WO2020204679A1 - 리튬이온 이차전지용 음극과 그 제조방법 - Google Patents

리튬이온 이차전지용 음극과 그 제조방법 Download PDF

Info

Publication number
WO2020204679A1
WO2020204679A1 PCT/KR2020/004643 KR2020004643W WO2020204679A1 WO 2020204679 A1 WO2020204679 A1 WO 2020204679A1 KR 2020004643 W KR2020004643 W KR 2020004643W WO 2020204679 A1 WO2020204679 A1 WO 2020204679A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
negative
material layer
forming
Prior art date
Application number
PCT/KR2020/004643
Other languages
English (en)
French (fr)
Inventor
정광춘
안희용
Original Assignee
(주)잉크테크
(주)해은켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)잉크테크, (주)해은켐텍 filed Critical (주)잉크테크
Publication of WO2020204679A1 publication Critical patent/WO2020204679A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium ion secondary battery and a method of manufacturing the same, and more particularly, since the electrical conductivity of the negative electrode active material layer is increased, the charging/discharging efficiency of the negative electrode active material layer can be improved, and excellent flexibility can be provided. And, it relates to a negative electrode for a lithium ion secondary battery capable of improving the adhesion between the layers and the adhesion of the negative active material layer and a method of manufacturing the same.
  • the present invention relates to a negative electrode for a lithium ion secondary battery capable of preventing the negative electrode active material layer from being peeled off due to oxidation, and a method of manufacturing the same.
  • the present invention relates to a negative electrode for a lithium ion secondary battery and a method of manufacturing the same, which can easily form a thin negative electrode current collector through an electroplating process.
  • a negative electrode for a lithium ion secondary battery that can significantly improve workability when manufacturing a negative electrode using a carrier film (C), and a method of manufacturing the same.
  • lithium batteries are actively used in many fields as energy storage devices, and their fields and applications are gradually increasing.
  • research on a safer and high-capacity lithium battery material is being actively conducted.
  • a negative electrode one of the elements constituting a dual battery, a lot of interest has been shown in implementing an electrode having a higher energy density than a conventional graphite negative electrode.
  • Silicon has a theoretical capacity that is nearly 10 times higher than that of conventional graphite, so many attempts are being made to replace graphite and use it as a negative electrode, but general silicon negative electrodes are observed to rapidly decrease capacity or destroy electrodes as charging/discharging occurs repeatedly. As a result, it is not used directly in the industry. This decrease in capacity and breakdown of electrodes occurs due to the characteristics of silicon having a large volume expansion during lithium charging.
  • an object of the present invention is to solve such a conventional problem, and since the electrical conductivity of the negative active material layer increases, the charging/discharging efficiency of the negative active material layer can be improved, and excellent flexibility can be provided. It is to provide a negative electrode for a lithium ion secondary battery and a method of manufacturing the same, which can improve the adhesion between the layers and the adhesion of the negative active material layer.
  • a silver coating layer including silver (Ag) nanoparticles and/or a silver complex compound in the negative electrode current collector it is possible to prevent the negative electrode current collector made of copper from being oxidized, and the negative electrode current collector It is to provide a negative electrode for a lithium ion secondary battery and a method of manufacturing the same that can prevent the negative electrode active material layer from being peeled off by oxidation.
  • the silver coating layer serves as a seed for electrolytic plating, it is intended to provide a negative electrode for a lithium ion secondary battery and a method of manufacturing the same, which can easily form a thin negative electrode current collector through an electroplating process.
  • the object is, according to the present invention, a negative electrode current collector, at least one negative electrode active material layer formed on one surface of the negative electrode current collector to absorb and release lithium ions, and interposed between the negative electrode current collector and the negative electrode active material layer It is to provide a negative electrode for a lithium ion secondary battery, characterized in that it comprises at least one silver coating layer.
  • the negative active material layer includes at least one active material particle of graphite, carbon nanotube, graphene, silicon, zinc oxide (ZnO), titanium dioxide (TiO2), manganese (Mn), and iron (Fe), and an organic binder. It may include.
  • the negative active material layer may further include at least one conductive inorganic binder selected from silver (Ag) and silver (Ag) alloy, and the conductive inorganic binder may include nanoparticles or complex compounds.
  • the negative active material layer is formed of a composition for forming a negative active material layer including the active material particles, the organic binder, and the conductive inorganic binder, and the composition for forming the negative active material layer comprises the composition for forming the negative active material layer Based on a total of 100% by weight, 25 to 99% by weight of the active material, 0.5 to 5% by weight of the organic binder, and 0.1 to 70% by weight of the conductive inorganic binder may be included.
  • the negative active material layer is formed of a composition for forming a negative active material layer comprising the active material particles, the organic binder, the conductive inorganic binder, and a viscosity modifier, and the composition for forming the negative active material layer comprises the negative active material Including 25 to 98% by weight of the active material, 0.5 to 5% by weight of the organic binder, 0.1 to 70% by weight of the conductive inorganic binder, and 0.5 to 3% by weight of the viscosity modifier based on the total 100% by weight of the layer-forming composition can do.
  • the negative active material layer may include the active material particles on which the conductive inorganic binder is surface-treated by attaching the conductive inorganic binder to the surface of the active material particle.
  • the conductive inorganic binder is attached to the surface of the active material particle, and the conductive inorganic binder is attached using a conductive metal ink.
  • the metal content may be more than 0 to 70% by weight or less.
  • a surface area of the active material particles coated with the conductive inorganic binder may be greater than 0 to 90% or less.
  • the addition amount of the conductive inorganic binder is 9 times or less than the addition amount of the active material particles, and the addition amount of the conductive inorganic binder may be less than the surface area of the active material material.
  • the silver coating layer may be formed by including one or more nanoparticles or complex compounds selected from silver (Ag) and silver (Ag) alloys.
  • It may further include at least one negative electrode active material layer formed on the silver coating layer formed on the other surface of the negative electrode current collector to absorb and release lithium ions.
  • a negative electrode current collector at least one negative electrode active material layer formed on one surface of the negative electrode current collector to absorb and release lithium ions, and at least one silver coating layer formed on the other surface of the negative electrode current collector are provided. It provides a negative electrode for a lithium ion secondary battery comprising a.
  • the negative active material layer further includes at least one conductive inorganic binder selected from silver (Ag) and silver (Ag) alloy,
  • the conductive inorganic binder is a negative electrode for a lithium ion secondary battery, characterized in that it contains a nanoparticle or a complex compound (complex).
  • a negative electrode for a lithium ion secondary battery characterized in that it comprises a negative electrode current collector and at least a pair of negative electrode active material layers each formed on both surfaces of the negative electrode current collector and including a conductive inorganic binder do.
  • the conductive inorganic binder may include one or more nanoparticles or complex compounds selected from silver (Ag) and silver (Ag) alloys.
  • the negative active material layer is formed of a composition for forming a negative active material layer including active material particles, an organic binder, and the conductive inorganic binder, and the composition for forming the negative active material layer includes a total of 100 compositions for forming the negative active material layer. Based on the weight %, the active material may include 25 to 99% by weight, 0.5 to 5% by weight of the organic binder, and 0.1 to 70% by weight of the conductive inorganic binder.
  • the negative active material layer is formed of a composition for forming a negative active material layer comprising active material particles, an organic binder, the conductive inorganic binder, and a viscosity modifier, and the composition for forming the negative active material layer comprises: forming the negative active material layer
  • the active material may contain 25 to 98% by weight, the organic binder 0.5 to 5% by weight, the conductive inorganic binder 0.1 to 70% by weight, and the viscosity modifier 0.5 to 3% by weight. have.
  • the negative active material layer may include the active material particles on which the conductive inorganic binder is surface-treated by attaching the conductive inorganic binder to the surface of the active material particle.
  • the conductive inorganic binder is attached to the surface of the active material particle, and the conductive inorganic binder is attached using a conductive metal ink.
  • the metal content may be more than 0 to 70% by weight or less.
  • a surface area of the active material particles coated with the conductive inorganic binder may be greater than 0 to 90% or less.
  • the addition amount of the conductive inorganic binder is 9 times or less than the addition amount of the active material particles, and the addition amount of the conductive inorganic binder may be less than the surface area of the active material material.
  • the steps of preparing a carrier film, forming a silver coating layer on the carrier film, forming a negative electrode current collector on the silver coating layer, and forming a negative active material layer on the negative electrode current collector may include forming and removing the carrier film.
  • copper may be electroplated to form a negative electrode current collector on the silver coating layer.
  • a step of forming a silver coating layer on the negative current collector may be performed prior to the step of forming the negative active material layer.
  • the carrier film may further include preparing a pair of single-sided negative electrodes separated from the carrier film, and bonding the silver coating layers exposed on the surfaces of the pair of single-sided negative electrodes to each other. .
  • a pair of single-sided negative electrodes may be bonded to each other by heat-compressing, or a pair of single-sided negative electrodes may be bonded to each other by applying a thermosetting or thermoplastic resin.
  • the steps of preparing a carrier film, forming a negative electrode current collector on the carrier film, forming a silver coating layer on the negative electrode current collector, and forming a negative active material layer on the silver coating layer At least one of the steps of forming, removing the carrier film, preparing a pair of single-sided negative electrodes separated from the carrier film, and a pair of negative electrode current collectors exposed on the surface of the pair of single-sided negative electrodes It is to provide a method for manufacturing a negative electrode for a lithium ion secondary battery, comprising the step of bonding to each other by coating a thermosetting or thermoplastic resin on one side.
  • the steps of preparing a carrier film, forming a negative active material layer on the carrier film, forming a negative electrode current collector on the negative active material layer, and a negative active material layer on the negative current collector comprising the step of forming and removing the carrier film, wherein at least one of the negative electrode active material layers includes a conductive inorganic binder.
  • a step of forming a silver coating layer on the negative electrode active material layer may be performed prior to forming the negative electrode current collector.
  • a step of forming a silver coating layer on the negative current collector may be performed prior to the step of forming the negative active material layer on the negative current collector.
  • the method includes preparing a negative electrode current collector and forming a negative electrode active material layer on both surfaces of the negative electrode current collector, and at least one of the negative electrode active material layers includes a conductive inorganic binder. It is to provide a method of manufacturing a negative electrode for a lithium ion secondary battery, characterized in that.
  • the method includes preparing a negative electrode current collector, forming a silver coating layer on both sides of the negative electrode current collector, and forming a negative electrode active material layer on each of the silver coating layers. It is to provide a method of manufacturing a negative electrode for a lithium ion secondary battery.
  • the steps of preparing a carrier film, forming a silver coating on the carrier film, forming a negative electrode current collector on the silver coating layer, and a negative active material on the negative electrode current collector It is to provide a method for manufacturing a negative electrode for a lithium ion secondary battery, comprising the step of forming a layer and removing the carrier film.
  • the carrier film may further include preparing a pair of single-sided negative electrodes separated from the carrier film, and bonding the silver coating layers exposed on the surfaces of the pair of single-sided negative electrodes to each other. .
  • the negative active material layer may include a conductive inorganic binder.
  • the conductive inorganic binder may include one or more nanoparticles or complex compounds selected from silver (Ag) and silver (Ag) alloys.
  • the negative active material layer may include the active material particles surface-treated with the conductive inorganic binder by attaching the conductive inorganic binder to the active material particle surface.
  • the electrical conductivity of the negative active material layer is increased, the charging/discharging efficiency of the negative active material layer can be improved, excellent flexibility can be provided, and the adhesion between the layers and the adhesion of the negative active material layer are improved. You can make it.
  • a silver coating layer including silver (Ag) nanoparticles and/or a silver complex compound in the negative electrode current collector it is possible to prevent the negative electrode current collector made of copper from being oxidized, and the negative electrode current collector It is possible to prevent the negative active material layer from being peeled off due to oxidation.
  • the silver coating layer serves as a seed for electrolytic plating, a thin negative electrode current collector can be easily formed through an electroplating process.
  • FIG. 1 is a cross-sectional view of a negative electrode for a lithium ion secondary battery according to a first embodiment of the present invention
  • FIG. 2 and 3 are process charts showing a method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 1;
  • FIG. 4 is a cross-sectional view of a negative electrode for a lithium ion secondary battery according to a second embodiment of the present invention
  • FIG. 5 is a process chart showing a method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 4;
  • FIG. 6 is a process chart showing another method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 4;
  • FIG. 7 is a cross-sectional view of a negative electrode for a lithium ion secondary battery according to a third embodiment of the present invention.
  • FIG. 8 and 9 are process charts showing a method of manufacturing a negative electrode for a lithium ion secondary battery shown in FIG. 7;
  • FIG. 10 is a cross-sectional view of a negative electrode for a lithium ion secondary battery according to a fourth embodiment of the present invention.
  • FIG. 11 is a process chart showing a method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 10,
  • FIG. 12 is a process chart showing another method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 10;
  • FIG. 1 is a cross-sectional view of a negative electrode for a lithium ion secondary battery according to a first embodiment of the present invention.
  • the negative electrode 100 for a lithium ion secondary battery according to the first embodiment of the present invention as shown in FIG. 1 includes a negative electrode current collector 110, and a first silver coating layer 120 formed on one surface of the negative electrode current collector 110. ), a negative electrode active material layer 130 formed on the first silver coating layer 120 and a second silver coating layer 140 formed on the other surface of the negative electrode current collector 110.
  • the negative electrode current collector 110 forms a path through which electrons generated from the negative active material layer 130 can flow to the outside and radiates heat generated from the negative active material layer 130 to the outside. It is made of a thin film of a material, and the thickness of the negative electrode current collector 110 is preferably set to 2 ⁇ 4 ⁇ m. The thickness may be formed as a thin film as described above, but is not limited thereto, and the thickness may be variously adjusted according to design conditions.
