WO2020202350A1 - 電極、電池及び電池パック - Google Patents

電極、電池及び電池パック Download PDF

Info

Publication number
WO2020202350A1
WO2020202350A1 PCT/JP2019/014257 JP2019014257W WO2020202350A1 WO 2020202350 A1 WO2020202350 A1 WO 2020202350A1 JP 2019014257 W JP2019014257 W JP 2019014257W WO 2020202350 A1 WO2020202350 A1 WO 2020202350A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
composite oxide
electrode
containing layer
powder
Prior art date
Application number
PCT/JP2019/014257
Other languages
English (en)
French (fr)
Inventor
圭吾 保科
諒 原
康宏 原田
高見 則雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2019/014257 priority Critical patent/WO2020202350A1/ja
Priority to JP2021511725A priority patent/JP7106754B2/ja
Publication of WO2020202350A1 publication Critical patent/WO2020202350A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy

Definitions

  • Embodiments of the present invention relate to electrodes, batteries and battery packs.
  • non-aqueous electrolyte battery lithium ions move between the negative electrode and the positive electrode to charge and discharge the battery.
  • Such non-aqueous electrolyte batteries are being actively researched as high energy density batteries.
  • non-aqueous electrolyte batteries are expected to be used not only as a power source for small electronic devices, but also as a medium-sized to large-sized power source for in-vehicle applications and stationary applications.
  • non-aqueous electrolyte batteries are required to exhibit excellent life performance and high safety.
  • non-aqueous electrolyte batteries are also required to exhibit excellent input / output performance.
  • lithium titanate having a spinel-type crystal structure has a high lithium occlusion and release potential of about 1.55 V (vs. Li / Li + ). Therefore, a non-aqueous electrolyte battery provided with a negative electrode containing lithium titanate having a spinel-type crystal structure exhibits a low battery voltage. Further, lithium titanate having a spinel-type crystal structure has a feature that the change in potential with a change in the charging state is very small. That is, each of the charge curve and the discharge curve of the spinel-type lithium titanate includes a flat portion of the potential in the lithium storage and discharge potential ranges.
  • electrodes are provided.
  • This electrode comprises an active material-containing layer.
  • the active material-containing layer contains particles of a Na-containing niobium-titanium composite oxide having a rectangular crystal structure.
  • the intensity ratio I 2 / I 1 is within the range of 1.5 ⁇ I 2 / I 1 ⁇ 3.0.
  • I 1 is the intensity of the highest intensity peak in the range where the diffraction angle is larger than 18.5 ° and 19.5 ° or less in the powder X-ray diffraction of the active material-containing layer.
  • I 2 is the intensity of the highest intensity peak in the range where the diffraction angle is 20.5 ° or more and 22 ° or less in the powder X-ray diffraction of the active material-containing layer.
  • This battery includes an electrode according to the first embodiment as a negative electrode, a positive electrode, and an electrolyte.
  • a battery pack is provided.
  • This battery pack comprises the battery according to the second embodiment.
  • FIG. 1A is a schematic view of an example of an orthorhombic crystal structure.
  • FIG. 1B is a schematic view of an example of an orthorhombic crystal structure.
  • FIG. 1C is a schematic view of an example of an orthorhombic crystal structure.
  • FIG. 2 is powder X-ray diffraction of the active material-containing layer of the electrode of the example according to the first embodiment.
  • FIG. 3 is a powder X-ray diffraction of the active material-containing layer of the electrode of the reference example.
  • FIG. 4 is a schematic cross-sectional view of an example electrode according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view of an example battery according to the second embodiment.
  • FIG. 6 is an enlarged cross-sectional view of part A of the battery of FIG. FIG.
  • FIG. 7 is a schematic partial notched perspective view of an example battery according to the second embodiment.
  • FIG. 8 is an enlarged cross-sectional view of a portion B of the battery of FIG.
  • FIG. 9 is a schematic exploded perspective view of an example battery pack according to the third embodiment.
  • FIG. 10 is a block diagram showing an electric circuit of the battery pack of FIG.
  • each figure is a schematic view for explaining the embodiment and promoting its understanding, and there are some differences in its shape, dimensions, ratio, etc. from the actual device, but these are described below and known techniques. The design can be changed as appropriate by taking into consideration.
  • Electrodes are provided.
  • This electrode comprises an active material-containing layer.
  • the active material-containing layer contains particles of a Na-containing niobium-titanium composite oxide having a rectangular crystal structure.
  • the intensity ratio I 2 / I 1 is within the range of 1.5 ⁇ I 2 / I 1 ⁇ 3.0.
  • I 1 is the intensity of the highest intensity peak in the range where the diffraction angle is larger than 18.5 ° and 19.5 ° or less in the powder X-ray diffraction of the active material-containing layer.
  • I 2 is the intensity of the highest intensity peak in the range where the diffraction angle is 20.5 ° or more and 22 ° or less in the powder X-ray diffraction of the active material-containing layer.
  • the Na-containing niobium titanium composite oxide having an orthorhombic crystal structure is a composite oxide that can occlude and release lithium at a low potential among titanium oxides.
  • the Na-containing niobium titanium composite oxide having an orthorhombic crystal structure may exhibit a lithium occlusion and release potential, that is, an operating potential in the range of 1.2 to 1.4 V (vs. Li / Li + ), for example. it can.
  • the Na-containing niobium-titanium composite oxide having an orthorhombic crystal structure can exhibit a large potential change with a change in the charging state in the above operating potential range.
  • a battery using a Na-containing niobium-titanium composite oxide having a rectangular crystal structure at the negative electrode can exhibit a higher battery voltage than a battery using lithium titanate at the negative electrode, and the charged state has a potential. It can be easily grasped based on the change of.
  • the inventors conducted intensive research in order to improve the input / output performance of a battery having an electrode containing an Na-containing niobium titanium composite oxide having an orthorhombic crystal structure. As a result, the inventors have found the electrode according to the first embodiment.
  • the Na-containing niobium-titanium composite oxide can exhibit a high degree of orientation along the direction in which Li ions are easily diffused.
  • the electrode according to the first embodiment can realize a battery capable of exhibiting excellent input / output performance.
  • FIGS. 1A to 1C are schematic views of an example of an orthorhombic crystal structure.
  • the crystal structure shown in FIGS. 1A to C is a crystal structure of Li 2 Na 1.5 Ti 5.5 Nb 0.5 O 14 , which is an example of a Na-containing niobium titanium composite oxide having an orthorhombic crystal structure.
  • the crystal structures shown in FIGS. 1A to 1C have symmetry of the space group Fmm. 1A to 1C are the same except that they show different crystal planes.
  • the smallest sphere 100 indicates the position of the oxide ion.
  • the region A indicates a void site having a channel in which lithium ions can move three-dimensionally in the crystal structure, and this region A occludes and releases lithium ions. Can be done.
  • Region B has a polyhedral structure of oxides centered on Ti or Nb, which is the skeleton of the crystal structure.
  • region C is a site where lithium ions capable of being occluded and released exist.
  • Region D is a site where Na and Li, which function as a skeleton for stabilizing the crystal structure, and pores are present.
  • FIG. 1A shows the (400) plane.
  • the (400) plane is perpendicular to the a-axis of the unit cell and parallel to the b-axis and c-axis.
  • FIG. 1B shows the (111) plane.
  • the (111) plane is a plane in which the intercept on the a-axis, b-axis, and c-axis of the unit cell is 1, respectively.
  • FIG. 1C shows plane (202).
  • the plane (202) is a plane in which the intercept on the a-axis and c-axis of the unit cell is 1/2 and is parallel to the b-axis.
  • lithium ions can move three-dimensionally.
  • Li ions can be easily moved along the a-axis and the b-axis rather than along the c-axis. Li ions can move easily, especially along the a-axis.
  • the (h00) plane of the unit cell of the Na-containing niobium-titanium composite oxide in the electrode is aligned in the direction of the counter electrode where the Li ions move. .. This is because the crystal plane into which the Li ions moving along the a-axis are first inserted is the (h00) plane. Therefore, in the electrode containing the Na-containing niobium-titanium composite oxide having the same (h00) plane, Li ions are inserted into the Na-containing niobium-titanium composite oxide in the electrode and Li ions are desorbed from the Na-containing niobium-titanium composite oxide. It can proceed smoothly. Examples of the (h00) plane include the (400) plane shown in FIG. 1A.
  • the (0k0) plane of the unit cell of the Na-containing niobium-titanium composite oxide in the electrode is oriented in the direction of the counter electrode where the Li ions move. Is preferable.
  • the (0k0) plane include the (020) plane.
  • the (h00) planes of the unit cell of the Na-containing niobium-titanium composite oxide are aligned in the direction in which the counter electrode can be arranged. Further, it is next preferable that the (0k0) planes of the unit cell of the Na-containing niobium-titanium composite oxide are aligned in the electrode in the direction in which the counter electrode can be arranged.
  • the degree to which the (h00) planes of the Na-containing niobium-titanium composite oxide are aligned in the direction in which the counter electrode can be arranged is referred to as the degree of orientation with respect to the a-axis of the unit cell.
  • the (00 l) planes of the unit cell of the Na-containing niobium-titanium composite oxide in the electrode are aligned. This is because Li ions are difficult to move in the c-axis direction, and the plane into which Li ions are first inserted when moving along the c-axis is the (001) plane.
  • the orientation of each particle is random. Therefore, in the powder state, the orientation of the unit cell of the Na-containing niobium-titanium composite oxide is also random.
  • the Na-containing niobium-titanium composite oxide having a rectangular crystal structure has a high degree of orientation with respect to the a-axis of the unit cell described above. Can be shown. I do not want to be bound by theory, but the reason is thought to be as follows.
  • the diffraction angle is the maximum within the range of more than 18.5 ° and 19.5 ° or less.
  • the intensity peak (hereinafter referred to as the first peak) is considered to be derived from the (202) plane of the orthorhombic crystal structure.
  • the strongest peak (hereinafter referred to as the second peak) in the range where the diffraction angle is 20.5 ° or more and 22 ° or less has a rectangular crystal structure (400). ) It is considered to be derived from the surface.
  • the intensity of the second peak derived from the (400) plane and the intensity of the first peak derived from the (202) plane of I 2 is in the range of 1.5 ⁇ I 2 / I 1 ⁇ 3.0.
  • the degree of orientation of the Na-containing niobium titanium composite oxide contained in the active material-containing layer with respect to the (h00) plane of the crystal lattice that is, the degree of orientation with respect to the a-axis of the crystal lattice is sufficiently high.
  • the intensity I 1 of the first peak is used as a reference.
  • the intensity I 1 of the first peak derived from the (202) plane is relatively strong. Further, this strength I 1 is not easily affected by the degree of orientation of the a-axis of the crystal lattice of the Na-containing niobium-titanium composite oxide. Therefore, this intensity I 1 is suitable as a reference for relatively indicating the intensity I 2 of the second peak derived from the (400) plane.
  • the electrode according to the first embodiment it can be said that the diffusion directions of Li ions in the particles of the Na-containing niobium-titanium composite oxide contained in the active material-containing layer are aligned. That is, in the active material-containing layer included in the electrode according to the first embodiment, the unit lattice of the Na-containing niobium-titanium composite oxide can exhibit a high degree of orientation along the direction in which Li ions are easily diffused.
  • the electrode according to the first embodiment since the Li ions can pass through the diffusion path in which the directions are aligned, the movement of the Li ions in the active material-containing layer can be promoted. As a result, the electrode according to the first embodiment can realize a battery capable of exhibiting excellent input / output performance.
  • the intensity I 2 of the second peak is too small with respect to the intensity I 1 of the first peak.
  • the Na-containing niobium-titanium composite oxide cannot exhibit a high degree of orientation with respect to the a-axis of the unit cell.
  • the intensity I 2 of the second peak is too large with respect to the intensity I 1 of the first peak.
  • the degree of orientation of the Na-containing niobium-titanium composite oxide with respect to the a-axis of the unit cell is excessive. It seems that such an excessively oriented active material-containing layer can be obtained, for example, by pressing with an excessive force. However, for example, the active material-containing layer obtained by pressing with an excessive force has too small a void amount and is difficult to be impregnated with the electrolytic solution. In addition, the electrodes may be distorted when pressed with excessive force.
  • the intensity ratio I 2 / I 1 is 0.5 or less.
  • the intensity ratio I 2 / I 1 is preferably 1.8 or more and 2.5 or less.
  • the deinsertion reaction of Li ions in the Na-containing niobium titanium composite oxide in the active material-containing layer can proceed smoothly and the active material is contained.
  • the layer can contain sufficient voids to hold the electrolyte.
  • the electrode of this aspect can realize more excellent input / output performance.
  • the intensity ratio I 2 / I 1 is more preferably 1.9 or more and 2.3 or less.
  • the intensity ratio I 3 / I 1 is in the range of 3.5 ⁇ I 3 / I 1 ⁇ 5.5.
  • the intensity I 3 is the highest intensity peak (hereinafter referred to as a third peak) in the range where the diffraction angle is 17 ° or more and 18.5 ° or less in the powder X-ray diffraction of the active material-containing layer. It is strength.
  • the third peak is considered to be derived from the (111) plane of the orthorhombic crystal structure shown in FIG. 1B.
  • the electrode of this aspect can realize more excellent input / output performance.
  • FIG. 2 is a powder X-ray diffraction of the active material-containing layer of the electrode of the example according to the first embodiment.
  • FIG. 3 is a powder X-ray diffraction of the active material-containing layer of the electrode of the reference example.
  • the powder X-ray diffraction of FIGS. 2 and 3 has a first peak P 1 , a second peak P 2 and a third peak P 3 , respectively.
  • the first peak P 1 is the strongest peak in the range in which the diffraction angle is larger than 18.5 ° and 19.5 ° or less in each diffraction pattern.
  • the second peak is the strongest peak in the range where the diffraction angle is 20.5 ° or more and 22 ° or less in each diffraction pattern.
  • the third peak is the strongest peak in the range where the diffraction angle is 17 ° or more and 18.5 ° or less in each diffraction pattern.
  • the powder X-ray diffraction shown in FIG. 2 shows an active material-containing layer containing particles of a composite oxide having a rectangular crystal structure and a composition represented by the formula Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 .
  • the active material-containing layer showing powder X-ray diffraction shown in FIG. 2 is an active material-containing layer provided in the electrode of the example according to the first embodiment, which is produced by the procedure described in detail below.
  • an electrode having the active material-containing layer related to powder X-ray diffraction shown in FIG. 2 was prepared except that the electrode composite was not roll-pressed. It is an active material-containing layer provided in the electrode produced by the same procedure as the procedure.
  • the intensity ratio I 2 / I 1 is 1.75 and the intensity ratio I 3 / I 1 is 4.06.
  • the intensity ratio I 2 / I 1 is 0.41 and the intensity ratio I 3 / I 1 is 2.63.
  • I 1 is the intensity of the first peak P 1
  • I 2 is the intensity of the second peak P 2
  • I 3 is the intensity of the third peak P 3 .
  • the intensity of each peak is the intensity based on the baseline after removing the background.
  • the intensity ratio I 2 / I 1 is in the range of 1.5 or more and 3.0 or less, so that the Na-containing niobium titanium composite having a rectangular crystal structure is formed.
  • the oxide can exhibit a high degree of orientation about the a-axis of the unit cell.
  • the intensity ratio I 2 / I 1 is less than 1.5, the Na-containing niobium titanium composite oxide having a rectangular crystal structure is a unit. It is not possible to show a high degree of orientation for the a-axis of the lattice.
  • the electrode according to the first embodiment includes an active material-containing layer.
  • the electrode according to the first embodiment may further include a current collector.
  • the current collector can have, for example, a strip-shaped planar shape.
  • the current collector can have, for example, a first surface and a second surface as the opposite surface of the first surface.
  • the active material-containing layer can be formed on one surface of the current collector or on both surfaces.
  • the active material-containing layer may be formed on either the first surface or the second surface of the current collector, or both the first surface and the second surface of the current collector. May be formed in.
  • the current collector may include a portion that does not support the active material-containing layer. This portion can be used, for example, as a current collecting tab.
  • the electrode according to the first embodiment may include a current collector tab separate from the current collector.
  • the active material-containing layer contains particles of Na-containing niobium-titanium composite oxide having a rectangular crystal structure.
  • the orthorhombic crystal structure can have, for example, Fmmm symmetry.
  • the orthorhombic crystal structure can also have the symmetry of a space group other than Fmm. Examples of the space group other than Fmmm include Cmca.
  • the Na-containing niobium-titanium composite oxide can be said to be a composite oxide containing Na, Nb and Ti.
  • Rectangular Na-containing niobium titanium composite oxide having a crystal structure of Akiragata may have a composition represented by the general formula Li 2 + v Na 2-y M1 x Ti 6-yz Nb y M2 z O 14 + ⁇ ..
  • M1 is at least one selected from the group consisting of Cs, K, Sr, Ba and Ca.
  • M2 is at least one selected from the group consisting of Sn, V, Ta, Mo, W, Fe, Co and Mn.
  • Each subscript is in the following range: 0 ⁇ v ⁇ 4; 0 ⁇ x ⁇ 2; 0.1 ⁇ y ⁇ 0.8; 0 ⁇ z ⁇ 3; ⁇ 0.5 ⁇ ⁇ ⁇ 0.5.
  • the particles of the Na-containing niobium-titanium composite oxide having an orthorhombic crystal structure may contain a plurality of types of Na-containing niobium-titanium composite oxides.
  • the particles of the Na-containing niobium-titanium composite oxide may contain primary particles or may contain secondary particles.
  • the Na-containing niobium-titanium composite oxide particles are a mixture of primary and secondary particles.
  • the average secondary particle diameter of the secondary particles of the Na-containing niobium-titanium composite oxide is preferably in the range of 3 ⁇ m or more and 20 ⁇ m or less.
  • the average secondary particle size is more preferably 5 ⁇ m or more and 12 ⁇ m or less.
  • the average primary particle diameter of the primary particles of the Na-containing niobium-titanium composite oxide is preferably in the range of 0.5 ⁇ m or more and 4 ⁇ m or less.
  • the average primary particle size is more preferably 0.7 ⁇ m or more and 2 ⁇ m or less.
  • the particles of the Na-containing niobium-titanium composite oxide may have carbon attached to the surface.
  • the particles of the Na-containing niobium-titanium composite oxide preferably contain secondary particles in which primary particles having carbon adhered to the surface are aggregated. Secondary particles obtained by aggregating primary particles to which carbon is attached can exhibit low electrical resistance.
  • the particles of the Na-containing niobium-titanium composite oxide can act as the active material.
  • the active material-containing layer may also contain a Na-containing niobium-titanium composite oxide as the first active material and a second active material different from the first active material.
  • the second active material is, for example, lithium titanate having a spinel-type crystal structure, lithium titanate having a ramsderite-type crystal structure, and titanium having a monoclinic crystal structure (monoclinic ⁇ -type). It is at least one selected from the group consisting of a contained oxide, a titanium-containing oxide having an anatase-type crystal structure, and a niob-titanium composite oxide having a monoclinic crystal structure.
  • Lithium titanate having a spinel-type crystal structure can have a composition represented by, for example, Li 4 + x1 Ti 5 O 12 (x1 changes in the range of 0 ⁇ x1 ⁇ 3 depending on the charge / discharge reaction). ..
  • Lithium titanate having a rams delite type crystal structure has a composition represented by, for example, Li 2 + y1 Ti 3 O 7 (y1 changes in the range of -1 ⁇ y1 ⁇ 3 depending on the charge / discharge reaction). Can be done.
  • titanium-containing oxide having a monoclinic crystal structure examples include titanium dioxide having a composition of TiO 2 .
  • a part of Ti of titanium dioxide may be replaced with another metal element.
  • other metal elements include Al, Sn, Nb, and Ta.
  • this oxide can also be referred to as a titanium-containing composite oxide having a monoclinic crystal structure.
  • titanium-containing oxide having an anatase-type crystal structure examples include titanium dioxide having a composition of TiO 2 .
  • a part of Ti of titanium dioxide may be replaced with another metal element.
  • other metal elements include Al, Sn, Nb, and Ta.
  • the niobium-titanium composite oxide having a monoclinic crystal structure can have a composition represented by the general formula Ti 1-x2 M ⁇ x2 Nb 2-y2 M ⁇ y2 O 7- ⁇ 2 , for example.
  • M ⁇ and M ⁇ are at least one selected from the group consisting of Mg, Fe, Ni, Co, W, Ta and Mo, respectively.
  • the element M ⁇ and the element M ⁇ may be the same or different from each other.
  • each subscript is within the following range: 0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1 and ⁇ 0.3 ⁇ ⁇ 2 ⁇ 0.3.
  • Specific examples of the niobium-titanium composite oxide having a monoclinic crystal structure include a composite oxide having a composition represented by the general formula of Li v2 Nb 2 TiO 7 (0 ⁇ v2 ⁇ 5).
  • the mass of the second active material in the active material-containing layer is preferably 0% by mass or more and 10% by mass or less. It is more preferable that the active material-containing layer does not contain a second active material other than the titanium-containing composite oxide having an orthorhombic crystal structure.
  • the active material-containing layer may further contain a conductive agent.
  • the conductive agent can enhance the current collecting performance in the active material-containing layer. Further, the conductive agent can have an effect of suppressing the contact resistance between the active material and the current collector.
  • Examples of conductive agents include carbon blacks such as acetylene black, graphite, carbon nanofibers, and carbonaceous materials such as carbon nanotubes. Of these, graphite and carbon nanofibers are preferable because they tend to form a low-resistance active material-containing layer. Compared to carbon black such as acetylene black, graphite and carbon nanofibers are easier to penetrate between active material particles, can impart conductivity in the thickness direction of the active material-containing layer, and realize high input / output characteristics. Can be done. These carbonaceous substances may be used alone or a plurality of carbonaceous substances may be used as the conductive agent.
  • the active material-containing layer may further contain a binder.
  • the binder can have the effect of binding the active material, the conductive agent and the current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, styrene-butadiene rubber, acrylic resin and its copolymer, polyacrylic acid, polyacrylonitrile and the like. ..
  • the active material-containing layer the active material is contained in a weight ratio of 70% by mass or more and 96% by mass or less, the conductive agent is contained in a weight ratio of 2% by mass or more and 28% by mass or less, and the binder is contained. It is preferably contained in a mass ratio of 2% by mass or more and 28% by mass or less.
  • An active material-containing layer containing a conductive agent in a mass ratio of 2% by mass or more can exhibit more excellent current collecting performance, and as a result, more excellent large current performance can be realized.
  • the active material-containing layer containing the binder in a mass ratio of 2% by mass or more can exhibit excellent binding properties between the active material-containing layer and the current collector, and can provide better cycle performance. It can be realized.
  • the amounts of the conductive agent and the binder are preferably 28% by mass or less, respectively.
  • the current collector is preferably formed of an aluminum foil or an aluminum alloy foil containing at least one element selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the electrodes according to the first embodiment can be used in a battery.
  • the electrode according to the first embodiment can be used as, for example, a negative electrode in a battery.
  • the battery can be, for example, a secondary battery that can be repeatedly charged and discharged.
  • An example of a secondary battery is a non-aqueous electrolyte battery.
  • a non-aqueous electrolyte battery contains a non-aqueous electrolyte, and a non-aqueous electrolyte contains an electrolyte.
  • a battery containing an electrolytic solution containing an aqueous solvent and an electrolyte dissolved in the aqueous solvent can be mentioned.
  • Na-containing niobium-titanium composite oxide having an orthorhombic crystal structure First, a Na-containing niobium-titanium composite oxide having a rectangular crystal structure is prepared.
  • the Na-containing niobium-titanium composite oxide can be prepared, for example, by the following procedure.
  • the Na-containing niobium-titanium composite oxide having an orthorhombic crystal structure can be synthesized by, for example, the solid-phase method.
  • the Na-containing niobium-titanium composite oxide can also be synthesized by a wet synthesis method such as a sol-gel method or a hydrothermal method.
  • the necessary raw materials among the Ti source, Li source, Na source, Nb source, metal element M1 source, and metal element M2 source are prepared according to the target composition.
  • These raw materials can be, for example, salts such as oxides or compounds.
  • the above salt is preferably a salt such as carbonate and nitrate that decomposes at a relatively low temperature to form an oxide.
  • the prepared raw materials are then mixed at an appropriate stoichiometric ratio to give a mixture.
  • an orthocrystalline Na-containing niobium titanium composite oxide represented by the composition formula Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 titanium oxide TIO 2 , lithium carbonate Li 2 CO 3, and sodium carbonate Na 2 CO 3 and niobium Nb (V) (OH) 5 hydroxide are mixed so that the molar ratio of Li: Na: Ti: Nb in the mixture is 2: 1.7: 5.7: 0.3. To do.
  • Li and Na may be mixed in an amount larger than a predetermined amount.
  • Li may be added in a larger amount than a predetermined amount because there is a concern that Li will be lost during the heat treatment.
  • the mixture obtained by the above mixing is heat-treated in an air atmosphere at a temperature of 800 ° C. or higher and 1000 ° C. or lower for a time of 1 hour or more and 24 hours or less. Sufficient crystallization is difficult to obtain at 800 ° C. or lower. On the other hand, at 1000 ° C. or higher, grain growth proceeds too much and coarse particles are formed, which is not preferable. Similarly, if the heat treatment time is less than 1 hour, it is difficult to obtain sufficient crystallization. Further, if the heat treatment time is longer than 24 hours, the grain growth proceeds too much and coarse particles are formed, which is not preferable.
  • a powder of a Na-containing niobium-titanium composite oxide having a rectangular crystal structure can be obtained. Further, after recovering the obtained Na-containing niobium-titanium composite oxide, an annealing treatment may be performed.
  • the Na-containing niobium-titanium composite oxide represented by the composition formula Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 and having an orthorhombic crystal structure is a mixture obtained by mixing the raw materials as described above. It can be obtained by heat treatment at 850 ° C. for 3 hours in the atmosphere.
