WO2020208718A1 - 電極、電極群、電池、及び電池パック - Google Patents

電極、電極群、電池、及び電池パック Download PDF

Info

Publication number
WO2020208718A1
WO2020208718A1 PCT/JP2019/015502 JP2019015502W WO2020208718A1 WO 2020208718 A1 WO2020208718 A1 WO 2020208718A1 JP 2019015502 W JP2019015502 W JP 2019015502W WO 2020208718 A1 WO2020208718 A1 WO 2020208718A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
containing layer
electrode
battery
composite oxide
Prior art date
Application number
PCT/JP2019/015502
Other languages
English (en)
French (fr)
Inventor
圭吾 保科
大 山本
哲郎 鹿野
政典 田中
祐輝 渡邉
信保 根岸
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP19924181.1A priority Critical patent/EP3955336B1/en
Priority to PCT/JP2019/015502 priority patent/WO2020208718A1/ja
Priority to JP2021513071A priority patent/JP7247326B2/ja
Publication of WO2020208718A1 publication Critical patent/WO2020208718A1/ja
Priority to US17/474,532 priority patent/US20210408540A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to electrodes, electrode groups, batteries, and battery packs.
  • non-aqueous electrolyte battery lithium ions move between the negative electrode and the positive electrode to charge and discharge the battery.
  • Such non-aqueous electrolyte batteries are being actively researched as high energy density batteries.
  • non-aqueous electrolyte batteries are expected to be used not only as a power source for small electronic devices, but also as a medium-sized to large-sized power source for in-vehicle applications and stationary applications.
  • non-aqueous electrolyte batteries are required to exhibit excellent life characteristics and high safety. Further, in medium to large applications, the non-aqueous electrolyte battery is also required to exhibit excellent input / output characteristics.
  • Motoji Jimbo et al . "Particle Handbook”, First Edition, Asakura Shoten, September 1, 1991, p. 151-152 Hayakawa Sohachiro ed .: “Powder Physical Property Measurement Method”, First Edition, Asakura Shoten, October 15, 1973, p. 257-259
  • an electrode capable of realizing a battery capable of exhibiting excellent input / output characteristics and excellent life performance, an electrode group provided with this electrode group, a battery provided with this electrode group, and a battery pack provided with this battery. The purpose.
  • the electrode includes a current collector and an active material-containing layer formed on the current collector.
  • the active material-containing layer contains a lithium nickel cobalt manganese composite oxide and a lithium cobalt composite oxide.
  • the pore size distribution of the active material-containing layer by the mercury intrusion method is the first peak top showing the strongest strength I 1 within the pore size range of 0.1 ⁇ m or more and 1 ⁇ m or less, and the pore diameter of 0.1 ⁇ m or more and 1 ⁇ m or less. It has a second peak top showing the next highest intensity I 2 after the highest intensity I 1 within the range of.
  • the pore diameter of the first peak top is smaller than the pore diameter of the second peak top.
  • Equation (1) 0.15 ⁇ I 2 / I 1 ⁇ 0.40; Equation (2): 0.31 ⁇ X 1 / (X 1 + X 2 + X 3 ) ⁇ 0.55; Equation (3): 0.7 ⁇ T 2 / T 1 ⁇ 1.6
  • X 1 , X 2 and X 3 are the contents [mol%] of Co, Ni and Mn in the active material-containing layer, respectively.
  • T 1 is the thickness [ ⁇ m] of the current collector.
  • T 2 is the thickness [ ⁇ m] of the active material-containing layer.
  • a group of electrodes includes a positive electrode and a negative electrode.
  • the positive electrode includes a positive electrode active material-containing layer.
  • the negative electrode includes a negative electrode active material-containing layer.
  • the positive electrode is the electrode according to the first embodiment.
  • the positive electrode active material-containing layer is an active material-containing layer included in the electrode according to the first embodiment.
  • the battery includes an electrode group according to the second embodiment and an electrolyte.
  • a battery pack comprises the battery according to the third embodiment.
  • FIG. 1 shows the pore size distribution of the active material-containing layer included in the electrode of the first embodiment and the pore size distribution of the active material-containing layer included in the electrode of the reference example.
  • FIG. 2 is a schematic plan view of an example electrode according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the electrode shown in FIG. 2 along lines III-III'.
  • FIG. 4 is a schematic cross-sectional view of an example electrode group according to the second embodiment.
  • FIG. 5 is an enlarged cross-sectional view of part A of the electrode group shown in FIG.
  • FIG. 6 is a schematic plan view of a negative electrode included in the electrode group shown in FIGS. 4 and 5.
  • FIG. 7 is a schematic cross-sectional view of an example battery according to the third embodiment.
  • FIG. 1 shows the pore size distribution of the active material-containing layer included in the electrode of the first embodiment and the pore size distribution of the active material-containing layer included in the electrode of the reference example.
  • FIG. 2 is
  • FIG. 8 is a schematic cross-sectional view of a battery of another example according to the third embodiment.
  • FIG. 9 is an enlarged cross-sectional view of a portion B of the battery of FIG.
  • FIG. 10 is a schematic exploded perspective view of an example battery pack according to the fourth embodiment.
  • FIG. 11 is a block diagram showing an electric circuit of the battery pack of FIG.
  • each figure is a schematic view for explaining the embodiment and promoting its understanding, and there are some differences in its shape, dimensions, ratio, etc. from the actual device, but these are described below and known techniques. The design can be changed as appropriate by taking into consideration.
  • the electrode includes a current collector and an active material-containing layer formed on the current collector.
  • the active material-containing layer contains a lithium nickel cobalt manganese composite oxide and a lithium cobalt composite oxide.
  • the pore size distribution of the active material-containing layer by the mercury intrusion method is the first peak top showing the strongest strength I 1 within the pore size range of 0.1 ⁇ m or more and 1 ⁇ m or less, and the pore diameter of 0.1 ⁇ m or more and 1 ⁇ m or less. It has a second peak top showing the next highest intensity I 2 after the highest intensity I 1 within the range of.
  • the pore diameter of the first peak top is smaller than the pore diameter of the second peak top.
  • Equation (1) 0.15 ⁇ I 2 / I 1 ⁇ 0.40; Equation (2): 0.31 ⁇ X 1 / (X 1 + X 2 + X 3 ) ⁇ 0.55; Equation (3): 0.7 ⁇ T 2 / T 1 ⁇ 1.6
  • X 1 , X 2 and X 3 are the contents [mol%] of Co, Ni and Mn in the active material-containing layer, respectively.
  • T 1 is the thickness [ ⁇ m] of the current collector.
  • T 2 is the thickness [ ⁇ m] of the active material-containing layer.
  • a large current characteristic can be mentioned.
  • the large current characteristics of a battery are greatly affected by, for example, the physical properties of an electrolyte (for example, an electrolytic solution) and a separator.
  • the most important factor that determines the large current characteristics of the battery is considered to be the positive electrode and the negative electrode. Above all, it is considered that the characteristics of the positive electrode have a large influence.
  • the present inventors have implemented this measure for electrodes containing an active material containing a lithium nickel cobalt manganese composite oxide and a lithium cobalt composite oxide.
  • Such measures may promote the decomposition of the electrolyte. Therefore, it has been found that it is difficult to achieve both large current characteristics and longevity characteristics with such measures.
  • the pore size distribution of the active material-containing layer of the electrode according to the first embodiment by the mercury intrusion method includes the first peak top showing the highest strength I 1 within the range of the pore size of 0.1 ⁇ m or more and 1 ⁇ m or less. It has a second peak top showing the next largest intensity I 2 after the maximum intensity I 1 within the range of the pore diameter of 0.1 ⁇ m or more and 1 ⁇ m or less. Pore size of the first peak top (highest intensity I 1) is smaller than the pore size of the second peak top (intensity I 2).
  • the pore size distribution of the active material-containing layer is larger than the pore size of the first peak top, which is the main peak, within the range of the pore size of 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the electrode satisfies the formula (1): 0.15 ⁇ I 2 / I 1 ⁇ 0.40.
  • the active material-containing layer exhibiting such a pore size distribution is sufficiently close to, for example, the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide contained in the active material containing layer. It is considered that a large amount of pores can be contained, and these pores can be connected and pores larger than these pores can be contained over the entire active material-containing layer.
  • the active material-containing layer of the electrode according to the first embodiment contains a charge carrier, for example, Li + , in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide in a state of being incorporated in the battery.
  • the electrolyte can be sufficiently distributed.
  • the battery including the electrodes according to the first embodiment it is possible to prevent the charge carriers from running short in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide due to charging and discharging.
  • the electrode satisfies the above formula (2) it is possible to prevent the non-uniform reaction from proceeding due to the lack of charge carriers.
  • the electrode satisfying the formula (3): 0.7 ⁇ T 2 / T 1 ⁇ 1.6 exhibits high conductivity over the entire active material-containing layer regardless of the distance from the current collector. Can be done. As a result, in the electrode of the invention according to the first embodiment, it is possible to prevent the electrode reaction from proceeding non-uniformly due to poor conductivity.
  • the electrode according to the first embodiment can prevent a local electrode reaction from occurring in the active material-containing layer.
  • the electrode according to the first embodiment can reduce the amount of lithium nickel cobalt manganese composite oxide and lithium cobalt composite oxide locally subjected to excessive charging or discharging in the active material-containing layer. ..
  • the electrode according to the first embodiment can prevent deterioration of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide due to charging and discharging, and can realize excellent life characteristics.
  • the electrode according to the first embodiment can prevent a local electrode reaction from occurring, the insertion and desorption of charge carriers by the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide are promoted. can do. Then, as described above, the electrode according to the first embodiment can exhibit high conductivity regardless of the distance from the current collector. Therefore, the electrode according to the first embodiment can realize excellent input / output characteristics.
  • the electrode according to the first embodiment can realize a battery capable of exhibiting excellent input / output characteristics and excellent life characteristics.
  • the current collector thickness T 1 [ ⁇ m] is too large relative to the active material-containing layer thickness T 2 [ ⁇ m]. In this case, the volumetric energy density becomes low.
  • the thickness T 1 of the current collector is too small with respect to the thickness T 2 [ ⁇ m] of the active material-containing layer. In the active material-containing layer of such an electrode, a gradient of conductivity is generated depending on the distance from the current collector, and as a result, the uniformity of conductivity of the active material-containing layer becomes poor.
  • the thickness ratio T 2 / T 1 is preferably 1.0 or more and 1.6 or less. Electrodes that satisfy the thickness ratio T 2 / T 1 within this range can exhibit better uniformity in conductivity in the active material-containing layer.
  • the thickness ratio T 2 / T 1 is more preferably 1.1 or more and 1.55 or less.
  • the pores connecting the pores existing in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide are sufficiently formed in the active material-containing layer. It is believed that it does not exist.
  • the electrode having an intensity ratio I 2 / I 1 larger than 0.40 the pores existing in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide are not sufficiently present in the active material-containing layer. it is conceivable that.
  • the intensity ratio I 2 / I 1 is preferably 0.18 or more and 0.38 or less.
  • a charge carrier can be more sufficiently present in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide.
  • the intensity ratio I 2 / I 1 is more preferably 0.20 or more and 0.35 or less.
  • the pore diameter of the first peak top is equal to or larger than the pore diameter of the second peak top
  • pores existing in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide are present in the active material-containing layer. Probably not enough.
  • the charge carrier becomes insufficient in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide as the battery is charged and discharged. Therefore, such an electrode cannot realize excellent life characteristics.
  • the electrodes according to the first embodiment can be used in a battery.
  • the electrode according to the first embodiment can be used as, for example, a positive electrode in a battery.
  • the battery can be, for example, a secondary battery that can be repeatedly charged and discharged.
  • An example of a secondary battery is a non-aqueous electrolyte battery.
  • a non-aqueous electrolyte battery contains a non-aqueous electrolyte, and a non-aqueous electrolyte contains an electrolyte.
  • a battery containing an electrolytic solution containing an aqueous solvent and an electrolyte dissolved in the aqueous solvent can be mentioned.
  • the electrode according to the first embodiment includes a current collector and an active material-containing layer formed on the current collector.
  • the current collector can have, for example, a strip-shaped planar shape.
  • the band-shaped current collector can have a pair of long sides and a pair of short sides.
  • the pair of long sides may or may not be parallel.
  • the pair of short sides may or may not be parallel.
  • the current collector can have, for example, a first surface and a second surface as the opposite surface of the first surface.
  • the thickness T 1 [ ⁇ m] of the current collector is, for example, the distance between the first surface and the second surface.
  • the thickness T 1 of the current collector is within the range of 10 ⁇ m or more and 25 ⁇ m or less, and the length T 3 of the pair of short sides of the current collector is within the range of 20 mm or more and 100 mm or less.
  • the active material-containing layer can exhibit more uniform conductivity.
  • the thickness T 1 of the current collector is more preferably in the range of 12 ⁇ m or more and 20 ⁇ m or less.
  • the length T 3 of the pair of short sides of the current collector is more preferably in the range of 50 mm or more and 95 mm or less.
  • the current collector is preferably, for example, an aluminum foil or an aluminum alloy foil containing at least one element selected from Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the active material-containing layer can be formed on one surface of the current collector or on both surfaces.
  • the active material-containing layer may be formed on either the first surface or the second surface of the current collector, or both the first surface and the second surface of the current collector. May be formed in.
  • the current collector may include a portion that does not support the active material-containing layer. This portion can be used, for example, as a current collecting tab.
  • the electrode according to the first embodiment may include a current collector tab separate from the current collector.
  • the active material-containing layer can have, for example, a strip-shaped planar shape.
  • the strip-shaped active material-containing layer can have a pair of long sides and a pair of short sides.
  • the pair of long sides may or may not be parallel.
  • the pair of short sides may or may not be parallel.
  • the thickness T 2 of the active material-containing layer is preferably in the range of 12 ⁇ m or more and 40 ⁇ m or less, and more preferably in the range of 15 ⁇ m or more and 35 ⁇ m or less.
  • the thickness T 2 of the active material-containing layer is the average of the thicknesses of the two active material-containing layers.
  • the length T 4 of the pair of short sides of the active material-containing layer is preferably in the range of 20 mm or more and 90 mm or less.
  • the length T 4 of the pair of short sides of the active material-containing layer is more preferably in the range of 45 mm or more and 85 mm or less.
  • the thickness T 1 of the current collector is within the range of 10 ⁇ m or more and 25 ⁇ m or less, and the length T 4 of the pair of short sides of the active material-containing layer is within the range of 20 mm or more and 90 mm or less. ..
  • the electrode of such an embodiment can make the progress of the electrode reaction in the active material-containing layer more uniform.
  • the active material-containing layer contains a lithium nickel cobalt manganese composite oxide and a lithium cobalt composite oxide.
  • Lithium-nickel-cobalt-manganese composite oxide for example, can have a composition represented by the general formula Li x Ni a Co b Mn c M1 d O 2.
  • the ratio Y 2 / Y 1 of the lithium nickel cobalt manganese composite oxide is preferably 1 or more.
  • Y 1 is the Co content [mol%] in the lithium nickel cobalt manganese composite oxide
  • Y 2 is the Ni content [mol%] in the lithium nickel cobalt manganese composite oxide.
  • the ratio Y 2 / Y 1 corresponds to the ratio a / b for the above general formula.
  • Such a lithium nickel cobalt manganese composite oxide can realize excellent energy density in addition to excellent input / output characteristics and excellent life characteristics.
  • the ratio Y 2 / Y 1 is more preferably 1.2 or more and 5.0 or less, and particularly preferably 1.5 or more and 3.0 or less.
  • the lithium nickel-cobalt-manganese composite oxide is preferably in the form of secondary particles in which primary particles are aggregated. That is, the active material-containing layer preferably contains secondary particles of the lithium nickel-cobalt-manganese composite oxide. Alternatively, the active material-containing layer may contain primary particles of the lithium nickel-cobalt-manganese composite oxide, or may contain a mixture of the primary particles and the secondary particles.
  • the lithium cobalt composite oxide can have, for example, a composition represented by the general formula Li y Co e M2 f O 2 .
  • 0.9 ⁇ y ⁇ 1.2, 0.9 ⁇ e ⁇ 1, 0 ⁇ f ⁇ 0.1, e + f 1, and M2 is a group consisting of Mg, Al, Ti, Zr and W. At least one selected from the above.
  • the lithium cobalt composite oxide is preferably in the form of primary particles. That is, the active material-containing layer preferably contains primary particles of the lithium cobalt composite oxide. Alternatively, the active material-containing layer may contain secondary particles of the lithium cobalt composite oxide, or may contain a mixture of primary particles and secondary particles.
  • the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide can act as active materials in the active material-containing layer.
  • the lithium nickel cobalt manganese composite oxide can be called the first active material
  • the lithium cobalt composite oxide can be called the second active material.
  • the active material-containing layer may further contain a third active material, which is different from the first and second active materials.
  • Examples of the third active material include lithium manganese composite oxide (for example, Li u Mn 2 O 4 or Li u MnO 2 ), lithium nickel composite oxide (for example, Li u NiO 2 ), and lithium nickel cobalt composite oxidation.
  • objects e.g., Li u Ni 1-g Co g O 2), lithium manganese cobalt composite oxide (e.g., Li u Mn h Co 1- h O 2), lithium-nickel-cobalt-aluminum composite oxide (e.g., Li u Ni 1-ij Co i Al j O 2), lithium manganese nickel complex oxide having a spinel structure (e.g., Li u Mn 2-k Ni k O 4) are included.
  • these composite oxides can occlude and release Li.
  • the third active material one of these composite oxides may be used alone, or a mixture of two or more kinds may be used.
  • lithium manganese composite oxide Li u Mn 2 O 4
  • lithium nickel cobalt composite oxide Li u Ni 1-g Co g O 2
  • lithium manganese cobalt composite oxide Li u Mn h Co 1) -h O 2
  • the ratio of the mass of the third active material to the total mass of the first, second and third active materials is preferably 0% by mass or more and 10% by mass or less. It is more preferable that the active material does not contain the third active material.
  • the active material-containing layer can further contain a conductive agent and a binder.
  • the conductive agent can enhance the current collecting performance in the active material-containing layer. Further, the conductive agent can have an effect of suppressing the contact resistance between the active material and the current collector.
  • Examples of conductive agents include carbon blacks such as acetylene black, graphite, carbon nanofibers, and carbonaceous materials such as carbon nanotubes. These carbonaceous substances may be used alone or a plurality of carbonaceous substances may be used as the conductive agent.
  • the binder can bind the active material and the conductive agent to the current collector.
  • binders include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyacrylic acid, polyacrylonitrile, fluororubbers and the like.
  • the active material total amount of lithium nickel cobalt manganese composite oxide and lithium cobalt composite oxide (if the third active material is contained, the mass of the third active material is further included)
  • the conductive agent and the binder are It is preferable to mix in a ratio of 80% by mass or more and 95% by mass or less, 3% by mass or more and 18% by mass or less, and 2% by mass or more and 17% by mass or less, respectively.
  • the above-mentioned effect can be exhibited by adjusting the amount of the conductive agent to 3% by mass or more.
  • Sufficient electrode strength can be obtained by adjusting the amount of the binder to 2% by mass or more. By adjusting the amount of the binder to 17% by mass or less, the blending amount of the binder as an insulating material in the active material-containing layer can be reduced, and the internal resistance can be reduced.
  • the electrode according to the first embodiment satisfies the formula (2): 0.31 ⁇ X 1 / (X 1 + X 2 + X 3 ) ⁇ 0.55.
  • X 1 , X 2 and X 3 are the contents [mol%] of Co, Ni and Mn in the active material-containing layer, respectively.
  • An electrode satisfying the formula (2) can realize better life characteristics and better input / output characteristics.
  • the content of Co, Ni and Mn in the active material-containing layer preferably satisfies 0.33 ⁇ X 1 / (X 1 + X 2 + X 3 ) ⁇ 0.5, and 0.35 ⁇ X 1 / (X 1). It is more preferable to satisfy + X 2 + X 3 ) ⁇ 0.45.
  • the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide can be contained in a mass ratio in the range of 80:20 to 96: 4. ..
  • the electrode according to the first embodiment can satisfy the above equations (2) and (4): 4 ⁇ Z 1 / Z 2 ⁇ 24.
  • Z 1 is the ratio of the mass of the lithium nickel cobalt manganese composite oxide to the mass of the active material [mass%]
  • Z 2 is the ratio of the mass of the lithium cobalt composite oxide to the mass of the active material [mass]. Ratio].
  • the mass ratio Z 1 / Z 2 is preferably 5 or more and 12 or less, and more preferably 5.5 or more and 9 or less.
  • the electrode according to the first embodiment can be produced, for example, by the following procedure.
  • secondary particles of the lithium nickel cobalt manganese composite oxide and primary particles of the lithium cobalt composite oxide are prepared. At this time, care should be taken so that the contents of Ni, Co and Mn satisfy the formula (2): 0.31 ⁇ X 1 / (X 1 + X 2 + X 3 ) ⁇ 0.5.
  • the active material, the conductive agent, and the binder are put into a solvent and kneaded so as to have a blending ratio described above, for example, to prepare a slurry.
  • a dispersion process is performed so that a high shearing force is applied.
  • the secondary particles of the lithium nickel-cobalt-manganese composite oxide are unraveled to generate primary particles, which can fill the gaps between the particles of the particle mixture.
  • the high shear dispersion process include dispersion methods such as a thin film swirl type high-speed mixer and a bead mill. An example of specific conditions is shown in the subsequent examples.
  • the slurry obtained as described above is applied to both sides or one side of the current collector to dry the coating film.
  • press processing is performed.
  • the press conditions are prepared so as to satisfy the formula (3): 0.7 ⁇ T 2 / T 1 ⁇ 1.6.
  • the press conditions are determined in consideration of the slurry preparation conditions. An example of specific conditions is shown in the subsequent examples.
  • an electrode as a measurement target is prepared.
  • the electrodes contained in the battery are prepared by pretreatment according to the following procedure.
  • the battery is discharged.
  • the discharge state here means a state in which a constant current discharge is performed up to the discharge lower limit voltage at a current value of 0.2 C or less in an environment of 25 ° C.
  • the discharged battery is placed in a glove box filled with argon gas.
  • the target electrode is taken out from the battery in the glove box.
  • the removed electrode is washed with a chain carbonate such as ethyl methyl carbonate.
  • the electrodes are then dried. Thus, the electrode to be measured can be obtained.
  • the obtained sample is charged into the measuring device.
  • the mercury intrusion method By performing the mercury intrusion method on the charged sample, the pore size distribution for the active material-containing layer can be obtained.
  • Shimadzu Autopore 9520 (Autopore 9520 model manufactured by Shimadzu Corporation) is used as the measuring device.
  • the sample obtained as described above is folded and taken in a measurement cell, and the initial pressure of 20 kPa (the initial pressure of 20 kPa corresponds to about 3 pisa and corresponds to the pressure applied to the sample having a pore diameter of about 60 ⁇ m) and the maximum pressure.
  • the measurement is performed under the condition of 414 Mpa (the maximum pressure of 414 Mpa corresponds to about 59986 pia and corresponds to the pressure applied to the sample having a pore diameter of about 0.003 ⁇ m).
  • the average value of the three samples is used as the measurement result.
  • the pore specific surface area is calculated by assuming that the shape of the pore is a cylinder.
  • D -4 ⁇ cos ⁇ / P (1) Equation
  • P is the applied pressure
  • D is the pore diameter
  • is the surface tension of mercury (480dyne ⁇ cm -1 )
  • is the contact angle between mercury and the wall surface of the pores, which is 140. °. Since ⁇ and ⁇ are constants, the relationship between the applied pressure P and the pore diameter D can be obtained from the Washburn equation, and the pore diameter and its volume distribution can be derived by measuring the mercury infiltration volume at that time. Can be done. For details of the measurement method and principle, refer to Non-Patent Document 1 and Non-Patent Document 2.
  • the pore size corresponding to the first peak top showing the maximum intensity I 1 within the range of the pore size of 0.1 ⁇ m or more and 1 ⁇ m or less and the pore diameter of 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the intensity ratio I 2 / I 1 can be calculated from the maximum intensity I 1 and the intensity I 2 .
  • the other part of the electrode to be measured prepared as described above is placed in a suitable solvent and irradiated with ultrasonic waves.
  • the active material-containing layer can be peeled off from the current collector by putting the electrode body in ethyl methyl carbonate put in a glass beaker and vibrating it in an ultrasonic cleaner.
  • vacuum drying is performed to dry the peeled active material-containing layer.
  • a powder containing the components of the active material-containing layer for example, an active material, a conductive agent, and a setting agent can be obtained.
  • a liquid sample containing the components of the active material-containing layer can be prepared.
  • hydrochloric acid, nitric acid, sulfuric acid, hydrogen fluoride and the like can be used as the acid.
  • concentration of each element contained in the active material-containing layer can be known.
  • the Co content X 1 [mol%], the Ni content X 2 [mol%], and the Mn content X 3 [mol%] in the active material-containing layer can be calculated.
  • the selected particles are selected so that the particle size distribution is as wide as possible.
  • EDX energy dispersive X-ray spectroscopy
  • the crystal structure of the compound contained in each particle selected by SEM can be specified by X-ray diffraction (XRD) measurement.
  • a powder X-ray diffraction measurement device As a powder X-ray diffraction measurement device, a Smart Lab manufactured by Rigaku Co., Ltd. is used. The measurement conditions are as follows: Cu target; 45 kV 200 mA; solar slit: 5 ° for both incident and received light; step width: 0.02 deg; scan speed: 20 deg / min; semiconductor detector: D / teX Ultra 250; sample Plate holder: Flat glass sample plate holder (thickness 0.5 mm); Measurement range: 10 ° ⁇ 2 ⁇ ⁇ 90 °. When using other equipment, measure according to the following procedure.
  • the XRD measurement of the electrode can be performed by cutting out the electrode to be measured to the same extent as the area of the holder of the wide-angle X-ray diffractometer and directly attaching it to the glass holder for measurement.
  • the XRD pattern is measured in advance according to the type of the metal foil of the current collector, and the position where the peak derived from the current collector appears is grasped.
  • the presence or absence of peaks of the mixture such as the conductive agent and the binder should be grasped in advance.
  • the electrodes may be physically peeled off, but they are easily peeled off when ultrasonic waves are applied in a solvent. By measuring the electrodes recovered in this way, wide-angle X-ray diffraction measurement of the active material can be performed.
  • the compounds contained in the electrode can be identified.
  • the composition and crystal structure can be specified.
  • the size of the primary particle is calculated from the diameter of the smallest circle corresponding to the primary particle. Specifically, the particle size is measured 10 times in an SEM image at a magnification of 3000 times, and the average diameter of the smallest circles obtained in each is taken as the primary particle size. Of the 10 measurements, the maximum and minimum particle sizes are not used to calculate the average.
  • the secondary particle size is also measured by the same method as for the primary particles. That is, the diameter of the smallest circle corresponding to the secondary particles is obtained. Specifically, the particle size is measured 10 times in an SEM image at a magnification of 3000 times, and the average diameter of the smallest circles obtained in each is taken as the secondary particle size. Of the 10 measurements, the maximum and minimum particle sizes are not used to calculate the average.
  • the thickness T 1 of the current collector included in the electrode and the thickness T 2 of the active material-containing layer are measured using a film thickness meter.
  • a film thickness meter a film having a function of being able to apply a load of 15 g or more and 20 g or less per 1 cm 2 to the main surface of the object to be measured and a function of being able to measure the length under such a load.
  • Use a thickness gauge By using such a film thickness meter, it is possible to eliminate the floating and distortion of the electrodes and measure the thickness of each electrode.
  • the measurement is performed according to the following procedure. First, the thicknesses of five different electrodes to be measured are measured using a film thickness meter. The average value of the measurement results is defined as the electrode thickness T t [ ⁇ m].
  • the active material-containing layer is peeled off from the current collector of the electrode to be measured.
  • the active material-containing layer can be peeled off by applying ultrasonic waves in a solvent.
