WO2020207131A1 - 掩膜板组件、oled显示面板及其制作方法、显示装置 - Google Patents

掩膜板组件、oled显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2020207131A1
WO2020207131A1 PCT/CN2020/076413 CN2020076413W WO2020207131A1 WO 2020207131 A1 WO2020207131 A1 WO 2020207131A1 CN 2020076413 W CN2020076413 W CN 2020076413W WO 2020207131 A1 WO2020207131 A1 WO 2020207131A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
mask
display area
opening
display panel
Prior art date
Application number
PCT/CN2020/076413
Other languages
English (en)
French (fr)
Inventor
刘月
白珊珊
李彦松
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020207131A1 publication Critical patent/WO2020207131A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Definitions

  • the present disclosure relates to the technical field of display product manufacturing, in particular to a mask assembly, an OLED display panel, a manufacturing method thereof, and a display device.
  • Face ID technology is widely used in mobile phone integration. It is equipped with ambient light sensors, proximity sensors, infrared lenses, flood cameras and dot-matrix projectors to jointly build user 3D face models.
  • the infrared lens in the technology is set under the perforation of the display screen, but because the perforated area does not display the picture, in order to pursue a better visual experience, people have begun to study the full screen display of mobile phones and divide the display into different pixel resolutions.
  • the present disclosure provides a mask assembly for forming the cathode of at least one OLED display panel.
  • the display area of the OLED display panel includes a first display area and a second display area, and the pixel resolution of the first display area is different from that described above.
  • the mask assembly includes:
  • the first mask includes at least one first evaporation area corresponding to at least one OLED display panel, and the first evaporation area includes a first opening corresponding to the first display area and a first opening corresponding to the second display area.
  • the second mask includes at least one second vapor deposition area corresponding to at least one OLED display panel, the second vapor deposition area corresponds to the second display area, and includes a plurality of mutually independent third openings, When the first mask and the second mask are stacked, the orthographic projection of the third opening on the first mask communicates with at least two adjacent second openings.
  • the third opening is a strip structure.
  • the orthographic projection of the third opening on the first mask is Two adjacent second openings are connected.
  • the orthographic projection of each second opening on the OLED display panel overlaps with the corresponding pixel light-emitting area on the second display area one by one.
  • the area of each of the second openings is greater than the area of each pixel of the second display area.
  • the shape of the second opening is the same as the shape of the corresponding pixel light-emitting area.
  • the second opening adjacent to the first opening is not in communication with the first opening, or in communication.
  • the size of the second opening located at the edge of the first vapor deposition area is larger than the size of the second opening located inside the first vapor deposition area.
  • the size of the third opening located at the edge of the second vapor deposition area is larger than the size of the third opening located inside the second vapor deposition area.
  • the present disclosure also provides a manufacturing method of an OLED display panel, which adopts the above-mentioned mask assembly to vaporize the cathode on the OLED display panel, including the following steps:
  • the cathode material is evaporated in the first display area, and the cathode material is evaporated in the position corresponding to the pixel light-emitting area in the second display area;
  • the cathode material is vapor-deposited in the second display area to form a bridge connecting the cathodes corresponding to at least two adjacent pixel light-emitting areas.
  • the cathode material is a magnesium-silver doped material.
  • the method further includes:
  • the organic material is vapor-deposited in the first display area, and the organic material is vapor-deposited at the position corresponding to the pixel light-emitting area in the second display area to form a capping layer.
  • the present disclosure also provides an OLED display panel, which adopts the above-mentioned manufacturing method of the OLED display panel.
  • the present disclosure also provides a display device including the above-mentioned OLED display panel.
  • FIG. 1 shows a schematic diagram of the distribution of at least one OLED display panel
  • FIG. 2 shows a schematic diagram of the structure of a first mask in an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of the structure of the first vapor deposition area in an embodiment of the present disclosure
  • FIG. 4 shows an enlarged schematic diagram of area A of the first vapor deposition area in FIG. 3;
  • FIG. 5 shows a schematic diagram of the structure of a second mask in an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of the structure of the second vapor deposition area in an embodiment of the present disclosure
  • FIG. 7 shows an enlarged schematic diagram of area B of the second vapor deposition area in FIG. 6;
  • FIG. 8 is a schematic diagram showing the overlap of the second opening and the third opening corresponding to the second display area when the first mask and the second mask are stacked;
  • FIG. 9 shows a schematic diagram of the vapor deposition effect corresponding to the second display area after vapor deposition using the first mask in the embodiment of the present disclosure
  • FIG. 10 shows a schematic diagram of the vapor deposition effect corresponding to the second display area after vapor deposition using the first mask and the second mask in the implementation of the present disclosure.
  • FIG. 11 shows a schematic diagram of the manufacturing process of the OLED display panel in some embodiments of the present disclosure.
  • the first mask 2. the second mask, 11, the first vapor deposition area, 111, the first opening, 112, the second opening, 1121, the first edge opening, 1122, the first middle part Opening, 10, OLED display panel, 101, first display area, 102, second display area, 113, first shielding area, 20, cathode, 21, second evaporation area, 212, second shielding area, 211, The third opening, 2111, the second middle opening, 2112, the second edge opening.
  • the cathode evaporation method in the related technology is to use a mask plate etched on the entire surface to evaporate the cathode material (magnesium-silver doped material) onto the light-emitting device Since the cathode materials such as magnesium-silver doped materials have very low transmittance to infrared light and the cathode material covers a large area, the cathode layer becomes the limiting screen for products with infrared lenses, sensors and other devices placed under the display screen.
  • One of the important layers of transmittance under the premise of ensuring the normal display of the screen, how to improve the transmittance of the screen is the primary problem to be solved.
  • the present embodiment provides a mask assembly, through the cooperative use of the first mask and the second mask to evaporate the cathode material, reduce the evaporation area of the cathode in the second display area, thereby Improve the light transmittance of the second display area.
  • this embodiment provides a mask assembly for forming the cathode of at least one OLED display panel.
  • the display area of the OLED display panel includes a first display area 101 and a second display area 102.
