WO2020208773A1 - エンコーダ - Google Patents

エンコーダ Download PDF

Info

Publication number
WO2020208773A1
WO2020208773A1 PCT/JP2019/015769 JP2019015769W WO2020208773A1 WO 2020208773 A1 WO2020208773 A1 WO 2020208773A1 JP 2019015769 W JP2019015769 W JP 2019015769W WO 2020208773 A1 WO2020208773 A1 WO 2020208773A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
encoder
light emitting
mounting surface
Prior art date
Application number
PCT/JP2019/015769
Other languages
English (en)
French (fr)
Inventor
勇治 久保
政範 二村
敏男 目片
琢也 野口
茂雄 神保
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980094996.8A priority Critical patent/CN113661376A/zh
Priority to KR1020217031535A priority patent/KR102360458B1/ko
Priority to PCT/JP2019/015769 priority patent/WO2020208773A1/ja
Priority to JP2019537395A priority patent/JP6639750B1/ja
Priority to TW109110950A priority patent/TWI718040B/zh
Publication of WO2020208773A1 publication Critical patent/WO2020208773A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to an encoder that detects the rotation angle of an object to be measured.
  • the optical rotary encoder is an encoder that calculates the rotation angle of the scale based on the optical signal incident from the scale.
  • the light emitting element that irradiates the scale with light and the light receiving element that receives the light from the scale are protected from the external environment by being covered with a light transmitting resin. Further, the bonding wire connecting the light receiving element and the substrate is protected by the light transmitting resin together with the light receiving element.
  • the bonding wire may be stressed by the expansion or contraction of the light-transmitting resin due to the temperature change. The bonding wire may break due to repeated stress.
  • Patent Document 1 has a light-transmitting resin that covers a light-emitting element provided on a base substrate, and the base base material is provided with a through hole through which a bonding wire connected to the light-emitting element is passed. The device is disclosed. According to the technique of Patent Document 1, the stress on the bonding wire due to the temperature change is reduced by reducing the amount of the light-transmitting resin around the bonding wire.
  • the number of bonding wires increases as the number of light receiving elements increases in order to calculate the rotation angle with high accuracy.
  • the technique of Patent Document 1 is applied to the bonding wire connected to the light receiving element, the number of through holes in the substrate on which the light receiving element is mounted increases as the number of bonding wires increases.
  • the number of through holes increases, the size of the package made of the light-transmitting resin increases, which makes it difficult to miniaturize the encoder.
  • the processing of the encoder at the time of manufacturing becomes complicated. Therefore, according to the technique of Patent Document 1, there is a problem that it is difficult to reduce the breakage of the bonding wire due to the compact and easily processable configuration.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an encoder capable of preventing breakage of a bonding wire connecting a light receiving element and a substrate by a compact and easily processable configuration. And.
  • the encoder according to the present invention has a scale having an optical pattern, a light emitting element that irradiates the scale with light, and a light receiving surface that receives light from the scale.
  • the present invention includes a substrate on which and is mounted, and a module package having a light-transmitting resin that covers a mounting surface on which a light emitting element and a light receiving element are mounted.
  • the light-transmitting resin covers a first portion of the mounting surface that covers the region where the light emitting element is provided, and a region of the mounting surface that is provided with the light receiving element and the bonding wire that connects the light receiving element and the substrate. It has a second portion to cover.
  • the thickness of the light-transmitting resin in the direction perpendicular to the mounting surface is thinner in at least a part of the second portion than in the first portion, or the light emitting element and the light receiving element are arranged parallel to the mounting surface.
  • the length of the light-transmitting resin in the direction perpendicular to the direction is shorter in at least a part of the second portion than in the first portion.
  • the encoder according to the present invention has an effect that breakage of the bonding wire connecting the light receiving element and the substrate can be prevented by a compact and easily processable configuration.
  • FIG. 1 A perspective view of the module package included in the encoder shown in FIG.
  • Top view of the module package included in the encoder shown in FIG. A block diagram showing a configuration of an angle calculation unit included in the encoder shown in FIG.
  • FIG. 1 The figure for demonstrating the method of calculating a highly accurate absolute rotation angle from the coarse absolute rotation angle explained with reference to FIG.
  • FIG. 2 The figure for demonstrating the method of calculating a highly accurate absolute rotation angle from the coarse absolute rotation angle explained with reference to FIG.
  • Top view of the module package included in the encoder shown in FIG. Perspective view of the module package included in the encoder according to the third embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of an encoder according to a first embodiment of the present invention.
  • the encoder 1 detects the rotation angle of the rotating body, which is the object to be measured.
  • the encoder 1 is an optical rotary encoder that calculates the rotation angle of the scale based on an optical signal incident from the scale, and is an absolute encoder that detects an absolute rotation angle.
  • the encoder 1 has an optical scale 2 which is a scale having an optical pattern 20, a light emitting / receiving module package 3 which is a module package having a light emitting function and a light receiving function, and a control unit 4 which controls the encoder 1.
  • the optical scale 2 is connected to a rotating shaft 5 included in a rotating device such as a motor.
  • the optical scale 2 rotates together with the rotating shaft 5. In FIG. 1, the rotating device is not shown.
  • a circular plate material is used for the optical scale 2.
  • the optical pattern 20 is provided in an annular region which is an outer peripheral portion of the circular shape of the optical scale 2.
  • the optical pattern 20 has reflective portions 21 and non-reflective portions 22 that are alternately arranged in a direction along the outer circumference of the circular shape.
  • the reflecting unit 21 is a portion that reflects the light incident from the light emitting element described later toward the light emitting / receiving module package 3.
  • the non-reflective portion 22 is a portion that absorbs or scatters the light incident from the light emitting element.
  • Each of the plurality of reflective portions 21 and the plurality of non-reflective portions 22 has various widths in the direction along the outer circumference.
  • the light emitting element irradiates the rotating optical pattern 20 with light, in the optical pattern 20, reflection at a time corresponding to the width of the reflective portion 21 and non-reflection at a time corresponding to the width of the non-reflective portion 22 are generated.
  • the light receiving element described later detects the light reflected by the reflecting unit 21.
  • the intensity of light detected by the light receiving element is modulated according to the arrangement pattern of the reflecting portion 21 and the non-reflecting portion 22.
  • the arrangement pattern of the reflective portion 21 and the non-reflective portion 22 is set to characterize the rotation angle of the optical scale 2.
  • the optical scale 2 has an optical pattern 20 unique to the rotation angle.
  • a pseudo-random code pattern such as an M sequence is used.
  • a metal base material such as stainless steel is used for the plate material constituting the optical scale 2.
  • the non-reflective portion 22 is formed by plating the surface of the metal base material.
  • the reflective portion 21 is formed by applying a mirror finish to the surface of the metal base material.
  • the reflecting portion 21 may be formed by a method other than mirror finishing.
  • the non-reflective portion 22 may be formed by a method other than the plating treatment.
  • the light emitting / receiving module package 3 emits light toward the optical scale 2. Further, the light emitting / receiving module package 3 detects the light reflected by the optical scale 2. The light emitting / receiving module package 3 outputs a signal corresponding to the detected light to the control unit 4.
  • the control unit 4 includes an angle calculation unit 41 that calculates the absolute rotation angle of the optical scale 2, and a light emission amount adjustment unit 42 that adjusts the light emission amount in the light emitting / receiving module package 3.
  • the angle calculation unit 41 calculates the absolute rotation angle of the optical scale 2 based on the signal output from the light receiving element included in the light emitting / receiving module package 3.
  • the absolute rotation angle obtained by the angle calculation unit 41 corresponds to the rotation position of the rotation shaft 5.
  • the angle calculation unit 41 obtains the rotation position of the rotation shaft 5 based on the signal corresponding to the coded optical pattern 20.
  • the angle calculation unit 41 outputs the position data 43, which is the calculation result of the absolute rotation angle and represents the rotation position of the rotation shaft 5, to the external device.
  • the light emitting amount adjusting unit 42 adjusts the light emitting amount by the light emitting element based on the signal output from the light receiving element. The light emitting element and the light receiving element will be described later.
  • the encoder 1 calculates the absolute rotation angle from the signal corresponding to the light incident on the light receiving element by the angle calculation unit 41.
  • the control unit 4 may control the rotation of the object to be measured based on the absolute rotation angle. Since the encoder 1 does not need to integrate the pulse signal output from the light receiving element, it is not necessary to return the optical scale 2 to the origin when the power is turned on. Therefore, the encoder 1 can start up quickly when the power is turned on.
  • FIG. 2 is a perspective view of the module package included in the encoder shown in FIG.
  • FIG. 3 is a cross-sectional view of a module package included in the encoder shown in FIG.
  • FIG. 4 is a top view of the module package included in the encoder shown in FIG.
  • the light emitting / receiving module package 3 is a substrate on which a light emitting element 31 that irradiates the optical scale 2 with light, a light receiving element 32 that detects light from the optical scale 2, and the light emitting element 31 and the light receiving element 32 are mounted. It has a package substrate 30 and.
  • the light emitting element 31 and the light receiving element 32 are mounted on the mounting surface 30a of the package substrate 30.
  • the mounting surface 30a has a rectangular shape.
  • the light emitting / receiving module package 3 is arranged so as to face the optical pattern 20 with the mounting surface 30a facing the optical scale 2.
  • the encoder 1 has an encoder board to which the package board 30 is connected. In FIGS. 2 and 3, the encoder board is not shown. On the encoder board, various processes are executed on the side after the light emitting / receiving module package 3.
