金属線材(例えば、線径0.11mmのステンレス鋼製線材)により一体に連設される。
・ロッド部
 前記ロッド部61は、軸方向に直線状に伸び、前記ボール受け座41bのインキ流通孔41cに挿通される。前記ロッド部61の前端がボール5の後面の略中心部に当接され、前記ロッド部61によって、直接、前記ボール5が前方に付勢される。それにより、前記ボール5が前記前端縁部41aの内周面に密接され、チップ本体3の前端からのインキの漏出及びインキの蒸発を防止できる。
・コイル部
 前記コイル部62は、線材が螺旋状に巻回されて形成される。前記コイル部62の前端部及び後端部には、線材同志が密着する密着巻部が形成される。前記コイル部62の前端部及び後端部を除く中間部には、線材間に隙間を備えた有効巻部が形成される。スプリング6がボール5を前方に付勢する弾発力(具体的にはボール5を後方に0.01mmだけ押圧した際の荷重)は、14グラム~25グラム(好ましくは15グラム~22グラム)の範囲に設定される。
・ホルダー
 前記ホルダー7は合成樹脂(例えば、ポリプロピレン)の射出成形によって得られる筒状体である。前記ホルダー7は、ボールペンチップ3が取り付けられる先細状の前部71と、インキ収容筒8の前端面に当接する鍔部72と、インキ収容筒8の前端開口部に圧入される後部73とからなる。前記ホルダー7の前部71の取付孔にチップ本体3の後部が圧入固着される。前記取付孔内面の後端に段部74が突設され、前記段部74にチップ本体3の後端が係止されるとともに、前記段部74にスプリング6の後端(コイル部62の後端)が係止される。
・インキ収容筒
 前記インキ収容筒8は、合成樹脂(例えば、ポリプロピレン)の押出成形により得られる、両端が開口された円筒体である。前記インキ収容筒8の内部には、インキ81と、該インキ81の消費に伴って前進する高粘度流体からなる追従体82が充填される。前記インキ収容筒8の後端開口部に尾栓83が圧入固着される。前記尾栓83は、インキ収容筒8内と外気とを連通可能にする通気孔を有する。前記インキ81は、本発明のボールペンに係る水性インキ組成物である。前記追従体82は、例えば、高粘度流体のみからなる構成、または高粘度流体中に固形物を収容させた構成が挙げられる。
・ボール
 前記ボール5は、直径Aが、0.25mm~0.7mm(好ましくは0.3mm~0.5mm、さらに好ましくは0.3mm~0.45mm)の範囲のものが採用される。具体的には、ボール5は、所望する筆跡幅に応じて複数種のサイズのものが用意され、例えば、直径が0.25mm、0.3mm、0,4mm、0,5mm、0.7mmのものが採用される。
 前記ボール抱持部のボール5の軸方向の移動可能量は、円滑なインキ流出性が得られる点で、0.02mm~0.05mmの範囲が好ましい。前記ボール抱持部のボール5の軸方向の移動可能量は、ボール5の直径Aにより異なり、ボール5直径Aの5%~15%(好ましくは8%~12%)の範囲に設定され、それにより、円滑なインキ流出性と十分なボール露出量が得られる。
 前記ボール4の材料には、ボールペンに一般的に用いられる金属などを用いることができる。例えば、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、または前記物質の炭化物もしくは窒化物が挙げられ、タングステンの炭化物(タングステンカーバイド)が好ましく用いられる。また、これらの材料を基材とし、コバルトを結合材として含む超硬合金を用いることも好ましい。
 なお、ボールがコバルトを含む超硬合金である場合、結合材は、コバルトのみからなっていても、コバルト以外に鉄またはニッケル等の金属を含むものであってもよい。コバルトの含有率は特に限定されないが、ボール表面の変質を抑制し、ボール表面の良好な潤滑性を維持することを考慮すると、超硬合金全質量を基準として5~20質量%とすることが好ましく、8~15質量%であることがより好ましい。ボール中のコバルトは、走査型電子顕微鏡を用いたエネルギー分散型X線分光法の分析で検出可能である。前記測定には、電子顕微鏡(製品名:Miniscope TM-1000、株式会社日立ハイテクノロジーズ製)およびEDX分析装置(製品名:SwiftED-TM、英国Oxford社製)を用いることができる。
 前記ボール5の軸方向前方への露出量Eは、ボール5の直径Aの22%~32%の範囲に設定される。前記ボール5の軸方向前方への露出量Eは、スプリングの前方付勢に抗してボール5を後方に押圧し、ボール5が各々の内方突出部41b(ボール受け座)に接触した状態で測定される。直径Aが前記範囲(特にボール5の直径Aが0.3mm~0.45mm)において、直径が異なる複数種のボール5を採用し複数種のボールペンチップ3を得る場合、共通のスプリング6が採用される。
・小径筒部
 ボール5の直径Aが前記範囲(特にボール5の直径Aが0.3mm~0.45mm)の場合において、前記小径筒部41の直円筒状内面の内径Bは、ボール5の直径Aより大きく設定される。具体的には、前記小径筒部41の内径Bは、ボール5の直径Aより、0.03mm~0.06mmだけ大きく設定される。
 前記小径筒部41の内方突出部より後方の直円筒状内面の軸方向の長さFは、ボール5の直径Aより小さく設定される。それにより、ボール5の後面に潤沢にインキが供給され、円滑なインキ流出性が得られる。
・テーパ筒部
