WO2021223541A1 - 显示面板、显示装置及显示面板的制作方法 - Google Patents

显示面板、显示装置及显示面板的制作方法 Download PDF

Info

Publication number
WO2021223541A1
WO2021223541A1 PCT/CN2021/083370 CN2021083370W WO2021223541A1 WO 2021223541 A1 WO2021223541 A1 WO 2021223541A1 CN 2021083370 W CN2021083370 W CN 2021083370W WO 2021223541 A1 WO2021223541 A1 WO 2021223541A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
substrate
compensation
compensation layer
Prior art date
Application number
PCT/CN2021/083370
Other languages
English (en)
French (fr)
Inventor
方旭阳
彭兆基
刘明星
冯士振
王盼盼
张志远
甘帅燕
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2021223541A1 publication Critical patent/WO2021223541A1/zh
Priority to US17/732,981 priority Critical patent/US20220255047A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a display device, and a manufacturing method of the display panel.
  • FIG. 1 is a schematic diagram of the structure of a display panel in the prior art; as shown in FIG. 1, the display panel includes a substrate 100, an insulating layer 200, a conductive layer 310, a first planarization layer 320, and an OLED device 400 stacked in sequence. And the encapsulation layer 500, in which the conductive layer 310 is formed with trenches by etching, so that the upper OLED device 400 can be lighted up after being powered on.
  • the front camera needs to be hidden under the screen, that is, the camera is located under the display panel (that is, the camera is set under the substrate). When taking pictures, the light needs to pass through the entire display panel before it can be captured. Camera capture.
  • the present application provides a display panel, a display device, and a manufacturing method of the display panel.
  • the display panel of the present application can reduce the phenomenon of diffraction when light passes through, thereby helping to improve the imaging quality of the under-screen camera.
  • An embodiment of the present application provides a display panel, including a substrate, an insulating layer, a conductive layer, a first planarization layer, an OLED device, and an encapsulation layer that are stacked in sequence, and a plurality of first trenches are formed in the conductive layer , The first planarization layer is filled in the first trench and covers the conductive layer;
  • It also includes a compensation layer, a plurality of second grooves are formed in the compensation layer, and the projection of the compensation layer on the substrate shields at least a part of the projection of the first groove on the substrate.
  • the display panel provided in this embodiment includes a compensation layer, a second groove is formed in the compensation layer, and the projection of the compensation layer on the substrate can shield part of the projection of the first groove on the substrate, that is, the compensation layer in this embodiment
  • the projected area on the substrate is less than or equal to the projected area of the first trench on the substrate. Due to the existence of the compensation layer, the phase and amplitude difference when light passes through the display panel is reduced, thereby reducing the occurrence of diffraction phenomenon, which is beneficial to improving the imaging quality of the camera under the screen.
  • the projection of the compensation layer on the substrate coincides with the projection of the first groove on the substrate.
  • the projection of the compensation layer on the substrate and the projection of the first groove on the substrate are formed into complementary shapes, which can further reduce the phase and amplitude difference when light passes through the display panel, and further reduce diffraction The occurrence of this phenomenon improves the imaging quality of the camera under the screen.
  • the compensation layer and the conductive layer are made of the same material.
  • the compensation layer can simultaneously compensate for the difference in amplitude and phase when light passes through the conductive layer, thereby reducing the occurrence of diffraction.
  • the thickness of the compensation layer is equal to the thickness of the conductive layer.
  • the compensation layer can completely compensate for the difference in amplitude and phase when light passes through the conductive layer, thereby theoretically eliminating the diffraction phenomenon happened.
  • the compensation layer and the conductive layer are made of different materials
  • the compensation layer includes a first compensation layer and a second compensation layer that are stacked, and the first compensation layer is used for To compensate the amplitude, the second compensation layer is used to compensate the phase.
  • a first compensation layer for compensating the amplitude and a second compensation layer for compensating the phase can be separately provided to compensate for the difference in amplitude and phase when the light passes through the conductive layer. Reduce the occurrence of diffraction phenomena.
  • the compensation layer is detachably disposed on the encapsulation layer.
  • the compensation layer is detachably arranged on the encapsulation layer, which can facilitate the replacement and disassembly of the compensation layer, and it is convenient to adjust the parameters such as the thickness of the compensation layer according to the actual situation, so as to better reduce the occurrence of diffraction phenomenon.
  • Another embodiment of the present application provides a display device including the display panel described above.
  • the display device provided by the present application can reduce the probability of diffraction of light when passing through the display panel, thereby helping to improve the imaging quality of the camera under the screen.
  • Another embodiment of the present application provides a method for manufacturing a display panel, including providing a substrate,
  • An insulating layer is laminated on the substrate; a conductive layer is laminated on the insulating layer, and the conductive layer is patterned to form a plurality of first trenches; on the patterned conductive layer Lamination to form a first planarization layer; lamination and formation of an OLED device and an encapsulation layer on the first planarization layer;
  • a compensation layer is formed between the insulating layer and the conductive layer, or a compensation layer is formed between the first planarization layer and the OLED device; the compensation layer is patterned to form a plurality of second trenches The projection of the compensation layer on the substrate at least shields a part of the projection of the first groove on the substrate.
  • the manufacturing method of the display panel provided by the present application can reduce the probability of diffraction of light when passing through the display panel, thereby helping to improve the imaging quality of the under-screen camera.
  • Another embodiment of the present application provides a method for manufacturing a display panel, including providing a substrate,
  • An insulating layer is laminated on the substrate; a conductive layer is laminated on the insulating layer, and the conductive layer is patterned to form a plurality of first trenches; on the patterned conductive layer Lamination to form a first planarization layer; lamination and formation of an OLED device and an encapsulation layer on the first planarization layer;
  • a compensation layer is formed in the substrate, the insulating layer or the encapsulation layer; the compensation layer is patterned to form a plurality of second grooves; the projection of the compensation layer on the substrate at least partially shields The projection of the first groove on the substrate.
  • the manufacturing method of the display panel provided by the present application can reduce the probability of diffraction of light when passing through the display panel, thereby helping to improve the imaging quality of the under-screen camera.
  • Figure 1 is a schematic diagram of the structure of a display panel in the prior art
  • FIG. 2(a)-FIG. 2(b) are schematic structural diagrams of a display panel provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a display panel provided by another embodiment of the application, in which the compensation layer is provided in the substrate;
  • FIG. 4 is a schematic structural diagram of a display panel provided by another embodiment of the application, in which the compensation layer is provided in the insulating layer;
  • FIG. 5 is a schematic structural diagram of a display panel provided by another embodiment of the application, in which the compensation layer is provided in the encapsulation layer;
  • FIG. 6 is a schematic structural diagram of a display panel provided by another embodiment of the application, in which the compensation layer is detachably disposed above the encapsulation layer;
  • FIG. 7 is a simplified diagram of the diffraction situation of the display panel in the prior art.
  • FIG. 8 is a simplified diagram of the diffraction situation of the display panel provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the diffraction situation of the display panel provided by another embodiment of the application.
  • FIG. 1 is a schematic diagram of the structure of a display panel in the prior art; as shown in FIG. 1, the display panel includes a substrate 100, an insulating layer 200, a conductive layer 310, a first planarization layer 320, and an OLED device 400 stacked in sequence. And the encapsulation layer 500, in which the conductive layer 310 is formed with trenches by etching, so that the upper OLED device 400 can be lighted up after being powered on.
  • the front camera needs to be hidden under the screen, that is, the camera is located under the display panel (that is, the camera is set under the substrate 100). When taking pictures, the light needs to pass through the entire display panel. Captured by the camera.