  • the control unit 4 is arranged on the encoder board. Specifically, the encoder board has a processing circuit that executes the processing of the control unit 4.
  • the angle calculation unit 41 and the light emission amount adjusting unit 42 are functional units of the control unit 4.
  • the mounting surface 30a is provided with terminals connected to the encoder board.
  • the terminals are provided on all four sides of the rectangle of the mounting surface 30a.
  • Each terminal is an end face through hole, a back surface electrode, or the like.
  • the package substrate 30 is composed of a substrate similar to the encoder substrate.
  • the encoder substrate is composed of, for example, a glass epoxy substrate. In this case, it is desirable that the package substrate 30 is also made of a glass epoxy substrate.
  • the light emitting element 31 is an element having a light emitting surface 31a that emits light.
  • the light emitting element 31 is, for example, a point light source LED (Light Emitting Diode) that emits near-infrared light.
  • the light emitting element 31 is joined to the package substrate 30 so that the light emitting surface 31a is parallel to the mounting surface 30a.
  • the light receiving element 32 is an element having a light receiving surface 32a that receives light.
  • the light receiving element 32 is an imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor, and has a set of pixels arranged in one direction.
  • the light receiving element 32 is joined to the package substrate 30 so that the light receiving surface 32a is parallel to the mounting surface 30a.
  • the light receiving element 32 outputs a signal corresponding to the intensity of the light incident on the light receiving surface 32a. Specifically, the light receiving element 32 converts the light received by the light receiving surface 32a into an analog voltage signal. The light receiving element 32 further converts an analog voltage signal into a digital voltage signal by an A / D (Analog-to-Digital) converter built in the light receiving element 32. As a result, the light receiving element 32 generates a signal according to the intensity of the light incident on the light receiving surface 32a. The light receiving element 32 outputs the generated signal to the control unit 4. In FIGS. 2 to 4, the A / D converter is not shown. The signal output by the light receiving element 32 is a signal corresponding to the light reflected by the optical scale 2 and received by the light receiving element 32. Therefore, the signal received by the control unit 4 corresponds to the rotation position of the optical scale 2.
  • the light receiving / receiving module package 3 has a light transmitting resin 33 that covers the mounting surface 30a.
  • the light transmissive resin 33 seals the light emitting element 31 and the light receiving element 32.
  • the light transmissive resin 33 covers a first portion 33a of the mounting surface 30a that covers the region where the light emitting element 31 is provided, and a region of the mounting surface 30a where the light receiving element 32 and the bonding wire 35 are provided. It has a second portion 33b to cover.
  • the bonding wire 35 connects the light receiving element 32 and the package substrate 30.
  • the light emitting element 31, the light receiving element 32, and the bonding wire 35 which are the constituent elements covered with the light transmissive resin 33, are shown by broken lines. Further, in FIG.
  • the light emitting element 31, the light receiving element 32, and the bonding wire 35 which are the constituent elements covered with the light transmissive resin 33, are shown by solid lines.
  • an epoxy-based resin is used as the light-transmitting resin 33.
  • the distance between the bonding wire 35 and the surface of the second portion 33b directed toward the optical scale 2 is larger than the distance between the surface of the second portion 33b directed toward the optical scale 2 and the light receiving surface 32a. short.
  • the bonding wire 35 is provided on a portion of the mounting surface 30a other than the portion between the light emitting element 31 and the light receiving element 32.
  • the light receiving and receiving module package 3 has a light shielding resin 34 which is a light shielding portion.
  • the light-shielding resin 34 suppresses the transmission of the incident light by absorbing or scattering the incident light.
  • the light-shielding resin 34 is an element for suppressing stray light, which is unnecessary light propagating in the light-emitting module package 3.
  • the light-shielding resin 34 is provided between the first portion 33a and the second portion 33b.
  • the light-transmitting resin 33 is divided into a first portion 33a and a second portion 33b by the light-shielding resin 34.
  • an epoxy resin is used as in the light-transmitting resin 33.
  • a part of the light emitted from the light emitting element 31 stays in the first portion 33a without being emitted from the light emitting / receiving module package 3 due to Fresnel reflection or the like at the interface of the first portion 33a.
  • stray light is generated in the light emitting / receiving module package 3.
  • the signal output from the light receiving element 32 contains a mixture of a component corresponding to the light incident on the light receiving element 32 from the optical scale 2 and a component corresponding to the stray light. become.
  • the encoder 1 it becomes difficult for the encoder 1 to calculate an accurate rotation angle.
  • the light-shielding resin 34 suppresses the progress of stray light to the light receiving element 32 by shielding the light traveling from the first portion 33a to the second portion 33b.
  • the light-shielding resin 34 includes light reflected at the interface of the first portion 33a, light incident from the light emitting element 31 without being reflected at the interface, or between the package substrate 30 and the optical scale 2. Shields the light reflected multiple times by.
  • the light-shielding resin 34 is formed in a plate shape.
  • the first end which is one end of the light-shielding resin 34 in the direction perpendicular to the mounting surface 30a, is in contact with the mounting surface 30a.
  • the first portion 33a and the second portion 33b are separated on the mounting surface 30a by the light-shielding resin 34.
  • the position of the second end, which is the other end of the light-shielding resin 34 in the direction perpendicular to the mounting surface 30a, in the direction perpendicular to the mounting surface 30a is opposite to the mounting surface 30a side of the first portion 33a. It is in the same position as the surface. Therefore, the second end of the light-shielding resin 34 is exposed on the surface of the light-receiving module package 3 facing the optical scale 2.
  • the light-shielding resin 34 is arranged at a position that does not block the light that travels from the light-emitting element 31 to the light-receiving element 32 after being reflected by the optical scale 2.
  • the light-shielding resin 34 is arranged so that the surface of the light-shielding resin 34 on the first portion 33a side and the surface of the light-shielding resin 34 on the second portion 33b side are perpendicular to the mounting surface 30a. ..
  • the glass epoxy board is known to transmit a part of light such as near infrared rays.
  • a glass epoxy substrate is used for the package substrate 30
  • a part of the light emitted from the light emitting element 31 is reflected directly or in the first portion 33a and then propagates through the package substrate 30 to propagate the light receiving element 32. May reach. In this way, stray light propagating through the package substrate 30 may be incident on the light receiving element 32.
  • a black glass epoxy substrate may be used for the package substrate 30.
  • a light-shielding layer may be formed on the surface of the package substrate 30 to suppress the incident light on the package substrate 30 or the propagation of light inside the package substrate 30.
  • the light-shielding layer a metal film, a black resist, or a combination of the metal film and the black resist is used.
  • the light emitting / receiving module package 3 can prevent stray light from entering the light receiving element 32.
  • a method using another material may be applied in order to prevent stray light from entering the light receiving element 32 as long as the same effect as the method using these materials can be obtained.
  • the Z-axis direction is a first direction that is perpendicular to the mounting surface 30a.
  • the X-axis direction is the direction in which the first portion 33a and the second portion 33b are arranged with the light-shielding resin 34 interposed therebetween.
  • the Y-axis direction is a second direction that is perpendicular to the direction in which the first portion 33a and the second portion 33b are arranged and perpendicular to the first direction.
  • the X-axis direction and the Y-axis direction are directions parallel to the mounting surface 30a. It is assumed that the direction of the arrow indicating the Z-axis direction is the direction in which the mounting surface 30a is directed.
  • the length L2 of the second portion 33b in the Z-axis direction is shorter than the length L1 of the first portion 33a in the Z-axis direction.
  • the thickness of the second portion 33b in the direction perpendicular to the mounting surface 30a is thinner than the thickness of the first portion 33a in the direction perpendicular to the mounting surface 30a.
  • the encoder 1 detects the light reflected by the optical pattern 20 and obtains the rotation angle of the optical scale 2.
  • the encoder 1 may have a configuration for detecting the light transmitted through the optical pattern 20 instead of the configuration for detecting the light reflected by the optical pattern 20.
  • FIG. 5 is a block diagram showing a configuration of an angle calculation unit included in the encoder shown in FIG.
  • the angle calculation unit 41 includes a light amount distribution correction unit 44, an edge detection unit 45, a coarse detection unit 46, a high-precision detection unit 47, and a rotation angle detection unit 48.
  • the light receiving element 32 outputs a signal corresponding to the intensity of the light incident on the light receiving surface 32a to the light amount distribution correction unit 44.
  • FIG. 6 is a diagram showing an example of a signal waveform of a signal input to the light amount distribution correction unit included in the angle calculation unit shown in FIG.
  • the vertical axis of the graph shown in FIG. 6 represents the signal strength, and the horizontal axis represents the position of the pixel.
  • the level “1” signal 11, which is the peak of the signal waveform, corresponds to the reflective portion 21 of the coded optical pattern 20.
  • the bottom level “0” signal 12 of the signal waveform corresponds to the non-reflective portion 22 of the coded optical pattern 20.
  • the signal intensity of the signal 11 varies from pixel to pixel due to the light amount distribution of the light emitting element 31 and the variation in gain among the pixels of the light receiving element 32. Similar to the signal strength of the signal 11, the signal strength of the signal 12 also differs from pixel to pixel.
  • the light amount distribution correction unit 44 performs correction for making the signal intensities of the signals 11 uniform and correction for making the signal intensities of the signals 12 uniform. By correcting the input signal, the light amount distribution correction unit 44 obtains a signal in which the signal intensities of the signals 11 are uniform and the signal intensities of the signals 12 are uniform.
  • FIG. 7 is a diagram showing an example of a corrected signal waveform in the light amount distribution correction unit included in the angle calculation unit shown in FIG.
