WO2020208762A1 - 蓄電池の特性推定装置および特性推定方法 - Google Patents
蓄電池の特性推定装置および特性推定方法 Download PDFInfo
- Publication number
- WO2020208762A1 WO2020208762A1 PCT/JP2019/015727 JP2019015727W WO2020208762A1 WO 2020208762 A1 WO2020208762 A1 WO 2020208762A1 JP 2019015727 W JP2019015727 W JP 2019015727W WO 2020208762 A1 WO2020208762 A1 WO 2020208762A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage battery
- model
- diffusion
- time
- series data
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a storage battery characteristic estimation device and a characteristic estimation method, and more particularly to a storage battery voltage relaxation process estimation device and estimation method.
- the electrochemical response of the storage battery is expressed by superimposing the first-order lag elements, and the voltage relaxation process of the storage battery is modeled by the exponential function term corresponding to the response at rest of the CR parallel element.
- the model parameters representing the exponential function term are estimated based on the time series data of the voltage relaxation process detected in the dormant state of the storage battery.
- the present invention is intended to solve the above problems, and an object of the present invention is to provide a storage battery characteristic estimation device and a characteristic estimation method capable of estimating the voltage relaxation process of the storage battery with high accuracy. ..
- the storage battery characteristic estimation device has a voltage detection unit that detects the terminal voltage of the storage battery and time-series data acquisition that acquires the time-series data of the terminal voltage in the hibernation state of the storage battery.
- a unit and a model provider that provides a storage battery model the storage battery model is a one-dimensional diffusion equation that expresses the OCV term that expresses the OCV of the storage battery and the ion diffusion between the particles that make up the electrodes of the storage battery.
- the storage battery model is based on the model providing unit including the interparticle diffusion term based on the basic solution, the time series data of the terminal voltage acquired by the time series data acquisition unit, and the storage battery model provided by the model providing unit. It is provided with a model parameter estimation unit that estimates model parameters.
- the method for estimating the characteristics of the storage battery is a step of detecting the terminal voltage of the storage battery, a step of acquiring time-series data of the terminal voltage in the hibernation state of the storage battery, and a step of providing a storage battery model.
- the storage battery model provides a storage battery model including an OCV term representing the OCV of the storage battery and an interparticle diffusion term based on the basic solution of a one-dimensional diffusion equation expressing the ion diffusion between the particles constituting the electrodes of the storage battery.
- the step of estimating the model parameters of the storage battery model based on the time-series data of the terminal voltage and the storage battery model is included.
- the voltage relaxation process of the storage battery can be estimated with high accuracy.
- FIG. 1 is a diagram showing a configuration of a storage battery characteristic estimation device 100 according to a first embodiment of the present invention. Note that FIG. 1 also shows a storage battery 101 connected to the characteristic estimation device 100.
- a lithium ion storage battery is assumed as the storage battery 101.
- the storage battery 101 may be a lead storage battery, a nickel hydrogen storage battery, an all-solid-state battery, a sodium-sulfur battery, a sodium-sulfur battery, a magnesium ion battery, an electric double layer, or the like.
- the characteristic estimation device 100 includes a voltage detection unit 102, a time series data acquisition unit 103, a model providing unit 104, and a model parameter estimation unit 105.
- the voltage detection unit 102 detects the terminal voltage V of the storage battery 101.
- the time-series data acquisition unit 103 is based on the terminal voltage V of the storage battery 101 detected by the voltage detection unit 102, and the time-series data of the terminal voltage V in the hibernation state of the storage battery 101 ⁇ (p, Vp)
- p 0, 1, ... m-1 ⁇ is acquired.
- the time-series data acquisition unit 103 includes a current detection unit 103a, a dormant state detection unit 103b, a time-series data storage unit 103c, and a time-series data extraction unit 103d. Includes.
- the current detection unit 103a detects the current I of the storage battery 101.
- the hibernation state detection unit 103b detects the hibernation state of the storage battery 101 based on the current I of the storage battery 101 detected by the current detection unit 103a.
- the hibernation state detection unit 103b does not necessarily have to detect only the state in which the storage battery 101 is completely dormant, and may detect a state close to hibernation.
- a state close to the hibernation of the storage battery 101 will be referred to as a "quasi-hibernation state”.
- a method of detecting the hibernation state of the storage battery 101 for example, a method of detecting a state in which
- ⁇ I is a difference value between the current I at a certain time t and the current I at the time t ⁇ t immediately before that.
- the hibernation state can be detected even when the current I does not become exactly zero due to the detection error of the current detection unit 103a by the first inequality
- the hibernation state can be detected with higher accuracy.
- the hibernation state detection unit 103b may detect the state time of the storage battery 101 by receiving the detection signal. Good.
- the time-series data storage unit 103c has time-series data ⁇ (k, Vk) of the terminal voltage V of the storage battery 101 detected by the voltage detection unit 102 while the hibernation state of the storage battery 101 is detected by the hibernation state detection unit 103b.
- K 0,1, ... n ⁇ is stored.
- the time-series data storage unit 103c does not necessarily have to be provided inside the time-series data acquisition unit 103.
- the time-series data storage unit 103c may be provided on, for example, the cloud.
- the sampling cycle ts when storing the time-series data of the terminal voltage V may be determined by the time-series data storage unit 103c or may be determined when the voltage detection unit 102 detects the terminal voltage V. Good.
- the time-series data extraction unit 103d excludes unnecessary data from the time-series data ⁇ (k, Vk)
- k 0,1 ..., N-1 ⁇ stored in the time-series data storage unit 103c. Then, the necessary time series data ⁇ (p, Vp)
- p 0,1, ..., M-1 ⁇ is extracted.
- p is a value extracted from the time series data of k
- rp is the extracted p-th time series data.
- time series data extraction unit 103d As a specific extraction method in the time series data extraction unit 103d, for example, it is conceivable to exclude the data for the first fixed time from the original time series data. This is because it is considered that the ion distribution inside the storage battery 101 is disturbed depending on the past charge / discharge history at the initial stage of the hibernation of the storage battery 101, so that the data may not be suitable for estimating the voltage relaxation process. Because there is.
- which excludes unnecessary data from the original time-series data ⁇ (k, Vk)
- k 0,1, ..., N-1 ⁇ .
- Extract p 0,1, ..., m-1 ⁇ .
- data extraction processing depends on restrictions such as a characteristic estimation method and the number of data that can be stored, and is not essential.
- the model providing unit 104 provides at least one storage battery model based on the basic solution of the diffusion equation.
- a diffusion fundamental solution model a model that provides at least one storage battery model based on the basic solution of the diffusion equation.
- p 0,1, ..., M-1 ⁇ of the terminal voltage V of the storage battery 101 acquired by the time-series data acquisition unit 104.
- the model parameters of the storage battery model are estimated based on the storage battery model provided by the model providing unit 104.
- FIG. 3 is an image diagram of the electrodes inside the storage battery.
- a large number of particles 302 are adhered to the current collector 301 to form a bulk 303, and all of them are immersed in the electrolytic solution 304.
- a conductive auxiliary agent for enhancing electron conductivity, a binder for binding a large number of particles 302, and the like are also attached, but they are omitted here for the sake of simplicity.
- lithium ions 305 are supplied from the electrolytic solution 304 and electrons 306 are supplied from the current collector 301 to the individual particles 302.
- lithium ions 305 and electrons 306 are emitted from the individual particles 302.
- FIG. 3 is an image diagram in the case of a lithium ion storage battery.
- the storage battery may be a lead storage battery, a nickel hydrogen storage battery, an all-solid-state battery, a sodium-sulfur battery, a sodium-sulfur battery, a magnesium ion battery, an electric double layer, or the like.
- FIG. 4 is a diagram showing an image of an electrode inside a storage battery based on a single particle model and its equivalent circuit.
- Re is the electron conduction resistance
- Rct is the reaction resistance
- Cdl is the electric double layer capacitance
- Zw is the diffusion impedance inside the particle 307
- OCV is the open circuit voltage of the particle 307
- Ri is the ion conduction resistance. ..
- the single particle model of FIG. 4 can be regarded as an ideal model in which the behaviors of all particles are aggregated into a single particle 307, assuming that all the particles 302 that originally exist in large numbers as shown in FIG. 3 exhibit the same behavior. ..
- a single particle model is widely used as a model for a storage battery, it has a drawback that it cannot express the bias of the lithium ion distribution between particles.
- FIG. 5 is an image diagram based on a one-dimensional approximate model of the electrodes inside the storage battery and a diagram showing an equivalent circuit thereof.
- FIG. 5 shows a case where the number of particles is approximately represented by 4.
- this one-dimensional approximation model can express the bias of the lithium ion distribution between particles.
- the equivalent circuit of FIG. 5 is a multi-stage connection of the equivalent circuits of the single particle model of FIG. 4 in parallel.
- the electron conduction resistance and the ion conduction resistance exist between the particles 307, the electron conduction resistance becomes smaller and the ion conduction resistance in the electrolytic solution becomes larger as the particles 307 are closer to the current collector 301.
- the electron conduction resistance becomes larger and the ionic conduction resistance in the electrolytic solution becomes smaller.
- ion is an ion that contributes to the charging and discharging of the storage battery.
- ion is an ion that contributes to the charging and discharging of the storage battery.
- ion is lithium ion
- magnesium ion battery it is magnesium ion
- sodium ion in the case of a sodium ion battery, it is sodium ion.
- the Warburg impedance Zw expressing the diffusion in the particle is separated and connected in series.
- the process of in-particle diffusion represented by the Warburg impedance Zw has a long time constant of several seconds to several hundred seconds.