 ボール5の直径Aが前記範囲(特にボール5の直径Aが0.3mm~0.45mm)の場合において、前記テーパ筒部42のテーパ状内面の角度α(軸線を中心とした円錐面状内面の角度α)は、30度~40度に設定される。前記テーパ状内面の軸方向の長さGは、ボール5の直径Aより大きく設定される。具体的には、前記テーパ状内面の軸方向の長さGは、ボール5の直径Aの1.1倍~5.0倍(好ましくは2倍~4.5倍)に設定される。前記テーパ筒部42により、円滑なインキ流通性が得られるよう、小径筒部41と大径筒部43とが適正に接続される。
・大径筒部
 ボール5の直径Aが前記範囲(特にボール5の直径Aが0.3mm~0.45mm)の場合において、前記大径筒部43の直円筒状内面の内径Cは、0.9mm以上(好ましくは1mm以上)に設定され、前記大径筒部43の直円筒状内面の外径Dは、1.2mm以上(好ましは1.3mm以上)に設定される。前記大径筒部43の直円筒状内面の軸方向の長さHは、4.0mm~5.0mmの範囲に設定される。
 また、ボール5の直径Aが前記範囲(特にボール5の直径Aが0.3mm~0.45mm)において、異なる直径の複数種のボール5を採用し複数種のボールペンチップ3を得る場合、各々の大径筒部43の内径Cが同一に設定され、且つ、各々の大径筒部43の外径Dが同一に設定され、それにより、ホルダー7に対するボールペンチップ3の取付部の形状が共通化でき、製造工程の簡略化が可能となる。
 本実施の形態のボールペンレフィル2は、少なくとも以下の構成を要件とする。
 本実施の形態のボールペンレフィル2は、前端部にボール5を回転可能に抱持したボールペンチップ3と、ボールペンチップ3の内部に収容配置されるスプリング6と、該ボールペンチップ3の後部73が固着されたホルダー7と、該ホルダー7の後部73がその前端開口部に固着されたインキ収容筒8とを備え、
インキ収容筒8の内部に、熱変色性インキ81と、該インキ81の消費に伴って前進する高粘度流体からなる追従体82とが充填され、
ボールペンチップ3は、前端にボール5が回転可能に抱持された直円筒状の小径筒部41と、該小径筒部41より後方に一体に連設され且つ後方に向かうに従い漸次拡径するテーパ筒部42と、該テーパ筒部42より後方に一体に連設される直円筒状の大径筒部43とからなる金属製筒体よりなりチップ本体3を備え、
ボール5を前方に付勢するスプリング6の弾発力は、14g~25グラムの範囲に設定され、
ボール5の材料には、コバルトを結合材に含む超硬合金が用いられ、
ボール5の直径Aは,0.25mm~0.7mmの範囲に設定され、
ボール抱持部のボール5の軸方向の移動可能量は、0.02mm~0.05mmの範囲に設定され、
ボール受け座41bより後方の小径筒部41の直円筒状内面の内径Bは、ボール5の直径Aより0.03mm~0.06mmだけ大きく設定され、
ボール受け座41bより後方の小径筒部41の直円筒状内面の軸方向の長さFは、ボール5の直径Aより小さく設定され、
大径筒部43の直円筒状内面の内径Cは、0.9mm以上に設定されている。
 なお、このようなボールペンまたはボールペンレフィルの構造は、本発明において特定された水性インキ組成物以外のインキ組成物を組み合わせた場合においても、優れた性能を与えることができる。特に、超硬合金のボールは、インキ組成物が強酸性であると表面が変質してボール表面の潤滑性が低下することがある。しかし、インキ組成物が強塩基性であると、インキ組成物に一般的に含まれる増粘剤との相互作用によって、インキ組成物の粘度が上昇することがある。このため、上記したボールペンまたはボールペンレフィル憎み合わせるインキ組成物のpHは、4以上7未満であることが好ましく、4.5以上7未満であることが好ましい。特にインキ組成物が、マイクロカプセル顔料を含むインキ組成物である場合に、優れた特性を有するボールペンまたはボールペンレフィルが得られる。すなわち、可逆熱変色性マイクロカプセル顔料、N-ビニル-2-ピロリドン重合体、およびグリセリンの含有率が本発明によって特定された範囲外のインキ組成物を用いた場合であっても、可逆熱変色性マイクロカプセル顔料と増粘剤とを含み、かつ、4以上7未満のpH値を有する可逆熱変色性水性インキ組成物を内蔵し、コバルトを結合材として含む超硬合金からなるボールをペン先に備える、ボールペンまたはボールペンレフィルは、優れた特性を示すものである。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、マイクロカプセル顔料の平均粒子径は、コールター法(電気的検知帯法)による測定装置を用いて計測した数値を基にしてキャリブレーションを行った前記レーザー回折/散乱式粒子径分布測定装置(装置名:LA-300、株式会社堀場製作所製)用いて測定した、体積基準による平均粒子径(メジアン径)である。
<調製例1:マイクロカプセル顔料MC1の調製>
 可逆熱変色性組成物の調製
 電子供与性呈色性有機化合物(成分(a))として2-(2-クロロアニリノ)-6-ジ-n-ブチルアミノフルオラン4.5部、電子受容性化合物(成分(b))として1,1-ビス(4-ヒドロキシフェニル)n-デカン4.5部、および2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン7.5部、反応媒体(成分(c))としてカプリン酸4-ベンジルオキシフェニルエチル(デカン酸4-ベンジルオキシフェニルエチル)50.0部からなる、可逆熱変色性組成物を内包した可逆熱変色性マイクロカプセル顔料懸濁液を得た。前記懸濁液を遠心分離して可逆熱変色性マイクロカプセル顔料を単離した。なお、前記マイクロカプセル顔料の平均粒子径は2.5μmであり、t:-20℃、t:-9℃、t:40℃、t:57℃、△H63℃のヒステリシス特性を有する挙動を示し、黒色から無色、無色から黒色へ可逆的に色変化した。