  • the vertical axis of the graph shown in FIG. 7 represents the signal strength, and the horizontal axis represents the position of the pixel.
  • the corrected signal waveform 13 the signal strength at the peak is made uniform, and the signal strength at the bottom is made uniform.
  • the correction method by the light amount distribution correction unit 44 may be any method as long as it can suppress the variation in signal intensity due to the light amount distribution or the like.
  • the light amount distribution correction unit 44 outputs the corrected signal to the edge detection unit 45.
  • the edge detection unit 45 Based on the signal corrected by the light amount distribution correction unit 44, the edge detection unit 45 calculates a pixel value, which is a value indicating a pixel whose signal intensity matches the preset threshold level 14, for each edge.
  • the edge is a boundary between the reflective portion 21 and the non-reflective portion 22 in the optical pattern 20.
  • the edge detection unit 45 outputs the edge pixel value, which is the calculated pixel value, to the coarse detection unit 46.
  • the edge pixel value represents the position of the edge.
  • the coarse detection unit 46 decodes the bit pattern projected on the light receiving element 32 of the optical pattern 20 based on the input edge pixel value.
  • the coarse detection unit 46 calculates the coarse absolute rotation angle 49 by decoding the bit pattern.
  • FIG. 8 is a diagram for explaining a method of calculating a coarse absolute rotation angle from the signal of the signal waveform shown in FIG. 7.
  • the bit string 15 shown in FIG. 8 is a bit string corresponding to the signal of the signal waveform 13.
  • the coarse detection unit 46 converts the signal of the signal waveform 13 into a bit string 15 which is an array of each code of "0" and "1" according to the position of the edge represented by the edge pixel value.
  • the look-up table 16 stores the absolute rotation angle of the optical scale 2 and the bit string in association with each other.
  • the lookup table 16 is stored in advance in the memory of the control unit 4. In FIGS. 1 to 5, the memory is not shown.
  • the coarse detection unit 46 obtains the coarse absolute rotation angle 49 by reading the absolute rotation angle corresponding to the same bit string as the bit string 15 from the look-up table 16.
  • the coarse detection unit 46 outputs the coarse absolute rotation angle 49 to the high precision detection unit 47.
  • the high-precision detection unit 47 calculates the amount of phase shift of the pattern projected on the light receiving element 32 with high accuracy based on the coarse absolute rotation angle 49.
  • the coarse absolute rotation angle 49 obtained by the coarse detection unit 46 is an absolute rotation angle in bit units of the optical scale 2.
  • the high-precision detection unit 47 detects a phase shift amount representing a shift between the coarse absolute rotation angle 49 and the high-precision absolute rotation angle.
  • FIG. 9 is a diagram for explaining a method of calculating a highly accurate absolute rotation angle from the coarse absolute rotation angle explained with reference to FIG.
  • the high-precision detection unit 47 detects the amount of phase shift 17 from the position of the reference pixel 18 to the edge pixel position 19 which is the position of the edge pixel closest to the reference pixel 18.
  • the reference pixel 18 is a pixel that is used as a reference when calculating a highly accurate absolute rotation angle, and may be any pixel.
  • the phase shift amount 17 corresponds to the difference between the position of the reference pixel 18 and the edge pixel position 19.
  • the high-precision detection unit 47 outputs the coarse absolute rotation angle 49 and the phase shift amount 17 to the rotation angle detection unit 48.
  • the rotation angle detection unit 48 calculates a highly accurate absolute rotation angle for a unit finer than the 1-bit unit of the optical scale 2 based on the phase shift amount 17. Specifically, the rotation angle detection unit 48 adds the phase shift amount 17 calculated by the high-precision detection unit 47 to the coarse absolute rotation angle 49 calculated by the coarse detection unit 46, thereby achieving high-precision absolute rotation. Calculate the rotation angle. The rotation angle detection unit 48 outputs the position data 43, which is the calculation result of the absolute rotation angle with high accuracy, to the external device.
  • the bonding wire 35 is protected by being sealed with a light transmissive resin 33.
  • the coefficient of thermal expansion differs between the light-transmitting resin 33 and the material of the bonding wire 35, so that the bonding wire 35 is subject to stress due to expansion or contraction of the light-transmitting resin 33 due to a temperature change. is there.
  • the bonding wire 35 is broken due to repeated stress, the light receiving / receiving module package 3 cannot send a signal from the light receiving element 32 to the angle calculation unit 41, so that the rotation angle cannot be calculated.
  • the thickness of the second portion 33b in the Z-axis direction is thinner than the thickness of the first portion 33a in the Z-axis direction.
  • the thickness of the second portion 33b is the same as the thickness of the first portion 33a, as compared with the case where the thickness of the second portion 33b is the same as that of the first portion 33a.
  • the amount of the light transmitting resin 33 in the second portion 33b is reduced.
  • the amount of the light-transmitting resin 33 is reduced, so that the amount of expansion and contraction when there is a temperature change is reduced.
  • the stress received by the bonding wire 35 due to the expansion or contraction of the light-transmitting resin 33 is reduced.
  • the light receiving / receiving module package 3 can reduce the breakage of the bonding wire 35.
  • the light emitting element 31 is reflected from the light emitting element 31 at the interface of the light transmissive resin 33 at the first portion 33a.
  • stray light increases as the amount of light reflected by the wiring pattern connected to the light emitting element 31 increases.
  • the light emitting / receiving module package 3 maintains a thickness capable of suppressing stray light for the first portion 33a.
  • the light receiving / receiving module package 3 In the manufacture of the light receiving / receiving module package 3, it is not necessary to provide the same number of through holes as the number of bonding wires 35, as compared with the case where the package substrate 30 is provided with through holes and the bonding wires 35 are passed through the through holes. Become. Therefore, the light receiving / receiving module package 3 can avoid the problem that the processing at the time of manufacturing becomes complicated. Further, since the through hole is not required, the problem of large size of the light emitting / receiving module package 3 can be avoided.
  • the light transmitting resin 33 is formed so that the thickness of the second portion 33b is thinner than the thickness of the first portion 33a, so that the breakage of the bonding wire 35 can be reduced. It is configured to be.
  • the light receiving / receiving module package 3 can easily obtain a configuration capable of reducing the breakage of the bonding wire 35 only by making the thickness of the light transmitting resin 33 different between the first portion 33a and the second portion 33b. Can be done.
  • the encoder 1 has an effect that the breakage of the bonding wire 35 can be reduced due to the compact and easily processable configuration.
  • FIG. 10 is a cross-sectional view of a module package included in the encoder according to the second embodiment of the present invention.
  • FIG. 11 is a top view of the module package included in the encoder shown in FIG.
  • the length L2 in the Z-axis direction is shorter than the length L1 of the first portion 33a in the Z-axis direction.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the configurations different from those in the first embodiment will be mainly described.
  • the light emitting element 31, the light receiving element 32, and the bonding wire 35 which are the constituent elements covered with the light transmissive resin 33, are shown by solid lines.
  • the portion 33c having a length L2 is a portion other than the portion 33d provided with the light receiving surface 32a, and is other than the portion 33e on the first portion 33a side of the light receiving surface 32a. It is a part.
  • the length in the Z-axis direction is the length L1.
  • a concave curved surface 36 is formed between the portion 33c and the portion 33d. That is, a gradient is provided between the portion 33c and the portion 33d.
  • the surface between the portion 33c and the portion 33d may be a slope having an inclination with respect to the mounting surface 30a. Since the gradient is provided between the portion 33c and the portion 33d, the light emitted from the light emitting element 31 and incident on the gradient does not enter the light receiving element 32. Therefore, the light emitting / receiving module package 3 can suppress stray light.
  • the light reflected by the light receiving surface 32a and the light reflected around the light receiving surface 32a become stray light toward the light receiving surface 32a due to Fresnel reflection at the interface of the second portion 33b.
  • the portion 33d provided with the light receiving surface 32a becomes thinner, the amount of light reflected at the interface of the second portion 33b increases, so that stray light increases.
  • the light emitting / receiving module package 3 can suppress stray light toward the light receiving surface 32a. it can.
  • the thickness of the portion 33c which is a part of the second portion 33b, is thinner than the thickness of the first portion 33a.
  • the light emitting / receiving module package 3 can prevent the bonding wire 35 from being broken by reducing the amount of the light transmitting resin 33 at the second portion 33b. Further, in the light emitting / receiving module package 3, since the thickness of the portion 33d provided with the light receiving surface 32a is not thinned, stray light toward the light receiving surface 32a can be suppressed. As a result, the encoder 1 can calculate an accurate rotation angle.
  • FIG. 12 is a perspective view of a module package included in the encoder according to the third embodiment of the present invention.
  • FIG. 13 is a top view of the module package included in the encoder shown in FIG.
  • the same components as those in the first and second embodiments are designated by the same reference numerals, and the configurations different from those of the first and second embodiments will be mainly described.
  • the package substrate 30 is not shown. Further, in FIG. 13, the light emitting element 31, the light receiving element 32, and the bonding wire 35, which are the constituent elements covered with the light transmissive resin 33, are shown by solid lines.
  • the light receiving / receiving module package 3 can reduce the stress applied to the bonding wire 35 in the Y-axis direction. As a result, the light receiving / receiving module package 3 can reduce the breakage of the bonding wire 35.
  • the length in the Y-axis direction of the entire second portion 33b may be the length L4.
  • the light receiving / receiving module package 3 can reduce the breakage of the bonding wire 35.
  • the light receiving / receiving module package 3 has a configuration that can reduce the breakage of the bonding wire 35 only by making the length of the light transmitting resin 33 different between the first portion 33a and at least a part of the second portion 33b. It can be easily obtained.
  • the encoder 1 has an effect that the breakage of the bonding wire 35 can be reduced due to the compact and easily processable configuration as in the case of the first embodiment.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