  • the first silver coating layer 120 is formed on one surface of the negative electrode current collector 110.
  • This first silver coating layer 120 may be formed of silver (Ag) or silver (Ag) alloy, and formed by including silver (Ag) or silver (Ag) alloy nanoparticles and/or complex compound (complex)
  • the negative electrode current collector 110 may be coated with a predetermined thickness.
  • the silver (Ag) alloy is Mg (magnesium), Al (aluminum), Ti (titanium), V (vanadium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni ( Nickel), Zn (zinc), Ge (germanium), Zr (zirconium), Nb (niobium), Mo (molybdenum), Ru (ruthenium), In (indium), Sn (tin), Sb (antimony), Ta ( It may be formed by including at least one metal selected from tantalum), W (tungsten), Pb (lead), and copper (Cu).
  • the negative active material layer 130 is formed on the first silver coating layer 120 to absorb and release lithium ions, and may include active material particles and an organic binder.
  • the active material particles may include at least one of graphite, carbon nanotubes, graphene, silicon, zinc oxide (ZnO), titanium dioxide (TiO2), manganese (Mn), and iron (Fe).
  • ZnO zinc oxide
  • TiO2 titanium dioxide
  • Mn manganese
  • Fe iron
  • various other active material materials used in the present technical field may also be used.
  • the organic binder may preferably include polyvinylidene difluoride (PVDF) or styrene butadiene rubber (SBR), but is limited thereto. No, various organic binders can be applied.
  • PVDF polyvinylidene difluoride
  • SBR styrene butadiene rubber
  • the negative active material layer 130 may further include a conductive inorganic binder, and the negative active material layer 130 may be formed by including active material particles, an organic binder, and a conductive inorganic binder. have.
  • the conductive inorganic binder at least one selected from a metal, a metal alloy, and a conductive metal oxide may be included, and in the case of a conductive metal oxide, Zn (zinc) oxide, Ru (ruthenium) oxide, In (indium) oxide
  • various conductive metal oxides may be used.
  • the aforementioned various conductive metal oxides may be used even when alloying metals.
  • silver (Ag) or a silver (Ag) alloy may be used, and silver (Ag) or silver (Ag) alloy nanoparticles and/or a complex compound may be included.
  • silver nanoparticles when silver nanoparticles are included as the conductive inorganic binder, a space according to expansion of the negative electrode material and a passage for movement of lithium ions can be provided in the voids between the silver nanoparticles, so that movement of lithium ions can be further activated. .
  • Mg magnesium
  • Al aluminum
  • Ti titanium
  • V vanadium
  • Cr chromium
  • Mn manganese
  • Fe iron
  • Co cobalt
  • Ni Nickel
  • Zn zinc
  • Ge germanium
  • Zr zirconium
  • Nb niobium
  • Mo molecular-denum
  • Ru ruthenium
  • Indium Sn (tin), Sb (antimony)
  • Ta It may be formed by including at least one metal selected from (tantalum), W (tungsten), Pb (lead), and copper (Cu).
  • various conductive metal oxides such as Zn (zinc) oxide, Ru (ruthenium) oxide, and In (indium) oxide, can be used as an alloy object of silver.
  • a silver (Ag) complex and a zinc (Zn) complex are included as a conductive inorganic binder, when they are heat-treated, they are decomposed to form an alloy of silver (Ag) and zinc (Zn), which can be used. It is not limited to this. It is also possible to form an alloy with silver and zinc oxide.
  • a conductive inorganic binder when included, it may be formed by adding a conductive metal ink to the active material particles and the organic binder.
  • a conductive metal ink As an example of the conductive metal ink, a conductive metal ink , Conductive metal alloy ink, conductive metal oxide ink may be used at least one selected from.
  • it may be formed by adding an ink containing silver (Ag) or silver (Ag) alloy nanoparticles and/or a silver (Ag) or silver (Ag) alloy complex ink.
  • the active material particles may be coated with silver (Ag) or a silver (Ag) alloy and added. have. Based on 100% of the total surface area of the active material particles, a surface area of the active material particles coated with the conductive inorganic binder may be greater than 0 to 90% or less. And it may be most preferable that the surface area coated with the conductive inorganic binder is 50%.
  • the content of silver in the silver ink may be more than 0 to 70% by weight, preferably 20% by weight or less, and 5% by weight or less, more preferably 1.50% by weight or less, and most preferably more than 0 to 0.75% by weight may be included.
  • the description is made of silver ink, but the present invention is not limited thereto.
  • the conductive metal ink at least one selected from a conductive metal ink, a conductive metal alloy ink, and a conductive metal oxide ink may be used.
  • a silver surface-treated negative electrode active material that has undergone a process of attaching a silver nano and/or a silver complex compound as a conductive inorganic binder to the surface of the negative electrode active material.
  • the negative active material layer 130 in the case of including a conductive inorganic binder, with respect to the total 100% by weight of the composition for forming the negative active material layer including active material particles, organic binder, and conductive inorganic binder,
  • the inorganic binder is preferably added in an amount of 0.1 to 70% by weight, and it may be more preferably added in an amount of 0.3 to 5% by weight.
  • the composition for forming an anode active material layer may include 25 to 99% by weight of the active material, 0.5 to 5% by weight of the organic binder, and 0.1 to 70% by weight of the organic binder, based on 100% by weight of the total composition for forming the anode active material layer. It may contain weight percent.
  • a viscosity modifier may be further included as an additive.
  • the viscosity modifier carboxymethyl cellulose (CMC) may be used, and various viscosity modifiers used in the present technical field may be applied.
  • the active material particles, the organic binder, and the viscosity modifier are mixed (aqueous emulsion), and then ink and/or silver containing nanoparticles of silver (Ag) or silver (Ag) alloy ( Ag) or a silver (Ag) alloy complex ink may be added to form the composition for forming the negative active material layer.
  • the active material particles may be added by coating silver (Ag) or a silver (Ag) alloy.
  • the composition for forming the negative active material layer based on the total 100% by weight of the composition for forming the negative active material layer, the active material 25 to 98% by weight, the organic binder 0.5 to 5% by weight, the conductive inorganic binder 0.1 to 70 It may be preferable to include 0.5 to 3% by weight of the viscosity modifier.
  • the negative active material layer 130 includes a conductive inorganic binder, since the electrical conductivity of the negative active material layer 130 increases, charging/discharging efficiency of the negative active material layer 130 can be improved, Excellent flexibility may be provided, and adhesion between layers and adhesion of the negative active material layer may be improved.
  • the conductive inorganic binder may preferably not completely surround the active material particles so that the active material particles can contact the electrolyte solution, and for this purpose, the amount of the conductive inorganic binder added is less than the surface area of the active material material. It may be desirable to use. Specifically, the amount of the conductive inorganic binder added is 9 times or less than the amount of the active material particles added, but the amount of the conductive inorganic binder added is preferably less than the surface area of the active material material. have.
  • the surface area of the active material particles coated with the conductive inorganic binder may be greater than 0 to 90% or less. And it may be most preferable that the surface area coated with the conductive inorganic binder is 50%.
  • the second silver coating layer 140 is formed on the other surface of the negative electrode current collector 110.
  • This second silver coating layer 140 may be formed using silver (Ag) or silver (Ag) alloy, and includes silver (Ag) or silver (Ag) alloy nanoparticles and/or a complex compound (complex)
  • the negative electrode current collector 110 may be coated with a predetermined thickness on the other surface of the negative electrode current collector 110.
  • the silver (Ag) alloy is Mg (magnesium), Al (aluminum), Ti (titanium), V (vanadium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni ( Nickel), Zn (zinc), Ge (germanium), Zr (zirconium), Nb (niobium), Mo (molybdenum), Ru (ruthenium), In (indium), Sn (tin), Sb (antimony), Ta ( It may be formed by including at least one metal selected from tantalum), W (tungsten), Pb (lead), and copper (Cu).
  • the outermost electrode is disposed among the plurality of negative electrodes stacked inside the secondary battery. It can be used as a negative electrode, and since the second silver coating layer 140 is formed on the surface where the negative active material layer 130 is not disposed, the negative electrode current collector 110 made of copper is exposed to the outside to prevent oxidation. I can.
  • FIGS. 2 and 3 are process diagrams showing a method of manufacturing a negative electrode for a lithium ion secondary battery shown in FIG. 1. Since the description of each component described above is applied identically, the same content for the same component will be omitted below.
  • the manufacturing method of the negative electrode for a lithium ion secondary battery of the present invention includes a carrier film (C) preparation step (S110) as shown in FIG. 2 and a second silver coating layer 140 on the carrier film (C).
  • Step (S120) forming a negative electrode current collector 110 on the second silver coating layer 140 (S130), and forming a first silver coating layer 120 on the negative electrode current collector 110
  • a step (S140) forming a negative active material layer 130 on the first silver coating layer 120 (S150), and removing the carrier film (C) (S160).
  • PI Polyimide
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate, polyethylene naphthalate
  • nylon nylon
  • any film having releasability can be used.
  • the carrier film is formed through processes such as sputtering, chemical vapor deposition, electroless plating, electroplating, coating, dipping, etc.
  • the negative electrode current collector 110 made of copper (Cu) material is formed on the second silver coating layer 140 through an electroplating process as shown in FIG. 2(c). ) To a thickness of 2 ⁇ 4 ⁇ m.
  • the thickness may be formed as a thin film as described above, but is not limited thereto, and the thickness may be variously adjusted according to design conditions.
  • the second silver coating layer 140 serves as a seed for electrolytic plating, the anode current collector 110 of a thin film can be easily formed through an electroplating process.
  • the negative electrode current collector through processes such as sputtering, chemical vapor deposition, electroless plating, electroplating, coating, and dipping as shown in FIG. 2(d).
  • the first silver coating layer 120 including nanoparticles and/or a complex compound is formed on (110) with silver (Ag) or a silver (Ag) alloy, and processes such as drying and curing are performed as necessary. Perform additionally.
  • the forming of the negative active material layer 130 (S150) includes preparing a negative active material and coating the negative active material.
  • the negative active material may be prepared by mixing the active material particles and the organic binder, and may be prepared by mixing the active material particles, the organic binder, and the conductive inorganic binder further including a conductive inorganic binder. It may further include a viscosity modifier.
  • the negative active material layer 130 may be formed by coating the previously prepared negative active material on the first silver coating layer 120 to a predetermined thickness as shown in FIG. 2E.
  • a firing process may be further performed after coating the negative active material.
  • the step of removing the carrier film (C) (S160) includes a peeling step of the carrier film (C).
  • the carrier film (C) is removed from the carrier film (C) as shown in FIG. 2(f), and the second silver coating layer 140, the negative electrode current collector 110, and the first The single-sided anode 100 composed of the silver coating layer 120 and the anode active material layer 130 may be separated.
  • the carrier film (C) when the carrier film (C) is used in the manufacture of a negative electrode for a lithium ion secondary battery so that the second coating layer 140 can be formed in direct contact with the carrier film (C), the carrier film (C) By the release agent, and/or by the particles formed when the second silver coating layer in direct contact with the carrier film (C) is fired, the release force is increased, so that the second silver coating layer 140 is transferred from the carrier film (C).
  • the single-sided negative electrode 100 manufactured as described above may be used as a negative electrode disposed at the outermost of a plurality of negative electrodes stacked inside a secondary battery.
  • the method of manufacturing a negative electrode for a lithium ion secondary battery of the present invention is a step (S170) and a bonding step of preparing a pair of single-sided negative electrodes 100 as shown in FIG. 3 in order to manufacture a double-sided negative electrode 100'. It may further include (S180).
  • a pair of cross-section cathodes 100 are prepared as shown in FIG. 3(a), but the pair of cross-section cathodes 100
  • the second silver coating layers 140 are disposed to face each other.
  • a pair of single-sided cathodes 100 are heated and compressed in the thickness direction to bond the second silver coating layer 140 to each other, thereby manufacturing a double-sided cathode 100'. can do.
  • the bonding process is preferably performed in a vacuum chamber.
  • a double-sided negative electrode 100' may be manufactured by heat-compressing so that the pair of second silver coating layers 140 are in direct contact/bonding, and in order to bond a pair of single-sided negative electrodes 100, one or both sides between them
  • the double-sided negative electrode 100 ′ may be manufactured by applying and bonding a thermoplastic resin or a thermosetting resin.
  • a thermosetting resin layer may be coated on one side of the pair of second silver coating layers 140 or each of the pair of second silver coating layers 140 and then bonded by heat-pressing and curing.
  • the thermosetting resin when heat-compressed, the thermosetting resin is laminated and at the same time, thermosetting occurs and bonded.
  • a thermosetting resin layer may be coated on one surface or each of the pair of negative electrode current collectors 110 rather than the pair of second silver coating layers 140 and then bonded by heat-pressing and curing.
  • the double-sided negative electrode 100 ′ prepared as described above may be used as a negative electrode disposed between a pair of adjacent positive electrodes among a plurality of negative electrodes stacked inside a secondary battery.
  • FIG. 4 is a cross-sectional view of a negative electrode for a lithium ion secondary battery according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a negative electrode for a lithium ion secondary battery according to a second embodiment of the present invention.
  • the negative electrode 200 for a lithium ion secondary battery according to the second embodiment of the present invention as shown in FIG. 4 includes a negative electrode current collector 210 and a first silver coating layer formed on one surface of the negative electrode current collector 210 ( 220), a first negative active material layer 230 formed on the first silver coating layer 220, a second silver coating layer 240 formed on the other surface of the negative electrode current collector 210, and the second It includes a second negative active material layer 250 formed on the silver coating layer 240.