  • the current collector contained in the electrode can be obtained.
  • the thickness of five different current collectors is measured using a film thickness meter. Let the average value of the measurement results be the thickness T 1 [ ⁇ m] of the current collector.
  • the thickness T 1 of the current collector is subtracted from the thickness T t of the electrode.
  • the value thus obtained is defined as the thickness T 2 [ ⁇ m] of the active material-containing layer.
  • the quotient obtained by dividing the value thus obtained by 2 is defined as the thickness T 2 [ ⁇ m] of the active material-containing layer.
  • the length T 4 of the pair of short sides is calculated as the average value of the two values.
  • the length of the pair of long sides is calculated as the average value of the two values.
  • FIG. 1 shows the pore distribution (solid line) of the active material-containing layer included in the electrode of the example (first example) according to the first embodiment and the pores of the active material-containing layer included in the electrode of the reference example. The distribution (dotted line) is shown.
  • the active material-containing layer of the electrode of the first example showing the pore size distribution of the solid line in FIG. 1 contains a lithium nickel cobalt manganese composite oxide and a lithium cobalt composite oxide in a mass ratio of 90:10.
  • the thickness T 2 of the active material-containing layer of the electrode of the first example is 20 ⁇ m.
  • the active material-containing layer of the electrode of the reference example showing the distribution of the pore diameter of the dotted line has the same composition as that of the active material-containing layer of the electrode of the first example.
  • the thickness T 2 of the active material-containing layer of the electrode of the reference example is about twice the thickness T 2 of the active material-containing layer of the electrode of the first example, and is 40 ⁇ m.
  • the thickness T 1 of the current collector is 15 ⁇ m.
  • the electrode of the reference example is under the condition that the rotation speed of the bead mill is 1.5 times and the load in the pressing process is 1.4 times that of the electrode of the first example in the slurry dispersion step. Made. Further, the electrode of the reference example was produced by changing the coating amount of the slurry from that of the electrode of the first example.
  • the first peak top P 1 showing the strongest I 1 second largest intensity of the most intense I 1 I it is possible to confirm the second peak top P 2 indicating two.
  • the intensity ratio I 2 / I 1 of the pore size distribution shown by the solid line is 0.38.
  • it can be confirmed peak top P 1 'indicating the strongest I 1 large next most intense It is not possible to confirm the peak top indicating the intensity.
  • the battery incorporating the electrodes of the first example can exhibit superior input / output characteristics and excellent life characteristics as compared with the battery incorporating the electrodes of the reference example. This is because the electrode of the first example can prevent deterioration of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide due to charging and discharging for the reason described above, and exhibits high conductivity. It is thought that this is because it can be done.
  • the electrode of the reference example although the active material-containing layer contains pores in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide, these pores are connected and from these pores. It is considered that the large pores are not contained in the entire active material-containing layer. Therefore, in the battery provided with the electrodes of the reference example, it is considered that the charge carriers are insufficient in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide as the battery is charged and discharged.
  • FIG. 2 is a schematic plan view of an example electrode according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the electrode shown in FIG. 2 along lines III-III'.
  • the electrode 4 shown in FIGS. 2 and 3 includes a current collector 4a and an active material-containing layer 4b formed on the surfaces of both the current collector 4a.
  • the current collector 4a has a strip shape having a pair of long sides 4a-1 extending in the left-right direction of FIG. 2 and a pair of short sides 4a-2.
  • the pair of short sides 4a-2 of the current collector 4a have a length T 3 [mm].
  • FIG. 2 since the pair of short sides 4a-2 are hidden behind the active material-containing layer 4b, reference numerals are shown in parentheses.
  • the active material-containing layer 4b has a strip shape having a pair of long sides 4b-1 extending in the left-right direction of FIG. 2 and a pair of short sides 4b-2.
  • the pair of short sides 4b-2 of the active material-containing layer 4b have a length T 4 [mm].
  • the current collector 4a includes two portions 4c that do not support an active material-containing layer on the surface. Each of these parts 4c can act as a current collecting tab. As shown in FIG. 2, each of the current collector tabs 4c extends along the direction in which each of the long side 4a-1 of the current collector 4a and the long side 4b-1 of the active material-containing layer 4b extends. There is. Further, each of the current collector tabs 4c includes one long side 4a-1 of the current collector 4a.
  • the current collector 4a has a thickness of T 1 [ ⁇ m]
  • the active material-containing layer 4b has a thickness of T 2 [ ⁇ m].
  • the electrode includes a current collector and an active material-containing layer formed on the current collector.
  • the active material-containing layer contains a lithium nickel cobalt manganese composite oxide and a lithium cobalt composite oxide.
  • the pore size distribution of the active material-containing layer by the mercury intrusion method is the first peak top showing the strongest strength I 1 within the pore size range of 0.1 ⁇ m or more and 1 ⁇ m or less, and the pore diameter of 0.1 ⁇ m or more and 1 ⁇ m or less. It has a second peak top showing the next highest intensity I 2 after the highest intensity I 1 within the range of.
  • the pore diameter of the first peak top is smaller than the pore diameter of the second peak top.
  • the electrodes satisfy the following equations (1) to (3): equation (1): 0.15 ⁇ I 2 / I 1 ⁇ 0.40; equation (2): 0.31 ⁇ X 1 / (X 1). + X 2 + X 3 ) ⁇ 0.55; Equation (3): 0.7 ⁇ T 2 / T 1 ⁇ 1.6.
  • equation (1) 0.15 ⁇ I 2 / I 1 ⁇ 0.40
  • equation (2) 0.31 ⁇ X 1 / (X 1). + X 2 + X 3 ) ⁇ 0.55
  • Equation (3) 0.7 ⁇ T 2 / T 1 ⁇ 1.6.
  • a group of electrodes is provided.
  • the electrode group includes a positive electrode and a negative electrode.
  • the positive electrode includes a positive electrode active material-containing layer.
  • the negative electrode includes a negative electrode active material-containing layer.
  • the positive electrode is the electrode according to the first embodiment.
  • the positive electrode active material-containing layer is an active material-containing layer included in the electrode according to the first embodiment.
  • the electrode group according to the second embodiment includes the electrodes according to the first embodiment, it is possible to realize a battery capable of exhibiting excellent input / output characteristics and excellent life characteristics.
  • the electrode group according to the second embodiment includes a positive electrode and a negative electrode.
  • the positive electrode is the electrode according to the first embodiment. Therefore, the positive electrode included in the electrode group according to the second embodiment includes the current collector and the active material-containing layer provided by the electrodes according to the first embodiment.
  • the current collector, the active material-containing layer, the current collecting tab, and the active material which can be provided by the electrode according to the first embodiment, are each a positive electrode current collector.
  • Positive electrode active material-containing layer, positive electrode current collecting tab, and positive electrode active material are each a positive electrode current collector.
  • Positive electrode active material-containing layer, positive electrode current collecting tab, and positive electrode active material for details on the positive electrode, refer to the description of the electrode according to the first embodiment.
  • the negative electrode can include, for example, a negative electrode current collector and a negative electrode active material-containing layer formed on the negative electrode current collector.
  • the negative electrode current collector can have, for example, a strip-shaped planar shape.
  • the band-shaped negative electrode current collector can have a pair of long sides and a pair of short sides. The pair of long sides may or may not be parallel. Similarly, the pair of short sides may or may not be parallel.
  • the thickness of the negative electrode current collector is preferably 10 ⁇ m or more and 25 ⁇ m or less, and more preferably 12 ⁇ m or more and 20 ⁇ m or less.
  • the length T 6 of the pair of short sides of the negative electrode current collector is preferably in the range of 20 mm or more and 100 mm or less.
  • the length T 6 of the pair of short sides of the negative electrode current collector is more preferably in the range of 50 mm or more and 95 mm or less.
  • the negative electrode current collector can have, for example, a first surface and a second surface as a surface opposite to the first surface.
  • the negative electrode current collector may support the negative electrode active material-containing layer on only one surface thereof, or may support the negative electrode active material-containing layer on both surfaces.
  • the negative electrode current collector may also include a portion that does not support a negative electrode active material-containing layer on the surface. This portion can serve, for example, as a negative electrode current collector tab.
  • the negative electrode may include a negative electrode current collector tab that is separate from the negative electrode current collector.
  • the negative electrode active material-containing layer can have, for example, a strip-shaped planar shape.
  • the negative electrode active material-containing layer can have a main surface having a strip-shaped planar shape.
  • the strip-shaped negative electrode active material-containing layer can have a pair of long sides and a pair of short sides. The pair of long sides may or may not be parallel. Similarly, the pair of short sides may or may not be parallel.
  • the thickness of the negative electrode active material-containing layer is preferably in the range of 12 ⁇ m or more and 35 ⁇ m or less, and more preferably in the range of 15 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the negative electrode active material-containing layer is the average of the thicknesses of the two active material-containing layers.
  • the length T 5 of the pair of short sides of the negative electrode active material-containing layer is preferably in the range of 20 mm or more and 95 mm or less.
  • the length T 5 of the pair of short sides of the active material-containing layer is more preferably in the range of 50 mm or more and 90 mm or less.
  • the electrode group according to the second embodiment may further include a separator.
  • the separator is located, for example, between the positive electrode active material-containing layer and the negative electrode active material-containing layer in the electrode group.
  • the separator can play a role in preventing contact between the positive electrode active material-containing layer and the negative electrode active material-containing layer, thereby preventing energization between them.
  • the electrode group can have various structures.
  • the electrode group can have a stack type structure.
  • the electrode group having a stack type structure can be obtained, for example, by laminating a plurality of positive electrodes and negative electrodes with a separator sandwiched between the positive electrode active material-containing layer and the negative electrode active material-containing layer.
  • the electrode group can have a wound structure.
  • the winding type electrode group for example, one separator, one positive electrode, another separator, and one negative electrode are laminated in this order to form a laminated body, and this laminated body is formed. It can be obtained by winding so that the negative electrode is on the outside.
  • the ratio Wc / Wa is preferably 1.25 or more and 1.75 or less.
  • Wc is the mass (g / m 2 ) per unit area of the positive electrode active material-containing layer.
  • Wa is the mass (g / m 2 ) per unit area of the negative electrode active material-containing layer.
  • the electrode group of this embodiment has excellent life characteristics.
  • the ratio Wc / Wa is more preferably 1.3 or more and 1.6 or less.
  • the electrode group according to the second embodiment preferably satisfies the formula (4): T 4 ⁇ T 5 .
  • T 4 is the length [mm] of the pair of short sides of the positive electrode active material-containing layer. That is, the length T 4 corresponds to the length T 4 described in the first embodiment.
  • T 5 is the length [mm] of the pair of short sides of the negative electrode active material-containing layer.
  • the width of the negative electrode active material-containing layer (length of the short side) is larger than the width of the positive electrode active material-containing layer (length of the short side).
  • the electrode group according to this aspect can realize excellent life characteristics.
  • the length ratio T 4 / T 5 is more preferably 0.8 or more and less than 1.0.
  • the thickness ratio T 7 / T 8 is preferably in the range of 0.7 or more and 1.3 or less.
  • T 7 is the thickness of the positive electrode [ ⁇ m], that is, the sum of the thickness of the positive electrode current collector and the thickness of the positive electrode active material-containing layer.
  • T 8 is the thickness of the negative electrode [ ⁇ m], that is, the sum of the thickness of the negative electrode current collector and the thickness of the negative electrode active material-containing layer.
  • the electrode group according to this aspect can realize more excellent input / output characteristics.
  • the thickness ratio T 7 / T 8 is more preferably in the range of 0.8 or more and 1.0 or less.
  • the electrode group according to the second embodiment can further include a negative electrode terminal and a positive electrode terminal.
  • a part of the negative electrode terminal is electrically connected to a part of the negative electrode, so that the negative electrode terminal can function as a conductor for electrons to move between the negative electrode and the external terminal.
  • the negative electrode terminal can be connected to, for example, a negative electrode current collector, particularly a negative electrode current collector tab.
  • the positive electrode terminal can act as a conductor for electrons to move between the positive electrode and the external circuit by electrically connecting a part of the positive electrode terminal to a part of the positive electrode.
  • the positive electrode terminal can be connected to, for example, a positive electrode current collector, particularly a positive electrode current collector tab.
  • the electrode group according to the second embodiment can be used in a battery.
  • the battery can be, for example, a secondary battery that can be repeatedly charged and discharged.
  • the negative electrode current collector is preferably formed of an aluminum foil or an aluminum alloy foil containing at least one element selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the negative electrode active material-containing layer can contain the negative electrode active material.
  • the negative electrode active material-containing layer may further contain a conductive agent and a binder in addition to the negative electrode active material.
  • Examples of the negative electrode active material include lithium titanate having a spinel-type crystal structure, lithium titanate having a ramsderide-type crystal structure, and titanium-containing oxidation having a monoclinic crystal structure (monoclinic ⁇ -type). Selected from the group consisting of substances, titanium-containing oxides having an anatase-type crystal structure, niob-titanium composite oxides having a monoclinic crystal structure, and Na-containing niob-titanium composite oxides having a rectangular crystal structure. At least one can be used.
  • Lithium titanate having a spinel-type crystal structure can have a composition represented by, for example, Li 4 + x1 Ti 5 O 12 (x1 changes in the range of 0 ⁇ x1 ⁇ 3 depending on the charge / discharge reaction). ..
  • Lithium titanate having a rams delide type crystal structure may have a composition represented by, for example, Li 2 + y1 Ti 3 O 7 (y1 changes in the range of -1 ⁇ y1 ⁇ 3 depending on the charge / discharge reaction). it can.
  • titanium-containing oxide having a monoclinic crystal structure examples include titanium dioxide having a composition of TiO 2 .
  • a part of Ti of titanium dioxide may be replaced with another metal element.
  • other metal elements include Al, Sn, Nb, and Ta.
  • this oxide can also be referred to as a titanium-containing composite oxide having a monoclinic crystal structure.
  • titanium-containing oxide having an anatase-type crystal structure examples include titanium dioxide having a composition of TiO 2 .
  • a part of Ti of titanium dioxide may be replaced with another metal element.
  • other metal elements include Al, Sn, Nb, and Ta.
  • the niobium-titanium composite oxide having a monoclinic crystal structure can have, for example, a composition represented by the general formula Ti 1-x2 M ⁇ x2 Nb 2-y2 M ⁇ y2 O 7- ⁇ 2 .
  • M ⁇ and M ⁇ are at least one selected from the group consisting of Mg, Fe, Ni, Co, W, Ta and Mo, respectively.
  • the element M ⁇ and the element M ⁇ may be the same or different from each other.
  • each subscript is within the following range: 0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1 and ⁇ 0.3 ⁇ ⁇ 2 ⁇ 0.3.
  • Specific examples of the niobium-titanium composite oxide having a monoclinic crystal structure include a composite oxide having a composition represented by the general formula of Li v1 Nb 2 TiO 7 (0 ⁇ v1 ⁇ 5).
  • the Na-containing niobium-titanium composite oxide can be said to be a composite oxide containing Na, Nb and Ti.
  • the Na-containing niobium titanium composite oxide having an orthorhombic crystal structure has a composition represented by the general formula Li 2 + v2 Na 2-y3 M1 x3 Ti 6-y3-z3 Nby3 M2 z3 O 14 + ⁇ 3. Can be done.
  • M1 is at least one selected from the group consisting of Cs, K, Sr, Ba and Ca.
  • M2 is at least one selected from the group consisting of Sn, V, Ta, Mo, W, Fe, Co and Mn.
  • Each subscript is in the following range: 0 ⁇ v2 ⁇ 4; 0 ⁇ x3 ⁇ 2; 0.1 ⁇ y3 ⁇ 0.8; 0 ⁇ z3 ⁇ 3; -0.5 ⁇ ⁇ 3 ⁇ 0.5.
  • the negative electrode active material-containing layer preferably contains at least one titanium-containing composite oxide selected from the group consisting of spinel-type lithium titanium composite oxides and rectangular-type titanium-containing composite oxides.
  • the electrode group according to this aspect can realize more excellent input / output characteristics.
  • the conductive agent can enhance the current collecting performance in the negative electrode active material-containing layer. Further, the conductive agent can have an effect of suppressing the contact resistance between the negative electrode active material and the negative electrode current collector.
  • conductive agents include carbon blacks such as acetylene black, graphite, carbon nanofibers, and carbonaceous materials such as carbon nanotubes. Of these, graphite and carbon nanofibers are preferable because they tend to form a low-resistance negative electrode active material-containing layer. Compared to carbon black such as acetylene black, graphite and carbon nanofibers are easier to penetrate between the negative electrode active material particles, and can impart conductivity in the thickness direction of the negative electrode active material-containing layer, achieving high input / output characteristics. can do. These carbonaceous substances may be used alone or a plurality of carbonaceous substances may be used as the conductive agent.
  • the binder can have an action of binding the negative electrode active material, the conductive agent and the negative electrode current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, styrene-butadiene rubber, acrylic resin and its copolymer, polyacrylic acid, polyacrylonitrile and the like. ..
  • the negative electrode active material-containing layer the negative electrode active material is contained in a weight ratio of 70% by mass or more and 96% by mass or less, and the conductive agent is contained in a weight ratio of 2% by mass or more and 28% by mass or less, and is bound. It is preferable that the agent is contained in a mass ratio of 2% by mass or more and 28% by mass or less.
  • a negative electrode active material-containing layer containing a conductive agent in a mass ratio of 2% by mass or more can exhibit more excellent current collecting performance, and as a result, more excellent large current characteristics can be realized.
  • the negative electrode active material-containing layer containing the binder in a mass ratio of 2% by mass or more can exhibit excellent binding properties between the negative electrode active material-containing layer and the current collector, and has a better cycle. The characteristics can be realized.
  • the amounts of the conductive agent and the binder are preferably 28% by mass or less, respectively.
  • separator for example, a porous film formed of a material such as polyethylene, polypropylene, polyethylene terephthalate, cellulose and polyvinylidene fluoride (PVdF), a non-woven fabric made of synthetic resin, or the like can be used. Further, a separator obtained by applying an inorganic compound to a porous film can also be used.
  • the positive electrode terminal is formed of, for example, a material that is electrically stable and has conductivity in a range in which the potential for the redox potential of lithium is 3.0 V or more and 4.5 V or less. It is preferably formed from aluminum or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the positive electrode terminal is preferably formed of the same material as the positive electrode current collector in order to reduce the contact resistance with the positive electrode current collector.
  • the negative electrode terminal is formed of a material that is electrically stable and has conductivity in a range in which the potential of lithium with respect to the redox potential is 0.8 V or more and 3.0 V or less. It is preferably formed from aluminum or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the negative electrode terminal is preferably formed of the same material as the negative electrode current collector in order to reduce the contact resistance with the negative electrode current collector.
  • the positive electrode active material contained in the positive electrode active material-containing layer can be identified by the measuring method described in the first embodiment.
  • the negative electrode active material contained in the negative electrode active material-containing layer can also be identified by the same procedure.
  • the thickness of the current collector and the active material-containing layer is measured by the measuring method described in the first embodiment.
  • the positive electrode to be measured is prepared by the procedure described above. Next, a sample having a size of about 5 mm ⁇ 5 mm is cut out from the prepared positive electrode. Next, the mass of the sample is measured and used as Ws [g]. Next, the positive electrode active material-containing layer is peeled off from the sample according to the procedure described above, and only the positive electrode current collector is used. The mass of this positive electrode current collector is measured and used as Wsc [g].
  • the mass Wsa [g] of the positive electrode active material-containing layer contained in the sample can be obtained.
  • this mass Wsa is divided by the area of the sample and further divided by 2, so that the mass per unit area of the positive electrode active material-containing layer [g / g / m 2 ] can be obtained.
  • the mass Wc [g / m 2 ] per unit area of the positive electrode active material-containing layer is obtained by dividing this mass Wsa by the area of the sample. Can be sought.
  • the mass Wa [g / m 2 ] per unit area of the negative electrode active material-containing layer can also be obtained by the same procedure.
  • FIG. 4 is a schematic cross-sectional view of an example electrode group according to the second embodiment.
  • FIG. 5 is an enlarged cross-sectional view of part A of the electrode group shown in FIG.
  • FIG. 6 is a schematic plan view of a negative electrode included in the electrode group shown in FIGS. 4 and 5.
  • the electrode group 3 shown in FIGS. 4 and 5 includes a positive electrode 4 shown in FIG. 5, a negative electrode 5 shown in FIGS. 5 and 6, and two separators 6 shown in FIG.
  • the electrode group 3 is a flat wound type electrode group.
  • the flat spiral electrode group 3 is formed by spirally winding a laminate in which the negative electrode 5, the separator 6, the positive electrode 4, and the separator 6 are laminated in this order from the outside and press molding. It is formed.
  • the positive electrode 4 has a structure similar to that of the electrode 4 of the example described with reference to FIGS. 2 and 3.
  • the negative electrode 5 includes a negative electrode current collector 5a and a negative electrode active material-containing layer 5b.
  • a negative electrode active material-containing layer 5b is formed on one surface of the negative electrode current collector 5a on the inner surface side.
  • the outermost portion of the electrode group 3 of the negative electrode 5 is shown on the left side.
  • the negative electrode active material-containing layer 5b is formed on both surfaces of the negative electrode current collector 5a.
  • the negative electrode current collector 5a has a strip shape having a pair of long sides 5a-1 extending in the left-right direction and a pair of short sides 5a-2 of FIG.
  • the pair of short sides 5a-2 of the negative electrode current collector 5a have a length T 6 [mm].
  • one short side 5a-2 is hidden behind the negative electrode active material-containing layer 5b, so reference numerals are shown in parentheses.
  • the negative electrode active material-containing layer 5b has a strip shape having a pair of long sides 5b-1 extending in the left-right direction and a pair of short sides 5b-2 in FIG.
  • the pair of short sides 5b-2 of the negative electrode active material-containing layer 5b have a length T 5 [mm].
  • the negative electrode current collector 5a includes two portions 5c that do not support the negative electrode active material-containing layer 5b on the surface. Each of these portions 5c can serve as a negative electrode current collector tab. As shown in FIG. 6, each of the negative electrode current collector tabs 5c is along the direction in which each of the long side 5a-1 of the negative electrode current collector 5a and the long side 5b-1 of the negative electrode active material-containing layer 5b extends. , Is extending. Further, each of the negative electrode current collector tabs 5c includes one long side 5a-1 of the negative electrode current collector 5a.
  • the electrode group according to the second embodiment includes the electrodes according to the first embodiment. Therefore, the electrode group according to the second embodiment can realize a battery capable of exhibiting excellent input / output characteristics and excellent life characteristics.
  • the battery includes an electrode group according to the second embodiment and an electrolyte.
  • the battery according to the third embodiment includes the electrode group according to the second embodiment, it can exhibit excellent input / output characteristics and excellent life characteristics.
  • the battery according to the third embodiment can be repeatedly charged and discharged, for example. Therefore, the battery according to the third embodiment can be said to be a secondary battery.
  • the battery according to the third embodiment is, for example, a non-aqueous electrolyte battery.
  • a non-aqueous electrolyte battery contains a non-aqueous electrolyte, and a non-aqueous electrolyte contains an electrolyte.
  • the battery according to the third embodiment may be a battery containing an electrolytic solution containing an aqueous solvent and an electrolyte dissolved in the aqueous solvent.
  • the battery according to the third embodiment includes an electrode group according to the second embodiment and an electrolyte.
  • the electrode group is the electrode group according to the second embodiment.
  • at least a part of the main surface of the negative electrode active material-containing layer can face the positive electrode active material-containing layer, for example, as shown in FIG.
  • the ratio A / Sa is preferably 5 or more and 11 or less.
  • A is the rated capacity [Ah] of the battery.
  • Sa is the area [m 2 ] of the portion of the main surface of the negative electrode active material-containing layer facing the positive electrode active material-containing layer.
  • the battery according to this aspect has excellent rate characteristics.
  • the ratio A / Sa is more preferably 6 or more and 8 or less.
  • the non-aqueous electrolyte battery which is an example of the battery according to the third embodiment
  • the non-aqueous electrolyte can be held, for example, in a state of being impregnated in the electrode group.
  • the electrolytic solution containing the electrolyte can be held, for example, in a state of being impregnated in the electrode group.
  • the battery according to the third embodiment may further include an exterior member.
  • the exterior member can accommodate a group of electrodes and an electrolyte.
  • the non-aqueous electrolyte can be impregnated in the electrode group in the exterior member.
  • Each part of the positive electrode terminal and the negative electrode terminal can be extended from the exterior member.
  • the rated capacity of the battery according to the third embodiment is preferably in the range of, for example, 5 Ah or more and 80 Ah or less.
  • non-aqueous electrolyte and the exterior member that can be included in the non-aqueous electrolyte battery which is an example of the battery according to the third embodiment, will be described in more detail.
  • Non-aqueous electrolyte for example, a liquid non-aqueous electrolyte or a gel-like non-aqueous electrolyte can be used.
  • the liquid non-aqueous electrolyte can be prepared by dissolving the electrolyte in an organic solvent.
  • concentration of the electrolyte is preferably in the range of 0.5 to 2.5 mol / l.
  • the gel-like non-aqueous electrolyte is prepared by combining a liquid electrolyte and a polymer material.
  • electrolytes examples include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiAsF 6 ), and trifluoromethane. Includes lithium sulfonate (LiCF 3 SO 3 ) and lithium salts such as bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ]. As the electrolyte, one of these electrolytes may be used alone, or two or more kinds of electrolytes may be used in combination. The electrolyte preferably contains LiPF 6 .
  • organic solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate; chains such as diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC). Carbonates; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX); chain ethers such as dimethoxyethane (DME), diethoxyethane (DEE); acetonitrile (AN), and , Hydrofuran (SL) is included. As the organic solvent, one of these solvents may be used alone, or two or more kinds of solvents may be used in combination.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate
  • chains such as diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (M
  • Examples of more preferred organic solvents include two or more selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • a mixed solvent in which the above is mixed is included. By using such a mixed solvent, a non-aqueous electrolyte battery having excellent charge / discharge cycle characteristics can be obtained.
  • additives can be added to the electrolytic solution.
  • Exterior member for example, a bag-shaped container made of a laminated film or a metal container can be used.
  • the shape is not particularly limited, and examples thereof include a flat type, a square type, a cylindrical type, a coin type, a button type, a sheet type, and a laminated type.
  • a large battery loaded on a two-wheeled or four-wheeled automobile or the like may be used.
  • the laminated film for example, a multilayer film in which a metal layer is sandwiched between resin films can be used.