<調製例2:マイクロカプセル顔料MC2の調製>
 電子供与性呈色性有機化合物(成分(a))として3-(4-ジエチルアミノ-2-ヘキシルオキシフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド2.0部、電子受容性化合物(成分(b))として2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン8.0部、反応媒体(成分(c))としてカプリン酸-4-ベンジルオキシフェニルエチル50.0質量部からなる、感温変色性色彩記憶組成物を内包した可逆熱変色性マイクロカプセル顔料懸濁液を得た。前記懸濁液を遠心分離して可逆熱変色性マイクロカプセル顔料を単離した。前記マイクロカプセル顔料の平均粒子径は2.3μmであり、t:-14℃、t:-6℃、t:48℃、t:60℃、ΔH64℃のヒステリシス特性を有する挙動を示し、青色から無色、無色から青色へ可逆的に色変化した。
<実施例1>
 下記の各成分を配合し、混合してインキ組成物を得た。
・可逆熱変色性マイクロカプセル(MC1) 18.0質量%
・N-ビニル-2-ピロリドンの重合体(重合度2~20)(P1) 5.0質量%
・グリセリン(G) 5.0質量%
・増粘剤(V1) 0.2質量%
(商品名:レオザン、三晶株式会社製)
・多糖(D) 2.0質量%
(商品名:サンデック30 三和澱粉工業株式会社製)
・界面活性剤(S) 0.5質量%
(第一工業製薬株式会社製、商品名:プライサーフAL)
・pH調整剤(B) 0.5質量%
(トリエタノールアミン)
・防腐剤(AS) 0.2質量%
 (商品名:プロキセルXL-2(S)、ロンザジャパン株式会社製)
・水(イオン交換水) 残余
 得られたインキ組成物の、20℃におけるpHは8.0、20℃で測定した粘度は、回転数3.84sec-1においては、780mPa・s、回転数384sec-1においては35.0mPa・s、20℃における表面張力は37.0mN/mであった。
<実施例2~12、比較例1~8>
 インキ組成物を表1に表される組成に変更した以外は実施例1と同様にして実施例2~12および比較例1~8のインキ組成物を得た。
<水性ボールペンレフィルの作成>
 まず、調製した各例のインキ組成物を株式会社パイロットコーポレーション製ボールペンチップ(商品名:フリクションボール05、ボール径0.5mm、クリアランス43μm)がポリプロピレン製パイプの一端に嵌着されたインキ収容管に充填し、更に、インキ逆流防止体を前記インキ後端面に密着させて充填し、ボールペンレフィルを得た。
 これらのボールペンレフィルについて、100mあたりのインキ消費量を調べた。なお実施例1(ボール径0.5mm)のインキ組成物を収容したボールペンレフィルのインキ消費量は280mgであった。実施例2~9、11~12および比較例1~7(すべてボール径0.5mm)についても同等であった。また、実施例10(ボール系0.5mm)の水性ボールペンレフィルでは、インキ消費量は230mgであった。また、比較例8のインキ組成物を収容したボールペンレフィル(ボール径0.5mm)の100mあたりのインキ消費量は160mgであった。
 さらに、これら実施例11および12で用いたインキ組成物については、別のボールペンレフィルに充填した場合についても、インキ消費量を調べた。具体的には、前記の第1の実施形態に、ボール径が0.4mmまたは0.5mmのボールを組み合わせたボールペンレフィルを準備し、それにインキ組成物を充填した。実施例11および12のインキ組成物をボール径が0.4mmのボールペンレフィルに組み合わせた場合(実施例11Aおよび12A)のインキ消費量は、いずれも220mgであり、0.5mmのボールペンレフィルに組み合わせた場合(実施例11Bおよび12B)のインキ消費量は、いずれも300mgであった。
<評価>
 各レフィルを50℃で30日静置した後、初期筆跡濃度およびドライアップ耐性の評価を行った。具体的には、ペン先を紙面に接触させながら、ペン先を連続的に丸を描くように移動させ、筆跡を形成させた。このとき、書き始め部分の筆跡濃度を目視で確認して初期濃度を下記の基準で評価した。
A: 書き始め部分で十分な濃度が確認できる
B: 書き始め部分の濃度が少し低い
C: 書き始め部分で目視確認がほとんどできない
 また、ドライアップ耐性は、筆跡が形成されるまでの丸の数をカウントして、下記の基準で評価した。
A: 1丸以内のカスレ
B: 3丸以内のカスレ
C: 6丸以内のカスレ
D: 12丸以内のカスレ
E: 書けない
 ここで、DおよびEは実用上、利用不可能なレベルである。
 一般的にレフィルを長期間静置すると、ペン先が乾燥して固化などがおこり、筆記開始時にインキ組成物が正常に吐出されず、筆跡にカスレなどが生じることがある。この筆記開始時のカスレが少ないほど優れたドライアップ耐性を有するということができる。
 得られた結果は表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000011
表中:
MC1: マイクロカプセル顔料MC1
MC2: マイクロカプセル顔料MC2
PIG1: 酸化チタン(商品名:CR-85、石原産業株式会社製、平均粒子径0.25μm)
P1: N-ビニル-2-ピロリドンの重合体(重合度2~20)