  • the second negative active material layer 250 is additionally formed on the second silver coating layer 240. It has a difference in configuration, and since the first negative active material layer 230 and the second negative active material layer 250 are respectively disposed on both sides of the negative electrode current collector 210, it may be used as the double-sided negative electrode 200.
  • the second silver coating layer 240 is formed on the other surface of the negative electrode current collector 210 and is formed in the same manner as the first silver coating layer 220.
  • the second negative active material layer 250 is formed on the second silver coating layer 240 to absorb and release lithium ions, and is formed in the same manner as the first negative active material layer 230.
  • FIG. 5 is a process chart showing a method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 4.
  • the manufacturing method of the negative electrode for a lithium ion secondary battery of the present invention includes a carrier film (C) preparation step (S210) and a second negative electrode active material layer 250 on the carrier film (C) as shown in FIG.
  • the previously prepared negative electrode active material is applied to the carrier film (C) to a predetermined thickness.
  • the second negative active material layer 250 may be formed.
  • a firing process may be further performed.
  • the second silver coating layer 240 (S230), it is formed on the second negative electrode active material layer 250 as shown in FIG. 5(c), and the material and the layer forming method are the first silver coating layer 220 You can do the same as ).
  • the anode current collector 210 of a thin film can be easily formed through an electroplating process.
  • the second negative active material layer 250 is protected by the second silver coating layer 240, contamination by a plating solution in the plating process for forming the negative electrode current collector 210 is prevented.
  • FIG. 6 is a process diagram showing another method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 4.
  • the method of manufacturing a negative electrode for a lithium ion secondary battery of the present invention includes the step of preparing the negative electrode current collector 210 as shown in FIG. 6 (S21), and a silver coating layer 220 on both sides of the negative electrode current collector 210. , Forming 240) (S22), and forming negative active material layers 230 and 250 on the silver coating layers 220 and 240 (S23).
  • step (S23) of forming the negative active material layers 230 and 250 graphene is synthesized on the first silver coating layer 220 and the second silver coating layer 240 as shown in FIG. 6C to obtain a first negative active material.
  • the layer 230 and the second negative active material layer 250 are formed.
  • the first negative active material layer 230 and the second negative active material layer 250 are formed of graphene
  • FIG. 7 is a cross-sectional view of a negative electrode for a lithium ion secondary battery according to a third embodiment of the present invention.
  • a negative electrode for a lithium ion secondary battery according to a third embodiment of the present invention.
  • the negative electrode 300 for a lithium ion secondary battery includes a negative electrode current collector 310 and a negative active material layer 320 formed on one surface of the negative electrode current collector 310. ), and a silver coating layer 330 formed on the other surface of the negative electrode current collector 310.
  • the outermost negative electrode is disposed among the plurality of negative electrodes stacked inside the secondary battery. It can be used as a negative electrode, and since the silver coating layer 330 is formed on the surface where the negative active material layer 320 is not disposed, it is possible to prevent the negative electrode current collector 310 made of copper from being exposed to the outside and being oxidized. .
  • FIGS. 8 and 9 are process diagrams showing a method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 7.
  • the method of manufacturing a negative electrode for a lithium ion secondary battery according to the present invention includes the steps of preparing a carrier film (C) (S310) and forming a silver coating layer 330 on the carrier film (C), as shown in FIG. 8. (S320), forming a negative electrode current collector 310 on the silver coating layer 330 (S330), and forming a negative electrode active material layer 320 on the negative electrode current collector 310 (S340) And, including the step (S350) of removing the carrier film (C).
  • the carrier film (C) is removed from the carrier film (C) as shown in (e) of FIG. 8, and the silver coating layer 330, the negative electrode current collector 310, and the negative electrode active material layer
  • the single-sided cathode 300 composed of 320 may be separated.
  • the method of manufacturing a negative electrode for a lithium ion secondary battery according to the present invention includes a step (S360) and a bonding step (S370) of preparing a pair of negative electrodes as shown in FIG. It may contain more.
  • a pair of single-sided negative electrodes 300 are prepared as shown in FIG. 9(a), but the silver coating layer 330 of the pair of single-sided negative electrodes 300 ) Face each other.
  • a pair of single-sided cathodes 300 are heated and compressed in the thickness direction as shown in FIG. 9B to bond a pair of silver coating layers 330 to each other, thereby forming a double-sided cathode 300'. Can be manufactured.
  • the double-sided negative electrode 300 ′ manufactured as described above may be used as a negative electrode disposed between a pair of adjacent positive electrodes among a plurality of negative electrodes stacked inside a secondary battery.
  • FIG. 10 is a cross-sectional view of a negative electrode for a lithium ion secondary battery according to a fourth embodiment of the present invention. Detailed descriptions of the same configurations as those of the first, second, and third embodiments will be omitted below.
  • the negative electrode 400 for a lithium ion secondary battery according to the fourth embodiment of the present invention as shown in FIG. 10 includes a negative electrode current collector 410 and a first negative active material layer formed on one surface of the negative electrode current collector 410 420 and a second negative active material layer 430 formed on the other surface of the negative current collector 410.
  • the double-sided negative electrode 400 as described above may be used as a negative electrode disposed between a pair of adjacent positive electrodes among a plurality of negative electrodes stacked inside the secondary battery.
  • FIG. 11 is a process chart showing a method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 10.
  • the method of manufacturing a negative electrode for a lithium ion secondary battery of the present invention includes a carrier film (C) preparation step (S410) and a second negative electrode active material layer 430 on the carrier film (C), as shown in FIG. Forming (S420), forming a negative current collector 410 on the second negative active material layer 430 (S430), and a first negative active material layer 420 on the negative current collector 410 ) Forming a step (S440) and removing the carrier film (C) (S450).
  • the step of forming the second negative active material layer 430 includes preparing a negative active material and coating a negative active material.
  • a second negative active material layer 430 may be formed by coating the previously prepared negative active material on the carrier film C with a predetermined thickness as shown in FIG. 11B.
  • a negative electrode current collector made of copper (Cu) on the second negative active material layer 430 through an electroplating process as shown in FIG. 11(c) ( 410) can be formed to a thickness of 2 ⁇ 4 ⁇ m.
  • the first negative active material layer 420 (S440), it may be formed on the negative electrode current collector 410 in the same manner as the second negative active material layer 430 as shown in FIG. 11D. have.
  • the step of removing the carrier film (C) (S450) includes a peeling step of the carrier film (C).
  • the carrier film (C) is removed from the carrier film (C) as shown in (e) of FIG. 11, the second negative active material layer 430, the negative current collector 410, and The double-sided negative electrode 400 formed of the first negative active material layer 420 may be separated.
  • the double-sided negative electrode 400 manufactured as described above may be used as a negative electrode disposed between a pair of adjacent positive electrodes among a plurality of negative electrodes stacked inside a secondary battery.
  • FIG. 12 is a process chart showing another method of manufacturing the negative electrode for a lithium ion secondary battery shown in FIG. 10.
  • the method of manufacturing a negative electrode for a lithium ion secondary battery of the present invention includes preparing the negative electrode current collector 410 (S41) and forming the negative electrode active material layers (420,430) as shown in FIG. 12 (S42). do.
  • the step of forming the negative active material layer (S42) includes preparing a negative active material and coating the negative active material.
  • the negative active material manufacturing step in preparing the negative active material forming the first negative active material layer 420 and the second negative active material layer 430, only one of the first and second negative active material layers 420 and 430 It may be prepared to include silver or a silver alloy, or may be prepared to include silver or a silver alloy in both layers.
  • a first negative active material layer 420 and a second negative active material layer are coated with a predetermined thickness on both surfaces of the negative electrode current collector 410 by coating the negative active material prepared first as shown in FIG. 12B. 430 can be formed.
  • a firing process may be further performed.
  • Preparation Example 4 Composition for forming an anode active material layer
  • a composition for forming a negative active material layer was prepared in the same manner as in Preparation Examples 1 to 3 as shown in Table 1, except that a conductive inorganic binder was not added.
  • Example 1 Preparation of negative electrode for lithium ion secondary battery
  • a copper foil with a thickness of 12 ⁇ m sold as a negative electrode current collector was coated with a silver ink (TEC-PR-011 of Inc. Inc.) for forming a silver coating layer to a thickness of 12 ⁇ m to form an Ag coated Cu substrate [hereinafter referred to as AC-12].
  • AC-12 Ag coated Cu substrate
  • Example 2 Preparation of negative electrode for lithium ion secondary battery
  • Example 2 It was prepared in the same manner as in Example 1, except that a silver coating layer was not formed on the copper foil, and the composition for forming a negative active material layer according to Preparation Example 2 was coated on the copper foil.
  • Comparative Examples (a negative electrode active material layer formed in Preparation Example 4 that does not contain silver on a base copper foil having a thickness of 12 ⁇ m that is commercially available without a silver coating layer) and Example 1 (AC-12 with a silver coating layer does not contain silver.
  • a negative electrode active material layer was formed in Preparation Example 4) and Example 2 (a negative electrode active material layer was formed in Preparation Example 2 containing silver in a copper foil without a silver coating layer), and the presence or absence of change in charging characteristics was evaluated and analyzed. And shown in FIG. 17.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 음극 집전체와, 상기 음극 집전체의 일면에 형성되어 리튬 이온을 흡수 및 방출하는 적어도 하나의 음극 활물질층과, 상기 음극 집전체와 상기 음극 활물질층 사이에 개재되는 적어도 하나의 은 코팅층을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극에 관한 것이다.

Description

리튬이온 이차전지용 음극과 그 제조방법
본 발명은 리튬이온 이차전지용 음극과 그 제조방법에 관한 것으로서, 보다 상세하게는 음극 활물질층의 전기 전도성이 증가하게 되므로 음극 활물질층의 충/방전 효율을 향상시킬 수 있고, 우수한 유연성을 제공할 수 있으며, 층 간에 접착성 및 음극 활물질층의 접착성을 향상시킬 수 있는 리튬이온 이차전지용 음극과 그 제조방법에 관한 것이다.
또한, 음극 집전체에 은(Ag) 나노 입자 및/또는 은 착체 화합물(complex)을 포함하여 은 코팅층을 형성하는 경우, 구리 재질의 음극 집전체가 산화되는 것을 방지할 수 있으며, 음극 집전체의 산화에 의하여 음극 활물질층이 박리되는 현상을 방지할 수 있는 리튬이온 이차전지용 음극과 그 제조방법에 관한 것이다.
그리고, 은 코팅층이 전해 도금의 시드(seed) 역할을 하게 되므로 전해 도금 공정을 통해 박막의 음극 집전체를 용이하게 형성할 수 있는 리튬이온 이차전지용 음극과 그 제조방법에 관한 것이다.
또한, 캐리어 필름(C)을 이용하여 음극을 제조하는 경우 작업성을 현저히 향상시킬 수 있는 리튬이온 이차전지용 음극과 그 제조방법에 관한 것이다.
현재 리튬 전지는 에너지 저장 장치로써 많은 분야에서 활발히 사용되고 있으며 그 분야나 활용 정도가 점차 증가하고 있다. 특히 보다 안전하고 대용량을 가지는 리튬 전지 소재에 대한 연구가 활발히 진행되고 있는데, 이중 전지를 구성하는 요소 중 하나인 음극에서는 기존의 흑연음극보다 더 높은 에너지 밀도를 가지는 전극 구현에 많은 관심을 보이고 있다.
실리콘은 기존 흑연보다 이론적 용량이 10배 가까이 높아서 흑연을 대체하여 음극제로 사용하려는 시도가 많이 진행되고 있지만 일반적인 실리콘 음극은 충/방전이 반복적으로 발생하면서 용량이 급격히 저하하거나 전극이 파괴되는 현상이 관찰되어 산업에서 직접적으로 사용되지 못하고 있는 실정이다. 이러한 용량 감소 및 전극 파괴현상은 리튬 충전 시 큰 부피 팽창을 가지는 실리콘의 특성에 의해서 발생된다.
실리콘은 리튬 이온 2차 전지를 충전하면 300 % 이상으로 부피 팽창하며 이러한 큰 부피팽창에 의하여 전극에서는 응력이 발생하게 되며 그 결과, 충방전 사이클 특성이 저하되는 문제가 있다.
또한, 실리콘의 큰 부피 팽창으로 전극 활물질에 전기적 영향이 집중되어 과부하 용량이 발생되고, 전극에서 열화 현상이 일어나 리튬 이온 2차 전지의 수명, 용량, 충/방전 사이클의 특성이 저하되는 문제가 있다.
한편, 리튬 이온 2차 전지에서, 구리 포일을 음극 집전체로 사용할 경우, 전해질 용액에서는 안정하나 충전 반응 시 전압이 높아지면 구리 표면의 일부가 산화되어 용해되므로 구리 집전체와 활물질 사이의 분리에 의한 밀착력이 떨어지게 되므로 전지의 성능이 저하되는 문제점이 있다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 음극 활물질층의 전기 전도성이 증가하게 되므로 음극 활물질층의 충/방전 효율을 향상시킬 수 있고, 우수한 유연성을 제공할 수 있으며, 층 간에 접착성 및 음극 활물질층의 접착성을 향상시킬 수 있는 리튬이온 이차전지용 음극과 그 제조방법을 제공함에 있다.