- the overvoltage of each particle varies depending on the past charge / discharge history.
- the overvoltage in the reaction process is considered to converge to almost zero in about several tens to several hundreds of milliseconds according to the time constant of the reaction process.
- the equivalent circuit as shown in FIG. 9 is obtained.
- the series of the capacitor representing the OCV and the ladder of the ion resistance in the equivalent circuit of FIG. 8 is regarded as a distributed constant circuit and expressed by the diffusion impedance.
- FIG. 10 is a diagram for explaining that the diffusion equation is derived from the distributed constant circuit in the approximate conversion of FIGS. 8 to 9.
- FIG. 10 is a circuit representing a part of a minute distance ⁇ x of the distributed constant circuit.
- R and C represent resistance and capacitance per unit length, respectively
- R ⁇ x and C ⁇ x represent resistance and capacitance per minute distance ⁇ x, respectively.
- the region of the lithium ion position x is 0 ⁇ x ⁇ + ⁇ , but in this case as well, it is symmetrical with the region of 0 ⁇ x ⁇ + ⁇ . If the region of ⁇ ⁇ x ⁇ 0 is virtually taken, the density gradient is always 0 at the origin. Therefore, since the inflow and outflow of lithium ions from the origin does not occur from a macroscopic point of view, the discussion when the condition is set to the region of ⁇ ⁇ x ⁇ + ⁇ can be applied in the same manner.
- the region of the position x of the lithium ion should be limited to the finite region 0 ⁇ x ⁇ x max by a certain value x max .
- the region is often regarded as semi-infinite 0 ⁇ x ⁇ + ⁇ . Therefore, this is also followed in the first embodiment.
- the solution of the diffusion equation of Eq. (6) is It is expressed as.
- k is a parameter for adjusting the magnitude.
- the initial distribution of the electrode potential or the lithium ion concentration is assumed to be the distribution of the fundamental solution after a lapse of a certain period of time z seconds. That is, when the estimated value of v is expressed by v with a hat, And.
- k is a parameter for adjusting the magnitude
- z is a time movement parameter.
- M and t M can be selected so as to satisfy f 0, max (x) ⁇ v 0 (x).
- Equation (17) means that even if the potential distribution of the electrode is wavy depending on the past charging current, it has a shape that asymptotically decreases from the electrode interface toward the deep part. There is.
- FIG. 11 is an image diagram of the potential distribution in the voltage relaxation process.
- the solid line represents the actual potential distribution
- the upper dotted line represents the upper limit fundamental solution model
- the lower dotted line represents the lower limit basic solution model
- the dashed line between them represents the estimated fundamental solution model.
- Both the actual potential distribution and the estimated fundamental solution model are between the upper limit fundamental solution model and the lower limit fundamental solution model at all positions in the depth z direction, and their positional relationships have changed even after a long period of time. Absent. It can be seen that the upper limit fundamental solution model and the lower limit fundamental solution model have a relatively large error from the actual distribution, whereas the estimated fundamental solution model captures the low frequency behavior of the actual distribution well.
- the lithium ion concentration depends on the past charge / discharge history, etc., and there are local highs and lows in the concentration. However, as a macro tendency, the electrode interface should have a high concentration, and the density should decrease as the depth increases, or vice versa.
- the basic solution model according to the first embodiment captures such global behavior.
- the local high and low potentials that is, the shades of ion concentration, disappear as the diffusion phenomenon progresses. Therefore, the longer the measured data is, the less affected by the initial distribution, and the accuracy of the model. Is expected to be higher.
- the ion concentration inside the electrode is approximated by the distribution when the high-concentration ions brought to the electrode interface at the time point of z seconds past diffuse. It can also be regarded as expressing.
- the parameter k is the most dominant and low-frequency diffusion process in which the local ion distribution according to the past charge / discharge history disappears over time and remains at the end. With and z, it is possible to grasp with high accuracy by the basic solution in which the size and the position are appropriately shifted.
- FIG. 12 is a one-dimensional equivalent circuit inside a storage battery having a positive electrode and a negative electrode. The description so far has described the behavior of only one of the positive electrode and the negative electrode, but in FIG. 12, one-dimensional equivalent circuits of both the positive electrode and the negative electrode are connected via a separator.
- Equation (24) does not necessarily have to be used as it is, and some terms and some parameters may be omitted.
- the exponential function portion may be set to 1.
- the subscript e on the right shoulder means p or n.
- the positive electrode and negative electrode terms may be combined into one.
- the time constant is generally on the order of several seconds to several hundreds of seconds, so the following approximate expression holds depending on the conditions.
- the first condition on the right side means that the diffusion time constants of the positive and negative electrodes are close to each other, or that one of the electrodes has a much larger time constant than the other.
- the second condition on the right side represents a time when the time t used for estimation is sufficiently larger than z 1 and z 2 .
- the first condition on the right side means that the time constants of interparticle diffusion of the positive and negative electrodes are close to each other, or that the overvoltage of one electrode is much larger than that of the other.
- the second condition on the right side means that the time t used for estimation is sufficiently larger than the time constant of interparticle diffusion of one electrode.
- the model can be simplified in various ways depending on the characteristics of the positive and negative electrodes, the data range to be fitted, and so on.
- the essence of the model of the first embodiment is based on the basic solution of the diffusion equation, which is a voltage relaxation process including interparticle diffusion, which has not been considered so far or it has been difficult to construct a model that can withstand practical use. It is expressed by a model, and the time movement parameter z is introduced to the basic solution model. To describe this with a more general model formula, Will be.
- the function f (t) is a function that expresses an overvoltage caused by a DC resistance, a reaction resistance, an intraparticle diffusion resistance, etc. for a relatively short time.
- a function that assumes an equivalent circuit consisting of a DC resistance element and one or more CR parallel elements, which is generally used, may be used.
- the function g (t) is a function that corrects the diffusion basic solution expressing the interparticle diffusion, and is derived from the local height of the potential distribution inside the electrode based on the past charge / discharge history. This is for explaining the potential fluctuation when the time t is relatively small.
- a term based on a general battery equivalent circuit for example, a term based on a DC resistor and a CR parallel element connected in series in multiple stages may be used. That is, Is.
- the function g (t) converges to 1 in a relatively short time, specifically in a few seconds to a few hundred seconds, and does not contribute to the fundamental diffusion solution.
- Various forms are possible, such as.
- the function g (t) is usually for correcting the interparticle diffusion term as described above, but it may serve as a substitute for the function f (t).
- the model providing unit 104 provides at least one model based on the basic solution of the diffusion equation constructed as described above.
- the diffusion fundamental solution model may be stored inside the model providing unit 104, or may be stored outside the model providing unit 104, for example, on the cloud.
- model providing unit 104 receives a control signal instructing a model change from the model parameter estimation unit 105 described below, the model providing unit 104 outputs so far from the set of diffusion basic solution models that it can provide. One model that does not exist is selected and output to the model parameter estimation unit 105.
- the model providing unit 104 when the model providing unit 104 outputs all the models and there is no model that has not been output so far, the model providing unit 104 instructs the model parameter estimating unit 105 to end the model parameter estimation. Send a control signal.
- the model parameter estimation unit 105 uses the time-series data of the terminal voltage V of the storage battery 101, which is acquired by the time-series data acquisition unit 103 ⁇ (p, Vp)
- p 0,1, ...,
- the model parameters of the diffusion basic solution model of the storage battery 101 are estimated based on m-1 ⁇ and the diffusion basic solution model provided by the model providing unit 104.
- FIG. 13 is a diagram showing the internal configuration of the model parameter estimation unit 105.
- the model parameter estimation unit 105 includes an optimization problem configuration unit 105a, an estimation calculation unit 105b, and a determination unit 105c.
- the optimization problem configuration unit 105a constitutes an optimization problem to be solved.
- the optimization problem configuration unit 105a includes time-series data ⁇ (p, Vp)
- the evaluation function L is most typically composed of the sum of squared errors as follows.
- ⁇ is a vector in which the model parameters to be estimated are arranged vertically, for example.
- ⁇ is a vector in which the model parameters to be estimated are arranged vertically, for example.
- the constraint inequality is It is expressed as. For example, if k 1 and k 2 in equation (34) are non-negative and it is known that the OCV is greater than or equal to Vmin and less than or equal to Vmax. , The constraint inequality may be constructed.
- constraint inequalities are not mandatory and may construct an unconstrained optimization problem.
- the optimization problem configuration unit 105a When the optimization problem configuration unit 105a receives a control signal instructing the change of the optimization problem configuration from the estimation calculation unit 105b, the optimization problem configuration unit 105a changes the optimization problem configuration to a different one. Specifically, operations such as changing the evaluation function and adding constraint inequalities are performed.
- the optimization problem configuration unit 105a receives the control signal from the estimation calculation unit 105b, if there is no candidate for the configuration different from the conventional one, the optimization problem configuration unit 105a changes the model to the model provider 104. Sends a control signal to instruct.
- the optimum solution of the optimization problem is obtained by performing the above, and the estimated model parameter ⁇ and the value of the evaluation function L are output.
- the steepest descent method Newton method, Gauss-Newton method, Quasi-Newton method, Levenberg-Marquardt method, etc. can be used.
- the penalty function method multiplier method, sequential quadratic programming method, interior point method, GRG (Generalized Reduced Gradient) method, etc. can be used.
- the optimization method should be selected according to the scale of the problem, the number of variables, the nature, the computational resources, etc. Further, the optimization method is not limited to the above-mentioned method, and other known optimization methods may be used.