  • secondary particles are obtained from the powder of the Na-containing niobium-titanium composite oxide having the orthorhombic crystal structure obtained as described above according to the following procedure.
  • a powder of a Na-containing niobium titanium composite oxide having a rectangular crystal structure and a carbonaceous substance precursor, for example, sucrose are put into pure water to obtain a mixture.
  • the mixture is sprayed into a nitrogen atmosphere at a temperature of, for example, 120 ° C. or higher and 200 ° C. or lower (for example, 130 ° C.).
  • This process can be referred to as, for example, spray drying.
  • secondary particles in which the primary particles of the Na-containing niobium-titanium composite oxide having the carbon precursor attached to at least a part of the surface are aggregated can be obtained.
  • a substance other than sucrose can also be used as the carbon precursor.
  • carbon precursors other than sucrose include saccharides such as glucose and cellulose.
  • This secondary particle composite is heat-treated for 1 hour or more and 5 hours or less in a nitrogen atmosphere at a temperature of 500 ° C. or higher and 800 ° C. or lower.
  • a nitrogen atmosphere at a temperature of 500 ° C. or higher and 800 ° C. or lower.
  • the degree of sintering of the obtained secondary particles can be adjusted.
  • Specific examples of the heat treatment conditions are shown in [Example] in the latter stage.
  • the obtained secondary particles are dispersed in a solvent such as N-methylpyrrolidone (NMP) together with a conductive agent and a binder.
  • NMP N-methylpyrrolidone
  • the obtained dispersion is put into a planetary mixer. In this mixer, the dispersion is carried out for several hours, for example, 3 hours while lowering the solid content ratio of the dispersion.
  • the rotation speed of the planetary mixer is 50 rpm or more and 80 rpm or less (for example, 70 rpm).
  • the dispersion thus obtained is put into a bead mill and further subjected to dispersion.
  • This dispersion is carried out in an apparatus filled with zirconia beads having a media diameter of 1 mm or more and 3 mm or less (for example, 2 mm) and 40% or more and 70% or less (for example, 60%).
  • the rotation speed of the bead mill is 800 rpm or more and 2000 rpm or less (for example, 1000 rpm). Thereby, a mixture slurry can be obtained.
  • the mixture slurry obtained by dispersion with a bead mill can contain primary particles generated by crushing a part of secondary particles.
  • the mixture slurry is applied to the current collector.
  • the coating amount can be, for example, about 50 to 100 g / m 2 per one side of the current collector.
  • the applied slurry is dried to obtain an electrode having a current collector and an active material-containing layer.
  • the degree of orientation of the Na-containing niobium-titanium composite oxide having a rectangular crystal structure contained in the active material-containing layer with respect to the a-axis can be increased.
  • the active material-containing layer contains primary particles generated by crushing a part of the secondary particles. Secondary particles are aggregates of primary particles in various directions. Therefore, it is difficult for the secondary particles to increase the degree of orientation in a specific direction even when subjected to roll pressing.
  • the electrode according to the first embodiment does not need to be dispersed by the bead mill described above. Can be obtained. An example of this case will be described later as Example 7.
  • Whether or not it can be crushed by a roll press depends on, for example, the degree of sintering of secondary particles and the crushing strength by the apparatus.
  • the electrode according to the first embodiment can be obtained by the method described above.
  • the intensity ratio I 2 / I 1 and the intensity ratio I 3 / I 1 in powder X-ray diffraction are compounded with the above production conditions, for example, secondary particle production conditions, mixture slurry dispersion conditions, and roll press conditions. It can be adjusted by controlling. Specific examples will be described in [Example] in the latter part.
  • the heat treatment conditions are strengthened to increase the crystallinity of the primary particles, so that the influence can be strengthened when the crystal plane is oriented.
  • An example of this case will be described in [Example] below. If the heat treatment temperature is excessively high or the heat treatment time is excessively long, the crystal growth becomes excessive and the lithium diffusion distance in the particles becomes long. In this case, it is difficult to improve the input / output characteristics.
  • an electrode as a measurement target is prepared.
  • the electrodes contained in the battery are prepared by pretreatment according to the following procedure.
  • the battery is discharged.
  • the discharge state here means a state in which a constant current discharge is performed up to the discharge lower limit voltage at a current value of 0.2 C or less in an environment of 25 ° C.
  • the discharged battery is placed in a glove box filled with argon gas.
  • the target electrode is taken out from the battery in the glove box.
  • the removed electrode is washed with ethyl methyl ether and dried. Thus, the electrode to be measured can be obtained.
  • the electrodes obtained as described above are pasted on a glass sample plate. At this time, use double-sided tape or the like, and pay attention that the electrodes do not come off or float. If necessary, the electrodes may be cut to a size suitable for attaching to the glass sample plate. Further, a Si standard sample may be added on the electrode to correct the peak position.
  • a glass plate to which the electrodes are attached is installed in a powder X-ray diffractometer, and powder X-ray diffraction (X-ray diffraction pattern) is acquired using Cu-K ⁇ rays.
  • the powder X-ray diffraction (X-ray diffraction pattern) of the active material-containing layer can be obtained by performing the measurement by changing 2 ⁇ in the measurement range of 5 to 90 ° using CuK ⁇ ray as the radiation source.
  • a powder X-ray diffraction measurement device As a powder X-ray diffraction measurement device, a Smart Lab manufactured by Rigaku Co., Ltd. is used. The measurement conditions are as follows: Cu target; 45 kV 200 mA; solar slit: 5 ° for both incident and received light; step width: 0.02 deg; scan speed: 20 deg / min; semiconductor detector: D / teX Ultra 250; sample Plate holder: Flat glass sample plate holder (thickness 0.5 mm); Measurement range: 5 ° ⁇ 2 ⁇ ⁇ 90 °.
  • the measurement using the standard Si powder for powder X-ray diffraction is performed, and the conditions for obtaining the measurement results of peak intensity, full width at half maximum and diffraction angle equivalent to the results obtained by the above equipment are set. Find it and measure the sample under those conditions.
  • the active material-containing layer to be measured contains an orthorhombic crystal structure Na-containing niobium titanium composite oxide
  • powder X belonging to the orthorhombic type such as space group Cmca and Fmmm by powder X-ray diffraction measurement. It can be confirmed that line diffraction is obtained.
  • the highest peak in the range of diffraction angle of 17 ° or more and 18.5 ° or less (third peak). Can be observed.
  • composition of the composite oxide contained in the active material-containing layer of the electrode to be measured is a scanning electron microscope (SEM) equipped with an Energy Dispersive X-ray Spectroscopy (EDX) apparatus. It can be identified by analysis by (SEM-EDX) and analysis by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The method for identifying the composition will be described below.
  • Samples should be sampled in an inert atmosphere such as argon or nitrogen without being exposed to the atmosphere.
  • the selected particles are selected so that the particle size distribution is as wide as possible.
  • the type and composition of the constituent elements of the particles are specified by the EDX device. This makes it possible to specify the type and amount of elements other than Li among the elements contained in each of the selected particles. Whether or not carbon is attached to the particle surface can be determined by SEM observation image and EDX analysis.
  • the other part of the active material-containing layer is washed with acetone, dried, and weighed.
  • the weighed powder is dissolved in hydrochloric acid and the conductive agent is removed by filtration to obtain a filtrate. Dilute the filtrate with ion-exchanged water to prepare a measurement sample. This measurement sample is subjected to analysis by ICP-AES, and the amount of metal elements contained in the measurement sample is calculated.
  • the composition of the composite oxide contained in the active material-containing layer of the electrode to be measured can be identified.
  • the size of the primary particle is calculated from the diameter of the smallest circle corresponding to the primary particle. Specifically, the particle size is measured 10 times in an SEM image at a magnification of 3000 times, and the average of the diameters of the smallest circles obtained in each is taken as the primary particle size. Of the 10 measurements, the maximum and minimum particle diameters are not used to calculate the average. The same work is performed on 10 images obtained by observing different parts of the active material-containing layer. The value obtained by averaging the primary particle diameters of the 10 primary particles contained in the active material-containing layer is defined as the average primary particle diameter.
  • the secondary particle size is also measured by the same method as for the primary particles. That is, the diameter of the smallest circle corresponding to the secondary particles is obtained. Specifically, the particle size is measured 10 times in an SEM image with a magnification of 3000 times, and the average of the diameters of the smallest circles obtained in each is taken as the secondary particle size. Of the 10 measurements, the maximum and minimum particle diameters are not used to calculate the average. The same work is performed on 10 images obtained by observing different parts of the active material-containing layer. The value obtained by averaging the secondary particle diameters of the 10 secondary particles contained in the active material-containing layer is defined as the average secondary particle diameter.
  • the average secondary particle diameter of the secondary particles produced when the electrode was produced is measured by the following method. First, the powder of the prepared secondary particles is observed by SEM. In this SEM observation, an image of the composite oxide particles is obtained at a magnification of 3000 times. In the obtained field of view, a particle group in which it can be confirmed that the primary particles are in contact with each other is defined as a secondary particle. For these secondary particles, the average secondary particle diameter is measured by the same method as described above.
  • FIG. 4 is a schematic cross-sectional view of an example electrode according to the first embodiment.
  • the electrode 5 shown in FIG. 4 includes a current collector 5a and an active material-containing layer 5b.
  • the active material-containing layer 5b is supported on both surfaces of the current collector 5a.
  • the current collector 5a may be a strip-shaped metal or alloy foil.
  • the current collector 5a includes a portion (not shown) that does not support the active material-containing layer 5b on both sides. This part can act as a current collector tab.
  • the active material-containing layer 5b contains particles of the Na-containing niobium-titanium composite oxide having the orthorhombic crystal structure described above.
  • the intensity ratio I 2 / I 1 described above is within the range of 1.5 ⁇ I 2 / I 1 ⁇ 3.0.
  • the unit cell of the Na-containing niobium titanium composite oxide having a rectangular crystal structure shows a high degree of orientation along the direction in which Li ions are easily diffused. be able to. Therefore, in the electrode according to the first embodiment, the movement of Li ions in the active material-containing layer can be promoted. As a result, the electrode according to the first embodiment can realize a battery capable of exhibiting excellent input / output performance.
  • This battery includes an electrode according to the first embodiment as a negative electrode, a positive electrode, and an electrolyte.
  • the battery according to the second embodiment includes the electrodes according to the first embodiment, it can exhibit excellent input / output performance.
  • the battery according to the second embodiment can be repeatedly charged and discharged, for example. Therefore, the battery according to the second embodiment can be said to be a secondary battery.
  • the battery according to the second embodiment is, for example, a non-aqueous electrolyte battery.
  • a non-aqueous electrolyte battery contains a non-aqueous electrolyte, and a non-aqueous electrolyte contains an electrolyte.
  • the battery according to the second embodiment may be a battery containing an electrolytic solution containing an aqueous solvent and an electrolyte dissolved in the aqueous solvent.
  • the battery according to the second embodiment includes a negative electrode, a positive electrode, and an electrolyte.
  • the negative electrode is the electrode according to the first embodiment.
  • the electrode according to the first embodiment and the current collector and active material-containing layer contained therein are referred to as a negative electrode, and a negative electrode current collector and a negative electrode active material-containing layer, respectively.
  • the active material that can be contained in the negative electrode active material-containing layer is called a negative electrode active material.
  • the current collecting tab that can be provided by the electrode according to the first embodiment is called a negative electrode current collecting tab.
  • the positive electrode can include, for example, a positive electrode current collector and a positive electrode active material-containing layer formed on the positive electrode current collector.
  • the positive electrode current collector can have, for example, a strip-shaped planar shape.
  • the positive electrode current collector can have, for example, a first surface and a second surface as a surface opposite to the first surface.
  • the positive electrode current collector may support the positive electrode active material-containing layer on only one surface thereof, or may support the positive electrode active material-containing layer on both surfaces.
  • the positive electrode current collector may also include a portion that does not support a positive electrode active material-containing layer on the surface. This portion can serve, for example, as a positive electrode current collector tab.
  • the positive electrode may include a positive electrode current collector tab that is separate from the positive electrode current collector.
  • the positive electrode active material-containing layer can contain the positive electrode active material.
  • the positive electrode active material-containing layer may further contain a conductive agent and a binder in addition to the positive electrode active material.
  • the positive electrode and the negative electrode can form an electrode group.
  • the positive electrode active material-containing layer and the negative electrode active material-containing layer can face each other via, for example, a separator.
  • the electrode group can have various structures.
  • the electrode group can have a stack type structure.
  • the electrode group having a stack type structure can be obtained, for example, by laminating a plurality of positive electrodes and negative electrodes with a separator sandwiched between the positive electrode active material-containing layer and the negative electrode active material-containing layer.
  • the electrode group can have a wound structure.
  • one separator, one positive electrode, another separator, and one negative electrode are laminated in this order to form a laminated body, and this laminated body is formed. It can be obtained by winding so that the negative electrode is on the outside.
  • the non-aqueous electrolyte battery which is an example of the battery according to the second embodiment
  • the non-aqueous electrolyte can be held, for example, in a state of being impregnated in the electrode group.
  • the electrolytic solution containing the electrolyte can be held, for example, in a state of being impregnated in the electrode group.
  • the battery according to the second embodiment can further include a negative electrode terminal and a positive electrode terminal.
  • a part of the negative electrode terminal is electrically connected to a part of the negative electrode, so that the negative electrode terminal can function as a conductor for electrons to move between the negative electrode and the external terminal.
  • the negative electrode terminal can be connected to, for example, a negative electrode current collector, particularly a negative electrode current collector tab.
  • the positive electrode terminal can act as a conductor for electrons to move between the positive electrode and the external circuit by electrically connecting a part of the positive electrode terminal to a part of the positive electrode.
  • the positive electrode terminal can be connected to, for example, a positive electrode current collector, particularly a positive electrode current collector tab.
  • the battery according to the second embodiment may further include an exterior member.
  • the exterior member can accommodate a group of electrodes and an electrolyte.
  • the non-aqueous electrolyte can be impregnated in the electrode group in the exterior member.
  • Each part of the positive electrode terminal and the negative electrode terminal can be extended from the exterior member.
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing one or more elements selected from Mg, Ti, Zn, Mn, Fe, Cu, and Si.
  • Positive electrode active materials include, for example, manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium nickel composite oxide (eg Li u NiO 2 ), lithium cobalt composite oxide (eg Li u CoO 2). ), Lithium nickel-cobalt composite oxide (eg Li u Ni 1-s Co s O 2 ), Liu manganese cobalt composite oxide (eg Li u Mn s Co 1-s O 2 ), Lithium nickel cobalt manganese composite oxidation objects (e.g., Li u Ni 1-st Co s Mn t O 2), lithium-nickel-cobalt-aluminum composite oxide (e.g., Li u Ni 1-st Co s Al t O 2), lithium manganese composite oxides (e.g., Li u Mn 2 O 4 or Li u MnO 2 ), a lithium phosphate oxide having an olivine structure (for example, Li u FePO 4 , Li u MnPO 4
  • the positive electrode active material one of the above compounds may be used alone, or a mixture of a plurality of compounds may be used.
  • lithium manganese composite oxide having a spinel type structure for example, Li u Mn 2 O 4 or Li u Al s Mn 2-s O 2
  • lithium cobalt composite Oxide Li u CoO 2
  • Lithium Nickel Cobalt Composite Oxide Li u Ni 1-s Co s O 2
  • Lithium Manganese Cobalt Composite Oxide Li u Mn s Co 1-s O 2
  • Lithium Nickol Cobalt manganese composite oxide e.g.
  • Li u Ni 1-st Co s Mn t O 2 Li u Ni 1-st Co s Mn t O 2
  • lithium phosphates having an olivine structure e.g., Li u FePO 4, Li u MnPO 4, Li u Mn 1-s Fe s
  • PO 4 Li u CoPO 4
  • the positive electrode active material one of the above compounds may be used alone, or a mixture of a plurality of compounds may be used.
  • the conductive agent that can be contained in the positive electrode can have the effect of enhancing the current collecting performance and suppressing the contact resistance between the active material and the current collector.
  • conductive agents include carbonaceous materials such as carbon black (eg, acetylene black), graphite, carbon nanofibers, and carbon nanotubes. As the carbonaceous material, one of these may be used alone, or a plurality of carbonaceous materials may be used.
  • the binder can have the effect of binding the active material, the conductive agent and the current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluororubber, styrene-butadiene rubber, acrylic resin or a copolymer thereof, polyacrylic acid, polyacrylonitrile, and the like. ..
  • the positive electrode active material, the conductive agent and the binder in the positive electrode active material-containing layer are 80% by mass or more and 95% by mass or less, 3% by mass or more and 18% by mass or less, and 2% by mass or more and 17% by mass or less, respectively. It is preferable to mix.
  • the above-mentioned effect can be exhibited by adjusting the amount of the conductive agent to 3% by mass or more.
  • the amount of the conductive agent By setting the amount of the conductive agent to 18% by mass or less, the decomposition of the non-aqueous electrolyte on the surface of the conductive agent under high temperature storage can be reduced.
  • Sufficient electrode strength can be obtained by adjusting the amount of the binder to 2% by mass or more.
  • the amount of the binder By setting the amount of the binder to 17% by mass or less, the blending amount of the binder, which is an insulating material in the positive electrode, can be reduced, and the internal resistance can be reduced.
  • the positive electrode can be produced by, for example, the following method. First, a positive electrode active material, a conductive agent and a binder are suspended in a solvent to prepare a slurry. This slurry is applied to one surface or both surfaces of the positive electrode current collector to dry the coating film. Then, the dried coating film is subjected to a press to obtain a positive electrode active material-containing layer.
  • the positive electrode active material, the conductive agent and the binder may be formed in the form of pellets, and these pellets may be arranged on the positive electrode current collector and used as the positive electrode active material-containing layer.
  • Non-aqueous electrolyte for example, a liquid non-aqueous electrolyte or a gel-like non-aqueous electrolyte can be used.
  • the liquid non-aqueous electrolyte can be prepared by dissolving the electrolyte in an organic solvent.
  • concentration of the electrolyte is preferably in the range of 0.5 to 2.5 mol / l.
  • the gel-like non-aqueous electrolyte is prepared by combining a liquid electrolyte and a polymer material.
  • electrolytes examples include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiAsF 6 ), and trifluoromethane. Includes lithium sulfonate (LiCF 3 SO 3 ) and lithium salts such as bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ]. As the electrolyte, one of these electrolytes may be used alone, or two or more kinds of electrolytes may be used in combination. The electrolyte preferably contains LiPF 6 .
  • organic solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate; chains such as diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC). Carbonates; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX); chain ethers such as dimethoxyethane (DME), diethoxyethane (DEE); acetonitrile (AN), and , Hydrofuran (SL) is included. As the organic solvent, one of these solvents may be used alone, or two or more kinds of solvents may be used in combination.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate
  • chains such as diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (M
  • Examples of more preferable organic solvents are two or more selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • a mixed solvent in which the above is mixed is included. By using such a mixed solvent, a non-aqueous electrolyte battery having excellent charge / discharge cycle characteristics can be obtained.
  • additives can be added to the electrolytic solution.
  • separator for example, a porous film formed of a material such as polyethylene, polypropylene, polyethylene terephthalate, cellulose and polyvinylidene fluoride (PVdF), a non-woven fabric made of synthetic resin, or the like can be used. Further, a separator obtained by applying an inorganic compound to a porous film can also be used.
  • Exterior member for example, a bag-shaped container made of a laminated film or a metal container can be used.
  • the shape is not particularly limited, and examples thereof include a flat type, a square type, a cylindrical type, a coin type, a button type, a sheet type, and a laminated type.
  • a large battery loaded on a two-wheeled or four-wheeled automobile or the like may be used.
  • the laminated film for example, a multilayer film in which a metal layer is sandwiched between resin films can be used.
  • a multilayer film composed of a metal layer and a resin layer covering the metal layer can also be used.
  • the resin film and the resin layer have a role of reinforcing the metal layer.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil in order to reduce the weight.
  • resin film polymer materials such as polypropylene (PP), polyethylene (PE), nylon, and polyethylene terephthalate (PET) can be used.
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • the laminated film can be sealed into the shape of an exterior member by heat fusion.
  • the thickness of the laminated film is preferably 0.2 mm or less.
  • the metal container can be made of aluminum or an aluminum alloy.
  • the aluminum alloy preferably contains elements such as magnesium, zinc and silicon.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 100 ppm or less. This makes it possible to dramatically improve long-term reliability and heat dissipation in a high temperature environment.
  • the metal container preferably has a wall thickness of 0.5 mm or less, and more preferably 0.2 mm or less.
  • the positive electrode terminal is formed of, for example, a material that is electrically stable and has conductivity in a range where the potential with respect to the redox potential of lithium is 3.0 V or more and 4.5 V or less. It is preferably formed from aluminum or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the positive electrode terminal is preferably formed of the same material as the positive electrode current collector in order to reduce the contact resistance with the positive electrode current collector.
  • the negative electrode terminal is formed of a material that is electrically stable and has conductivity in a range in which the potential of lithium with respect to the redox potential is 0.8 V or more and 3.0 V or less. It is preferably formed from aluminum or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the negative electrode terminal is preferably formed of the same material as the negative electrode current collector in order to reduce the contact resistance with the negative electrode current collector.
  • FIG. 5 is a schematic cross-sectional view of an example battery according to the second embodiment.
  • FIG. 6 is an enlarged cross-sectional view of part A of the battery of FIG.
  • the battery 10 shown in FIGS. 5 and 6 is a non-aqueous electrolyte battery.
  • the non-aqueous electrolyte battery 10 includes the flat wound electrode group 3 shown in FIG.
  • the flat wound electrode group 3 is housed in a bag-shaped exterior member 2 made of a laminated film.
  • the laminated film includes a metal layer and two resin films sandwiching the metal layer.
  • the flat spiral electrode group 3 is formed by spirally winding a laminate in which the negative electrode 5, the separator 6, the positive electrode 4, and the separator 6 are laminated in this order from the outside and press molding. It is formed.
  • the negative electrode 5 includes a negative electrode current collector 5a and a negative electrode active material-containing layer 5b. In the outermost portion of the negative electrode 5, as shown in FIG. 6, a negative electrode active material-containing layer 5b is formed on one surface of the negative electrode current collector 5a on the inner surface side. In the other portion of the negative electrode 5, the negative electrode active material-containing layer 5b is formed on both surfaces of the negative electrode current collector 5a.
  • the positive electrode 4 includes a positive electrode current collector 4a and a positive electrode active material-containing layer 4b. In the positive electrode 4, positive electrode active material-containing layers 4b are formed on both sides of the positive electrode current collector 4a.
  • the negative electrode terminal 8 is connected to the negative electrode current collector 5a in the outermost layer of the negative electrode 5 in the vicinity of the outer peripheral end of the wound electrode group 3, and the positive electrode terminal 7 is the positive electrode of the positive electrode 4 located inside. It is connected to the current collector 4a.
  • These negative electrode terminals 8 and positive electrode terminals 7 extend outward from the opening of the bag-shaped exterior member 2.
  • the non-aqueous electrolyte battery 10 shown in FIGS. 5 and 6 further includes a non-aqueous electrolyte (not shown).
  • the non-aqueous electrolyte is housed in the exterior member 2 in a state of being impregnated with the electrode group 3.
  • the non-aqueous electrolyte can be injected, for example, through the opening of the bag-shaped exterior member 2. After injecting the non-aqueous electrolyte, the opening of the bag-shaped exterior member 2 is heat-sealed with the negative electrode terminal 8 and the positive electrode terminal 7 interposed therebetween, so that the wound electrode group 3 and the non-aqueous electrolyte can be completely sealed.
  • the negative electrode 5 shown in FIG. 6 is an example of the electrode according to the first embodiment.
  • the battery according to the second embodiment is not limited to the battery having the configurations shown in FIGS. 5 and 6 described above, and may have the configurations shown in FIGS. 7 and 8, for example.
  • FIG. 7 is a schematic partially cutaway perspective view of another example battery according to the second embodiment.
  • FIG. 8 is an enlarged cross-sectional view of a portion B of the battery of FIG.
  • the battery 10 shown in FIGS. 7 and 8 is a non-aqueous electrolyte battery.