  • a multilayer film composed of a metal layer and a resin layer covering the metal layer can also be used.
  • the resin film and the resin layer have a role of reinforcing the metal layer.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil in order to reduce the weight.
  • resin film polymer materials such as polypropylene (PP), polyethylene (PE), nylon, and polyethylene terephthalate (PET) can be used.
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • the laminated film can be sealed into the shape of an exterior member by heat fusion.
  • the thickness of the laminated film is preferably 0.2 mm or less.
  • the metal container can be made of aluminum or an aluminum alloy.
  • the aluminum alloy preferably contains elements such as magnesium, zinc and silicon.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 100 ppm or less. This makes it possible to dramatically improve long-term reliability and heat dissipation in a high temperature environment.
  • the wall thickness of the metal container is preferably 0.5 mm or less, and more preferably 0.2 mm or less.
  • the battery to be measured is disassembled according to the procedure described above. Take out the electrode group from the disassembled battery.
  • the area of the portion where the negative electrode active material-containing layer and the positive electrode active material-containing layer overlap in the electrode group is measured.
  • the length of the overlapping portion of the negative electrode active material-containing layer and the positive electrode active material-containing layer is measured by using a measuring means such as a ruler or a tape measure according to the length.
  • the area Sa is a macroscopic area of the main surface of the negative electrode active material-containing layer facing the positive electrode active material-containing layer, and does not include, for example, the area of the pores of the negative electrode active material-containing layer.
  • the rated capacity of the battery is measured by the following procedure. First, the battery to be measured is charged at a constant current of 0.2 C in an environment of 25 ° C. until the voltage reaches 2.9 V. The battery is then discharged at a constant voltage of 2.9 V for 1 hour. Then, the battery is left in the open circuit state for 30 minutes. The battery is then discharged at a constant current of 0.2 C until the voltage reaches 1.5 V. The capacity obtained by this discharge is defined as the rated capacity [Ah].
  • FIG. 7 is a schematic cross-sectional view of an example battery according to the third embodiment.
  • the battery 10 shown in FIG. 7 is a non-aqueous electrolyte battery.
  • the non-aqueous electrolyte battery 10 includes a flat wound electrode group 3 described with reference to FIGS. 4 and 5.
  • the flat wound electrode group 3 is housed in a bag-shaped exterior member 2 made of a laminated film.
  • the laminated film includes a metal layer and two resin films sandwiching the metal layer.
  • the negative electrode terminal 8 is connected to the negative electrode current collector 5a in the outermost layer of the negative electrode 5 in the vicinity of the outer peripheral end of the wound electrode group 3, and the positive electrode terminal 7 is the positive electrode of the positive electrode 4 located inside. It is connected to the current collector 4a.
  • These negative electrode terminals 8 and positive electrode terminals 7 extend outward from the opening of the bag-shaped exterior member 2.
  • the non-aqueous electrolyte battery 10 shown in FIG. 7 further includes a non-aqueous electrolyte (not shown).
  • the non-aqueous electrolyte is housed in the exterior member 2 in a state of being impregnated with the electrode group 3.
  • the non-aqueous electrolyte can be injected, for example, through the opening of the bag-shaped exterior member 2. After injecting the non-aqueous electrolyte, the opening of the bag-shaped exterior member 2 is heat-sealed with the negative electrode terminal 8 and the positive electrode terminal 7 interposed therebetween, so that the wound electrode group 3 and the non-aqueous electrolyte can be completely sealed.
  • the battery according to the third embodiment is not limited to the battery having the configuration shown in FIG. 7 described above, and may have the configuration shown in FIGS. 8 and 9, for example.
  • FIG. 8 is a schematic partially cutaway perspective view of another example battery according to the third embodiment.
  • FIG. 9 is an enlarged cross-sectional view of a portion B of the battery of FIG.
  • the battery 10 shown in FIGS. 8 and 9 is a non-aqueous electrolyte battery.
  • the non-aqueous electrolyte battery 10 includes a stack type electrode group 3.
  • the stack type electrode group 3 is housed in an exterior member 2 made of a laminated film.
  • the laminated film includes a metal layer and two resin films sandwiched therein.
  • the stack type electrode group 3 has a structure in which a positive electrode 4 and a negative electrode 5 are alternately laminated with a separator 6 interposed therebetween.
  • a positive electrodes 4 each of which includes a positive electrode current collector 4a and a positive electrode active material-containing layer 4b supported on both sides of the positive electrode current collector 4a.
  • One side of the negative electrode current collector 5a of each negative electrode 5 projects from the positive electrode 4.
  • the portion 5c of the negative electrode current collector 5a protruding from the positive electrode 4 is electrically connected to the strip-shaped negative electrode terminal 8.
  • the tip of the strip-shaped negative electrode terminal 8 is pulled out from the exterior member 2.
  • a side located on the opposite side of the protruding side 5c of the negative electrode current collector 5a protrudes from the negative electrode 5.
  • the portion of the positive electrode current collector 4a protruding from the negative electrode 5 is electrically connected to the band-shaped positive electrode terminal 7.
  • the tip of the strip-shaped positive electrode terminal 7 is located on the opposite side of the negative electrode terminal 8 and is drawn out from the side of the exterior member 2.
  • the positive electrode 4 shown in FIG. 9 is an example of the electrode according to the first embodiment. Therefore, the electrode group 3 shown in FIGS. 8 and 9 is an example of the electrode group according to the second embodiment.
  • the battery according to the third embodiment includes the electrode group according to the second embodiment. Therefore, the battery according to the third embodiment, excellent input / output characteristics, and excellent life characteristics can be exhibited.
  • a battery pack is provided.
  • This battery pack comprises the battery according to the third embodiment.
  • the battery pack according to the fourth embodiment may include a plurality of batteries. Multiple batteries can be electrically connected in series or electrically in parallel. Alternatively, a plurality of batteries can be connected in series and in parallel.
  • the battery pack according to the fourth embodiment may include a plurality of batteries according to the third embodiment. These batteries can be connected in series. Further, the batteries connected in series can form an assembled battery. That is, the battery pack according to the fourth embodiment may also include an assembled battery.
  • the battery pack according to the fourth embodiment can include a plurality of assembled batteries.
  • a plurality of assembled batteries can be connected in series, in parallel, or in a combination of series and parallel.
  • the battery pack 20 shown in FIGS. 10 and 11 includes a plurality of cell cells 21.
  • the flat battery shown in FIG. 7 can be used as the cell 21.
  • the plurality of cell cells 21 composed of the flat non-aqueous electrolyte battery 10 shown in FIG. 7 described above are laminated so that the negative electrode terminals 8 and the positive electrode terminals 7 extending to the outside are aligned in the same direction, and the adhesive tape 22 is used.
  • the assembled battery 23 is configured by fastening with.
  • the printed wiring board 24 is arranged so as to face the side surface of the cell 21 on which the negative electrode terminal 8 and the positive electrode terminal 7 extend. As shown in FIG. 11, the printed wiring board 24 is equipped with a thermistor 25, a protection circuit 26, and a terminal 27 for energizing an external device. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
  • the positive electrode side lead 28 is connected to the positive electrode terminal 7 located at the bottom layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and electrically connected.
  • the negative electrode side lead 30 is connected to the negative electrode terminal 8 located on the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode side connector 31 of the printed wiring board 24 and electrically connected. These connectors 29 and 31 are connected to the protection circuit 26 through the wirings 32 and 33 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the cell 21 and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the positive side wiring 34a and the negative side wiring 34b between the protection circuit 26 and the energizing terminal 27 to the external device under predetermined conditions.
  • the predetermined condition is, for example, when the detection temperature of the thermistor 25 becomes equal to or higher than the predetermined temperature. Further, the predetermined condition is when overcharge, overdischarge, overcurrent, etc. of the cell 21 are detected.
  • the detection of overcharging or the like is performed for each individual cell 21 or the entire assembled battery 23. When detecting the individual cell 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each cell 21.
  • a wiring 35 for voltage detection is connected to each of the cell 21s, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
  • Protective sheets 36 made of rubber or resin are arranged on the three side surfaces of the assembled battery 23 except for the side surfaces on which the positive electrode terminal 7 and the negative electrode terminal 8 protrude.
  • the assembled battery 23 is stored in the storage container 37 together with the protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is arranged on both inner side surfaces in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is arranged on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat-shrinkable tape may be used instead of the adhesive tape 22 to fix the assembled battery 23.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat-shrinkable tape is circulated, and then the heat-shrinkable tape is heat-shrinked to bind the assembled battery.
  • FIGS. 10 and 11 show a form in which the cells 21 are connected in series, they may be connected in parallel in order to increase the battery capacity.
  • the assembled battery packs can also be connected in series and / or in parallel.
  • the mode of the battery pack according to the fourth embodiment is appropriately changed depending on the intended use.
  • the battery pack according to the fourth embodiment is suitably used for applications in which excellent cycle characteristics are required when a large current is taken out. Specifically, it is used as a power source for a digital camera, or as an in-vehicle battery for vehicles such as trains, two-wheeled to four-wheeled hybrid electric vehicles, two-wheeled to four-wheeled electric vehicles, and assisted bicycles. In particular, it is suitably used as an in-vehicle battery.
  • the battery pack according to the fourth embodiment includes the battery according to the third embodiment, it can exhibit excellent input / output characteristics and excellent life characteristics.
  • Example 1 the positive electrode of Example 1 was produced by the following procedure. First, as the positive electrode active material, a lithium-nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.33 Co 0.34 Mn 0.33 O 2 powder, and a lithium cobalt composite oxide having a composition represented by the formula LiCoO 2 The powder was prepared. The powder of the lithium nickel-cobalt-manganese composite oxide was a powder of secondary particles, and the average secondary particle size was 8 ⁇ m. The lithium cobalt composite oxide powder was a powder of primary particles, and the average primary particle diameter was 10 ⁇ m. These powders were mixed so that the mass ratio of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide was 90:10 to obtain a mixed powder.
  • a lithium-nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.33 Co 0.34 Mn 0.33 O 2 powder a lithium cobalt composite oxide having a composition
  • This mixed powder, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are mixed in a mixing ratio of 90% by mass: 5% by mass: 5% by mass, and N-methylpyrrolidone as a solvent. It was charged into (NMP) and mixed.
  • the mixture thus obtained was dispersed using a rotation / revolution mixer.
  • the mixture was subjected to a high shear dispersion process in a bead mill device.
  • the beads 1 mm ⁇ zirconia beads were used.
  • the bead filling rate was 60% by volume and the rotation speed was 1500 rpm. The flow rate was adjusted so that the processing time was 10 minutes. Thus, a slurry was prepared.
  • the prepared slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the coating amount was 70 g / m 2 .
  • the coating film was dried and subjected to a press.
  • the pressing conditions were a linear pressure of 1.2 t / cm.
  • an electrode comprising the current collector and an active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.0 g / cm 3 was produced.
  • Example 2 electrodes were produced in the same procedure as in Example 1 except for the following points.
  • powder of lithium-nickel-cobalt-manganese composite oxide having a composition represented formula LiNi 0.5 Co 0.2 Mn 0.3 O 2 , and lithium-cobalt composite oxide having a composition represented by the formula LiCoO 2 Prepared the powder of the thing.
  • the powder of the lithium nickel-cobalt-manganese composite oxide was a powder of secondary particles, and the average secondary particle size was 7 ⁇ m.
  • the lithium cobalt composite oxide powder was a powder of primary particles, and the average primary particle diameter was 10 ⁇ m.
  • This mixed powder, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are added to N-methylpyrrolidone (NMP) as a solvent at the same mixing ratio as in Example 1. And mixed.
  • NMP N-methylpyrrolidone
  • the mixture thus obtained was dispersed using a rotation / revolution mixer.
  • the mixture was subjected to a high shear dispersion process in a bead mill device.
  • the dispersion conditions were the same as in Example 1.
  • a slurry was prepared.
  • the prepared slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the coating amount was 70 g / m 2 .
  • the coating film was dried and subjected to a press.
  • the pressing conditions were a linear pressure of 1.2 t / cm.
  • an electrode comprising the current collector and an active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.0 g / cm 3 was produced.
  • Example 3 electrodes were produced in the same procedure as in Example 1 except for the following points.
  • the positive electrode active material lithium cobalt complex with powder of lithium-nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.5 Co 0.3 Mn 0.2 O 2 , and a composition represented by the formula LiCoO 2 Oxide powder was prepared.
  • the powder of the lithium nickel-cobalt-manganese composite oxide was a powder of secondary particles, and the average secondary particle size was 7 ⁇ m.
  • the lithium cobalt composite oxide powder was a powder of primary particles, and the average primary particle diameter was 10 ⁇ m.
  • This mixed powder, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are added to N-methylpyrrolidone (NMP) as a solvent at the same mixing ratio as in Example 1. And mixed.
  • NMP N-methylpyrrolidone
  • Example 2 the mixture was subjected to a high shear dispersion process in a bead mill device.
  • the dispersion conditions were the same as in Example 1.
  • a slurry was prepared.
  • the prepared slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the coating amount was 70 g / m 2 .
  • the coating film was dried and subjected to a press.
  • the pressing conditions were a linear pressure of 1.2 t / cm.
  • an electrode comprising the current collector and an active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.0 g / cm 3 was produced.
  • Example 4 In Example 4, electrodes were produced in the same procedure as in Example 1 except for the following points. In Example 4, the powder of the positive electrode active material was mixed so that the mass ratio of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide was 95: 5.
  • This mixed powder, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are mixed in a mixing ratio of 90% by mass: 5% by mass: 5% by mass, and N-methylpyrrolidone as a solvent. It was charged into (NMP) and mixed.
  • the mixture thus obtained was dispersed using a rotation / revolution mixer.
  • the mixture was subjected to a high shear dispersion process in a bead mill device.
  • the dispersion conditions were the same as in Example 1.
  • a slurry was prepared.
  • the prepared slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the coating amount was 70 g / m 2 .
  • the coating film was dried and subjected to a press.
  • the pressing conditions were a linear pressure of 1.3 t / cm.
  • an electrode comprising the current collector and an active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.0 g / cm 3 was produced.
  • Example 5 electrodes were produced in the same procedure as in Example 4 except for the following points.
  • Example 5 when preparing the slurry, the mixture was subjected to a dispersion treatment using a thin film swirling high-speed mixer. The dispersion was performed for 10 seconds at a peripheral speed of 10 m / sec.
  • the slurry prepared in this manner was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the coating amount was 70 g / m 2 .
  • the coating film was dried and subjected to a press.
  • the pressing conditions were a linear pressure of 1.7 t / cm.
  • an electrode comprising the current collector and an active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.2 g / cm 3 was produced.
  • Comparative Example 1 In Comparative Example 1, electrodes were produced in the same procedure as in Example 1 except for the following points.
  • the flow rate was adjusted so that the rotation speed of the bead mill device was 1000 rpm and the dispersion treatment time was 5 minutes during the dispersion treatment of the mixture for preparing the slurry. Further, the linear pressure in the pressing process was set to 1.4 t / cm, so that the current collector and the active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.0 g / cm 3 were formed.
  • the provided electrode was prepared.
  • Comparative Example 2 In Comparative Example 2, electrodes were produced in the same procedure as in Example 1 except for the following points. In Comparative Example 2, the powder of the positive electrode active material was mixed so that the mass ratio of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide was 80:20.
  • This mixed powder, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are mixed in a mixing ratio of 90% by mass: 5% by mass: 5% by mass, and N-methylpyrrolidone as a solvent. It was charged into (NMP) and mixed.
  • the prepared slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the coating amount was 70 g / m 2 .
  • the coating film was dried and subjected to a press.
  • the pressing conditions were a linear pressure of 1.5 t / cm.
  • an electrode comprising the current collector and an active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.0 g / cm 3 was produced.
  • Comparative Example 3 In Comparative Example 3, electrodes were produced in the same procedure as in Comparative Example 2 except for the following points.
  • the lithium nickel cobalt manganese composite oxide the same powder of the lithium nickel cobalt manganese composite oxide used in Example 3 was used. That is, in Comparative Example 3, a powder of a lithium nickel cobalt manganese composite oxide having a composition represented by the formula LiNi 0.5 Co 0.3 Mn 0.2 O 2 was used.
  • an electrode comprising the current collector and an active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.0 g / cm 3 was produced.
  • Comparative Example 4 In Comparative Example 4, electrodes were produced in the same procedure as in Example 1 except for the following points.
  • the same lithium nickel-cobalt-manganese composite oxide powder as used in Example 1 was prepared. That is, in this example, the lithium cobalt composite oxide was not used.
  • NMP N-methylpyrrolidone
  • the mixture thus obtained was dispersed using a rotation / revolution mixer.
  • the mixture was subjected to a high shear dispersion process in a bead mill device.
  • the dispersion conditions were the same as in Example 1.
  • a slurry was prepared.
  • the prepared slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the coating amount was 70 g / m 2 .
  • the coating film was dried and subjected to a press.
  • the pressing conditions were a linear pressure of 1.6 t / cm.
  • an electrode comprising the current collector and an active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.0 g / cm 3 was produced.
  • Comparative Example 5 Comparative Example 5, electrodes were produced in the same procedure as in Example 1 except for the following points.
  • the same lithium cobalt composite oxide powder as used in Example 1 was prepared. That is, in this example, the lithium nickel cobalt manganese composite oxide was not used.
  • Lithium cobalt composite oxide powder, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are mixed as a solvent in a mixing ratio of 90% by mass: 5% by mass: 5% by mass. It was added to N-methylpyrrolidone (NMP) and mixed.
  • NMP N-methylpyrrolidone
  • the mixture thus obtained was dispersed using a rotation / revolution mixer.
  • the mixture was subjected to a high shear dispersion process in a bead mill device.
  • the dispersion conditions were the same as in Example 1.
  • a slurry was prepared.
  • the prepared slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the coating amount was 70 g / m 2 .
  • the coating film was dried and subjected to a press.
  • the pressing conditions were a linear pressure of 1.2 t / cm.
  • an electrode comprising the current collector and an active material-containing layer formed on the surfaces of both the current collectors and having a density of 3.0 g / cm 3 was produced.
  • Comparative Example 6 In Comparative Example 6, electrodes were produced in the same procedure as in Example 1 except for the following points.
  • the rotation speed of the bead mill was increased by 1.5 times and the load in the pressing step was increased by 1.4 times as compared with the electrode of Example 1. Further, the electrode coating amount was set to 140 g / m 2 .
  • a lithium titanate powder having a composition represented by the formula Li 4 Ti 5 O 12 and having a spinel-type crystal structure was prepared.
  • This slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the negative electrode coating amount was 50 g / m 2 .
  • the negative electrode coating amount was 100 g / m 2 .
  • the coating film was dried and subjected to a press. The pressing conditions were a linear pressure of 1.2 t / cm.
  • a negative electrode having a negative electrode current collector and a negative electrode active material-containing layer formed on the surfaces of both the current collectors and having a density of 2.0 g / cm 3 was produced.
  • Electrode group Two separators made of a polyethylene porous film having a thickness of 25 ⁇ m were prepared. Next, the positive electrode, one separator, the negative electrode and the other separator were laminated in this order to obtain a laminated body. Next, the laminated body was spirally wound to obtain a wound body. Then, the wound body was heated and pressed at 90 ° C.
  • Aluminum positive electrode terminals were welded to the positive electrode current collector of the obtained electrode group. Further, a negative electrode terminal made of aluminum was welded to the negative electrode current collector.
  • the laminated film contained an aluminum foil having a thickness of 40 ⁇ m and a polypropylene layer formed on both surfaces.
  • the total thickness of the laminated film was 0.1 mm.
  • the electrode group obtained as described above was housed in the exterior member with a part of the positive electrode terminal and a part of the negative electrode terminal located outside. Next, the periphery of the exterior member was heat-sealed, leaving a part. In this state, the electrode group was subjected to vacuum drying at 80 ° C. for 24 hours.
  • each non-aqueous electrolyte battery produced as described above was subjected to the tests described below.
  • each non-aqueous electrolyte battery is simply referred to as a "battery".
  • the battery was charged at a constant current of 0.2 C in an environment of 25 ° C. until the voltage reached 2.9 V.
  • the battery was then discharged at a constant voltage of 2.9 V for 1 hour.
  • the battery was left in the open circuit state for 1 hour.
  • the battery was then discharged at a constant current of 10C until the battery voltage reached 1.5V.
  • the ratio (%) of the capacity obtained by 10C discharge to the capacity obtained by 1C discharge was calculated. This ratio was used as an index of output characteristics. The results are shown in Table 1 below.
  • the battery was discharged at a constant current of 0.2 C until the voltage reached 1.5 V. Then, the battery was left in the open circuit state for 1 hour. The battery was then charged with a constant current of 10C until the voltage reached 2.9V.
  • the ratio (%) of the capacity obtained by charging 10C to the capacity obtained by charging 1C was calculated. This ratio was used as an index of input characteristics. The results are shown in Table 1 below.
  • the battery was charged at a constant current of 1C in an environment of 60 ° C. until the voltage reached 2.9V. The battery was then charged at a constant voltage of 2.9 V. Charging was completed when the current converged to a value corresponding to 0.05C. Then, the battery was left in the open circuit state for 10 minutes. The battery was then discharged at a constant current of 1C until the voltage reached 1.5V.
  • the set consisting of charging, leaving in an open circuit state, and discharging was defined as one charge / discharge cycle. This charge / discharge cycle was repeated 500 times. The ratio (%) of the 500th discharge capacity to the discharge capacity obtained in the 1st cycle was calculated. This ratio was used as an index of cycle characteristics (life characteristics). The results are shown in Table 1 below.
  • the fineness of the first peak top showing the highest strength I 1 within the range of the pore diameter of 0.1 ⁇ m or more and 1 ⁇ m or less of the pore diameter distribution by the mercury intrusion method of the positive electrode active material-containing layer was determined.
  • the pore diameters and intensity ratios I 2 / I 1 of the first peak top and the second peak top are shown in Table 2 below.
  • T 1 Thickness of the positive electrode current collector
  • T 2 Thickness of the positive electrode active material-containing layer
  • T 3 Length of a pair of short sides of the positive electrode current collector
  • T 4 Pair of positive electrode active material-containing layers Short side length
  • T 5 Pair of short side lengths of negative electrode active material-containing layer
  • T 6 Length of pair of short sides of negative electrode current collector
  • T 7 Positive electrode thickness
  • T 8 Negative electrode thickness.
  • Table 3 also shows the ratio T 2 / T 1 and the ratio T 7 / T 8 .
  • the ratio of the rated capacity A to the area Sa is shown in Table 4 below.
  • the electrodes of Examples 1 to 5 were able to exhibit better input / output characteristics and life characteristics than the electrodes of Comparative Examples 1 to 6. Further, as is clear from Tables 2 and 4, the active material-containing layer of each of the electrodes of Examples 1 to 5 has a formula (1): 0.15 ⁇ I 2 / I 1 ⁇ 0.40; 2): 0.31 ⁇ X 1 / (X 1 + X 2 + X 3 ) ⁇ 0.55; Equation (3): 0.7 ⁇ T 2 / T 1 ⁇ 1.6 was satisfied. Further, as is clear from Table 2, the pore diameter of the first peak top in the pore diameter distribution of the active material-containing layer was smaller than the pore diameter of the second peak top.
  • the electrodes of Examples 1 to 5 can prevent deterioration of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide due to charging and discharging, and have high conductivity for the reasons described above. It is probable that it could be shown.
  • the pore size of the first peak top was larger than the pore size of the second peak top. This is considered to mean that the electrodes of Comparative Example 1 did not have sufficient pores existing in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide. Therefore, when the electrode of Comparative Example 1 is used by being incorporated in a battery, Li ions are insufficient in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide as the battery is charged and discharged, resulting in an excellent life. It is probable that the characteristics could not be realized.
  • the electrode of Comparative Example 1 could not smoothly insert and desorb Li ions by the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide due to the local electrode reaction. .. As a result, it is considered that the electrode of Comparative Example 1 could not realize excellent input / output characteristics.
  • the electrodes of Comparative Example 2 had an intensity ratio of I 2 / I 1 of less than 0.15. This is considered to mean that the electrodes of Comparative Example 2 did not have sufficient pores connecting the pores existing in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide. Be done. Therefore, when the electrode of Comparative Example 2 is used by being incorporated in a battery, Li ions are insufficient in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide as the battery is charged and discharged, resulting in an excellent life. It is probable that the characteristics could not be realized.
  • the electrode of Comparative Example 2 could not smoothly insert and desorb Li ions by the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide due to the local electrode reaction. .. As a result, it is considered that the electrodes of Comparative Example 2 could not realize excellent input / output characteristics.
  • the electrodes of Comparative Example 3 had an intensity ratio of I 2 / I 1 exceeding 0.40. This is considered to mean that the electrodes of Comparative Example 3 did not have sufficient pores existing in the vicinity of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide. Therefore, it is considered that the electrode of Comparative Example 3 could not realize the excellent life characteristic and the excellent input / output characteristic for the same reason as the electrode of Comparative Example 1.
  • the electrode of Comparative Example 4 did not contain the lithium cobalt composite oxide.
  • the electrode of Comparative Example 5 did not contain a lithium nickel cobalt manganese composite oxide.
  • the electrodes of Comparative Examples 4 and 5 satisfied the formula (1): 0.15 ⁇ I 2 / I 1 ⁇ 0.40, but could be either a lithium cobalt composite oxide or a lithium nickel cobalt manganese composite oxide. Since it was not included, it is considered that neither excellent life characteristics nor excellent input / output characteristics could be realized.
  • the electrodes of at least one of these embodiments or examples include a current collector and an active material-containing layer formed on the current collector.
  • the active material-containing layer contains a lithium nickel cobalt manganese composite oxide and a lithium cobalt composite oxide.
  • the pore size distribution of the active material-containing layer by the mercury intrusion method is the first peak top showing the strongest strength I 1 within the pore size range of 0.1 ⁇ m or more and 1 ⁇ m or less, and the pore diameter of 0.1 ⁇ m or more and 1 ⁇ m or less. It has a second peak top showing the next highest intensity I 2 after the highest intensity I 1 within the range of.
  • the pore diameter of the first peak top is smaller than the pore diameter of the second peak top.
  • the electrodes satisfy the following equations (1) to (3): equation (1): 0.15 ⁇ I 2 / I 1 ⁇ 0.40; equation (2): 0.31 ⁇ X 1 / (X 1). + X 2 + X 3 ) ⁇ 0.55; Equation (3): 0.7 ⁇ T 2 / T 1 ⁇ 1.6.
  • this electrode When this electrode is incorporated into a battery and used, it is possible to prevent deterioration of the lithium nickel cobalt manganese composite oxide and the lithium cobalt composite oxide due to charging and discharging, and it is possible to exhibit high conductivity. As a result, this electrode can realize a battery capable of exhibiting excellent input / output characteristics and excellent life characteristics.