- a specific model parameter is fixed to a certain value and becomes linear with respect to other model parameters
- the specific model parameter value is fixed and then the minimum linearity is two with respect to the other model parameter.
- the value of the specific model parameter is changed, and the linear minimum square method is applied to the other model parameter to obtain the value of the other model parameter.
- the estimation calculation unit 105b When the estimation calculation unit 105b receives a control signal instructing the redo of the estimation calculation from the determination unit 105c, the estimation calculation unit 105b changes the setting and redoes the estimation calculation. This means a change in the initial value, a change in the estimation method, and the like. However, when there is no possibility of redoing, or when the number of redoing exceeds the set value, a control signal instructing the optimization problem configuration unit 105a to change the optimization problem is transmitted.
- the determination unit 105c outputs a control signal or an estimated model parameter ⁇ based on the value of the evaluation function L output from the estimation calculation unit 105b, the estimated model parameter ⁇ , and the control signal from the model providing unit 106.
- the determination unit 107c determines that the estimation of the model parameter ⁇ has succeeded, and outputs the estimated model parameter ⁇ .
- the determination unit 105c transmits a control signal instructing the estimation calculation unit 105b to redo the model parameter estimation.
- the estimation calculation unit 105b stores the estimation model parameter ⁇ having the smaller value of L as compared with the value of the past evaluation function L.
- the determination unit 105c When the determination unit 105c receives the control signal instructing the end of the model parameter estimation from the model providing unit 104, the determination unit 105c ends the processing of the model parameter estimation unit 105 and outputs the stored estimated model parameter ⁇ .
- the storage battery characteristic estimation device has a voltage detection unit that detects the terminal voltage of the storage battery and time-series data acquisition that acquires the time-series data of the terminal voltage in the hibernation state of the storage battery.
- the model parameters of the storage battery model are set based on the unit, the model providing unit that provides the storage battery model, the time-series data of the terminal voltage acquired by the time-series data acquisition unit, and the storage battery model provided by the model providing unit. It is equipped with a model parameter estimation unit for estimation.
- the storage battery model includes an OCV term that expresses the OCV of the storage battery and an interparticle diffusion term based on the basic solution of a one-dimensional diffusion equation that expresses the ion diffusion between the particles constituting the electrodes of the storage battery.
- Model parameter estimation result The results of estimating the model parameters from the time series data of the actual storage battery using the equation (24) as the diffusion fundamental solution model are shown below.
- the estimated model parameters were k 1 , k 2 , z 2 , and OCV, and the GRG method was used as the estimation method.
- FIG. 14 shows a potential relaxation curve of a half cell manufactured by disassembling a lithium ion storage battery and using a positive electrode material.
- both potentials at 7200 seconds are plotted at zero.
- the potential change of the deteriorated product is large, and it can be seen that the potential has not converged even at 7200 seconds.
- the time required for relaxing the electrode potential is generally very long. Therefore, in order to acquire highly accurate SOC-OCV data, it is important to predict the voltage relaxation process.
- FIG. 15 shows three types of SOC-OCP data acquired with the produced half-cell. Shown.
- FIG. 16 shows the result of estimating the OCP by applying the method according to the first embodiment to all the data of FIG. It can be seen that the high potential tendency of the deteriorated product in the high SOC region has almost disappeared, and the shape of the deteriorated product is almost the same as that of the new product over the entire section. That is, it is highly probable that the true OCP can be estimated with high accuracy.
- the first point is to use a model that reflects a physical phenomenon called interparticle diffusion, which has not been considered in the past. This enables highly accurate modeling with physical grounds for a long-time voltage relaxation process that takes several hours to 10 hours or more.
- the interparticle diffusion model according to the first embodiment makes it possible to estimate the model parameters of an equivalent circuit model using a conventional DC resistor and a CR parallel element with higher accuracy.
- a general equivalent circuit model models an overvoltage with a time constant of up to several hundred seconds at the longest, but the principle is that interparticle diffusion, which is a voltage relaxation process with a time constant of several hundred seconds or more, is not taken into consideration. The accuracy was low.
- the diffusion between particles having a long time constant can be estimated and predicted with high accuracy, and as an inevitable result, a shorter process, that is, electrolyte resistance, charge transfer resistance, and intraparticle resistance.
- Equivalent circuit parameters that reflect diffusion resistance and the like can also be estimated with high accuracy.