  • the non-aqueous electrolyte battery 10 includes a stack type electrode group 3.
  • the stack type electrode group 3 is housed in an exterior member 2 made of a laminated film.
  • the laminated film includes a metal layer and two resin films sandwiched therein.
  • the stack type electrode group 3 has a structure in which a positive electrode 4 and a negative electrode 5 are alternately laminated with a separator 6 interposed therebetween.
  • a positive electrodes 4 each of which includes a positive electrode current collector 4a and a positive electrode active material-containing layer 4b supported on both sides of the positive electrode current collector 4a.
  • One side of the negative electrode current collector 5a of each negative electrode 5 projects from the positive electrode 4.
  • the portion 5c of the negative electrode current collector 5a protruding from the positive electrode 4 is electrically connected to the strip-shaped negative electrode terminal 8.
  • the tip of the strip-shaped negative electrode terminal 8 is pulled out from the exterior member 2.
  • the positive electrode current collector 4a of the positive electrode 4 has a side of the negative electrode current collector 5a that is located on the opposite side of the protruding side 5c and protrudes from the negative electrode 5.
  • the portion of the positive electrode current collector 4a protruding from the negative electrode 5 is electrically connected to the band-shaped positive electrode terminal 7.
  • the tip of the strip-shaped positive electrode terminal 7 is located on the opposite side of the negative electrode terminal 8 and is drawn out from the side of the exterior member 2.
  • the negative electrode 5 shown in FIG. 8 is an example of the electrode according to the first embodiment.
  • the battery according to the second embodiment includes the electrodes according to the first embodiment, excellent input / output performance can be exhibited.
  • a battery pack is provided.
  • This battery pack comprises the battery according to the second embodiment.
  • the battery pack according to the third embodiment may include a plurality of batteries. Multiple batteries can be electrically connected in series or electrically in parallel. Alternatively, a plurality of batteries can be connected in series and in parallel.
  • the battery pack according to the third embodiment may include a plurality of batteries according to the second embodiment. These batteries can be connected in series. Further, the batteries connected in series can form an assembled battery. That is, the battery pack according to the third embodiment may also include an assembled battery.
  • the battery pack according to the third embodiment can include a plurality of assembled batteries.
  • a plurality of assembled batteries can be connected in series, in parallel, or in a combination of series and parallel.
  • the battery pack 20 shown in FIGS. 9 and 10 includes a plurality of cell cells 21.
  • the flat batteries shown in FIGS. 5 and 6 can be used as the cell 21.
  • the plurality of cell cells 21 composed of the flat non-aqueous electrolyte batteries 10 shown in FIGS. 5 and 6 described above are laminated so that the negative electrode terminals 8 and the positive electrode terminals 7 extending to the outside are aligned in the same direction.
  • the assembled battery 23 is formed by fastening with the adhesive tape 22. As shown in FIG. 10, these cell cells 21 are electrically connected in series with each other.
  • the printed wiring board 24 is arranged so as to face the side surface of the cell 21 on which the negative electrode terminal 8 and the positive electrode terminal 7 extend. As shown in FIG. 10, the printed wiring board 24 is equipped with a thermistor 25, a protection circuit 26, and a terminal 27 for energizing an external device. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
  • the positive electrode side lead 28 is connected to the positive electrode terminal 7 located at the bottom layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and electrically connected.
  • the negative electrode side lead 30 is connected to the negative electrode terminal 8 located on the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode side connector 31 of the printed wiring board 24 and electrically connected. These connectors 29 and 31 are connected to the protection circuit 26 through the wirings 32 and 33 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the cell 21 and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the positive side wiring 34a and the negative side wiring 34b between the protection circuit 26 and the energizing terminal 27 to the external device under predetermined conditions.
  • the predetermined condition is, for example, when the detection temperature of the thermistor 25 becomes equal to or higher than the predetermined temperature. Further, the predetermined condition is when overcharge, overdischarge, overcurrent, etc. of the cell 21 are detected.
  • the detection of overcharging or the like is performed for each individual cell 21 or the entire assembled battery 23. When detecting the individual cell 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each cell 21.
  • a wiring 35 for voltage detection is connected to each of the cell 21s, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
  • Protective sheets 36 made of rubber or resin are arranged on the three side surfaces of the assembled battery 23 except for the side surfaces on which the positive electrode terminal 7 and the negative electrode terminal 8 protrude.
  • the assembled battery 23 is stored in the storage container 37 together with the protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is arranged on both inner side surfaces in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is arranged on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat-shrinkable tape may be used instead of the adhesive tape 22 to fix the assembled battery 23.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat-shrinkable tape is circulated, and then the heat-shrinkable tape is heat-shrinked to bind the assembled battery.
  • the cells 21 are connected in series in FIGS. 9 and 10, they may be connected in parallel in order to increase the battery capacity.
  • the assembled battery packs can also be connected in series and / or in parallel.
  • the mode of the battery pack according to the third embodiment is appropriately changed depending on the intended use.
  • the battery pack according to the third embodiment is suitably used for applications in which excellent cycle characteristics are required when a large current is taken out. Specifically, it is used as a power source for a digital camera, or as an in-vehicle battery for vehicles such as trains, two-wheeled to four-wheeled hybrid electric vehicles, two-wheeled to four-wheeled electric vehicles, and assisted bicycles. In particular, it is suitably used as an in-vehicle battery.
  • the battery pack according to the third embodiment includes the battery according to the second embodiment, excellent input / output performance can be exhibited.
  • Example 1 [Preparation of electrodes] (Example 1) In Example 1, the electrode of Example 1 was produced by the following procedure.
  • titanium oxide TiO 2 lithium carbonate Li 2 CO 3 , sodium carbonate Na 2 CO 3, and niobium (V) Nb (OH) 5 hydroxide were prepared. These raw materials were mixed so that the molar ratio of Li: Na: Ti: Nb of the mixture was 2.0: 1.7: 5.7: 0.3. Prior to mixing, the raw materials were thoroughly ground. The mixed raw materials were subjected to heat treatment in an air atmosphere of 850 ° C. for 3 hours. Thus, a powder in the form of primary particles of the product was obtained. Part of the product was subjected to the SEM-EDX analysis and ICP-AES analysis described above. As a result, it was found that the product was a Na-containing niobium-titanium composite oxide having a composition represented by Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 .
  • the mixture was then transferred to a bead mill device where it was further dispersed.
  • the bead device was filled with zirconia beads having a media diameter of 2 mm as beads in an amount of 60% based on the volume.
  • Dispersion was performed by setting the rotation speed to 1000 rpm.
  • the slurry flow rate was set so that the time during which the dispersion treatment was performed was 10 minutes.
  • the secondary particles of Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 were partially crushed by dispersion with a bead mill. Thus, a mixture slurry was obtained.
  • Example 2 In Example 2, the electrodes of Example 2 were produced by the following procedure.
  • titanium oxide TiO 2 lithium carbonate Li 2 CO 3 , sodium carbonate Na 2 CO 3, and niobium (V) Nb (OH) 5 hydroxide were prepared. These raw materials were mixed so that the molar ratio of Li: Na: Ti: Nb of the mixture was 2.1: 1.6: 5.6: 0.4. Prior to mixing, the raw materials were thoroughly ground. The mixed raw materials were heat-treated for 3 hours in an air atmosphere of 850 ° C. Thus, a powder in the form of primary particles of the product was obtained. Part of the product was subjected to the SEM-EDX analysis and ICP-AES analysis described above. As a result, it was found that the product was a Na-containing niobium-titanium composite oxide having a composition represented by Li 2.1 Na 1.6 Ti 5.6 Nb 0.4 O 14 .
  • Example 2 The mixture was then subjected to a bead mill under the same conditions as in Example 1.
  • the secondary particles of Li 2.1 Na 1.6 Ti 5.6 Nb 0.4 O 14 were partially crushed by dispersion with a bead mill. Thus, a mixture slurry was obtained.
  • Example 3 the electrode of Example 3 was produced by the following procedure.
  • titanium oxide TiO 2 lithium carbonate Li 2 CO 3 , sodium carbonate Na 2 CO 3 , niobium hydroxide (V) Nb (OH) 5, and molybdenum oxide MoO 3 were prepared. These raw materials were mixed so that the molar ratio of Li: Na: Ti: Nb: Mo of the mixture was 2.1: 1.6: 5.5: 0.4: 0.1. Prior to mixing, the raw materials were thoroughly ground. The mixed raw materials were heat-treated for 3 hours in an air atmosphere of 850 ° C. Thus, a powder in the form of primary particles of the product was obtained. Part of the product was subjected to the SEM-EDX analysis and ICP-AES analysis described above. As a result, it was found that the product was a Na-containing niobium-titanium composite oxide having a composition represented by Li 2.1 Na 1.6 Ti 5.5 Nb 0.4 Mo 0.1 O 14 .
  • Example 2 The mixture was then subjected to a bead mill under the same conditions as in Example 1.
  • the secondary particles of Li 2.1 Na 1.6 Ti 5.5 Nb 0.4 Mo 0.1 O 14 were partially crushed by dispersion with a bead mill. Thus, a mixture slurry was obtained.
  • Example 4 the electrode of Example 4 was produced by the following procedure.
  • titanium oxide TiO 2 lithium carbonate Li 2 CO 3 , sodium carbonate Na 2 CO 3 , niobium hydroxide (V) Nb (OH) 5, and strontium hydroxide Sr (OH) 2 were prepared. These raw materials were mixed so that the molar ratio of Li: Na: Ti: Nb: Sr of the mixture was 2.1: 1.4: 5.6: 0.4: 0.1. Prior to mixing, the raw materials were thoroughly ground. The mixed raw materials were heat-treated for 3 hours in an air atmosphere of 850 ° C. Thus, a powder in the form of primary particles of the product was obtained. Part of the product was subjected to the SEM-EDX analysis and ICP-AES analysis described above. As a result, it was found that the product was a Na-containing niobium-titanium composite oxide having a composition represented by Li 2.1 Na 1.4 Sr 0.1 Ti 5.6 Nb 0.4 O 14 .
  • Example 2 The mixture was then subjected to a bead mill under the same conditions as in Example 1.
  • the secondary particles of Li 2.1 Na 1.4 Sr 0.1 Ti 5.6 Nb 0.4 O 14 were partially crushed by dispersion with a bead mill. Thus, a mixture slurry was obtained.
  • Example 5 In Example 5, the electrode of Example 5 was produced by the following procedure.
  • Example 5 a composite oxide powder was obtained by the same procedure as in Example 1 except that the heat treatment conditions of the mixture of raw materials were changed. Specifically, in Example 5, the mixed raw materials were subjected to heat treatment in an air atmosphere of 950 ° C. for 5 hours. Thus, a powder in the form of primary particles of the product was obtained. Part of the product was subjected to the SEM-EDX analysis and ICP-AES analysis described above. As a result, it was found that the product was a Na-containing niobium-titanium composite oxide having a composition represented by Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 . In Example 5, secondary particles were not produced.
  • Example 2 the mixture was subjected to a bead mill under the same conditions as in Example 1 except that the rotation speed was 700 rpm. Thus, a mixture slurry was obtained.
  • Example 6 In Example 6, the electrodes of Example 6 were produced by the following procedure.
  • Example 6 a composite oxide powder was obtained by the same procedure as in Example 3 except that the heat treatment conditions of the mixture of raw materials were changed. Specifically, in Example 6, the mixed raw materials were subjected to heat treatment in an air atmosphere of 950 ° C. for 5 hours. Thus, a powder in the form of primary particles of the product was obtained. Part of the product was subjected to the SEM-EDX analysis and ICP-AES analysis described above. As a result, it was found that the product was a Na-containing niobium-titanium composite oxide having a composition represented by Li 2.1 Na 1.6 Ti 5.5 Nb 0.4 Mo 0.1 O 14 . In Example 6, secondary particles were not produced.
  • Example 2 the mixture was subjected to a bead mill under the same conditions as in Example 1 except that the rotation speed was changed to 700 rpm. Thus, a mixture slurry was obtained.
  • Example 7 the electrode of Example 7 was produced by the following procedure.
  • the slurry obtained by this dispersion was used as a mixture slurry. That is, in Example 7, a mixture slurry was prepared without performing bead mill dispersion.
  • Comparative Example 1 In Comparative Example 1, the electrode of Comparative Example 1 was produced by the following procedure.
  • Comparative Example 1 a composite oxide powder was obtained by the same procedure as in Example 1. A part of the product obtained by the heat treatment was subjected to the SEM-EDX analysis and the ICP-AES analysis described above. As a result, it was found that the product was a Na-containing niobium-titanium composite oxide having a composition represented by Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 . In Comparative Example 1, secondary particles were not produced.
  • Comparative Example 2 In Comparative Example 2, the same procedure as in Example 1 was used except that the method for preparing the Na-containing niobium-titanium composite oxide, the method for producing secondary particles, the method for preparing the mixture slurry, and the pressure of the roll press were changed. The electrode of Example 2 was prepared.
  • a composite oxide powder was obtained by the following procedure. First, a mixture of raw materials was prepared by the same procedure as in Example 1. The mixture was then subjected to heat treatment in an air atmosphere at 900 ° C. for 10 hours. Thus, a powder in the form of primary particles of the product was obtained. Part of the product was subjected to the SEM-EDX analysis and ICP-AES analysis described above. As a result, it was found that the product was a Na-containing niobium-titanium composite oxide having a composition represented by Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 .
  • Comparative Example 3 In Comparative Example 3, the electrodes of Comparative Example 3 were prepared in the same procedure as in Comparative Example 2 except that the bead mill dispersion was performed when preparing the mixture slurry and the pressure of the roll press was changed. In Comparative Example 3, bead mill dispersion was performed under the same conditions as in Example 1 except that the rotation speed was set to 2500 rpm. In Comparative Example 3, the pressure of the roll press was set to 1.8 t / cm (linear pressure). The electrode of Comparative Example 3 obtained as a result of roll pressing included an active material-containing layer having a density of 2.5 g / cm 3 .
  • Comparative Example 4 In Comparative Example 4, the procedure was the same as that of Comparative Example 2 except that the method for producing the secondary particles was changed, the bead mill dispersion was performed when preparing the mixture slurry, and the pressure of the roll press was changed. The electrode of Example 4 was prepared. In Comparative Example 4, secondary particles were produced by the same procedure as in Comparative Example 2 except that the amount of sucrose input was set to an amount corresponding to 1% by mass with respect to the powder of the product and the heat treatment temperature was set to 1000 ° C. did. Further, in Comparative Example 4, bead mill dispersion was performed under the same conditions as in Example 1. In Comparative Example 4, the pressure of the roll press was set to 1.8 t / cm (linear pressure). The electrode of Comparative Example 4 obtained as a result of roll pressing included an active material-containing layer having a density of 2.5 g / cm 3 .
  • Comparative Example 5 In Comparative Example 5, the procedure was the same as that of Comparative Example 2 except that the method for producing secondary particles was changed, the bead mill dispersion was performed when preparing the mixture slurry, and the pressure of the roll press was changed. The electrode of Comparative Example 5 was prepared. In Comparative Example 5, secondary particles were produced by the same procedure as in Comparative Example 2 except that the amount of sucrose input was set to an amount corresponding to 5% by mass with respect to the powder of the product and the heat treatment temperature was set to 600 ° C. did.
  • Comparative Example 5 bead mill dispersion was performed under the same conditions as in Example 1.
  • the pressure of the roll press was set to 1.8 t / cm (linear pressure).
  • the electrode of Comparative Example 5 obtained as a result of roll pressing included an active material-containing layer having a density of 2.5 g / cm 3 .
  • Comparative Example 6 Comparative Example 6, the electrodes of Comparative Example 6 were prepared by the same method as in Example 1 except that the preparation conditions for the secondary particles were changed and the dispersion conditions in the bead mill were changed.
  • the amount of sucrose input was set to an amount corresponding to 5% by mass with respect to the powder of the product.
  • the electrode of Comparative Example 6 obtained as a result of roll pressing included an active material-containing layer having a density of 2.5 g / cm 3 .
  • Comparative Example 7 Comparative Example 7, the electrodes of Comparative Example 7 were produced by the same method as in Example 1 except that the method for producing secondary particles was changed.
  • Comparative Example 7 a powder in the form of primary particles of a product, which is a Na-containing niobium-titanium composite oxide having a composition represented by Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 , is obtained by the same procedure as in Example 1. It was.
  • Comparative Example 7 the powder of the product obtained as described above was used, the amount of sucrose input was set to an amount corresponding to 1% by mass with respect to the powder of the product, and over 3 hours. Secondary particles were prepared in the same procedure as in Example 1 except that the heat treatment was performed in a nitrogen atmosphere at 1000 ° C.
  • the electrode of Comparative Example 7 obtained as a result of roll pressing included an active material-containing layer having a density of 2.5 g / cm 3 .
  • Comparative Example 8 In Comparative Example 8, the electrodes of Comparative Example 8 were prepared by the same method as in Example 1 except that the method for producing secondary particles was changed.
  • Comparative Example 8 a powder in the form of primary particles of the product was obtained under the same conditions as in Example 1. Part of the product was subjected to the SEM-EDX analysis and ICP-AES analysis described above. As a result, it was found that the product was a Na-containing niobium-titanium composite oxide having a composition represented by Li 2 Na 1.7 Ti 5.7 Nb 0.3 O 14 .
  • sucrose input amount was set to an amount corresponding to 5% by mass with respect to the powder of the product, and the heat treatment for 3 hours was carried out in a nitrogen atmosphere at 600 ° C. Secondary particles were prepared in the same procedure as in Example 1.
  • the electrode of Comparative Example 8 obtained as a result of roll pressing included an active material-containing layer having a density of 2.5 g / cm 3 .
  • a powder of spinel-type lithium manganese composite oxide LiAl 0.1 Mn 1.9 O 4 was prepared as a positive electrode active material.
  • This composite oxide, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are mixed in a mixed ratio of 90% by mass: 5% by mass: 5% by mass, and N-methyl as a solvent. It was added to pyrrolidone (NMP) and mixed.
  • NMP pyrrolidone
  • the mixture thus obtained was dispersed using a rotation / revolution mixer similar to that used when the electrode of Comparative Example 1 was prepared to prepare a slurry.
  • a positive electrode current collector made of an aluminum foil having a thickness of 15 ⁇ m.
  • the coating film was dried.
  • a positive electrode including a positive electrode current collector and positive electrode active material-containing layers formed on both sides thereof was obtained.
  • the positive electrode thus obtained was then subjected to a press.
  • a positive electrode containing a positive electrode active material-containing layer having a density of 2.7 g / cm 3 was prepared.
  • the positive electrode produced earlier, one separator, the negative electrode produced earlier, and another separator were laminated in this order to obtain a laminate.
  • This laminated body was wound in a spiral shape. By heating and pressing this at 90 ° C., a flat electrode group having a width of 30 mm and a thickness of 3.0 mm was prepared.
  • the obtained electrode group was stored in a pack made of a laminated film and vacuum dried at 80 ° C. for 24 hours.
  • the laminated film was formed by forming polypropylene layers on both sides of an aluminum foil having a thickness of 40 ⁇ m, and had an overall thickness of 0.1 mm.
  • the capacity of the non-aqueous electrolyte battery of Example 1 was 300 mAh.
  • the 10-second input and 10-second output resistance measurements at 0 ° C were performed according to the following procedure. First, each battery was adjusted to SOC 50% in an environment of 25 ° C. Next, each battery was set to an open circuit state, and then the ambient temperature was set to 0 ° C. Then, the ambient temperature of 0 ° C. was maintained for 3 hours. Next, a current was applied to each battery at 10 C for 10 seconds. When measuring the input resistance, charging was performed to measure the resistance. When measuring the output resistance, the resistance was measured by discharging.
  • the input and output resistance measurements for 10 seconds at 25 ° C were performed according to the following procedure. First, each battery was adjusted to SOC 50% in an environment of 25 ° C. Next, each battery was opened and left for 1 hour. Next, a current was applied to each battery at 10 C for 10 seconds. In the input resistance measurement, charging was performed to measure the resistance. In the output resistance measurement, discharge was performed to measure the resistance.
  • the 10-second input resistance at 0 ° C. for the 10-second input resistance at 25 ° C. and the 10-second output resistance at 0 ° C. for the 10-second input resistance at 25 ° C. It is shown in Table 1 below.
  • the batteries of Examples 1 to 7 have a lower relative value of the input resistance at 0 ° C. to the input resistance at 25 ° C. than the batteries of Comparative Examples 1 to 8. Further, it can be seen that the batteries of Examples 1 to 7 have a lower relative value of the output resistance at 0 ° C. to the output resistance at 25 ° C. than the batteries of Comparative Examples 1 to 8. From these results, it can be seen that the batteries of Examples 1 to 7 can suppress the deterioration of the input / output performance when the temperature becomes lower than that of the batteries of Comparative Examples 1 to 8. That is, the batteries of Examples 1 to 7 could exhibit better input / output performance than the batteries of Comparative Examples 1 to 8.
  • Example 7 the secondary particles contained in the active material-containing layer were crushed to generate primary particles by a roll press, and the primary particles were further pressed to obtain a rectangular crystal structure in the active material-containing layer. It is considered that the Na-containing niobium-titanium composite oxide particles having a high degree of orientation along the direction in which Li ions are easily diffused.
  • Example 5 and 6 the heat treatment temperature was raised and the heat treatment time was lengthened during the synthesis of the Na-containing niobium-titanium composite oxide as compared with Example 1. However, in Examples 5 and 6, the heat treatment temperature was not excessively raised and the time was not lengthened excessively. It is considered that this made it possible to suppress excessive grain growth while improving the crystallinity of the active material particles. Further, in Examples 5 and 6, since there was a possibility that the particles were necked to each other due to sintering, a bead mill was performed at the time of preparing the slurry to loosen the particles. As a result, it is considered that in Examples 5 and 6, it became possible to produce particles having high crystallinity and orientation without excessive grain growth.
  • Comparative Example 1 a powder in the form of primary particles of a Na-containing niobium-titanium composite oxide was synthesized under the same heat treatment conditions as in Example 1. However, in Comparative Example 1, a mixture slurry was prepared without converting the powder of the primary particles into secondary particles. Then, this mixture slurry was applied to a current collector, dried, and subjected to a press to obtain an electrode of Comparative Example 1. From the results of Comparative Example 1, in the electrodes prepared using the above particles, even if the electrode density is adjusted with a relatively weak press line pressure, an electrode having a high degree of orientation of the (400) plane cannot be obtained. You can see that.
  • Comparative Example 2 when the primary particles of the Na-containing niobium-titanium composite oxide were synthesized, heat treatment was performed at 900 ° C. for 10 hours to enhance the crystallinity of the Na-containing niobium-titanium composite oxide. However, in Comparative Example 2, bead mill dispersion was not performed. Therefore, it is considered that the coating film applied to the roll press in Comparative Example 2 did not contain the primary particles generated by crushing the secondary particles of the Na-containing niobium-titanium composite oxide. As a result, even when the electrodes of Comparative Example 2 were subjected to a roll press, the intensity ratio I 2 / I 1 was less than 1.5, and a high degree of orientation of the (400) plane could not be realized.
  • Comparative Example 3 the intensity ratio I 2 / I 1 exceeded 3.0.
  • the rotation speed in the bead mill dispersion was set to be larger than that in Example 1.
  • the slurry had a stronger share than in Example 1.
  • the secondary particles formed by spray drying were almost crushed. It is considered that the degree of orientation of the (400) plane on the electrode was excessively increased by pressing the coating film obtained from the slurry containing the substantially crushed composite oxide particles.
  • Comparative Examples 3, 4 and 7 it is considered that the particles of the Na-containing niobium-titanium composite oxide in a substantially crushed state were forcibly oriented. The detailed mechanism is unknown, but it is considered that this is the reason why the batteries of Comparative Examples 3, 4 and 7 could not show excellent input / output performance.
  • Comparative Examples 5, 6 and 8 the amount of sucrose in the mixture to be spray-dried was made larger than that of Example 1. It is probable that the secondary particles in Comparative Examples 5, 6 and 8 obtained by subjecting such a mixture to spray drying had high strength and were difficult to be crushed. Therefore, in Comparative Examples 5, 6 and 8, it is considered that the secondary particles were not appropriately crushed even by the bead mill treatment at the time of preparing the mixture slurry. As a result, in Comparative Examples 5, 6 and 8, it is considered that the high degree of orientation of the (400) plane could not be realized even by the roll press.
  • the electrodes of at least one of these embodiments or examples include an active material-containing layer.
  • the active material-containing layer contains particles of a Na-containing niobium-titanium composite oxide having a rectangular crystal structure.
  • the intensity ratio I 2 / I 1 is within the range of 1.5 ⁇ I 2 / I 1 ⁇ 3.0.
  • I 1 is the intensity of the highest intensity peak in the range where the diffraction angle is larger than 18.5 ° and 19.5 ° or less in the powder X-ray diffraction of the active material-containing layer.
  • I 2 is the intensity of the highest intensity peak in the range where the diffraction angle is 20.5 ° or more and 22 ° or less in the powder X-ray diffraction of the active material-containing layer.
  • the particles of the Na-containing niobium titanium composite oxide having a rectangular crystal structure show a high degree of orientation along the direction in which Li ions are easily diffused. Thereby, this electrode can realize a battery showing excellent input / output performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一実施形態によると、電極が提供される。この電極は、活物質含有層を具備する。活物質含有層は、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子を含む。活物質含有層の、Cu-Kα線源を用いる粉末X線回折において、強度比I2/I1が1.5≦I2/I1≦3.0の範囲内にある。I1は、活物質含有層の粉末X線回折において、回折角が18.5°より大きく19.5°以下である範囲内での最強度ピークの強度である。I2は、活物質含有層の粉末X線回折において、回折角が20.5°以上22°以下である範囲内での最強度ピークの強度である。