또한, 음극 집전체에 은(Ag) 나노 입자 및/또는 은 착체 화합물(complex)을 포함하여 은 코팅층을 형성하는 경우, 구리 재질의 음극 집전체가 산화되는 것을 방지할 수 있으며, 음극 집전체의 산화에 의하여 음극 활물질층이 박리되는 현상을 방지할 수 있는 리튬이온 이차전지용 음극과 그 제조방법을 제공함에 있다.
그리고, 은 코팅층이 전해 도금의 시드(seed) 역할을 하게 되므로 전해 도금 공정을 통해 박막의 음극 집전체를 용이하게 형성할 수 있는 리튬이온 이차전지용 음극과 그 제조방법을 제공함에 있다.
또한, 캐리어 필름(C)을 이용하여 음극을 제조하는 경우 작업성을 현저히 향상시킬 수 있는 리튬이온 이차전지용 음극과 그 제조방법을 제공함에 있다
상기 목적은, 본 발명에 따르면, 음극 집전체와, 상기 음극 집전체의 일면에 형성되어 리튬 이온을 흡수 및 방출하는 적어도 하나의 음극 활물질층과, 상기 음극 집전체와 상기 음극 활물질층 사이에 개재되는 적어도 하나의 은 코팅층을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극을 제공하는 것이다.
상기 음극 활물질층은, 흑연, 탄소나노튜브, 그래핀, 실리콘, 산화아연(ZnO), 이산화티타늄(TiO2), 망간(Mn), 및 철(Fe) 중 적어도 어느 하나의 활물질재료 입자와 유기바인더를 포함할 수 있다.
상기 음극 활물질층은, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 전도성 무기 바인더를 더 포함하며, 상기 전도성 무기 바인더는, 나노입자 또는 착체 화합물(complex)을 포함할 수 있다.
상기 음극 활물질층은, 상기 활물질재료 입자와, 상기 유기바인더와, 상기 전도성 무기 바인더를 포함하는 음극 활물질층 형성용 조성물로 형성되며, 상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~99중량%, 상기 유기 바인더 0.5~5중량%, 및 상기 전도성 무기 바인더 0.1~70중량%를 포함할 수 있다.
상기 음극 활물질층은, 상기 활물질재료 입자와, 상기 유기바인더와, 상기 전도성 무기 바인더와, 점도 조절제를 포함하는 음극 활물질층 형성용 조성물로 형성되며, 상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~98중량%, 상기 유기 바인더 0.5~5중량%, 상기 전도성 무기 바인더 0.1~70중량%, 및 상기 점도 조절제 0.5~3중량%를 포함할 수 있다.
상기 음극 활물질층은, 상기 활물질재료 입자 표면에 상기 전도성 무기 바인더를 부착시켜, 상기 전도성 무기 바인더가 표면처리된 상기 활물질재료 입자를 포함할 수 있다.
상기 활물질재료 입자 표면에 상기 전도성 무기 바인더를 부착시키되, 전도성 금속 잉크를 사용하여 상기 전도성 무기 바인더를 부착시키며, 상기 전도성 금속 잉크 중에, 상기 금속 함유량은 0초과~70중량%이하일 수 있다.
상기 활물질재료 입자 전체 표면적 100%를 기준으로, 상기 활물질재료 입자에 상기 전도성 무기 바인더가 코팅된 표면적이 0초과~90%이하일 수 있다.
상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료 입자의 첨가량 보다 9배 이하로 첨가하되, 상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료의 표면적 보다 적은 양을 사용할 수 있다.
상기 음극 집전체의 타면에 형성되는 적어도 하나의 은 코팅층을 더 포함할 수 있다.
상기 은 코팅층은, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 나노입자 또는 착체 화합물(complex)을 포함하여 형성될 수 있다.
상기 음극 집전체의 타면에 형성된 은 코팅층 상에 형성되어, 리튬 이온을 흡수 및 방출하는 적어도 하나의 음극 활물질층을 더 포함할 수 있다.
한편, 본 발명에 따르면, 음극 집전체와, 상기 음극 집전체의 일면에 형성되어 리튬 이온을 흡수 및 방출하는 적어도 하나의 음극 활물질층과, 상기 음극 집전체의 타면에 형성된 적어도 하나의 은 코팅층을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극을 제공한다.
상기 음극 활물질층은, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 전도성 무기 바인더를 더 포함하며,
상기 전도성 무기 바인더는, 나노입자 또는 착체 화합물(complex)을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
또한, 본 발명에 따르면, 음극 집전체와, 상기 음극 집전체의 양면에 각각 형성되며, 전도성 무기 바인더를 포함하는 적어도 한 쌍의 음극 활물질층을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극을 제공한다.
상기 전도성 무기 바인더는, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 나노입자 또는 착체 화합물(complex)을 포함할 수 있다.
상기 음극 활물질층은, 활물질재료 입자와, 유기바인더와, 상기 전도성 무기 바인더를 포함하는 음극 활물질층 형성용 조성물로 형성되며, 상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~99중량%, 상기 유기 바인더 0.5~5중량%, 및 상기 전도성 무기 바인더 0.1~70중량%를 포함할 수 있다.
상기 음극 활물질층은, 활물질재료 입자와, 유기바인더와, 상기 전도성 무기 바인더와, 점도 조절제를 포함하는 음극 활물질층 형성용 조성물로 형성되며, 상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~98중량%, 상기 유기 바인더 0.5~5중량%, 상기 전도성 무기 바인더 0.1~70중량%, 및 상기 점도 조절제 0.5~3중량%를 포함할 수 있다.
상기 음극 활물질층은, 활물질재료 입자 표면에 상기 전도성 무기 바인더를 부착시켜, 상기 전도성 무기 바인더가 표면처리된 상기 활물질재료 입자를 포함할 수 있다.
상기 활물질재료 입자 표면에 상기 전도성 무기 바인더를 부착시키되, 전도성 금속 잉크를 사용하여 상기 전도성 무기 바인더를 부착시키며, 상기 전도성 금속 잉크 중에, 상기 금속 함유량은 0초과~70중량%이하일 수 있다.
상기 활물질재료 입자 전체 표면적 100%를 기준으로, 상기 활물질재료 입자에 상기 전도성 무기 바인더가 코팅된 표면적이 0초과~90%이하일 수 있다.
상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료 입자의 첨가량 보다 9배 이하로 첨가하되, 상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료의 표면적 보다 적은 양을 사용할 수 있다.
한편, 본 발명에 따르면, 캐리어 필름 준비 단계와, 상기 캐리어 필름 상에 은 코팅층을 형성하는 단계와, 상기 은 코팅층 상에 음극 집전체를 형성하는 단계와, 상기 음극 집전체 상에 음극 활물질층을 형성하는 단계와, 상기 캐리어 필름을 제거하는 단계를 포함할 수 있다.
상기 음극 집전체를 형성하는 단계에서는 구리를 전해 도금하여 상기 은 코팅층 상에 음극 집전체를 형성할 수 있다.
상기 음극 활물질층을 형성하는 단계에 앞서, 상기 음극 집전체 상에 은 코팅층을 형성하는 단계를 수행할 수 있다.
상기 캐리어 필름을 제거하는 단계 이후, 상기 캐리어 필름으로부터 분리된 한 쌍의 단면 음극을 준비하는 단계와, 상기 한 쌍의 단면 음극의 표면에 노출된 은 코팅층을 상호 접합시키는 단계를 더 포함할 수 있다.
상기 상호 접합시키는 단계에서는, 한 쌍의 단면 음극을 가열압착하여 상호 접합시키거나, 한 쌍의 단면 음극을 열경화성 또는 열가소성 수지를 도포하여 상호 접합시킬 수 있다.
한편, 본 발명에 따르면, 캐리어 필름 준비 단계와, 상기 캐리어 필름 상에 음극 집전체를 형성하는 단계와, 상기 음극 집전체 상에 은 코팅층을 형성하는 단계와, 상기 은 코팅층 상에 음극 활물질층을 형성하는 단계와, 상기 캐리어 필름을 제거하는 단계와, 상기 캐리어 필름으로부터 분리된 한 쌍의 단면 음극을 준비하는 단계와, 상기 한 쌍의 단면 음극의 표면에 노출된 한 쌍의 음극 집전체 중 적어도 일면에 열경화성 또는 열가소성 수지를 도포하여 상호 접합시키는 단계를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법을 제공하는 것이다.
또한, 본 발명에 따르면, 캐리어 필름 준비 단계와, 상기 캐리어 필름 상에 음극 활물질층을 형성하는 단계와, 상기 음극 활물질층에 음극 집전체를 형성하는 단계와, 상기 음극 집전체 상에 음극 활물질층을 형성하는 단계와, 상기 캐리어 필름을 제거하는 단계를 포함하며, 상기 음극 활물질층 중 적어도 어느 한 층은, 전도성 무기 바인더를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법을 제공하는 것이다.
상기 음극 집전체를 형성하는 단계에 앞서, 상기 음극 활물질층 상에 은 코팅층을 형성하는 단계를 수행할 수 있다.
상기 음극 집전체 상에 상기 음극 활물질층을 형성하는 단계에 앞서, 상기 음극 집전체 상에 은 코팅층을 형성하는 단계를 수행할 수 있다.
한편, 본 발명에 따르면, 음극 집전체를 준비하는 단계와, 상기 음극 집전체의 양면에 각각 음극 활물질층을 형성하는 단계를 포함하며, 상기 음극 활물질층 중 적어도 어느 한 층은 전도성 무기 바인더를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법을 제공하는 것이다.
또한, 본 발명에 따르면, 음극 집전체를 준비하는 단계와, 상기 음극 집전체의 양면에 각각 은코팅층을 형성하는 단계와, 상기 각각의 은코팅층에 음극활물질층을 형성하는 단계를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법을 제공하는 것이다.
그리고, 본 발명에 따르면, 캐리어 필름을 준비하는 단계와, 상기 캐리어 필름 상에 은 코팅을 형성하는 단계와, 상기 은 코팅층 상에 음극 집전체를 형성하는 단계와, 상기 음극 집전체 상에 음극 활물질층을 형성하는 단계와, 상기 캐리어 필름을 제거하는 단계를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법을 제공하는 것이다.
상기 캐리어 필름을 제거하는 단계 이후, 상기 캐리어 필름으로부터 분리된 한 쌍의 단면 음극을 준비하는 단계와, 상기 한 쌍의 단면 음극의 표면에 노출된 은 코팅층을 상호 접합시키는 단계를 더 포함할 수 있다.
상기 음극 활물질층은 전도성 무기 바인더를 포함할 수 있다.
상기 전도성 무기 바인더는, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 나노입자 또는 착체 화합물(complex)을 포함할 수 있다.
상기 음극 활물질층은, 상기 전도성 무기 바인더를 활물질재료 입자 표면에 부착시켜, 상기 전도성 무기 바인더가 표면처리된 상기 활물질재료 입자를 포함할 수 있다
본 발명에 따르면, 음극 활물질층의 전기 전도성이 증가하게 되므로 음극 활물질층의 충/방전 효율을 향상시킬 수 있고, 우수한 유연성을 제공할 수 있으며, 층 간에 접착성 및 음극 활물질층의 접착성을 향상시킬 수 있게 된다.
또한, 음극 집전체에 은(Ag) 나노 입자 및/또는 은 착체 화합물(complex)을 포함하여 은 코팅층을 형성하는 경우, 구리 재질의 음극 집전체가 산화되는 것을 방지할 수 있으며, 음극 집전체의 산화에 의하여 음극 활물질층이 박리되는 현상을 방지할 수 있다.
그리고, 은 코팅층이 전해 도금의 시드(seed) 역할을 하게 되므로 전해 도금 공정을 통해 박막의 음극 집전체를 용이하게 형성할 수 있다.
한편, 캐리어 필름(C)을 이용하여 음극을 제조하는 경우 작업성을 현저히 향상시킬 수 있게 된다.
도 1은 본 발명의 제1실시예에 따른 리튬이온 이차전지용 음극의 단면도,
도 2 및 도 3은 도 1에 도시된 리튬이온 이차전지용 음극의 제조방법을 나타낸 공정도,
도 4는 본 발명의 제2실시예에 따른 리튬이온 이차전지용 음극의 단면도,
도 5는 도 4에 도시된 리튬이온 이차전지용 음극의 제조방법을 나타낸 공정도,
도 6은 도 4에 도시된 리튬이온 이차전지용 음극의 다른 제조방법을 나타낸 공정도,
도 7은 본 발명의 제3실시예에 따른 리튬이온 이차전지용 음극의 단면도,
도 8 및 도 9는 도 7에 도시된 리튬이온 이차전지용 음극의 제조방법을 나타낸 공정도,
도 10은 본 발명의 제4실시예에 따른 리튬이온 이차전지용 음극의 단면도,
도 11은 도 10에 도시된 리튬이온 이차전지용 음극의 제조방법을 나타낸 공정도이고,
도 12는 도 10에 도시된 리튬이온 이차전지용 음극의 다른 제조방법을 나타낸 공정도,
도 13은, 활물질재료 입자에 은(Ag)을 코팅한 후, 은(Ag) 함유량 별로 확인한 SEM 사진,
도 14는, 음극집전체에 은 코팅층을 형성한 후(AC-12), 그 표면 확인한 SEM 사진,
도 15는, 음극집전체에 은을 포함하지 않는 음극 활물질층 형성한 후, 그 표면 확인한 SEM 사진,
도 16 및 도 17은, 비교예, 실시예1, 실시예 2를, 충전 특성 변화 유무를 비교 평가 분석한 결과이다.