Abstract

1つの実施形態に係る電極は、集電体と、集電体上に形成された活物質含有層とを含む。活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物とを含む。活物質含有層の水銀圧入法による細孔径分布が、0.1μm以上1μm以下の細孔径の範囲内での最強度I1を示す第1のピークトップと、0.1μm以上1μm以下の細孔径の範囲内において最強度I1の次に大きい強度I2を示す第2のピークトップとを有する。第1のピークトップの細孔径は、第2のピークトップの細孔径よりも小さい。電極は、以下の式(1)~(3)を満たす:式(1):0.15≦I2/I1≦0.40;式(2):0.31≦X1/(X1+X2+X3)≦0.55;式(3):0.7≦T2/T1≦1.6。

Description

電極、電極群、電池、及び電池パック
 本発明の実施形態は、電極、電極群、電池、及び電池パックに関する。
 非水電解質電池では、リチウムイオンが負極と正極とを移動することにより、充電及び放電が行われる。このような非水電解質電池は、高エネルギー密度電池として、盛んに研究が進められている。
 このような非水電解質電池は、例えば小型電子機器用電源としての利用に加え、車載用途や定置用途など中型~大型の電源としての利用も期待される。中型~大型用途では、非水電解質電池は、優れた寿命特性及び高い安全性を示すことが要求される。更に、中型~大型用途では、非水電解質電池は、優れた入出力特性を示すことも必要となる。
日本国特開2014-63753号公報 国際公開第2016/084346号 日本国特開2014-13748号公報 国際公開第2013/161083号 国際公開第2012/111813号
神保元二ら:「微粒子ハンドブック」、初版、朝倉書店、1991年9月1日、p.151-152 早川宗八郎編:「粉体物性測定法」、初版、朝倉書店、1973年10月15日、p.257-259
 優れた入出力特性及び優れた寿命性能を示すことができる電池を実現できる電極、この電極を具備した電極群、この電極群を具備した電池、及びこの電池を具備した電池パックを提供することを目的とする。
 第1の実施形態によると、電極が提供される。電極は、集電体と、集電体上に形成された活物質含有層とを含む。活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物とを含む。活物質含有層の水銀圧入法による細孔径分布が、0.1μm以上1μm以下の細孔径の範囲内での最強度I1を示す第1のピークトップと、0.1μm以上1μm以下の細孔径の範囲内において最強度I1の次に大きい強度I2を示す第2のピークトップとを有する。第1のピークトップの細孔径は、第2のピークトップの細孔径よりも小さい。電極は、以下の式(1)~(3)を満たす:
 式(1):0.15≦I2/I1≦0.40;
 式(2):0.31≦X1/(X1+X2+X3)≦0.55;
 式(3):0.7≦T2/T1≦1.6
 ここで、X1、X2及びX3は、それぞれ、活物質含有層におけるCo、Ni及びMnの含有量[mol%]である。T1は、集電体の厚さ[μm]である。T2は、活物質含有層の厚さ[μm]である。
 第2の実施形態によると、電極群が提供される。電極群は、正極と、負極とを具備する。正極は、正極活物質含有層を含む。負極は、負極活物質含有層を含む。正極は、第1の実施形態に係る電極である。正極活物質含有層は、第1の実施形態に係る電極が具備する活物質含有層である。
 第3の実施形態によると、電池が提供される。電池は、第2の実施形態に係る電極群と、電解質とを具備する。
 第4の実施形態によると、電池パックが提供される。電池パックは、第3の実施形態に係る電池を具備する。
図1は、第1の実施形態に係る一例の電極が具備する活物質含有層の細孔径分布と、参考例の電極が具備する活物質含有層の細孔径分布とを示している。 図2は、第1の実施形態に係る一例の電極の概略平面図である。 図3は、図2に示す電極の、線III-III’に沿った概略断面図である。 図4は、第2の実施形態に係る一例の電極群の概略断面図である。 図5は、図4に示す電極群のA部の拡大断面図である。 図6は、図4及び図5に示す電極群が具備する負極の概略平面図である。 図7は、第3の実施形態に係る一例の電池の概略断面図である。 図8は、第3の実施形態に係る他の例の電池の概略断面図である。 図9は、図8の電池のB部の拡大断面図である。 図10は、第4の実施形態に係る一例の電池パックの概略分解斜視図である。 図11は、図10の電池パックの電気回路を示すブロック図である。
実施形態
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。
 (第1の実施形態)
 第1の実施形態によると、電極が提供される。電極は、集電体と、集電体上に形成された活物質含有層とを含む。活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物とを含む。活物質含有層の水銀圧入法による細孔径分布が、0.1μm以上1μm以下の細孔径の範囲内での最強度I1を示す第1のピークトップと、0.1μm以上1μm以下の細孔径の範囲内において最強度I1の次に大きい強度I2を示す第2のピークトップとを有する。第1のピークトップの細孔径は、第2のピークトップの細孔径よりも小さい。電極は、以下の式(1)~(3)を満たす:
 式(1):0.15≦I2/I1≦0.40;
 式(2):0.31≦X1/(X1+X2+X3)≦0.55;
 式(3):0.7≦T2/T1≦1.6
 ここで、X1、X2及びX3は、それぞれ、活物質含有層におけるCo、Ni及びMnの含有量[mol%]である。T1は、集電体の厚さ[μm]である。T2は、活物質含有層の厚さ[μm]である。
 電池の入出力特性としては、例えば、大電流特性が挙げられる。電池の大電流特性は、例えば、電解質(例えば電解液)やセパレータの物性の影響を大きく受ける。そして、電池の大電流特性を決定する最も大きな要因は、正極及び負極にあると考えられる。中でも特に、正極の特性が与える影響が大きいと考えられる。
 大電流特性を向上させるためには、例えば、電極活物質の粒径を小さくし、比表面積を大きくすることが有効である。本発明者らは、この方策を、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物とを含む活物質を含む電極に対して行った。しかしながら、このような方策によると、電解質の分解を助長する懸念があることがわかった。そのため、このような方策では、大電流特性と寿命特性との両立は難しいことが分かった。
 このような事情を鑑み、本発明者らは、鋭意研究した結果、第1の実施形態に係る電極を実現した。
 第1の実施形態に係る電極の活物質含有層の水銀圧入法による細孔径分布は、0.1μm以上1μm以下の細孔径の範囲内での最強度I1を示す第1のピークトップと、0.1μm以上1μm以下の細孔径の範囲内において最強度I1の次に大きい強度I2を示す第2のピークトップとを有する。第1のピークトップ(最強度I1)の細孔径は、第2のピークトップ(強度I2)の細孔径よりも小さい。言い換えると、活物質含有層の細孔径分布が、0.1μm以上1μm以下の細孔径の範囲内において、メインピークである第1のピークトップの細孔径よりも大きい細孔径に第2のピークトップがある。そして、電極は式(1):0.15≦I2/I1≦0.40を満たす。理論により縛られることを望まないが、このような細孔径分布を示す活物質含有層は、例えば、活物質含有層に含まれるリチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に十分な量の細孔を含むことができ、これらの細孔を繋ぎ且つこれらの細孔よりも大きな細孔を活物質含有層全体にわたって含むことができると考えられる。そのため、第1の実施形態に係る電極の活物質含有層は、電池に組み込まれた状態において、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に、電荷担体、例えばLi+を含んだ電解質を十分に行き渡らせることができる。その結果、第1の実施形態に係る電極を含んだ電池では、充放電に伴ってリチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に電荷担体が不足することを防ぐことができ、ひいては、電極が上記式(2)を満たしていても、電荷担体が不足することによる不均一な反応が進行することを防ぐことができる。
 また、式(3):0.7≦T2/T1≦1.6を満たす電極は、活物質含有層全体に亘って、集電体からの距離にかかわらず、高い導電性を示すことができる。これにより、第1の実施形態に係る発明の電極では、導電性が悪いことに起因して電極反応が不均一に進行するのを防ぐことができる。
 このように、第1の実施形態に係る電極は、上記式(2)を満たしていても、電荷担体が不足することによる不均一な電極反応及び乏しい導電性による不均一な電極反応を防ぐことができる。すなわち、第1の実施形態に係る電極は、活物質含有層において、局所的な電極反応が起こることを防ぐことができる。それにより、第1の実施形態に係る電極は、活物質含有層において、局所的に過剰な充電又は放電に供されるリチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物を少なくすることができる。その結果、第1の実施形態に係る電極は、充放電に伴うリチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の劣化を防ぐことができ、ひいては優れた寿命特性を実現することができる。
 また、第1の実施形態に係る電極は、局所的な電極反応が起こることを防ぐことができるので、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物による電荷担体の挿入及び脱離を促進することができる。そして、先に述べたように、第1の実施形態に係る電極は、集電体からの距離にかかわらず、高い導電性を示すことができる。よって、第1の実施形態に係る電極は、優れた入出力特性を実現することができる。
 なお、詳細な理由は不明であるが、式(2):0.31≦X1/(X1+X2+X3)≦0.55を満たさない電極は、式(1)及び(3)を満たしていても、入出力特性及び寿命特性の向上を実現することができない。
 以上説明した理由により、第1の実施形態に係る電極は、優れた入出力特性及び優れた寿命特性を示すことができる電池を実現することができる。
 厚さの比T2/T1が0.7よりも小さい電極では、集電体の厚さT1[μm]が活物質含有層の厚さT2[μm]に対して大き過ぎる。この場合、体積エネルギー密度が低くなる。一方、厚さの比T2/T1が1.6よりも大きい電極では、集電体の厚さT1が活物質含有層の厚さT2[μm]に対して小さ過ぎる。このような電極の活物質含有層では、集電体からの距離に応じて導電性の勾配が生じ、その結果、活物質含有層の導電性の均一性が乏しくなる。
 厚さの比T2/T1は、1.0以上1.6以下であることが好ましい。この範囲内の厚さの比T2/T1を満たす電極は、活物質含有層における導電性について、より優れた均一性を示すことができる。厚さの比T2/T1は、1.1以上1.55以下であることがより好ましい。
 強度比I2/I1が0.15よりも小さい電極では、活物質含有層において、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に存在する細孔を繋ぐ細孔が十分に存在しないと考えられる。一方、強度比I2/I1が0.40よりも大きい電極では、活物質含有層において、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に存在する細孔が十分に存在しないと考えられる。これらの電極では、電池に組み込んで使用した場合、充放電に伴って、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に電荷担体が不足してしまう。そのため、このような電極では、優れた寿命特性を実現することができない。
 強度比I2/I1は、0.18以上0.38以下であることが好ましい。この範囲内の強度比I2/I1を満たす電極は、電池に組み込んだ場合、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に電荷担体をより十分に存在させることができる。強度比I2/I1は、0.20以上0.35以下であることがより好ましい。
 第1のピークトップの細孔径が第2のピークトップの細孔径以上である電極では、活物質含有層において、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に存在する細孔が十分でないと考えられる。このような電極では、電池に組み込んで使用した場合、充放電に伴って、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に電荷担体が不足してしまう。そのため、このような電極では、優れた寿命特性を実現することができない。
 次に、第1の実施形態に係る電極を、より詳細に説明する。
 第1の実施形態に係る電極は、電池において使用することができる。第1の実施形態に係る電極は、電池において、例えば、正極として用いることができる。電池は、例えば、充電及び放電を繰り返して行うことができる二次電池であり得る。二次電池の例としては、非水電解質電池を挙げることができる。非水電解質電池は非水電解質を含み、非水電解質は電解質を含む。二次電池の他の例としては、水系溶媒と、水系溶媒に溶解した電解質とを含んだ電解液を含んだ電池を挙げることができる。
 第1の実施形態に係る電極は、集電体と、集電体上に形成された活物質含有層とを含む。
 集電体は、例えば、帯状の平面形状を有することができる。帯状の集電体は、一対の長辺と一対の短辺とを有することができる。一対の長辺は、平行であってもよいし、又は並行でなくてもよい。同様に、一対の短辺は、平行であってもよいし、又は並行でなくてもよい。
 集電体は、例えば、第1の表面と、第1の表面の反対側の面としての第2の表面とを有することができる。集電体の厚さT1[μm]は、例えば、第1の表面と第2の表面との間の距離である。
 集電体の厚さT1が10μm以上25μm以下の範囲内にあり且つ集電体の一対の短辺の長さT3が20mm以上100mm以下の範囲内にあることが好ましい。このような集電体を含む好ましい態様の電極では、活物質含有層がより均一な導電性を示すことができる。集電体の厚さT1は、12μm以上20μm以下の範囲内にあることがより好ましい。集電体の一対の短辺の長さT3は、50mm以上95mm以下の範囲内にあることがより好ましい。
 集電体は、例えば、アルミニウム箔、又はMg、Ti、Zn、Mn、Fe、Cu及びSiから選択される少なくとも1種の元素を含むアルミニウム合金箔であることが好ましい。
 活物質含有層は、集電体の一方の表面上、又は両方の表面上に形成され得る。例えば、活物質含有層は、集電体の第1の表面及び第2の表面の何れか一方に形成されてもよいし、或いは、集電体の第1の表面及び第2の表面の両方に形成されてもよい。集電体は、活物質含有層を担持していない部分を含んでもよい。この部分は、例えば、集電タブとして用いることができる。或いは、第1の実施形態に係る電極は、集電体とは別体の集電タブを含むこともできる。
 活物質含有層は、例えば、帯状の平面形状を有することができる。帯状の活物質含有層は、一対の長辺と一対の短辺とを有することができる。一対の長辺は、平行であってもよいし、又は並行でなくてもよい。同様に、一対の短辺は、平行であってもよいし、又は並行でなくてもよい。
 活物質含有層の厚さT2は、12μm以上40μm以下の範囲内にあることが好ましく、15μm以上35μm以下の範囲内にあることがより好ましい。なお、活物質含有層が集電体の両方の表面上に担持されている場合、活物質含有層の厚さT2は、2つの活物質含有層の厚さの平均である。
 活物質含有層の一対の短辺の長さT4は、20mm以上90mm以下の範囲内にあることが好ましい。活物質含有層の一対の短辺の長さT4は、45mm以上85mm以下の範囲内にあることがより好ましい。
 特に、集電体の厚さT1が10μm以上25μm以下の範囲内にあり且つ活物質含有層の一対の短辺の長さT4は、20mm以上90mm以下の範囲内にあることがより好ましい。このような態様の電極は、活物質含有層における電極反応の進行を、より均一にすることができる。
 活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物を含む。
 リチウムニッケルコバルトマンガン複合酸化物は、例えば、一般式LixNiaCobMncM1d2で表される組成を有することができる。ここで、0.9≦x≦1.2、0.4≦a≦0.9、0.05≦b≦0.4、0.05≦c≦0.4、0≦d≦0.05、a+b+c+d=1であり、M1は、Mg、Al、Zr、Ti及びWからなる群より選択される少なくとも1種である。
 リチウムニッケルコバルトマンガン複合酸化物における比Y2/Y1が1以上であることが好ましい。ここで、Y1は、リチウムニッケルコバルトマンガン複合酸化物におけるCoの含有量[mol%]であり、Y2は、リチウムニッケルコバルトマンガン複合酸化物におけるNiの含有量[mol%]である。比Y2/Y1は、上記一般式についての比a/bに対応する。このようなリチウムニッケルコバルトマンガン複合酸化物は、優れた入出力特性及び優れた寿命特性に加えて、優れたエネルギー密度を実現することができる。比Y2/Y1は、1.2以上5.0以下であることがより好ましく、1.5以上3.0以下であることが特に好ましい。
 リチウムニッケルコバルトマンガン複合酸化物は、一次粒子が凝集した二次粒子の形態であることが好ましい。すなわち、活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物の二次粒子を含むことが好ましい。或いは、活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物の一次粒子を含むこともできるし、或いは一次粒子と二次粒子との混合物を含むこともできる。
 リチウムコバルト複合酸化物は、例えば、一般式LiyCoeM2f2で表される組成を有することができる。ここで、0.9≦y≦1.2、0.9<e≦1、0≦f<0.1、e+f=1であり、M2は、Mg、Al、Ti、Zr及びWからなる群より選択される少なくとも1種である。
 リチウムコバルト複合酸化物は、一次粒子の形態であることが好ましい。すなわち、活物質含有層は、リチウムコバルト複合酸化物の一次粒子を含むことが好ましい。或いは、活物質含有層は、リチウムコバルト複合酸化物の二次粒子を含むこともできるし、或いは一次粒子と二次粒子との混合物を含むこともできる。
 リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物は、活物質含有層において、活物質として働くことができる。互いから区別するため、リチウムニッケルコバルトマンガン複合酸化物を第1の活物質と呼ぶことができ、リチウムコバルト複合酸化物を第2の活物質と呼ぶことができる。
 活物質含有層は、第1及び第2の活物質とは異なる、第3の活物質を更に含むこともできる。
 第3の活物質としては、例えば、リチウムマンガン複合酸化物(例えば、LiuMn24又はLiuMnO2)、リチウムニッケル複合酸化物(例えば、LiuNiO2)、リチウムニッケルコバルト複合酸化物(例えば、LiuNi1-gCog2)、リチウムマンガンコバルト複合酸化物(例えば、LiuMnhCo1-h2)、リチウムニッケルコバルトアルミニウム複合酸化物(例えば、LiuNi1-i-jCoiAlj2)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えば、LiuMn2-kNik4)が含まれる。上記において、0<u≦1、0<g<1、0<h<1、0<i<1、0<j<1、0<k<1であることが好ましい。これらの複合酸化物は、Liを吸蔵及び放出することができる。第3の活物質として、これらの複合酸化物のうちの1種を単独で用いてもよいし、或いは2種類以上の混合物を用いてもよい。
 これらの中でも、リチウムマンガン複合酸化物(LiuMn24)、リチウムニッケルコバルト複合酸化物(LiuNi1-gCog2)、リチウムマンガンコバルト複合酸化物(LiuMnhCo1-h2)が好ましい。上記において、0<u≦1、0<g<1、0<h<0であることが好ましい。
 活物質において第1、第2及び第3の活物質の質量の合計に対する第3の活物質の質量の割合は、0質量%以上10質量%以下であることが好ましい。活物質は、第3の活物質を含まないことがより好ましい。
 活物質含有層は、導電剤及び結着剤を更に含むことができる。
 導電剤は、活物質含有層における集電性能を高めることができる。また、導電剤は、活物質と集電体との接触抵抗を抑える作用を有することができる。導電剤の例には、アセチレンブラックなどのカーボンブラック、黒鉛、カーボンナノファイバー、及びカーボンナノチューブのような炭素質物が含まれる。導電剤として、これらの炭素質物を単独で用いてもよいし、或いは複数の炭素質物を用いてもよい。
 結着剤は、活物質及び導電剤を集電体に結着させることができる。結着剤の例には、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリアクリル酸、ポリアクリロニトリル及びフッ素系ゴムなどが含まれる。
 活物質(リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の総量(第3の活物質を含む場合は、第3の活物質の質量を更に含む))、導電剤及び結着剤は、それぞれ80質量%以上95質量%以下、3質量%以上18質量%以下、及び2質量%以上17質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより上述した効果を発揮することができる。導電剤は、18質量%以下の量にすることにより高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤は、2質量%以上の量にすることにより十分な電極強度が得られる。結着剤は、17質量%以下の量にすることにより、活物質含有層中の絶縁材料である結着剤の配合量を減少させ、内部抵抗を減少できる。
 第1の実施形態に係る電極は、式(2):0.31≦X1/(X1+X2+X3)≦0.55を満たす。ここで、X1、X2及びX3は、それぞれ、活物質含有層におけるCo、Ni及びMnの含有量[mol%]である。式(2)を満たす電極は、より優れた寿命特性とより優れた入出力特性とを実現することができる。活物質含有層におけるCo、Ni及びMnの含有量は、0.33≦X1/(X1+X2+X3)≦0.5を満たすことが好ましく、0.35≦X1/(X1+X2+X3)≦0.45を満たすことがより好ましい。
 例えば、活物質含有層は、第3の活物質を含まない場合、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物を80:20~96:4の範囲内の質量比で含むことができる。言い換えると、第1の実施形態に係る電極は、上記式(2)及び式(4):4≦Z1/Z2≦24を満たすことができる。ここで、Z1は、活物質の質量に対するリチウムニッケルコバルトマンガン複合酸化物の質量の比[質量%]であり、Z2は、活物質の質量に対するリチウムコバルト複合酸化物の質量の比[質量比]である。質量比Z1/Z2は、5以上12以下であることが好ましく、5.5以上9以下であることがより好ましい。
 (製造方法)
 第1の実施形態に係る電極は、例えば、以下の手順で作製することができる。
 まず、活物質として、リチウムニッケルコバルトマンガン複合酸化物の二次粒子とリチウムコバルト複合酸化物の一次粒子とを準備する。この際、Ni、Co及びMnの含有量が式(2):0.31≦X1/(X1+X2+X3)≦0.5を満たすように留意する。この活物質と、導電剤と、結着剤とを、例えば先に説明した配合比となるように、溶媒中に投入し、混練して、スラリーを調製する。スラリー調製の際、高いせん断力がかかるような分散プロセスを施す。このプロセスにより、リチウムニッケルコバルトマンガン複合酸化物の二次粒子の一部が解れ一次粒子が生じ、この一次粒子が粒子混合物の粒子間を埋めることができる。高せん断分散プロセスは、例えば、薄膜旋回型高速ミキサーや、ビーズミルなどの分散方法が挙げられる。具体的な条件の例を、後段の実施例に示す。
 次に、以上のようにして得られたスラリーを、集電体の両面又は片面に塗布し、塗膜を乾燥させる。乾燥後、プレス処理を行う。この際、式(3):0.7≦T2/T1≦1.6を満たすように、プレス条件を調製する。また、プレス条件は、スラリー調製条件も考慮に入れて決定する。具体的な条件の例を、後段の実施例に示す。
 このようなプレスにより、上記式(1)~(3)を満たす、第1の実施形態に係る電極を得ることができる。
 <測定方法>
 以下に、各測定方法を説明する。
 [前処理]
 測定に際して、測定対象としての電極を準備する。
 電池に含まれている電極は、以下の手順に従う前処理によって準備する。
 まず、電池を、放電状態にする。ここでの放電状態とは、25℃の環境下で0.2C以下の電流値にて放電下限電圧まで定電流放電に供した状態を示す。
 次いで、放電状態とした電池を、アルゴンガスが充填されたグローブボックスに入れる。次に、グローブボックス内で対象となる電極を電池から取り出す。取り出した電極を、エチルメチルカーボネートなどの鎖状カーボネートを用いて洗浄する。その後、電極を乾燥させる。
 かくして、測定対象の電極を得ることができる。
 [水銀圧入法による細孔径分布の取得方法]
 以上のようにして得られた電極から、10mm×25mm程度の大きさの試料を切り出す。
 続いて、得られた試料を測定装置に装入する。装入した試料に対して水銀圧入法を行うことにより、活物質含有層についての細孔径分布が得られる。
 測定装置には、島津オートポア9520(Autopore 9520 model manufactured by Shimadzu Corporation)を用いる。先のようにして得られた試料を折りたたんで測定セルに採り、初期圧20kPa(初期圧20kPaは約3psiaに相当し、また、細孔径が約60μmの試料に加わる圧力に相当する)及び最高圧414Mpa(最高圧414Mpaは約59986psiaに相当し、また、細孔径が約0.003μmである試料に加わる圧力に相当する)の条件で測定する。3つ試料の平均値を測定結果として用いる。データ整理に当り、細孔比表面積は、細孔の形状を円筒形として計算する。
 なお、水銀圧入法の解析原理はWashburnの式(1)に基づく。
   D=-4γcosθ/P   (1)式
 ここで、Pは加える圧力、Dは細孔直径、γは水銀の表面張力(480dyne・cm-1)、θは水銀と細孔壁面の接触角で140°である。γ及びθは定数であるからWashburnの式より、加えた圧力Pと細孔径Dとの関係が求められ、そのときの水銀浸入容積を測定することにより、細孔径とその容積分布とを導くことができる。測定法及び原理等の詳細については、非特許文献1及び非特許文献2などを参照されたい。
 かくの如く得られた細孔径分布から、0.1μm以上1μm以下の細孔径の範囲内での最強度I1を示す第1のピークトップに対応する細孔径と、0.1μm以上1μm以下の細孔径の範囲内において最強度I1の次に大きい強度I2を示す第2のピークトップと細孔径とを確認することができる。また、最強度I1及び強度I2から、強度比I2/I1を算出することができる。
 [活物質含有層に含まれる遷移金属元素の定量方法]
 先のようにして準備した測定対象の電極の他の一部を、適切な溶媒中に入れて超音波を照射する。例えば、ガラスビーカー中に入れたエチルメチルカーボネートに電極体を入れ、超音波洗浄機中で振動させることで、集電体から活物質含有層を剥離することができる。次に、減圧乾燥を行い、剥離した活物質含有層を乾燥させる。得られた活物質含有層を乳鉢などで粉砕することで、活物質含有層の成分、例えば活物質、導電剤及び決着剤を含む粉末となる。この粉末を、酸で溶解することで、活物質含有層の成分を含む液体サンプルを作成できる。このとき、酸としては塩酸、硝酸、硫酸、フッ化水素などを使用できる。この液体サンプルをICP発光分光分析に供することで、活物質含有層に含まれていた各元素の濃度を知ることができる。
 また、この結果から、活物質含有層におけるCoの含有量X1[mol%]、Niの含有量X2[mol%]及びMnの含有量X3[mol%]を算出することができる。
 [活物質含有層に含まれる複合酸化物の同定方法]
 先のようにして準備した測定対象の電極の他の一部を、イオンミリング装置にて切り出す。切り出した電極の断面を、走査型電子顕微鏡(SEM)にて観察する。試料のサンプリングについても大気に触れないようにし、アルゴンや窒素など不活性雰囲気で行う。
 3000倍のSEM観察像にて、幾つかの粒子を選定する。この際、選定した粒子の粒度分布ができるだけ広くなるように選定する。
 次に、選定したそれぞれの粒子について、エネルギー分散型X線分光法(EDX)による元素分析を行う。これにより、選定したそれぞれの粒子に含まれる元素のうちLi以外の元素の種類及び量を特定することができる。
 SEMで選定したそれぞれの粒子に含まれている化合物の結晶構造は、X線回折(XRD)測定により特定することができる。
 測定は、CuKα線を線源として、2θ=10~90°の測定範囲で行う。この測定により、選定した粒子に含まれる化合物のX線回折パターンを得ることができる。
 粉末X線回折測定の装置としては、Rigaku社製SmartLabを用いる。測定条件は以下の通りとする:Cuターゲット;45kV 200mA;ソーラスリット:入射及び受光共に5°;ステップ幅:0.02deg;スキャン速度:20deg/分;半導体検出器:D/teX Ultra 250;試料板ホルダー:平板ガラス試料板ホルダー(厚さ0.5mm);測定範囲:10°≦2θ≦90°の範囲。その他の装置を使用する場合は以下の手順で測定を行う。まず、用いる装置において、粉末X線回折用標準Si粉末の測定結果が上記Rigaku社製SmartLabでの測定結果(ピーク強度及びピークトップ位置)と同様になる条件を見つける。この条件で、電極の分析を行う。
 電極についてのXRD測定は、測定対象の電極を、広角X線回折装置のホルダーの面積と同程度切り出し、直接ガラスホルダーに貼り付けて測定することによって行うことができる。このとき、集電体の金属箔の種類に応じてあらかじめXRDパターンを測定しておき、どの位置に集電体由来のピークが現れるかを把握しておく。また、導電剤や結着剤といった合剤のピークの有無もあらかじめ把握しておく。集電体のピークと活物質のピークが重なる場合、集電体から活物質を剥離して測定することが望ましい。これは、ピーク強度を定量的に測定する際、重なったピークを分離するためである。もちろん、これらを事前に把握できているのであれば、この操作を省略することができる。電極を物理的に剥離しても良いが、溶媒中で超音波をかけると剥離しやすい。このようにして回収した電極を測定することで、活物質の広角X線回折測定を行うことができる。
 電極に含まれている粒子について、SEM及びEDXによる組成の特定と、XRDによる結晶構造の特定と、先に説明したICP発光分光分析との結果を組み合わせることにより、電極に含まれている化合物の組成及び結晶構造を特定することができる。
 この結果から、活物質含有層に含まれるリチウムニッケルコバルトマンガン複合酸化物におけるCoの含有量Y1[mol%]及びNiの含有量Y2[mol%]を算出することができる。
 [複合酸化物の粒子形状及び平均粒子径の確認方法]
 先に説明した電極のSEM‐EDX観察において、3000倍の倍率で、複合酸化物についての像を得る。得られた視野において、一次粒子が接触していることを確認できる粒子群を二次粒子とする。
 一次粒子の大きさは、一次粒子に対応する最少円の直径から求める。具体的には、3000倍の倍率のSEM像において、10回粒径測定を行い、それぞれにおいて得られた最少円の直径の平均を一次粒径とする。平均の算出には、10回測定した内、粒径の最大値及び最小値は用いない。
 二次粒径も一次粒子と同様の方法で測定する。すなわち、二次粒子に対応する最少円の直径を求める。具体的には、3000倍の倍率のSEM像において、10回粒径測定を行い、それぞれにおいて得られた最少円の直径の平均を二次粒径とする。平均の算出には、10回測定した内、粒径の最大値及び最小値は用いない。