  • the pixel resolution of the first display area 101 is different from the pixel resolution of the second display area 102 (refer to FIG. 1 for the distribution of at least one OLED display panel), and the mask assembly includes:
  • the first mask 1 includes at least one first vapor deposition area 11 corresponding to at least one OLED display panel, and the first vapor deposition area 11 includes a first opening 111 corresponding to the first display area 101 and A plurality of mutually independent second openings 112 corresponding to each pixel light-emitting area of the second display area 102; refer to FIGS. 2 to 4, where FIG. 2 shows that the first mask 1 corresponds to at least one A schematic diagram of the distribution of at least one of the first vapor deposition areas 11 of the OLED display panel.
  • FIG. 3 shows a schematic diagram of the structure of one of the first vapor deposition areas 11, and
  • FIG. 4 is a partial enlarged schematic diagram of FIG. A schematic view of the structure of a plurality of independent second openings 112 on the mask 1.
  • the second mask 2 includes at least one second vapor deposition area 21 corresponding to at least one OLED display panel.
  • the second vapor deposition area 21 includes a plurality of mutually independent third openings 211.
  • FIGS. 5 to 8 show a schematic diagram of the distribution of at least one second evaporation area 21 on the second mask 2 corresponding to at least one OLED display panel, and
  • FIG. 6 shows one of the A schematic diagram of the structure of the second vapor deposition area 21.
  • FIG. 7 is a partial enlarged schematic diagram of FIG. 6, showing a schematic diagram of the structure of a plurality of independent third openings 211.
  • FIG. 8 shows the first mask 1 and the second mask. The positional relationship between the second opening 112 and the third opening 211 when the plates 2 are stacked.
  • the pixel resolution of the first display area 101 is greater than the pixel resolution of the second display area 102.
  • the first display area 101 may be a normal display area (or called a high-resolution area) with closely spaced pixels.
  • the second display area 102 may be a low-resolution display area with sparsely arranged pixels. Since the pixels in the first display area 101 are tightly arranged, the cathode material can be vapor-deposited on the entire first display area 101 of the OLED display panel through the first mask 1.
  • the first vapor deposition area 11 A first opening 111 corresponding to the first display area 101 is provided thereon, that is, a through hole corresponding to the first display area 101.
  • the first mask The area of the film plate 1 corresponding to the second display area 102 can be designed with a pattern to form a plurality of mutually independent second openings 112 corresponding to each pixel light-emitting area of the second display area 102 .
  • the mask is replaced, and the second mask 2 is used for vapor deposition.
  • the arrangement of the second mask 2 only performs superimposed vapor deposition on the second display area 102, and the third openings 211 on the second vapor deposition area 21 are arranged independently of each other.
  • the orthographic projection of the third opening 211 on the first mask plate 1 communicates with at least two adjacent second openings 112 (refer to FIG.
  • FIG. 10 shows a schematic diagram of the vapor deposition effect after vapor deposition using the first mask 1 and the second mask 2 in an embodiment of this embodiment. It can be seen that the vapor deposition of the cathode on the second display area 102 Plating, under the premise of ensuring normal display, the cathode does not completely cover the second display area 102, thereby reducing the coverage area of the cathode of the second display area 102 and improving the transmittance of infrared light.
  • infrared lenses, sensors, and other devices used for facial recognition are correspondingly disposed below the second display area 102, and the first mask 1 and the second mask 2 are opposite to each other.
  • Cooperating with the vapor deposition cathode reduces the coverage area of the cathode of the second display area 102 and improves the transmittance of infrared light.
  • the pixel resolution of the second display area 102 is smaller than the pixel resolution of the first display area 101, and the pixel light-emitting areas of the second display area 102 are sparsely arranged, which further improves the infrared light.
  • the transmittance is smaller than the pixel resolution of the first display area 101, and the pixel light-emitting areas of the second display area 102 are sparsely arranged, which further improves the infrared light.
  • the distribution of at least one OLED display panel 10 shown in FIG. 1 is only a schematic diagram of the distribution in one implementation of this embodiment, but it is not limited thereto.
  • Infrared lenses, sensors and other devices for facial recognition are arranged below the second display area 102.
  • the first mask 1 and the second mask 2 are matched to vaporize the cathode, thereby The coverage area of the cathode of the second display area 102 is reduced, and the infrared light transmittance of the second display area 102 is improved.
  • the camera used for photographing and imaging is also arranged in the second display area 102.
  • the area corresponding to the position of the camera for photographing and imaging on the first vapor deposition area 11 is not provided with an opening, which is the first
  • the shielding area 113 corresponds to the area where the infrared lens, the sensor and other devices are also not provided with openings, it is the second shielding area 212, the second shielding area 212 is located in the second display area 102.
  • the third opening 211 can have a variety of specific structural forms, as long as the cathode is formed in the second display area 102 after evaporation through the first mask 1 and the second mask 2. It is not necessary to completely cover the second display area 102.
  • the third opening 211 is a strip structure. When the first mask 1 and the second mask 2 are stacked, The orthographic projection of the third opening 211 on the first mask 1 connects two adjacent second openings 112.
  • each second opening 112 is greater than or equal to the first 2.
  • the size of the pixel light-emitting area of the display area 102 that is, the size of the pattern formed by the second opening 112 is larger than the size of the corresponding pixel light-emitting area, so that the pattern formed by the second opening 112 exceeds the corresponding pixel light-emitting area
  • the two ends of the pattern formed by the third opening 211 on the second mask 2 overlap each other Adjacent to the edge area of the pattern formed by the two second openings 112, the thickness of the cathode of the corresponding pixel light-emitting area will not be increased, and the display unevenness and color shift caused by the different cathode thickness of the pixel light-emitting area will be avoided.
  • the pixels in the second display area 102 are sparsely arranged to increase the infrared light transmittance.
  • the shape of the RGB pixels in the pixel light-emitting area is not limited here, and can be It is circular, quadrilateral, hexagonal, octagonal, etc.
  • the second opening 112 is formed on the OLED display panel.
  • the orthographic projection overlaps the pixel light-emitting areas on the second display area 102 one by one, and the area of each second opening 112 is greater than or equal to the area of the corresponding pixel light-emitting area of the second display area 102 to ensure The cathode vapor deposited through the second opening 112 completely covers the light-emitting area of each pixel.