* 부호의 설명 *
110,210,310,410: 음극 집전체
120,220: 제1 은 코팅층
130: 음극 활물질층
140,240: 제2 은 코팅층
230,420: 제1 음극 활물질층
250,430: 제2 음극 활물질층
320: 음극 활물질층
330: 은 코팅층
C: 캐리어 필름
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.
이하, 첨부한 도면을 참조하여 본 발명의 제1실시예에 따른 리튬이온 이차전지용 음극에 대하여 상세하게 설명한다.
첨부도면 중, 도 1은 본 발명의 제1실시예에 따른 리튬이온 이차전지용 음극의 단면도이다.
도 1에 도시된 바와 같은 본 발명의 제1실시예에 따른 리튬이온 이차전지용 음극(100)은 음극 집전체(110), 상기 음극 집전체(110)의 일면에 형성되는 제1 은 코팅층(120), 상기 제1 은 코팅층(120) 상에 형성되는 음극 활물질층(130) 및 상기 음극 집전체(110)의 타면에 형성되는 제2 은 코팅층(140)을 포함한다.
상기 음극 집전체(110)는 음극 활물질층(130)에서 발생되는 전자를 외부로 흐를 수 있는 경로를 형성하고 상기 음극 활물질층(130)에서 발생되는 열을 외부로 방열하는 것으로서, 구리(Cu) 재질의 박막 호일(foil)로 이루어지며, 상기 음극 집전체(110)의 두께는 2 ~ 4㎛로 설정되는 것이 바람직하다. 두께는 이와 같이 박막으로 형성할 수 있으나 이로 한정되는 것은 아니며 설계 조건에 따라 두께를 다양하게 조절할 수 있다.
상기 제1 은 코팅층(120)은 상기 음극 집전체(110)의 일면에 형성된다. 이러한 제1 은 코팅층(120)은, 은(Ag) 또는 은(Ag)합금으로 형성될 수 있고, 은(Ag) 또는 은(Ag)합금 나노 입자 및/또는 착체 화합물(complex)을 포함하여 형성할 수 있으며, 상기 음극 집전체(110)의 일면에 소정 두께로 코팅된다. 상기 은(Ag)합금은, Mg(마그네슘), Al(알루미늄), Ti(티타늄), V(바나듐), Cr(크롬), Mn(망간), Fe(철), Co(코발트), Ni(니켈), Zn(아연), Ge(게르마늄), Zr(지르코늄), Nb(니오브), Mo(몰리브덴), Ru(루테늄), In(인듐), Sn(주석), Sb(안티몬), Ta(탄탈), W(텅스텐), Pb(납) 및 구리(Cu)에서 선택되는 적어도 1종의 금속을 포함하여 형성될 수 있다.
상기 음극 활물질층(130)은 상기 제1 은 코팅층(120) 상에 형성되어 리튬 이온을 흡수 및 방출하는 것으로서, 활물질재료 입자 및 유기 바인더를 포함할 수 있다.
상기 활물질재료 입자로는, 흑연, 탄소나노튜브, 그래핀, 실리콘, 산화아연(ZnO), 이산화티타늄(TiO2), 망간(Mn), 철(Fe) 중 적어도 어느 하나를 포함할 수 있다. 상기 활물질재료 이외에도 본 기술분야에서 사용되는 다양한 다른 활물질재료 또한 사용될 수 있다.
상기 유기 바인더로는 PVDF(polyvinylidene difluoride) 또는 SBR(Styrene Butadiene Rubber)을 포함하는 것이 바람직할 수 있으나, 이로 한정되는 것은 아니며, 다양한 유기 바인더를 적용할 수 있다.
한편, 상기 음극 활물질층(130)은, 전도성 무기 바인더를 더 포함할 수 있으며, 이에 상기 음극 활물질층(130)은, 활물질재료 입자와, 유기 바인더와, 전도성 무기 바인더를 포함하여, 형성될 수 있다.
상기 전도성 무기 바인더의 경우, 금속, 금속 합금, 및 전도성 금속 산화물 중에서 선택된 1종 이상을 포함할 수 있으며, 전도성 금속 산화물의 경우, Zn(아연)산화물, Ru(루테늄)산화물, In(인듐)산화물 등으로 다양한 전도성 금속 산화물을 사용할 수 있다. 그리고 금속의 합금 시에도 전술한 다양한 전도성 금속산화물을 사용할 수 있다.
상기 전도성 무기 바인더로는, 은(Ag) 또는 은(Ag)합금을 사용할 수 있고, 은(Ag) 또는 은(Ag)합금 나노 입자 및/또는 착체 화합물(complex)을 포함할 수 있다. 여기서, 상기 전도성 무기 바인더로 은 나노 입자를 포함하는 경우, 은 나노 입자 간의 공극에 음극재의 팽창에 따른 공간 제공과 리튬 이온의 이동 통로를 제공할 수 있으므로, 리튬 이온의 이동을 더욱 활성화시킬 수 있다.
상기 은(Ag)합금으로는, Mg(마그네슘), Al(알루미늄), Ti(티타늄), V(바나듐), Cr(크롬), Mn(망간), Fe(철), Co(코발트), Ni(니켈), Zn(아연), Ge(게르마늄), Zr(지르코늄), Nb(니오브), Mo(몰리브덴), Ru(루테늄), In(인듐), Sn(주석), Sb(안티몬), Ta(탄탈), W(텅스텐), Pb(납) 및 구리(Cu)에서 선택되는 적어도 1종의 금속을 포함하여 형성될 수 있다. 또한 은의 합금 대상으로는 Zn(아연)산화물, Ru(루테늄)산화물, In(인듐)산화물 등의 다양한 전도성 금속 산화물을 사용할 수 있다.
한편, 한 예로서 전도성 무기 바인더로 은(Ag) complex와 아연(Zn) complex을 포함하는 경우 이를 열처리하게 되면 분해되면서 은(Ag)과 아연(Zn)의 합금을 형성하게 되고 이를 사용할 수 있으나, 이로 한정되는 것은 아니다. 또한 은과 아연 산화물로 합금을 형성할 수도 있다.
이와 같이, 상기 음극 활물질층(130)을 형성함에 있어서, 전도성 무기 바인더가 포함되는 경우, 활물질재료 입자 및 유기 바인더에, 전도성 금속 잉크를 첨가하여 형성할 수 있는데 전도성 금속 잉크의 예로서 전도성 금속잉크, 전도성 금속 합금 잉크, 전도성 금속 산화물 잉크 중 선택된 1종 이상을 사용할 수 있다.
한 예로서, 은(Ag) 또는 은(Ag)합금의 나노입자를 포함하는 잉크 및/또는 은(Ag) 또는 은(Ag)합금 complex 잉크를 첨가하여 형성할 수 있다.
또는 상기 음극 활물질층(130)을 형성함에 있어서, 전도성 무기 바인더가 포함되는 경우, 도 13에 도시된 바와 같이, 활물질재료 입자에 은(Ag) 또는 은(Ag)합금을 코팅하여, 첨가할 수도 있다. 상기 활물질재료 입자 전체 표면적 100%를 기준으로, 상기 활물질재료 입자에 상기 전도성 무기 바인더가 코팅된 표면적이 0초과~90%이하일 수 있다. 그리고 상기 전도성 무기 바인더가 코팅된 표면적이 50%인 것이 가장 바람직할 수 있다.
또 다른 한 예로 활물질재료 입자를 은(Ag)으로 코팅하기 위해, 은 잉크를 사용하는 경우 은 잉크 중 은의 함량이 0초과~70중량%이하로 포함될 수 있으며, 바람직하게는 20중량%이하, 또한 5중량%이하, 더욱 바람직하게는 1.50중량%이하, 가장 바람직하게는 0초과~0.75중량%로 포함될 수 있다. 여기서 은 잉크로 설명하였으나 이로 한정되는 것은 아니고 전도성 금속 잉크의 예로서 전도성 금속잉크, 전도성 금속 합금 잉크, 전도성 금속 산화물 잉크 중 선택된 1종 이상을 사용할 수 있다.
이처럼 음극활물질의 표면에 전도성 무기 바인더로서 은 나노 및/또는 은 착체 화합물을 부착시키는 공정을 거친 은 표면 처리 음극활물질을 사용하면 더욱 효과적이다.
그리고, 상기 음극 활물질층(130)을 형성함에 있어서, 전도성 무기 바인더를 포함하는 경우, 활물질재료 입자, 유기 바인더, 및 전도성 무기 바인더를 포함하는 음극 활물질층 형성용 조성물 총 100중량%에 대해, 전도성 무기 바인더는, 0.1~70중량%로 첨가되는 것이 바람직하며, 0.3~5중량%로 첨가되는 것이 더욱 바람직할 수 있다.
예컨대 상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~99중량%, 상기 유기 바인더 0.5~5중량%, 및 상기 전도성 무기 바인더 0.1~70중량%를 포함할 수 있다.
또한, 상기 음극 활물질층 형성용 조성물에 있어서, 첨가제로 점도조절제를 더 포함할 수도 있다. 여기서, 점도조절제로는, 카르복시메틸 셀룰로오스(CMC)를 사용할 수 있으며, 이외에 본 기술분야에서 사용되는 다양한 점도조절제를 적용할 수도 있다.
상기 점도조절제를 더 포함하는 경우, 활물질재료 입자, 유기 바인더, 및 점도 조절제를 혼합한 다음(수성 에멀젼), 은(Ag) 또는 은(Ag)합금의 나노입자를 포함하는 잉크 및/또는 은(Ag) 또는 은(Ag)합금 complex 잉크를 첨가하여, 상기 음극 활물질층 형성용 조성물을 형성할 수 있다. 앞서 설명한 바와 같이, 활물질재료 입자에 은(Ag) 또는 은(Ag)합금을 코팅하여, 첨가할 수도 있다.
여기서, 상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~98중량%, 상기 유기 바인더 0.5~5중량%, 상기 전도성 무기 바인더 0.1~70중량%, 상기 점도 조절제 0.5~3중량%를 포함하는 것이 바람직할 수 있다.
전술한 바와 같이, 음극 활물질층(130)이 전도성 무기 바인더를 포함하는 경우, 음극 활물질층(130)의 전기 전도성이 증가하게 되므로 음극 활물질층(130)의 충/방전 효율을 향상시킬 수 있고, 우수한 유연성을 제공할 수 있으며, 층 간에 접착성 및 음극 활물질층의 접착성을 향상시킬 수 있게 된다.
한편, 상기 전도성 무기 바인더는 상기 활물질재료 입자가 전해액과 접촉할 수 있도록 활물질재료 입자를 완전하게 둘러싸지 않는 것이 바람직할 수 있으며, 이를 위해, 전도성 무기 바인더의 첨가량은, 활물질재료의 표면적 보다 적은 양을 사용하는 것이 바람직할 수 있다. 구체적으로 설명하면, 상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료 입자의 첨가량 보다 9배 이하로 첨가하되, 상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료의 표면적 보다 적은 양을 사용하는 것이 바람직할 수 있다.
예컨대, 상기 활물질재료 입자 전체 표면적 100%를 기준으로, 상기 활물질재료 입자에 상기 전도성 무기 바인더가 코팅된 표면적이 0초과~90%이하일 수 있다. 그리고 상기 전도성 무기 바인더가 코팅된 표면적이 50%인 것이 가장 바람직할 수 있다.
상기 제2 은 코팅층(140)은 상기 음극 집전체(110)의 타면에 형성된다. 이러한 제2 은 코팅층(140)은, 은(Ag) 또는 은(Ag)합금을 사용하여 형성될 수 있고, 은(Ag) 또는 은(Ag)합금 나노 입자 및/또는 착체 화합물(complex)을 포함할 수 있으며, 상기 음극 집전체(110)의 타면에 소정 두께로 코팅된다.
상기 은(Ag)합금은, Mg(마그네슘), Al(알루미늄), Ti(티타늄), V(바나듐), Cr(크롬), Mn(망간), Fe(철), Co(코발트), Ni(니켈), Zn(아연), Ge(게르마늄), Zr(지르코늄), Nb(니오브), Mo(몰리브덴), Ru(루테늄), In(인듐), Sn(주석), Sb(안티몬), Ta(탄탈), W(텅스텐), Pb(납) 및 구리(Cu)에서 선택되는 적어도 1종의 금속을 포함하여 형성될 수 있다.
이와 같이 상기 음극 집전체(110)의 양면에 제1 은 코팅층(120) 및 제2 은 코팅층(140)이 코팅되는 경우 구리 재질의 음극 집전체(110)가 산화되는 것을 방지할 수 있으며, 이에 따라 음극 집전체(110)의 산화에 의하여 상기 음극 활물질층(130)이 박리되는 현상을 방지할 수 있다.
상기와 같이, 음극 집전체(110)의 일측에만 음극 활물질층(130)이 배치되어 단면 음극(100)을 구성하는 경우에는, 이차전지의 내부에 적층되는 다수의 음극 중에서 가장 최 외곽에 배치되는 음극으로 이용될 수 있으며, 상기 음극 활물질층(130)이 배치되지 않은 면에는 제2 은 코팅층(140)이 형성되어 있으므로 구리 재질의 음극 집전체(110)가 외부로 노출되어 산화되는 것을 방지할 수 있다.
첨부도면 중, 도 2 및 도 3은 도 1에 도시된 리튬이온 이차전지용 음극의 제조방법을 나타낸 공정도이다. 앞서 설명한 각 구성에 대한 설명은 동일하게 적용되므로 동일한 구성에 대한 동일 내용은 이하에서 생략 하기로 한다.