 [集電体の厚さ及び活物質含有層の厚さの測定方法]
 電極が含む集電体の厚さT1及び活物質含有層の厚さT2は、膜厚計を用いて測定する。膜厚計としては、測定対象の主面に1cm2あたり15g以上20g以下の荷重をかけることができる機能と、このように荷重をかけた状態での長さを測定できる機能とを備えた膜厚計を用いる。このような膜厚計を用いることにより、電極の浮きや歪みを排除して、それぞれの厚さを測定することができる。
 具体的には、以下の手順で測定する。
 まず、測定対象の電極の異なる5か所の厚さを、膜厚計を用いて測定する。測定結果の平均値を、電極の厚さTt[μm]とする。
 次に、測定対象の電極の集電体から、活物質含有層を剥がす。例えば、先に説明したように、溶媒中で超音波をかけることにより、活物質含有層を剥がすことができる。かくして、電極に含まれていた集電体を得ることができる。
 次に、集電体の異なる5か所の厚さを、膜厚計を用いて測定する。測定結果の平均値を、集電体の厚さT1[μm]とする。
 次に、電極の厚さTtから集電体の厚さT1を引く。活物質含有層が集電体の片方の表面のみに担持されている場合、かくして得られた値を、活物質含有層の厚さT2[μm]とする。活物質含有層が集電体の両方の表面のみに担持されている場合、かくして得られた値を2で割った商を、活物質含有層の厚さT2[μm]とする。
 [集電体の短辺及び長辺の算出方法、並びに活物質含有層の短辺及び長辺の算出方法]
 集電体の一対の短辺が互いに異なる厚さを有する場合、一対の短辺の長さT3は、2つの値の平均値として算出する。同様に、集電体の一対の長辺が互いに異なる厚さを有する場合、一対の長辺の長さは、2つの値の平均値として算出する。
 また、活物質含有層の一対の短辺が互いに異なる厚さを有する場合、一対の短辺の長さT4は、2つの値の平均値として算出する。同様に、活物質含有層の一対の長辺が互いに異なる厚さを有する場合、一対の長辺の長さは、2つの値の平均値として算出する。
 次に、活物質含有層の細孔径分布の幾つかの例を、図面を参照しながら説明する。
 図1は、第1の実施形態に係る一例(第1の例)の電極が具備する活物質含有層の細孔分布(実線)と、参考例の電極が具備する活物質含有層の細孔分布(点線)とを示している。
 図1の実線の細孔径分布を示す第1の例の電極の活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物とを、90:10の質量比で含んでいる。第1の例の電極の活物質含有層の厚さT2は、20μmである。また、点線の細孔径分布を示す参考例の電極の活物質含有層は、第1の例の電極の活物質含有層のそれと同様の組成を有する。しかしながら、参考例の電極の活物質含有層の厚さT2は、第1の例の電極の活物質含有層の厚さT2の約2倍であり、40μmである。
 第1の例の電極及び参考例の電極の何れにおいても、集電体の厚さT1は、15μmである。
 また、参考例の電極は、スラリー分散工程にて、第1の例の電極と比較して、ビーズミルの回転数を1.5倍とし、プレス工程での荷重を1.4倍とした条件で作製した。また、参考例の電極は、スラリーの塗布量を第1の例の電極の作製の際のそれから変更して作製した。
 図1において実線で示す細孔径分布から、0.1μm以上1μm以下の細孔径の範囲内に、最強度I1を示す第1のピークトップP1と、最強度I1の次に大きい強度I2を示す第2のピークトップP2とを確認することができる。実線で示す細孔径分布の強度比I2/I1は、0.38である。一方、図1において点線で示す細孔径分布からは、0.1μm以上1μm以下の細孔径の範囲内に、最強度I1を示すピークトップP1 を確認できるが、最強度の次に大きい強度を示すピークトップを確認することはできない。
 第1の例の電極を組み込んだ電池は、参考例の電極を組み込んだ電池よりも、優れた入出力特性及び優れた寿命特性を示すことができる。これは、第1の例の電極では、先に説明した理由により、充放電に伴うリチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の劣化を防ぐことができ、且つ高い導電性を示すことができるからであると考えられる。一方、参考例の電極では、活物質含有層が、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に細孔を含んでいるものの、これらの細孔を繋ぎ且つこれらの細孔よりも大きな細孔を活物質含有層全体にわたって含んでいないと考えられる。そのため、参考例の電極を具備する電池では、充放電に伴って、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に電荷担体が不足すると考えられる。
 次に、図面を参照しながら、第1の実施形態に係る電極をより具体的に説明する。
 図2は、第1の実施形態に係る一例の電極の概略平面図である。図3は、図2に示す電極の、線III-III’に沿った概略断面図である。
 図2及び図3に示す電極4は、集電体4aと、集電体4aの両方の表面上に形成された活物質含有層4bとを具備する。
 図2及び図3に示すように、集電体4aは、図2の左右の方向に延びた一対の長辺4a-1と、一対の短辺4a-2とを有する帯状である。集電体4aの一対の短辺4a-2は、長さT3[mm]を有する。なお、図2では、一対の短辺4a-2は、活物質含有層4bの背後に隠れているため、参照符号を括弧書きで示している。
 同じく図2及び図3に示すように、活物質含有層4bは、図2の左右の方向に延びた一対の長辺4b-1と、一対の短辺4b-2とを有する帯状である。活物質含有層4bの一対の短辺4b-2は、長さT4[mm]を有する。
 図2及び図3から明らかなように、集電体4aは、表面に活物質含有層を担持していない2つの部分4cを含む。これらの部分4cのそれぞれは、集電タブとして働くことができる。集電タブ4cのそれぞれは、図2に示すように、集電体4aの長辺4a-1及び活物質含有層4bの長辺4b-1のそれぞれが延びている方向に沿って、延びている。また、集電タブ4cのそれぞれは、集電体4aの1つの長辺4a-1を含んでいる。
 図3に示すように、集電体4aは厚さT1[μm]を有しており、活物質含有層4bは厚さT2[μm]を有している。
 第1の実施形態によると、電極が提供される。電極は、集電体と、集電体上に形成された活物質含有層とを含む。活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物とを含む。活物質含有層の水銀圧入法による細孔径分布が、0.1μm以上1μm以下の細孔径の範囲内での最強度I1を示す第1のピークトップと、0.1μm以上1μm以下の細孔径の範囲内において最強度I1の次に大きい強度I2を示す第2のピークトップとを有する。第1のピークトップの細孔径は、第2のピークトップの細孔径よりも小さい。電極は、以下の式(1)~(3)を満たす:式(1):0.15≦I2/I1≦0.40;式(2):0.31≦X1/(X1+X2+X3)≦0.55;式(3):0.7≦T2/T1≦1.6。この電極は、電池に組み込んで使用した際、充放電に伴うリチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の劣化を防ぐことができ、且つ高い導電性を示すことができる。その結果、第1の実施形態に係る電極は、優れた入出力特性及び優れた寿命特性を示すことができる電池を実現できる。
 (第2の実施形態)
 第2の実施形態によると、電極群が提供される。電極群は、正極と、負極とを具備する。正極は、正極活物質含有層を含む。負極は、負極活物質含有層を含む。正極は、第1の実施形態に係る電極である。正極活物質含有層は、第1の実施形態に係る電極が具備する活物質含有層である。
 第2の実施形態に係る電極群は、第1の実施形態に係る電極を具備するので、優れた入出力特性及び優れた寿命特性を示すことができる電池を実現できる。
 以下、第2の実施形態に係る電極群を、より詳細に説明する。
 第2の実施形態に係る電極群は、正極と、負極とを具備する。
 正極は、第1の実施形態に係る電極である。そのため、第2の実施形態に係る電極群が具備する正極は、第1の実施形態に係る電極が具備する、集電体と、活物質含有層とを具備する。以下、負極の部材との区別のため、第1の実施形態に係る電極が具備することができる、集電体、活物質含有層、集電タブ、及び活物質を、それぞれ、正極集電体、正極活物質含有層、正極集電タブ、及び正極活物質と呼ぶ。なお、正極に関する詳細は、第1の実施形態に係る電極の説明を参照されたい。
 負極は、例えば、負極集電体と、負極集電体上に形成された負極活物質含有層とを含むことができる。
 負極集電体は、例えば、帯状の平面形状を有することができる。帯状の負極集電体は、一対の長辺と一対の短辺とを有することができる。一対の長辺は、平行であってもよいし、又は並行でなくてもよい。同様に、一対の短辺は、平行であってもよいし、又は並行でなくてもよい。
 負極集電体の厚さは、10μm以上25μm以下であることが好ましく、12μm以上20μm以下であることがより好ましい。
 負極集電体の一対の短辺の長さT6は、20mm以上100mm以下の範囲内にあることが好ましい。負極集電体の一対の短辺の長さT6は、50mm以上95mm以下の範囲内にあることがより好ましい。
 負極集電体は、例えば、第1の表面と、第1の表面の反対側の面としての第2の表面とを有することができる。負極集電体は、その片方の表面のみに負極活物質含有層を担持することもできるし、又は両方の表面に負極活物質含有層を担持することもできる。負極集電体は、表面に負極活物質含有層を担持していない部分を含むこともできる。この部分は、例えば負極集電タブとして働くことができる。或いは、負極は、負極集電体とは別体の負極集電タブを含むこともできる。
 負極活物質含有層は、例えば、帯状の平面形状を有することができる。言い換えると、負極活物質含有層は、帯状の平面形状を有する主面を有することができる。帯状の負極活物質含有層は、一対の長辺と一対の短辺とを有することができる。一対の長辺は、平行であってもよいし、又は並行でなくてもよい。同様に、一対の短辺は、平行であってもよいし、又は並行でなくてもよい。
 負極活物質含有層の厚さは、12μm以上35μm以下の範囲内にあることが好ましく、15μm以上30μm以下の範囲内にあることがより好ましい。なお、負極活物質含有層が集電体の両方の表面上に担持されている場合、負極活物質含有層の厚さは、2つの活物質含有層の厚さの平均である。
 負極活物質含有層の一対の短辺の長さT5は、20mm以上95mm以下の範囲内にあることが好ましい。活物質含有層の一対の短辺の長さT5は、50mm以上90mm以下の範囲内にあることがより好ましい。
 第2の実施形態に係る電極群は、セパレータを更に具備することもできる。セパレータは、例えば、電極群において、正極活物質含有層と負極活物質含有層との間に位置する。セパレータは、正極活物質含有層と負極活物質含有層との接触を防ぎ、それによりこれらの間の通電を防ぐ役割を果たすことができる。
 電極群は、様々な構造を有することができる。例えば、電極群は、スタック型の構造を有することができる。スタック型構造の電極群は、例えば、複数の正極及び負極を、正極活物質含有層と負極活物質含有層との間にセパレータを挟んで積層することによって得ることができる。或いは、電極群は、捲回型の構造を有することができる。捲回型の電極群は、例えば、一枚のセパレータと、一枚の正極と、もう一枚のセパレータと、一枚の負極とをこの順で積層させて積層体を作り、この積層体を負極が外側にくるように捲回することによって得ることができる。
 第2の実施形態に係る電極群において、比Wc/Waが1.25以上1.75以下であることが好ましい。ここで、Wcは、正極活物質含有層の単位面積当たりの質量(g/m2)である。Waは、負極活物質含有層の単位面積当たりの質量(g/m2)である。この態様の電極群は、寿命特性に優れる。比Wc/Waは、1.3以上1.6以下であることがより好ましい。
 第2の実施形態に係る電極群は、式(4):T4<T5を満たすことが好ましい。ここで、T4は、正極活物質含有層の一対の短辺の長さ[mm]である。すなわち、長さT4は、第1の実施形態において説明した長さT4に対応する。T5は、負極活物質含有層の一対の短辺の長さ[mm]である。言い換えると、この態様では、負極活物質含有層の幅(短辺の長さ)が、正極活物質含有層の幅(短辺の長さ)よりも大きい。この態様に係る電極群は、優れた寿命特性を実現することができる。長さの比T4/T5は、0.8以上1.0未満であることがより好ましい。
 第2の実施形態に係る電極群において、厚さの比T7/T8は、0.7以上1.3以下の範囲内にあることが好ましい。ここで、T7は、正極の厚さ[μm]、すなわち正極集電体の厚さと正極活物質含有層の厚さとの合計である。T8は、負極の厚さ[μm]、すなわち負極集電体の厚さと負極活物質含有層の厚さとの合計である。この態様に係る電極群は、より優れた入出力特性を実現することができる。厚さの比T7/T8は、0.8以上1.0以下の範囲内にあることがより好ましい。
 第2の実施形態に係る電極群は、負極端子及び正極端子を更に含むことができる。負極端子は、その一部が負極の一部に電気的に接続されることによって、負極と外部端子との間で電子が移動するための導体として働くことができる。負極端子は、例えば、負極集電体、特に負極集電タブに接続することができる。同様に、正極端子は、その一部が正極の一部に電気的に接続されることによって、正極と外部回路との間で電子が移動するための導体として働くことができる。正極端子は、例えば、正極集電体、特に正極集電タブに接続することができる。
 第2の実施形態に係る電極群は、電池において使用することができる。電池は、例えば、充電及び放電を繰り返して行うことができる二次電池であり得る。
 次に、第2の実施形態に係る電極群が具備することができる各部材について、より詳細に説明する。
 (正極)
 正極の材料に関しては、第1の実施形態に係る電極の説明を参照されたい。
 (負極)
 負極集電体はアルミニウム箔、又はMg、Ti、Zn、Mn、Fe、Cu及びSiからなる群より選択される少なくとも1種の元素を含むアルミニウム合金箔から形成されることが好ましい。
 負極活物質含有層は、負極活物質を含むことができる。負極活物質含有層は、負極活物質に加えて、導電剤及び結着剤を更に含むこともできる。
 負極活物質としては、例えば、スピネル型の結晶構造を有するチタン酸リチウム、ラムスデライド型の結晶構造を有するチタン酸リチウム、単斜晶型の結晶構造を有する(単斜晶系β型)チタン含有酸化物、アナターゼ型の結晶構造を有するチタン含有酸化物、単斜晶型の結晶構造を有するニオブチタン複合酸化物、及び直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物からなる群より選択される少なくとも1種を用いることができる。
 スピネル型の結晶構造を有するチタン酸リチウムは、例えば、Li4+x1Ti512(x1は充放電反応により0≦x1≦3の範囲で変化する)で表される組成を有することができる。
 ラムスデライド型の結晶構造を有するチタン酸リチウムは、例えば、Li2+y1Ti37(y1は充放電反応により-1≦y1≦3の範囲で変化する)で表される組成を有することができる。
 単斜晶型の結晶構造を有するチタン含有酸化物としては、例えば、TiO2の組成を有する二酸化チタンを挙げることができる。二酸化チタンのTiの一部は、他の金属元素で置換されてもよい。他の金属元素としては、Al、Sn、Nb、及びTaを挙げることができる。Ti以外の金属元素を含む場合、この酸化物は、単斜晶型の結晶構造を有するチタン含有複合酸化物と呼ぶこともできる。
 アナターゼ型の結晶構造を有するチタン含有酸化物としては、例えば、TiO2の組成を有する二酸化チタンを挙げることができる。二酸化チタンのTiの一部は、他の金属元素で置換されてもよい。他の金属元素としては、Al、Sn、Nb、及びTaを挙げることができる。
 単斜晶型の結晶構造を有するニオブチタン複合酸化物は、例えば、一般式Ti1-x2Mαx2Nb2-y2Mβy27-δ2で表される組成を有することができる。この一般式において、Mα及びMβは、それぞれ、Mg、Fe、Ni、Co、W、Ta及びMoからなる群より選択される少なくとも1種である。元素Mαと元素Mβとは、同じであっても良いし、又は互いに異なっていても良い。上記一般式において、各添字は以下の範囲内にある:0≦x2<1、0≦y2<1及び-0.3≦δ2≦0.3。単斜晶型の結晶構造を有するニオブチタン複合酸化物の具体例としては、Liv1Nb2TiO7(0≦v1≦5)の一般式で表される組成を有する複合酸化物が挙げられる。
 Na含有ニオブチタン複合酸化物は、Na、Nb及びTiを含んだ複合酸化物ということができる。直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物は、一般式Li2+v2Na2-y3M1x3Ti6-y3-z3Nby3M2z314+δ3で表される組成を有することができる。この一般式において、M1は、Cs、K、Sr、Ba及びCaからなる群より選択される少なくとも1種である。M2は、Sn、V、Ta、Mo、W、Fe、Co及びMnからなる群より選択される少なくとも1種である。各添字は以下の範囲内にある:0≦v2≦4;0≦x3<2;0.1<y3<0.8;0≦z3<3;-0.5≦δ3≦0.5。
 特に、負極活物質含有層は、スピネル型リチウムチタン複合酸化物及び直方晶型チタン含有複合酸化物からなる群より選択される少なくとも1種のチタン含有複合酸化物を含むことが好ましい。この態様に係る電極群は、より優れた入出力特性を実現することができる。
 導電剤は、負極活物質含有層における集電性能を高めることができる。また、導電剤は、負極活物質と負極集電体との接触抵抗を抑える作用を有することができる。導電剤の例には、アセチレンブラックなどのカーボンブラック、黒鉛、カーボンナノファイバー、及びカーボンナノチューブのような炭素質物が含まれる。中でも、黒鉛やカーボンナノファイバーは低抵抗な負極活物質含有層を形成しやすいため、好ましい。黒鉛やカーボンナノファイバーは、アセチレンブラックなどのカーボンブラックに比べて負極活物質粒子間に入り込みやすく、負極活物質含有層の厚さ方向の導電性を付与することができ、高い入出力特性を実現することができる。導電剤として、これらの炭素質物を単独で用いてもよいし、又は複数の炭素質物を用いてもよい。
 結着剤は、負極活物質、導電剤及び負極集電体を結着させる作用を有することができる。結着剤の例には、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム、アクリル樹脂及びその共重合体、ポリアクリル酸、並びにポリアクリロニトリルなどが挙げられる。
 負極活物質含有層において、負極活物質が70質量%以上96質量%以下の重量比で含まれており、導電剤が2質量%以上28質量%以下の重量比で含まれており、結着剤が2質量%以上28質量%以下の質量比で含まれていることが好ましい。導電剤を2質量%以上の質量比で含む負極活物質含有層は、より優れた集電性能を示すことができ、その結果、より優れた大電流特性を実現することができる。また、結着剤を2質量%以上の質量比で含んでいる負極活物質含有層は、負極活物質含有層と集電体との優れた結着性を示すことができ、より優れたサイクル特性を実現することができる。一方、高容量化の観点から、導電剤及び結着剤の量は、各々、28質量%以下であることが好ましい。
 (セパレータ)
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロース及びポリフッ化ビニリデン(PVdF)のような材料から形成された多孔質フィルム、合成樹脂製不織布等を用いることができる。さらに多孔質フィルムに無機化合物を塗布したセパレータも使用できる。
 (正極端子)
 正極端子は、例えばリチウムの酸化還元電位に対する電位が3.0V以上4.5V以下の範囲において電気的に安定であり、且つ導電性を有する材料から形成される。アルミニウム、又はMg、Ti、Zn、Mn、Fe、Cu及びSiのような元素を含むアルミニウム合金から形成されることが好ましい。正極端子は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料から形成されることが好ましい。
 (負極端子)
 負極端子は、リチウムの酸化還元電位に対する電位が0.8V以上3.0V以下の範囲において電気的に安定であり、且つ導電性を有する材料から形成される。アルミニウム、又は、Mg、Ti、Zn、Mn、Fe、Cu、Siのような元素を含むアルミニウム合金から形成されることが好ましい。負極端子は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料から形成されることが好ましい。
 <測定方法>
 以下に、各測定方法を説明する。
 [活物質の同定方法]
 正極活物質含有層に含まれている正極活物質は、第1の実施形態において説明した測定方法により、同定することができる。負極活物質含有層に含まれている負極活物質も、同様の手順で同定することができる。
 [厚さの測定方法]
 正極及び負極に関し、集電体及び活物質含有層の厚さは、第1の実施形態において説明した測定方法により、測定する。
 [正極活物質含有層の単位面積当たりの質量及び負極活物質含有層の単位面積当たりの質量の測定方法]
 先に説明した手順で、測定対象の正極を準備する。次いで、準備した正極から、5mm×5mm程度の大きさの試料を切り出す。次いで、試料の質量を測定し、Ws[g]とする。次いで、先に説明した手順により、試料から正極活物質含有層を剥がし、正極集電体のみとする。この正極集電体の質量を測定し、Wsc[g]とする。
 質量Wsから質量Wscを減ずることにより、試料に含まれていた正極活物質含有層の質量Wsa[g]を得ることができる。
 正極集電体の両面が正極活物質含有層を担持していた場合、この質量Wsaを試料の面積で割り、さらに2で割ることにより、正極活物質含有層の単位面積当たりの質量[g/m2]を得ることができる。
 正極集電体の片面が正極活物質含有層を担持していた場合、この質量Wsaを試料の面積で割ることにより、正極活物質含有層の単位面積当たりの質量Wc[g/m2]を求めることができる。
 負極活物質含有層の単位面積当たりの質量Wa[g/m2]も、同様の手順で求めることができる。
 次に、図面を参照しながら、第2の実施形態に係る電極群をより具体的に説明する。 
 図4は、第2の実施形態に係る一例の電極群の概略断面図である。図5は、図4に示す電極群のA部の拡大断面図である。図6は、図4及び図5に示す電極群が具備する負極の概略平面図である。
 図4及び図5に示す電極群3は、図5に示す正極4と、図5及び図6に示す負極5と、図5に示す2枚のセパレータ6とを具備する。
 図4に示すように、電極群3は、扁平状の捲回型電極群である。扁平状の捲回型電極群3は、図5に示すように、外側から負極5、セパレータ6、正極4、セパレータ6の順で積層した積層物を渦巻状に捲回し、プレス成型することにより形成されている。
 正極4は、図2及び図3を参照しながら説明した一例の電極4のそれと同様の構造を有している。
 図5及び図6に示すように、負極5は、負極集電体5a及び負極活物質含有層5bを含む。負極5のうち最も外側に位置する部分では、図5に示すように負極集電体5aの内面側の片面上に負極活物質含有層5bが形成されている。図6では、左側に、負極5のうち電極群3の最も外側に位置する部分を示している。負極5のその他の部分では、負極集電体5aの両面上に負極活物質含有層5bが形成されている。
 図6に示すように、負極集電体5aは、図6の左右方向に延びた一対の長辺5a-1と、一対の短辺5a-2とを有する帯状である。負極集電体5aの一対の短辺5a-2は、長さT6[mm]を有する。なお、図6において、一方の短辺5a-2は、負極活物質含有層5bの背後に隠れているため、参照符号を括弧書きで示している。
 同じく図6に示すように、負極活物質含有層5bは、図6の左右方向に延びた一対の長辺5b-1と、一対の短辺5b-2とを有する帯状である。負極活物質含有層5bの一対の短辺5b-2は、長さT5[mm]を有する。
 図6から明らかなように、負極集電体5aは、表面に負極活物質含有層5bを担持していない2つの部分5cを含む。これらの部分5cのそれぞれは、負極集電タブとして働くことができる。負極集電タブ5cのそれぞれは、図6に示すように、負極集電体5aの長辺5a-1及び負極活物質含有層5bの長辺5b-1のそれぞれが延びている方向に沿って、延びている。また、負極集電タブ5cのそれぞれは、負極集電体5aの1つの長辺5a-1を含んでいる。
 第2の実施形態に係る電極群は、第1の実施形態に係る電極を具備する。そのため、第2の実施形態に係る電極群は、優れた入出力特性及び優れた寿命特性を示すことができる電池を実現できる。
 (第3の実施形態)
 第3の実施形態によると、電池が提供される。電池は、第2の実施形態に係る電極群と、電解質とを具備する。
 第3の実施形態に係る電池は、第2の実施形態に係る電極群を具備するので、優れた入出力特性及び優れた寿命特性を示すことができる。
 第3の実施形態に係る電池は、例えば、充電及び放電を繰り返し行うことができる。そのため、第3の実施形態に係る電池は、二次電池ということもできる。
 第3の実施形態に係る電池は、例えば非水電解質電池である。非水電解質電池は非水電解質を含み、非水電解質は電解質を含む。或いは、第3の実施形態に係る電池は、水系溶媒と、水系溶媒に溶解した電解質とを含んだ電解液を含んだ電池であってもよい。
 次に、第3の実施形態に係る電池をより詳細に説明する。
 第3の実施形態に係る電池は、第2の実施形態に係る電極群と、電解質とを具備する。
 電極群は、第2の実施形態に係る電極群である。電極群において、負極活物質含有層の主面の少なくとも一部は、例えば図5に示したように、正極活物質含有層に対向することができる。
 第3の実施形態に係る電池において、比A/Saが5以上11以下であることが好ましい。ここで、Aは、電池の定格容量[Ah]である。Saは、負極活物質含有層の主面のうち正極活物質含有層に対向する部分の面積[m2]である。この態様に係る電池は、レート特性に優れる。比A/Saは、6以上8以下であることがより好ましい。
 電極群に関するそれ以外の詳細は、第2の実施形態に係る電極群の説明を参照されたい。
 第3の実施形態に係る電池の一例である非水電解質電池において、非水電解質は、例えば電極群に含浸された状態で保持され得る。或いは、第3の実施形態に係る他の例の電池では、電解質を含んだ電解液が、例えば電極群に含浸された状態で保持され得る。
 第3の実施形態に係る電池は、外装部材を更に具備することができる。外装部材は、電極群及び電解質を収容することができる。非水電解質電池の場合、非水電解質は、外装部材内で、電極群に含浸され得る。正極端子及び負極端子のそれぞれの一部は、外装部材から延出させることができる。
 第3の実施形態に係る電池の定格容量は、例えば、5Ah以上80Ah以下の範囲内にあることが好ましい。
 次に、第3の実施形態に係る電池の一例である非水電解質電池が含むことができる、非水電解質及び外装部材をより詳細に説明する。
 (非水電解質)
 非水電解質としては、例えば、液状非水電解質又はゲル状非水電解質を用いることができる。
 液状非水電解質は、電解質を有機溶媒に溶解することにより調製することができる。電解質の濃度は、0.5~2.5mol/lの範囲であることが好ましい。ゲル状非水電解質は、液状電解質と高分子材料とを複合化することにより調製される。
 電解質の例には、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、及び、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]のようなリチウム塩が含まれる。電解質としては、これらの電解質のうちの1種を単独で用いてもよいし、又は2種類以上の電解質を組合せて用いることもできる。電解質は、LiPF6を含むことが好ましい。
 有機溶媒の例には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネートのような環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)のような鎖状カーボネート;テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)のような環状エーテル;ジメトキシエタン(DME)、ジエトキシエタン(DEE)のような鎖状エーテル;アセトニトリル(AN)、及び、スルホラン(SL)が含まれる。有機溶媒としては、これらの溶媒のうちの1種を単独で用いてもよいし、又は2種類以上の溶媒を組合せて用いることもできる。
 より好ましい有機溶媒の例には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、及びメチルエチルカーボネート(MEC)よりなる群から選択される2種類以上を混合した混合溶媒が含まれる。このような混合溶媒を用いることによって、充放電サイクル特性の優れた非水電解質電池を得ることができる。また、電解液には添加剤を加えることもできる。
 (外装部材)
 外装部材としては、例えば、ラミネートフィルム製の袋状容器又は金属製容器を用いることができる。
 形状としては、特に限定されないが、扁平型、角型、円筒型、コイン型、ボタン型、シート型、積層型等が挙げられる。なお、無論、携帯用電子機器等に積載される小型電池の他、二輪乃至四輪の自動車等に積載される大型電池でも良い。
 ラミネートフィルムとしては、例えば、樹脂フィルム間に金属層を挟み込んだ多層フィルムを用いることができる。或いは、金属層と、金属層を被覆する樹脂層とからなる多層フィルムを用いることもできる。樹脂フィルム及び樹脂層は、金属層を補強する役割を有する。
 金属層は、軽量化のために、アルミニウム箔もしくはアルミニウム合金箔が好ましい。樹脂フィルムには、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、及びポリエチレンテレフタレート(PET)のような高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。ラミネートフィルムは、肉厚が0.2mm以下であることが好ましい。
 金属製容器は、アルミニウム又はアルミニウム合金から形成されることができる。アルミニウム合金は、マグネシウム、亜鉛及びケイ素のような元素を含むことが好ましい。一方、鉄、銅、ニッケル、クロム等の遷移金属の含有量は100ppm以下にすることが好ましい。これにより、高温環境下での長期信頼性、放熱性を飛躍的に向上させることが可能となる。金属製容器は、肉厚が0.5mm以下であることが好ましく、肉厚が0.2mm以下であることがより好ましい。
 <測定方法>
 以下に、各測定方法を説明する。
 [対向面積Saの測定]
 まず、測定対象の電池を、先に説明した手順で解体する。解体した電池から、電極群を取り出す。
 捲回型の電極群の場合、正極活物質含有層及び負極活物質含有層を損傷しないように留意しながら、電極群の捲回を解く。展開した電極群(積層体)において、負極活物質含有層と正極活物質含有層とが重なり合った部分の面積を測定する。積層体から、正極、負極及び/又はセパレータを剥がす際にも、正極活物質含有層及び負極活物質含有層を損傷しないように留意する。また、負極活物質含有層の主面のうち、捲回された状態において正極活物質含有層と向き合った部分の面積も測定する。
 スタック型構造の電極群の場合は、電極群において、負極活物質含有層と正極活物質含有層とが重なり合った部分の面積を測定する。積層体から、正極、負極及び/又はセパレータを剥がす際には、正極活物質含有層及び負極活物質含有層を損傷しないように留意する。
 負極活物質含有層と正極活物質含有層とが重なり合った部分の長さは、定規、巻尺など、長さに応じて測定手段を使い分けて測定する。
 なお、面積Saは、負極活物質含有層の主面のうち正極活物質含有層に向き合った部分のマクロ的な面積であり、例えば負極活物質含有層の細孔の面積を含まない。
 [定格容量の測定]
 電池の定格容量は、以下の手順で測定する。まず、測定対象の電池を、25℃環境下において、0.2Cの定電流にて、電圧が2.9Vに達するまで充電する。次いで、電池を、2.9Vの定電圧で、1時間にわたって放電する。その後、電池を、30分間開回路状態で放置する。次いで、電池を、0.2Cの定電流で、電圧が1.5Vに達するまで放電する。この放電で得られた容量を、定格容量[Ah]とする。