  • FIG. 7 is a simplified diagram of the diffraction situation of a display panel in the prior art; as shown in FIG. 7, when light passes through the display panel, diffraction occurs at the conductive layer 310 with grooves, resulting in multiple diffractions around the camera. The light spot greatly affects the quality of imaging.
  • the present application aims to provide a display panel and a display device.
  • the display panel has a compensation layer formed by a patterning process (including steps of exposure, development, etching, etc.), and the compensation layer can be arranged in the display panel.
  • the pattern of the compensation layer and the pattern of the conductive layer form a complementary structure (that is, the pattern of the compensation layer can fill the gap formed by the trench in the conductive layer) to compensate for the phase and amplitude of the light passing through the trench. Make it close to the phase and amplitude of the light passing through the groove, so as to reduce or eliminate the diffraction phenomenon when the light passes through the display panel, which is beneficial to improve the imaging quality of the camera under the screen.
  • FIGS 2(a)-2(b) are schematic diagrams of the structure of a display panel provided by an embodiment of the application; please refer to Figures 2(a)-2(b).
  • This embodiment provides a display panel, which includes a substrate 100, an insulating layer 200, a conductive layer 310, a first planarization layer 320, an OLED device 400, and an encapsulation layer 500 which are stacked in sequence.
  • a plurality of second layers are formed in the conductive layer 310.
  • the first planarization layer 320 fills the first trench and covers the conductive layer 310.
  • It also includes a compensation layer 610, a plurality of second grooves are formed in the compensation layer 610, and the projection of the compensation layer 610 on the substrate 100 shields at least a part of the projection of the first groove on the substrate 100.
  • the display panel of this embodiment is arranged above the under-screen camera in the electronic device, that is, the display panel of this embodiment corresponds to the photographing area on the display screen, and other areas on the display screen corresponding to it can be called display It should be noted that in order to realize the full screen function, the display panel in the photo zone still has the function of normal display.
  • the substrate 100 includes a substrate 110, a first substrate insulation layer 120, and a second substrate insulation layer 130 that are stacked.
  • the substrate 110 can be a flexible substrate or a rigid substrate.
  • the display The screen has good bending performance;
  • the first insulating layer 120 and the second insulating layer 130 can be made of silicon oxide, silicon nitride, or silicon oxynitride.
  • the first insulating layer 120 and the second insulating layer The material of the substrate insulating layer 130 is different.
  • the insulating layer 200 includes a gate insulating layer 210, a capacitor insulating layer 220, and an interlayer dielectric layer 230. This part of the structure corresponds to the structure between two adjacent metal layers in the display area. It should be noted that in order to avoid the influence of excessive metal layers in the display area on the light transmittance, in this embodiment, the metal layer in the traditional display area is removed, and a metal layer is arranged above the insulating layer 200 instead. Layer a new conductive layer 310, and use the newly provided conductive layer 310 to light up the OLED device 400. In order to increase the light transmittance, the conductive layer 310 is preferably made of a material with higher light transmittance, such as indium tin oxide.
  • the conductive layer 310 In order to realize the lighting of the upper OLED device 400 by the conductive layer 310, the conductive layer 310 needs to be patterned to form a plurality of first trenches, so that the conductive layer 310 can conduct current. Then, the first planarization layer 320 is filled in the first trench, and a part of the conductive layer 310 is covered on the conductive layer 310, so that the upper portion of the conductive layer 310 is flat, which facilitates the subsequent production of the OLED device 400 and the encapsulation layer 500.
  • the phase and amplitude of the light after passing through the position on the display panel with the first groove are significantly different from the phase and amplitude of the light after passing through the position on the display panel without the first groove.
  • the amplitude is different, and the first groove forms a structure similar to a gap or a small hole on the conductive layer 310, and the light is prone to diffraction phenomenon when passing through this type of structure, thereby affecting the final light quality.
  • a compensation layer 610 is provided in the display panel.
  • the compensation layer 610 is also a film layer formed by a patterning process.
  • a plurality of second grooves are formed in the compensation layer 610.
  • the compensation layer 610 is formed on the substrate.
  • the projection on 100 at least shields part of the projection of the first groove on the substrate 100, that is, the projection of the compensation layer 610 on the substrate 100 can fill a part of the projection of the conductive layer 310 on the substrate 100, so that light can pass through
  • the phase and amplitude after passing through the display panel tend to be consistent, which reduces the occurrence of diffraction when light passes through the conductive layer 310, which is beneficial to improve the imaging quality of the camera under the screen.
  • a second planarization layer 620 may be provided.
  • the second planarization layer 620 is filled in the second trench and covers the compensation layer 610, so that the upper part of the compensation layer 610 is flat and convenient Subsequent film production.
  • the compensation layer 610 may be provided between the first planarization layer 320 and the OLED device 400; or, as shown in FIG. 2(b), the compensation layer 610 may be provided Between the insulating layer 200 and the conductive layer 310.
  • a patterned compensation layer 610 can be added, that is, exposed and exposed on the first planarization layer 320.
  • the compensation layer 610 is formed by processes such as development and etching, and then the second planarization layer 620 is filled into the compensation layer 610 to ensure the preparation of subsequent film layers.
  • a patterned compensation layer 610 can be added, that is, a compensation layer 610 is formed on the insulating layer 200 through exposure, development, and etching processes. Then, the second planarization layer 620 is filled into the compensation layer 610 to ensure the preparation of subsequent film layers.
  • the projection of the compensation layer 610 on the substrate 100 in this embodiment can shield part of the projection of the first groove on the substrate 100, that is, the projection of the compensation layer 610 on the substrate 100 in this embodiment
  • the area is less than or equal to the projected area of the first trench on the substrate 100. Due to the existence of the compensation layer 610, the phase and amplitude difference when the light passes through the display panel is reduced, thereby reducing the phenomenon of diffraction when the light passes through the display panel, which is beneficial to improve the imaging quality of the camera under the screen.
  • the projection of the compensation layer 610 on the substrate 100 in this embodiment completely coincides with the projection of the first groove on the substrate 100.
  • the phase and amplitude difference when the light passes through the display panel can be further reduced, and the light can be further reduced.
  • the diffraction phenomenon occurs when passing through, which improves the imaging quality of the camera under the screen.
  • the compensation layer 610 can be a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, a single crystal silicon layer, or an indium tin oxide layer, etc., that is, the material of the compensation layer 610 does not need to be deliberately required to be the same as the conductive layer 310.
  • the material is the same, as long as the compensation function for the amplitude and phase of the passing light can be realized.
  • the compensation layer 610 and the conductive layer 310 in this embodiment are made of the same material, for example, both are made of indium tin oxide.
  • the compensation layer 610 and the conductive layer 310 are made of the same material, the compensation layer 610 can simultaneously compensate for the difference in amplitude and phase when the light passes through the first trench and the conductive layer 310, thereby reducing the occurrence of diffraction.
  • the thickness of the compensation layer 610 is more preferably equal to the thickness of the conductive layer 310.
  • the compensation layer 610 can completely compensate for the difference in amplitude and phase when light passes through the conductive layer 310, thereby theoretically eliminating diffraction The occurrence of the phenomenon.
  • FIG. 9 is a simplified diagram of the diffraction situation of the display panel provided by another embodiment of the application; please refer to FIG. 9. As shown in Figure 9, it is the diffraction of light passing through the display panel after the compensation layer 610 made of indium tin oxide is used. It can be seen from the comparison of Figures 9 and 7 that the light is distributed in The diffracted light spots around the camera are basically eliminated, that is, the diffraction phenomenon is basically completely eliminated, which is beneficial to improve the imaging quality of the camera under the screen.