P2: ε-カプロラクタム
V1: サクシノグリカン(商品名:レオザン、三晶株式会社製)
V2: キサンタンガム(商品名:ケルザン、三晶株式会社製)
D: デキストリン(8糖以上の澱粉糖化物を94%含む糖混合物、商品名:サンデック30、三和澱粉工業株式会社製)
S: リン酸エステル系界面活性剤(商品名:プライサーフAL、第一工業製薬株式会社製)
B: トリエタノールアミン
AS: 商品名:プロキセルXL-2(S)、ロンザジャパン株式会社製
 なお、実施例11および12のインキ組成物を、前記の第1の実施態様によるボールペンレフィルに充填した場合の諸性能についても同様の評価を行った。実施例11Aおよび11Bは、実施例11と、実施例12Aおよび12Bは実施例12と、それぞれ同等の評価結果であった。
 図8は、ドライアップ性能評価における筆跡の一例を示す図である。図8(A)は、実施例1のインキ組成物を用いた場合の耐ドライアップ性評価後の筆跡の写真であり、図8(B)はその書き出し部分(図8(A)の左上部分)の拡大図である。図9(A)は、比較例1のインキ組成物を用いた場合の耐ドライアップ性評価後の筆跡の写真であり、図9(B)はその書き出し部分(図9(A)の左上部分)の拡大図である。
<実施例13>
 下記の各成分を配合し、混合してインキ組成物を得た。
・可逆熱変色性マイクロカプセル(MC2) 10.0質量%
・光輝性顔料1 1.0質量%
 (尾池イメージング株式会社製、エルジーneo SILVER#325)
・光輝性顔料2 4.0質量%
 (メルク社製、イリオジン103)
・N-ビニル-2-ピロリドンの重合体(重合度2~20)(P1) 5.0質量%
・グリセリン(G) 5.0質量%
・尿素 1.0質量%
・増粘剤(V1) 0.2質量%
(商品名:レオザン、三晶株式会社製)
・多糖(D) 2.0質量%
(商品名:サンデック30 三和澱粉工業株式会社製)
・界面活性剤(S) 0.5質量%
(第一工業製薬株式会社製、商品名:プライサーフAL)
・pH調整剤(B) 0.2質量%
(トリエタノールアミン)
・防腐剤(AS) 0.2質量%
 (商品名:プロキセルXL-2(S)、ロンザジャパン株式会社製)
・水(イオン交換水) 残余
<比較例9>
 実施例13よりN-ビニル-2-ピロリドンの重合体(重合度2~20)(P1)およびグリセリン(G)を除き、水(イオン交換水)を補填した以外は同様にインキを作成した。
 実施例13及び比較例9については、調製した各インキ組成物を株式会社パイロットコーポレーション製ボールペンチップ(商品名:フリクションボール07、ボール径0.7mm、クリアランス46μm)がポリプロピレン製パイプの一端に嵌着されたインキ収容管に充填し、更に、インキ逆流防止体を前記インキ後端面に密着させて充填し、ボールペンレフィルを得た。
 なお実施例13のインキ組成物を収容したボールペンレフィルの100mあたりのインキ消費量は340mgであった。
<評価>
 実施例13および比較例9の各レフィルを50℃で15日静置した後、実施例1と相溶の方法で、初期筆跡濃度およびドライアップ耐性の評価を行った。実施例13においては、初期濃度およびドライアップ耐性がA評価であることに対し、比較例9は初期濃度がA評価であるものの、ドライアップ耐性がD評価であり、実施例13のインキ組成物はドライアップ耐性が優れていることが確認された。
(参考例1)
(可逆熱変色性マイクロカプセル顔料の調製:マイクロカプセル顔料MCA)
(a)成分として
2-(2-クロロアニリノ)-6-ジ-n-ブチルアミノフルオラン 4.5部、
(b)成分として
1,1-ビス(4-ヒドロキシフェニル)n-デカン 4.5部、
2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン 7.5部、
(c)成分として
カプリン酸4-ベンジルオキシフェニルエチル 50.0部
からなる可逆熱変色性組成物を内包したマイクロカプセル顔料(t:-20℃、t:-9℃、t:40℃、t:57℃、ΔH:63℃、平均粒子径:2.5μm、黒色から無色、無色から黒色へ色変化する)
(水性インキ組成物の調製)
 上記可逆熱変色性マイクロカプセル顔料、下記原材料および配合量にて、室温で1時間攪拌混合することにより、水性インキ組成物を得た。得られた水性インキ組成物のpH値を、IM-40S型pHメーター(東亜ディーケーケー株式会社製)を用いて測定したところ、20℃において5.7であった。
 また、水性インキ組成物の粘度をE型回転粘度計(商品名;DV-II粘度計、ブルックフィールド社製、ローター:コーンローター CPE42)により測定したところ、20℃において、回転速度3.84sec-1における粘度は780mPa・sであり、回転速度384sec-1における粘度は35.0mPa・sであった。
 また、水性インキ組成物の表面張力は、表面張力計測器(20℃環境下、垂直平板法、協和界面科学株式会社製)により白金プレートを用いて測定したところ、37.0mN/mであった。
・可逆熱変色性マイクロカプセル顔料 (マイクロカプセル顔料MCA) 16質量%
・増粘剤 (サクシノグリカン、商品名:レオザン、三晶株式会社製) 0.3質量%
・糖 (デキストリン、商品名:サンデック30、三和澱粉工業株式会社製) 1質量%
・リン酸エステル系界面活性剤 (ポリオキシエチレンアリールエーテルリン酸、商品名;プライサーフAL、第一工業製薬株式会社製) 0.5質量%
・トリエタノールアミン 0.2質量%
・リン酸 0.2質量%