  • the shape of the second opening 112 is a quadrilateral, as shown in FIG. 4, but not limited to this.
  • the shape of the second opening 112 may correspond to the corresponding pixel light-emitting area. The same shape.
  • the second opening 112 adjacent to the first opening 111 is not connected with the first opening 111, or is connected.
  • the second opening 112 adjacent to the first opening 111 may not be connected to the first opening 111, or may be connected.
  • the second opening 112 adjacent to the first display area 101 may be The arrangement of the pixel light-emitting areas at the edge of the second display area 102 is set.
  • the second opening 112 adjacent to the first opening 111 is connected to the first opening 111, as shown in FIG. 4, but not limited to this.
  • the size of the second opening 112 located at the edge of the first vapor deposition area 11 is larger than the size of the second opening 112 located inside the first vapor deposition area 11.
  • the size of the third opening 211 located at the edge of the second vapor deposition area 21 is larger than the size of the third opening 211 located inside the second vapor deposition area 21.
  • the size of the opening at the edge of the first mask 1 and the size of the opening at the edge of the second mask 2 can be increased.
  • 4 represents a partial structural diagram of the plurality of second openings 112 on the first mask plate 1, and the plurality of second openings 112 include a second edge located at the edge of the first vapor deposition area 11
  • the opening 1121 and the central first central opening 1122, the area of the first central opening 1122 is smaller than the area of the second edge opening 2112, which can ensure that the cathode material vapor deposited on the edge of the second display area 102 is Maximum contact with the anode material.
  • the plurality of third openings 211 includes a second vapor deposition area 21 at the edge
  • the edge opening 2112 and the second central opening 2111 the area of the second central opening 2111 is smaller than the area of the second edge opening 2112, which can ensure that the cathode material vapor deposited at the edge of the second display region 102 is Maximum contact with anode material.
  • each second edge opening 2112 of the edge of the second mask plate 2 is determined according to the shape of the edge of the second mask plate. Some of the second edge openings 2112 have different areas.
  • This embodiment also provides a method for manufacturing an OLED display panel.
  • the use of the above mask assembly to vaporize the cathode on the OLED display panel includes the following steps:
  • the cathode material is vapor-deposited in the first display area 101 through the first mask 1, and the cathode material is vapor-deposited at the position corresponding to the pixel light-emitting area of the second display area 102.
  • the schematic diagram of the cathode on the second display area 102 is shown in FIG. 9.
  • 20 represents a rectangular cathode pattern, and each rectangular cathode pattern covers a pixel light-emitting area (the three small rectangles inside each rectangular cathode pattern 20 respectively Represents blue sub-pixel, red sub-pixel and green sub-pixel);
  • the cathode material is vapor-deposited on the second display area 102 to form a bridge connecting the cathodes of at least two adjacent pixel light-emitting areas, which is used for data signal transmission between adjacent pixel light-emitting areas. Connected.
  • the second mask 2 is used to evaporate the cathode material on the second display area 102 to form a bridge connecting the cathodes corresponding to the light-emitting areas of two adjacent pixels for adjacent
  • the schematic diagram of the data signal communication between the pixel light-emitting areas and the cathode of the second display area 102 after the evaporation is completed is shown in FIG. 10.
  • the cathode material is a magnesium-silver doped material.
  • the OLED display panel After the cathode material is vapor-deposited on the second display area 102 through the second mask 2 to form a bridge connecting the cathodes corresponding to at least two adjacent pixel light-emitting areas, the OLED display panel
  • the production method also includes:
  • the organic material is vapor-deposited in the first display area through the first mask 1 and the organic material is vapor-deposited in the position corresponding to the pixel light-emitting area in the second display area to form a capping layer.
  • FIG. 11 shows a schematic diagram of the manufacturing process of the OLED display panel in some embodiments of the present disclosure.
  • the cathode material in the first step, is evaporated on the first display area 101 through the first mask 1 (mask-1), and the pixels in the second display area 102 emit light.
  • the cathode material is evaporated at the corresponding position of the zone.
  • the first mask 1 is replaced with a second mask 2 (mask-2), and the cathode material is vapor-deposited on the second display area 102 through the second mask 2 to form at least two adjacent
  • the light-emitting area of the pixel corresponds to the bridge of the cathode.
  • the third step is to replace the second mask 2 with the first mask 1.
  • an organic material with a large refractive index and a small absorption coefficient is evaporated on the first display area, and the The above-mentioned organic material with high refractive index and low absorption coefficient is vapor-deposited at the position corresponding to the pixel light-emitting area of the area to form a capping layer (CPL) to further improve the light transmittance of the display area.
  • CPL capping layer
  • the free electrons on the metal surface collectively oscillate.
  • the electromagnetic wave couples with the free electrons on the metal surface to form a near-field electromagnetic wave that propagates along the metal surface. If the oscillation frequency of the electrons Resonance occurs when the frequency of the incident light wave is consistent.
  • the energy of the electromagnetic field is effectively transformed into the collective vibration energy of free electrons on the metal surface.
  • a special electromagnetic mode is formed: the electromagnetic field is confined to the metal surface. In a very small range and increase, this phenomenon is called surface plasmon phenomenon.
  • the CPL layer can suppress this effect.
  • a Fabry-Parot optical resonant cavity is also formed in the OLED display panel. Adjusting the CPL layer can adjust the resonator to achieve the adjustment of the light output efficiency and the selection of the spectrum.
  • the arrangement of the above-mentioned CPL layer can further increase the light transmittance of the display area.
  • This embodiment also provides an OLED display panel, which adopts the above-mentioned manufacturing method of the OLED display panel.
  • the present disclosure also provides a display device including the above-mentioned OLED display panel.
  • the display device may be any product or component with a display function, such as an LCD TV, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device also includes a flexible circuit board, a printed circuit board and a backplane.
  • a display function such as an LCD TV, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, etc.
  • the display device also includes a flexible circuit board, a printed circuit board and a backplane.
  • the cathode on the OLED display panel is vapor deposited. Compared with the method of vapor deposition of the cathode on the whole surface in the related technology, it reduces the need to install infrared lenses, sensors and other devices.