Description

電極、電池及び電池パック
 本発明の実施形態は、電極、電池及び電池パックに関する。
 非水電解質電池では、リチウムイオンが負極と正極とを移動することにより、充電及び放電が行われる。このような非水電解質電池は、高エネルギー密度電池として、盛んに研究が進められている。
 このような非水電解質電池は、例えば小型電子機器用電源としての利用に加え、車載用途や定置用途など中型~大型の電源としての利用も期待される。中型~大型用途では、非水電解質電池は、優れた寿命性能及び高い安全性を示すことが要求される。更に、中型~大型用途では、非水電解質電池は、優れた入出力性能を示すことも必要となる。
 優れた寿命性能や高い安全性を示すことができる非水電解質電池としては、負極において、スピネル型の結晶構造を有するチタン酸リチウムを用いた非水電解質電池が知られている。しかしながら、スピネル型の結晶構造を有するチタン酸リチウムは、リチウム吸蔵及び放出電位が1.55V(vs. Li/Li+)程度と高い。そのため、スピネル型の結晶構造を有するチタン酸リチウムを含んだ負極を具備した非水電解質電池は、低い電池電圧を示す。また、スピネル型の結晶構造を有するチタン酸リチウムは、充電状態の変化に伴う電位の変化が非常に小さいという特徴を有する。すなわち、スピネル型チタン酸リチウムの充電曲線及び放電曲線のそれぞれは、リチウム吸蔵及び放出電位範囲において、電位の平坦部を含んでいる。
日本国特開2016-171071号公報 日本国特開2017-59392号公報 日本国特開2017-59390号公報
 優れた入出力性能を示すことができる電池を実現できる電極、この電極を具備した電池、及びこの電池を具備する電池パックを提供することを目的とする。
 第1の実施形態によると、電極が提供される。この電極は、活物質含有層を具備する。活物質含有層は、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子を含む。活物質含有層の、Cu-Kα線源を用いる粉末X線回折において、強度比I2/I1が1.5≦I2/I1≦3.0の範囲内にある。I1は、活物質含有層の粉末X線回折において、回折角が18.5°より大きく19.5°以下である範囲内での最強度ピークの強度である。I2は、活物質含有層の粉末X線回折において、回折角が20.5°以上22°以下である範囲内での最強度ピークの強度である。
 第2の実施形態によると、電池が提供される。この電池は、負極としての第1の実施形態に係る電極と、正極と、電解質とを具備する。
 第3の実施形態によると、電池パックが提供される。この電池パックは、第2の実施形態に係る電池を具備する。
図1Aは、直方晶型の結晶構造の一例の概略図である。 図1Bは、直方晶型の結晶構造の一例の概略図である。 図1Cは、直方晶型の結晶構造の一例の概略図である。 図2は、第1の実施形態に係る一例の電極の活物質含有層の粉末X線回折である。 図3は、参考例の電極の活物質含有層の粉末X線回折である。 図4は、第1の実施形態に係る一例の電極の概略断面図である。 図5は、第2の実施形態に係る一例の電池の概略断面図である。 図6は、図5の電池のA部の拡大断面図である。 図7は、第2の実施形態に係る一例の電池の概略部分切欠き斜視図である。 図8は、図7の電池のB部の拡大断面図である。 図9は、第3の実施形態に係る一例の電池パックの概略分解斜視図である。 図10は、図9の電池パックの電気回路を示すブロック図である。
実施形態
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。
 (第1の実施形態)
 第1の実施形態によると、電極が提供される。この電極は、活物質含有層を具備する。活物質含有層は、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子を含む。活物質含有層の、Cu-Kα線源を用いる粉末X線回折において、強度比I2/I1が1.5≦I2/I1≦3.0の範囲内にある。I1は、活物質含有層の粉末X線回折において、回折角が18.5°より大きく19.5°以下である範囲内での最強度ピークの強度である。I2は、活物質含有層の粉末X線回折において、回折角が20.5°以上22°以下である範囲内での最強度ピークの強度である。
 直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物は、チタン酸化物の中でも低い電位でリチウム吸蔵放出することができる複合酸化物である。直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物は、例えば、1.2~1.4V(vs.Li/Li+)の範囲内のリチウム吸蔵及び放出電位、すなわち作動電位を示すことができる。
 また、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物は、上記作動電位範囲においては、充電状態の変化に伴い、大きな電位変化を示すことができる。
 そのため、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物を負極で用いた電池は、チタン酸リチウムを負極で用いた電池に比べ、高い電池電圧を示すことができ、且つ充電状態を電位の変化に基づいて容易に把握することができる。
 発明者らは、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物を含んだ電極を具備した電池の入出力性能を向上させるため、鋭意研究を行った。その結果、発明者らは、第1の実施形態に係る電極を見出した。
 第1の実施形態に係る電極が具備する活物質含有層では、Na含有ニオブチタン複合酸化物が、Liイオンの拡散し易い方向に沿って高い配向度を示すことができる。それにより、第1の実施形態に係る電極は、優れた入出力性能を示すことができる電池を実現することができる。
 ここで、第1の実施形態に係る電極の活物質含有層におけるNa含有ニオブチタン複合酸化物の配向性を、以下に例を挙げて、説明する。
 まず、Na含有ニオブチタン複合酸化物の結晶構造の具体例を、図面を参照しながら説明する。
 図1A~図1Cは、直方晶型の結晶構造の一例の概略図である。図1A~図Cに示す結晶構造は、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の一例である、Li2Na1.5Ti5.5Nb0.514の結晶構造である。図1A~図1Cに示す結晶構造は、空間群Fmmmの対称性を有する。図1A~図1Cは、それぞれが異なる結晶面を図示している点以外は、同一である。
 図1A~図1Cに示す結晶構造において、最も小さな球100が、酸化物イオンの位置を示している。 
 また、図1A~図1Cに示す結晶構造において、領域Aは、結晶構造中で3次元にリチウムイオンが移動可能なチャネルを有する空隙サイトを示し、この領域Aはリチウムイオンを吸蔵及び放出することができる。領域Bは、結晶構造の骨格となるTi又はNbを中心とした酸化物の多面体構造を持つ。一方、領域Cは、吸蔵放出が可能なリチウムイオンが存在するサイトである。領域Dは、結晶構造を安定化するための骨格として機能するNa及びLi、並びに空孔が存在するサイトである。
 図1Aは、(400)面を示している。(400)面は、単位格子のa軸に垂直であり且つb軸及びc軸と平行である。図1Bは、(111)面を示している。(111)面は、単位格子のa軸、b軸及びc軸上の切片がそれぞれ1である面である。図1Cは、(202)面を示している。(202)面は、単位格子のa軸及びc軸上の切片が1/2であり、b軸に平行な面である。
 直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物では、3次元にリチウムイオンが移動可能である。中でも、Na含有ニオブチタン複合酸化物の単位格子において、Liイオンは、c軸に沿うよりも、a軸及びb軸に沿って容易に移動することができる。Liイオンは、特にa軸に沿って容易に移動することができる。
 a軸に沿ったリチウムイオンの移動にとっては、電極中のNa含有ニオブチタン複合酸化物の単位格子の(h00)面が、Liイオンが移動してくる対極の方向に揃って向いていることが好ましい。これは、a軸に沿って移動するLiイオンがまず挿入される結晶面が(h00)面であるからである。そのため、(h00)面が揃っているNa含有ニオブチタン複合酸化物を含んだ電極では、電極中のNa含有ニオブチタン複合酸化物へのLiイオン挿入及びNa含有ニオブチタン複合酸化物からのLiイオン脱離がスムーズに進行することができる。(h00)面としては、例えば、図1Aに示した(400)面などが挙げられる。
 また、b軸方向に沿ったLiイオンの移動にとっては、電極中のNa含有ニオブチタン複合酸化物の単位格子の(0k0)面が、Liイオンが移動してくる対極の方向に揃って向いていることが好ましい。(0k0)面としては、例えば、(020)面が挙げられる。
 以上を鑑みると、電極中で、Na含有ニオブチタン複合酸化物の単位格子の(h00)面が、対極が配置され得る方向に向けて揃っていることが好ましい。更に、電極中で、Na含有ニオブチタン複合酸化物の単位格子の(0k0)面が、対極が配置され得る方向に向けて揃っていることが次いで好ましい。以下、Na含有ニオブチタン複合酸化物の(h00)面が対極が配置され得る方向に向けて揃っている程度を、単位格子のa軸についての配向度と呼ぶ。
 なお、電極中のNa含有ニオブチタン複合酸化物の単位格子の(00l)面が揃っていることは、好ましくない。これは、c軸方向はLiイオンが移動しにくく、c軸に沿って移動する際にLiイオンがまず挿入される面が(001)面であるからである。
 電極に組み込まれていない粉末状のNa含有ニオブチタン複合酸化物では、各粒子の向きがランダムである。したがって、粉末の状態では、Na含有ニオブチタン複合酸化物の単位格子の向きもランダムである。
 一方、第1の実施形態に係る電極が具備する活物質含有層では、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物が、先に説明した、単位格子のa軸について高い配向度を示すことができる。理論により縛られることを望まないが、その理由は以下のとおりであると考えられる。
 まず、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物を含む活物質含有層の粉末X線回折において、回折角が18.5°より大きく19.5°以下である範囲内での最強度ピーク(以下、第1のピークと呼ぶ)は、直方晶型の結晶構造の(202)面に由来すると考えられる。一方、この粉末X線回折において、回折角が20.5°以上22°以下である範囲内での最強度ピーク(以下、第2のピークと呼ぶ)は、直方晶型の結晶構造の(400)面に由来すると考えられる。
 第1の実施形態に係る電極が具備する活物質含有層の粉末X線回折では、(400)面由来の第2のピークの強度I2の(202)面に由来する第1のピークの強度I1に対する比、すなわち強度比I2/I1が、1.5≦I2/I1≦3.0の範囲内にある。このような活物質含有層では、活物質含有層に含まれるNa含有ニオブチタン複合酸化物の結晶格子の(h00)面についての配向度、すなわち結晶格子のa軸についての配向度が十分に高い。このような配向度を示す活物質含有層では、Na含有ニオブチタン複合酸化物におけるLiイオンの脱挿入反応がスムーズに進むことができる。ここで、第1のピークの強度I1を基準にしている理由を説明する。Na含有ニオブチタン複合酸化物を含んだ活物質含有層の粉末X線回折において、(202)面に由来する第1のピークの強度I1は、比較的強度が強い。また、この強度I1は、Na含有ニオブチタン複合酸化物の結晶格子のa軸の配向度の影響を受けづらい。そのため、この強度I1は、(400)面由来の第2のピークの強度I2を相対的に示すための基準として適している。
 また、先に説明したように、Na含有ニオブチタン複合酸化物の結晶構造において、Liイオンは、主に、単位格子のa軸に沿って拡散することができる。そのため、第1の実施形態に係る電極では、活物質含有層に含まれるNa含有ニオブチタン複合酸化物の粒子におけるLiイオンの拡散の方向が揃っているということができる。つまり、第1の実施形態に係る電極が具備する活物質含有層では、Na含有ニオブチタン複合酸化物の単位格子が、Liイオンの拡散し易い方向に沿って高い配向度を示すことができる。
 そして、第1の実施形態に係る電極では、Liイオンが方向の揃った拡散経路を通ることができるので、活物質含有層におけるLiイオンの移動を促進することができる。その結果、第1の実施形態に係る電極は、優れた入出力性能を示すことができる電池を実現することができる。
 一方、粉末X線回折における強度比I2/I1が1.5未満である活物質含有層では、第2のピークの強度I2が第1のピークの強度I1に対して小さ過ぎる。このような活物質含有層では、Na含有ニオブチタン複合酸化物が単位格子のa軸について高い配向度を示すことができない。また、粉末X線回折における強度比I2/I1が3.0よりも大きな活物質含有層では、第2のピークの強度I2が第1のピークの強度I1に対して大き過ぎる。このような活物質含有層では、Na含有ニオブチタン複合酸化物の単位格子のa軸についての配向度が過剰であるといえる。このような過剰な配向の活物質含有層は、例えば、過剰な力でプレスすることによって得ることができると思われる。しかしながら、例えば、過剰な力でのプレスによって得られた活物質含有層は、空隙量が小さ過ぎ、電解液が含浸しにくい。また、過剰な力でのプレスを受けると、電極が歪むことがある。
 なお、先に説明したように、電極に組み込まれていない粉末状のNa含有ニオブチタン複合酸化物では、各粒子の向きがランダムである。そのため、粉末状のNa含有ニオブチタン複合酸化物の粉末X線回折パターンでは、強度比I2/I1は0.5以下となる。
 強度比I2/I1は、1.8以上2.5以下であることが好ましい。強度比I2/I1が1.8以上2.5以下である電極では、活物質含有層中のNa含有ニオブチタン複合酸化物におけるLiイオンの脱挿入反応がスムーズに進行できるとともに、活物質含有層が電解液を保持するための十分な空隙を含むことができる。その結果、この態様の電極は、より優れた入出力性能を実現することができる。また、強度比I2/I1は、1.9以上2.3以下であることがより好ましい。
 第1の実施形態に係る電極の活物質含有層の粉末X線回折において、強度比I3/I1が3.5≦I3/I1≦5.5の範囲内にあることが好ましい。ここで、強度I3は、活物質含有層の粉末X線回折において、回折角が17°以上18.5°以下である範囲内での最強度ピーク(以下、第3のピークと呼ぶ)の強度である。第3のピークは、図1Bに示した、直方晶型の結晶構造の(111)面に由来すると考えられる。強度比I3/I1が3.5≦I3/I1≦5.5の範囲内にある活物質含有層では、Na含有ニオブチタン複合酸化物の粒子内にLiがより拡散しやすい。その結果、この態様の電極は、より優れた入出力性能を実現することができる。
 次に、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物を含んだ活物質含有層の粉末X線回折の具体例を、図2及び図3を参照しながら説明する。
 図2は、第1の実施形態に係る一例の電極の活物質含有層の粉末X線回折である。図3は、参考例の電極の活物質含有層の粉末X線回折である。
 図2及び図3の粉末X線回折は、それぞれ、第1のピークP1、第2のピークP2及び第3のピークP3を有する。第1のピークP1は、各回折図において回折角が18.5°より大きく19.5°以下である範囲内での最強度ピークである。第2のピークは、各回折図において回折角が20.5°以上22°以下である範囲内での最強度ピークである。第3のピークは、各回折図において回折角が17°以上18.5°以下である範囲内での最強度ピークである。
 図2に示す粉末X線回折は、直方型の結晶構造を有し且つ式Li2Na1.7Ti5.7Nb0.314で表される組成を有する複合酸化物の粒子を含んだ活物質含有層の粉末X線回折である。図2に示す粉末X線回折を示す活物質含有層は、以下に詳細に説明する手順で作製した、第1の実施形態に係る一例の電極が具備する活物質含有層である。一方、図3に示す粉末X線回折を示す活物質含有層は、電極複合体のロールプレスを行わなかったこと以外は図2に示す粉末X線回折に関する活物質含有層を具備する電極の作製手順と同様の手順で作製した電極が具備する活物質含有層である。
 図2に示す粉末X線回折では、強度比I2/I1が1.75であり、強度比I3/I1が4.06である。一方、図3に示す粉末X線回折では、強度比I2/I1が0.41であり、強度比I3/I1が2.63である。ここで、I1は第1のピークPの強度であり、I2は第2のピークP2の強度であり、I3は第3のピークP3の強度である。なお、各ピークの強度は、バックグラウンド除去後のベースラインを基準とした強度である。
 図2の粉末X線回折を示す活物質含有層では、強度比I2/I1が1.5以上3.0以下の範囲内にあるため、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物が、単位格子のa軸について高い配向度を示すことができる。一方、図3の粉末X線回折を示す活物質含有層では、強度比I2/I1が1.5未満であるため、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物が、単位格子のa軸について高い配向度を示すことができない。
 次に、第1の実施形態に係る電極を、より詳細に説明する。
 第1の実施形態に係る電極は、活物質含有層を具備する。第1の実施形態に係る電極は、集電体を更に含むこともできる。集電体は、例えば、帯状の平面形状を有することができる。集電体は、例えば、第1の表面と、第1の表面の反対側の面としての第2の表面とを有することができる。
 活物質含有層は、集電体の一方の表面上、又は両方の表面上に形成され得る。例えば、活物質含有層は、集電体の第1の表面及び第2の表面の何れか一方に形成されてもよいし、或いは、集電体の第1の表面及び第2の表面の両方に形成されてもよい。集電体は、活物質含有層を担持していない部分を含んでもよい。この部分は、例えば、集電タブとして用いることができる。或いは、第1の実施形態に係る電極は、集電体とは別体の集電タブを含むこともできる。
 活物質含有層は、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子を含む。
 直方晶型の結晶構造は、例えば、Fmmmの対称性を有することができる。直方晶型の結晶構造は、Fmmm以外の空間群の対称性を有することもできる。Fmmm以外の空間群としては、例えば、Cmcaが挙げられる。
 Na含有ニオブチタン複合酸化物は、Na、Nb及びTiを含んだ複合酸化物ということができる。直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物は、一般式Li2+vNa2-yM1xTi6-y-zNbyM2z14+δで表される組成を有することができる。この一般式において、M1は、Cs、K、Sr、Ba及びCaからなる群より選択される少なくとも1種である。M2は、Sn、V、Ta、Mo、W、Fe、Co及びMnからなる群より選択される少なくとも1種である。各添字は以下の範囲内にある:0≦v≦4;0≦x<2;0.1<y<0.8;0≦z<3;-0.5≦δ≦0.5。
 直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子は、複数種のNa含有ニオブチタン複合酸化物を含んでいてもよい。
 Na含有ニオブチタン複合酸化物の粒子は、一次粒子を含んでいてもよいし、又は二次粒子を含んでいてもよい。好ましくは、Na含有ニオブチタン複合酸化物の粒子は、一次粒子と二次粒子との混合物である。
 Na含有ニオブチタン複合酸化物の二次粒子の平均二次粒子径は、3μm以上20μm以下の範囲内にあることが好ましい。平均二次粒子径は、5μm以上12μm以下であることがより好ましい。
 Na含有ニオブチタン複合酸化物の一次粒子の平均一次粒子径は、0.5μm以上4μm以下の範囲内にあることが好ましい。平均一次粒子径は、0.7μm以上2μm以下であることがより好ましい。
 Na含有ニオブチタン複合酸化物の粒子は、表面に炭素が付着していてもよい。Na含有ニオブチタン複合酸化物の粒子は、表面に炭素が付着した一次粒子が凝集した二次粒子を含んでいることが好ましい。炭素が付着した一次粒子を凝集して得られる二次粒子は、低い電気抵抗を示すことができる。
 活物質含有層において、Na含有ニオブチタン複合酸化物の粒子は、活物質として働くことができる。活物質含有層は、第1の活物質としてのNa含有ニオブチタン複合酸化物と、第1の活物質とは異なる第2の活物質を含むこともできる。第2の活物質は、例えば、スピネル型の結晶構造を有するチタン酸リチウム、ラムスデライト型の結晶構造を有するチタン酸リチウム、単斜晶型の結晶構造を有する(単斜晶系β型)チタン含有酸化物、アナターゼ型の結晶構造を有するチタン含有酸化物、及び単斜晶型の結晶構造を有するニオブチタン複合酸化物からなる群より選択される少なくとも1種である。
 スピネル型の結晶構造を有するチタン酸リチウムは、例えば、Li4+x1Ti512(x1は充放電反応により0≦x1≦3の範囲で変化する)で表される組成を有することができる。
 ラムスデライト型の結晶構造を有するチタン酸リチウムは、例えば、Li2+y1Ti37(y1は充放電反応により-1≦y1≦3の範囲で変化する)で表される組成を有することができる。
 単斜晶型の結晶構造を有するチタン含有酸化物としては、例えば、TiO2の組成を有する二酸化チタンを挙げることができる。二酸化チタンのTiの一部は、他の金属元素で置換されてもよい。他の金属元素としては、Al、Sn、Nb、及びTaを挙げることができる。Ti以外の金属元素を含む場合、この酸化物は、単斜晶型の結晶構造を有するチタン含有複合酸化物と呼ぶこともできる。
 アナターゼ型の結晶構造を有するチタン含有酸化物としては、例えば、TiO2の組成を有する二酸化チタンを挙げることができる。二酸化チタンのTiの一部は、他の金属元素で置換されてもよい。他の金属元素としては、Al、Sn、Nb、及びTaを挙げることができる。
 単斜晶型の結晶構造を有するニオブチタン複合酸化物は、例えば、一般式Ti1-x2Mαx2Nb2-y2Mβy27-δ2で表される組成を有することができる。この一般式において、Mα及びMβは、それぞれ、Mg、Fe、Ni、Co、W、Ta及びMoからなる群より選択される少なくとも1種である。元素Mαと元素Mβとは、同じであっても良いし、又は互いに異なっていても良い。上記一般式において、各添字は以下の範囲内にある:0≦x2<1、0≦y2<1及び-0.3≦δ2≦0.3。単斜晶型の結晶構造を有するニオブチタン複合酸化物の具体例としては、Liv2Nb2TiO7(0≦v2≦5)の一般式で表される組成を有する複合酸化物が挙げられる。
 活物質含有層における、第2の活物質の質量は、0質量%以上10質量%以下であることが好ましい。活物質含有層が直方晶型の結晶構造を有するチタン含有複合酸化物以外の第2の活物質を含まないことがより好ましい。
 活物質含有層は、導電剤を更に含むこともできる。導電剤は、活物質含有層における集電性能を高めることができる。また、導電剤は、活物質と集電体との接触抵抗を抑える作用を有することができる。導電剤の例には、アセチレンブラックなどのカーボンブラック、黒鉛、カーボンナノファイバー、及びカーボンナノチューブのような炭素質物が含まれる。中でも、黒鉛やカーボンナノファイバーは低抵抗な活物質含有層を形成しやすいため、好ましい。黒鉛やカーボンナノファイバーは、アセチレンブラックなどのカーボンブラックに比べて活物質粒子間に入り込みやすく、活物質含有層の厚さ方向の導電性を付与することができ、高い入出力特性を実現することができる。導電剤として、これらの炭素質物を単独で用いてもよいし、又は複数の炭素質物を用いてもよい。
 活物質含有層は、結着剤を更に含むこともできる。結着剤は、活物質、導電剤及び集電体を結着させる作用を有することができる。結着剤の例には、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム、アクリル樹脂及びその共重合体、ポリアクリル酸、並びにポリアクリロニトリルなどが挙げられる。
 活物質含有層において、活物質が70質量%以上96質量%以下の重量比で含まれており、導電剤が2質量%以上28質量%以下の重量比で含まれており、結着剤が2質量%以上28質量%以下の質量比で含まれていることが好ましい。導電剤を2質量%以上の質量比で含む活物質含有層は、より優れた集電性能を示すことができ、その結果、より優れた大電流性能を実現することができる。また、結着剤を2質量%以上の質量比で含んでいる活物質含有層は、活物質含有層と集電体との優れた結着性を示すことができ、より優れたサイクル性能を実現することができる。一方、高容量化の観点から、導電剤及び結着剤の量は、各々、28質量%以下であることが好ましい。
 集電体はアルミニウム箔、又はMg、Ti、Zn、Mn、Fe、Cu及びSiからなる群より選択される少なくとも1種の元素を含むアルミニウム合金箔から形成されることが好ましい。
 第1の実施形態に係る電極は、電池において使用することができる。第1の実施形態に係る電極は、電池において、例えば、負極として用いることができる。電池は、例えば、充電及び放電を繰り返して行うことができる二次電池であり得る。二次電池の例としては、非水電解質電池を挙げることができる。非水電解質電池は非水電解質を含み、非水電解質は電解質を含む。二次電池の他の例としては、水系溶媒と、水系溶媒に溶解した電解質とを含んだ電解液を含んだ電池を挙げることができる。
 (製造方法の例)
 次に、第1の実施形態に係る電極の製造方法の例を説明する。 
 [直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の準備]
 まず、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物を準備する。Na含有ニオブチタン複合酸化物は、例えば、以下の手順で準備することができる。
 直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物は、例えば、固相法にて合成することができる。Na含有ニオブチタン複合酸化物は、その他、ゾルゲル法、水熱法など湿式の合成方法でも合成することができる。
 以下、固相法によるNa含有ニオブチタン複合酸化物の合成方法の一例を説明する。
 まず、目的組成に合わせて、Ti源、Li源、Na源、Nb源、金属元素M1源及び金属元素M2源のうち必要な原料を準備する。これらの原料は、例えば、酸化物又は化合物などの塩であり得る。上記の塩は、炭酸塩及び硝酸塩のような、比較的低温で分解して酸化物を生じる塩であることが好ましい。
 次に、準備した原料を、適切な化学量論比で混合して、混合物を得る。例えば、組成式Li2Na1.7Ti5.7Nb0.314で表される斜方晶型Na含有ニオブチタン複合酸化物を合成する場合、酸化チタンTiO2と、炭酸リチウムLi2CO3と、炭酸ナトリウムNa2CO3と、水酸化ニオブNb(V)(OH)5とを、混合物におけるLi:Na:Ti:Nbのモル比が2:1.7:5.7:0.3となるように混合する。
 原料の混合の際、原料を十分に粉砕して混合することが好ましい。十分に粉砕した原料を混合することで、原料同士が反応しやすくなり、Na含有ニオブチタン複合酸化物を合成する際に不純物の生成を抑制できる。また、Li及びNaは、所定量よりも多く混合してもよい。特に、Liは、熱処理中に損失することが懸念されるため、所定量より多く入れてもよい。
 次に、先の混合により得られた混合物を、大気雰囲気において、800℃以上1000℃以下の温度で、1時間以上24時間以下の時間に亘って熱処理を行う。800℃以下では十分な結晶化が得られにくい。一方、1000℃以上では、粒成長が進み過ぎ、粗大粒子となり好ましくない。同様に、熱処理時間が1時間未満であると、十分な結晶化が得られにくい。また、熱処理時間を24時間より長くすると、粒成長が進み過ぎ、粗大粒子となり好ましくない。
 850℃以上950℃以下の温度で、2時間以上5時間以下の時間に亘って、混合物の熱処理を行うことが好ましい。
 このような熱処理により、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粉末を得ることができる。また、得られたNa含有ニオブチタン複合酸化物を回収後、アニール処理を行ってもよい。
 例えば、組成式Li2Na1.7Ti5.7Nb0.314で表され且つ直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物は、先のように原料を混合して得られた混合物を、大気雰囲気において、850℃で3時間熱処理することによって得ることができる。
 [二次粒子の作製]
 次に、以上のようにして得られた直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粉末から、以下の手順に従って、二次粒子を得る。
 まず、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粉末と、炭素質物前駆体、例えばスクロースとを、純水に投入して、混合物を得る。この混合物を、例えば120℃以上200℃以下(例えば130℃)の温度にある窒素雰囲気に噴霧する。この処理を、例えばスプレードライということができる。かくして、表面の少なくとも一部に炭素前駆体が付着したNa含有ニオブチタン複合酸化物の一次粒子が凝集した二次粒子を得ることができる。
 なお、炭素前駆体としては、スクロース以外の物質を用いることもできる。スクロース以外の炭素前駆体としては、例えば、グルコース、セルロースなどの糖類を挙げることができる。
 この二次粒子複合体を、500℃以上800℃以下の温度にある窒素雰囲気において、1時間以上5時間以下の時間に亘って熱処理を行う。かくして、表面の少なくとも一部に炭素が付着したNa含有ニオブチタン複合酸化物の一次粒子が凝集した二次粒子を得ることができる。
 熱処理の条件を変更することにより、得られる二次粒子の焼結の程度を調節することができる。熱処理条件の具体例は、後段の[実施例]に示す。
 [合剤スラリーの調製]
 次に、得られた二次粒子を、導電剤及び結着剤とともに、溶媒、例えばN-メチルピロリドン(NMP)に分散させる。得られた分散液を、プラネタリーミキサーに投入する。このミキサーにおいて、分散液の固形分比率を下げながら、数時間、例えば3時間にわたって分散を行う。プラネタリーミキサーの回転数は、50rpm以上80rpm以下(例えば70rpm)とする。
 次いで、かくして得られた分散液を、ビーズミルに投入して、更に分散に供する。この分散は、メディア径が1mm以上3mm以下(例えば2mm)であるジルコニアビーズを、40%以上70%以下(例えば60%)充填させた装置において行う。ビーズミルの回転数は、800rpm以上2000rpm以下(例えば1000rpm)とする。これにより、合剤スラリーを得ることができる。
 ビーズミルによる分散により、得られた合剤スラリーは、二次粒子の一部が解砕して生じた一次粒子を含むことができる。
 [スラリーの塗布及び乾燥]
 次いで、合剤スラリーを、集電体に塗布する。塗布量は、例えば、集電体の片面当たり50~100g/m2程度とすることができる。次いで、塗布したスラリーを乾燥させ、集電体と活物質含有層とを具備する電極を得る。
 [ロールプレス]
 次いで、得られた電極を、ロールプレスに供する。ロールプレスの圧力は、1~2t/cmとする。
 このようなロールプレスに供することにより、活物質含有層に含まれる直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の単位格子のa軸についての配向度を高めることができる。
 ロールプレスにより複合酸化物の配向度を高めることができるのは、活物質含有層が、二次粒子の一部が解砕して生じた一次粒子を含んでいるからであると考えられる。二次粒子は、様々な向きの一次粒子が凝集したものである。そのため、二次粒子は、ロールプレスを受けても、特定の向きについての配向度を高めることが難しい。
 しかしながら、詳細な理由は不明であるが、二次粒子とはせず、Na含有ニオブチタン複合酸化物の一次粒子の粉末を用いて活物質含有層を作製した場合、活物質含有層を具備した電極複合体をロールプレスに供しても、Na含有ニオブチタン複合酸化物の単位格子のa軸についての配向度を高めることが難しい。この場合の例を、後段で比較例1として説明する。
 また、詳細な理由は不明であるが、二次粒子を含んでいるが二次粒子の解砕により生じた一次粒子を含んでいない活物質含有層を、二次粒子の解砕ができない圧力でロールプレスに供しても、Na含有ニオブチタン複合酸化物の単位格子のa軸についての配向度を高めることができない。この場合の例を、後段で、比較例2として説明する。