  • the materials of the compensation layer 610 and the conductive layer 310 may be different.
  • the compensation layer 610 includes a first compensation layer and a second compensation layer that are stacked, and the first compensation layer is used to compensate the amplitude. , The second compensation layer is used to compensate the phase.
  • the first compensation layer for compensating the amplitude and the second compensation layer for compensating the phase can be separately provided, so as to compensate for the light passing through the first trench and the conductive layer 310.
  • the difference in amplitude and phase during processing reduces the occurrence of diffraction phenomena.
  • the first compensation layer can be used to adjust the amplitude difference when the light passes through various parts of the display panel, so that the amplitude of the light after passing through various parts of the display panel is the same.
  • the thickness of the first compensation layer and the second compensation layer can be controlled according to the difference in refractive index of the material, so that the optical path of the light passing through the first compensation layer and the second compensation layer is different from that of the conductive layer 310 without the first compensation layer.
  • the optical path after a groove is the same, so that the light has the same phase after passing through all parts of the display panel.
  • the first compensation layer for compensating the amplitude in this embodiment can be a stack of multiple layers.
  • the first compensation layer can be prepared first to adjust the amplitude of the light after passing through the display panel.
  • a second compensation layer is prepared so that the optical path of the light after passing through the first compensation layer and the second compensation layer is consistent with the optical path of the light after passing through the portion of the conductive layer 310 that does not have the first groove, so that the light passes through
  • the phase after passing through the display panel is the same. Since the phase and amplitude of the light passing through the display panel are basically the same, the occurrence of diffraction phenomenon is reduced.
  • FIG. 8 is a simplified diagram of the diffraction situation of the display panel provided by an embodiment of the application; please refer to FIG. 8. As shown in FIG. 8, it is the diffraction situation when light passes through the display panel after the compensation layer 610 made of silicon oxide is used. The silicon oxide layer is used to compensate the phase. It can be seen from the comparison of FIG. 8 and FIG. After the light passes through the display panel, the diffracted light spots distributed around the camera are significantly reduced, that is, the diffraction phenomenon is significantly reduced, which is beneficial to improve the imaging quality of the camera under the screen.
  • FIG. 3 is a schematic structural diagram of a display panel provided by another embodiment of the application; please refer to FIG. 3.
  • the display panel provided by this embodiment includes a substrate 100, an insulating layer 200, a conductive layer 310, a first planarization layer 320, an OLED device 400, and an encapsulation layer 500 stacked in sequence.
  • a plurality of first trenches are formed in the conductive layer 310.
  • the first planarization layer 320 is filled in the first trench and covers the conductive layer 310.
  • It also includes a compensation layer 610, a plurality of second grooves are formed in the compensation layer 610, and the projection of the compensation layer 610 on the substrate 100 shields at least a part of the projection of the first groove on the substrate 100.
  • the compensation layer 610 in this embodiment is provided in the substrate 100. As shown in FIG. 3, the compensation layer 610 in this embodiment is provided in the first substrate insulating layer 120 and the substrate 100 between the second substrate insulating layer 130, since the compensation layer 610 and the conductive layer 310 are still arranged on the same side of the under-screen camera, that is, on the same optical path propagation path, this embodiment can also achieve the above-mentioned first embodiment.
  • this embodiment only shows a solution in which the compensation layer 610 is located between the first substrate insulating layer 120 and the second substrate insulating layer 130. It is clear to those skilled in the art that other optional implementations In the manner, the compensation layer 610 can also be arranged between the base 110 and the first insulating layer 120 or between the second insulating layer 130 and the insulating layer 200 above, and the above two arrangements can still be the same. Effect.
  • a second planarization layer 620 may be further provided on the compensation layer 610 in this embodiment, so that the surface of the compensation layer 610 is flatter and facilitates subsequent film production.
  • FIG. 4 is a schematic structural diagram of a display panel provided by another embodiment of the application; please refer to FIG. 4.
  • the display panel provided by this embodiment includes a substrate 100, an insulating layer 200, a conductive layer 310, a first planarization layer 320, an OLED device 400, and an encapsulation layer 500 stacked in sequence.
  • a plurality of first trenches are formed in the conductive layer 310.
  • the first planarization layer 320 is filled in the first trench and covers the conductive layer 310.
  • It also includes a compensation layer 610, a plurality of second grooves are formed in the compensation layer 610, and the projection of the compensation layer 610 on the substrate 100 shields at least a part of the projection of the first groove on the substrate 100.
  • the compensation layer 610 is provided in the insulating layer 200 in this embodiment. As shown in FIG. 4, the compensation layer 610 is provided in the insulating layer 200 in this embodiment. Between the layers 220, since the compensation layer 610 and the conductive layer 310 are still arranged on the same side of the under-screen camera, that is, on the same optical path, this embodiment can also reduce the light diffraction phenomenon in the first embodiment. , The purpose of improving imaging quality.
  • this embodiment only shows a solution in which the compensation layer 610 is located between the gate insulating layer 210 and the capacitor insulating layer 220. It is clear to those skilled in the art that, in other alternative embodiments, the compensation layer 610 can also be arranged between the capacitor insulating layer 220 and the interlayer dielectric layer, and this arrangement can still achieve the same effect.
  • a second planarization layer 620 may be further provided on the compensation layer 610 in this embodiment, so that the surface of the compensation layer 610 is flatter and facilitates subsequent film production.
  • FIG. 5 is a schematic structural diagram of a display panel provided by another embodiment of the application; please refer to FIG. 5.
  • the display panel provided by this embodiment includes a substrate 100, an insulating layer 200, a conductive layer 310, a first planarization layer 320, an OLED device 400, and an encapsulation layer 500 stacked in sequence.
  • a plurality of first trenches are formed in the conductive layer 310.
  • the first planarization layer 320 is filled in the first trench and covers the conductive layer 310.
  • It also includes a compensation layer 610, a plurality of second grooves are formed in the compensation layer 610, and the projection of the compensation layer 610 on the substrate 100 shields at least a part of the projection of the first groove on the substrate 100.
  • the compensation layer 610 in this embodiment is arranged in the encapsulation layer 500, as shown in FIG.
  • the compensation layer 610 is provided between the first packaging insulation layer 510 and the second packaging insulation layer 520. Since the compensation layer 610 and the conductive layer 310 are still provided on the same side of the under-screen camera, That is, they are arranged on the same optical path propagation path, so this embodiment can also achieve the purpose of reducing the light diffraction phenomenon and improving the imaging quality in the first embodiment.
  • a second planarization layer 620 may be further provided on the compensation layer 610 in this embodiment, so that the surface of the compensation layer 610 is flatter and facilitates subsequent film production.
  • FIG. 6 is a schematic structural diagram of a display panel provided by another embodiment of the application; please refer to FIG. 6.
  • the display panel provided by this embodiment includes a substrate 100, an insulating layer 200, a conductive layer 310, a first planarization layer 320, an OLED device 400, and an encapsulation layer 500 stacked in sequence.
  • a plurality of first trenches are formed in the conductive layer 310.
  • the first planarization layer 320 is filled in the first trench and covers the conductive layer 310.
  • It also includes a compensation layer 610, a plurality of second grooves are formed in the compensation layer 610, and the projection of the compensation layer 610 on the substrate 100 shields at least a part of the projection of the first groove on the substrate 100.
  • the compensation layer 610 is detachably disposed above the encapsulation layer 500, and the compensation layer 610 can be fixed to the encapsulation layer 500 by means of adhesion.