・防腐剤 (ベンゾイソチアゾリン-3-オン、商品名:プロキセルXL-2(S)、ロンザジャパン株式会社製)0.2質量%
・水 81.6質量%
(参考例2~10、R1~R6)
 参考例1に対して、配合する成分の種類や添加量を表2に示したとおりに変更して、参考例2~10、R1~R6のインキ組成物を得た。
 上記例で使用した材料の詳細は以下の通りである。
・顔料(1) [可逆熱変色性マイクロカプセル顔料(前記マイクロカプセル顔料MCA)]
・顔料(2) [酸化チタン(商品名:CR-85、石原産業株式会社製、平均粒子径0.25μm)]
・増粘剤 (サクシノグリカン、商品名:レオザン、三晶株式会社製)
・糖 (デキストリン、商品名:サンデック30、8糖以上の澱粉糖化物を94%含む糖混合物、三和澱粉工業株式会社製)
・リン酸エステル系界面活性剤(1) (ポリオキシエチレンアリールエーテルリン酸、商品名;プライサーフAL、第一工業製薬株式会社製)
・リン酸エステル系界面活性剤(2) (ポリオキシエチレンアリールエーテルリン酸、商品名:DispersogenLFH、クラリアントジャパン株式会社製)
・リン酸エステル系界面活性剤(3) (ポリオキシエチレントリデシルエーテルリン酸、商品名:プライサーフA212C、第一工業製薬株式会社製)
・pH調整剤(1) トリエタノールアミン
・pH調整剤(2) リン酸
・防腐剤 (ベンゾイソチアゾリン-3-オン、商品名:プロキセルXL-2(S)、ロンザジャパン株式会社製)
・水溶性有機溶剤 (グリセリン)
・水
 調製した水性インキ組成物について、下記の通り、評価を行った。得られた結果は表2に記載したとおりであった。
 評価試験には、前記第1の実施形態のボールペンを作製し、用いた。なお、前記ボールペンのボール径は、0.4mmであり、ボールペンに内蔵したインキ量は、0.9gであった。
 また、表中、ボールに含まれるコバルトは、電子顕微鏡(製品名:Miniscope TM-1000、株式会社日立ハイテクノロジーズ製)を用いたEDX分析(倍率1000倍による面分析)で検出した。前記分析の条件は以下の通りである。
装置: SEM :Miniscope TM-1000(株式会社日立テクノロジーズ製)
    EDX :SwiftED-TM(英国Oxford社製)
    電子銃 :Wヘアピンフィラメント型熱電子銃
    加速電圧:15kV
    検出器 :シリコンドリフト検出器(EDX)
    測定時間:100秒
(筆跡のカスレ、トギレの評価1)
 前記ボールペンを50℃、60日間放置した後、温度20℃、筆記荷重100g、筆記角度70°、および筆記速度4m/分の筆記条件下、試験紙に丸状の筆跡を10m連続筆記し、筆跡のカスレ、トギレの有無を目視で確認した。なお、前記試験紙にはJIS P3201筆記用紙Aを用いた。
A:カスレ、トギレは確認されない。
C:カスレ、トギレが発生し、筆跡の視認性が悪い。実用上、問題がある。
(筆跡のカスレ、トギレの評価2)
 前記、筆跡のカスレ、トギレの評価1で用いたボールペンを、以下の1~2の手順で冷却し、その後試験紙に丸状の筆跡を形成する、10mの連続筆記を行った。その際の筆跡のカスレ、トギレを目視により観察した。なお、筆記条件、試験紙は、前記筆跡のカスレ、トギレの評価1と同条件とした。
1.ボールペンを-20℃下に横置きで24時間放置しインキを凍結させる。
2.室温で24時間放置し、インキを解凍する。
A:カスレ、トギレは確認されない。
C:カスレ、トギレが発生し、筆跡の視認性が悪い。実用上、問題がある。
(ボール表面の潤滑性の評価)
 前記、筆跡のカスレ、トギレの評価2に使用したボールペンを用いて、インキを全て消費するまで連続して筆記可能か否かを確認した。
A;インキを全て消費するまで、連続的に筆記を継続することができる。
B:インキを全て消費するまで、連続的に筆記を継続することができるが、インキを全て消費する直前に、筆跡にわずかなカスレ、トギレが発生した。実用上は問題なし。
C:インキを全て消費する前にボールが十分に回転しなくなり、筆記が継続不能になった。
 試験結果を以下の表2に記す。
Figure JPOXMLDOC01-appb-T000012
 加熱消色型のマイクロカプセル顔料の完全発色温度
 加熱消色型のマイクロカプセル顔料の発色開始温度
 加熱消色型のマイクロカプセル顔料の消色開始温度
 加熱消色型のマイクロカプセル顔料の完全消色温度
ΔH ヒステリシス幅

Claims (10)

  1.  (a)電子供与性呈色性有機化合物と、(b)電子受容性化合物と、(c)前記(a)成分および(b)成分の呈色反応の生起温度を決める反応媒体とを含んでなる可逆熱変色性組成物が、有機樹脂からなるマイクロカプセルに内包された可逆熱変色性マイクロカプセル顔料と、
     重合度が2~20であるN-ビニル-2-ピロリドン重合体と、
     グリセリンと、
     水と、
    を含んでなる可逆熱変色性水性インキ組成物であって、      
     前記インキ組成物の総質量に対する、前記可逆熱変色性マイクロカプセル顔料、前記N-ビニル-2-ピロリドン重合体、および前記グリセリンの含有率(質量%)をPMC、PPVP、およびPとするとき、
    0.3≦PMC/(PPVP+P)≦4、かつ
    0.2≦PPVP/P≦5
    である、可逆熱変色性水性インキ組成物。
  2.  前記PMCが5~40質量%である、請求項1に記載の組成物。