 なお、例えば、ロールプレスにより解砕することができる二次粒子を用いて合剤スラリーを作製する場合には、先に説明したビーズミルによる分散を行わなくても、第1の実施形態に係る電極を得ることができる。この場合の例を、後段で実施例7として説明する。
 ロールプレスにより解砕できるか否かは、例えば、二次粒子の焼結の程度と、装置による粉砕強度とに依存する。
 以上に説明した方法により、第1の実施形態に係る電極を得ることができる。
 粉末X線回折における強度比I2/I1及び強度比I3/I1は、上記製造条件、例えば二次粒子の作製条件、合剤スラリーの分散条件、及びロールプレス条件などの複合的に制御することにより、調整することができる。具体例は、後段の[実施例]において説明する。
 或いは、Na含有ニオブチタン複合酸化物の合成の際に、熱処理条件を強めて一次粒子の結晶性を高くすることにより、結晶面が配向した際に、その影響を強くすることができる。この場合、必ずしも二次粒子を作製しなくてもよい。この場合の例を、後段の[実施例]において説明する。なお、熱処理温度が過度に高い、または熱処理時間が過度に長いと、結晶成長が過剰になり、粒子内のリチウム拡散距離が長くなってしまう。この場合、入出力特性の向上を達成することが難しい。
 <測定方法>
 以下に、各測定方法を説明する。
 [前処理]
 測定に際して、測定対象としての電極を準備する。 
 電池に含まれている電極は、以下の手順に従う前処理によって準備する。
 まず、電池を、放電状態にする。ここでの放電状態とは、25℃の環境下で0.2C以下の電流値にて放電下限電圧まで定電流放電に供した状態を示す。
 次いで、放電状態とした電池を、アルゴンガスが充填されたグローブボックスに入れる。次に、グローブボックス内で対象となる電極を電池から取り出す。取り出した電極を、エチルメチルエーテルで洗浄し、乾燥させる。 
 かくして、測定対象の電極を得ることができる。
 [粉末X線回折法]
 電極に含まれる活物質含有層の粉末X線回折は、以下の手順で測定する。
 まず、先のようにして得られた電極を、ガラス試料板上に貼り付ける。このとき、両面テープなどを用い、電極が剥がれないことや浮かないことに留意する。また、必要であれば、電極をガラス試料板に貼り付けるのに適切な大きさに切断してもよい。また、ピーク位置を補正するためSi標準試料を電極上に加えてもよい。
 次いで、電極が貼り付けられたガラス板を粉末X線回折装置に設置し、Cu-Kα線を用いて粉末X線回折(X線回折パターン)を取得する。
 CuKα線を線源とし、2θを5~90°の測定範囲で変化させて測定を行って、活物質含有層の粉末X線回折(X線回折パターン)を得ることができる。
 粉末X線回折測定の装置としては、Rigaku社製SmartLabを用いる。測定条件は以下の通りとする:Cuターゲット;45kV 200mA;ソーラスリット:入射及び受光共に5°;ステップ幅:0.02deg;スキャン速度:20deg/分;半導体検出器:D/teX Ultra 250;試料板ホルダー:平板ガラス試料板ホルダー(厚さ0.5mm);測定範囲:5°≦2θ≦90°の範囲。その他の装置を使用する場合は、粉末X線回折用標準Si粉末を用いた測定を行って、上記装置によって得られる結果と同等のピーク強度、半値幅及び回折角の測定結果が得られる条件を見つけ、その条件で試料の測定を行う。
 測定対象の活物質含有層に直方晶型の結晶構造Na含有ニオブチタン複合酸化物が含まれている場合、粉末X線回折測定により、空間群CmcaやFmmmなど、直方晶型に帰属される粉末X線回折が得られることを確認することができる。特に、得られた粉末X線回折において、回折角(2θ)が18.5°より大きく19.5°以下である範囲内で最も高い強度を有するピーク(第1のピーク)、回折角が20.5°以上22°以下である範囲内で最も強度の高いピーク(第2のピーク)、及び回折角が17°以上18.5°以下である範囲内で最も高いピーク(第3のピーク)を観察することができる。
 [活物質含有層に含まれている複合酸化物の同定方法]
 測定対象の電極の活物質含有層に含まれる複合酸化物の組成は、エネルギー分散型X線分光(Energy Dispersive X-ray Spectroscopy;EDX)装置を備えた走査型電子顕微鏡(Scanning electron microscope;SEM)(SEM-EDX)による分析及び誘導結合プラズマ発光分光分析法(Inductively Coupled Plasma Atomic Emission Spectroscopy:ICP-AES)による分析により同定することができる。以下に、組成の同定方法を説明する。
 まず、測定対象の電極の活物質含有層の一部を、SEM-EDXによって観察する。試料のサンプリングについても大気に触れないようにし、アルゴンや窒素など不活性雰囲気で行う。
 3000倍のSEM観察像にて、視野内で確認される一次粒子あるいは二次粒子の形態を持つ幾つかの粒子を選定する。この際、選定した粒子の粒度分布ができるだけ広くなるように選定する。観察できた粒子に対し、EDX装置で粒子の構成元素の種類及び組成を特定する。これにより、選定したそれぞれの粒子に含まれる元素のうちLi以外の元素の種類及び量を特定することができる。粒子表面上に炭素が付着しているか否かは、SEM観察像及びEDX分析により判断することができる。
 一方で、活物質含有層の他の一部を、アセトンで洗浄し、乾燥させ、秤量する。秤量した粉末を塩酸で溶解し、導電剤をろ過により除去し、ろ液を得る。ろ液をイオン交換水で希釈して、測定サンプルとする。この測定サンプルを、ICP-AESによる分析に供し、測定サンプルに含まれている金属元素の量を算出する。
 以上のSEM-EDXによる分析結果及びICP-AESによる分析結果に基づいて、測定対象の電極の活物質含有層に含まれる複合酸化物の組成を同定することができる。
 [平均粒子径の測定方法]
 活物質含有層に含まれている複合酸化物の粒子の平均一次粒子径及び平均二次粒子径は、以下の手順で測定する。
 先に説明したSEM観察において、3000倍の倍率で、複合酸化物の粒子についての像を得る。得られた視野において、一次粒子が接触していることを確認できる粒子群を二次粒子とする。
 一次粒子の大きさは、一次粒子に対応する最小円の直径から求める。具体的には、3000倍の倍率のSEM像において、10回粒子径測定を行い、それぞれにおいて得られた最小円の直径の平均を一次粒子径とする。平均の算出には、10回測定した内、粒子径の最大値及び最小値は用いない。同様の作業を、活物質含有層のそれぞれ異なる箇所を観察して得られた10個の像において行う。活物質含有層に含まれる10個の一次粒子の一次粒子径を平均して得られる値を、平均一次粒子径とする。
 二次粒子径も一次粒子と同様の方法で測定する。すなわち、二次粒子に対応する最小円の直径を求める。具体的には、3000倍の倍率のSEM像において、10回粒子径測定を行い、それぞれにおいて得られた最小円の直径の平均を二次粒子径とする。平均の算出には、10回測定した内、粒子径の最大値及び最小値は用いない。同様の作業を、活物質含有層のそれぞれ異なる箇所を観察して得られた10個の像において行う。活物質含有層に含まれる10個の二次粒子の二次粒子径を平均して得られる値を、平均二次粒子径とする。
 電極の作製の際に作製した二次粒子の平均二次粒子径は、以下の方法で測定する。まず、作製した二次粒子の粉末を、SEMによって観察する。このSEM観察において、3000倍の倍率で、複合酸化物の粒子についての像を得る。得られた視野において、一次粒子が接触していることを確認できる粒子群を二次粒子とする。これらの二次粒子について、上記方法と同様の方法で、平均二次粒子径を測定する。
 次に、第1の実施形態に係る電極の具体例を、図4を参照しながら説明する。 
 図4は、第1の実施形態に係る一例の電極の概略断面図である。
 図4に示す電極5は、集電体5aと、活物質含有層5bとを具備する。活物質含有層5bは、集電体5aの両方の表面上に担持されている。
 集電体5aは、図4では両端を省略しているが、帯状の金属又は合金箔であり得る。集電体5aは、両面に活物質含有層5bを担持していない部分(図示していない)を含む。この部分は、集電タブとして働くことができる。
 活物質含有層5bは、先に説明した直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子を含む。活物質含有層5bの粉末X線回折において、先に説明した強度比I2/I1が1.5≦I2/I1≦3.0の範囲内にある。
 第1の実施形態に係る電極では、活物質含有層において、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の単位格子が、Liイオンの拡散し易い方向に沿って高い配向度を示すことができる。そのため、第1の実施形態に係る電極では、活物質含有層におけるLiイオンの移動を促進することができる。その結果、第1の実施形態に係る電極は、優れた入出力性能を示すことができる電池を実現することができる。
 (第2の実施形態)
 第2の実施形態によると、電池が提供される。この電池は、負極としての第1の実施形態に係る電極と、正極と、電解質とを具備する。
 第2の実施形態に係る電池は、第1の実施形態に係る電極を具備するので、優れた入出力性能を示すことができる。
 第2の実施形態に係る電池は、例えば、充電及び放電を繰り返し行うことができる。そのため、第2の実施形態に係る電池は、二次電池ということもできる。
 第2の実施形態に係る電池は、例えば非水電解質電池である。非水電解質電池は非水電解質を含み、非水電解質は電解質を含む。或いは、第2の実施形態に係る電池は、水系溶媒と、水系溶媒に溶解した電解質とを含んだ電解液を含んだ電池であってもよい。
 次に、第2の実施形態に係る電池をより詳細に説明する。
 第2の実施形態に係る電池は、負極と、正極と、電解質とを具備する。
 負極は、第1の実施形態に係る電極である。以下では、第1の実施形態に係る電極、並びにこれが含む集電体及び活物質含有層を、それぞれ、負極、並びに負極集電体及び負極活物質含有層と呼ぶ。また、負極活物質含有層が含むことができる活物質を、負極活物質と呼ぶ。また、第1の実施形態に係る電極が具備することができる集電タブを、負極集電タブと呼ぶ。
 正極は、例えば、正極集電体と、正極集電体上に形成された正極活物質含有層とを含むことができる。 
 正極集電体は、例えば、帯状の平面形状を有することができる。正極集電体は、例えば、第1の表面と、第1の表面の反対側の面としての第2の表面とを有することができる。正極集電体は、その片方の表面のみに正極活物質含有層を担持することもできるし、又は両方の表面に正極活物質含有層を担持することもできる。正極集電体は、表面に正極活物質含有層を担持していない部分を含むこともできる。この部分は、例えば正極集電タブとして働くことができる。或いは、正極は、正極集電体とは別体の正極集電タブを含むこともできる。
 正極活物質含有層は、正極活物質を含むことができる。正極活物質含有層は、正極活物質に加えて、導電剤及び結着剤を更に含むこともできる。
 正極及び負極は、電極群を構成することができる。電極群においては、正極活物質含有層と負極活物質含有層とが、例えばセパレータを介して対向することができる。電極群は、様々な構造を有することができる。例えば、電極群は、スタック型の構造を有することができる。スタック型構造の電極群は、例えば、複数の正極及び負極を、正極活物質含有層と負極活物質含有層との間にセパレータを挟んで積層することによって得ることができる。或いは、電極群は、捲回型の構造を有することができる。捲回型の電極群は、例えば、一枚のセパレータと、一枚の正極と、もう一枚のセパレータと、一枚の負極とをこの順で積層させて積層体を作り、この積層体を負極が外側にくるように捲回することによって得ることができる。
 第2の実施形態に係る電池の一例である非水電解質電池において、非水電解質は、例えば電極群に含浸された状態で保持され得る。或いは、第2の実施形態に係る他の例の電池では、電解質を含んだ電解液が、例えば電極群に含浸された状態で保持され得る。
 第2の実施形態に係る電池は、負極端子及び正極端子を更に含むことができる。負極端子は、その一部が負極の一部に電気的に接続されることによって、負極と外部端子との間で電子が移動するための導体として働くことができる。負極端子は、例えば、負極集電体、特に負極集電タブに接続することができる。同様に、正極端子は、その一部が正極の一部に電気的に接続されることによって、正極と外部回路との間で電子が移動するための導体として働くことができる。正極端子は、例えば、正極集電体、特に正極集電タブに接続することができる。
 第2の実施形態に係る電池は、外装部材を更に具備することができる。外装部材は、電極群及び電解質を収容することができる。非水電解質電池の場合、非水電解質は、外装部材内で、電極群に含浸され得る。正極端子及び負極端子のそれぞれの一部は、外装部材から延出させることができる。
 次に、第2の実施形態に係る電池の一例である非水電解質電池が含むことができる各部材をより詳細に説明する。
 (正極)
 正極集電体は、アルミニウム箔、又は、Mg、Ti、Zn、Mn、Fe、Cu、及びSiから選択される一以上の元素を含むアルミニウム合金箔であることが好ましい。
 正極活物質は、例えば、二酸化マンガン(MnO2)、酸化鉄、酸化銅、及び酸化ニッケル、リチウムニッケル複合酸化物(例えば、LiuNiO2)、リチウムコバルト複合酸化物(例えば、LiuCoO2)、リチウムニッケルコバルト複合酸化物(例えば、LiuNi1-sCos2)、リチウムマンガンコバルト複合酸化物(例えば、LiuMnsCo1-s2)、リチウムニッケルコバルトマンガン複合酸化物(例えば、LiuNi1-s-tCosMnt2)、リチウムニッケルコバルトアルミニウム複合酸化物(例えば、LiuNi1-s-tCosAlt2)、リチウムマンガン複合酸化物(例えば、LiuMn24又はLiuMnO2)、オリビン構造を有するリチウムリン酸化物(例えば、LiuFePO4、LiuMnPO4、LiuMn1-sFesPO4、LiuCoPO4)、硫酸鉄(Fe2(SO4)3)、及びバナジウム酸化物(例えば、V25)からなる群より選択される少なくとも1種を含むことができる。上記において、0<u≦1であり、0≦s≦1であり、0≦t≦1であることが好ましい。これらの化合物は、Liを吸蔵及び放出することができる。正極活物質として、上記化合物のうちの1種を単独で用いてもよいし、又は複数の化合物の混合物を用いることもできる。
 高い入出力特性及び優れた寿命特性を得やすいため、中でもスピネル型構造を有するリチウムマンガン複合酸化物(例えば、LiuMn24又はLiuAlsMn2-s2)、リチウムコバルト複合酸化物(LiuCoO2)、リチウムニッケルコバルト複合酸化物(LiuNi1-sCos2)、リチウムマンガンコバルト複合酸化物(LiuMnsCo1-s2)、リチウムニッケルコバルトマンガン複合酸化物(例えばLiuNi1-s-tCosMnt2)、又はオリビン構造を有するリチウムリン酸化物(例えば、LiuFePO4、LiuMnPO4、LiuMn1-sFesPO4、LiuCoPO4)を含むことが好ましい。上記において、0<u≦1であり、0≦s≦1であり、0≦t≦1であることが好ましい。正極活物質として、上記化合物のうちの1種を単独で用いてもよいし、又は複数の化合物の混合物を用いることもできる。
 正極が含むことができる導電剤は、集電性能を高め、また、活物質と集電体との接触抵抗を抑える作用を有することができる。導電剤の例には、カーボンブラック(例えば、アセチレンブラック)、黒鉛、カーボンナノファイバー、及びカーボンナノチューブのような炭素質物が含まれる。炭素質物としては、これらのうちの1種を単独で用いてもよいし、或いは複数の炭素質物を用いてもよい。
 結着剤は、活物質、導電剤及び集電体を結着させる作用を有することができる。結着剤の例には、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、及びフッ素系ゴム、スチレンブタジエンゴム、アクリル樹脂またはその共重合体、ポリアクリル酸、ポリアクリロニトリルなどが挙げられる。
 正極活物質含有層中の正極活物質、導電剤及び結着剤は、それぞれ80質量%以上95質量%以下、3質量%以上18質量%以下、及び2質量%以上17質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより上述した効果を発揮することができる。導電剤は、18質量%以下の量にすることにより高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤は、2質量%以上の量にすることにより十分な電極強度が得られる。結着剤は、17質量%以下の量にすることにより、正極中の絶縁材料である結着剤の配合量を減少させ、内部抵抗を減少できる。
 正極は、例えば次の方法により作製することができる。まず、正極活物質、導電剤及び結着剤を溶媒に懸濁してスラリーを調製する。このスラリーを正極集電体の片方の表面又は両方の表面に塗布し、塗膜を乾燥させる。次いで、乾燥させた塗膜をプレスに供することにより、正極活物質含有層を得ることができる。或いは、正極活物質、導電剤及び結着剤をペレット状に形成し、これらのペレットを正極集電体上に配して正極活物質含有層として用いることもできる。
 (非水電解質)
 非水電解質としては、例えば、液状非水電解質又はゲル状非水電解質を用いることができる。
 液状非水電解質は、電解質を有機溶媒に溶解することにより調製することができる。電解質の濃度は、0.5~2.5mol/lの範囲であることが好ましい。ゲル状非水電解質は、液状電解質と高分子材料とを複合化することにより調製される。
 電解質の例には、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、及び、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]のようなリチウム塩が含まれる。電解質としては、これらの電解質のうちの1種を単独で用いてもよいし、又は2種類以上の電解質を組合せて用いることもできる。電解質は、LiPF6を含むことが好ましい。
 有機溶媒の例には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネートのような環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)のような鎖状カーボネート;テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)のような環状エーテル;ジメトキシエタン(DME)、ジエトキシエタン(DEE)のような鎖状エーテル;アセトニトリル(AN)、及び、スルホラン(SL)が含まれる。有機溶媒としては、これらの溶媒のうちの1種を単独で用いてもよいし、又は2種類以上の溶媒を組合せて用いることもできる。
 より好ましい有機溶媒の例には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、及びメチルエチルカーボネート(MEC)よりなる群から選択される2種以上を混合した混合溶媒が含まれる。このような混合溶媒を用いることによって、充放電サイクル特性の優れた非水電解質電池を得ることができる。また、電解液には添加剤を加えることもできる。
 (セパレータ)
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロース及びポリフッ化ビニリデン(PVdF)のような材料から形成された多孔質フィルム、合成樹脂製不織布等を用いることができる。さらに多孔質フィルムに無機化合物を塗布したセパレータも使用できる。
 (外装部材)
 外装部材としては、例えば、ラミネートフィルム製の袋状容器又は金属製容器を用いることができる。
 形状としては、特に限定されないが、扁平型、角型、円筒型、コイン型、ボタン型、シート型、積層型等が挙げられる。なお、無論、携帯用電子機器等に積載される小型電池の他、二輪乃至四輪の自動車等に積載される大型電池でも良い。
 ラミネートフィルムとしては、例えば、樹脂フィルム間に金属層を挟み込んだ多層フィルムを用いることができる。或いは、金属層と、金属層を被覆する樹脂層とからなる多層フィルムを用いることもできる。樹脂フィルム及び樹脂層は、金属層を補強する役割を有する。
 金属層は、軽量化のために、アルミニウム箔もしくはアルミニウム合金箔が好ましい。樹脂フィルムには、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、及びポリエチレンテレフタレート(PET)のような高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。ラミネートフィルムは、肉厚が0.2mm以下であることが好ましい。
 金属製容器は、アルミニウム又はアルミニウム合金から形成されることができる。アルミニウム合金は、マグネシウム、亜鉛及びケイ素のような元素を含むことが好ましい。一方、鉄、銅、ニッケル、クロム等の遷移金属の含有量は100ppm以下にすることが好ましい。これにより、高温環境下での長期信頼性、放熱性を飛躍的に向上させることが可能となる。金属製容器は、肉厚が0.5mm以下であることが好ましく、肉厚が0.2mm以下であることがより好ましい。
 (正極端子)
 正極端子は、例えばリチウムの酸化還元電位に対する電位が3.0V以上4.5V以下の範囲において電気的に安定であり、且つ導電性を有する材料から形成される。アルミニウム、又はMg、Ti、Zn、Mn、Fe、Cu及びSiのような元素を含むアルミニウム合金から形成されることが好ましい。正極端子は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料から形成されることが好ましい。
 (負極端子)
 負極端子は、リチウムの酸化還元電位に対する電位が0.8V以上3.0V以下の範囲において電気的に安定であり、且つ導電性を有する材料から形成される。アルミニウム、又は、Mg、Ti、Zn、Mn、Fe、Cu、Siのような元素を含むアルミニウム合金から形成されることが好ましい。負極端子は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料から形成されることが好ましい。
 次に、第2の実施形態に係る幾つかの例の電池を、図面を参照しながら具体的に説明する。
 図5は、第2の実施形態に係る一例の電池の概略断面図である。図6は、図5の電池のA部の拡大断面図である。
 図5及び図6に示す電池10は、非水電解質電池である。非水電解質電池10は、図5に示す扁平状の捲回型電極群3を具備している。扁平状の捲回型電極群3は、ラミネートフィルムからなる袋状外装部材2内に収納されている。ラミネートフィルムは、金属層と、これを挟む2枚の樹脂フィルムとを含む。
 扁平状の捲回型電極群3は、図6に示すように、外側から負極5、セパレータ6、正極4、セパレータ6の順で積層した積層物を渦巻状に捲回し、プレス成型することにより形成されている。負極5は、負極集電体5a及び負極活物質含有層5bを含む。負極5のうち最も外側に位置する部分では、図6に示すように負極集電体5aの内面側の片面上に負極活物質含有層5bが形成されている。負極5のその他の部分では、負極集電体5aの両面上に負極活物質含有層5bが形成されている。正極4は、正極集電体4a及び正極活物質含有層4bを含む。正極4では、正極集電体4aの両面に正極活物質含有層4bが形成されている。
 捲回型の電極群3の外周端近傍において、負極端子8が、負極5の最外層の部分の負極集電体5aに接続されており、正極端子7が、内側に位置する正極4の正極集電体4aに接続されている。これらの負極端子8および正極端子7は、袋状外装部材2の開口部から外部に延出されている。
 図5及び図6に示す非水電解質電池10は、図示しない非水電解質を更に具備する。非水電解質は、電極群3に含浸された状態で、外装部材2内に収容されている。
 非水電解質は、例えば、袋状外装部材2の開口部から注入することができる。非水電解質注入後、袋状外装部材2の開口部を負極端子8及び正極端子7を挟んでヒートシールすることにより、捲回型電極群3及び非水電解質を完全密封することができる。
 図6に示す負極5は、第1の実施形態に係る電極の一例である。
 第2の実施形態に係る電池は、前述した図5及び図6に示す構成を有するものに限らず、例えば図7及び図8に示す構成を有することもできる。
 図7は、第2の実施形態に係る他の一例の電池の概略部分切欠き斜視図である。図8は、図7の電池のB部の拡大断面図である。
 図7及び図8に示す電池10は、非水電解質電池である。非水電解質電池10は、スタック型電極群3を具備する。スタック型電極群3は、ラミネートフィルムからなる外装部材2内に収納されている。ラミネートフィルムは、金属層と、これを間に挟んだ2枚の樹脂フィルムとを含む。
 スタック型電極群3は、図8に示すように、正極4と負極5とをその間にセパレータ6を介在させながら交互に積層した構造を有する。正極4は複数枚存在し、それぞれが正極集電体4aと、正極集電体4aの両面に担持された正極活物質含有層4bとを備える。負極5は複数枚存在し、それぞれが負極集電体5aと、負極集電体5aの両面に担持された負極活物質含有層5bとを備える。各負極5の負極集電体5aは、一辺が正極4から突出している。負極集電体5aのうち正極4から突出した部分5cは、帯状の負極端子8に電気的に接続されている。帯状の負極端子8の先端は、外装部材2から外部に引き出されている。また、図示しないが、正極4の正極集電体4aは、負極集電体5aの突出辺5cと反対側に位置する辺が負極5から突出している。正極集電体4aのうち負極5から突出した部分は、帯状の正極端子7に電気的に接続されている。帯状の正極端子7の先端は、負極端子8とは反対側に位置し、外装部材2の辺から外部に引き出されている。
 図8に示す負極5は、第1の実施形態に係る電極の一例である。
 第2の実施形態に係る電池は、第1の実施形態に係る電極を含むので、優れた入出力性能を示すことができる。
 (第3の実施形態)
 第3の実施形態によると、電池パックが提供される。この電池パックは、第2の実施形態に係る電池を具備する。
 第3の実施形態に係る電池パックは、複数の電池を備えることもできる。複数の電池は、電気的に直列に接続することもできるし、又は電気的に並列に接続することもできる。或いは、複数の電池を、直列及び並列の組み合わせで接続することもできる。
 例えば、第3の実施形態に係る電池パックは、第2の実施形態に係る電池を複数個具備することもできる。これらの電池は、直列に接続されることができる。また、直列に接続された電池は、組電池を構成することができる。すなわち、第3の実施形態に係る電池パックは、組電池を具備することもできる。
 第3の実施形態に係る電池パックは、複数の組電池を具備することができる。複数の組電池は、直列、並列、又は直列及び並列の組み合わせで接続することができる。
 第3の実施形態に係る電池パックの一例を、図9及び図10を参照して詳細に説明する。
 図9及び図10に示す電池パック20は、複数の単電池21を含む。単電池21には、図5及び図6に示す扁平型電池を使用することができる。
 前述した図5及び図6に示す扁平型非水電解質電池10から構成される複数の単電池21は、外部に延出した負極端子8及び正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図10に示すように互いに電気的に直列に接続されている。
 プリント配線基板24は、負極端子8及び正極端子7が延出する単電池21側面と対向して配置されている。プリント配線基板24には、図10に示すようにサーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、組電池23と対向するプリント配線基板24の面には組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード28は、組電池23の最下層に位置する正極端子7に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子8に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び33を通して保護回路26に接続されている。
 サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34a及びマイナス側配線34bを遮断できる。所定の条件とは、例えばサーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21若しくは組電池23全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図9及び図10の場合、単電池21それぞれに電圧検出のための配線35を接続し、これら配線35を通して検出信号が保護回路26に送信される。
 正極端子7及び負極端子8が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
 組電池23は、各保護シート36およびプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36およびプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。
 図9及び図10では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パックを直列及び/又は並列に接続することもできる。
 また、第3の実施形態に係る電池パックの態様は、用途により適宜変更される。第3の実施形態に係る電池パックは、大電流を取り出したときにサイクル特性が優れていることが要求される用途に好適に用いられる。具体的には、デジタルカメラの電源として、又は、例えば列車、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、及び、アシスト自転車等の車両の車載用電池として用いられる。特に、車載用電池として好適に用いられる。
 第3の実施形態に係る電池パックは、第2の実施形態に係る電池を含むので、優れた入出力性能を示すことができる。
 (実施例)
 以下に実施例を説明するが、本発明の主旨を超えない限り、本発明は以下に掲載される実施例に限定されるものでない。
 [電極の作製]
 (実施例1)
 実施例1では、以下の手順により、実施例1の電極を作製した。
 (Na含有ニオブチタン複合酸化物の準備)
 まず、以下の手順で、Li2Na1.7Ti5.7Nb0.314で表される組成を有する、Na含有ニオブチタン複合酸化物の粉末を準備した。
 原料として、酸化チタンTiO2と、炭酸リチウムLi2CO3と、炭酸ナトリウムNa2CO3と、水酸化ニオブ(V)Nb(OH)5とを準備した。これらの原料を、混合物のLi:Na:Ti:Nbのモル比が2.0:1.7:5.7:0.3となるように混合した。混合に先立ち、原料を十分に粉砕した。混合した原料を、850℃の大気雰囲気において、3時間にわたって熱処理に供した。かくして、生成物の一次粒子形態の粉末を得た。生成物の一部を、先に説明したSEM-EDX分析及びICP-AES分析に供した。その結果、生成物は、Li2Na1.7Ti5.7Nb0.314で表される組成を有するNa含有ニオブチタン複合酸化物であることが分かった。
 (二次粒子の作製)
 次に、生成物の粉末と、生成物の粉末に対して3質量%に相当する量のスクロースとを純水に投入して、混合物を得た。この混合物を、130℃の窒素雰囲気に噴霧し(スプレードライ)、二次粒子を得た。かくして得られた二次粒子を、750℃の窒素雰囲気下にて、3時間にわたって熱処理に供した。かくして、Na含有ニオブチタン複合酸化物Li2Na1.7Ti5.7Nb0.314の二次粒子を得た。得られた二次粒子は、二次粒子表面及び二次粒子内部の一次粒子表面にも炭素が付着していた。
 (合剤スラリーの調製)
 次に、以上のようにして得られた二次粒子と、導電剤としてのアセチレンブラックと黒鉛と、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:2.5質量%:2.5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して混合した。次いで、このようにして得られた混合物を、プラネタリーミキサーを用いて分散させた。この分散における回転数は70rpmとし、撹拌時間は3時間とした。用いたプラネタリーミキサーは、ブレードを備えており、このブレードが自転しながら公転する装置である。