  • the compensation layer 610 can be an independently produced film layer, that is, the compensation layer 610 can be produced separately from other film layers of the display panel, thereby reducing the impact on other film layers in the display panel when the compensation layer 610 is made. Influence and facilitate the improvement of production efficiency.
  • this embodiment can also achieve the reduction of light diffraction and the improvement of imaging quality in the first embodiment. Purpose.
  • the compensation layer 610 is detachably disposed on the encapsulation layer 500, which facilitates replacement and disassembly of the compensation layer 610, and facilitates adjustment of parameters such as the thickness of the compensation layer 610 according to actual conditions, so as to better reduce the occurrence of diffraction phenomena.
  • a second planarization layer 620 may be further provided on the compensation layer 610 in this embodiment, so as to make the surface of the compensation layer 610 flatter.
  • This embodiment provides a display device including the display panel as described in any of the above embodiments.
  • the display device provided by the present application includes a housing, a plurality of electronic devices are arranged in the housing, an opening is provided on one side of the housing, and the display panel is attached to the opening.
  • this embodiment can reduce the probability of diffraction of light when passing through the display panel, thereby helping to improve the imaging quality of the under-screen camera.
  • This embodiment also provides a method for manufacturing a display panel, which specifically includes: providing a substrate 100,
  • An insulating layer 200 is laminated and formed on the substrate;
  • a conductive layer 310 is laminated and formed on the insulating layer, and the conductive layer 310 is patterned to form a plurality of first trenches;
  • a first planarization layer 320 is laminated and formed on the patterned conductive layer 310;
  • An OLED device 400 and an encapsulation layer 500 are laminated and formed on the first planarization layer 320;
  • a compensation layer 610 is formed between the insulating layer 200 and the conductive layer 310, or a compensation layer 610 is formed between the first planarization layer 320 and the OLED device 400; the compensation layer 610 is patterned to form a plurality of second trenches Groove; the projection of the compensation layer 610 on the substrate 100 shields at least part of the projection of the first groove on the substrate 100.
  • the compensation layer 610 with the second trench can be formed through processes such as exposure, development, and etching.
  • the display panel manufactured by the manufacturing method of this embodiment can reduce or eliminate the probability of diffraction when light passes through the display panel, thereby helping to improve the imaging quality of the camera under the screen.
  • This embodiment also provides a method for manufacturing a display panel, which specifically includes: providing a substrate 100,
  • An insulating layer 200 is laminated and formed on the substrate;
  • a conductive layer 310 is laminated and formed on the insulating layer, and the conductive layer 310 is patterned to form a plurality of first trenches;
  • a first planarization layer 320 is laminated and formed on the patterned conductive layer 310;
  • An OLED device 400 and an encapsulation layer 500 are laminated and formed on the first planarization layer 320;
  • a compensation layer 610 is formed in the substrate 100, the insulating layer 200 or the encapsulation layer 500; the compensation layer 610 is patterned to form a plurality of second grooves; the projection of the compensation layer 610 on the substrate 100 covers at least part of the first The projection of the trench on the substrate 100.
  • the compensation layer 610 with the second trench can be formed through processes such as exposure, development, and etching.