  • the vapor deposition area of the cathode of the second display area 102 greatly increases the infrared light transmittance of the second display area 102 on the display panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种掩膜板组件,包括:第一掩膜板(1),包括与至少一个OLED显示面板一一对应的至少一个第一蒸镀区域(11),第一蒸镀区域(11)包括对应第一显示区域(101)的第一开口(111)和对应第二显示区域(102)的每一像素发光区的多个相互独立的第二开口(112);第二掩膜板(2),包括与至少一个OLED显示面板一一对应的至少一个第二蒸镀区域(21),第二蒸镀区域(21)包括多个相互独立的第三开口(211),第一掩膜板(1)和第二掩膜板(2)层叠,第三开口(211)在第一掩膜板(1)上的正投影连通至少两个相邻的第二开口(112)。还涉及一种OLED显示面板及其制作方法、显示装置。

Description

掩膜板组件、OLED显示面板及其制作方法、显示装置
相关申请的交叉引用
本申请主张在2019年4月9日在中国提交的中国专利申请号No.201910281156.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示产品制作技术领域,尤其涉及一种掩膜板组件、OLED显示面板及其制作方法、显示装置。
背景技术
随着科技的快速发展,智能手机越来越普及,手机的功能也越来越多。Face ID技术被广泛应用在手机集成中,它通过搭载环境光传感器、距离感应器,红外镜头、泛光感应元件(flood camera)和点阵投影器等装置,共同搭建用户3D脸部模型,相关技术中的红外镜头设置在显示屏幕打孔的下方,但由于打孔区域不显示画面,为了追求更好的视觉体验,人们开始研究手机的全面屏显示,将显示屏分为像素分辨率不同的两个显示区域,并放弃打孔,把红外镜头、传感器等装置放置在任一显示区域的下方,但是因为显示屏中发光器件的阴极层是用镁银掺杂材料蒸镀的,其光线透过率低且覆盖面积大。在这种情况下,为了提高屏幕对于红外光的透过率,如何解决同一屏幕上两种不同分辨率显示区的阴极材料蒸镀问题成了首要解决的问题。
发明内容
本公开提供一种掩膜板组件,用于形成至少一个OLED显示面板的阴极,OLED显示面板的显示区域包括第一显示区域和第二显示区域,第一显示区域的像素分辨率不同于所述第二显示区域的像素分辨率,所述掩膜板组件包括:
第一掩膜板,包括与至少一个OLED显示面板一一对应的至少一个第一蒸镀区域,所述第一蒸镀区域包括对应所述第一显示区域的第一开口和对应 所述第二显示区域的每一像素发光区的多个相互独立的第二开口;
第二掩膜板,包括与至少一个OLED显示面板一一对应的至少一个第二蒸镀区域,所述第二蒸镀区域对应所述第二显示区域,包括多个相互独立的第三开口,在所述第一掩膜板和所述第二掩膜板层叠时,所述第三开口在所述第一掩膜板上的正投影连通至少两个相邻的所述第二开口。
可选的,所述第三开口为条形结构,在所述第一掩膜板和所述第二掩膜板层叠时,所述第三开口在所述第一掩膜板上的正投影连通两个相邻的所述第二开口。
可选的,每个所述第二开口在所述OLED显示面板上的正投影与所述第二显示区域上对应的像素发光区一一重叠。
可选的,每个所述第二开口的面积大于所述第二显示区域的每个像素发光区的面积。
可选的,所述第二开口的形状与对应的像素发光区的形状相同。
可选的,与所述第一开口相邻的所述第二开口与所述第一开口不连通,或者连通。
可选的,位于所述第一蒸镀区域边缘的所述第二开口的尺寸大于位于所述第一蒸镀区域内部的所述第二开口的尺寸。
可选的,位于所述第二蒸镀区域边缘的所述第三开口的尺寸大于位于所述第二蒸镀区域内部的所述第三开口的尺寸。
本公开还提供一种OLED显示面板的制作方法,采用上述的掩膜板组件蒸镀OLED显示面板上的阴极,包括以下步骤:
通过第一掩膜板,在第一显示区域蒸镀阴极材料,并在第二显示区域的像素发光区对应的位置蒸镀阴极材料;
通过第二掩膜板,在第二显示区域蒸镀阴极材料以形成连通至少两个相邻的像素发光区对应的阴极的搭接桥。
可选的,所述阴极材料为镁银掺杂材料。
可选的,通过第二掩膜板,在第二显示区域蒸镀阴极材料以形成连通至少两个相邻的像素发光区上对应的阴极的搭接桥后,所述方法还包括:
通过第一掩膜板,在第一显示区域蒸镀有机材料,并在第二显示区域的 像素发光区对应的位置蒸镀有机材料,以形成封盖层。
本公开还提供一种OLED显示面板,采用上述的OLED显示面板的制作方法。
本公开还提供一种显示装置,包括上述的OLED显示面板。
附图说明
图1表示至少一个OLED显示面板的分布示意图;
图2表示本公开实施例中第一掩膜板结构示意图;
图3表示本公开实施例中第一蒸镀区域结构示意图;
图4表示图3中第一蒸镀区域的A区域放大示意图;
图5表示本公开实施例中第二掩膜板结构示意图;
图6表示本公开实施例中第二蒸镀区域结构示意图;
图7表示图6中第二蒸镀区域的B区域放大示意图;
图8表示第一掩膜板和第二掩膜板层叠时,对应于第二显示区域的所述第二开口和所述第三开口的交叠示意图;
图9表示本公开实施例中采用第一掩膜板蒸镀后,对应于第二显示区域的蒸镀效果示意图;
图10表示本公开实施中采用第一掩膜板和第二掩膜板蒸镀后、对应于第二显示区域的蒸镀效果示意图;及
图11表示本公开一些实施例中OLED显示面板的制作过程示意图。
其中,1、第一掩膜板,2、第二掩膜板,11、第一蒸镀区域,111、第一开口,112、第二开口,1121、第一边缘开口,1122、第一中部开口,10、OLED显示面板,101、第一显示区域,102、第二显示区域,113、第一遮挡区域,20、阴极,21、第二蒸镀区域,212、第二遮挡区域,211、第三开口,2111、第二中部开口,2112、第二边缘开口。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
对于同时存在两种不同分辨率显示区域的显示面板,相关技术中的阴极蒸镀方式是用一张整面刻蚀的掩膜板将阴极材料(镁银掺杂材料)蒸镀到发光器件上,由于镁银掺杂材料等阴极材料对红外光线的透过率很低,且阴极材料覆盖面积大,因此对红外镜头、传感器等装置设置于显示屏下的产品来说,阴极层成为限制屏幕透过率的重要膜层之一,在保证屏幕正常显示的前提下,如何提高屏幕透过率是首要解决的问题。