 次いで、混合物をビーズミル装置に移し、ここでさらに分散させた。ビーズ装置には、ビーズとして、メディア径が2mmであるジルコニアビーズを、容積に対して60%充填させた。分散は、回転数を1000rpmに設定して行った。分散処理が行われている時間を10分間となるようスラリー流量を設定した。ビーズミルによる分散により、Li2Na1.7Ti5.7Nb0.314の二次粒子を一部解砕させた。かくして、合剤スラリーを得た。
 (スラリーの塗布及び乾燥)
 次に、調製したスラリーを、厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した。塗布量は、集電体の片面当たり100g/m2とした。次に、塗膜を乾燥させ、集電体と活物質含有層とを具備した電極を得た。
 (ロールプレス)
 次いで、得られた電極を、定圧ロールプレス装置にてプレスした。ロールプレスの圧力は、1.8t/cm(線圧)とした。かくして、密度が2.5g/cm3である活物質含有層を具備した電極を作製した。
 (実施例2)
 実施例2では、以下の手順により、実施例2の電極を作製した。
 (Na含有ニオブチタン複合酸化物の準備)
 まず、以下の手順で、Li2.1Na1.6Ti5.6Nb0.414で表される組成を有する、Na含有ニオブチタン複合酸化物の粉末を準備した。
 原料として、酸化チタンTiO2と、炭酸リチウムLi2CO3と、炭酸ナトリウムNa2CO3と、水酸化ニオブ(V)Nb(OH)5とを準備した。これらの原料を、混合物のLi:Na:Ti:Nbのモル比が2.1:1.6:5.6:0.4となるように混合した。混合に先立ち、原料を十分に粉砕した。混合した原料を、850℃の大気雰囲気において、3時間にわたって熱処理を行った。かくして、生成物の一次粒子形態の粉末を得た。生成物の一部を、先に説明したSEM-EDX分析及びICP-AES分析に供した。その結果、生成物は、Li2.1Na1.6Ti5.6Nb0.414で表される組成を有するNa含有ニオブチタン複合酸化物であることが分かった。
 (二次粒子の作製)
 次に、以上のようにして得られた生成物の粉末を用いたこと以外は実施例1と同様の手順で、Na含有ニオブチタン複合酸化物Li2.1Na1.6Ti5.6Nb0.414の二次粒子を得た。得られた二次粒子は、二次粒子表面及び二次粒子内部の一次粒子表面にも炭素が付着していた。
 (合剤スラリーの調製)
 次に、以上のようにして得られた二次粒子と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して混合した。次いで、このようにして得られた混合物を、プラネタリーミキサーを用いて分散させた。分散条件は、実施例1と同様とした。
 次いで、混合物を、実施例1と同様の条件で、ビーズミルに供した。ビーズミルによる分散により、Li2.1Na1.6Ti5.6Nb0.414の二次粒子を一部解砕させた。かくして、合剤スラリーを得た。
 (スラリーの塗布及び乾燥)
 次に、調製したスラリーを、厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した。塗布量は、集電体の片面当たり100g/m2とした。次に、塗膜を乾燥させ、集電体と活物質含有層とを具備した電極を得た。
 (ロールプレス)
 次いで、得られた電極を、定圧ロールプレス装置にてプレスした。ロールプレスの圧力は、1.6t/cm(線圧)とした。かくして、密度が2.4g/cm3である活物質含有層を具備した電極を作製した。
 (実施例3)
 実施例3では、以下の手順により、実施例3の電極を作製した。
 (Na含有ニオブチタン複合酸化物の準備)
 まず、以下の手順で、Li2.1Na1.6Ti5.5Nb0.4Mo0.114で表される組成を有する、Na含有ニオブチタン複合酸化物の粉末を準備した。
 原料として、酸化チタンTiO2と、炭酸リチウムLi2CO3と、炭酸ナトリウムNa2CO3と、水酸化ニオブ(V)Nb(OH)5と、酸化モリブデンMoO3を準備した。これらの原料を、混合物のLi:Na:Ti:Nb:Moのモル比が2.1:1.6:5.5:0.4:0.1となるように混合した。混合に先立ち、原料を十分に粉砕した。混合した原料を、850℃の大気雰囲気において、3時間にわたって熱処理を行った。かくして、生成物の一次粒子形態の粉末を得た。生成物の一部を、先に説明したSEM-EDX分析及びICP-AES分析に供した。その結果、生成物は、Li2.1Na1.6Ti5.5Nb0.4Mo0.114で表される組成を有するNa含有ニオブチタン複合酸化物であることが分かった。
 (二次粒子の作製)
 次に、以上のようにして得られた生成物の粉末を用いたこと以外は実施例1と同様の手順で、Na含有ニオブチタン複合酸化物Li2.1Na1.6Ti5.5Nb0.4Mo0.114の二次粒子を得た。得られた二次粒子は、二次粒子表面及び二次粒子内部の一次粒子表面にも炭素が付着していた。
 (合剤スラリーの調製)
 次に、以上のようにして得られた二次粒子と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して混合した。次いで、このようにして得られた混合物を、プラネタリーミキサーを用いて分散させた。分散条件は、実施例1と同様とした。
 次いで、混合物を、実施例1と同様の条件で、ビーズミルに供した。ビーズミルによる分散により、Li2.1Na1.6Ti5.5Nb0.4Mo0.114の二次粒子を一部解砕させた。かくして、合剤スラリーを得た。
 (スラリーの塗布及び乾燥)
 次に、調製したスラリーを、厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した。塗布量は、集電体の片面当たり100g/m2とした。次に、塗膜を乾燥させ、集電体と活物質含有層とを具備した電極を得た。
 (ロールプレス)
 次いで、得られた電極を、定圧ロールプレス装置にてプレスした。ロールプレスの圧力は、1.6t/cm(線圧)とした。かくして、密度が2.4g/cm3である活物質含有層を具備した電極を作製した。
 (実施例4)
 実施例4では、以下の手順により、実施例4の電極を作製した。
 (Na含有ニオブチタン複合酸化物の準備)
 まず、以下の手順で、Li2.1Na1.4Sr0.1Ti5.6Nb0.414で表される組成を有する、Na含有ニオブチタン複合酸化物の粉末を準備した。
 原料として、酸化チタンTiO2と、炭酸リチウムLi2CO3と、炭酸ナトリウムNa2CO3と、水酸化ニオブ(V)Nb(OH)5と、水酸化ストロンチウムSr(OH)2を準備した。これらの原料を、混合物のLi:Na:Ti:Nb:Srのモル比が2.1:1.4:5.6:0.4:0.1となるように混合した。混合に先立ち、原料を十分に粉砕した。混合した原料を、850℃の大気雰囲気において、3時間にわたって熱処理を行った。かくして、生成物の一次粒子形態の粉末を得た。生成物の一部を、先に説明したSEM-EDX分析及びICP-AES分析に供した。その結果、生成物は、Li2.1Na1.4Sr0.1Ti5.6Nb0.414で表される組成を有するNa含有ニオブチタン複合酸化物であることが分かった。
 (二次粒子の作製)
 次に、以上のようにして得られた生成物の粉末を用いたこと以外は実施例1と同様の手順で、Na含有ニオブチタン複合酸化物Li2.1Na1.4Sr0.1Ti5.6Nb0.414の二次粒子を得た。得られた二次粒子は、二次粒子表面及び二次粒子内部の一次粒子表面にも炭素が付着していた。
 (合剤スラリーの調製)
 次に、以上のようにして得られた二次粒子と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して混合した。次いで、このようにして得られた混合物を、プラネタリーミキサーを用いて分散させた。分散条件は、実施例1と同様とした。
 次いで、混合物を、実施例1と同様の条件で、ビーズミルに供した。ビーズミルによる分散により、Li2.1Na1.4Sr0.1Ti5.6Nb0.414の二次粒子を一部解砕させた。かくして、合剤スラリーを得た。
 (スラリーの塗布及び乾燥)
 次に、調製したスラリーを、厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した。塗布量は、集電体の片面当たり100g/m2とした。次に、塗膜を乾燥させ、集電体と活物質含有層とを具備した電極を得た。
 (ロールプレス)
 次いで、得られた電極を、定圧ロールプレス装置にてプレスした。ロールプレスの圧力は、1.6t/cm(線圧)とした。かくして、密度が2.4g/cm3である活物質含有層を具備した電極を作製した。
 (実施例5)
 実施例5では、以下の手順により、実施例5の電極を作製した。
 (Na含有ニオブチタン複合酸化物の準備)
 まず、以下の手順で、Li2Na1.7Ti5.7Nb0.314で表される組成を有する、Na含有ニオブチタン複合酸化物の粉末を準備した。
 実施例5では、原料の混合物の熱処理条件を変更したこと以外は、実施例1と同様の手順によって、複合酸化物の粉末を得た。具体的には、実施例5においては、混合した原料を、950℃の大気雰囲気において、5時間にわたって、熱処理に供した。かくして、生成物の一次粒子形態の粉末を得た。生成物の一部を、先に説明したSEM-EDX分析及びICP-AES分析に供した。その結果、生成物は、Li2Na1.7Ti5.7Nb0.314で表される組成を有するNa含有ニオブチタン複合酸化物であることが分かった。 
 なお、実施例5では、二次粒子の作製を行わなかった。
 (合剤スラリーの調製)
 次に、以上のようにして得られた生成物と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、85質量%:10質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して混合した。次いで、このようにして得られた混合物を、プラネタリーミキサーを用いて分散させた。分散条件は、実施例1と同様とした。
 次いで、混合物を、回転数を700rpmとした以外、実施例1と同様の条件で、ビーズミルに供した。かくして、合剤スラリーを得た。
 (スラリーの塗布及び乾燥)
 次に、調製したスラリーを、厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した。塗布量は、集電体の片面当たり100g/m2とした。次に、塗膜を乾燥させ、集電体と活物質含有層とを具備した電極を得た。
 (ロールプレス)
 次いで、得られた電極を、定圧ロールプレス装置にてプレスした。ロールプレスの圧力は、1.8t/cm(線圧)とした。かくして、密度が2.5g/cm3である活物質含有層を具備した電極を作製した。
 (実施例6)
 実施例6では、以下の手順により、実施例6の電極を作製した。
 (Na含有ニオブチタン複合酸化物の準備)
 まず、以下の手順で、Li2.1Na1.6Ti5.5Nb0.4Mo0.114で表される組成を有する、Na含有ニオブチタン複合酸化物の粉末を準備した。
 実施例6では、原料の混合物の熱処理条件を変更したこと以外は、実施例3と同様の手順によって、複合酸化物の粉末を得た。具体的には、実施例6においては、混合した原料を、950℃の大気雰囲気において、5時間にわたって、熱処理に供した。かくして、生成物の一次粒子形態の粉末を得た。生成物の一部を、先に説明したSEM-EDX分析及びICP-AES分析に供した。その結果、生成物は、Li2.1Na1.6Ti5.5Nb0.4Mo0.114で表される組成を有するNa含有ニオブチタン複合酸化物であることが分かった。 
 なお、実施例6では、二次粒子の作製を行わなかった。
 (合剤スラリーの調製)
 次に、以上のようにして得られた生成物と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、85質量%:10質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して混合した。次いで、このようにして得られた混合物を、プラネタリーミキサーを用いて分散させた。分散条件は、実施例1と同様とした。
 次いで、混合物を、回転数を700rpmに変更したこと以外は実施例1と同様の条件で、ビーズミルに供した。かくして、合剤スラリーを得た。
 (スラリーの塗布及び乾燥)
 次に、調製したスラリーを、厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した。塗布量は、集電体の片面当たり100g/m2とした。次に、塗膜を乾燥させ、集電体と活物質含有層とを具備した電極を得た。
 (ロールプレス)
 次いで、得られた電極を、定圧ロールプレス装置にてプレスした。ロールプレスの圧力は、1.8t/cm(線圧)とした。かくして、密度が2.5g/cm3である活物質含有層を具備した電極を作製した。
 (実施例7)
 実施例7では、以下の手順により、実施例7の電極を作製した。
 (Na含有ニオブチタン複合酸化物の準備)
 まず、実施例1と同様の手順で、Li2Na1.7Ti5.7Nb0.314で表される組成を有する、Na含有ニオブチタン複合酸化物の粉末である、生成物の一次粒子形態の粉末を得た。
 (二次粒子の作製)
 次に、以上のようにして得られた生成物の粉末を用いたこと、スクロース投入量を生成物の粉末に対して4質量%に相当する量としたこと、及び3時間にわたる熱処理を700℃の窒素雰囲気で行ったこと以外は実施例1と同様の手順で、Na含有ニオブチタン複合酸化物Li2Na1.7Ti5.7Nb0.314の二次粒子を得た。得られた二次粒子は、二次粒子表面及び二次粒子内部の一次粒子表面にも炭素が付着していた。
 (合剤スラリーの調製)
 次に、以上のようにして得られた二次粒子と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して混合した。次いで、このようにして得られた混合物を、プラネタリーミキサーを用いて分散させた。分散条件は、実施例1と同様とした。
 この分散によって得られたスラリーを、合剤スラリーとした。すなわち、実施例7では、ビーズミル分散を行なわずに、合剤スラリーを調製した。
 (スラリーの塗布及び乾燥)
 次に、調製したスラリーを、厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した。塗布量は、集電体の片面当たり100g/m2とした。次に、塗膜を乾燥させ、集電体と活物質含有層とを具備した電極を得た。
 (ロールプレス)
 次いで、得られた電極を、定圧ロールプレス装置にてプレスした。ロールプレスの圧力は、2.0t/cm(線圧)とした。かくして、密度が2.5g/cm3である活物質含有層を具備した電極を作製した。
 (比較例1)
 比較例1では、以下の手順により、比較例1の電極を作製した。
 (Na含有ニオブチタン複合酸化物の準備)
 まず、以下の手順で、Li2Na1.7Ti5.7Nb0.314で表される組成を有する、Na含有ニオブチタン複合酸化物の粉末を準備した。
 比較例1では、実施例1と同様の手順によって、複合酸化物の粉末を得た。熱処理によって得られた生成物の一部を、先に説明したSEM-EDX分析及びICP-AES分析に供した。その結果、生成物は、Li2Na1.7Ti5.7Nb0.314で表される組成を有するNa含有ニオブチタン複合酸化物であることが分かった。 
 なお、比較例1では、二次粒子の作製を行わなかった。
 (合剤スラリーの調製)
 次に、以上のようにして得られた生成物の粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して混合した。次いで、このようにして得られた混合物を、自転公転ミキサーを用いて分散させ、スラリーを調製した。用いた自転公転ミキサーは、混合物を入れた容器が自転しながら公転する装置である。
 (スラリーの塗布及び乾燥)
 次に、調製したスラリーを、厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した。塗布量は、集電体の片面当たり100g/m2とした。次に、塗膜を乾燥させ、集電体と活物質含有層とを具備した電極を得た。
 (ロールプレス)
 次いで、得られた電極を、定圧ロールプレス装置にてプレスした。ロールプレスの圧力は、1.4t/cm(線圧)とした。かくして、密度が2.2g/cm3である活物質含有層を具備した電極を作製した。
 (比較例2)
 比較例2では、Na含有ニオブチタン複合酸化物の準備方法、二次粒子の作製方法、合剤スラリーの調製方法、及びロールプレスの圧力を変更したこと以外は実施例1と同様の手順で、比較例2の電極を作製した。
 (Na含有ニオブチタン複合酸化物の準備及び二次粒子の作製)
 比較例2では、以下の手順で、複合酸化物の粉末を得た。まず、実施例1と同様の手順で、原料の混合物を準備した。次いで、この混合物を、900℃の大気雰囲気において、10時間にわたって、熱処理に供した。かくして、生成物の一次粒子形態の粉末を得た。生成物の一部を、先に説明したSEM-EDX分析及びICP-AES分析に供した。その結果、生成物は、Li2Na1.7Ti5.7Nb0.314で表される組成を有するNa含有ニオブチタン複合酸化物であることが分かった。
 次に、かくして得られた生成物を用いたこと以外は実施例1と同様の手順により、二次粒子を得た。
 (合剤スラリーの調製)
 比較例2では、合剤スラリーの調製の際にビーズミル分散を行わなかったこと以外は、実施例1と同様の手順で、合剤スラリーを調製した。
 (ロールプレス)
 比較例2では、ロールプレスの圧力を、1.4t/cm(線圧)とした。ロースプレスの結果得られた比較例2の電極は、密度が2.3g/cm3である活物質含有層を具備していた。
 (比較例3)
 比較例3では、合剤スラリーの調製の際にビーズミル分散を行ったこと及びロールプレスの圧力を変更したこと以外は比較例2と同様の手順で、比較例3の電極を作製した。 
 比較例3では、回転数を2500rpmに設定して行ったこと以外は実施例1で行ったのと同じ条件でビーズミル分散を行った。 
 比較例3では、ロールプレスの圧力を1.8t/cm(線圧)とした。ロールプレスの結果得られた比較例3の電極は、密度が2.5g/cm3である活物質含有層を具備していた。
 (比較例4)
 比較例4では、二次粒子の作製方法を変更したこと、合剤スラリー調製の際にビーズミル分散を行ったこと及びロールプレスの圧力を変更したこと以外は比較例2と同様の手順で、比較例4の電極を作製した。 
 比較例4では、スクロース投入量を生成物の粉末に対して1質量%に相当する量とし、熱処理温度を1000℃としたこと以外は、比較例2と同様の手順で、二次粒子を作製した。 
 また、比較例4では、実施例1で行ったのと同様の条件で、ビーズミル分散を行った。 
 比較例4では、ロールプレスの圧力を1.8t/cm(線圧)とした。ロールプレスの結果得られた比較例4の電極は、密度が2.5g/cm3である活物質含有層を具備していた。
 (比較例5)
 比較例5では、二次粒子の作製方法を変更したこと、合剤スラリー調製の際にビーズミル分散を行ったこと、及びロールプレスの圧力を変更したこと以外は比較例2と同様の手順で、比較例5の電極を作製した。 
 比較例5では、スクロース投入量を生成物の粉末に対して5質量%に相当する量とし、熱処理温度を600℃としたこと以外は、比較例2と同様の手順で、二次粒子を作製した。
 また、比較例5では、実施例1で行ったのと同様の条件で、ビーズミル分散を行った。 
 比較例5では、ロールプレスの圧力を1.8t/cm(線圧)とした。ロールプレスの結果得られた比較例5の電極は、密度が2.5g/cm3である活物質含有層を具備していた。
 (比較例6)
 比較例6では、二次粒子の作製条件を変更したこと、及びビーズミルでの分散条件を変更したこと以外は実施例1と同様の方法により、比較例6の電極を作製した。
 比較例6では、二次粒子の作製の際、スクロース投入量を生成物の粉末に対して5質量%に相当する量とした。
 また、比較例6では、回転数を2500rpmに設定して行ったこと以外は実施例1で行ったのと同じ条件でビーズミル分散を行った。
 ロールプレスの結果得られた比較例6の電極は、密度が2.5g/cm3である活物質含有層を具備していた。
 (比較例7)
 比較例7では、二次粒子の作製方法を変更したこと以外は実施例1と同様の方法により、比較例7の電極を作製した。
 比較例7では、実施例1と同様の手順で、Li2Na1.7Ti5.7Nb0.314で表される組成を有するNa含有ニオブチタン複合酸化物である、生成物の一次粒子形態の粉末を得た。
 また、比較例7では、以上のようにして得られた生成物の粉末を用いたこと、スクロース投入量を生成物の粉末に対して1質量%に相当する量としたこと、及び3時間にわたる熱処理を1000℃の窒素雰囲気下で行ったこと以外は、実施例1と同様の手順で、二次粒子を作製した。
 ロールプレスの結果得られた比較例7の電極は、密度が2.5g/cm3である活物質含有層を具備していた。
 (比較例8)
 比較例8では、二次粒子の作製方法を変更したこと以外は実施例1と同様の方法により、比較例8の電極を作製した。
 比較例8では、実施例1と同様の条件にて、生成物の一次粒子形態の粉末を得た。生成物の一部を、先に説明したSEM-EDX分析及びICP-AES分析に供した。その結果、生成物は、Li2Na1.7Ti5.7Nb0.314で表される組成を有するNa含有ニオブチタン複合酸化物であることが分かった。
 また、比較例8では、スクロース投入量を生成物の粉末に対して5質量%に相当する量としたこと、及び3時間にわたる熱処理を、600℃の窒素雰囲気下で行ったこと以外は、実施例1と同様の手順で、二次粒子を作製した。
 ロールプレスの結果得られた比較例8の電極は、密度が2.5g/cm3である活物質含有層を具備していた。
 [非水電解質電池の作製]
 次に、以上に説明したようにして作製した、実施例及び比較例の電極の各々を負極として用い、以下の手順で非水電解質電池を作製した。以下、実施例及び比較例の各々を「負極」と呼ぶ。
 [正極の作製]
 まず、正極活物質としてスピネル型リチウムマンガン複合酸化物LiAl0.1Mn1.94の粉末を準備した。この複合酸化物と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、90質量%:5質量%:5質量%の混合比で、溶媒としてのN-メチルピロリドン(NMP)に投入して、混合した。次いで、このようにして得られた混合物を、比較例1の電極を作製した際に用いたものと同様の自転公転ミキサーを用いて分散させ、スラリーを調製した。
 次に、調製したスラリーを、厚さ15μmのアルミニウム箔からなる正極集電体の両面に塗布した。次に、塗膜を乾燥させた。かくして、正極集電体と、その両面に形成された正極活物質含有層とを含んだ正極を得た。次いで、かくして得られた正極をプレスに供した。かくして、密度が2.7g/cm3である正極活物質含有層を含んだ正極を作製した。
 [電極群の作製]
 次に、厚さ25μmのポリエチレン製多孔質フィルムからなる2枚のセパレータを準備した。
 次に、先に作製した正極、1枚のセパレータ、先に作製した負極及びもう1枚のセパレータをこの順序で積層して積層体を得た。この積層体を、渦巻き状に捲回した。これを90℃で加熱プレスすることにより、幅が30mmであり厚さが3.0mmである偏平状電極群を作製した。
 得られた電極群を、ラミネートフィルムからなるパックに収納し、80℃で24時間真空乾燥を施した。ラミネートフィルムは、厚さ40μmのアルミニウム箔の両面にポリプロピレン層を形成して構成され、全体の厚さが0.1mmであった。
 [液状非水電解質の調製]
 プロピレンカーボネート(PC)及びジエチルカーボネート(DEC)を1:1の体積比率で混合して、混合溶媒とした。この混合溶媒に、電解質であるLiPF6を1Mの濃度で溶解させることにより、液状非水電解質を調製した。
 [非水電解質電池の製造]
 先のようにして電極群を収納したラミネートフィルムのパック内に、液状非水電解質を注入した。その後、パックをヒートシールにより完全密閉した。かくして、前述した図5及び図6に示す構造を有し、幅が35mmであり、厚さが3.2mmであり、高さが65mmである非水電解質電池を製造した。
 かくして、各実施例及び比較例の非水電解質電池を得た。
 実施例1の非水電解質電池の容量は、300mAhであった。
 [入出力性能試験]
 各非水電解質電池を、以下の手順に従って、入出力性能試験に供した。具体的には、SOC(充電状態)50%における各電池の、0℃及び25℃での、10Cでの10秒入力抵抗及び10秒出力抵抗を測定した。
 0℃での10秒入力及び10秒出力抵抗測定は、以下の手順で行った。まず、各電池を、25℃環境下にて、SOC50%に調整した。次いで、各電池を、開回路状態とし、次いで、環境温度を0℃とした。次いで、0℃の環境温度を3時間保持した。次いで、各電池に、10Cにて10秒間電流を印加した。入力抵抗測定時は、充電を行って抵抗を測定した。また、出力抵抗測定時は、放電を行って抵抗を測定した。
 25℃での10秒入力及び出力抵抗測定は、以下の手順で行った。まず、各電池を、25℃環境下にて、SOC50%に調整した。次いで、各電池を、開回路状態とし、1時間放置した。次いで、各電池に、10Cにて10秒間電流を印加した。入力抵抗測定では、充電を行って抵抗を測定した。また、出力抵抗測定では、放電を行って抵抗を測定した。
 各実施例及び比較例の電池についての、25℃での10秒入力抵抗に対する0℃での10秒入力抵抗と、25℃での10秒入力抵抗に対する0℃での10秒出力抵抗とを、以下の表1に示す。
 [活物質含有層の粉末X線回折測定]
 各実施例及び比較例の電極(負極)を、先に説明した手順で、粉末X線回折測定に供した。
 各実施例及び比較例の電極の活物質含有層の粉末X線回折から、各電極の活物質含有層に含まれるNa含有ニオブチタン複合酸化物が直方晶型の結晶構造を有していることが分かった。
 また、各実施例及び比較例の電極の活物質含有層の粉末X線回折から、先に説明した強度比I2/I1及び強度比I3/I1を計算した。その結果を以下の表1に示す。
 [平均粒子径の測定]
 各実施例及び比較例の電極の活物質含有層に含まれているNa含有ニオブチタン複合酸化物の粒子の平均二次粒子径及び平均一次粒子径を、先に説明した手段で測定した。測定結果を以下の表2に示す。
 また、各実施例及び比較例の[二次粒子の作製]では、作製した二次粒子の平均二次粒子径を、先に説明した手段で測定した。測定結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示した結果から、実施例1~7の電池は、25℃での入力抵抗に対する0℃での入力抵抗の相対値が、比較例1~8の電池よりも低いことが分かる。また、実施例1~7の電池は、25℃での出力抵抗に対する0℃での出力抵抗の相対値が、比較例1~8の電池よりも低いことが分かる。これらの結果から、実施例1~7の電池は、比較例1~8の電池よりも、低温となった場合の入出力性能の低下を抑えることができることが分かる。すなわち、実施例1~7の電池は、比較例1~8の電池よりも、優れた入出力性能を示すことができた。これは、実施例1~7の各電池が具備する負極である電極では、活物質含有層において、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子が、Liイオンの拡散し易い方向に沿って高い配向度を示し、それにより、活物質であるNa含有ニオブチタン複合酸化物におけるLiイオンの挿入脱離反応が促進されたためであると考えられる。
 実施例1~4、及び8の各々では、二次粒子の一部が解砕して生じた一次粒子を含んだ合剤スラリーを調製した。このスラリーを用いて作製した活物質含有層を上記の条件でロールプレスに供したことにより、活物質含有層において、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子が、Liイオンの拡散し易い方向に沿って高い配向度を示したと考えられる。
 実施例7では、ロールプレスにより、活物質含有層に含まれる二次粒子を解砕し一次粒子を生じさせ、それを更にプレスしたことにより、活物質含有層において、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子が、Liイオンの拡散し易い方向に沿って高い配向度を示したと考えられる。
 実施例5及び6では、実施例1と比較して、Na含有ニオブチタン複合酸化物の合成の際、熱処理温度を高く、熱処理時間を長くした。しかしながら、実施例5及び6では、過度に熱処理温度を上げることや、時間を長くすることはしていない。このことにより、活物質粒子の結晶性が向上させつつ、過剰な粒成長を抑えることができたと考えられる。また、実施例5及び6では、焼結による粒子同士のネッキングが存在する可能性があったため、スラリー作製時のビーズミルを行い、粒子をほぐした。それにより、実施例5及び6では、過度に粒成長しておらず、高結晶性を有し、且つ配向可能な粒子を作製することが可能となったと考えられる。
 比較例1では、実施例1と同様の熱処理条件でNa含有ニオブチタン複合酸化物の一次粒子形態の粉末を合成した。しかしながら、比較例1では、一次粒子の粉末を二次粒子化せずに、合剤スラリーを調製した。そして、この合剤スラリーを集電体に塗布し、乾燥させ、プレスに供して、比較例1の電極を得た。比較例1の結果から、上記のような粒子を用いて作製した電極において、比較的弱いプレス線圧にて電極密度を調整しても、(400)面の配向度が高い電極は得られないことがわかる。
 比較例2では、Na含有ニオブチタン複合酸化物の一次粒子の合成の際、900℃で10時間にわたる熱処理を行い、Na含有ニオブチタン複合酸化物の結晶性を高めた。しかしながら、比較例2では、ビーズミル分散を行わなかった。そのため、比較例2においてロールプレスに供した塗膜は、Na含有ニオブチタン複合酸化物の二次粒子が解砕して生じた一次粒子を含んでいなかったと考えられる。その結果、比較例2の電極は、ロールプレスに供しても、強度比I2/I1が1.5未満であり、(400)面の高い配向度を実現できなかった。
 比較例3では、強度比I2/I1が3.0を超えた。比較例3では、ビーズミル分散における回転数を実施例1よりも大きく設定した。その結果、比較例3では、実施例1よりもスラリーに強いシェアがかかったと考えられる。これにより、スプレードライにて形成された二次粒子は、ほぼ解砕された状態になった。このようにほぼ解砕された複合酸化物の粒子を含むスラリーから得られた塗膜をプレスしたことにより、電極における(400)面の配向度が過度に高くなったと考えられる。
 比較例4及び7でも、強度比I2/I1が3.0を超えた。比較例4及び7では、スプレードライに供する混合物におけるスクロースの量を1%、すなわち実施例1よりも少なくした。この条件で作製した二次粒子は、解砕されやすく、合剤スラリー調製時のビーズミルによってほぼ解砕されたと考えられる。このようにほぼ解砕された複合酸化物の粒子を含むスラリーから得られた塗膜をプレスしたことにより、(400)面の配向度が過度に高くなったと考えられる。
 言い換えると、比較例3、4及び7では、ほぼ解砕された状態にあるNa含有ニオブチタン複合酸化物の粒子を、無理に配向させたと考えられる。詳細なメカニズムは不明であるが、これが比較例3、4及び7の電池が優れた入出力性能を示すことができなかった原因であると考えられる。
 一方、比較例5、6及び8では、スプレードライに供する混合物におけるスクロースの量を実施例1のそれよりも大きくした。このような混合物をスプレードライに供することで得られた比較例5、6及び8での二次粒子は、強度が高く、解砕されにくいものであったと考えられる。そのため、比較例5、6及び8は、合剤スラリー調製時のビーズミル処理によっても、二次粒子が適度な解砕をされなかったと考えられる。その結果、比較例5、6及び8では、ロールプレスによっても(400)面の高い配向度を実現できなかったと考えられる。
 これらの少なくとも1つの実施形態又は実施例の電極は、活物質含有層を具備する。活物質含有層は、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子を含む。活物質含有層の、Cu-Kα線源を用いる粉末X線回折において、強度比I2/I1が1.5≦I2/I1≦3.0の範囲内にある。I1は、活物質含有層の粉末X線回折において、回折角が18.5°より大きく19.5°以下である範囲内での最強度ピークの強度である。I2は、活物質含有層の粉末X線回折において、回折角が20.5°以上22°以下である範囲内での最強度ピークの強度である。この電極の活物質含有層では、直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子が、Liイオンの拡散し易い方向に沿って高い配向度を示す。それにより、この電極は、優れた入出力性能を示す電池を実現することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (10)