  • the display device manufactured by using the manufacturing method provided in this embodiment can reduce the probability of diffraction of light when passing through the display panel, thereby helping to improve the imaging quality of the under-screen camera.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种显示面板、显示装置及显示面板的制作方法,显示面板包括依次层叠设置的衬底、绝缘层、导电层、第一平坦化层、OLED器件以及封装层,导电层内形成有多个第一沟槽,第一平坦化层填充在第一沟槽内且覆盖导电层;还包括补偿层,补偿层内形成有多个第二沟槽,补偿层在衬底上的投影至少遮蔽部分第一沟槽在衬底上的投影。

Description

显示面板、显示装置及显示面板的制作方法
本申请要求于2020年05月08日提交中国专利局、申请号为CN202010382256.9、申请名称为“显示面板、显示装置及显示面板的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体而言,涉及一种显示面板、显示装置及显示面板的制作方法。
背景技术
随着显示技术的发展,显示屏占电子设备的比例(也称屏占比)越来越高,高屏占比的电子设备能够给人们带来更佳的视觉体验。以手机为例,近年来全面屏手机(也即屏占比达到100%的手机)越来越流行。目前,显示面板已被广泛用于便携式电子设备(例如可以用于手机、平板电脑、电子书以及导航设备)上,其中,有机发光二极管(Organic Light-Emitting Diode,简称:OLED)因具有低功耗、高色饱和度、广视角、薄厚度、能实现柔性化等优异性逐渐被应用到显示面板中。
图1为已有技术中显示面板的结构简图;如图1所示,该显示面板包括依次层叠设置的衬底100、绝缘层200、导电层310、第一平坦化层320、OLED器件400以及封装层500,其中导电层310通过刻蚀形成有沟槽,从而在通电后能够点亮上方的OLED器件400。为了实现手机的全面屏,需要将前置摄像头隐藏在屏幕的下方,也即摄像头位于显示面板的下方(即摄像头设置在衬底之下),在拍照时光线需要穿过整个显示面板后才能被摄像头捕捉。
采用上述方案,光线在穿过显示面板时,在具有沟槽的导电层310处易发生衍射,从而影响最终的成像质量。
申请内容
有鉴于此,本申请提供一种显示面板、显示装置及显示面板的制作方法,本申请的显示面板能够降低光线穿过时发生衍射的现象,从而有利于提高屏下摄像头的成像质量。
本申请一实施例提供一种显示面板,包括依次层叠设置的衬底、绝缘层、导电层、第一平坦化层、OLED器件以及封装层,所述导电层内形成有多个第一沟槽,所述第一平坦化层填充在所述第一沟槽内且覆盖所述导电层;
还包括补偿层,所述补偿层内形成有多个第二沟槽,所述补偿层在所述衬底上的投影至少遮蔽部分所述第一沟槽在所述衬底上的投影。
本实施提供的显示面板包括补偿层,补偿层内形成有第二沟槽,补偿层在衬底上的投影能够遮蔽部分第一沟槽在衬底上的投影,也即本实施例中补偿层在衬底上的投影面积小于等于第一沟槽在衬底上的投影面积。由于补偿层的存在,因此降低了光线穿过显示面板各处时的相位和振幅差异,从而降低了衍射现象的发生,有利于提高屏下摄像头的成像质量。
如上所述的显示面板,可选地,所述补偿层在所述衬底上的投影与所述第一沟槽在所述衬底上的投影重合。
本实施例通过将补偿层在衬底上的投影与第一沟槽在衬底上的投影形成互补的形状,从而能够进一步降低光线穿过显示面板各处时的相位和振幅差异,进一步降低衍射现象的发生,提高屏下摄像头的成像质量。
如上所述的显示面板,可选地,所述补偿层与所述导电层的材质相同。
当补偿层与导电层的材质相同时,补偿层可以同时弥补光线穿过导电层各处时的振幅和相位差异,从而降低衍射现象的发生。
如上所述的显示面板,可选地,所述补偿层的厚度等于所述导电层的厚度。
进一步地,当补偿层的厚度等于导电层的厚度时,由于二者的材质相同,因此补偿层可以完全弥补光线穿过导电层各处时的振幅和相位差异,从而在理论上能够消除衍射现象的发生。
如上所述的显示面板,可选地,所述补偿层与所述导电层的材质不同,所述补偿层包括层叠设置的第一补偿层和第二补偿层,所述第一补偿层用于补偿振幅,所述第二补偿层用于补偿相位。
当补偿层与导电层的材质不同时,可以分别设置用于补偿振幅的第一补偿层及用于补偿相位的第二补偿层,从而弥补光线穿过导电层各处时的振幅和相位差异,降低衍射现象的发生。
如上所述的显示面板,可选地,所述补偿层可拆卸的设置在所述封装层上。
将补偿层可拆卸的设置在封装层上,可以方便补偿层的更换和拆卸,便于根据实际情况调节补偿层的厚度等参数,以便更好的降低衍射现象的发生。
本申请另一实施例提供一种显示装置,包括如上任一所述的显示面板。
本申请提供的显示装置,能够降低光线穿过显示面板时发生衍射的几率,从而有利于提高屏下摄像头的成像质量。
本申请又一实施例提供一种显示面板的制作方法,包括提供一衬底,
在所述衬底上层叠形成绝缘层;在所述绝缘层上层叠形成导电层,并对所述导电层进行图案化,以形成多个第一沟槽;在图案化的所述导电层上层叠形成第一平坦化层;在所述第一平坦化层上层叠形成OLED器件及封装层;
在所述绝缘层和导电层之间形成补偿层,或者,在所述第一平坦化层和OLED器件之间形成补偿层;对所述补偿层进行图案化,以形成多个第二沟槽;所述补偿层在所述衬底上的投影至少遮蔽部分所述第一沟槽在所述衬底上的投影。
本申请提供的显示面板的制作方法,能够降低光线穿过显示面板时发生衍射的几率,从而有利于提高屏下摄像头的成像质量。
本申请再一实施例提供一种显示面板的制作方法,包括提供一衬底,
在所述衬底上层叠形成绝缘层;在所述绝缘层上层叠形成导电层,并对所述导电层进行图案化,以形成多个第一沟槽;在图案化的所述导电层上层叠形成第一平坦化层;在所述第一平坦化层上层叠形成OLED器件及封装层;
在所述衬底、绝缘层或封装层内形成补偿层;对所述补偿层进行图案化,以形成多个第二沟槽;所述补偿层在所述衬底上的投影至少遮蔽部分所述第一沟槽在所述衬底上的投影。
本申请提供的显示面板的制作方法,能够降低光线穿过显示面板时发生衍射的几率,从而有利于提高屏下摄像头的成像质量。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为已有技术中显示面板的结构简图;
图2(a)-图2(b)为本申请一实施例提供的显示面板的结构简图;
图3为本申请另一实施例提供的显示面板的结构简图,其中,补偿层设置在衬底内;
图4为本申请再一实施例提供的显示面板的结构简图,其中,补偿层设置在绝缘层内;
图5为本申请又一实施例提供的显示面板的结构简图,其中,补偿层设置在封装层内;
图6为本申请又一实施例提供的显示面板的结构简图,其中,补偿层可拆卸的设置在封装层的上方;
图7为已有技术中显示面板的衍射情况的简图;
图8为本申请一实施例提供的显示面板的衍射情况的简图;
图9为本申请另一实施例提供的显示面板的衍射情况的简图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为已有技术中显示面板的结构简图;如图1所示,该显示面板包括依次层叠设置的衬底100、绝缘层200、导电层310、第一平坦化层320、OLED器件400以及封装层500,其中导电层310通过刻蚀形成有沟槽,从而在通 电后能够点亮上方的OLED器件400。为了实现手机的全面屏,需要将前置摄像头隐藏在屏幕的下方,也即摄像头位于显示面板的下方(即摄像头设置在衬底100之下),在拍照时光线需要穿过整个显示面板后才能被摄像头捕捉。
这样设置之后,光线在穿过显示面板时,穿过具有沟槽的部位后光线的相位和振幅与穿过不具有沟槽的部位后光线的相位和振幅不同,使得光线在具有沟槽的导电层310处易发生衍射,从而影响最终的成像质量。图7为已有技术中显示面板的衍射情况的简图;如图7所示,光线穿过显示面板时,在具有沟槽的导电层310处发生了衍射现象,造成摄像头四周存在多个衍射光点,从而大大影响了成像的质量。
有鉴于此,本申请旨在提供一种显示面板及显示装置,该显示面板内具有经图案化工艺(包括曝光、显影、刻蚀等步骤)形成的补偿层,补偿层可以设置在显示面板内任意两层之间,补偿层的图形与导电层的图形形成互补结构(即补偿层的图形能够填充导电层内的沟槽形成的空缺),从而弥补穿过沟槽处光线的相位和振幅,使之接近穿过不具有沟槽处光线的相位和振幅,达到减小或消除光线穿过显示面板时的发生衍射现象的目的,有利于提高屏下摄像头的成像质量。
下面将结合附图详细的对本申请的内容进行描述,以使本领域技术人员能够更加详细的了解本申请的内容。
图2(a)-图2(b)为本申请一实施例提供的显示面板的结构简图;请参照图2(a)-图2(b)。本实施例提供一种显示面板,包括依次层叠设置的衬底100、绝缘层200、导电层310、第一平坦化层320、OLED器件400以及封装层500,导电层310内形成有多个第一沟槽,第一平坦化层320填充在第一沟槽内且覆盖导电层310。