  3.  前記PMCが5~40質量%、前記PPVPが1~20質量%、前記Pが1~20質量%である、請求項1または2に記載のインキ組成物。
  4.  前記PMC、前記PPVP、および前記Pの総計が20~50質量%である、請求項1~3のいずれか1項に記載のインキ組成物。
  5.  多糖類をさらに含む、請求項1~4のいずれか1項に記載のインキ組成物。
  6.  前記多糖類がサクシノグリカンまたはキサンタンガムである、請求項5に記載のインキ組成物。
  7.  請求項1~6のいずれか1項に記載の可逆熱変色性水性インキ組成物を内蔵した、レフィル。
  8.  請求項1~6のいずれか1項に記載の可逆熱変色性水性インキ組成物を内蔵した、水性ボールペン。
  9.  出没式機構を備えた、請求項8に記載の水性ボールペン。
  10.  摩擦部材が固着された、請求項8または9に記載の水性ボールペン。
PCT/JP2020/014445 2019-04-11 2020-03-30 可逆熱変色性筆記具用水性インキ組成物、ならびにそれを内蔵したレフィルおよび水性ボールペン WO2020209118A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080033487.7A CN113785023B (zh) 2019-04-11 2020-03-30 可逆热变色性书写工具用水性墨液组合物、以及内置其的替换笔芯及水性圆珠笔
EP20786835.7A EP3954745A4 (en) 2019-04-11 2020-03-30 REVERSIBLE THERMOCHROMIC AQUEOUS INK COMPOSITION FOR WRITING INSTRUMENTS AND THE FOUNTAIN AND WATER-BASED BALLPOINT PENS THAT CONTAIN THEM INTERNALLY
KR1020217036406A KR20210151150A (ko) 2019-04-11 2020-03-30 가역 열 변색성 필기구용 수성 잉크 조성물, 그리고 그것을 내장한 리필 및 수성 볼펜
US17/602,066 US20220251406A1 (en) 2019-04-11 2020-03-30 Aqueous ink composition for reversibly thermochromic writing instrument, and refill and aqueous ballpoint pen incorporating aqueous ink composition for reversibly thermochromic writing instrument
JP2021513578A JP7407802B2 (ja) 2019-04-11 2020-03-30 可逆熱変色性筆記具用水性インキ組成物、ならびにそれを内蔵したレフィルおよび水性ボールペン

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019075890 2019-04-11
JP2019-075890 2019-04-11
JP2019076696 2019-04-12
JP2019-076696 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020209118A1 true WO2020209118A1 (ja) 2020-10-15

Family

ID=72751105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014445 WO2020209118A1 (ja) 2019-04-11 2020-03-30 可逆熱変色性筆記具用水性インキ組成物、ならびにそれを内蔵したレフィルおよび水性ボールペン

Country Status (7)

Country Link
US (1) US20220251406A1 (ja)
EP (1) EP3954745A4 (ja)
JP (1) JP7407802B2 (ja)
KR (1) KR20210151150A (ja)
CN (1) CN113785023B (ja)
TW (1) TW202100676A (ja)
WO (1) WO2020209118A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013537A1 (ja) * 2021-08-06 2023-02-09 住友精化株式会社 粘性組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020185713A (ja) * 2019-05-14 2020-11-19 三菱鉛筆株式会社 水性ボールペン

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144706B2 (ja) 1972-05-30 1976-11-30
JPS5144707B2 (ja) 1972-07-27 1976-11-30
JPS6063265A (ja) * 1983-09-16 1985-04-11 Pilot Ink Co Ltd ボ−ルペン用水性インキ組成物
JPH0417154B2 (ja) 1984-06-13 1992-03-25 Pilot Ink Co Ltd