エンコーダは、パッケージ基板(30)、ならびに基板の実装面(30a)を覆う光透過性樹脂(33)を有する投受光モジュールパッケージ(3)を備える。光透過性樹脂(33)は、実装面(30a)のうち発光素子(31)が設けられている領域を覆う第1の部位(33a)と、実装面(30a)のうち受光素子(32)ならびに受光素子(32)と基板とを接続するボンディングワイヤ(35)が設けられている領域を覆う第2の部位(33b)と、を有する。実装面(30a)に垂直な方向における光透過性樹脂(33)の厚さが、第1の部位(33a)よりも第2の部位(33b)の少なくとも一部において薄いか、または、実装面(30a)に平行かつ発光素子(31)と受光素子(32)とが並べられている方向に垂直な方向における光透過性樹脂(33)の長さが、第1の部位(33a)よりも第2の部位(33b)の少なくとも一部において短い。

Description

エンコーダ
 本発明は、測定対象物の回転角度を検出するエンコーダに関する。
 光学式のロータリーエンコーダは、スケールから入射した光信号に基づいてスケールの回転角度を算出するエンコーダである。スケールに光を照射する発光素子とスケールからの光を受ける受光素子とは、光透過性樹脂で覆われることによって、外部環境から保護される。また、受光素子と基板とを接続するボンディングワイヤは、受光素子とともに光透過性樹脂によって保護される。通常、光透過性樹脂とボンディングワイヤの材料とでは熱膨張率が異なるため、ボンディングワイヤは、温度変化に起因して光透過性樹脂が膨張あるいは収縮することによる応力を受けることがある。ボンディングワイヤは、繰り返し応力を受けることによって破断することがある。
 特許文献1には、ベース基板に設けられた発光素子を覆う光透過性樹脂を有し、ベース基材には、発光素子に接続されたボンディングワイヤが通される貫通孔が設けられている発光装置が開示されている。特許文献1の技術によると、ボンディングワイヤの周辺における光透過性樹脂の量を少なくさせることによって、温度変化によってボンディングワイヤが受けるストレスを低減させる。
特開2012-94612号公報
 エンコーダには、回転角度の高精度な算出のために受光素子の数が増やされるほど、ボンディングワイヤの数が多くなる。受光素子に接続されるボンディングワイヤについて上記特許文献1の技術が適用された場合、受光素子が実装される基板は、ボンディングワイヤの数が多いほど貫通孔の数も多くなる。貫通孔の数が多くなるほど光透過性樹脂によるパッケージのサイズが大きくなることから、エンコーダは小型化が困難となる。また、貫通孔の数が多くなるほど、エンコーダは、製造時の加工が煩雑になる。このため、上記特許文献1の技術によると、小型かつ容易に加工可能な構成によってボンディングワイヤの破断を低減することが困難であるという問題があった。
 本発明は、上記に鑑みてなされたものであって、受光素子と基板とを接続するボンディングワイヤの破断を、小型かつ容易に加工可能な構成によって防ぐことを可能とするエンコーダを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるエンコーダは、光学パターンを有するスケールと、スケールに光を照射する発光素子とスケールからの光が入射する受光面を有する受光素子とが実装された基板、ならびに基板のうち発光素子と受光素子とが実装されている実装面を覆う光透過性樹脂を有するモジュールパッケージと、を備える。光透過性樹脂は、実装面のうち発光素子が設けられている領域を覆う第1の部位と、実装面のうち受光素子ならびに受光素子と基板とを接続するボンディングワイヤが設けられている領域を覆う第2の部位と、を有する。実装面に垂直な方向における光透過性樹脂の厚さが、第1の部位よりも第2の部位の少なくとも一部において薄いか、または、実装面に平行かつ発光素子と受光素子とが並べられている方向に垂直な方向における光透過性樹脂の長さが、第1の部位よりも第2の部位の少なくとも一部において短い。
 本発明にかかるエンコーダは、受光素子と基板とを接続するボンディングワイヤの破断を、小型かつ容易に加工可能な構成によって防ぐことができるという効果を奏する。
本発明の実施の形態1にかかるエンコーダの構成を示す図 図1に示すエンコーダが有するモジュールパッケージの斜視図 図1に示すエンコーダが有するモジュールパッケージの断面図 図1に示すエンコーダが有するモジュールパッケージの上面図 図1に示すエンコーダが有する角度演算部の構成を示すブロック図 図5に示す角度演算部が有する光量分布補正部へ入力される信号の信号波形例を示す図 図5に示す角度演算部が有する光量分布補正部における補正後の信号波形例を示す図 図7に示す信号波形の信号から粗い絶対回転角度を算出する方法を説明するための図 図8の参照により説明された粗い絶対回転角度から高精度な絶対回転角度を算出する方法を説明するための図 本発明の実施の形態2にかかるエンコーダが有するモジュールパッケージの断面図 図10に示すエンコーダが有するモジュールパッケージの上面図 本発明の実施の形態3にかかるエンコーダが有するモジュールパッケージの斜視図 図12に示すエンコーダが有するモジュールパッケージの上面図
 以下に、本発明の実施の形態にかかるエンコーダを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。以下に示す図面においては、各要素の縮尺が現実と異なる場合があり、各図面間においても同様である。また、以下に示す図面では、図面を見易くするために、断面により示す要素にハッチングを付さない場合がある。
実施の形態1.
 図1は、本発明の実施の形態1にかかるエンコーダの構成を示す図である。エンコーダ1は、測定対象物である回転体の回転角度を検出する。エンコーダ1は、スケールから入射した光信号に基づいてスケールの回転角度を算出する光学式のロータリーエンコーダであって、絶対回転角度を検出するアブソリュートエンコーダである。
 エンコーダ1は、光学パターン20を有するスケールである光学式スケール2と、投光機能と受光機能とを有するモジュールパッケージである投受光モジュールパッケージ3と、エンコーダ1を制御する制御部4とを有する。光学式スケール2は、モーターといった回転装置が備える回転シャフト5に連結されている。光学式スケール2は、回転シャフト5とともに回転する。図1では、回転装置の図示を省略している。
 光学式スケール2には、円形状の板材が使用される。光学パターン20は、光学式スケール2の円形状のうちの外周部である環状の領域に設けられている。光学パターン20は、円形状の外周に沿う方向において交互に配置された反射部21と非反射部22とを有する。反射部21は、後述する発光素子から入射した光を投受光モジュールパッケージ3へ向けて反射する部分である。非反射部22は、発光素子から入射した光を吸収あるいは散乱する部分である。
 複数の反射部21と複数の非反射部22との各々は、外周に沿う方向において種々の幅を有している。回転している光学パターン20へ発光素子が光を照射すると、光学パターン20では、反射部21の幅に応じた時間での反射と非反射部22の幅に応じた時間での非反射とが繰り返される。後述する受光素子は、反射部21で反射した光を検出する。受光素子において検出される光の強度は、反射部21と非反射部22との配列パターンに従って変調される。
 反射部21と非反射部22との配列パターンは、光学式スケール2の回転角度を特徴づけるように設定されている。このように、光学式スケール2は、回転角度に固有の光学パターン20を有している。光学パターン20には、例えば、M系列といった疑似ランダム符号パターンが使用される。
 光学式スケール2を構成する板材には、例えば、ステンレス等の金属基材が使用される。非反射部22は、金属基材の表面へのメッキ処理によって形成される。反射部21は、金属基材の表面に鏡面仕上げを施すことによって形成される。反射部21は、鏡面仕上げ以外の手法によって形成されても良い。非反射部22は、メッキ処理以外の手法によって形成されても良い。