还包括补偿层610,补偿层610内形成有多个第二沟槽,补偿层610在衬底100上的投影至少遮蔽部分第一沟槽在衬底100上的投影。
具体的,本实施例的显示面板设置在电子设备中屏下摄像头的上方,也即本实施例的显示面板对应显示屏上的拍照区,与其对应的显示屏上的其他区域可以称之为显示区,需要注意的是为实现全面屏的功能,拍照区内的显示面板仍然具备正常显示的功能。
本实施例中衬底100包括层叠设置的基底110、第一衬底绝缘层120和第二衬底绝缘层130,基底110可选用柔性基底或刚性基底,当选为柔性基底110时,可以使得显示屏具有良好的折弯性能;第一衬底绝缘层120和第二衬底绝缘层130可选用氧化硅、氮化硅或氮氧化硅等材质制成,第一衬底绝缘层120和第二衬底绝缘层130的材质不同。
绝缘层200包括有栅极绝缘层210、电容绝缘层220以及层间电介质层230,这部分结构对应显示区内相邻两层金属层之间的结构。需要注意的是,为了避免显示区内过多的金属层对光线透过率的影响,在本实施例中,去除了传统显示区内的金属层,而改为在绝缘层200的上方设置一层新的导电层310,用新设置的导电层310来点亮OLED器件400。为了提高光线的透过率,导电层310优选采用光透过率较高的材料制成,例如氧化铟锡等。
为了实现导电层310对上方OLED器件400的点亮,需要将导电层310经图案化工艺形成多个第一沟槽,使得导电层310能够导通电流。然后再将第一平坦化层320填充在第一沟槽内,并且在导电层310的上方覆盖部分导电层310,使得导电层310的上方平整,便于后续OLED器件400和封装层500的制作。
由于导电层310内第一沟槽的存在,光线在穿过显示面板上具有第一沟槽的位置后的相位和振幅明显与穿过显示面板上不具有第一沟槽的位置后的相位和振幅不同,并且第一沟槽在导电层310上形成了类似缝隙或小孔等结构,光线在穿过该类结构时易发生衍射现象,从而影响最终的光线质量。
有鉴于此,本实施例在显示面板内又设置了补偿层610,补偿层610也是经过图案化工艺形成的膜层,补偿层610内形成有多个第二沟槽,补偿层610在衬底100上的投影至少遮蔽部分第一沟槽在衬底100上的投影,也即补偿层610在衬底100上的投影能够填补部分导电层310在衬底100上投影的空缺,从而使得光线穿过显示面板各处后的相位和振幅趋于一致,降低光线穿过导电层310时衍射现象的发生,有利于提高屏下摄像头的成像质量。
可选地,为便于后续膜层的制作,还可以设置第二平坦化层620,第二平坦化层620填充在第二沟槽内且覆盖补偿层610,使得补偿层610的上方平整,便于后续膜层的制作。
具体到本实施例中,如图2(a)所示补偿层610可以设置在第一平坦化层320与OLED器件400之间;或者,如图2(b)所示,补偿层610可以设置在绝缘层200与导电层310之间。
在实际生产时,如图2(a)对应的结构,可以在制备完第一平坦化层320之后,再增加图案化的补偿层610,也即在第一平坦化层320的上方经曝光、显影、刻蚀等工艺形成补偿层610,然后再将第二平坦化层620填充入补偿层610内,保证后续膜层的制备。如图2(b)对应的结构,可以在制备完绝缘层200之后,再增加图案化的补偿层610,也即在绝缘层200的上方经曝光、显影、刻蚀等工艺形成补偿层610,然后再将第二平坦化层620填充入补偿层610内,保证后续膜层的制备。
通过上述描述可知,本实施例中补偿层610在衬底100上的投影能够遮蔽部分第一沟槽在衬底100上的投影,也即本实施例中补偿层610在衬底100上的投影面积小于等于第一沟槽在衬底100上的投影面积。由于补偿层610的存在,因此降低了光线穿过显示面板各处时的相位和振幅差异,从而降低了光线穿过显示面板时发生衍射的现象,有利于提高屏下摄像头的成像质量。
优选地,本实施例中补偿层610在衬底100上的投影与第一沟槽在衬底100上的投影完全重合。
通过将补偿层610在衬底100上的投影与第一沟槽在衬底100上的投影形成互补的形状,从而能够进一步降低光线穿过显示面板各处时的相位和振幅差异,进一步降低光线穿过时衍射现象的发生,提高屏下摄像头的成像质量。
本实施例中,补偿层610可以选用氧化硅层、氮化硅层、氮氧化硅层、单晶硅层或氧化铟锡层等,也即补偿层610的材质不必刻意要求与导电层310的材质相同,只要能够实现对穿过光线的振幅和相位的补偿功能即可。
在一个可选地实施方式中,本实施例中补偿层610与导电层310的材质相同,例如都为氧化铟锡材质。
当补偿层610与导电层310的材质相同时,补偿层610可以同时弥补光线穿过第一沟槽与导电层310各处时的振幅和相位差异,从而降低衍射现象的发生。
进一步地,在上述实施方式的基础上,补偿层610的厚度更优选地等于导电层310的厚度。
当补偿层610的厚度等于导电层310的厚度时,由于二者的材质相同,因此补偿层610可以完全弥补光线穿过导电层310各处时的振幅和相位差异,从而在理论上能够消除衍射现象的发生。
图9为本申请另一实施例提供的显示面板的衍射情况的简图;请参照图9。如图9所示,为采用氧化铟锡材质的补偿层610后光线穿过显示面板时的衍射情况,从图9和图7的对比可以看出,此时光线穿过显示面板后,分布在摄像头四周的衍射光点基本消除,也即衍射现象基本完全消除,从而有利于提高屏下摄像头的成像质量。
在另一个可选地实施方式中,补偿层610与导电层310的材质可以不同,此时,补偿层610包括层叠设置的第一补偿层和第二补偿层,第一补偿层用于补偿振幅,第二补偿层用于补偿相位。
当补偿层610与导电层310的材质不同时,可以分别设置用于补偿振幅的第一补偿层及用于补偿相位的第二补偿层,从而弥补光线穿过第一沟槽与导电层310各处时的振幅和相位差异,降低衍射现象的发生。
具体的,可以通过第一补偿层调节光线穿过显示面板各处时的振幅差异,使得光线穿过显示面板各处后的振幅相同。进一步地,可以根据材料折射率的不同控制第一补偿层和第二补偿层的厚度,使得光线穿过第一补偿层和第二补偿层后的光程与穿过导电层310上不具备第一沟槽部分后的光程一致,从而使得光线穿过显示面板各处后的相位相同。通过上述方案,本实施方式达到了对振幅和相位的补偿,从而使得光线穿过显示面板各处时的相位和振幅基本一致,降低了衍射现象的发生。
需要注意的是,本实施例中用于补偿振幅的第一补偿层可以为层叠设置的多层,在生产时,可以先制备第一补偿层以调节光线穿过显示面板各处后的振幅,然后再制备第二补偿层,使得光线穿过第一补偿层和第二补偿层后的光程与光线穿过导电层310上不具备第一沟槽部分后的光程一致,以使得光线穿过显示面板各处后的相位相同。由于光线穿过显示面板各处后的相位和振幅基本一致,因此降低了衍射现象的发生。
图8为本申请一实施例提供的显示面板的衍射情况的简图;请参照图 8。如图8所示,为采用氧化硅材质的补偿层610后光线穿过显示面板时的衍射情况,其中,氧化硅层用于补偿相位,从图8和图7的对比可以看出,此时光线穿过显示面板后,分布在摄像头四周的衍射光点明显减少,也即衍射现象明显减轻,从而有利于提高屏下摄像头的成像质量。
图3为本申请另一实施例提供的显示面板的结构简图;请参照图3。本实施例提供的显示面板包括依次层叠设置的衬底100、绝缘层200、导电层310、第一平坦化层320、OLED器件400以及封装层500,导电层310内形成有多个第一沟槽,第一平坦化层320填充在第一沟槽内且覆盖导电层310。
还包括补偿层610,补偿层610内形成有多个第二沟槽,补偿层610在衬底100上的投影至少遮蔽部分第一沟槽在衬底100上的投影。
与上述实施例不同的是,本实施例中补偿层610设置在衬底100内,如图3所示,本实施例中补偿层610设置在衬底100内的第一衬底绝缘层120和第二衬底绝缘层130之间,由于补偿层610依然与导电层310设置在屏下摄像头的同一侧面上,也即设置在同一光路传播路径上,因此本实施例也能够达到上述实施例一中降低光线衍射现象、提高成像质量的目的。
需要注意的是,本实施例仅示出了补偿层610位于第一衬底绝缘层120和第二衬底绝缘层130之间的方案,本领域技术人员清楚的是,在其他可选地实施方式中,补偿层610还可以设置在基底110与第一衬底绝缘层120之间或者设置在第二衬底绝缘层130与上方的绝缘层200之间,上述两种设置方式依然可以达到相同的效果。
可选地,本实施例中补偿层610上还可以设置第二平坦化层620,以使得补偿层610的表面更加平整,方便后续膜层制作。
图4为本申请再一实施例提供的显示面板的结构简图;请参照图4。本实施例提供的显示面板包括依次层叠设置的衬底100、绝缘层200、导电层310、第一平坦化层320、OLED器件400以及封装层500,导电层310内形成有多个第一沟槽,第一平坦化层320填充在第一沟槽内且覆盖导电层310。
还包括补偿层610,补偿层610内形成有多个第二沟槽,补偿层610在衬底100上的投影至少遮蔽部分第一沟槽在衬底100上的投影。
与上述实施例不同的是,本实施例中补偿层610设置在绝缘层200内,如图4所示,本实施例中补偿层610设置在绝缘层200内的栅极绝缘层210和电容绝缘层220之间,由于补偿层610依然与导电层310设置在屏下摄像头的同一侧面上,也即设置在同一光路传播路径上,因此本实施例也能够达到上述实施例一中降低光线衍射现象、提高成像质量的目的。