JPH0733997A (ja) 1993-07-21 1995-02-03 Pilot Ink Co Ltd 感温変色性色彩記憶性マイクロカプセル顔料
JPH07179777A (ja) 1993-12-24 1995-07-18 Pilot Ink Co Ltd 感温変色性色彩記憶性マイクロカプセル顔料
JPH0839936A (ja) 1994-08-02 1996-02-13 Pilot Ink Co Ltd 感温変色性色彩記憶性組成物
JPH11129623A (ja) 1997-10-30 1999-05-18 Pilot Ink Co Ltd 可逆熱変色性組成物
JP2001105732A (ja) 1999-10-07 2001-04-17 Pilot Ink Co Ltd 可逆熱変色性組成物
JP2003253149A (ja) 2001-12-27 2003-09-10 Pilot Ink Co Ltd 加熱発色型可逆熱変色性顔料
JP2006206823A (ja) * 2005-01-31 2006-08-10 Mitsubishi Pencil Co Ltd 筆記具用インク組成物及びボールペン
JP2009292878A (ja) 2008-06-03 2009-12-17 Pilot Ink Co Ltd ボールペン用水性インキ組成物及びそれを収容したボールペン
JP2013122058A (ja) * 2007-04-30 2013-06-20 Pilot Ink Co Ltd ボールペン用水性インキ組成物及びそれを収容したボールペン
JP2018069548A (ja) * 2016-10-28 2018-05-10 株式会社パイロットコーポレーション 筆記具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI381027B (zh) * 2004-03-23 2013-01-01 Pilot Ink Co Ltd 水性原子筆
US7441976B2 (en) * 2004-09-17 2008-10-28 The Pilot Ink Co., Ltd. Water-based ink composition for ballpoint pen and ballpoint pen comprising the same
JP4961115B2 (ja) 2005-06-01 2012-06-27 パイロットインキ株式会社 可逆熱変色性筆記具用水性インキ組成物及びそれを収容した筆記具
JP5557432B2 (ja) * 2008-02-29 2014-07-23 パイロットインキ株式会社 可逆熱変色性水性インキ組成物及びそれを用いた筆記具、筆記具セット
EP3103853B1 (en) * 2014-02-06 2018-11-28 The Pilot Ink Co., Ltd. Thermochromic color-memory composition and thermochromic color-memory microcapsule pigment encapsulating the same
WO2015163421A1 (ja) * 2014-04-24 2015-10-29 株式会社パイロットコーポレーション 可逆熱変色性スタンプ用インキ組成物及びスタンプ
JP6625643B2 (ja) * 2015-08-03 2019-12-25 パイロットインキ株式会社 感温変色性色彩記憶性組成物及びそれを内包した感温変色性色彩記憶性マイクロカプセル顔料
EP3398787A4 (en) * 2015-12-29 2019-07-31 Kabushiki Kaisha Pilot Corporation (also trading as Pilot Corporation) WRITING DEVICE FOR FORMING A THERMOCHROMIC HANDWRITING
EP3587534B1 (en) * 2017-02-27 2021-10-06 The Pilot Ink Co., Ltd Thermochromic color memorizing microcapsule pigment enclosing thermochromic color memorizing composition

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144706B2 (ja) 1972-05-30 1976-11-30
JPS5144707B2 (ja) 1972-07-27 1976-11-30
JPS6063265A (ja) * 1983-09-16 1985-04-11 Pilot Ink Co Ltd ボ−ルペン用水性インキ組成物
JPH0417154B2 (ja) 1984-06-13 1992-03-25 Pilot Ink Co Ltd
JPH0733997A (ja) 1993-07-21 1995-02-03 Pilot Ink Co Ltd 感温変色性色彩記憶性マイクロカプセル顔料
JPH07179777A (ja) 1993-12-24 1995-07-18 Pilot Ink Co Ltd 感温変色性色彩記憶性マイクロカプセル顔料
JPH0839936A (ja) 1994-08-02 1996-02-13 Pilot Ink Co Ltd 感温変色性色彩記憶性組成物
JPH11129623A (ja) 1997-10-30 1999-05-18 Pilot Ink Co Ltd 可逆熱変色性組成物