이러한 본 발명의 리튬이온 이차전지용 음극의 제조방법은, 도 2에 도시된 바와 같이 캐리어 필름(C) 준비 단계(S110)와, 상기 캐리어 필름(C) 상에 제2 은 코팅층(140)을 형성하는 단계(S120)와, 상기 제2 은 코팅층(140) 상에 음극 집전체(110)를 형성하는 단계(S130)와, 상기 음극 집전체(110) 상에 제1 은 코팅층(120)을 형성하는 단계(S140)와, 상기 제1 은 코팅층(120) 상에 음극 활물질층(130)을 형성하는 단계(S150)와, 상기 캐리어 필름(C)을 제거하는 단계(S160)를 포함한다.
상기 캐리어 필름(C) 준비 단계(S110)에서는, 도 2의 (a)와 같이 PI(Polyimide), 폴리에스테르(Polyester), PET(polyethylene terephthalate), PEN(폴리에틸렌나프탈레이트, polyethylene naphthalate), 또는 나일론 등으로 구성된 절연 재질의 캐리어 필름(C)을 준비한다. 이외에도 이형성을 가지고 있는 필름이면 모두 사용할 수 있음은 물론이다.
상기 제2 은 코팅층(140)을 형성하는 단계(S120)에서는, 도 2의 (b)와 같이 스퍼터링, 화학적증기증착, 무전해도금, 전해도금, 코팅, 딥핑 등의 공정을 통해 상기 캐리어 필름(C) 상에 은(Ag)이나 은(Ag)합금으로 나노 입자 및/또는 착체 화합물(complex)을 포함하는 제2 은 코팅층(140)을 형성하며, 필요에 따라 건조, 경화 등의 공정을 추가로 수행한다.
상기 음극 집전체(110)를 형성하는 단계(S130)에서는, 도 2의 (c)와 같이 전해 도금 공정을 통해 상기 제2 은 코팅층(140) 상에 구리(Cu) 재질의 음극 집전체(110)를 2 ~ 4㎛의 두께로 형성한다. 두께는 이와 같이 박막으로 형성할 수 있으나 이로 한정되는 것은 아니며 설계 조건에 따라 두께를 다양하게 조절할 수 있다. 여기서, 제2 은 코팅층(140)이 전해 도금의 시드(seed) 역할을 하게 되므로 전해 도금 공정을 통해 박막의 음극 집전체(110)를 용이하게 형성할 수 있다.
여기서, 기존에 음극 집전체를 박막으로 형성하고자 하는 경우 박막 형성 공정에 어려움이 있어 작업성이 떨어진다는 문제가 있었으나 본 발명에서와 같이 캐리어 필름을 사용하는 경우 손쉽게 음극 집전체를 박막으로 형성하는 공정이 가능할 수 있어 작업성을 현저히 향상시킬 수 있으며, 캐리어 필름의 제거 시 박리가 용이하며, 음극 집전체를 용이하게 박막으로 형성할 수 있음에 따라 음극의 전체부피를 슬림하게 구현할 수 있기에 고용량 리튬이온 이차전지용 음극을 제공할 수 있게 된다.
상기 제1 은 코팅층(120)을 형성하는 단계(S140)에서는, 도 2의 (d)와 같이 스퍼터링, 화학적증기증착, 무전해도금, 전해도금, 코팅, 딥핑 등의 공정을 통해 상기 음극 집전체(110) 상에 은(Ag)이나 은(Ag)합금으로 나노 입자 및/또는 착체 화합물(complex)을 포함하는 제1 은 코팅층(120)을 형성하며, 필요에 따라 건조, 경화 등의 공정을 추가로 수행한다.
상기 음극 활물질층(130)을 형성하는 단계(S150)는 음극 활물질 제조 단계 및 음극 활물질 코팅 단계를 포함한다.
상기 음극 활물질 제조 단계에서는, 활물질재료 입자 및 유기 바인더를 혼합하여 음극활물질을 제조할 수 있으며, 전도성 무기 바인더를 더 포함하여 활물질재료 입자, 유기바인더, 및 전도성 무기 바인더를 혼합하여 제조할 수도 있다. 여기에 점도조절제를 더 포함할 수도 있다.
상기 음극 활물질 코팅 단계에서는, 도 2의 (e)와 같이 먼저 제조된 음극 활물질을 제1 은 코팅층(120) 상에 소정 두께로 코팅하여 음극 활물질층(130)을 형성할 수 있다. 그리고 음극 활물질의 코팅 후에는 소성 공정을 추가로 더 수행할 수도 있다.
다음으로 상기 캐리어 필름(C)을 제거하는 단계(S160)는, 캐리어 필름(C) 박리 단계를 포함한다.
상기 캐리어 필름(C) 박리 단계에서는, 도 2의 (f)와 같이 캐리어 필름(C)을 제거하여 상기 캐리어 필름(C)으로부터 제2 은 코팅층(140), 음극 집전체(110), 제1 은 코팅층(120) 및 음극 활물질층(130)으로 구성된 단면 음극(100)을 분리시킬 수 있다.
이와 같이, 제2은 코팅층(140)을 캐리어 필름(C)에 직접 접촉되게 형성할 수 있도록, 리튬이온 이차전지용 음극의 제조 시 캐리어 필름(C)을 사용하게 되면, 상기 캐리어 필름(C)의 이형제에 의해서, 및/또는 캐리어 필름(C)에 직접 접촉된 제2은 코팅층을 소성하는 경우 형성되는 입자에 의해서, 이형력이 증가되어, 제2 은 코팅층(140)이 캐리어 필름(C)으로부터 쉽게 박리될 뿐만 아니라, 캐리어 필름(C)을 박리하는 힘에 의해 상기 단면 음극(100)을 구성하는 다수의 층들이 서로 분리되는 것을 방지할 수 있다. 또한 이와 같이 캐리어 필름(C)을 이용하여 음극을 제조하는 경우 작업성을 현저히 향상시킬 수 있게 된다.
상기와 같이 제조된 단면 음극(100)은 이차전지의 내부에 적층되는 다수의 음극 중에서, 가장 최 외곽에 배치되는 음극으로 이용될 수 있다.
한편, 본 발명의 리튬이온 이차전지용 음극의 제조방법은 양면 음극(100')을 제조하기 위하여, 도 3에 도시된 바와 같은 한 쌍의 단면 음극(100)을 준비하는 단계(S170)와 접합 단계(S180)를 더 포함할 수 있다.
구체적으로, 상기 한 쌍의 단면 음극(100)을 준비하는 단계(S170)에서는, 도 3의 (a)와 같이 한 쌍의 단면 음극(100)을 준비하되, 한 쌍의 단면 음극(100)의 제2 은 코팅층(140)이 서로 마주하도록 배치한다.
이어 접합 단계(S180)에서는, 도 3의 (b)와 같이 한 쌍의 단면 음극(100)을 두께 방향으로 가열압착하여 제2 은 코팅층(140)을 서로 접합함으로써 양면 음극(100')을 제조할 수 있다. 이때, 고주파를 이용하여 350도의 온도로 순간 가열을 하면 제2 은 코팅층(140)이 용융되면서 양측 단면 음극(100)이 접합될 수 있으며, 동시에 구리 재질의 음극 집전체(110)가 산화되는 것을 최소화할 수 있다. 아울러, 상기 접합 공정은 진공 챔버 내에서 이루어지는 것도 바람직하다. 이처럼 한 쌍의 제2 은 코팅층(140)이 직접 접촉/접합되도록 가열압착하여 양면 음극(100')을 제조할 수도 있고, 한 쌍의 단면 음극(100)을 접합하기 위해 그 사이 일면 또는 양면에 열가소성 수지 또는 열경화성 수지를 도포하여 접합함으로써 양면 음극(100')을 제조할 수도 있다. 예컨대 한 쌍의 제2 은 코팅층(140) 중 하나의 일면 또는 한쌍의 제2은 코팅층(140) 각각에 열경화성 수지층을 코팅하고 가열 압착하여 경화시켜 접합시킬 수 있다. 여기서 가열 압착하면 열경화성 수지가 합지됨과 동시에 열경화가 일어나 접착되는 것이다. 또는 한 쌍의 제2 은 코팅층(140)이 아닌, 한 쌍의 음극 집전체(110) 중 하나의 일면 또는 각각에 열경화성 수지층을 코팅하고 가열압착하여 경화시켜 접합시킬 수 있다.
상기와 같이 제조된 양면 음극(100')은 이차전지의 내부에 적층되는 다수의 음극 중에서, 인접한 한 쌍의 양극 사이에 배차되는 음극으로 이용될 수 있다.
다음으로 본 발명의 제2실시예에 따른 리튬이온 이차전지용 음극에 대하여 설명한다.
첨부도면 중, 도 4는 본 발명의 제2실시예에 따른 리튬이온 이차전지용 음극의 단면도이다. 제1실시예와 동일한 구성에 대해서는 이하에서 구체적인 설명을 생략 하기로 한다.
도 4에 도시된 바와 같은 본 발명의 제2실시예에 따른 리튬이온 이차전지용 음극(200)은 음극 집전체(210)와, 상기 음극 집전체(210)의 일면에 형성되는 제1 은 코팅층(220)과, 상기 제1 은 코팅층(220) 상에 형성되는 제1 음극 활물질층(230)과, 상기 음극 집전체(210)의 타면에 형성되는 제2 은 코팅층(240)과, 상기 제2 은 코팅층(240) 상에 형성되는 제2 음극 활물질층(250)을 포함한다.
즉, 본 발명의 제2실시예에 따른 리튬이온 이차전지용 음극(200)은, 제2 은 코팅층(240) 상에 제2 음극 활물질층(250)이 추가로 형성되는 점에서 제1실시예와 구성의 차이를 가지며, 음극 집전체(210)의 양측에 제1 음극 활물질층(230)과 제2 음극 활물질층(250)이 각각 배치됨에 따라 양면 음극(200)으로 이용될 수 있다.
상기 제2 은 코팅층(240)은 상기 음극 집전체(210)의 타면에 형성되는 것으로서, 상기 제1 은 코팅층(220)과 동일하게 이루어진다.
상기 제2 음극 활물질층(250)은 상기 제2 은 코팅층(240) 상에 형성되어 리튬 이온을 흡수 및 방출하는 것으로서, 상기 제1 음극 활물질층(230)과 동일하게 이루어진다.
이와 같이 상기 음극 집전체(210)의 양면에 제1 은 코팅층(220) 및 제2 은 코팅층(240)이 코팅되면 구리 재질의 음극 집전체(210)가 산화되는 것을 방지할 수 있으며, 이에 따라 음극 집전체(210)의 산화에 의하여 상기 제1 음극 활물질층(230) 및 제2 음극 활물질층(250)가 박리되는 현상을 방지할 수 있다.
첨부도면 중, 도 5는 도 4에 도시된 리튬이온 이차전지용 음극의 제조방법을 나타낸 공정도이다.
이러한 본 발명의 리튬이온 이차전지용 음극의 제조방법은, 도 5에 도시된 바와 같이 캐리어 필름(C) 준비 단계(S210)와, 상기 캐리어 필름(C) 상에 제2 음극 활물질층(250)을 형성하는 단계(S220)와, 상기 제2 음극 활물질층(250) 상에 제2 은 코팅층(240)을 형성하는 단계(S230)와, 상기 제2 은 코팅층(240) 상에 음극 집전체(210)를 형성하는 단계(S240)와, 상기 음극 집전체(210) 상에 제1 은 코팅층(220)을 형성하는 단계(S250)와, 상기 제1 은 코팅층(220) 상에 제1 음극 활물질층(230)을 형성하는 단계(S260)와, 상기 캐리어 필름(C)을 제거하는 단계(S270)를 포함한다.
상기 캐리어 필름(C) 상에 제2 음극 활물질층(250)을 형성하는 단계(S220)에서는, 도 5의 (b)와 같이 먼저 제조된 음극 활물질을 상기 캐리어 필름(C) 상에 소정 두께로 코팅하여 제2 음극 활물질층(250)을 형성할 수 있다. 그리고 음극 활물질의 코팅 후에는 소성 공정을 추가로 더 수행할 수도 있다.
상기 제2 은 코팅층(240)을 형성하는 단계(S230)에서는, 도 5의 (c)와 같이 제2 음극 활물질층(250) 상에 형성되며, 물질 및 층형성방법은 제1 은 코팅층(220)과 동일하게 할 수 있다.
여기서, 상기 제2 은 코팅층(240)이 전해 도금의 시드(seed) 역할을 하게 되므로 전해 도금 공정을 통해 박막의 음극 집전체(210)를 용이하게 형성할 수 있다. 아울러, 상기 제2 음극 활물질층(250)은 제2 은 코팅층(240)에 의해 보호되므로 상기 음극 집전체(210)의 형성을 위한 도금 공정에서 도금액에 의해 오염되는 것이 방지된다.
첨부도면 중, 도 6은 도 4에 도시된 리튬이온 이차전지용 음극의 다른 제조방법을 나타낸 공정도이다.
이러한 본 발명의 리튬이온 이차전지용 음극의 제조방법은, 도 6에 도시된 바와 같이 음극 집전체(210)를 준비하는 단계(S21)와, 상기 음극 집전체(210)의 양면에 은 코팅층(220, 240)을 형성하는 단계(S22)와, 상기 은 코팅층(220,240) 상에 음극 활물질층(230,250)을 형성하는 단계(S23)를 포함한다.