 次に、第3の実施形態に係る幾つかの例の電池を、図面を参照しながら具体的に説明する。
 図7は、第3の実施形態に係る一例の電池の概略断面図である。
 図7に示す電池10は、非水電解質電池である。非水電解質電池10は、図4及び5を参照しながら説明した扁平状の捲回型電極群3を具備している。扁平状の捲回型電極群3は、ラミネートフィルムからなる袋状外装部材2内に収納されている。ラミネートフィルムは、金属層と、これを挟む2枚の樹脂フィルムとを含む。
 捲回型の電極群3の外周端近傍において、負極端子8が、負極5の最外層の部分の負極集電体5aに接続されており、正極端子7が、内側に位置する正極4の正極集電体4aに接続されている。これらの負極端子8および正極端子7は、袋状外装部材2の開口部から外部に延出されている。
 図7に示す非水電解質電池10は、図示しない非水電解質を更に具備する。非水電解質は、電極群3に含浸された状態で、外装部材2内に収容されている。
 非水電解質は、例えば、袋状外装部材2の開口部から注入することができる。非水電解質注入後、袋状外装部材2の開口部を負極端子8及び正極端子7を挟んでヒートシールすることにより、捲回型電極群3及び非水電解質を完全密封することができる。
 第3の実施形態に係る電池は、前述した図7に示す構成を有するものに限らず、例えば図8及び図9に示す構成を有することもできる。
 図8は、第3の実施形態に係る他の一例の電池の概略部分切欠き斜視図である。図9は、図8の電池のB部の拡大断面図である。
 図8及び図9に示す電池10は、非水電解質電池である。非水電解質電池10は、スタック型電極群3を具備する。スタック型電極群3は、ラミネートフィルムからなる外装部材2内に収納されている。ラミネートフィルムは、金属層と、これを間に挟んだ2枚の樹脂フィルムとを含む。
 スタック型電極群3は、図9に示すように、正極4と負極5とをその間にセパレータ6を介在させながら交互に積層した構造を有する。正極4は複数枚存在し、それぞれが正極集電体4aと、正極集電体4aの両面に担持された正極活物質含有層4bとを備える。負極5は複数枚存在し、それぞれが負極集電体5aと、負極集電体5aの両面に担持された負極活物質含有層5bとを備える。各負極5の負極集電体5aは、一辺が正極4から突出している。負極集電体5aのうち正極4から突出した部分5cは、帯状の負極端子8に電気的に接続されている。帯状の負極端子8の先端は、外装部材2から外部に引き出されている。また、図示しないが、正極4の正極集電体4aは、負極集電体5aの突出辺5cと反対側に位置する辺が負極5から突出している。正極集電体4aのうち負極5から突出した部分は、帯状の正極端子7に電気的に接続されている。帯状の正極端子7の先端は、負極端子8とは反対側に位置し、外装部材2の辺から外部に引き出されている。
 図9に示す正極4は、第1の実施形態に係る電極の一例である。したがって、図8及び9に示す電極群3は、第2の実施形態に係る電極群の一例である。
 第3の実施形態に係る電池は、第2の実施形態に係る電極群を具備する。したがって、第3の実施形態に係る電池、優れた入出力特性及び優れた寿命特性を示すことができる。
 (第4の実施形態)
 第4の実施形態によると、電池パックが提供される。この電池パックは、第3の実施形態に係る電池を具備する。
 第4の実施形態に係る電池パックは、複数の電池を備えることもできる。複数の電池は、電気的に直列に接続することもできるし、又は電気的に並列に接続することもできる。或いは、複数の電池を、直列及び並列の組み合わせで接続することもできる。
 例えば、第4の実施形態に係る電池パックは、第3の実施形態に係る電池を複数個具備することもできる。これらの電池は、直列に接続されることができる。また、直列に接続された電池は、組電池を構成することができる。すなわち、第4の実施形態に係る電池パックは、組電池を具備することもできる。
 第4の実施形態に係る電池パックは、複数の組電池を具備することができる。複数の組電池は、直列、並列、又は直列及び並列の組み合わせで接続することができる。
 第4の実施形態に係る電池パックの一例を、図10及び図11を参照して詳細に説明する。
 図10及び図11に示す電池パック20は、複数の単電池21を含む。単電池21には、図7に示す扁平型電池を使用することができる。
 前述した図7に示す扁平型非水電解質電池10から構成される複数の単電池21は、外部に延出した負極端子8及び正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図11に示すように互いに電気的に直列に接続されている。
 プリント配線基板24は、負極端子8及び正極端子7が延出する単電池21側面と対向して配置されている。プリント配線基板24には、図11に示すようにサーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、組電池23と対向するプリント配線基板24の面には組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード28は、組電池23の最下層に位置する正極端子7に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子8に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び33を通して保護回路26に接続されている。
 サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34a及びマイナス側配線34bを遮断できる。所定の条件とは、例えばサーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21若しくは組電池23全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図10及び図11の場合、単電池21それぞれに電圧検出のための配線35を接続し、これら配線35を通して検出信号が保護回路26に送信される。
 正極端子7及び負極端子8が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
 組電池23は、各保護シート36およびプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36およびプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。
 図10及び図11では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パックを直列及び/又は並列に接続することもできる。
 また、第4の実施形態に係る電池パックの態様は、用途により適宜変更される。第4の実施形態に係る電池パックは、大電流を取り出したときにサイクル特性が優れていることが要求される用途に好適に用いられる。具体的には、デジタルカメラの電源として、又は、例えば列車、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、及び、アシスト自転車等の車両の車載用電池として用いられる。特に、車載用電池として好適に用いられる。
 第4の実施形態に係る電池パックは、第3の実施形態に係る電池を含むので、優れた入出力特性及び優れた寿命特性を示すことができる。
 [実施例]
 以下に実施例を説明するが、本発明の主旨を超えない限り、本発明は以下に掲載される実施例に限定されるものでない。
 [電極の作製]
 (実施例1)
 実施例1では、以下の手順により、実施例1の正極を作製した。
 まず、正極活物質として、式LiNi0.33Co0.34Mn0.332で表される組成を有するリチウムニッケルコバルトマンガン複合酸化物の粉末、及び式LiCoO2で表される組成を有するリチウムコバルト複合酸化物の粉末を準備した。リチウムニッケルコバルトマンガン複合酸化物の粉末は、二次粒子の粉末であり、平均二次粒子径は8μmであった。リチウムコバルト複合酸化物の粉末は、一次粒子の粉末であり、平均一次粒子径は10μmであった。これらの粉末を、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物との質量比が90:10となるように混合し、混合粉末を得た。
 この混合粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して、混合した。
 次いで、このようにして得られた混合物を、自転公転ミキサーを用いて分散させた。更に、混合物を、ビーズミル装置での高せん断分散プロセスに供した。ビーズとしては、1mmφのジルコニアビーズを用いた。分散条件としては、ビーズ充填率を60体積%とし、回転数1500rpmとした。また、流量は、処理時間が10分間となるように調整した。かくして、スラリーを調製した。
 次に、調製したスラリーを、厚さが15μmであるアルミニウム箔からなる集電体の両面に塗布した。塗布量は、70g/m2とした。次に、塗膜を乾燥させ、プレスに供した。プレス条件は、線圧1.2t/cmとした。かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.0g/cm3である活物質含有層とを具備した電極を作製した。
 (実施例2)
 実施例2では、以下の点以外は実施例1と同様の手順で、電極を作製した。
 実施例2では、正極活物質として、式LiNi0.5Co0.2Mn0.32表される組成を有するリチウムニッケルコバルトマンガン複合酸化物の粉末、及び式LiCoO2で表される組成を有するリチウムコバルト複合酸化物の粉末を準備した。リチウムニッケルコバルトマンガン複合酸化物の粉末は、二次粒子の粉末であり、平均二次粒子径は7μmであった。リチウムコバルト複合酸化物の粉末は、一次粒子の粉末であり、平均一次粒子径は10μmであった。これらの粉末を、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物との質量比が70:30となるように混合し、混合粉末を得た。
 この混合粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、実施例1と同様の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して、混合した。
 次いで、このようにして得られた混合物を、自転公転ミキサーを用いて分散させた。更に、混合物を、ビーズミル装置での高せん断分散プロセスに供した。分散条件は、実施例1と同様とした。かくして、スラリーを調製した。
 次に、調製したスラリーを、厚さが15μmであるアルミニウム箔からなる集電体の両面に塗布した。塗布量は、70g/m2とした。次に、塗膜を乾燥させ、プレスに供した。プレス条件は、線圧1.2t/cmとした。かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.0g/cm3である活物質含有層とを具備した電極を作製した。
 (実施例3)
 実施例3では、以下の点以外は実施例1と同様の手順で、電極を作製した。
 実施例3では、正極活物質として、式LiNi0.5Co0.3Mn0.22で表される組成を有するリチウムニッケルコバルトマンガン複合酸化物の粉末、及び式LiCoO2で表される組成を有するリチウムコバルト複合酸化物の粉末を準備した。リチウムニッケルコバルトマンガン複合酸化物の粉末は、二次粒子の粉末であり、平均二次粒子径は7μmであった。リチウムコバルト複合酸化物の粉末は、一次粒子の粉末であり、平均一次粒子径は10μmであった。これらの粉末を、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物との質量比が80:20となるように混合し、混合粉末を得た。
 この混合粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、実施例1と同様の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して、混合した。
 次いで、このようにして得られた混合物を、自転公転ミキサーを用いて分散させ、スラリーを調製した。
 更に、混合物を、ビーズミル装置での高せん断分散プロセスに供した。分散条件は、実施例1と同様とした。かくして、スラリーを調製した。
 次に、調製したスラリーを、厚さが15μmであるアルミニウム箔からなる集電体の両面に塗布した。塗布量は、70g/m2とした。次に、塗膜を乾燥させ、プレスに供した。プレス条件は、線圧1.2t/cmとした。かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.0g/cm3である活物質含有層とを具備した電極を作製した。
 (実施例4)
 実施例4では、以下の点以外は実施例1と同様の手順で、電極を作製した。
 実施例4では、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物との質量比が95:5となるように、正極活物質の粉末を混合した。
 この混合粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して、混合した。
 次いで、このようにして得られた混合物を、自転公転ミキサーを用いて分散させた。更に、混合物を、ビーズミル装置での高せん断分散プロセスに供した。分散条件は、実施例1と同様とした。かくして、スラリーを調製した。
 次に、調製したスラリーを、厚さが15μmであるアルミニウム箔からなる集電体の両面に塗布した。塗布量は、70g/m2とした。次に、塗膜を乾燥させ、プレスに供した。プレス条件は、線圧1.3t/cmとした。かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.0g/cm3である活物質含有層とを具備した電極を作製した。
 (実施例5)
 実施例5では、以下の点以外は実施例4と同様の手順で、電極を作製した。
 実施例5では、スラリー調製の際、混合物を薄膜旋回型高速ミキサーを用いた分散処理に供した。分散は、10m/秒の周速にて、10秒間処理を行った。
 このようにして調製したスラリーを、厚さが15μmであるアルミニウム箔からなる集電体の両面に塗布した。塗布量は、70g/m2とした。次に、塗膜を乾燥させ、プレスに供した。プレス条件は、線圧1.7t/cmとした。
 かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.2g/cm3である活物質含有層とを具備した電極を作製した。
 (比較例1)
 比較例1では、以下の点以外は実施例1と同様の手順で、電極を作製した。
 比較例1では、スラリー調製のための混合物の分散処理の際、ビーズミル装置の回転数を1000rpmとし、且つ分散処理時間が5分間となるように流量を調整した。また、プレス工程における線圧を1.4t/cmとした
 かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.0g/cm3である活物質含有層とを具備した電極を作製した。
 (比較例2)
 比較例2では、以下の点以外は実施例1と同様の手順で、電極を作製した。
 比較例2では、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物との質量比が80:20となるように、正極活物質の粉末を混合した。
 この混合粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して、混合した。
 次いで、このようにして得られた混合物を、自転公転ミキサーを用いて分散させた。更に、混合物を、比較例1と同様に高せん断分散プロセスに供した。かくして、スラリーを調製した。
 次に、調製したスラリーを、厚さが15μmであるアルミニウム箔からなる集電体の両面に塗布した。塗布量は、70g/m2とした。次に、塗膜を乾燥させ、プレスに供した。プレス条件は、線圧1.5t/cmとした。かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.0g/cm3である活物質含有層とを具備した電極を作製した。
 (比較例3)
 比較例3では、以下の点以外は比較例2と同様の手順で、電極を作製した。
 比較例3では、リチウムニッケルコバルトマンガン複合酸化物として、実施例3で用いたのと同様のリチウムニッケルコバルトマンガン複合酸化物の粉末を用いた。すなわち、比較例3では、式LiNi0.5Co0.3Mn0.22で表される組成を有するリチウムニッケルコバルトマンガン複合酸化物の粉末を用いた。
 かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.0g/cm3である活物質含有層とを具備した電極を作製した。
 (比較例4)
 比較例4では、以下の点以外は実施例1と同様の手順で、電極を作製した。
 まず、正極活物質として、実施例1で用いたのと同様のリチウムニッケルコバルトマンガン複合酸化物の粉末を準備した。すなわち、この例では、リチウムコバルト複合酸化物を用いなかった。
 リチウムニッケルコバルトマンガン複合酸化物の粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して、混合した。
 次いで、このようにして得られた混合物を、自転公転ミキサーを用いて分散させた。更に、混合物を、ビーズミル装置での高せん断分散プロセスに供した。分散条件は、実施例1と同様とした。かくして、スラリーを調製した。
 次に、調製したスラリーを、厚さが15μmであるアルミニウム箔からなる集電体の両面に塗布した。塗布量は、70g/m2とした。次に、塗膜を乾燥させ、プレスに供した。プレス条件は、線圧1.6t/cmとした。かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.0g/cm3である活物質含有層とを具備した電極を作製した。
 (比較例5)
 比較例5では、以下の点以外は実施例1と同様の手順で、電極を作製した。
 まず、正極活物質として、実施例1で用いたのと同様のリチウムコバルト複合酸化物の粉末を準備した。すなわち、この例では、リチウムニッケルコバルトマンガン複合酸化物を用いなかった。
 リチウムコバルト複合酸化物の粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して、混合した。
 次いで、このようにして得られた混合物を、自転公転ミキサーを用いて分散させた。更に、混合物を、ビーズミル装置での高せん断分散プロセスに供した。分散条件は、実施例1と同様とした。かくして、スラリーを調製した。
 次に、調製したスラリーを、厚さが15μmであるアルミニウム箔からなる集電体の両面に塗布した。塗布量は、70g/m2とした。次に、塗膜を乾燥させ、プレスに供した。プレス条件は、線圧1.2t/cmとした。かくして、集電体と、集電体の両方の表面上に形成され且つ密度が3.0g/cm3である活物質含有層とを具備した電極を作製した。
 (比較例6)
 比較例6では、以下の点以外は実施例1と同様の手順で、電極を作製した。
 スラリー分散工程にて、実施例1の電極と比較して、ビーズミルの回転数を1.5倍とし、プレス工程での荷重を1.4倍とした。さらに、電極塗布量を140g/m2とした。
 [非水電解質電池の作製]
 次に、以上のようにして作製した実施例1~5及び比較例1~5の各電極を正極として用い、以下の手順で各実施例及び各比較例の非水電解質電池を作製した。以下、各例の電極、集電体及び活物質含有層を、それぞれ、「正極」、「正極集電体」及び「正極活物質含有層」と呼ぶ。
 [負極の作製]
 まず、負極活物質として、式Li4Ti512で表される組成を有し且つスピネル型の結晶構造を有するチタン酸リチウムの粉末を準備した。
 次に、このチタン酸リチウムの粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して、混合した。かくして、スラリーを調製した。
 このスラリーを、厚さが15μmであるアルミニウム箔からなる集電体の両面に塗布した。実施例1~5、及び比較例1~5では、負極塗布量を50g/m2とした。比較例6では、負極塗布量を100g/m2とした。次に、塗膜を乾燥させ、プレスに供した。プレス条件は、線圧1.2t/cmとした。かくして、負極集電体と、集電体の両方の表面上に形成され且つ密度が2.0g/cm3である負極活物質含有層とを具備した負極を作製した。
 [電極群の作製]
 厚さが25μmであるポリエチレン製多孔質フィルムからなる2枚のセパレータを準備した。次いで、正極、一枚のセパレータ、負極及びもう一枚のセパレータをこの順序で積層し、積層体を得た。次いで、積層体を渦巻き状に捲回し、捲回体を得た。次いで、捲回体を90℃で加熱プレスした。
 かくして、幅が30mmであり、高さが60mmであり、厚さが3.0mmである扁平状電極群を作製した。
 得られた電極群の正極集電体に、アルミニウム製の正極端子を溶接した。また、負極集電体に、アルミニウム製の負極端子を溶接した。
 [電極群の収容及び乾燥]
 次に、ラミネートフィルムからなる外装部材を準備した。ラミネートフィルムは、厚さが40μmであるアルミニウム箔と、その両方の表面上に形成されたポリプロピレン層とを含んでいた。ラミネートフィルムの全体の厚さは、0.1mmであった。
 次に、先のようにして得られた電極群を、正極端子の一部及び負極端子の一部が外に位置した状態で、外装部材内に収納した。次いで、外装部材の周囲を、一部を残して、熱融着した。この状態で、電極群を、80℃で24時間にわたり、真空乾燥に供した。
 [液状非水電解質の調製]
 プロピレンカーボネート(PC)及びジエチルカーボネート(DEC)を1:1の体積比率で混合して混合溶媒とした。この混合溶媒に電解質であるLiPFを1Mの濃度で溶解し、液状非水電解質を調製した。
 [非水電解質電池の製造]
 先のようにして電極群を収納した外装部材内に、液状非水電解質を注入した。その後、外装部材の周囲のうち熱融着していなかった部分を熱融着し、電極群と非水電解質とを外装部材内で完全密閉した。かくして、前述した図7に示す構造を有し、幅35mm、厚さ3.2mm、高さが65mmの非水電解質電池を製造した。
 <試験>
 以上のようにして作製した各非水電解質電池に対し、以下に説明する試験を行った。以下、各非水電解質電池を単に「電池」と呼ぶ。
 [定格容量の測定]
 電池の定格容量を、先に説明した手順で測定した。結果を、以下の表1に示す。
 [出力試験]
 電池を、以下の手順に従う出力試験に供した。
 まず、電池を、25℃環境下において、0.2Cの定電流にて、電圧が2.9Vに達するまで充電した。次いで、電池を、2.9Vの定電圧で、1時間にわたって放電した。その後、電池を、1時間開回路状態で放置した。次いで、電池を、1Cの定電流で、電圧が1.5Vに達するまで放電した。
 次いで、電池を、25℃環境下において、0.2Cの定電流にて、電圧が2.9Vに達するまで充電した。次いで、電池を、2.9Vの定電圧で、1時間にわたって放電した。その後、電池を、1時間開回路状態で放置した。次いで、電池を、10Cの定電流で、電池電圧が1.5Vに達するまで放電した。
 10C放電で得られた容量の、1C放電で得られた容量に対する比率(%)を算出した。この比率を、出力特性の指標とした。結果を以下の表1に示す。
 [入力試験]
 電池を、以下の手順に従う入力試験に供した。
 まず、電池を、0.2Cの定電流で、電圧が1.5Vに達するまで放電した。その後、電池を、1時間開回路状態で放置した。次いで、電池を、1Cの定電流で、電圧が2.9Vに達するまで充電した。
 次いで、電池を、0.2Cの定電流で、電圧が1.5Vに達するまで放電した。その後、電池を、1時間開回路状態で放置した。次いで、電池を、10Cの定電流で、電圧が2.9Vに達するまで充電した。
 10C充電で得られた容量の、1C充電で得られた容量に対する比率(%)を算出した。この比率を、入力特性の指標とした。結果を以下の表1に示す。
 [サイクル寿命試験]
 電池を、以下の手順に従うサイクル寿命試験に供した。
 電池を、60℃環境下において、1Cの定電流にて、電圧が2.9Vに達するまで充電した。次いで、電池を、2.9Vの定電圧で充電した。充電は、電流が0.05C相当の値に収束した点で完了した。その後、電池を、10分開回路状態で放置した。次いで、電池を、1Cの定電流で、電圧が1.5Vに達するまで放電した。この充電、開回路状態での放置、及び放電からなる組を、1回の充放電サイクルとした。この充放電サイクルを500回繰り返した。1回目のサイクルで得られた放電容量に対する、500回目の放電容量の比率(%)を算出した。この比率をサイクル特性(寿命特性)の指標とした。結果を以下の表1に示す。
 [水銀圧入法による細孔径分布の取得]
 電池が具備する正極を、先に説明した水銀圧入法による細孔径分布の分析に供した。
 次いで、得られた結果から、正極活物質含有層の水銀圧入法による細孔径分布の0.1μm以上1μm以下の細孔径の範囲内での、最強度I1を示す第1のピークトップの細孔径と、最強度I1の次に大きい強度I2を示す第2のピークトップの細孔径とを求めた。
 第1のピークトップ及び第2のピークトップのそれぞれの細孔径、及び強度比I2/I1を、以下の表2に示す。
 [正極及び負極の各寸法の測定]
 電池が具備する正極及び負極の各寸法を、先に説明した手順で測定した。以下の表3に、その結果を示す。表3に示す各寸法は、以下のとおりである。T1:正極集電体の厚さ;T2:正極活物質含有層の厚さ;T3:正極集電体の一対の短辺の長さ;T4:正極活物質含有層の一対の短辺の長さ;T5:負極活物質含有層の一対の短辺の長さ;T6:負極集電体の一対の短辺の長さ;T7:正極の厚さ;及びT8:負極の厚さ。また、表3には、比T2/T1及び比T7/T8を併せて示す。
 [正極活物質含有層におけるCo、Ni及びMnの含有量の算出]
 正極活物質含有層におけるCo、Ni及びMnの含有量(それぞれ、X1[mol%]、X2[mol%]、及びX3[mol%])を、先に説明した手順で測定した。また、正極活物質含有層に含まれるリチウムニッケルコバルトマンガン複合酸化物におけるCo及びNiの含有量(それぞれ、Y1[mol%]及びY2[mol%])を算出した。
 これらの結果から、各電池の「比X1/(X1+X2+X3)」及び「比Y2/Y1」を算出した。その結果を、以下の表4に示す。
 [Wc及びWaの測定]
 各電池に関し、正極活物質含有層の単位面積当たりの質量Wc(g/m2)と、負極活物質含有層の単位面積当たりの質量Wa(g/m2)とを測定した。その結果から、比Wc/Waを算出した。各電池の比Wc/Waを、以下の表4に示す。
 [対向面積の測定]
 各電池に関し、負極活物質含有層のうち、正極活物質含有層と対向している部分の面積Saを、先に説明した手順で測定した。
 定格容量Aの面積Saに対する比を、以下の表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1に示した結果から、実施例1~5の電極は、比較例1~6の電極よりも優れた入出力特性及び寿命特性を示すことができたことがわかる。また、表2及び表4から明らかなように、実施例1~5の各々の電極の活物質含有層は、式(1):0.15≦I2/I1≦0.40;式(2):0.31≦X1/(X1+X2+X3)≦0.55;式(3):0.7≦T2/T1≦1.6を満たしていた。また、表2から明らかなように、活物質含有層の細孔径分布における第1のピークトップの細孔径が第2のピークトップの細孔径よりも小さかった。実施例1~5の電極は、これらの結果、先に説明した理由により、充放電に伴うリチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の劣化を防ぐことができ、且つ高い導電性を示すことができたと考えられる。
 一方、比較例1の電極の活物質含有層の細孔径分布では、表2から明らかなように、第1のピークトップの細孔径が第2のピークトップの細孔径よりも大きかった。これは、比較例1の電極では、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に存在する細孔が十分でなかったことを意味していると考えられる。そのため、比較例1の電極は、電池に組み込んで使用した場合、充放電に伴って、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍にLiイオンが不足してしまい、優れた寿命特性を実現できなかったと考えられる。更に、比較例1の電極では、局所的な電極反応のせいで、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物によるLiイオンの挿入及び脱離を円滑に行うことができなかったと考えられる。その結果、比較例1の電極は、優れた入出力特性を実現することができなかったと考えられる。
 比較例2の電極は、強度比I2/I1が0.15未満であった。これは、比較例2の電極では、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に存在する細孔を繋ぐ細孔が十分に存在していなかったことを意味していると考えられる。そのため、比較例2の電極は、電池に組み込んで使用した場合、充放電に伴って、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍にLiイオンが不足してしまい、優れた寿命特性を実現できなかったと考えられる。更に、比較例2の電極では、局所的な電極反応のせいで、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物によるLiイオンの挿入及び脱離を円滑に行うことができなかったと考えられる。その結果、比較例2の電極は、優れた入出力特性を実現することができなかったと考えられる。
 比較例3の電極は、強度比I2/I1が0.40を超えていた。これは、比較例3の電極では、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に存在する細孔が十分でなかったことを意味していると考えられる。そのため、比較例3の電極は、比較例1の電極と同様の理由により、優れた寿命特性を実現することも、優れた入出力特性を実現することもできなかったと考えられる。
 比較例4の電極は、リチウムコバルト複合酸化物を含まなかった。比較例5の電極は、リチウムニッケルコバルトマンガン複合酸化物を含まなかった。比較例4及び5の電極は、式(1):0.15≦I2/I1≦0.40を満たしていたが、リチウムコバルト複合酸化物又はリチウムニッケルコバルトマンガン複合酸化物の何れかを含んでいなかったため、優れた寿命特性を実現することも、優れた入出力特性を実現することもできなかったと考えられる。
 比較例6の電極の活物質含有層の水銀圧入法による細孔径分布では、0.1μm以上1μm以下の細孔径の範囲内で、1つのピークトップのみを確認した。すなわち、比較例6についての細孔径分布は、第2のピークトップを含んでいなかった。これは、比較例6の電極では、リチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の近傍に存在する細孔を繋ぐ細孔が非常に少なかったことを意味していると考えられる。そのため、比較例6の電極は、比較例2の電極よりも更に劣る寿命特性及び入出力特性を示したと考えられる。
 これらの少なくとも1つの実施形態又は実施例の電極は、集電体と、集電体上に形成された活物質含有層とを含む。活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物とを含む。活物質含有層の水銀圧入法による細孔径分布が、0.1μm以上1μm以下の細孔径の範囲内での最強度I1を示す第1のピークトップと、0.1μm以上1μm以下の細孔径の範囲内において最強度I1の次に大きい強度I2を示す第2のピークトップとを有する。第1のピークトップの細孔径は、第2のピークトップの細孔径よりも小さい。電極は、以下の式(1)~(3)を満たす:式(1):0.15≦I2/I1≦0.40;式(2):0.31≦X1/(X1+X2+X3)≦0.55;式(3):0.7≦T2/T1≦1.6。この電極は、電池に組み込んで使用した際、充放電に伴うリチウムニッケルコバルトマンガン複合酸化物及びリチウムコバルト複合酸化物の劣化を防ぐことができ、且つ高い導電性を示すことができる。その結果、この電極は、優れた入出力特性及び優れた寿命特性を示すことができる電池を実現できる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (14)