 投受光モジュールパッケージ3は、光学式スケール2へ向けて光を出射する。また、投受光モジュールパッケージ3は、光学式スケール2で反射した光を検出する。投受光モジュールパッケージ3は、検出された光に対応する信号を制御部4へ出力する。制御部4は、光学式スケール2の絶対回転角度を演算する角度演算部41と、投受光モジュールパッケージ3における発光量を調整する発光量調整部42とを有する。
 角度演算部41は、投受光モジュールパッケージ3が有する受光素子から出力される信号に基づいて、光学式スケール2の絶対回転角度を演算する。角度演算部41が求める絶対回転角度は、回転シャフト5の回転位置に対応している。このように、角度演算部41は、コード化された光学パターン20に対応する信号に基づいて、回転シャフト5の回転位置を求める。角度演算部41は、絶対回転角度の演算結果であって回転シャフト5の回転位置を表すデータである位置データ43を外部装置へ出力する。発光量調整部42は、受光素子から出力される信号に基づいて、発光素子による発光量を調整する。なお、発光素子と受光素子とについては後述する。
 このように、エンコーダ1は、受光素子に入射した光に対応する信号から絶対回転角度を角度演算部41によって演算する。なお、制御部4は、絶対回転角度に基づいて、測定対象物の回転制御を行ってもよい。エンコーダ1は、受光素子から出力されるパルス信号を積算する必要がないため、電源投入時に光学式スケール2を原点へ復帰させる動作が不要である。よって、エンコーダ1は、電源投入時における迅速な立ち上がりが可能である。
 図2は、図1に示すエンコーダが有するモジュールパッケージの斜視図である。図3は、図1に示すエンコーダが有するモジュールパッケージの断面図である。図4は、図1に示すエンコーダが有するモジュールパッケージの上面図である。投受光モジュールパッケージ3は、光学式スケール2に光を照射する発光素子31と、光学式スケール2からの光を検出する受光素子32と、発光素子31および受光素子32が実装された基板であるパッケージ基板30とを有する。
 発光素子31と受光素子32とは、パッケージ基板30の実装面30aに実装されている。実装面30aは、矩形をなしている。投受光モジュールパッケージ3は、実装面30aが光学式スケール2へ向けられた状態とされて、光学パターン20に対向して配置される。
 エンコーダ1は、パッケージ基板30が接続されたエンコーダ基板を有する。図2および図3では、エンコーダ基板の図示を省略している。エンコーダ基板では、投受光モジュールパッケージ3よりも後段側における種々の処理が実行される。制御部4は、エンコーダ基板に配置されている。具体的には、エンコーダ基板は、制御部4の処理を実行する処理回路を有する。角度演算部41と発光量調整部42とは、制御部4が有する機能部である。
 実装面30aには、エンコーダ基板に接続される端子が設けられている。端子は、実装面30aが有する矩形における四辺の全てに設けられている。各端子は、端面スルーホールまたは裏面電極等である。実装面30aの四辺の全てに端子が設けられることにより、発光素子31および受光素子32の実装精度が向上する。
 パッケージ基板30は、エンコーダ基板と同様の基板で構成されることが望ましい。エンコーダ基板は、例えば、ガラスエポキシ基板で構成される。この場合、パッケージ基板30も、ガラスエポキシ基板で構成されることが望ましい。
 発光素子31は、光を出射す発光面31aを有する素子である。発光素子31は、例えば、近赤外光を出射する点光源LED(Light Emitting Diode)である。発光素子31は、発光面31aが実装面30aに平行になるように、パッケージ基板30に接合されている。
 受光素子32は、光を受ける受光面32aを有する素子である。受光素子32は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサまたはCCD(Charge Coupled Device)イメージセンサといった撮像デバイスであって、一方向へ配列された画素の集合を有する。受光素子32は、受光面32aが実装面30aに平行になるように、パッケージ基板30に接合されている。
 受光素子32は、受光面32aへ入射する光の強度に応じた信号を出力する。具体的には、受光素子32は、受光面32aにて受けた光をアナログの電圧信号へ変換する。受光素子32は、さらにアナログの電圧信号を、受光素子32に内蔵されたA/D(Analog-to-Digital)変換器によってデジタルの電圧信号に変換する。これにより、受光素子32は、受光面32aへ入射する光の強度に応じた信号を生成する。受光素子32は、生成された信号を制御部4へ出力する。図2から図4では、A/D変換器の図示を省略している。受光素子32が出力する信号は、光学式スケール2で反射されて受光素子32が受光した光に対応する信号である。したがって、制御部4が受信する信号は、光学式スケール2の回転位置に対応している。
 投受光モジュールパッケージ3は、実装面30aを覆う光透過性樹脂33を有する。光透過性樹脂33は、発光素子31と受光素子32とを封止する。光透過性樹脂33は、実装面30aのうち発光素子31が設けられている領域を覆う第1の部位33aと、実装面30aのうち受光素子32とボンディングワイヤ35とが設けられている領域を覆う第2の部位33bとを有する。ボンディングワイヤ35は、受光素子32とパッケージ基板30とを接続する。図2では、光透過性樹脂33によって覆われている構成要素である発光素子31と受光素子32とボンディングワイヤ35とを、破線によって示している。また、図4では、光透過性樹脂33によって覆われている構成要素である発光素子31と受光素子32とボンディングワイヤ35とを、実線によって示している。光透過性樹脂33とパッケージ基板30とで線膨張係数を合わせるために、光透過性樹脂33には、例えばエポキシ系樹脂が使用される。第2の部位33bのうち光学式スケール2側へ向けられる面とボンディングワイヤ35との間隔は、第2の部位33bのうち光学式スケール2側へ向けられる面と受光面32aとの間隔よりも短い。また、ボンディングワイヤ35は、実装面30aのうち発光素子31と受光素子32との間の部分以外の部分に設けられている。これにより、投受光モジュールパッケージ3は、発光素子31から受光素子32へ入射する光がボンディングワイヤ35によって妨げられることを抑制できる。
 投受光モジュールパッケージ3は、遮光部である遮光性樹脂34を有する。遮光性樹脂34は、入射した光を吸収または散乱することによって、入射した光の透過を抑制する。遮光性樹脂34は、投受光モジュールパッケージ3内を伝搬する不要な光である迷光を抑制するための要素である。遮光性樹脂34は、第1の部位33aと第2の部位33bとの間に設けられている。光透過性樹脂33は、遮光性樹脂34によって、第1の部位33aと第2の部位33bとに分断されている。遮光性樹脂34には、光透過性樹脂33と同様にエポキシ系樹脂が使用される。
 発光素子31から出射した光のうちの一部は、第1の部位33aの界面でのフレネル反射等によって、投受光モジュールパッケージ3から出射されずに第1の部位33aに留まる。このように、第1の部位33aに光が留まることによって、投受光モジュールパッケージ3内に迷光が生じる。受光素子32へ迷光が入射することによって、受光素子32から出力される信号には、光学式スケール2から受光素子32へ入射した光に応じた成分と、迷光に応じた成分とが混在することになる。受光素子32へ迷光が入射することによって、エンコーダ1は、正確な回転角度を算出することが困難となる。
 遮光性樹脂34は、第1の部位33aから第2の部位33bへ向けて進行する光を遮蔽することによって、受光素子32への迷光の進行を抑制する。遮光性樹脂34は、第1の部位33aの界面にて反射した光のほか、発光素子31から当該界面での反射を経ずに入射した光、あるいはパッケージ基板30と光学式スケール2との間で多重反射された光を遮蔽する。
 遮光性樹脂34は、板状に形成されている。実装面30aに垂直な方向における遮光性樹脂34の一方の端である第1端は、実装面30aに接触している。第1の部位33aと第2の部位33bとは、遮光性樹脂34によって、実装面30a上において分断されている。実装面30aに垂直な方向における遮光性樹脂34の他方の端である第2端は、実装面30aに垂直な方向における位置が、第1の部位33aのうち実装面30a側とは逆側の面と同じ位置とされている。このため、投受光モジュールパッケージ3のうち光学式スケール2と対向する面には、遮光性樹脂34の第2端が露出している。