상기 음극 활물질층(230,250)을 형성하는 단계(S23)에서는 도 6의 (c)와 같이 상기 제1 은 코팅층(220) 및 제2 은 코팅층(240) 상에 그래핀을 합성하여 제1 음극 활물질층(230) 및 제2 음극 활물질층(250)을 형성한다. 이와 같이 제1 음극 활물질층(230) 및 제2 음극 활물질층(250)을 그래핀으로 구성하는 경우 그래핀과 은(Ag)의 결합 또는 부착 특성으로 인하여 상기 제1 음극 활물질층(230)과 제1 은 코팅층(220) 및 상기 제2 음극 활물질층(250)과 제2 은 코팅층(240)의 결합이 자연적으로 이루어지기 때문에 별도의 접합공정이 필요하지 않게 된다.
다음으로 본 발명의 제3실시예에 따른 리튬이온 이차전지용 음극에 대하여 설명한다.
첨부도면 중, 도 7은 본 발명의 제3실시예에 따른 리튬이온 이차전지용 음극의 단면도이다. 제1 및 제2 실시예와 동일한 구성에 대해서는 이하에서 구체적인 설명을 생략 하기로 한다.
도 7에 도시된 바와 같은 본 발명의 제3실시예에 따른 리튬이온 이차전지용 음극(300)은 음극 집전체(310)와, 상기 음극 집전체(310)의 일면에 형성되는 음극 활물질층(320)과, 상기 음극 집전체(310)의 타면에 형성되는 은 코팅층(330)을 포함한다.
상기와 같이, 음극 집전체(310)의 일측에만 음극 활물질층(320)이 배치되어 단면 음극(300)을 구성하는 경우에는, 이차전지의 내부에 적층되는 다수의 음극 중에서 가장 최 외곽에 배치되는 음극으로 이용될 수 있으며, 상기 음극 활물질층(320)이 배치되지 않은 면에는 은 코팅층(330)이 형성되어 있으므로 구리 재질의 음극 집전체(310)가 외부로 노출되어 산화되는 것을 방지할 수 있다.
첨부도면 중, 도 8 및 도 9는 도 7에 도시된 리튬이온 이차전지용 음극의 제조방법을 나타낸 공정도이다.
이러한 본 발명의 리튬이온 이차전지용 음극의 제조방법은, 도 8에 도시된 바와 같이 캐리어 필름(C) 준비 단계(S310)와, 상기 캐리어 필름(C) 상에 은 코팅층(330)을 형성하는 단계(S320)와, 상기 은 코팅층(330) 상에 음극 집전체(310)를 형성하는 단계(S330)와, 상기 음극 집전체(310) 상에 음극 활물질층(320)을 형성하는 단계(S340)와, 상기 캐리어 필름(C)을 제거하는 단계(S350)를 포함한다.
상기 캐리어 필름(C) 박리 단계에서는, 도 8의 (e)와 같이 캐리어 필름(C)을 제거하여 상기 캐리어 필름(C)으로부터 은 코팅층(330), 음극 집전체(310), 및 음극 활물질층(320)으로 구성된 단면 음극(300)을 분리시킬 수 있다.
한편, 본 발명의 리튬이온 이차전지용 음극의 제조방법은 양면 음극(300')을 제조하기 위하여, 도 9에 도시된 바와 같은 한 쌍의 음극을 준비하는 단계(S360)와 접합 단계(S370)를 더 포함할 수 있다.
구체적으로, 상기 한 쌍의 음극을 준비하는 단계(S360)에서는, 도 9의 (a)와 같이 한 쌍의 단면 음극(300)을 준비하되, 한 쌍의 단면 음극(300)의 은 코팅층(330)이 서로 마주하도록 배치한다.
이어 접합 단계(S370)에서는, 도 9의 (b)와 같이 한 쌍의 단면 음극(300)을 두께 방향으로 가열압착하여 한 쌍의 은 코팅층(330)을 서로 접합함으로써 양면 음극(300')을 제조할 수 있다.
상기와 같이 제조된 양면 음극(300')은 이차전지의 내부에 적층되는 다수의 음극 중에서, 인접한 한 쌍의 양극 사이에 배치되는 음극으로 이용될 수 있다.
다음으로 본 발명의 제4실시예에 따른 리튬이온 이차전지용 음극에 대하여 설명한다.
첨부도면 중, 도 10은 본 발명의 제4실시예에 따른 리튬이온 이차전지용 음극의 단면도이다. 제1실시예, 제2실시예, 제3실시예와 동일한 구성에 대해서는 이하에서 구체적인 설명을 생략 하기로 한다.
도 10에 도시된 바와 같은 본 발명의 제4실시예에 따른 리튬이온 이차전지용 음극(400)은 음극 집전체(410)와, 상기 음극 집전체(410)의 일면에 형성되는 제1 음극 활물질층(420)과, 상기 음극 집전체(410)의 타면에 형성되는 제2 음극 활물질층(430)을 포함한다.
상기와 같은 양면 음극(400)은 이차전지의 내부에 적층되는 다수의 음극 중에서 서로 인접한 한 쌍의 양극 사이에 배치되는 음극으로 이용될 수 있다.
첨부도면 중, 도 11은 도 10에 도시된 리튬이온 이차전지용 음극의 제조방법을 나타낸 공정도이다.
이러한 본 발명의 리튬이온 이차전지용 음극의 제조방법은, 도 11에 도시된 바와 같이 캐리어 필름(C) 준비 단계(S410)와, 상기 캐리어 필름(C) 상에 제2 음극 활물질층(430)을 형성하는 단계(S420)와, 상기 제2 음극 활물질층(430) 상에 음극 집전체(410)를 형성하는 단계(S430)와, 상기 음극 집전체(410) 상에 제1 음극 활물질층(420)을 형성하는 단계(S440)와, 상기 캐리어 필름(C)을 제거하는 단계(S450)를 포함한다.
상기 제2 음극 활물질층(430)을 형성하는 단계(S420)는 음극 활물질 제조 단계 및 음극 활물질 코팅 단계를 포함한다.
상기 음극 활물질 코팅 단계에서는, 도 11의 (b)와 같이 먼저 제조된 음극 활물질을 상기 캐리어 필름(C) 상에 소정 두께로 코팅하여 제2 음극 활물질층(430)을 형성할 수 있다.
상기 음극 집전체(410)를 형성하는 단계(S430)에서는, 도 11의 (c)와 같이 전해 도금 공정을 통해 상기 제2 음극 활물질층(430) 상에 구리(Cu) 재질의 음극 집전체(410)를 2 ~ 4㎛의 두께로 형성할 수 있다.
상기 제1 음극 활물질층(420)을 형성하는 단계(S440)에서는, 도 11의 (d)와 같이 음극 집전체(410) 상에 상기 제2 음극 활물질층(430)과 동일한 방법으로 형성할 수 있다.
상기 캐리어 필름(C)을 제거하는 단계(S450)는 캐리어 필름(C) 박리 단계를 포함한다.
상기 캐리어 필름(C) 박리 단계에서는, 도 11의 (e)와 같이 캐리어 필름(C)을 제거하여 상기 캐리어 필름(C)으로부터 제2 음극 활물질층(430), 음극 집전체(410), 및 제1 음극 활물질층(420)으로 구성된 양면 음극(400)을 분리시킬 수 있다.
상기와 같이 제조된 양면 음극(400)은 이차전지의 내부에 적층되는 다수의 음극 중에서, 인접한 한 쌍의 양극 사이에 배치되는 음극으로 이용될 수 있다.
첨부도면 중, 도 12는 도 10에 도시된 리튬이온 이차전지용 음극의 다른 제조방법을 나타낸 공정도이다.
이러한 본 발명의 리튬이온 이차전지용 음극의 제조방법은, 도 12에 도시된 바와 같이 음극 집전체(410)를 준비하는 단계(S41) 및 음극 활물질층(420,430)을 형성하는 단계(S42)를 포함한다.
상기 음극 활물질층을 형성하는 단계(S42)에서는 음극 활물질 제조 단계 및 음극 활물질 코팅 단계를 포함한다.
상기 음극 활물질 제조 단계에서는, 제1 음극 활물질층(420) 및 제2 음극 활물질층(430)을 형성하는 음극 활물질을 제조 함에 있어서, 제1 및 제2 음극 활물질층(420,430) 중 어느 한 층에만 은 또는 은 합금을 포함하도록 제조하거나, 두 층 모두에 은 또는 은 합금을 포함하도록 제조할 수 있다.
상기 음극 활물질 코팅 단계에서는, 도 12의 (b)와 같이 먼저 제조된 음극 활물질을 상기 음극 집전체(410)의 양면에 소정 두께로 코팅하여 제1 음극 활물질층(420) 및 제2 음극 활물질층(430)을 형성할 수 있다. 그리고, 음극 활물질의 코팅 후에는 소성 공정을 추가로 더 수행할 수 있다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
제조예 1~3: 음극 활물질층 형성용 조성물
표 1과 같이 활물질재료로서 Graphite와, 점도 조절제로서 CMC와, 유기 바인더로서 SBR(40% Solution)를 넣고 교반한 후, 점차 보라색이 없어지면 전도성 무기 바인더로서 Ag Complex ink(InkTec사의 TEC-IJ-060W)를 첨가한 다음 교반하여 음극 활물질층 형성용 조성물을 제조하였다.
제조예 4: 음극 활물질층 형성용 조성물
전도성 무기 바인더를 첨가하지 않은 것을 제외하고, 표 1과 같이 제조예 1~3과 동일하게 음극 활물질층 형성용 조성물을 제조하였다.
Graphite CMC SBR(40% Solution) Ag Complex ink
제조예 1 95.5 2 2 0.5
제조예 2 95 2 2 1
제조예 3 94 2 2 2
제조예 4 96 2 2 0
실시예 1: 리튬이온 이차전지용 음극의 제조
음극집전체로서 시판되는 12㎛ 두께의 구리 포일에, 은 코팅층 형성용 은 잉크(InkTec사의 TEC-PR-011)를 12 ㎛의 두께로 코팅하여 Ag coated Cu substrate[이하 AC-12이라 함]을 제조하였고, 그 표면에 제조예 4에 따른 음극 활물질층 형성용 조성물을 코팅하여, 실시예 1(은코팅층에 제조예 4에 따른 음극활물질층 형성)에 따른 리튬이온 이차전지용 음극의 샘플을 제조하였다.
실시예 2: 리튬이온 이차전지용 음극의 제조
구리 포일에 은 코팅층을 형성하지 않고, 구리 포일에 제조예 2에 따른 음극 활물질층 형성용 조성물을 코팅한 것을 제외하고 실시예 1과 동일하게 제조하였다.
비교예 : 리튬이온 이차전지용 음극의 제조
시판되는 12㎛ 두께의 base 구리포일에 제조예 4에 따른 음극 활물질층 형성용 조성물(은 포함하지 않음)을 코팅함으로써, 은을 포함하지 않는 음극활물질층이 형성된 비교예 샘플을 제조하였다.
실험예 1: A-12의 치수 데이터 (Dimension data)
AC-12의 면적, 무게, 두께 및 로딩 레벨(Loading level (L/L))을 측정하여, 아래 표 2에 나타내었다. 결과적으로, 상용 12㎛ Cu 집전체의 L/L 값이 9 ㎎/㎠임을 고려할 때, 상용되고 있는 집전체와 유사한 수준으로 나타남을 확인하였다.
Lot Area(cm 2) Weight(mg) Thickness(㎛) Loading level (mg/cm 2)
AC-12 64.8 753.4 12 12.63
실험예 2: AC-12의 주사전자현미경(SEM)을 이용한 형태 분석
주사전자현미경(SEM)을 이용하여, AC-12의 표면 형태를 확인하였으며, 그 결과를 도 14에 나타냈다. 분석 결과, AC-12의 경우 Cu 표면에 은이 형성되어 있음을 확인하였다.
실험예 3: AC-6의 주사전자현미경(SEM)을 이용한 형태 분석
비교예에 따라 구리 표면에 은을 포함하지 않는 음극 활물질층이 형성된 샘플을 SEM을 이용하여 도 15에서 확인하였다.
실험예 4: 비교예, 실시예 1, 2의 ELECTROCHEMICAL PROPERTY
비교예(은코팅층이 없이 시판되는 12㎛ 두께의 Base 구리포일에, 은을 포함하지 않는 제조예 4로 음극활물질층 형성)와, 실시예 1(은코팅층이 있는 AC-12에 은을 포함하지 않는 제조예 4로 음극활물질층 형성)과, 실시예 2(은코팅층 없는 구리포일에 은을 포함하는 제조예 2로 음극활물질층 형성)를, 충전 특성 변화 유무를 비교 평가 분석하고, 이를 도 16 및 도 17에 나타내었다.
그 결과, 0.2~2.0C 구간까지는 CC(Constant Current)구간에 의한 용량 기여도가 크게 나타나고 있으며, 이로서 은 코팅을 통해 급속 충전 특성이 향상될 수 있음을 확인하였다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.

Claims (38)

  1. 음극 집전체와,
    상기 음극 집전체의 일면에 형성되어 리튬 이온을 흡수 및 방출하는 적어도 하나의 음극 활물질층과,
    상기 음극 집전체와 상기 음극 활물질층 사이에 개재되는 적어도 하나의 은 코팅층을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  2. 제1항에 있어서,
    상기 음극 활물질층은, 흑연, 탄소나노튜브, 그래핀, 실리콘, 산화아연(ZnO), 이산화티타늄(TiO2), 망간(Mn), 및 철(Fe) 중 적어도 어느 하나의 활물질재료 입자와 유기바인더를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  3. 제2항에 있어서,
    상기 음극 활물질층은, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 전도성 무기 바인더를 더 포함하며,
    상기 전도성 무기 바인더는, 나노입자 또는 착체 화합물(complex)을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  4. 제3항에 있어서,
    상기 음극 활물질층은, 상기 활물질재료 입자와, 상기 유기바인더와, 상기 전도성 무기 바인더를 포함하는 음극 활물질층 형성용 조성물로 형성되며,
    상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~99중량%, 상기 유기 바인더 0.5~5중량%, 및 상기 전도성 무기 바인더 0.1~70중량%를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  5. 제3항에 있어서,
    상기 음극 활물질층은, 상기 활물질재료 입자와, 상기 유기바인더와, 상기 전도성 무기 바인더와, 점도 조절제를 포함하는 음극 활물질층 형성용 조성물로 형성되며,
    상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~98중량%, 상기 유기 바인더 0.5~5중량%, 상기 전도성 무기 바인더 0.1~70중량%, 및 상기 점도 조절제 0.5~3중량%를 포함하는 것을 특징으로 하는 리튬리온 이차전지용 음극.