- the voltage relaxation process can be modeled with high accuracy, and the OCV can be predicted with high accuracy.
- the SOC of the storage battery can be reset, the SOC-OCV data can be acquired, and the like.
- the time required will be reduced.
- the SOC of the storage battery can be reset and the SOC-OCV data can be acquired with higher accuracy than before.
- the known measurement technique including pausing such as the GITT method (Galvanostatic Intermittent Titration Technique) can be highly accurate. It becomes possible to build a storage battery model.
- FIG. 17 is a configuration diagram showing a case where each function of the characteristic estimation device according to the first embodiment of the present invention is realized by a processing circuit 4000 which is dedicated hardware.
- FIG. 18 is a configuration diagram showing a case where each function of the characteristic estimation device is realized by a processing circuit 5000 including a processor 5001 and a memory 5002 according to the first embodiment of the present invention.
- the processing circuit 4000 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate Array). ), Or a combination of these.
- the functions of each part of the characteristic estimation device may be realized by individual processing circuits 4000, or the functions of each part may be collectively realized by processing circuits 4000. Further, data such as time series data and diffusion fundamental solution model may be stored inside the processing circuit 4000, or may be stored outside the processing circuit 4000 on the cloud, for example.
- the processing circuit is the processor 5001
- the functions of each part of the characteristic estimation device are realized by software, firmware, or a combination of software and firmware.
- the software and firmware are written as programs and stored in memory 5002.
- the processor 5001 realizes the functions of each part by reading and executing the program stored in the memory 5002. That is, the characteristic estimation device includes a memory 5002 for storing a program in which each of the above-mentioned controls will be executed as a result when executed by the processing circuit 5000.
- the memory 5002 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Online Memory), an EEPROM (Electric Memory), etc.
- RAM Random Access Memory
- ROM Read Only Memory
- flash memory an EPROM (Erasable Programmable Read Online Memory)
- EEPROM Electrical Memory
- magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like also fall under the memory 2002.
- data such as time series data and diffusion fundamental solution model may be stored in the memory 5002, or may be stored in, for example, the cloud.
- the processing circuit can realize the functions of the above-mentioned parts by hardware, software, firmware, or a combination thereof.
- 100 characteristic estimation device 101 storage battery, 102 voltage detection unit, 103 time series data acquisition unit, 104 model provision unit, 105 model parameter estimation unit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Abstract
蓄電池の特性推定装置は、蓄電池の端子電圧を検出する電圧検出部と、蓄電池の休止状態における端子電圧の時系列データを取得する時系列データ取得部と、蓄電池モデルを提供するモデル提供部と、時系列データ取得部により取得された端子電圧の時系列データと、モデル提供部により提供された蓄電池モデルとに基づいて、蓄電池モデルのモデルパラメータを推定する、モデルパラメータ推定部とを備えている。蓄電池モデルは、蓄電池のOCVを表現するOCV項、および蓄電池の電極を構成する粒子間のイオン拡散を表現する1次元の拡散方程式の基本解に基づく粒子間拡散項を含んでいる。
Description
本発明は、蓄電池の特性推定装置および特性推定方法に係り、特に蓄電池の電圧緩和過程の推定装置および推定方法に関する。
蓄電池の特性を表現する様々なモデルが提案されている。例えば、蓄電池の電圧緩和過程を表現するモデルとしては、OCVを含む一般的な蓄電池の等価回路をベースとした、CR並列素子の多直列モデルが知られている(例えば、特許文献1参照)。
特許文献1では、蓄電池の電気化学的な応答を一次遅れ要素の重ね合わせによって表現し、CR並列素子の休止時の応答に対応する指数関数項によって、蓄電池の電圧緩和過程をモデル化している。指数関数項を表現するモデルパラメータは、蓄電池の休止状態において検出される電圧緩和過程の時系列データに基づいて推定される。
しかしながら、特許文献1に記載のモデルによって、蓄電池の電圧緩和過程を高精度に推定することには限界がある。例えば、蓄電池の休止状態が短時間である場合には、短い時定数の電圧緩和過程が支配的になるが、蓄電池の休止状態が長時間である場合には、より長い時定数の電圧緩和過程が支配的になる。そのため、特許文献1のモデルでは、蓄電池の短時間の休止状態において検出される時系列データに基づいて、蓄電池の長時間の休止状態における電圧緩和過程を表現するモデルパラメータを推定することは困難である。
本発明は、上記のような課題を解決するためのものであり、蓄電池の電圧緩和過程を高精度に推定することができる、蓄電池の特性推定装置および特性推定方法を提供することを目的とする。
上記の課題を解決するために、本発明に係る蓄電池の特性推定装置は、蓄電池の端子電圧を検出する電圧検出部と、蓄電池の休止状態における端子電圧の時系列データを取得する時系列データ取得部と、蓄電池モデルを提供するモデル提供部であって、当該蓄電池モデルは、蓄電池のOCVを表現するOCV項、および蓄電池の電極を構成する粒子間のイオン拡散を表現する1次元の拡散方程式の基本解に基づく粒子間拡散項を含む、モデル提供部と、時系列データ取得部により取得された端子電圧の時系列データと、モデル提供部により提供された蓄電池モデルとに基づいて、蓄電池モデルのモデルパラメータを推定する、モデルパラメータ推定部とを備える。
また、本発明に係る蓄電池の特性推定方法は、蓄電池の端子電圧を検出するステップと、蓄電池の休止状態における端子電圧の時系列データを取得するステップと、蓄電池モデルを提供するステップであって、当該蓄電池モデルは、蓄電池のOCVを表現するOCV項、および蓄電池の電極を構成する粒子間のイオン拡散を表現する1次元の拡散方程式の基本解に基づく粒子間拡散項を含む、蓄電池モデルを提供するステップと、端子電圧の時系列データと、蓄電池モデルとに基づいて、蓄電池モデルのモデルパラメータを推定するステップとを含む。
本発明に係る蓄電池の特性推定装置および特性推定方法によれば、蓄電池の電圧緩和過程を高精度に推定することができる。
以下、添付図面を参照して、本願が開示する発明の実施の形態について、詳細に説明する。ただし、以下に示す実施の形態は一例であり、これらの実施の形態によって、本発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係る蓄電池の特性推定装置100の構成を示す図である。なお、図1には、特性推定装置100に接続される蓄電池101も併せて示されている。
図1は、本発明の実施の形態1に係る蓄電池の特性推定装置100の構成を示す図である。なお、図1には、特性推定装置100に接続される蓄電池101も併せて示されている。
本実施の形態1では、蓄電池101として、リチウムイオン蓄電池を想定する。ただし、蓄電池101は、鉛蓄電池、ニッケル水素蓄電池、全個体電池、ナトリウム硫黄電池、ナトリウム硫黄電池、マグネシウムイオン電池、電気二重層等であってもよい。
特性推定装置100は、電圧検出部102と、時系列データ取得部103と、モデル提供部104と、モデルパラメータ推定部105とを備えている。
電圧検出部102は、蓄電池101の端子電圧Vを検出する。
時系列データ取得部103は、電圧検出部102によって検出される蓄電池101の端子電圧Vに基づいて、蓄電池101の休止状態における端子電圧Vの時系列データ{(p,Vp)|p=0,1,・・・m-1}を取得する。
より詳細には、図2に示されるように、時系列データ取得部103は、電流検出部103aと、休止状態検出部103bと、時系列データ記憶部103cと、時系列データ抽出部103dとを含んでいる。
電流検出部103aは、蓄電池101の電流Iを検出する。
休止状態検出部103bは、電流検出部103aによって検出される蓄電池101の電流Iに基づいて、蓄電池101の休止状態を検出する。ただし、休止状態検出部103bは、蓄電池101が必ずしも完全に休止している状態のみを検出する必要はなく、休止に近い状態を含めて検出してもよい。これ以降、蓄電池101の休止に近い状態を「準休止状態」と称することにする。
蓄電池101の休止状態を検出する方法としては、例えば、予め決定された微小値εおよびδに対して、|I|<εかつ|ΔI|<δを満たしている状態を検出する方法を採用することができる。ここで、ΔIは、ある時刻tにおける電流Iとその直前の時刻t-Δtにおける電流Iとの差分値である。
この検出方法では、第1の不等式|I|<εによって、電流検出部103aの検出誤差に起因して電流Iが厳密にゼロとならない場合でも、休止状態を検出することができる。また、εを大きく設定することによって、上述の「準休止状態」を検出することもできる。