  1.  直方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物の粒子を含む活物質含有層を具備し、
     前記活物質含有層の、Cu-Kα線源を用いる粉末X線回折において、強度比I2/I1が1.5≦I2/I1≦3.0の範囲内にあり、
     ここで、
     I1は、前記粉末X線回折において、回折角が18.5°より大きく19.5°以下である範囲内での最強度ピークの強度であり、
     I2は、前記粉末X線回折において、回折角が20.5°以上22°以下である範囲内での最強度ピークの強度である電極。
  2.  前記粉末X線回折において、強度比I3/I1が3.5≦I3/I1≦5.5の範囲内にあり、
     強度I3は、前記粉末X線回折において、回折角が17°以上18.5°以下である範囲内での最強度ピークの強度である請求項1に記載の電極。
  3.  前記Na含有ニオブチタン複合酸化物は、一般式Li2+vNa2-yM1xTi6-y-zNbyM2z14+δで表される組成を有し、
     前記一般式において、
     M1は、Cs、K、Sr、Ba及びCaからなる群より選択される少なくとも1種であり、
     M2は、Sn、V、Ta、Mo、W、Fe、Co及びMnからなる群より選択される少なくとも1種であり、
     0≦v≦4、0≦x<2、0.1<y<0.8、0≦z<3、-0.5≦δ≦0.5である請求項1又は2に記載の電極。
  4.  前記Na含有ニオブチタン複合酸化物の粒子は、二次粒子を含む請求項1~3の何れか1項に記載の電極。
  5.  前記二次粒子の平均二次粒子径は、3μm以上20μm以下の範囲内にある請求項4に記載の電極。
  6.  前記Na含有ニオブチタン複合酸化物の粒子は、一次粒子を含む請求項1~5の何れか1項に記載の電極。
  7.  前記一次粒子の平均一次粒子径は、0.5μm以上4μm以下の範囲内にある請求項6に記載の電極。
  8.  負極としての請求項1~7の何れか1項に記載の電極と、
     正極と、
     電解質と
    を具備した電池。
  9.  前記正極は、スピネル型の結晶構造を有するリチウムマンガン複合酸化物、リチウムコバルト複合酸化物及びリチウムニッケルコバルトマンガン複合酸化物からなる群より選択される少なくとも1種を含む請求項8に記載の電池。
  10.  請求項8又は9に記載の電池を具備した電池パック。
PCT/JP2019/014257 2019-03-29 2019-03-29 電極、電池及び電池パック WO2020202350A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/014257 WO2020202350A1 (ja) 2019-03-29 2019-03-29 電極、電池及び電池パック
JP2021511725A JP7106754B2 (ja) 2019-03-29 2019-03-29 電極、電池及び電池パック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014257 WO2020202350A1 (ja) 2019-03-29 2019-03-29 電極、電池及び電池パック