JP2001105732A (ja) 1999-10-07 2001-04-17 Pilot Ink Co Ltd 可逆熱変色性組成物
JP2003253149A (ja) 2001-12-27 2003-09-10 Pilot Ink Co Ltd 加熱発色型可逆熱変色性顔料
JP2006206823A (ja) * 2005-01-31 2006-08-10 Mitsubishi Pencil Co Ltd 筆記具用インク組成物及びボールペン
JP2013122058A (ja) * 2007-04-30 2013-06-20 Pilot Ink Co Ltd ボールペン用水性インキ組成物及びそれを収容したボールペン
JP2009292878A (ja) 2008-06-03 2009-12-17 Pilot Ink Co Ltd ボールペン用水性インキ組成物及びそれを収容したボールペン
JP2018069548A (ja) * 2016-10-28 2018-05-10 株式会社パイロットコーポレーション 筆記具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3954745A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013537A1 (ja) * 2021-08-06 2023-02-09 住友精化株式会社 粘性組成物

Also Published As

Publication number Publication date
EP3954745A1 (en) 2022-02-16
CN113785023B (zh) 2023-05-12
CN113785023A (zh) 2021-12-10
KR20210151150A (ko) 2021-12-13
EP3954745A4 (en) 2022-12-28
TW202100676A (zh) 2021-01-01
JPWO2020209118A1 (ja) 2020-10-15
US20220251406A1 (en) 2022-08-11
JP7407802B2 (ja) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2020203603A1 (ja) 可逆熱変色性組成物、それを内包してなる可逆熱変色性マイクロカプセル顔料、及びそれを用いた筆記具
WO2020209118A1 (ja) 可逆熱変色性筆記具用水性インキ組成物、ならびにそれを内蔵したレフィルおよび水性ボールペン
JP2021031679A (ja) 筆記具用水性インキ組成物及びそれを収容した筆記具
JP2021107543A (ja) 熱変色性インキ組成物、それを内蔵した下書き用熱変色性筆記体及びレフィル、並びに下書き用熱変色性筆記体を含む筆記体セット
JP7463157B2 (ja) 熱変色性筆記具
JP4093968B2 (ja) 感温変色性色彩記憶性筆記具用インキ組成物
JP7383573B2 (ja) 熱変色性筆記具用水性インキ組成物、およびそれを用いた筆記具
JP2022092862A (ja) 可逆熱変色性組成物及びそれを内包してなる可逆熱変色性マイクロカプセル顔料
JP7256068B2 (ja) スタンプ用多色変色性インキ組成物及びそれを用いたスタンプ
JP2021188049A (ja) ボールペン用水性インキ組成物、およびそれを用いたボールペン
JP2022157764A (ja) 可逆熱変色性ボールペン用水性インキ組成物、並びにそれを収容したレフィル及び水性ボールペン
JP2023096514A (ja) 可逆熱変色性筆記具用水性インキ組成物及びそれを収容した筆記具
JP7079133B2 (ja) 可逆熱変色性水性インキ組成物、ボールペンレフィル及び筆記具
JP2023006756A (ja) 筆記具用可逆熱変色性インキ組成物およびそれを収容してなる筆記具
JP2023010356A (ja) 筆記具用可逆熱変色性インキ組成物およびそれを収容してなる筆記具
JP2020183466A (ja) スタンプ用多色変色性インキ組成物及びそれを用いたスタンプ
JP2022008266A (ja) 筆記具用水性インキ組成物及びそれを収容した筆記具
JP2023097327A (ja) 可逆熱変色性筆記具用水性インキ組成物及びそれを収容した筆記具
JP2022128672A (ja) 可逆熱変色性筆記具用水性インキ組成物及び筆記具
JP7007241B2 (ja) 可逆熱変色性筆記具用水性インキ組成物、およびそれを用いた筆記具
JP2023049826A (ja) ボールペン及びボールペンレフィル
JP2022057896A (ja) 可逆熱変色性水性インキ組成物及びボールペン
JP7328817B2 (ja) スタンプ用熱変色性インキ組成物及びそれを用いたスタンプ
JP2023159613A (ja) 可逆熱変色性組成物及びそれを内包してなる可逆熱変色性マイクロカプセル顔料
JP7280756B2 (ja) スタンプ用熱変色性インキ組成物及びそれを用いたスタンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217036406

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020786835

Country of ref document: EP

Effective date: 20211111