针对上述技术问题,本实施例提供一种掩膜板组件,通过第一掩膜板和第二掩膜板的配合使用以蒸镀阴极材料,降低第二显示区域的阴极的蒸镀面积,从而提高第二显示区域的光线透过率。
如图1-图10所示,本实施例提供一种掩膜板组件,用于形成至少一个OLED显示面板的阴极,OLED显示面板的显示区域包括第一显示区域101和第二显示区域102,所述第一显示区域101的像素分辨率不同于所述第二显示区域102的像素分辨率,(至少一个OLED显示面板的分布参考图1)所述掩膜板组件包括:
第一掩膜板1,包括与至少一个OLED显示面板一一对应的至少一个第一蒸镀区域11,所述第一蒸镀区域11包括对应所述第一显示区域101的第一开口111和对应所述第二显示区域102的每一像素发光区的多个相互独立的第二开口112;参考图2-图4,其中,图2表示所述第一掩膜板1上对应于至少一个OLED显示面板分布的至少一个所述第一蒸镀区域11的分布示意图,图3表示一个所述第一蒸镀区域11的结构示意图,图4为图3的局部放大示意图,表示所述第一掩膜板1上多个相互独立的第二开口112的结构示意图。
第二掩膜板2,包括与至少一个OLED显示面板一一对应的至少一个第二蒸镀区域21,所述第二蒸镀区域21包括多个相互独立的第三开口211,在所述第一掩膜板1和所述第二掩膜板2层叠时,所述第三开口211在所述第 一掩膜板1上的正投影连通至少两个相邻的所述第二开口112,参考图5-图8,其中,图5表示所述第二掩膜板2上对应于至少一个OLED显示面板分布的至少一个所述第二蒸镀区域21的分布示意图,图6表示一个所述第二蒸镀区域21的结构示意图,图7是图6的局部放大示意图,表示多个相互独立的第三开口211的结构示意图,图8表示出了第一掩膜板1和第二掩膜板2层叠时、所述第二开口112和所述第三开口211的位置关系。
其中,所述第一显示区域101的像素分辨率大于所述第二显示区域102的像素分辨率,第一显示区域101可以为正常显示区域(或称高分辨率区域),像素排列紧密,第二显示区域102可以为低分辨率显示区,像素排布稀疏。由于第一显示区域101中的像素排布紧密,可以通过所述第一掩膜板1在OLED显示面板的第一显示区域101整体蒸镀阴极材料,相应的,所述第一蒸镀区域11上设置了与所述第一显示区域101相对应的一个所述第一开口111,即,对应于第一显示区域101的一个通孔。而对于对应于所述第二显示区域102,由于像素排布稀疏,可以仅仅蒸镀像素发光区所对应的位置,相邻像素发光区之间的位置是不蒸镀的,因此,第一掩膜板1中的对应所述第二显示区域102的区域,可以采用图案(pattern)设计,以形成对应所述第二显示区域102的每一像素发光区的多个相互独立的第二开口112。
采用所述第一掩膜板1蒸镀阴极后,对应于所述第二显示区域102的蒸镀效果参考图9,然后更换掩膜板,采用所述第二掩膜板2进行蒸镀。所述第二掩膜板2的设置仅仅对所述第二显示区域102进行叠加蒸镀,所述第二蒸镀区域21上的第三开口211,相互独立设置,在所述第一掩膜板1和所述第二掩膜板2层叠时,所述第三开口211在所述第一掩膜板1上的正投影连通至少两个相邻的所述第二开口112(参考图8),从而可以在至少两个相邻的像素发光区之间进行蒸镀,以连通至少两个相邻的像素发光区对应的阴极。图10表示本实施例一实施方式中采用所述第一掩膜板1和所述第二掩膜板2进行蒸镀后的蒸镀效果示意图,可见对于第二显示区域102上的阴极的蒸镀,在保证正常显示的前提下,阴极并没有完全覆盖所述第二显示区域102,从而降低了所述第二显示区域102的阴极的覆盖面积,提高了红外光的透过率。
需要说明的是,本实施例中,用于面部识别的红外镜头、传感器等装置 对应设置于所述第二显示区域102的下方,所述第一掩膜板1和第二掩膜板2相配合进行蒸镀阴极,降低了所述第二显示区域102的阴极的覆盖面积,提高了红外光的透过率。
本实施例中,所述第二显示区域102的像素分辨率小于所述第一显示区域101的像素分辨率,所述第二显示区域102的像素发光区排布稀疏,进一步的提高了红外光的透过率。
需要说明的是,图1中所示的至少一个OLED显示面板10的分布仅是本实施例的一个实施方式中的分布示意图,但是并不限于此。
用于面部识别的红外镜头、传感器等装置设置于所述第二显示区域102的下方,本实施例中通过所述第一掩膜板1和第二掩膜板2相配合蒸镀阴极,从而降低了所述第二显示区域102的阴极的覆盖面积,提高了所述第二显示区域102的红外光的透过率。而用于拍照成像的摄像头同样设置于所述第二显示区域102,相应的,所述第一蒸镀区域11上对应于用于拍照成像的摄像头所在的位置的区域没有设置开口,为第一遮挡区域113,所述第二蒸镀区域21上对应于红外镜头、传感器等装置所在的区域也没有设置开口,为第二遮挡区域212,所述第二遮挡区域212位于所述第二显示区域102。
所述第三开口211的具体结构形式可有多种,只要使得通过所述第一掩膜板1和所述第二掩膜板2蒸镀后,形成于所述第二显示区域102的阴极不是完全覆盖所述第二显示区域102即可,本实施例中,所述第三开口211为条形结构,在所述第一掩膜板1和所述第二掩膜板2层叠时,所述第三开口211在所述第一掩膜板1上的正投影连通两个相邻的所述第二开口112。
图8表示采用所述第一掩膜板1和所述第二掩膜板2蒸镀阴极材料,对应于所述第二显示区域102的所述第二开口112和所述第三开口211的交叠示意图,为了减小蒸镀形成于OLED显示面板上的阴极的覆盖面积,但同时保证OLED的正常显示,本实施例中,每个所述第二开口112的尺寸大于或等于所述第二显示区域102的像素发光区的尺寸,即利用第二开口112形成的图案的尺寸大于与其对应的像素发光区的尺寸,这样通过第二开口112形成的图案就存在超出与其对应的像素发光区的边缘区域,在所述第一掩膜板1和所述第二掩膜板2层叠时,通过所述第二掩膜板2上的第三开口211形 成的图案的两端搭接在相邻两个所述第二开口112形成的图案的边缘区域上,这样不会增加对应像素发光区的阴极厚度,避免出现像素发光区因阴极厚度不同造成的显示不均和色偏。