 遮光性樹脂34は、発光素子31から光学式スケール2での反射を経て受光素子32へ進行する光を遮らない位置に配置されている。遮光性樹脂34は、遮光性樹脂34のうち第1の部位33a側の面と遮光性樹脂34のうち第2の部位33b側の面とが実装面30aに垂直になるように配置されている。
 ガラスエポキシ基板は、近赤外線等の光の一部を透過させることが知られている。パッケージ基板30にガラスエポキシ基板が使用される場合、発光素子31から出射された光の一部は、直接または第1の部位33a内で反射してからパッケージ基板30を伝搬して、受光素子32に到達することがある。このように、受光素子32には、パッケージ基板30を伝搬した迷光が入射する可能性がある。パッケージ基板30への光の入射を抑制するために、パッケージ基板30には、黒色ガラスエポキシ基板が使用されても良い。または、パッケージ基板30の表面には、パッケージ基板30への光の入射あるいはパッケージ基板30の内部における光の伝搬を抑制するための遮光層が形成されても良い。遮光層には、金属膜、黒色レジスト、あるいは金属膜と黒色レジストとの組み合わせが使用される。これにより、投受光モジュールパッケージ3は、受光素子32への迷光の入射を防ぐことができる。なお、これらの材料を用いた方法と同様の効果が得られる方法であれば、受光素子32への迷光の入射を防ぐために、他の材料を用いた方法が適用されてもよい。
 ここで、投受光モジュールパッケージ3が有する構成要素の配置について、互いに垂直な3軸であるX軸、Y軸およびZ軸を定義する。Z軸方向は、実装面30aに垂直な方向である第1の方向である。X軸方向は、遮光性樹脂34を挟んで第1の部位33aと第2の部位33bとが並べられている方向である。Y軸方向は、第1の部位33aと第2の部位33bとが並べられている方向に垂直かつ第1の方向に垂直な方向である第2の方向である。X軸方向とY軸方向とは、実装面30aに平行な方向である。Z軸方向を示す矢印の向きは、実装面30aが向けられている向きであるものとする。
 Z軸方向における第2の部位33bの長さL2は、Z軸方向における第1の部位33aの長さL1よりも短い。言い換えると、実装面30aに垂直な方向における第2の部位33bの厚みは、実装面30aに垂直な方向における第1の部位33aの厚みよりも薄い。長さL1よりも長さL2を短くしたことによる効果については後述する。
 エンコーダ1は、光学パターン20で反射した光を検出して、光学式スケール2の回転角度を求める。エンコーダ1は、光学パターン20で反射した光を検出する構成に代えて、光学パターン20を透過した光を検出する構成を備えていても良い。
 次に、角度演算部41の構成について説明する。図5は、図1に示すエンコーダが有する角度演算部の構成を示すブロック図である。角度演算部41は、光量分布補正部44と、エッジ検出部45と、粗検出部46と、高精度検出部47と、回転角度検出部48とを有する。受光素子32は、受光面32aへ入射する光の強度に応じた信号を光量分布補正部44へ出力する。
 図6は、図5に示す角度演算部が有する光量分布補正部へ入力される信号の信号波形例を示す図である。図6に示すグラフの縦軸は信号強度を表し、横軸は画素の位置を表す。信号波形のうちのピークであるレベル「1」の信号11は、コード化された光学パターン20のうちの反射部21に対応している。信号波形のうちのボトムであるレベル「0」の信号12は、コード化された光学パターン20のうちの非反射部22に対応している。
 発光素子31の光量分布、ならびに受光素子32が有する画素ごとにおけるゲインのばらつき等に起因して、信号11の信号強度には画素ごとに差が生じる。信号12の信号強度にも、信号11の信号強度と同様に、画素ごとに差が生じる。光量分布補正部44は、信号11同士における信号強度を均一にする補正と、信号12同士における信号強度を均一にする補正とを行う。光量分布補正部44は、入力された信号を補正することによって、信号11同士における信号強度が均一かつ信号12同士における信号強度が均一とされた信号を得る。
 図7は、図5に示す角度演算部が有する光量分布補正部における補正後の信号波形例を示す図である。図7に示すグラフの縦軸は信号強度を表し、横軸は画素の位置を表す。補正後の信号波形13では、ピークにおける信号強度が均一にされており、かつボトムにおける信号強度が均一にされている。なお、光量分布補正部44による補正方法は、光量分布等に起因する信号強度のばらつきを抑制可能な方法であれば良く、任意の方法とすることができる。光量分布補正部44は、補正後の信号をエッジ検出部45へ出力する。
 エッジ検出部45は、光量分布補正部44による補正後の信号に基づいて、あらかじめ設定された閾値レベル14に信号強度が一致する画素を示す値である画素値を、エッジごとに算出する。エッジは、光学パターン20における反射部21と非反射部22との境界である。エッジ検出部45は、算出された画素値であるエッジ画素値を粗検出部46へ出力する。エッジ画素値は、エッジの位置を表す。
 粗検出部46は、入力されたエッジ画素値に基づいて、光学パターン20のうち受光素子32上に投影されるビットパターンをデコードする。粗検出部46は、ビットパターンをデコードすることによって、粗い絶対回転角度49を算出する。
 図8は、図7に示す信号波形の信号から粗い絶対回転角度を算出する方法を説明するための図である。図8に示すビット列15は、信号波形13の信号に対応するビット列である。粗検出部46は、エッジ画素値によって表されるエッジの位置にしたがって、信号波形13の信号を、「0」および「1」の各符号の配列であるビット列15へ変換する。
 ルックアップテーブル16は、光学式スケール2の絶対回転角度とビット列とを互いに対応付けて保存する。ルックアップテーブル16は、制御部4が有するメモリ内にあらかじめ保存されている。図1から図5では、メモリの図示を省略している。粗検出部46は、ビット列15と同じビット列に対応する絶対回転角度をルックアップテーブル16から読み出すことによって、粗い絶対回転角度49を求める。粗検出部46は、粗い絶対回転角度49を高精度検出部47へ出力する。
 高精度検出部47は、粗い絶対回転角度49に基づいて、受光素子32上に投影されるパターンの位相ずれ量を高精度に演算する。粗検出部46が求めた粗い絶対回転角度49は、光学式スケール2のビット単位の絶対回転角度である。高精度検出部47は、粗い絶対回転角度49と高精度な絶対回転角度とのずれを表す位相ずれ量を検出する。
 図9は、図8の参照により説明された粗い絶対回転角度から高精度な絶対回転角度を算出する方法を説明するための図である。高精度検出部47は、図9に示すように、基準画素18の位置から、基準画素18に最も近いエッジ画素の位置であるエッジ画素位置19までの位相ずれ量17を検出する。基準画素18は、高精度な絶対回転角度を算出する際に基準とする画素であり、何れの画素であってもよい。位相ずれ量17は、基準画素18の位置とエッジ画素位置19との差に対応している。高精度検出部47は、粗い絶対回転角度49と位相ずれ量17とを回転角度検出部48へ出力する。
 回転角度検出部48は、位相ずれ量17に基づいて、光学式スケール2の1ビット単位よりも細かい単位についての高精度な絶対回転角度を算出する。具体的には、回転角度検出部48は、粗検出部46によって算出された粗い絶対回転角度49に、高精度検出部47によって算出された位相ずれ量17を加算することによって、高精度な絶対回転角度を算出する。回転角度検出部48は、高精度な絶対回転角度の算出結果である位置データ43を外部装置へ出力する。