需要注意的是,本实施例仅示出了补偿层610位于栅极绝缘层210和电容绝缘层220之间的方案,本领域技术人员清楚的是,在其他可选地实施方式中,补偿层610还可以设置在电容绝缘层220与层间电介质层之间,该设置方式依然可以达到相同的效果。
可选地,本实施例中补偿层610上还可以设置第二平坦化层620,以使得补偿层610的表面更加平整,方便后续膜层制作。
图5为本申请又一实施例提供的显示面板的结构简图;请参照图5。本实施例提供的显示面板包括依次层叠设置的衬底100、绝缘层200、导电层310、第一平坦化层320、OLED器件400以及封装层500,导电层310内形成有多个第一沟槽,第一平坦化层320填充在第一沟槽内且覆盖导电层310。
还包括补偿层610,补偿层610内形成有多个第二沟槽,补偿层610在衬底100上的投影至少遮蔽部分第一沟槽在衬底100上的投影。
与上述实施例不同的是,本实施例中补偿层610设置在封装层500内,如图5所示,本实施例中封装层500例如可选用柔性封装层,封装层500包括第一封装绝缘层510和第二封装绝缘层520,补偿层610设置在第一封装绝缘层510和第二封装绝缘层520之间,由于补偿层610依然与导电层310设置在屏下摄像头的同一侧面上,也即设置在同一光路传播路径上,因此本实施例也能够达到上述实施例一中降低光线衍射现象、提高成像质量的目的。
可选地,本实施例中补偿层610上还可以设置第二平坦化层620,以使得补偿层610的表面更加平整,方便后续膜层制作。
图6为本申请又一实施例提供的显示面板的结构简图;请参照图6。本实施例提供的显示面板包括依次层叠设置的衬底100、绝缘层200、导电层310、第一平坦化层320、OLED器件400以及封装层500,导电层 310内形成有多个第一沟槽,第一平坦化层320填充在第一沟槽内且覆盖导电层310。
还包括补偿层610,补偿层610内形成有多个第二沟槽,补偿层610在衬底100上的投影至少遮蔽部分第一沟槽在衬底100上的投影。
与上述实施例不同的是,本实施例中补偿层610可拆卸的设置在封装层500的上方,补偿层610可利用粘接的方式与封装层500进行固定。
本实施例中,补偿层610可以是独立制作的膜层,即可以将补偿层610独立于显示面板其他膜层之外进行单独制作,从而降低制作补偿层610时对显示面板内其他膜层的影响,且便于提高生产效率。
由于补偿层610依然与导电层310设置在屏下摄像头的同一侧面上,也即设置在同一光路传播路径上,因此本实施例也能够达到上述实施例一中降低光线衍射现象、提高成像质量的目的。
将补偿层610可拆卸的设置在封装层500上,可以方便补偿层610的更换和拆卸,便于根据实际情况调节补偿层610的厚度等参数,以便更好的降低衍射现象的发生。
可选地,本实施例中补偿层610上还可以设置第二平坦化层620,以使得补偿层610的表面更加平整。
本实施例提供一种显示装置,包括如上任一实施例所述的显示面板。
本申请提供的显示装置,包括壳体,壳体内设有多个电子器件,在壳体的一侧设有开口,显示面板贴附在该开口处。
由于显示面板内设有补偿层,因此,本实施例能够降低光线穿过显示面板时发生衍射的几率,从而有利于提高屏下摄像头的成像质量。
本实施例还提供一种显示面板的制作方法,具体包括:提供一衬底100,
在衬底上层叠形成绝缘层200;
在绝缘层上层叠形成导电层310,并对导电层310进行图案化,以形成多个第一沟槽;
在图案化的导电层310上层叠形成第一平坦化层320;
在第一平坦化层320上层叠形成OLED器件400及封装层500;
在绝缘层200和导电层310之间形成补偿层610,或者,在第一平坦化层320和OLED器件400之间形成补偿层610;对补偿层610进行图案化,以 形成多个第二沟槽;补偿层610在衬底100上的投影至少遮蔽部分第一沟槽在衬底100上的投影。
在一种可实现的方式中,可以经曝光、显影、刻蚀等工艺形成具有第二沟槽的补偿层610。
采用本实施例的制作方法制作的显示面板能够减小或消除光线穿过显示面板时发生衍射的几率,从而有利于提高屏下摄像头的成像质量。
本实施例还提供一种显示面板的制作方法,具体包括:提供一衬底100,
在衬底上层叠形成绝缘层200;
在绝缘层上层叠形成导电层310,并对导电层310进行图案化,以形成多个第一沟槽;
在图案化的导电层310上层叠形成第一平坦化层320;
在第一平坦化层320上层叠形成OLED器件400及封装层500;
在衬底100、绝缘层200或封装层500内形成补偿层610;对补偿层610进行图案化,以形成多个第二沟槽;补偿层610在衬底100上的投影至少遮蔽部分第一沟槽在衬底100上的投影。
在一种可实现的方式中,可以经曝光、显影、刻蚀等工艺形成具有第二沟槽的补偿层610。
采用本实施例提供的制作方法制作的显示装置能够降低光线穿过显示面板时发生衍射的几率,从而有利于提高屏下摄像头的成像质量。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种显示面板,其中,包括依次层叠设置的衬底、绝缘层、导电层、第一平坦化层、OLED器件以及封装层,所述导电层内形成有多个第一沟槽,所述第一平坦化层填充在所述第一沟槽内且覆盖所述导电层;
    还包括补偿层,所述补偿层内形成有多个第二沟槽,所述补偿层在所述衬底上的投影至少遮蔽部分所述第一沟槽在所述衬底上的投影。
  2. 根据权利要求1所述的显示面板,其中,所述补偿层在所述衬底上的投影与所述第一沟槽在所述衬底上的投影重合。
  3. 根据权利要求1或权利要求2所述的显示面板,其中,所述补偿层与所述导电层的材质相同。
  4. 根据权利要求1-3中任一所述的显示面板,其中,所述补偿层的厚度等于所述导电层的厚度。
  5. 根据权利要求2-4中任一所述的显示面板,其中,所述补偿层与所述导电层的材质不同,所述补偿层包括层叠设置的第一补偿层和第二补偿层,所述第一补偿层用于补偿振幅,所述第二补偿层用于补偿相位。
  6. 根据权利要求2-5中任一所述的显示面板,其中,所述第一补偿层为层叠设置的多层。
  7. 根据权利要求1-6中任一所述的显示面板,其中,所述补偿层包括氧化硅层、氮化硅层、氮氧化硅层、单晶硅层或氧化铟锡层。
  8. 根据权利要求1-7中任一所述的显示面板,其中,所述补偿层设置在所述绝缘层与所述导电层之间;或者,所述补偿层设置在所述第一平坦化层与所述OLED器件之间。
  9. 根据权利要求1-7中任一所述的显示面板,其中,所述补偿层设置在所述衬底、绝缘层或封装层内。
  10. 根据权利要求1-9中任一所述的显示面板,其中,所述衬底为层叠设置的多层,所述补偿层设置在所述衬底任意相邻的两层之间。
  11. 根据权利要求1-9中任一所述的显示面板,其中,所述绝缘层为层叠设置的多层,所述补偿层设置在所述绝缘层任意相邻的两层之间。
  12. 根据权利要求1-9中任一所述的显示面板,其中,所述封装层为层叠设置的多层,所述补偿层设置在所述封装层任意相邻的两层之间。
  13. 根据权利要求1-10中任一所述的显示面板,其中,所述衬底包括基底、第一衬底绝缘层和第二衬底绝缘层,所述补偿层设置在所述第一衬底绝缘层和所述第二衬底绝缘层之间,或者,所述补偿层设置在所述第一衬底绝缘层和所述基底之间。
  14. 根据权利要求1-11中任一所述的显示面板,其中,所述绝缘层包括有栅极绝缘层、电容绝缘层以及层间电介质层,所述补偿层设置在所述绝缘层的所述栅极绝缘层和所述电容绝缘层之间,或者,所述补偿层设置在所述绝缘层的所述电容绝缘层和所述层间电介质层之间。
  15. 根据权利要求1-12中任一所述的显示面板,其中,所述封装层包括第一封装绝缘层和第二封装绝缘层,所述补偿层设置在所述第一封装绝缘层和所述第二封装绝缘层之间。
  16. 根据权利要求1-7中任一所述的显示面板,其中,所述补偿层可拆卸的设置在所述封装层上。
  17. 根据权利要求1-16中任一所述的显示面板,其中,还包括第二平坦化层,所述第二平坦化层填充在所述第二沟槽内且覆盖所述补偿层。
  18. 一种显示装置,其中,包括权利要求1-17中任一所述的显示面板。
  19. 一种显示面板的制作方法,其中,
    提供一衬底,
    在所述衬底上层叠形成绝缘层;
    在所述绝缘层上层叠形成导电层,并对所述导电层进行图案化,以形成多个第一沟槽;
    在图案化的所述导电层上层叠形成第一平坦化层;
    在所述第一平坦化层上层叠形成OLED器件及封装层;
    在所述绝缘层和导电层之间形成补偿层,或者,在所述第一平坦化层和OLED器件之间形成补偿层;对所述补偿层进行图案化,以形成多个第二沟槽;所述补偿层在所述衬底上的投影至少遮蔽部分所述第一沟槽在所述衬底上的投影。
  20. 一种显示面板的制作方法,其中,
    提供一衬底,
    在所述衬底上层叠形成绝缘层;
    在所述绝缘层上层叠形成导电层,并对所述导电层进行图案化,以形成多个第一沟槽;
    在图案化的所述导电层上层叠形成第一平坦化层;
    在所述第一平坦化层上层叠形成OLED器件及封装层;
    在所述衬底、绝缘层或封装层内形成补偿层;对所述补偿层进行图案化,以形成多个第二沟槽;所述补偿层在所述衬底上的投影至少遮蔽部分所述第一沟槽在所述衬底上的投影。