Publications (1)

Publication Number Publication Date
WO2020202350A1 true WO2020202350A1 (ja) 2020-10-08

Family

ID=72667566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014257 WO2020202350A1 (ja) 2019-03-29 2019-03-29 電極、電池及び電池パック

Country Status (2)

Country Link
JP (1) JP7106754B2 (ja)
WO (1) WO2020202350A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073765A1 (ja) * 2015-10-30 2017-05-04 宇部興産株式会社 蓄電デバイスの電極用リチウムナトリウムチタン複合酸化物粉末、及び活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
JP2018160437A (ja) * 2017-03-24 2018-10-11 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両
JP2018160446A (ja) * 2017-03-22 2018-10-11 株式会社東芝 電極、非水電解質電池、電池パック及び車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073765A1 (ja) * 2015-10-30 2017-05-04 宇部興産株式会社 蓄電デバイスの電極用リチウムナトリウムチタン複合酸化物粉末、及び活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
JP2018160446A (ja) * 2017-03-22 2018-10-11 株式会社東芝 電極、非水電解質電池、電池パック及び車両
JP2018160437A (ja) * 2017-03-24 2018-10-11 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両

Also Published As

Publication number Publication date
JPWO2020202350A1 (ja) 2021-10-14
JP7106754B2 (ja) 2022-07-26

Similar Documents

Publication Publication Date Title
EP3145000B1 (en) Electrode, nonaqueous electrolyte battery, battery pack and vehicle
JP6523115B2 (ja) 電池用活物質、負極、非水電解質電池、電池パック及び車
CN107204443B (zh) 活性物质、非水电解质电池、电池包及车辆
JP6668478B2 (ja) 非水電解質電池及び電池パック
JP6571284B2 (ja) 電極、非水電解質電池及び電池パック
EP3067321B1 (en) Active material, nonaqueous electrolyte battery, battery pack, and battery module
CN114556633A (zh) 正极活性材料、其制备方法和包含它的锂二次电池
JP6096985B1 (ja) 非水電解質電池及び電池パック
KR20160033602A (ko) 전지용 활물질, 비수 전해질 전지 및 전지 팩
JPWO2020110260A1 (ja) 電極、電池、及び電池パック
US10096823B2 (en) Electrode material, nonaqueous electrolyte battery, battery pack, and vehicle
CN109417193B (zh) 非水电解质电池及电池包
KR101830571B1 (ko) 활물질, 비수전해질 전지, 전지 팩 및 차량
CN114188525A (zh) 电极、二次电池、电池包及车辆
WO2020208718A1 (ja) 電極、電極群、電池、及び電池パック
WO2020202350A1 (ja) 電極、電池及び電池パック
WO2023079639A1 (ja) 電極、電池、及び電池パック
WO2023175731A1 (ja) 電極、電池、及び電池パック
WO2022137516A1 (ja) 電極、電池、及び電池パック
JP6965438B2 (ja) 活物質、電極、非水電解質電池及び電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922668

Country of ref document: EP

Kind code of ref document: A1