  1.  集電体と、
     前記集電体上に形成された活物質含有層と
    を含み、
     前記活物質含有層は、リチウムニッケルコバルトマンガン複合酸化物とリチウムコバルト複合酸化物とを含み、
     前記活物質含有層の水銀圧入法による細孔径分布が、0.1μm以上1μm以下の細孔径の範囲内での最強度I1を示す第1のピークトップと、前記範囲内において前記最強度I1の次に大きい強度I2を示す第2のピークトップとを有し、
     前記第1のピークトップの細孔径は、前記第2のピークトップの細孔径よりも小さく、
     式(1):0.15≦I2/I1≦0.40;
     式(2):0.31≦X1/(X1+X2+X3)≦0.55;
     式(3):0.7≦T2/T1≦1.6
    を満たし、
     ここで、
     X1、X2及びX3は、それぞれ、前記活物質含有層におけるCo、Ni及びMnの含有量[mol%]であり、
     T1は、前記集電体の厚さ[μm]であり、
     T2は、前記活物質含有層の厚さ[μm]である電極。
  2.  前記集電体は、一対の長辺と、一対の短辺とを有する帯状であり、
     前記集電体の前記厚さT1は、10μm以上25μm以下の範囲内にあり、
     前記一対の短辺の長さT3は、20mm以上100mm以下の範囲内にある請求項1に記載の電極。
  3.  前記活物質含有層は、一対の長辺と、一対の短辺とを有する帯状であり、
     前記活物質含有層の前記一対の短辺の長さT4は、20mm以上90mm以下の範囲内にある請求項2に記載の電極。
  4.  前記リチウムニッケルコバルトマンガン複合酸化物における比Y2/Y1が1以上であり、
     ここで、Y1は、前記リチウムニッケルコバルトマンガン複合酸化物におけるCoの含有量[mol%]であり、Y2は、前記リチウムニッケルコバルトマンガン複合酸化物におけるNiの含有量[mol%]である請求項1~3の何れか1項に記載の電極。
  5.  前記活物質含有層は、前記リチウムニッケルコバルトマンガン複合酸化物の二次粒子を含む請求項1~4の何れか1項に記載の電極。
  6.  正極活物質含有層を含む正極と、
     負極活物質含有層を含む負極と、
    を具備し、
     前記正極は請求項1~5の何れか1項に記載の電極であり、前記正極活物質含有層は前記活物質含有層である電極群。
  7.  比Wc/Waが1.25以上1.75以下であり、
     Wcは、前記正極活物質含有層の単位面積当たりの質量(g/m2)であり、
     Waは、前記負極活物質含有層の単位面積当たりの質量(g/m2)である請求項6に記載の電極群。
  8.  前記負極活物質含有層は、スピネル型リチウムチタン複合酸化物及び直方晶型チタン含有複合酸化物からなる群より選択される少なくとも1種のチタン含有複合酸化物を含む請求項7に記載の電極群。
  9.  前記正極活物質含有層は、一対の長辺と一対の短辺とを有し、
     前記負極活物質含有層は、一対の長辺と一対の短辺とを有し、
     式(4):T4<T5
    を満たし、
     ここで、
     T4は、前記正極活物質含有層の前記一対の短辺の長さ[mm]であり、
     T5は、前記負極活物質含有層の前記一対の短辺の長さ[mm]である請求項6~8の何れか1項に記載の電極群。
  10.  請求項6~9の何れか1項に記載の電極群と、
     電解質と
    を具備した電池。
  11.  前記負極活物質含有層の主面の少なくとも一部が前記正極活物質含有層に対向しており、
     比A/Saが5以上11以下であり、
     ここで、
     Aは、前記電池の定格容量[Ah]であり、
     Saは、前記負極活物質含有層の前記主面の前記少なくとも一部の面積[m2]である請求項10に記載の電池。
  12.  前記電池の定格容量Aは5Ah以上80Ah以下の範囲内にある請求項10又は11に記載の電池。
  13.  請求項10~12の何れか1項に記載の電池を具備する電池パック。
  14.  各々が前記電池である複数の電池を具備し、
     前記複数の電池は、直列、並列、又は直列及び並列の組み合わせによって電気的に接続された請求項13に記載の電池パック。
PCT/JP2019/015502 2019-04-09 2019-04-09 電極、電極群、電池、及び電池パック WO2020208718A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19924181.1A EP3955336B1 (en) 2019-04-09 2019-04-09 Electrode, electrode group, battery, and battery pack
PCT/JP2019/015502 WO2020208718A1 (ja) 2019-04-09 2019-04-09 電極、電極群、電池、及び電池パック
JP2021513071A JP7247326B2 (ja) 2019-04-09 2019-04-09 電極、電極群、電池、及び電池パック
US17/474,532 US20210408540A1 (en) 2019-04-09 2021-09-14 Electrode, electrode group, battery, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015502 WO2020208718A1 (ja) 2019-04-09 2019-04-09 電極、電極群、電池、及び電池パック