 次に、投受光モジュールパッケージ3において第1の部位33aの長さL1よりも第2の部位33bの長さL2を短くしたことによる効果について説明する。ボンディングワイヤ35は、光透過性樹脂33で封止されていることによって保護されている。通常、光透過性樹脂33とボンディングワイヤ35の材料とでは熱膨張率が異なるため、ボンディングワイヤ35は、温度変化に起因して光透過性樹脂33が膨張あるいは収縮することによる応力を受けることがある。ボンディングワイヤ35が繰り返し応力を受けることによって破断した場合、投受光モジュールパッケージ3は、受光素子32から角度演算部41へ信号を送り出すことができなくなることによって、回転角度を算出することができなくなる。
 実施の形態1では、Z軸方向における第2の部位33bの厚さは、Z軸方向における第1の部位33aの厚さよりも薄い。第2の部位33bの厚さが第1の部位33aの厚さよりも薄くされていることによって、第2の部位33bの厚さが第1の部位33aの厚さと同じである場合と比べて、第2の部位33bにおける光透過性樹脂33の量が少なくされている。第2の部位33bでは、光透過性樹脂33の量が少なくされたことによって、温度変化があったときにおける膨張量と収縮量とが少なくなる。膨張量と収縮量とが少なくなることで、光透過性樹脂33が膨張あるいは収縮することによってボンディングワイヤ35が受ける応力が小さくなる。これにより、投受光モジュールパッケージ3は、ボンディングワイヤ35の破断を低減することができる。
 第2の部位33bの厚さと同様に第1の部位33aの厚さが薄くされた場合、第1の部位33aでは、発光素子31から光透過性樹脂33の界面での反射を経て発光素子31あるいは発光素子31に接続された配線パターンで反射する光が増加することによって、迷光が増加する。投受光モジュールパッケージ3は、第1の部位33aについては、迷光を抑制可能とする厚さが維持されている。
 投受光モジュールパッケージ3の製造では、パッケージ基板30に貫通孔を設けて貫通孔にボンディングワイヤ35が通される場合と比べて、ボンディングワイヤ35の数と同じ数の貫通孔を設ける加工が不要となる。このため、投受光モジュールパッケージ3は、製造時の加工が煩雑になるという問題を回避できる。また、貫通孔が不要となることによって、投受光モジュールパッケージ3は、大型化という問題も回避できる。
 投受光モジュールパッケージ3は、第1の部位33aの厚さよりも第2の部位33bの厚さが薄くなるように光透過性樹脂33が形成されることによって、ボンディングワイヤ35の破断を低減可能とする構成とされる。投受光モジュールパッケージ3は、第1の部位33aと第2の部位33bとで光透過性樹脂33の厚さを異ならせるだけで、ボンディングワイヤ35の破断を低減可能とする構成を容易に得ることができる。以上により、エンコーダ1は、小型かつ容易に加工可能な構成によってボンディングワイヤ35の破断を低減することができるという効果を奏する。
実施の形態2.
 図10は、本発明の実施の形態2にかかるエンコーダが有するモジュールパッケージの断面図である。図11は、図10に示すエンコーダが有するモジュールパッケージの上面図である。実施の形態2では、第2の部位33bの一部において、Z軸方向における長さL2がZ軸方向における第1の部位33aの長さL1よりも短い。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。図11では、光透過性樹脂33によって覆われている構成要素である発光素子31と受光素子32とボンディングワイヤ35とを、実線によって示している。
 第2の部位33bのうち、長さL2の部分33cは、受光面32aが設けられている部分33d以外の部分であって、かつ受光面32aよりも第1の部位33a側の部分33e以外の部分である。部分33dと部分33eとにおいて、Z軸方向における長さは、長さL1である。部分33cと部分33dとの間には、凹形の曲面36が形成されている。すなわち、部分33cと部分33dとの間に勾配が設けられている。部分33cと部分33dとの間の面は、実装面30aに対して傾きを有する斜面であっても良い。部分33cと部分33dとの間に勾配が設けられていることで、発光素子31から照射されて勾配に入射した光は、受光素子32へ入射することがない。したがって、投受光モジュールパッケージ3は、迷光を抑制することができる。
 受光面32aへ入射した光のうち受光面32aで反射した光、ならびに受光面32aの周囲で反射した光は、第2の部位33bの界面でのフレネル反射によって、受光面32aへ向かう迷光となることがある。受光面32aが設けられている部分33dが薄くなるほど、第2の部位33bの界面で反射する光が増加することによって、迷光が増加する。実施の形態2では、部分33dについては、Z軸方向における厚さが第1の部位33aの厚さと同じであることによって、投受光モジュールパッケージ3は、受光面32aへ向かう迷光を抑制することができる。
 実施の形態2によると、第2の部位33bの一部である部分33cの厚さが第1の部位33aの厚さよりも薄くされている。投受光モジュールパッケージ3は、第2の部位33bにおける光透過性樹脂33の量が少なくされたことによって、ボンディングワイヤ35の破断を防ぐことができる。また、投受光モジュールパッケージ3は、受光面32aが設けられている部分33dの厚さは薄くされていないことによって、受光面32aへ向かう迷光を抑制することができる。これにより、エンコーダ1は、正確な回転角度を算出することができる。
実施の形態3.
 図12は、本発明の実施の形態3にかかるエンコーダが有するモジュールパッケージの斜視図である。図13は、図12に示すエンコーダが有するモジュールパッケージの上面図である。実施の形態3では、第2の部位33bの一部において、Y軸方向における長さL4がY軸方向における第1の部位33aの長さL3よりも短い。実施の形態3では、上記の実施の形態1および2と同一の構成要素には同一の符号を付し、実施の形態1および2とは異なる構成について主に説明する。図12および図13では、パッケージ基板30の図示を省略している。また、図13では、光透過性樹脂33によって覆われている構成要素である発光素子31と受光素子32とボンディングワイヤ35とを、実線によって示している。
 第2の部位33bの一部における長さL4が第1の部位33aにおける長さL3よりも短いことによって、第2の部位33bの全体における長さが第1の部位33aと同じ長さL3である場合と比べて、第2の部位33bにおける光透過性樹脂33の量が少なくされている。投受光モジュールパッケージ3は、ボンディングワイヤ35がY軸方向において受ける応力を小さくすることができる。これにより、投受光モジュールパッケージ3は、ボンディングワイヤ35の破断を低減することができる。
 なお、実施の形態3では、第2の部位33bの全体について、Y軸方向における長さが長さL4とされていても良い。この場合も、投受光モジュールパッケージ3は、ボンディングワイヤ35の破断を低減することができる。投受光モジュールパッケージ3は、第1の部位33aと第2の部位33bの少なくとも一部とで光透過性樹脂33の長さを異ならせるだけで、ボンディングワイヤ35の破断を低減可能とする構成を容易に得ることができる。これにより、エンコーダ1は、実施の形態1の場合と同様に、小型かつ容易に加工可能な構成によってボンディングワイヤ35の破断を低減することができるという効果を奏する。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 エンコーダ、2 光学式スケール、3 投受光モジュールパッケージ、4 制御部、5 回転シャフト、11,12 信号、13 信号波形、14 閾値レベル、15 ビット列、16 ルックアップテーブル、17 位相ずれ量、18 基準画素、19 エッジ画素位置、20 光学パターン、21 反射部、22 非反射部、30 パッケージ基板、30a 実装面、31 発光素子、31a 発光面、32 受光素子、32a 受光面、33 光透過性樹脂、33a 第1の部位、33b 第2の部位、33c,33d,33e 部分、34 遮光性樹脂、35 ボンディングワイヤ、36 曲面、41 角度演算部、42 発光量調整部、43 位置データ、44 光量分布補正部、45 エッジ検出部、46 粗検出部、47 高精度検出部、48 回転角度検出部、49 粗い絶対回転角度、L1,L2,L3,L4 長さ。