また、第2の不等式|ΔI|<δによって、電流Iの大きさだけでなく、電流Iの変化も考慮に入れるため、休止状態をより高精度に検出することができる。
なお、休止状態検出部103bは、蓄電池101を搭載するシステムが蓄電池101の休止状態を別途検出している場合には、その検出信号を受信することによって、蓄電池101の状態時間を検出してもよい。
時系列データ記憶部103cは、休止状態検出部103bによって蓄電池101の休止状態が検出されている間、電圧検出部102によって検出される蓄電池101の端子電圧Vの時系列データ{(k,Vk)|k=0,1,・・・n}を記憶する。ここで、kはサンプリング時刻であり、サンプリング周期をtsとすると、時刻t=k*tsの関係が成立する。なお、時系列データ記憶部103cは、必ずしも時系列データ取得部103の内部に設けられる必要はない。時系列データ記憶部103cは、例えばクラウド上等に設けられてもよい。
なお、端子電圧Vの時系列データを記憶する際のサンプリング周期tsは、時系列データ記憶部103cが決定してもよいし、電圧検出部102が端子電圧Vを検出する際に決定してもよい。
時系列データ抽出部103dは、時系列データ記憶部103cに記憶されている時系列データ{(k,Vk)|k=0,1・・・,n-1}から、不必要なデータを除外して、必要な時系列データ{(p,Vp)|p=0,1,・・・,m-1}を抽出する。
ここで、pはkの時系列データから抽出された値であることから、p=0,1,・・・,m-1は、t=r0*ts,r1*ts,・・・,rm-1*tsに対応する。すなわち、あるpに対して、t=rp*tsとなる。ただし、rpは抽出されたp個目の時系列データである。
時系列データ抽出部103dにおける具体的な抽出方法としては、例えば、元の時系列データから、最初の一定時間のデータを除外することが考えられる。これは蓄電池101の休止状態の初期には、過去の充放電履歴に依存して蓄電池101内部のイオン分布に乱れが存在すると考えられるため、電圧緩和過程の推定に適さないデータとなる可能性があるからである。
また、明らかなデータの飛びが存在する場合、これを除外してもよい。また、電圧変化に基づくサンプリングを行って、電圧変化の小さいデータを除外してもよい。
このようにして、元の時系列データ{(k,Vk)|k=0,1,・・・,n-1}から、不必要なデータを除外した時系列データ{(p,Vp)|p=0,1,・・・,m-1}を抽出する。ただし、このようなデータ抽出の処理は、特性の推定方法、保存可能なデータ数等の制約に依存するものであり、必須のものではない。
モデル提供部104は、拡散方程式の基本解に基づく蓄電池モデルを少なくとも1つ提供する。これ以降、このようなモデルを「拡散基本解モデル」と称することにする。
モデルパラメータ推定部105は、時系列データ取得部104により取得された、蓄電池101の端子電圧Vの時系列データ{(p,Vp)|p=0,1,・・・,m-1}と、モデル提供部104により提供された蓄電池モデルとに基づいて、蓄電池モデルのモデルパラメータを推定する。
[蓄電池モデルの技術的な詳細]
以下、本実施の形態1に係る蓄電池モデルの技術的な詳細について説明する。
以下、本実施の形態1に係る蓄電池モデルの技術的な詳細について説明する。
図3は、蓄電池内部の電極のイメージ図である。集電体301に多数の粒子302が固着してバルク303を形成しており、それらの全体が電解液304に浸されている。なお、正確には、電子伝導性を高めるための導電助剤、多数の粒子302を結着させるためのバインダー等も付着しているが、ここでは簡単のため省略している。
蓄電池の充電時には、個々の粒子302に対して、電解液304からリチウムイオン305が供給されると共に、集電体301から電子306が供給される。蓄電池の放電時には、個々の粒子302から、リチウムイオン305および電子306が放出される。
なお、先述したように、本実施の形態1では、蓄電池としてリチウムイオン蓄電池を想定している。そのため、図3は、リチウムイオン蓄電池の場合のイメージ図である。しかしながら、蓄電池は、鉛蓄電池、ニッケル水素蓄電池、全個体電池、ナトリウム硫黄電池、ナトリウム硫黄電池、マグネシウムイオン電池、電気二重層等であってもよい。
例えば、蓄電池が全個体電池である場合、上述の「電解液」を「固体電解質」に読み替える。また、マグネシウムイオン電池の場合、「リチウムイオン」を「マグネシウムイオン」に読み替える。
図4は、蓄電池内部の電極の単粒子モデルによるイメージと、その等価回路を示す図である。図4の等価回路において、Reは電子伝導抵抗、Rctは反応抵抗、Cdlは電気二重層容量、Zwは粒子307内部の拡散インピーダンス、OCVは粒子307の開回路電圧、Riはイオン伝導抵抗である。
図4の単粒子モデルは、本来は図3のように多数存在する粒子302が全て同じ挙動を示すと仮定して、全粒子の挙動を単一粒子307に集約した理想モデルと捉えることができる。このような単粒子モデルは、蓄電池のモデルとして広く用いられているが、粒子間のリチウムイオン分布の偏りを表現できないという欠点を有する。
図5は、蓄電池内部の電極の1次元近似モデルによるイメージ図と、その等価回路を示す図である。図5では簡単のため、粒子数を4で近似表現した場合を示している。この1次元近似モデルでは、図4の単粒子モデルとは異なり、粒子間のリチウムイオン分布の偏りを表現することが可能である。
図5の等価回路は、図4の単粒子モデルの等価回路が並列に多段接続されたものとなっている。ただし、各粒子307の間に電子伝導抵抗とイオン伝導抵抗が存在するため、集電体301に近い粒子307ほど、電子伝導抵抗が小さくなり、電解液中のイオン伝導抵抗は大きくなる。反対に、集電体301から遠い粒子307ほど、電子伝導抵抗が大きくなり、電解液中のイオン伝導抵抗は小さくなる。
このような電子伝導抵抗とイオン伝導抵抗の影響により、電流レートが大きくなるほど、各粒子307に供給されるイオン量に差がつき、粒子間でSOC分布の偏りが生じる。従来の蓄電池の休止状態における電圧緩和過程を推定する技術では、このような粒子間のSOC分布の偏りの影響を反映しながら実用に耐えるモデルが構築されてこなかった。そのため、粒子間のSOC分布の偏りの解消過程を反映した長時間の電圧緩和過程を表現することが困難であった。
これに対して、本実施の形態1では、図5の1次元近似モデルから導出された、粒子間のSOC分布の偏りの解消過程を反映した長時間の電圧緩和過程を高精度に表現するモデルを用いる。
なお、以降の説明において「イオン」とは、蓄電池の充放電に寄与するイオンのことである。例えば、リチウムイオン電池の場合はリチウムイオン、マグネシウムイオン電池の場合はマグネシウムイオン、ナトリウムイオン電池の場合はナトリウムイオンである。
[1次元近似モデルの等価回路の近似変換]
まず、図6の1次元近似モデルの等価回路を近似変換すると、図7のような等価回路が得られる。ただし、蓄電池は休止状態にあり、かつ休止状態となってから数秒~数百秒が経過しているものとする。また、電極電位vは、集電体側の粒子の電位に基づいている。
まず、図6の1次元近似モデルの等価回路を近似変換すると、図7のような等価回路が得られる。ただし、蓄電池は休止状態にあり、かつ休止状態となってから数秒~数百秒が経過しているものとする。また、電極電位vは、集電体側の粒子の電位に基づいている。
図6から図7の近似変換では、電子伝導抵抗Reはイオン伝導抵抗Riと比較して非常に小さいため、これらを無視している。また、粒子内拡散を表現するワールブルグインピーダンスZwを分離して直列接続している。ワールブルグインピーダンスZwによって表現される粒子内拡散の過程は、数秒~数百秒程度の長い時定数を有する。これに対して、反応抵抗Rctと電気二重層容量Cdlによる反応過程の時定数τ:=Rct*Cdlは、数十~数百ミリ秒程度の短い時定数である。そのため、ワールブルグインピーダンスZwを近似的に分離して、直列接続可能であることが一般的に知られている。
次に、図7の等価回路をさらに近似変換すると、図8のような等価回路が得られる。図7から図8の近似変換では、各粒子の反応過程における過電圧を無視し、かつ粒子内拡散を表現するワールブルグインピーダンスZwを1つに統合して近似表現している。
蓄電池が休止状態となった直後は、過去の充放電履歴に依存して各粒子の過電圧にばらつきが存在すると考えられる。しかしながら、反応過程の過電圧は、反応過程の時定数に従って、数十~数百ミリ秒程度でほぼゼロに収束すると考えられる。
また、粒子内拡散の過電圧についても、粒子内拡散の時定数に対応した数秒~数百秒程度の時間が経過して粒子内拡散が収束に近づくと、粒子間の過電圧のばらつきは小さくなっていく。そのため、そこから先の過電圧の変化は、1つのワールブルグインピーダンスで代表して近似表現可能であると考えられる。
また、各粒子のOCVについては、粒子SOCのばらつきに応じたOCVのばらつきを表現可能であればよいので、線形近似してキャパシタで表現したものを用いれば十分であると考えられる。
次に、図8の等価回路をさらに近似変換すると、図9のような等価回路が得られる。図9の等価回路は、図8の等価回路におけるOCVを表現するキャパシタとイオン抵抗の梯子の連なりを分布定数回路とみなして、拡散インピーダンスで表現したものである。
図10は、図8から図9の近似変換において、分布定数回路から拡散方程式が導出されることを説明する図である。図10は、分布定数回路の微小距離Δxの一部分を表現する回路である。ただし、RとCはそれぞれ単位長さ当たりの抵抗と容量であり、RΔxとCΔxはそれぞれ微小距離Δx当たりの抵抗と容量を表す。
以上のようにして、蓄電池の休止状態における電極電位モデルとして、図9に示すような拡散インピーダンスを直列接続したものが得られる。ただし、粒子内拡散は粒子が理想的には球状であることから3次元拡散に従い、粒子間拡散は深さxの方向、すなわち集電体からセパレータへの方向の拡散であることから1次元拡散に従う。
[電圧緩和過程の数理モデルの導出]
続いて、上記の等価回路モデルから、電圧緩和過程の数理モデルを導出する。
続いて、上記の等価回路モデルから、電圧緩和過程の数理モデルを導出する。
まず、-∞<x<+∞の領域において、初期分布をv(x,0)=v0(x)、境界条件をv(±∞,t)=0とする。なお、実際のリチウムイオンの拡散を考えるとき、リチウムイオンの位置xの領域は0≦x<+∞となるが、この場合も、0≦x<+∞の領域と左右対称となるように-∞<x≦0の領域を仮想的にとれは、原点で常に濃度勾配0となる。そのため、原点を境にリチウムイオンの流出入はマクロな視点では生じないため、条件を-∞<x<+∞の領域とした場合の議論を同様に適用することが可能である。
また、リチウムイオンの位置xの領域は、厳密にはある値xmaxによって、有限領域0≦x≦xmaxに制限されるはずである。しかしながら、一般的に、拡散層が非常に厚い場合、領域を半無限の0≦x<+∞とみなすことも多い。そのため、本実施の形態1でもこれに従う。このとき、式(6)の拡散方程式の解は、
と表現される。しかしながら、式(7)の解析解を得ることは困難であり、得られるのは特殊な初期分布の場合のみに限られる。
そこで、初期分布がv0(x)=δ(x)となる場合を考える。ただし、δ(x)はデルタ関数であり、
と定義されるようなものである。初期分布がデルタ関数に従うというのは、x=0において濃度1の物質を滴下した状況と捉えることが可能である。すると、拡散方程式の解は、
と表わされる。G(x,t)はグリーン関数とも呼ばれ、拡散方程式の基本解として知られている。
本実施の形態1では、電極電位、あるいはリチウムイオン濃度の初期分布を、一定時間z秒経過後の基本解の分布で仮定する。すなわち、vの推定値をハット付きのvで表現したとき、
とする。ここで、kは大きさを調整するパラメータ、zは時間移動パラメータである。
これを一般化すると、時間移動パラメータをさらに含む1次元拡散方程式の基本解に基づく項は、
と記述できる。以下に、時間移動パラメータを導入した式(11)、式(12)を用いることの妥当性とその原理を説明する。
まず、蓄電池の充電時、電極内部の電位分布v(x,t)が任意の時刻t>0で不等式
を満たすような関数fminとfmaxを見つけることを考える。関数fmaxの初期分布をf0,maxとして、fmaxとvとの差を具体的に計算してみると、
となるから、fmax(x,t)≧v(x,t)が成り立つためには、f0,max(x)≧v0(x)が成り立つようなf0,max(x)を見つければよい。
式(17)は、電極の電位分布が過去の充電電流に依存して波打っていたとしても、電極界面から深部に向けて漸近的に低下していく形状となっていることを意味している。
さらに、電極界面、すなわちx=0において、t>>tM,tmであるような状況を考えると、
となる。誤差εは時間の経過とともに小さくなっていき、t→∞でε→0となる。つまり、電位の緩和挙動を見ているため当然であるが、MG(0,t+tM)とmG(0,t+tm)、およびこれら2つに挟まれたv(x,t)の値は、時間の経過とともに同じ値に収束してゆき、これらの値同士のずれは小さくなっていく。