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/474,532 Continuation US20210408540A1 (en) 2019-04-09 2021-09-14 Electrode, electrode group, battery, and battery pack

Publications (1)

Publication Number Publication Date
WO2020208718A1 true WO2020208718A1 (ja) 2020-10-15

Family

ID=72751133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015502 WO2020208718A1 (ja) 2019-04-09 2019-04-09 電極、電極群、電池、及び電池パック

Country Status (4)

Country Link
US (1) US20210408540A1 (ja)
EP (1) EP3955336B1 (ja)
JP (1) JP7247326B2 (ja)
WO (1) WO2020208718A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832187A (zh) * 2022-07-20 2023-03-21 宁德时代新能源科技股份有限公司 电极及其制备方法、二次电池、电池模块、电池包和用电装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108106A1 (ja) * 2010-03-04 2011-09-09 株式会社 東芝 非水電解質電池、電池パック及び自動車
JP2012054135A (ja) * 2010-09-02 2012-03-15 Hitachi Maxell Energy Ltd 電気化学素子用電極およびリチウムイオン二次電池
WO2012063369A1 (ja) * 2010-11-12 2012-05-18 トヨタ自動車株式会社 二次電池
WO2012111813A1 (ja) * 2011-02-18 2012-08-23 株式会社 東芝 正極、非水電解質電池及び電池パック
WO2013161083A1 (ja) * 2012-04-27 2013-10-31 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
JP2014013748A (ja) * 2012-06-07 2014-01-23 Sony Corp 電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2014063753A (ja) 2013-12-03 2014-04-10 Toshiba Corp 非水電解質電池
WO2015040747A1 (ja) * 2013-09-20 2015-03-26 株式会社 東芝 非水電解質電池用電極、非水電解質電池及び電池パック
WO2016084346A1 (ja) * 2014-11-28 2016-06-02 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2017224496A (ja) * 2016-06-15 2017-12-21 株式会社東芝 非水電解質電池、電池モジュール及び車両
JP2018045819A (ja) * 2016-09-13 2018-03-22 株式会社東芝 電極及び非水電解質電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020668A1 (ja) * 2016-07-29 2018-02-01 株式会社 東芝 電極、非水電解質電池及び電池パック

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108106A1 (ja) * 2010-03-04 2011-09-09 株式会社 東芝 非水電解質電池、電池パック及び自動車
JP2012054135A (ja) * 2010-09-02 2012-03-15 Hitachi Maxell Energy Ltd 電気化学素子用電極およびリチウムイオン二次電池
WO2012063369A1 (ja) * 2010-11-12 2012-05-18 トヨタ自動車株式会社 二次電池
WO2012111813A1 (ja) * 2011-02-18 2012-08-23 株式会社 東芝 正極、非水電解質電池及び電池パック
WO2013161083A1 (ja) * 2012-04-27 2013-10-31 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
JP2014013748A (ja) * 2012-06-07 2014-01-23 Sony Corp 電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2015040747A1 (ja) * 2013-09-20 2015-03-26 株式会社 東芝 非水電解質電池用電極、非水電解質電池及び電池パック
JP2014063753A (ja) 2013-12-03 2014-04-10 Toshiba Corp 非水電解質電池
WO2016084346A1 (ja) * 2014-11-28 2016-06-02 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2017224496A (ja) * 2016-06-15 2017-12-21 株式会社東芝 非水電解質電池、電池モジュール及び車両
JP2018045819A (ja) * 2016-09-13 2018-03-22 株式会社東芝 電極及び非水電解質電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GENJI JIMBO ET AL.: "BIRYUSHI HANDO BUKKU (Fine Particle Handbook", 1 September 1991, ASAKURA PUBLISHING, pages: 151 - 152
See also references of EP3955336A4
SOHACHIRO HAYAKAWA: "HUNTAI BUSSEI SOKUTEI HO (Powder Properties Measuring Method", 15 October 1973, ASAKURA PUBLISHING, pages: 257 - 259

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832187A (zh) * 2022-07-20 2023-03-21 宁德时代新能源科技股份有限公司 电极及其制备方法、二次电池、电池模块、电池包和用电装置

Also Published As

Publication number Publication date
JP7247326B2 (ja) 2023-03-28
JPWO2020208718A1 (ja) 2021-11-25
EP3955336B1 (en) 2022-12-28
EP3955336A4 (en) 2022-03-30
EP3955336A1 (en) 2022-02-16
US20210408540A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
JP5300502B2 (ja) 電池用活物質、非水電解質電池および電池パック
JP6189177B2 (ja) 活物質、非水電解質電池、電池パック及び自動車
JP6100385B2 (ja) 非水電解質電池用正極、非水電解質電池、電池パック及び車
JP7055899B2 (ja) 電極、電池、及び電池パック
JP2005317508A (ja) 非水電解質二次電池
WO2015140934A1 (ja) 電池用活物質、非水電解質電池及び電池パック
JP2017059390A (ja) 電極、非水電解質電池及び電池パック
CN109196694B (zh) 非水电解质电池及电池包
JP6571284B2 (ja) 電極、非水電解質電池及び電池パック
JP6096985B1 (ja) 非水電解質電池及び電池パック
JP6965435B2 (ja) 電極、電池及び電池パック
JP2013105703A (ja) 電池用電極、非水電解質電池及び電池パック
JP5535160B2 (ja) 非水電解質電池及び電池パック
JP6933771B2 (ja) 電極群、電池及び電池パック
WO2020194385A1 (ja) 電極、電池及び電池パック
US20210408540A1 (en) Electrode, electrode group, battery, and battery pack
JP6992162B2 (ja) 電池及び電池パック
WO2020194510A1 (ja) 電極、非水電解質電池、及び電池パック
WO2023079639A1 (ja) 電極、電池、及び電池パック
WO2020202350A1 (ja) 電極、電池及び電池パック
CN116114078A (zh) 电极、电池及电池组
JPWO2020008565A1 (ja) 正極、非水電解質電池、及び電池パック
JP2014157828A (ja) 非水電解質電池及び電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019924181

Country of ref document: EP

Effective date: 20211109