Claims (5)

  1.  光学パターンを有するスケールと、
     前記スケールに光を照射する発光素子と前記スケールからの光が入射する受光面を有する受光素子とが実装された基板、ならびに前記基板のうち前記発光素子と前記受光素子とが実装されている実装面を覆う光透過性樹脂を有するモジュールパッケージと、を備え、
     前記光透過性樹脂は、前記実装面のうち前記発光素子が設けられている領域を覆う第1の部位と、前記実装面のうち前記受光素子ならびに前記受光素子と前記基板とを接続するボンディングワイヤが設けられている領域を覆う第2の部位と、を有し、
     前記実装面に垂直な方向における前記光透過性樹脂の厚さが、前記第1の部位よりも前記第2の部位の少なくとも一部において薄いか、または、前記実装面に平行かつ前記発光素子と前記受光素子とが並べられている方向に垂直な方向における前記光透過性樹脂の長さが、前記第1の部位よりも前記第2の部位の少なくとも一部において短いことを特徴とするエンコーダ。
  2.  前記第2の部位のうち前記厚さが前記第1の部位の厚さよりも薄い部分は、前記受光面が設けられている部分以外の部分であって、かつ前記受光面よりも前記第1の部位側の部分以外の部分であることを特徴とする請求項1に記載のエンコーダ。
  3.  前記第2の部位のうち前記厚さが前記第1の部位の厚さよりも薄い部分と前記第1の部位との間に勾配が設けられていることを特徴とする請求項1または2に記載のエンコーダ。
  4.  前記第1の部位と前記第2の部位との間に遮光部が設けられていることを特徴とする請求項1から3のいずれか1つに記載のエンコーダ。
  5.  前記基板は、ガラスエポキシ樹脂からなる基板であって、
     前記光透過性樹脂と前記遮光部とは、エポキシ系樹脂であることを特徴とする請求項4に記載のエンコーダ。
PCT/JP2019/015769 2019-04-11 2019-04-11 エンコーダ WO2020208773A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980094996.8A CN113661376A (zh) 2019-04-11 2019-04-11 编码器
KR1020217031535A KR102360458B1 (ko) 2019-04-11 2019-04-11 인코더
PCT/JP2019/015769 WO2020208773A1 (ja) 2019-04-11 2019-04-11 エンコーダ
JP2019537395A JP6639750B1 (ja) 2019-04-11 2019-04-11 エンコーダ
TW109110950A TWI718040B (zh) 2019-04-11 2020-03-31 編碼器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015769 WO2020208773A1 (ja) 2019-04-11 2019-04-11 エンコーダ

Publications (1)

Publication Number Publication Date
WO2020208773A1 true WO2020208773A1 (ja) 2020-10-15

Family

ID=69320905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015769 WO2020208773A1 (ja) 2019-04-11 2019-04-11 エンコーダ

Country Status (5)

Country Link
JP (1) JP6639750B1 (ja)
KR (1) KR102360458B1 (ja)
CN (1) CN113661376A (ja)
TW (1) TWI718040B (ja)
WO (1) WO2020208773A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192148A1 (ja) * 2020-03-26 2021-09-30 三菱電機株式会社 回転角検出装置
KR20230043363A (ko) 2021-09-24 2023-03-31 삼성전자주식회사 반도체 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061495A (ja) * 2002-06-03 2004-02-26 Mitsubishi Electric Corp 光電式ロータリーエンコーダ
JP2010223630A (ja) * 2009-03-19 2010-10-07 Olympus Corp 光学式エンコーダ
WO2018163424A1 (ja) * 2017-03-10 2018-09-13 三菱電機株式会社 アブソリュートエンコーダ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912801B2 (ja) * 2006-09-11 2012-04-11 オリンパス株式会社 光学式エンコーダ
JP5198434B2 (ja) * 2007-04-10 2013-05-15 オリンパス株式会社 光学式エンコーダ
JP2008300554A (ja) * 2007-05-30 2008-12-11 Nec Electronics Corp 半導体装置
JP2010223629A (ja) * 2009-03-19 2010-10-07 Olympus Corp 光学式エンコーダ
JP2010223636A (ja) * 2009-03-19 2010-10-07 Olympus Corp 光学式エンコーダ
JP2010243323A (ja) * 2009-04-06 2010-10-28 Olympus Corp 光学式エンコーダ
TWI447357B (zh) * 2009-11-20 2014-08-01 Everlight Electronics Co Ltd 反射式光編碼器
WO2012042568A1 (ja) * 2010-09-29 2012-04-05 三菱電機株式会社 樹脂部品の製造方法及び前記樹脂部品を備えた光学式エンコーダ
JP2012094612A (ja) 2010-10-26 2012-05-17 Nichia Chem Ind Ltd 発光装置
US8847144B2 (en) * 2011-08-08 2014-09-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Enhanced optical reflective encoder
KR101361844B1 (ko) * 2012-12-04 2014-02-12 (주)파트론 근접 조도 센서 패키지 및 이를 구비하는 모바일 장치
JP2017092352A (ja) * 2015-11-13 2017-05-25 ローム株式会社 受発光装置および受発光装置の製造方法
JP2018077145A (ja) * 2016-11-10 2018-05-17 スタンレー電気株式会社 回転検出装置及びこれに用いられる回転体
CN110392820B (zh) * 2018-02-20 2020-05-01 三菱电机株式会社 绝对编码器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061495A (ja) * 2002-06-03 2004-02-26 Mitsubishi Electric Corp 光電式ロータリーエンコーダ
JP2010223630A (ja) * 2009-03-19 2010-10-07 Olympus Corp 光学式エンコーダ
WO2018163424A1 (ja) * 2017-03-10 2018-09-13 三菱電機株式会社 アブソリュートエンコーダ

Also Published As

Publication number Publication date
KR20210126133A (ko) 2021-10-19
JP6639750B1 (ja) 2020-02-05
JPWO2020208773A1 (ja) 2021-05-06
CN113661376A (zh) 2021-11-16
KR102360458B1 (ko) 2022-02-14
TW202041834A (zh) 2020-11-16
TWI718040B (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
JP6407502B1 (ja) アブソリュートエンコーダ
EP1574826B1 (en) Optical displacement-measuring instrument
US7304294B2 (en) Reflective encoder with reduced background noise
US20060016970A1 (en) Reflective encoder and electronic device using such reflective encoder
US7182258B2 (en) Enhanced reflective optical encoder
JP2010230409A (ja) 光学式エンコーダ
WO2020208773A1 (ja) エンコーダ
US7784694B2 (en) Reflective encoder with lens on code strip
JP2005156549A (ja) 光学式エンコーダ
JP2024012600A (ja) 光モジュール及び反射型エンコーダ
TWI740037B (zh) 編碼器用受光模組及編碼器
JP2000277796A (ja) フォトセンサ及びその製造方法
JP2005203499A (ja) 発光ダイオード及びそれを用いた測距用光源及び測距装置
WO2021192148A1 (ja) 回転角検出装置
US11268833B2 (en) Reflection type sensor and optical encoder having the same
JP2010002324A (ja) 光学式エンコーダ
JP5278276B2 (ja) 測距用光源及びそれを用いた測距装置
JP2018115955A (ja) 放射線検出器および放射線検出装置
JP2002013949A (ja) アブソリュート式エンコーダ
JPH04231808A (ja) 傾き角検出器
JP5253138B2 (ja) 光学式エンコーダ
CN117859042A (zh) 编码器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537395

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217031535

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923948

Country of ref document: EP

Kind code of ref document: A1