したがって、式(17)の2つの基本解モデルの間に存在するような基本解モデルの集合を考え、それらの中で実際の電位挙動に最も一致するようなモデルを選び出すことができれば、過去に検出した電位挙動から将来の電位挙動を推定することが可能となる。
図11は、電圧緩和過程における電位分布のイメージ図である。実線は実際の電位分布、上の点線は上限基本解モデル、下の点線は下限基本解モデル、それらの間の破線は推定基本解モデルを表わしている。
実際の電位分布および推定基本解モデルは、ともに深さz方向のすべての位置において上限基本解モデルと下限基本解モデルとの間に収まっており、長時間経過後もそれらの位置関係は変わっていない。そして、上限基本解モデルと下限基本解モデルは実際の分布との誤差が比較的大きいのに対して、推定基本解モデルは実際の分布の低周波挙動をよく捉えられていることが分かる。
リチウムイオン濃度は過去の充放電履歴などに依存し、局所的に濃度に高低が存在する。しかしながら、マクロな傾向としては、電極界面は濃度が高く、深くなるにつれて濃度が低くなる、あるいはその逆となるはずである。
本実施の形態1に係る基本解モデルは、このような大域的な挙動を捉えたものとなっている。なお、局所的な電位の高低、すなわちイオン濃度の濃淡は、拡散現象の進行とともに消失していくものであるため、実測データが長時間であるほど初期分布の影響を受けにくくなり、モデルの精度は高くなると考えられる。
式(11)の推定基本解モデルの別の視点での解釈として、電極内部のイオン濃度を、z秒過去の時点で電極界面にもたらされた高濃度のイオンが拡散するときの分布で近似表現していると捉えることもできる。つまり、過去の充放電履歴に応じた局所的なイオン分布の濃淡が時間の経過とともに解消されていった後に最後に残るような、最も支配的で低周波であるような拡散過程を、パラメータkとzによって、大きさと位置を適切にずらした基本解によって、高精度に捉えることができる。
ここまでの議論と同様にして、電極粒子内部の拡散についても数理モデルを導出する。電極粒子は理想的には球状であるため、粒子内部の拡散は3次元拡散に従うと考える。そこで、3次元球対称の場合を考えると、拡散方程式は、
となる。ただし、rは球面座標上での位置を表わす。これに対する基本解は、
となる。
[蓄電池への適用]
図12は、正極と負極を有する蓄電池の内部の1次元等価回路である。ここまでの説明は、正極または負極の一方のみの挙動を説明したものであったが、図12では、セパレータを介して、正極と負極の両方の1次元等価回路が接続されている。
図12は、正極と負極を有する蓄電池の内部の1次元等価回路である。ここまでの説明は、正極または負極の一方のみの挙動を説明したものであったが、図12では、セパレータを介して、正極と負極の両方の1次元等価回路が接続されている。
式(24)は必ずしもそのまま用いる必要はなく、一部の項や一部のパラメータを省略してもよい。
例えば、指数関数の部分は、時間tの経過とともに急速に減衰することから、We=0、つまり指数関数部分を1としてもよい。ただし、右肩の添字eは、pまたはnを意味する。
ここで、右辺の第1条件は、正負極の拡散時定数が近い値である、あるいは、電極の一方の時定数が他方の時定数に比べて非常に大きいということを意味している。また、右辺の第2条件は、推定に用いる時刻tがz1とz2よりも十分に大きいときを表わしている。
また、式(24)では明示していないが、第3条件として、時間tがさらに大きいとき、粒子内拡散そのものをゼロと近似することも可能である。
ただし、i≠jである。ここで、右辺の第1条件は、正負極の粒子間拡散の時定数が近い値である、あるいは、一方の電極の過電圧が他方よりも非常に大きいことを意味している。また、右辺の第2条件は、推定に用いる時刻tが一方の電極の粒子間拡散の時定数よりも十分に大きいことを意味している。
このように、正負極の特性、フィッティングするデータ範囲等によって、モデルはさまざまに形に簡単化される。
本実施の形態1のモデルの本質は、これまで考慮されてこなかった、あるいは実用に耐えうるモデルの構築が困難であった、粒子間拡散を含む電圧緩和過程を、拡散方程式の基本解に基づくモデルで表現し、かつ、その基本解モデルに対して、時間移動パラメータzを導入した点にある。これをより一般的なモデル式で記述すると、
となる。
ここで、関数f(t)は、比較的短時間の直流抵抗、反応抵抗、粒子内拡散抵抗等に起因する過電圧を表現する関数である。この関数には、一般的に用いられるような、直流抵抗素子と1つ以上のCR並列素子とによる等価回路を想定した関数を用いてもよい。
一方、関数g(t)は、粒子間拡散を表現する拡散基本解項を補正する関数であり、過去の充放電履歴に基づく電極内部の電位分布の局所的な高低などに由来するような、時間tが比較的小さいときの電位変動をよく説明するためのものである。
この場合、等価回路のパラメータとして、R、ki、τi(i=1,2,・・・nCR)の一部または全部を推定パラメータに含むことになる。
関数g(t)は、その目的上、比較的短時間、具体的には数秒~数百秒程度で1に収束し、拡散基本解項への寄与がなくなるようなものが望ましい。例えば、
とする、あるいは、
とする等、さまざまな形が考えられる。
なお、関数g(t)は、通常は上述の通り粒子間拡散項の補正のためのものであるが、関数f(t)の代わりの役目を果たすようなものであってもよい。
モデル提供部104は、以上のようにして構築される、拡散方程式の基本解に基づくモデルの少なくとも1つを提供する。拡散基本解モデルは、モデル提供部104の内部に記憶されていてもよいし、例えばクラウド上等のモデル提供部104の外部に記憶されていてもよい。
モデル提供部104は、次に述べるモデルパラメータ推定部105からのモデル変更を指示する制御信号を受信する毎に、自身が提供可能な拡散基本解モデルの集合の中から、これまでに出力していないモデルを1つ選択して、モデルパラメータ推定部105に出力する。
また、モデル提供部104は、全てのモデルを出力してしまい、これまでに出力していないモデルが存在しなくなった場合には、モデルパラメータ推定部105に対して、モデルパラメータ推定の終了を指示する制御信号を送信する。
[モデルパラメータの推定]
先述したように、モデルパラメータ推定部105は、時系列データ取得部103により取得された、蓄電池101の端子電圧Vの時系列データ{(p,Vp)|p=0,1,・・・,m-1}と、モデル提供部104により提供された拡散基本解モデルとに基づいて、蓄電池101の拡散基本解モデルのモデルパラメータを推定する。
先述したように、モデルパラメータ推定部105は、時系列データ取得部103により取得された、蓄電池101の端子電圧Vの時系列データ{(p,Vp)|p=0,1,・・・,m-1}と、モデル提供部104により提供された拡散基本解モデルとに基づいて、蓄電池101の拡散基本解モデルのモデルパラメータを推定する。
図13は、モデルパラメータ推定部105の内部構成を示す図である。モデルパラメータ推定部105は、最適化問題構成部105aと、推定演算部105bと、判定部105cとを備えて構成されている。
最適化問題構成部105aは、解くべき最適化問題を構成する。詳細には、最適化問題構成部105aは、時系列データ取得部103により取得された時系列データ{(p,Vp)|0,1,・・・,m-1}と、モデル提供部104により提供された拡散基本解モデルと、推定演算部105bからの最適化問題の構成の変更を指示する制御信号とに基づいて、最適化問題を構成して、評価関数Lおよび制約不等式を出力する。
最適化問題構成部105aは、推定演算部105bからの最適化問題の構成の変更を指示する制御信号を受信した場合には、最適化問題の構成をこれまでと異なるものに変更する。具体的には、評価関数を変更する、制約不等式を追加する等の操作を行う。
また、最適化問題構成部105aは、推定演算部105bからの制御信号を受信した際に、これまでと異なる構成の候補が存在しない場合には、モデル提供部104に対して、モデルの変更を指示する制御信号を送信する。
推定演算部105bは、最適化問題構成部105aから出力される評価関数Lと制約不等式hi≦(i=1,・・・nh)とに基づいて、ある最適化手法を用いて推定演算を行なうことによって最適化問題の最適解を求め、推定したモデルパラメータθと評価関数Lの値を出力する。
例えば、最適化問題が制約不等式を含まない場合には、最急降下法、Newton法、Gauss-Newton法、Quasi-Newton法、Levenberg-Marquardt法等を用いることができる。
また、最適化問題が制約不等式を含む場合には、ペナルティ関数法、乗数法、逐次二次計画法、内点法、GRG(Generalized Reduced Gradient)法等を用いることができる。
最適化手法は、問題の規模、変数の数、性質、計算資源等に応じて、適切なものを使い分ければよい。また、最適化手法は上述の方法に限定されるものではなく、公知の他の最適化手法を用いてもよい。
あるいは、特定のモデルパラメータをある値に固定すれば他のモデルパラメータに関して線形となるような場合には、当該特定のモデルパラメータ値を固定したうえで、当該他のモデルパラメータに対して線形最小二乗法を適用して、当該他のモデルパラメータの値を求めた後、当該特定のモデルパラメータ値を変え、当該他のモデルパラメータに対して線形最小二乗法を適用して、当該他のモデルパラメータの値を再び求める、というような操作を繰り返すことで、評価関数を最小化するような特定のモデルパラメータと他のモデルパラメータの値の組合せを見つけてもよい。
推定演算部105bは、判定部105cから推定演算のやり直しを指示する制御信号を受信した場合には、設定を変更して推定演算のやり直しを行なう。これは、初期値の変更、推定手法の変更等を意味する。ただし、やり直しの可能性がなくなった場合、やり直しの回数が設定値を超えた場合等には、最適化問題構成部105aに対して、最適化問題の変更を指示する制御信号を送信する。
判定部105cは、推定演算部105bから出力される評価関数Lの値と推定モデルパラメータθと、モデル提供部106からの制御信号とに基づいて、制御信号または推定モデルパラメータθを出力する。
判定部107cは、推定演算部105bから出力される評価関数Lの値が設定値以下の場合には、モデルパラメータθの推定が成功したと判定し、推定されたモデルパラメータθを出力する。
反対に、判定部105cは、評価関数Lの値が設定値より大きい場合には、推定演算部105bに対して、モデルパラメータ推定のやり直しを指示する制御信号を送信する。この際、推定演算部105bは、過去の評価関数Lの値と比較して、Lの値が小さい方の推定モデルパラメータθを保存する。
判定部105cは、モデル提供部104からモデルパラメータ推定の終了を指示する制御信号を受信した場合には、モデルパラメータ推定部105の処理を終了させ、保存している推定モデルパラメータθを出力する。
以上説明したように、本実施の形態1に係る蓄電池の特性推定装置は、蓄電池の端子電圧を検出する電圧検出部と、蓄電池の休止状態における端子電圧の時系列データを取得する時系列データ取得部と、蓄電池モデルを提供するモデル提供部と、時系列データ取得部により取得された端子電圧の時系列データと、モデル提供部により提供された蓄電池モデルとに基づいて、蓄電池モデルのモデルパラメータを推定する、モデルパラメータ推定部とを備えている。蓄電池モデルは、蓄電池のOCVを表現するOCV項、および蓄電池の電極を構成する粒子間のイオン拡散を表現する1次元の拡散方程式の基本解に基づく粒子間拡散項を含んでいる。これにより、蓄電池の休止状態における電圧緩和過程を高精度に推定することができる、
[モデルパラメータの推定結果]
以下に、拡散基本解モデルとして式(24)を用いて、実際の蓄電池の時系列データから、モデルパラメータを推定した結果を示す。なお、推定したモデルパラメータはk1、k2、z2、OCVの4つであり、推定手法としてGRG法を用いた。
以下に、拡散基本解モデルとして式(24)を用いて、実際の蓄電池の時系列データから、モデルパラメータを推定した結果を示す。なお、推定したモデルパラメータはk1、k2、z2、OCVの4つであり、推定手法としてGRG法を用いた。
図14には、リチウムイオン蓄電池を解体して、正極材料を用いて作製した半電池の電位緩和曲線が示されている。ただし、電位変化の小さい方が新品の電位変化であり、電位変化の大きい方が劣化品の電位変化である。また、比較のため、7200秒時点における両者の電位をゼロに合わせてプロットしている。
明らかに、劣化品の電位変化が大きく、7200秒時点でも電位が収束していないことが分かる。このように、劣化した蓄電池では、一般に電極電位の緩和に要する時間が非常に長くなる。そのため、高精度なSOC-OCVデータを取得するためには、電圧緩和過程を予測することが重要となる。