PCT/CN2021/083370 2020-05-08 2021-03-26 显示面板、显示装置及显示面板的制作方法 WO2021223541A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/732,981 US20220255047A1 (en) 2020-05-08 2022-04-29 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010382256.9A CN111477668A (zh) 2020-05-08 2020-05-08 显示面板及显示装置
CN202010382256.9 2020-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/732,981 Continuation US20220255047A1 (en) 2020-05-08 2022-04-29 Display panel and display device

Publications (1)

Publication Number Publication Date
WO2021223541A1 true WO2021223541A1 (zh) 2021-11-11

Family

ID=71762233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083370 WO2021223541A1 (zh) 2020-05-08 2021-03-26 显示面板、显示装置及显示面板的制作方法

Country Status (3)

Country Link
US (1) US20220255047A1 (zh)
CN (1) CN111477668A (zh)
WO (1) WO2021223541A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477668A (zh) * 2020-05-08 2020-07-31 昆山国显光电有限公司 显示面板及显示装置
CN112071886B (zh) * 2020-09-17 2022-09-20 云谷(固安)科技有限公司 显示面板及显示装置
CN113053253B (zh) * 2020-10-19 2023-05-30 上海鲲游科技有限公司 屏下光学系统、相位补偿元件及其方法和电子设备
CN113325498B (zh) * 2021-06-24 2023-05-30 嘉兴驭光光电科技有限公司 衍射抑制光学部件和衍射抑制显示屏
CN113311523B (zh) * 2021-06-24 2023-05-30 嘉兴驭光光电科技有限公司 衍射抑制光学部件和衍射抑制显示屏

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120104367A1 (en) * 2010-10-27 2012-05-03 Canon Kabushiki Kaisha Display apparatus
CN102738196A (zh) * 2011-03-30 2012-10-17 索尼公司 显示装置和电子设备
CN110061014A (zh) * 2019-04-30 2019-07-26 武汉天马微电子有限公司 一种显示面板及显示装置
CN110634930A (zh) * 2019-09-27 2019-12-31 京东方科技集团股份有限公司 显示面板和显示装置
CN110767673A (zh) * 2018-08-06 2020-02-07 昆山国显光电有限公司 显示面板、显示屏及显示终端
CN110911438A (zh) * 2018-09-14 2020-03-24 昆山国显光电有限公司 显示面板、显示屏和显示终端
CN111477668A (zh) * 2020-05-08 2020-07-31 昆山国显光电有限公司 显示面板及显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767714B (zh) * 2019-03-25 2022-03-08 昆山国显光电有限公司 透明阵列基板、透明显示面板、显示面板及显示终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120104367A1 (en) * 2010-10-27 2012-05-03 Canon Kabushiki Kaisha Display apparatus
CN102738196A (zh) * 2011-03-30 2012-10-17 索尼公司 显示装置和电子设备
CN110767673A (zh) * 2018-08-06 2020-02-07 昆山国显光电有限公司 显示面板、显示屏及显示终端
CN110911438A (zh) * 2018-09-14 2020-03-24 昆山国显光电有限公司 显示面板、显示屏和显示终端
CN110061014A (zh) * 2019-04-30 2019-07-26 武汉天马微电子有限公司 一种显示面板及显示装置
CN110634930A (zh) * 2019-09-27 2019-12-31 京东方科技集团股份有限公司 显示面板和显示装置
CN111477668A (zh) * 2020-05-08 2020-07-31 昆山国显光电有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US20220255047A1 (en) 2022-08-11
CN111477668A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021223541A1 (zh) 显示面板、显示装置及显示面板的制作方法
WO2020192054A1 (zh) 透明阵列基板、透明显示面板、显示面板及显示终端
JP7294808B2 (ja) カラーフィルム基板及びその製造方法、表示パネルと表示装置
WO2020207131A1 (zh) 掩膜板组件、oled显示面板及其制作方法、显示装置
US11289669B2 (en) Light-emitting device, pixel unit, manufacturing method for pixel unit and display device
US20230263010A1 (en) Display panel and method of manufacturing same
EP4095923A1 (en) Array substrate and display device
CN111146215B (zh) 一种阵列基板、其制作方法及显示装置
TW200411314A (en) Optical interference type panel and the manufacturing method thereof
WO2023000381A1 (zh) 显示面板及显示装置
WO2020025012A1 (zh) 电极及其制作方法、发光器件和显示装置
WO2020237919A1 (zh) 有机发光二极管显示装置及其制作方法
US11515361B2 (en) Light emitting device and method for manufacturing the same, and display device
US11703693B2 (en) Array substrate and manufacturing method thereof, three-dimensional display panel and display device
TW201809818A (zh) 顯示裝置
WO2021238439A1 (zh) Oled显示面板及其制作方法
WO2021218625A1 (zh) 显示基板及其制作方法和显示装置
WO2023245959A1 (zh) 显示面板及显示装置
US20220190284A1 (en) Display panel and manufacturing method thereof
WO2021012399A1 (zh) 显示面板、显示装置及其制作方法
WO2020155590A1 (zh) 显示面板、其制备方法及显示终端
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
US10985343B1 (en) Display panel and manufacturing method of display panel and electronic device
TW201031254A (en) Illumination device, method of fabricating the same, and system for displaying images utilizing the same
WO2020087615A1 (zh) 基板及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800274

Country of ref document: EP

Kind code of ref document: A1