图9表示本公开实施例中采用第一掩膜板1蒸镀后,对应于第二显示区域102的蒸镀效果示意图,为了提升红外光的透过率,所述第二显示区域102的像素发光区排布稀疏,以提高红外光透过率,像素发光区中的RGB像素(每个像素发光区包括一个红色子像素、绿色子像素和蓝色子像素)的形状在此不作限定,可以为圆形、四边形、六边形、八边形等,通过所述第一掩膜板1进行OLED显示面板上的阴极的蒸镀时,所述第二开口112在所述OLED显示面板上的正投影与所述第二显示区域102上的像素发光区一一重叠,且每个所述第二开口112的面积大于或等于所述第二显示区域102的对应的像素发光区的面积,保证了通过所述第二开口112蒸镀的阴极,完全覆盖每个像素发光区。
本实施例中,所述第二开口112的形状为四边形,如图4所示,但并不以此为限,在实际使用中,所述第二开口112的形状可以与对应的像素发光区的形状相同。
本实施例中,与所述第一开口111相邻的所述第二开口112与所述第一开口111不连通,或者连通。
根据实际需要,与所述第一开口111相邻的所述第二开口112与所述第一开口111可以不连通,也可以连通,具体的可以根据与所述第一显示区域101相邻的所述第二显示区域102的边缘的像素发光区的排布情况设定。本实施例的一实施方式中,与所述第一开口111相邻的所述第二开口112与所述第一开口111是连通的,如图4所示,但并不以此为限。
本实施例中,位于所述第一蒸镀区域11边缘的所述第二开口112的尺寸大于位于所述第一蒸镀区域11内部的所述第二开口112的尺寸。
本实施例中,位于所述第二蒸镀区域21边缘的所述第三开口211的尺寸大于位于所述第二蒸镀区域21内部的所述第三开口211的尺寸。
考虑到OLED显示面板边缘的阴极的搭接问题,可以增大所述第一掩膜板1的边缘的开口的尺寸,以及增大所述第二掩膜板2的边缘的开口的尺寸, 图4表示的是所述第一掩膜板1上的多个所述第二开口112的部分结构示意图,多个所述第二开口112包括位于所述第一蒸镀区域11边缘的第二边缘开口1121和中部的第一中部开口1122,所述第一中部开口1122的面积小于所述第二边缘开口2112的面积,可以保证所述第二显示区域102边缘处蒸镀的阴极材料与基板上的阳极材料最大程度的接触。图7表示的是所述第二掩膜板2上的多个所述第三开口211的部分结构示意图,多个所述第三开口211包括位于所述第二蒸镀区域21边缘的第二边缘开口2112和第二中部开口2111,所述第二中部开口2111的面积小于所述第二边缘开口2112的面积,可以保证所述第二显示区域102边缘处蒸镀的阴极材料与基板上的阳极材料最大程度的接触。
需要说明的是,所述第二掩膜板2的边缘的各个第二边缘开口2112的面积根据所述第二掩模板的边缘的形状而定,图7各个所述第二边缘开口2112中的部分所述第二边缘开口2112的面积不相同。
本实施例还提供一种OLED显示面板的制作方法,采用上述的掩膜板组件蒸镀OLED显示面板上的阴极,包括以下步骤:
通过第一掩膜板1,在第一显示区域101蒸镀阴极材料,并在第二显示区域102的像素发光区对应的位置蒸镀阴极材料,通过第一掩膜板1蒸镀后的,第二显示区域102上的阴极的示意图为图9所示,图9中的20表示矩形阴极图案,每个矩形阴极图案覆盖一像素发光区(每个矩形阴极图案20内部的三个小矩形分别表示蓝色子像素、红色子像素和绿色子像素);
通过第二掩膜板2,在第二显示区域102蒸镀阴极材料以形成连通至少两个相邻的像素发光区对应的阴极的搭接桥,用于相邻像素发光区之间数据信号的连通。
本实施例的一具体实施方式中,通过第二掩模板2,在第二显示区域102蒸镀阴极材料以形成连通两个相邻的像素发光区对应的阴极的搭接桥,用于相邻像素发光区之间数据信号的连通,蒸镀完成后的第二显示区域102的阴极的示意图如图10所示。
本实施例中,所述阴极材料为镁银掺杂材料。
在一些实施例中,通过第二掩膜板2在第二显示区域102蒸镀阴极材料 以形成连通至少两个相邻的像素发光区对应的阴极的搭接桥后,所述OLED显示面板的制作方法还包括:
通过第一掩膜板1在第一显示区域蒸镀有机材料,并在第二显示区域的像素发光区对应的位置蒸镀有机材料,以形成封盖层。
图11表示本公开一些实施例中OLED显示面板的制作过程示意图。如图11所示,本公开一些实施例中,第一步,通过第一掩膜板1(mask-1)在第一显示区域101蒸镀阴极材料,并在第二显示区域102的像素发光区对应的位置蒸镀阴极材料。第二步,将第一掩膜板1更换成第二掩膜板2(mask-2),通过第二掩膜板2在第二显示区域102蒸镀阴极材料以形成连通至少两个相邻的像素发光区对应的阴极的搭接桥。第三步,将第二掩膜板2更换成第一掩膜板1,通过第一掩膜板1在第一显示区域蒸镀折射率大、吸光系数小的有机材料,并在第二显示区域的像素发光区对应的位置蒸镀上述折射率大、吸光系数小的有机材料,以形成封盖层(Capping Layer,CPL),以进一步提高显示区域的光线透过率。
当光波(电磁波)入射到金属与电介质分界面时,金属表面的自由电子发生集体振荡,电磁波与金属表面自由电子耦合而形成的一种沿着金属表面传播的近场电磁波,如果电子的振荡频率与入射光波的频率一致就会产生共振,在共振状态下电磁场的能量被有效地转变为金属表面自由电子的集体振动能,这时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离激元现象。
当发光层发光往外传播的时候,在金属/介质界面附件会存在表面等离子激元(surface plasmon polariton,spp)效应,这个效应导致出射光效率降低。而CPL层可以压制这种效应。
另一方面,在上下金属电极之间,OLED显示面板中也形成了一个法布里-帕洛光学谐振腔。调整CPL层,可以对谐振器起到调节的作用,达到对出光效率的调整和光谱的选择。
因此,上述CPL层的设置,可以进一步提高显示区域的光线透过率。
本实施例还提供一种OLED显示面板,采用上述的OLED显示面板的制作方法。
本公开还提供一种显示装置,包括上述的OLED显示面板。
所述显示装置可以为:液晶电视、液晶显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板。
通过第一掩膜板1和第二掩膜板2相配合,蒸镀OLED显示面板上的阴极,相比于相关技术中整面蒸镀阴极的方式,降低设置红外镜头、传感器等装置的第二显示区域102的阴极的蒸镀面积,大幅提高显示面板上具有第二显示区域102的红外光透过率。
以上所述为本公开较佳实施例,需要说明的是,对于本领域普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开保护范围。

Claims (13)

  1. 一种掩膜板组件,用于形成至少一个OLED显示面板的阴极,OLED显示面板的显示区域包括第一显示区域和第二显示区域,所述第一显示区域的像素分辨率不同于所述第二显示区域的像素分辨率,所述掩膜板组件包括:
    第一掩膜板,包括与至少一个OLED显示面板一一对应的至少一个第一蒸镀区域,所述第一蒸镀区域包括对应所述第一显示区域的第一开口和对应所述第二显示区域的每一像素发光区的多个相互独立的第二开口;
    第二掩膜板,包括与至少一个OLED显示面板一一对应的至少一个第二蒸镀区域,所述第二蒸镀区域对应所述第二显示区域,所述第二蒸镀区域包括多个相互独立的第三开口,在所述第一掩膜板和所述第二掩膜板层叠时,所述第三开口在所述第一掩膜板上的正投影连通至少两个相邻的所述第二开口。
  2. 根据权利要求1所述的掩膜板组件,其中,所述第三开口为条形结构,在所述第一掩膜板和所述第二掩膜板层叠时,所述第三开口在所述第一掩膜板上的正投影连通两个相邻的所述第二开口。
  3. 根据权利要求1所述的掩膜板组件,其中,每个所述第二开口在所述OLED显示面板上的正投影与所述第二显示区域上对应的像素发光区一一重叠。
  4. 根据权利要求1或3所述的掩膜板组件,其中,每个所述第二开口的面积大于所述第二显示区域的每个像素发光区的面积。
  5. 根据权利要求1所述的掩膜板组件,其中,所述第二开口的形状与对应的像素发光区的形状相同。
  6. 根据权利要求1所述的掩膜板组件,其中,与所述第一开口相邻的所述第二开口与所述第一开口不连通,或者连通。
  7. 根据权利要求1所述的掩膜板组件,其中,位于所述第一蒸镀区域边缘的所述第二开口的尺寸大于位于所述第一蒸镀区域内部的所述第二开口的尺寸。
  8. 根据权利要求1所述的掩膜板组件,其中,位于所述第二蒸镀区域边 缘的所述第三开口的尺寸大于位于所述第二蒸镀区域内部的所述第三开口的尺寸。
  9. 一种OLED显示面板的制作方法,采用权利要求1-6任一项所述的掩膜板组件蒸镀OLED显示面板上的阴极,包括以下步骤:
    通过第一掩膜板,在第一显示区域蒸镀阴极材料,并在第二显示区域的像素发光区对应的位置蒸镀阴极材料;
    通过第二掩膜板,在第二显示区域蒸镀阴极材料以形成连通至少两个相邻的像素发光区上对应的阴极的搭接桥。
  10. 根据权利要求9所述的OLED显示面板的制作方法,其中,所述阴极材料为镁银掺杂材料。
  11. 根据权利要求9所述的OLED显示面板的制作方法,通过第二掩膜板,在第二显示区域蒸镀阴极材料以形成连通至少两个相邻的像素发光区上对应的阴极的搭接桥后,所述方法还包括:
    通过第一掩膜板,在第一显示区域蒸镀有机材料,并在第二显示区域的像素发光区对应的位置蒸镀有机材料,以形成封盖层。
  12. 一种OLED显示面板,采用权利要求9-11任一项所述的OLED显示面板的制作方法。
  13. 一种显示装置,包括权利要求12所述的OLED显示面板。
PCT/CN2020/076413 2019-04-09 2020-02-24 掩膜板组件、oled显示面板及其制作方法、显示装置 WO2020207131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910281156.4A CN109957754B (zh) 2019-04-09 2019-04-09 掩膜板组件、oled显示面板及其制作方法、显示装置
CN201910281156.4 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020207131A1 true WO2020207131A1 (zh) 2020-10-15

Family

ID=67025942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076413 WO2020207131A1 (zh) 2019-04-09 2020-02-24 掩膜板组件、oled显示面板及其制作方法、显示装置

Country Status (2)

Country Link
CN (1) CN109957754B (zh)
WO (1) WO2020207131A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957754B (zh) * 2019-04-09 2021-04-23 京东方科技集团股份有限公司 掩膜板组件、oled显示面板及其制作方法、显示装置
CN110923625A (zh) * 2019-12-16 2020-03-27 京东方科技集团股份有限公司 掩膜模组、蒸镀系统及蒸镀方法及显示基板
CN111020489A (zh) * 2019-12-19 2020-04-17 武汉华星光电半导体显示技术有限公司 蒸镀装置、蒸镀方法以及显示装置
CN111155055A (zh) * 2020-01-06 2020-05-15 武汉华星光电半导体显示技术有限公司 Oled面板、其蒸镀方法和其掩膜版组
CN111244330A (zh) * 2020-01-15 2020-06-05 武汉华星光电半导体显示技术有限公司 蒸镀方法、蒸镀装置以及显示装置
CN111584566A (zh) 2020-05-11 2020-08-25 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、掩模版组
US20220359852A1 (en) * 2020-10-20 2022-11-10 Chengdu Boe Optoelectronics Technology Co., Ltd. Mask assembly, display panel, and display device
CN112909063B (zh) * 2021-02-03 2022-09-27 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN113088875B (zh) * 2021-04-02 2022-12-13 京东方科技集团股份有限公司 掩膜版及其制备方法
CN113571664B (zh) * 2021-07-22 2023-11-21 武汉天马微电子有限公司 显示面板及其制作方法、显示装置
CN114318225A (zh) * 2021-12-21 2022-04-12 合肥维信诺科技有限公司 掩膜板组件、显示装置的蒸镀方法及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708735B2 (ja) * 2004-05-31 2011-06-22 キヤノン株式会社 マスク構造体の製造方法