図15は、作製した半電池で取得した3種類のSOC-OCPデータが示されている。示す。3種類のデータは、それぞれ概ねSOH=100%、80%、60%に対応している。一般的に、SOC-OCP曲線は劣化しても形状が変化しないと言われている。しかしながら、図15では、SOH=80%と60%のデータは、SOC=100%の新品のデータと比較して、高SOC領域でやや高電位となっている。この原因としては、電位緩和が十分に収束していないという可能性が考えられる。
図16には、図15の全データに対して、本実施の形態1に係る手法を適用して、OCPを推定した結果が示されている。高SOC領域における劣化品の高電位傾向がほぼ消失し、全区間に渡って新品時の形状とほぼ一致していることがわかる。つまり、真のOCPを精度良く推定できている蓋然性が高い。
[まとめ]
本実施の形態1に係る電圧緩和過程のモデルの利点は、次のようにまとめられる。
本実施の形態1に係る電圧緩和過程のモデルの利点は、次のようにまとめられる。
第1に、粒子間拡散という、従来考慮されてこなかった物理現象を反映したモデルを用いる点である。これにより、数時間~十時間以上かかる長時間の電圧緩和過程について、物理的根拠のある高精度なモデル化を可能とした。
第2に、拡散方程式の基本解に基づく項を用いるというアイデアにより、少ないモデルパラメータ数と高い精度を両立するモデルの構築を可能とし、その理論的根拠も示した。
第3に、上記の拡散方程式の基本解に基づく項を用いるうえで、通常の拡散方程式の基本解をそのまま用いるのではなく、時間移動パラメータを導入することで、高精度なモデル化を可能とし、その理論的根拠も示した。
第4に、上述の粒子間拡散の項に加えて、一般的な電池モデルと同様に粒子内拡散の項を加えたモデルを構築する際、3次元拡散方程式の基本解に基づく項で表現することで少ないモデルパラメータ数で高精度なモデル化を可能とし、その理論的根拠を示した。電圧緩和過程には粒子内拡散と粒子間拡散が混在しているため、上述の第1から第3までの考えに基づく粒子間拡散項のみで電圧緩和を高精度にモデル化し、予測することができるとは限らない。つまり、粒子間拡散を高精度にフィッティングするためには、粒子内拡散を高精度にモデル化およびフィッティングすることもまた重要となる。それゆえに、この第4の考えについても、第1から第3の考えに基づく長時間の電圧緩和過程を表現する項のモデルパラメータを高精度にフィッティングする上で重要であり、第1から第3のアイデアの効果を強化するアイデアである。
第5に、本実施の形態1に係る粒子間拡散モデルは、従来の直流抵抗とCR並列素子などによる等価回路モデルのモデルパラメータをより高精度に推定することを可能とする。一般的な等価回路モデルは長くて数百秒程度までの時定数の過電圧をモデル化しているが、数百秒以上の時定数の電圧緩和過程である粒子間拡散を考慮していない分、原理的に精度が低いものとなっていた。これに対して、本実施の形態1では、長い時定数の粒子間拡散を高精度に推定・予測できるので、必然的な結果として、より短い過程、すなわち電解液抵抗、電荷移動抵抗、粒子内拡散抵抗等を反映する等価回路パラメータも、精度よく推定することが可能となる。
以上より、従来技術と比較して、物理モデルに基づきながら、条件に応じてモデルを簡単化してモデルパラメータを削減することも可能であり、かつ、モデルパラメータを推定するので、事前にモデルパラメータ値を取得しておく必要もない。
最後に、本実施の形態1の効果として、電圧緩和過程を高精度にモデル化可能となり、OCVを高精度に予測できるようになった結果、蓄電池のSOCリセット、SOC-OCVデータの取得等に必要な時間が短縮されることになる。あるいは、蓄電池のSOCリセット、SOC-OCVデータの取得を従来よりも高精度に行なうことが可能となる。これは、実用上、蓄電池搭載システムの高効率利用、稼働率向上、劣化蓄電池の迅速診断等の意味で産業応用上の利点となる。また、本実施の形態1により、粒子内拡散と粒子間拡散を高精度に分離推定可能となることから、GITT法(Galvanostatic Intermittent Titration Technique)等の休止を含む公知の測定技術において、高精度に蓄電池モデルを構築可能となる。
なお、上述した本発明の実施の形態1に係る特性推定装置における各機能は、処理回路によって実現される。各機能を実現する処理回路は、専用のハードウェアであってもよく、メモリに格納されるプログラムを実行するプロセッサであってもよい。図17は、本発明の実施の形態1に係る特性推定装置の各機能を専用のハードウェアである処理回路4000で実現する場合を示した構成図である。また、図18は、本発明の実施の形態1に特性推定装置の各機能をプロセッサ5001およびメモリ5002を備えた処理回路5000により実現する場合を示した構成図である。
処理回路が専用のハードウェアである場合、処理回路4000は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。特性推定装置の各部の機能それぞれを個別の処理回路4000で実現してもよいし、各部の機能をまとめて処理回路4000で実現してもよい。また、時系列データ、拡散基本解モデル等のデータは、処理回路4000の内部に記憶されてもよいし、例えばクラウド上等の処理回路4000の外部に記憶されてもよい。
一方、処理回路がプロセッサ5001の場合、特性推定装置の各部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ5002に格納される。プロセッサ5001は、メモリ5002に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、特性推定装置は、処理回路5000により実行されるときに、上述した各制御が結果的に実行されることになるプログラムを格納するためのメモリ5002を備える。
これらのプログラムは、上述した各部の手順あるいは方法をコンピュータに実行させるものであるともいえる。ここで、メモリ5002とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリが該当する。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリ2002に該当する。また、時系列データ、拡散基本解モデル等のデータは、メモリ5002に記憶されてもよいし、例えばクラウド上等に記憶されてもよい。
なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。
このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述した各部の機能を実現することができる。
100 特性推定装置、101 蓄電池、102 電圧検出部、103 時系列データ取得部、104 モデル提供部、105 モデルパラメータ推定部。
Claims (8)
- 蓄電池の端子電圧を検出する電圧検出部と、
前記蓄電池の休止状態における前記端子電圧の時系列データを取得する時系列データ取得部と、
蓄電池モデルを提供するモデル提供部であって、該蓄電池モデルは、前記蓄電池のOCVを表現するOCV項、および前記蓄電池の電極を構成する粒子間のイオン拡散を表現する1次元の拡散方程式の基本解に基づく粒子間拡散項を含む、モデル提供部と、
前記時系列データ取得部により取得された前記端子電圧の時系列データと、前記モデル提供部により提供された前記蓄電池モデルとに基づいて、前記蓄電池モデルのモデルパラメータを推定する、モデルパラメータ推定部と
を備える、蓄電池の特性推定装置。 - 前記粒子間拡散項は、時間移動パラメータをさらに含む、請求項1に記載の特性推定装置。
- 前記蓄電池モデルは、前記蓄電池の電極を構成する粒子内のイオン拡散を表現する、3次元の拡散方程式の基本解に基づく粒子内拡散項をさらに含む、請求項1または2に記載の特性推定装置。
- 前記蓄電池モデルは、電池等価回路に基づく項をさらに含む、請求項1~3のいずれか一項に記載の特性推定装置。
- 蓄電池の端子電圧を検出するステップと、
前記蓄電池の休止状態における前記端子電圧の時系列データを取得するステップと、
蓄電池モデルを提供するステップであって、該蓄電池モデルは、前記蓄電池のOCVを表現するOCV項、および前記蓄電池の電極を構成する粒子間のイオン拡散を表現する1次元の拡散方程式の基本解に基づく粒子間拡散項を含む、蓄電池モデルを提供するステップと、
前記端子電圧の時系列データと、前記蓄電池モデルとに基づいて、前記蓄電池モデルのモデルパラメータを推定するステップと
を含む、蓄電池の特性推定方法。 - 前記粒子間拡散項は、時間移動パラメータをさらに含む、請求項5に記載の特性推定方法。
- 前記蓄電池モデルは、前記蓄電池の電極を構成する粒子内のイオン拡散を表現する、3次元の拡散方程式の基本解に基づく粒子内拡散項をさらに含む、請求項5または6に記載の特性推定方法。
- 前記蓄電池モデルは、電池等価回路に基づく項をさらに含む、請求項5~7のいずれか一項に記載の特性推定方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019007176.9T DE112019007176T5 (de) | 2019-04-11 | 2019-04-11 | Kennlinien-schätzeinrichtung für speicherbatterie und kennlinien-schätzverfahren für speicherbatterie |
PCT/JP2019/015727 WO2020208762A1 (ja) | 2019-04-11 | 2019-04-11 | 蓄電池の特性推定装置および特性推定方法 |
JP2021513102A JP7069412B2 (ja) | 2019-04-11 | 2019-04-11 | 蓄電池の特性推定装置および特性推定方法 |
CN201980095069.8A CN113661399B (zh) | 2019-04-11 | 2019-04-11 | 蓄电池的特性推测装置以及特性推测方法 |
US17/431,430 US12072383B2 (en) | 2019-04-11 | 2019-04-11 | Characteristic estimation device for storage battery and characteristic estimation method for storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/015727 WO2020208762A1 (ja) | 2019-04-11 | 2019-04-11 | 蓄電池の特性推定装置および特性推定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020208762A1 true WO2020208762A1 (ja) | 2020-10-15 |
Family
ID=72751219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015727 WO2020208762A1 (ja) | 2019-04-11 | 2019-04-11 | 蓄電池の特性推定装置および特性推定方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12072383B2 (ja) |
JP (1) | JP7069412B2 (ja) |
CN (1) | CN113661399B (ja) |
DE (1) | DE112019007176T5 (ja) |
WO (1) | WO2020208762A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022149890A1 (ko) * | 2021-01-08 | 2022-07-14 | 주식회사 엘지에너지솔루션 | 배터리 진단 장치, 배터리 시스템 및 배터리 진단 방법 |
WO2022254900A1 (ja) * | 2021-06-02 | 2022-12-08 | 株式会社日立製作所 | 状態判定装置、二次電池システム及び状態判定方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010175484A (ja) * | 2009-01-31 | 2010-08-12 | Calsonic Kansei Corp | バッテリの内部抵抗成分推定方法及び充電容量推定方法 |
WO2011155017A1 (ja) * | 2010-06-07 | 2011-12-15 | 三菱電機株式会社 | 充電状態推定装置 |
JP2012154665A (ja) * | 2011-01-24 | 2012-08-16 | Toyota Central R&D Labs Inc | 二次電池のシミュレーション装置 |
US20170259689A1 (en) * | 2016-03-09 | 2017-09-14 | Ford Global Technologies, Llc | Battery State of Charge Estimation Based on Reduced Order Electrochemical Models |