CN106920894A (zh) * 2017-04-28 2017-07-04 陕西科技大学 一种透明oled器件结构及其制备方法
CN107994054A (zh) * 2017-11-07 2018-05-04 上海天马有机发光显示技术有限公司 一种有机电致发光显示面板、其制作方法及显示装置
CN108866476A (zh) * 2018-06-29 2018-11-23 京东方科技集团股份有限公司 掩膜版及其制作方法、蒸镀方法、显示屏
CN109256493A (zh) * 2018-12-07 2019-01-22 京东方科技集团股份有限公司 一种电致发光显示面板、显示装置及显示面板的制备方法
CN208507679U (zh) * 2018-06-29 2019-02-15 京东方科技集团股份有限公司 显示基板、显示装置及高精度金属掩模板
CN109957754A (zh) * 2019-04-09 2019-07-02 京东方科技集团股份有限公司 掩膜板组件、oled显示面板及其制作方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134681B (zh) * 2014-06-17 2018-01-23 京东方科技集团股份有限公司 一种有机发光二极管显示面板及其制备方法、掩膜板
TWI564408B (zh) * 2015-02-02 2017-01-01 鴻海精密工業股份有限公司 蒸鍍遮罩、蒸鍍方法及蒸鍍遮罩之製造方法
CN108493221B (zh) * 2018-04-17 2020-03-31 京东方科技集团股份有限公司 一种像素排列结构、显示面板、掩膜版组件及蒸镀设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708735B2 (ja) * 2004-05-31 2011-06-22 キヤノン株式会社 マスク構造体の製造方法
CN106920894A (zh) * 2017-04-28 2017-07-04 陕西科技大学 一种透明oled器件结构及其制备方法
CN107994054A (zh) * 2017-11-07 2018-05-04 上海天马有机发光显示技术有限公司 一种有机电致发光显示面板、其制作方法及显示装置
CN108866476A (zh) * 2018-06-29 2018-11-23 京东方科技集团股份有限公司 掩膜版及其制作方法、蒸镀方法、显示屏
CN208507679U (zh) * 2018-06-29 2019-02-15 京东方科技集团股份有限公司 显示基板、显示装置及高精度金属掩模板
CN109256493A (zh) * 2018-12-07 2019-01-22 京东方科技集团股份有限公司 一种电致发光显示面板、显示装置及显示面板的制备方法
CN109957754A (zh) * 2019-04-09 2019-07-02 京东方科技集团股份有限公司 掩膜板组件、oled显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN109957754B (zh) 2021-04-23
CN109957754A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2020207131A1 (zh) 掩膜板组件、oled显示面板及其制作方法、显示装置
WO2021057012A1 (zh) 透光显示面板、显示面板、制作方法、显示装置
US20220310705A1 (en) Display panel and display device
US11296160B2 (en) Display substrate, display apparatus, and method of fabricating the display substrate
CN107632453B (zh) 显示面板及制造方法和显示装置
WO2020192054A1 (zh) 透明阵列基板、透明显示面板、显示面板及显示终端
WO2018209933A1 (zh) 彩膜基板及其制作方法、显示面板和显示装置
US11768551B2 (en) Array substrate and display device
CN111261692B (zh) 显示面板及显示装置
US20220158117A1 (en) Display panel and display apparatus
WO2022198753A1 (zh) 显示面板及显示装置
WO2021223541A1 (zh) 显示面板、显示装置及显示面板的制作方法
WO2019114310A1 (zh) 显示基板及其制作方法、显示装置
US20220190073A1 (en) Display panel and display apparatus
CN109461838A (zh) 一种显示基板及其制备方法、显示面板和显示装置
WO2020155589A1 (zh) 显示基板及其显示优化方法、显示面板及显示装置
US20210359032A1 (en) Display substrate and manufacturing method thereof, display panel and display device
WO2019237788A1 (zh) 彩膜基板及其制作方法、显示面板、显示装置
WO2022111063A1 (zh) 一种有机发光显示面板及显示装置
CN116261353B (zh) 显示面板及显示装置
CN215933642U (zh) 显示基板、显示面板和显示装置
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
CN110333625B (zh) 彩膜基板及其制作方法、显示面板、显示装置
WO2020087858A1 (zh) 显示面板、显示终端和掩模板
WO2020147204A1 (zh) Oled 显示面板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788119

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (02.05.2022)