WO2018001461A1 (en) * | 2016-06-28 | 2018-01-04 | Bayerische Motoren Werke Aktiengesellschaft | Method and device for estimating a voltage of a battery |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002330924A1 (en) * | 2001-07-27 | 2003-02-17 | A 123 Systems | Battery structures, self-organizing structures and related methods |
JP4015128B2 (ja) | 2003-07-09 | 2007-11-28 | 古河電気工業株式会社 | 充電率推定方法、充電率推定装置、電池システム及び車両用電池システム |
WO2006129802A1 (ja) * | 2005-06-03 | 2006-12-07 | The Furukawa Electric Co., Ltd. | 充電率/残存容量推定方法、電池の状態検知センサ及び電池電源システム |
JP4703593B2 (ja) * | 2007-03-23 | 2011-06-15 | 株式会社豊田中央研究所 | 二次電池の状態推定装置 |
JP4872743B2 (ja) | 2007-03-23 | 2012-02-08 | トヨタ自動車株式会社 | 二次電池の状態推定装置 |
US8754611B2 (en) * | 2008-04-11 | 2014-06-17 | Apple Inc. | Diffusion-limited adaptive battery charging |
JP5737106B2 (ja) * | 2011-09-26 | 2015-06-17 | トヨタ自動車株式会社 | 二次電池の状態推定装置 |
US9377512B2 (en) * | 2013-05-08 | 2016-06-28 | GM Global Technology Operations LLC | Battery state estimator combining electrochemical solid-state concentration model with empirical equivalent-circuit model |
JP6277864B2 (ja) * | 2014-05-26 | 2018-02-14 | 株式会社デンソー | 電池内部状態推定装置 |
JP6256765B2 (ja) * | 2014-09-10 | 2018-01-10 | トヨタ自動車株式会社 | 充電状態推定方法 |
JP6409721B2 (ja) * | 2014-10-09 | 2018-10-24 | 株式会社デンソー | 電池状態推定装置 |
CN104899439B (zh) * | 2015-06-02 | 2019-05-03 | 吉林大学 | 一种锂离子电池机理建模方法 |
CN105223508A (zh) * | 2015-07-14 | 2016-01-06 | 上海空间电源研究所 | 锂离子电池内部性能状态无损检测方法 |
CN105891724B (zh) * | 2016-05-05 | 2019-05-28 | 南京航空航天大学 | 基于扩展单粒子模型的锂离子电池荷电状态在线估计方法 |
CN106093778B (zh) * | 2016-05-30 | 2018-12-04 | 浙江南都电源动力股份有限公司 | 电池状态预测方法及系统 |
JP6490882B1 (ja) * | 2018-04-17 | 2019-03-27 | 三菱電機株式会社 | 蓄電池診断装置および蓄電池診断方法、並びに蓄電池制御システム |
US20230014689A1 (en) * | 2020-03-10 | 2023-01-19 | Mitsubishi Electric Corporation | Deterioration degree diagnosis device |
-
2019
- 2019-04-11 JP JP2021513102A patent/JP7069412B2/ja active Active
- 2019-04-11 WO PCT/JP2019/015727 patent/WO2020208762A1/ja active Application Filing
- 2019-04-11 DE DE112019007176.9T patent/DE112019007176T5/de active Pending
- 2019-04-11 CN CN201980095069.8A patent/CN113661399B/zh active Active
- 2019-04-11 US US17/431,430 patent/US12072383B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010175484A (ja) * | 2009-01-31 | 2010-08-12 | Calsonic Kansei Corp | バッテリの内部抵抗成分推定方法及び充電容量推定方法 |
WO2011155017A1 (ja) * | 2010-06-07 | 2011-12-15 | 三菱電機株式会社 | 充電状態推定装置 |
JP2012154665A (ja) * | 2011-01-24 | 2012-08-16 | Toyota Central R&D Labs Inc | 二次電池のシミュレーション装置 |
US20170259689A1 (en) * | 2016-03-09 | 2017-09-14 | Ford Global Technologies, Llc | Battery State of Charge Estimation Based on Reduced Order Electrochemical Models |
WO2018001461A1 (en) * | 2016-06-28 | 2018-01-04 | Bayerische Motoren Werke Aktiengesellschaft | Method and device for estimating a voltage of a battery |
Non-Patent Citations (2)
Title |
---|
NAKAO, TAKETOSHI ET AL.: "Secondary Battery Motion Simulation", MATSUSHITA TECHNICAL JOURNAL, vol. 44, no. 4, 3 August 1998 (1998-08-03), pages 66 - 70 * |
WADA, TOSHIHIRO ET AL.: "Mass Transfer Process Modeling and Equivalent Circuit Parameter Determination", ABSTRACTS OF THE 54TH BATTERY SYMPOSIUM IN JAPAN, 6 October 2013 (2013-10-06), pages 426 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022149890A1 (ko) * | 2021-01-08 | 2022-07-14 | 주식회사 엘지에너지솔루션 | 배터리 진단 장치, 배터리 시스템 및 배터리 진단 방법 |
WO2022254900A1 (ja) * | 2021-06-02 | 2022-12-08 | 株式会社日立製作所 | 状態判定装置、二次電池システム及び状態判定方法 |
Also Published As
Publication number | Publication date |
---|---|
US20220155375A1 (en) | 2022-05-19 |
DE112019007176T5 (de) | 2021-12-30 |
US12072383B2 (en) | 2024-08-27 |
CN113661399B (zh) | 2024-04-19 |
CN113661399A (zh) | 2021-11-16 |
JPWO2020208762A1 (ja) | 2021-10-28 |
JP7069412B2 (ja) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression | |
Lai et al. | Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter | |
Li et al. | State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression | |
Wang et al. | Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression | |
CN107690585B (zh) | 用于确定锂硫电池组的健康状况和充电状态的方法和装置 | |
KR102258833B1 (ko) | 리튬 이온 배터리 셀의 퇴화 정보를 획득하는 장치 | |
US9077182B2 (en) | Method for estimating state of charge for lithium-ion batteries | |
KR102156404B1 (ko) | 배터리 셀 성능 테스트 장치 및 방법 | |
WO2017143830A1 (zh) | 检测电池健康状态的方法、装置和电池管理系统 | |
CN111954823A (zh) | 蓄电池诊断装置及蓄电池诊断方法以及蓄电池控制系统 | |
KR20220163736A (ko) | 리튬이온 배터리팩의 비정상 셀 검출 및 soh 예측 방법 | |
Xiong et al. | Early prediction of lithium-ion battery cycle life based on voltage-capacity discharge curves | |
JP2008522152A (ja) | バッテリーの状態及びパラメーターの推定システム及び方法 | |
Wei et al. | Lyapunov-based state of charge diagnosis and health prognosis for lithium-ion batteries | |
JP7069412B2 (ja) | 蓄電池の特性推定装置および特性推定方法 | |
KR20220029109A (ko) | 배터리 상태 추정 방법 및 장치 | |
US20230417834A1 (en) | Method, system and storage medium for solid-phase concentration correction of lithium batteries | |
CN114814618A (zh) | 锂离子电池剩余容量估算方法、装置、设备和存储介质 | |
CN114089193A (zh) | 电池的温度和负极电位在线估计方法、装置和计算机设备 | |
CN117169730A (zh) | 车用电池组连续变脉宽电流激励的健康度快速检测方法 | |
KR101160541B1 (ko) | 전지 잔여용량 예측방법 | |
US20240369639A1 (en) | Method and apparatus for estimating state of battery | |
Jokar et al. | An on-line electrochemical parameter estimation study of lithium-ion batteries using neural networks | |
Li et al. | State of health estimation for lithium-ion battery by combining incremental capacity analysis with gaussian process regression | |
EP4231026A1 (en) | Battery management device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19924344 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021513102 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19924344 Country of ref document: EP Kind code of ref document: A1 |