  6. 제3항에 있어서,
    상기 음극 활물질층은, 상기 활물질재료 입자 표면에 상기 전도성 무기 바인더를 부착시켜, 상기 전도성 무기 바인더가 표면처리된 상기 활물질재료 입자를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  7. 제6항에 있어서,
    상기 활물질재료 입자 표면에 상기 전도성 무기 바인더를 부착시키되, 전도성 금속 잉크를 사용하여 상기 전도성 무기 바인더를 부착시키며,
    상기 전도성 금속 잉크 중에, 상기 금속 함유량은 0초과~70중량%이하인 것을 특징으로 하는 리튬이온 이차전지용 음극.
  8. 제6항에 있어서,
    상기 활물질재료 입자 전체 표면적 100%를 기준으로, 상기 활물질재료 입자에 상기 전도성 무기 바인더가 코팅된 표면적이 0초과~90%이하인 것을 특징으로 하는 리튬이온 이차전지용 음극.
  9. 제6항에 있어서,
    상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료 입자의 첨가량 보다 9배 이하로 첨가하되, 상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료의 표면적 보다 적은 양을 사용하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 음극 집전체의 타면에 형성되는 적어도 하나의 은 코팅층을 더 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  11. 제10항에 있어서,
    상기 은 코팅층은, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 나노입자 또는 착체 화합물(complex)을 포함하여 형성되는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  12. 제 10항에 있어서,
    상기 음극 집전체의 타면에 형성된 은 코팅층 상에 형성되어, 리튬 이온을 흡수 및 방출하는 적어도 하나의 음극 활물질층을 더 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  13. 음극 집전체와,
    상기 음극 집전체의 일면에 형성되어 리튬 이온을 흡수 및 방출하는 적어도 하나의 음극 활물질층과,
    상기 음극 집전체의 타면에 형성된 적어도 하나의 은 코팅층을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  14. 제12항 또는 제13항에 있어서,
    상기 음극 활물질층은, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 전도성 무기 바인더를 더 포함하며,
    상기 전도성 무기 바인더는, 나노입자 또는 착체 화합물(complex)을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  15. 음극 집전체와,
    상기 음극 집전체의 양면에 각각 형성되며, 전도성 무기 바인더를 포함하는 적어도 한 쌍의 음극 활물질층을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  16. 제15항에 있어서,
    상기 전도성 무기 바인더는, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 나노입자 또는 착체 화합물(complex)을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  17. 제15항에 있어서,
    상기 음극 활물질층은, 활물질재료 입자와, 유기바인더와, 상기 전도성 무기 바인더를 포함하는 음극 활물질층 형성용 조성물로 형성되며,
    상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~99중량%, 상기 유기 바인더 0.5~5중량%, 및 상기 전도성 무기 바인더 0.1~70중량%를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  18. 제15항에 있어서,
    상기 음극 활물질층은, 활물질재료 입자와, 유기바인더와, 상기 전도성 무기 바인더와, 점도 조절제를 포함하는 음극 활물질층 형성용 조성물로 형성되며,
    상기 음극 활물질층 형성용 조성물은, 상기 음극 활물질층 형성용 조성물 총 100중량%에 대해, 상기 활물질재료 25~98중량%, 상기 유기 바인더 0.5~5중량%, 상기 전도성 무기 바인더 0.1~70중량%, 및 상기 점도 조절제 0.5~3중량%를 포함하는 것을 특징으로 하는 리튬리온 이차전지용 음극.
  19. 제15항에 있어서,
    상기 음극 활물질층은, 활물질재료 입자 표면에 상기 전도성 무기 바인더를 부착시켜, 상기 전도성 무기 바인더가 표면처리된 상기 활물질재료 입자를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  20. 제19항에 있어서,
    상기 활물질재료 입자 표면에 상기 전도성 무기 바인더를 부착시키되, 전도성 금속 잉크를 사용하여 상기 전도성 무기 바인더를 부착시키며,
    상기 전도성 금속 잉크 중에, 상기 금속 함유량은 0초과~70중량%이하인 것을 특징으로 하는 리튬이온 이차전지용 음극.
  21. 제19항에 있어서,
    상기 활물질재료 입자 전체 표면적 100%를 기준으로, 상기 활물질재료 입자에 상기 전도성 무기 바인더가 코팅된 표면적이 0초과~90%이하인 것을 특징으로 하는 리튬이온 이차전지용 음극.
  22. 제19항에 있어서,
    상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료 입자의 첨가량 보다 9배 이하로 첨가하되, 상기 전도성 무기 바인더의 첨가량은, 상기 활물질재료의 표면적 보다 적은 양을 사용하는 것을 특징으로 하는 리튬이온 이차전지용 음극.
  23. 캐리어 필름 준비 단계와,
    상기 캐리어 필름 상에 은 코팅층을 형성하는 단계와,
    상기 은 코팅층 상에 음극 집전체를 형성하는 단계와,
    상기 음극 집전체 상에 음극 활물질층을 형성하는 단계와,
    상기 캐리어 필름을 제거하는 단계를 포함하는 리튬이온 이차전지용 음극 제조방법.
  24. 제23항에 있어서,
    상기 음극 집전체를 형성하는 단계에서는 구리를 전해 도금하여 상기 은 코팅층 상에 음극 집전체를 형성하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  25. 제 23항에 있어서,
    상기 음극 활물질층을 형성하는 단계에 앞서, 상기 음극 집전체 상에 은 코팅층을 형성하는 단계를 수행하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  26. 제23항 또는 제25항에 있어서,
    상기 캐리어 필름을 제거하는 단계 이후,
    상기 캐리어 필름으로부터 분리된 한 쌍의 단면 음극을 준비하는 단계와,
    상기 한 쌍의 단면 음극의 표면에 노출된 은 코팅층을 상호 접합시키는 단계를 더 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  27. 제26항에 있어서,
    상기 상호 접합시키는 단계에서는, 한 쌍의 단면 음극을 가열압착하여 상호 접합시키거나, 한 쌍의 단면 음극을 열경화성 또는 열가소성 수지를 도포하여 상호 접합시키는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  28. 캐리어 필름 준비 단계와,
    상기 캐리어 필름 상에 음극 집전체를 형성하는 단계와,
    상기 음극 집전체 상에 은 코팅층을 형성하는 단계와,
    상기 은 코팅층 상에 음극 활물질층을 형성하는 단계와,
    상기 캐리어 필름을 제거하는 단계와,
    상기 캐리어 필름으로부터 분리된 한 쌍의 단면 음극을 준비하는 단계와,
    상기 한 쌍의 단면 음극의 표면에 노출된 한 쌍의 음극 집전체 중 적어도 일면에 열경화성 또는 열가소성 수지를 도포하여 상호 접합시키는 단계를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  29. 캐리어 필름 준비 단계와,
    상기 캐리어 필름 상에 음극 활물질층을 형성하는 단계와,
    상기 음극 활물질층에 음극 집전체를 형성하는 단계와,
    상기 음극 집전체 상에 음극 활물질층을 형성하는 단계와,
    상기 캐리어 필름을 제거하는 단계를 포함하며,
    상기 음극 활물질층 중 적어도 어느 한 층은, 전도성 무기 바인더를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  30. 제 29항에 있어서,
    상기 음극 집전체를 형성하는 단계에 앞서, 상기 음극 활물질층 상에 은 코팅층을 형성하는 단계를 수행하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  31. 제 30항에 있어서,
    상기 음극 집전체 상에 상기 음극 활물질층을 형성하는 단계에 앞서, 상기 음극 집전체 상에 은 코팅층을 형성하는 단계를 수행하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  32. 음극 집전체를 준비하는 단계와,
    상기 음극 집전체의 양면에 각각 음극 활물질층을 형성하는 단계를 포함하며,
    상기 음극 활물질층 중 적어도 어느 한 층은 전도성 무기 바인더를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  33. 음극 집전체를 준비하는 단계와,
    상기 음극 집전체의 양면에 각각 은코팅층을 형성하는 단계와,
    상기 각각의 은코팅층에 음극활물질층을 형성하는 단계를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  34. 캐리어 필름을 준비하는 단계와,
    상기 캐리어 필름 상에 은 코팅을 형성하는 단계와,
    상기 은 코팅층 상에 음극 집전체를 형성하는 단계와,
    상기 음극 집전체 상에 음극 활물질층을 형성하는 단계와,
    상기 캐리어 필름을 제거하는 단계를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  35. 제34항에 있어서,
    상기 캐리어 필름을 제거하는 단계 이후,
    상기 캐리어 필름으로부터 분리된 한 쌍의 단면 음극을 준비하는 단계와,
    상기 한 쌍의 단면 음극의 표면에 노출된 은 코팅층을 상호 접합시키는 단계를 더 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  36. 제23항, 제25항, 제28항, 제33항, 제34항 중 어느 한 항에 있어서,
    상기 음극 활물질층은 전도성 무기 바인더를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  37. 제36항에 있어서,
    상기 전도성 무기 바인더는, 은(Ag) 및 은(Ag)합금 중에서 선택된 1종 이상의 나노입자 또는 착체 화합물(complex)을 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
  38. 제36항에 있어서,
    상기 음극 활물질층은, 상기 전도성 무기 바인더를 활물질재료 입자 표면에 부착시켜, 상기 전도성 무기 바인더가 표면처리된 상기 활물질재료 입자를 포함하는 것을 특징으로 하는 리튬이온 이차전지용 음극 제조방법.
PCT/KR2020/004643 2019-04-05 2020-04-06 리튬이온 이차전지용 음극과 그 제조방법 WO2020204679A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0040467 2019-04-05
KR20190040467 2019-04-05

Publications (1)

Publication Number Publication Date
WO2020204679A1 true WO2020204679A1 (ko) 2020-10-08

Family

ID=72667170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004643 WO2020204679A1 (ko) 2019-04-05 2020-04-06 리튬이온 이차전지용 음극과 그 제조방법

Country Status (2)

Country Link
KR (1) KR20200118379A (ko)
WO (1) WO2020204679A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768254A (zh) * 2020-12-23 2021-05-07 广东风华高新科技股份有限公司 一种具有Ag过渡层的锂离子电容器负极极片及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022306A (ja) * 2002-06-14 2004-01-22 Fukuda Metal Foil & Powder Co Ltd リチウム電池用負極及び該リチウム電池用負極の製造方法
KR20050007484A (ko) * 2003-07-08 2005-01-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극, 그의 제조 방법 및 그를 포함하는리튬 이차 전지
KR20050019483A (ko) * 2003-08-19 2005-03-03 삼성에스디아이 주식회사 리튬 금속 애노드의 제조방법
KR20120059993A (ko) * 2010-12-01 2012-06-11 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질을 포함하는 리튬 이차 전지
KR20120118886A (ko) * 2011-04-20 2012-10-30 주식회사 잉크테크 은 잉크 조성물
KR20180119254A (ko) * 2017-04-25 2018-11-02 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 이것을 포함하는 리튬 이차전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140108380A (ko) 2013-02-25 2014-09-11 엠케이전자 주식회사 실리콘-금속 합금계 음극 활물질을 포함하는 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022306A (ja) * 2002-06-14 2004-01-22 Fukuda Metal Foil & Powder Co Ltd リチウム電池用負極及び該リチウム電池用負極の製造方法
KR20050007484A (ko) * 2003-07-08 2005-01-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극, 그의 제조 방법 및 그를 포함하는리튬 이차 전지
KR20050019483A (ko) * 2003-08-19 2005-03-03 삼성에스디아이 주식회사 리튬 금속 애노드의 제조방법
KR20120059993A (ko) * 2010-12-01 2012-06-11 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질을 포함하는 리튬 이차 전지
KR20120118886A (ko) * 2011-04-20 2012-10-30 주식회사 잉크테크 은 잉크 조성물
KR20180119254A (ko) * 2017-04-25 2018-11-02 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 이것을 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
KR20200118379A (ko) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2014104842A1 (ko) 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
WO2018131899A1 (ko) 미세 패턴을 갖는 리튬 금속층 및 그 보호층으로 이루어진 이차전지용 음극 및 이의 제조방법
WO2020197344A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2021125877A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019112389A1 (ko) 리튬 금속 전지용 음극 및 이를 포함하는 전기화학소자
WO2020204679A1 (ko) 리튬이온 이차전지용 음극과 그 제조방법
WO2015064867A1 (en) Electrode active material for magnesium battery
WO2022108262A1 (ko) 전고체 이차전지
WO2019194662A1 (ko) 전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법
WO2019124719A1 (ko) 율특성이 우수하고 장기 충방전시 가스발생이 없는 질소가 도핑된 그래핀 양자점이 부착된 lto 음극재료
WO2018155972A2 (ko) 우수한 접착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2019168278A1 (ko) 음극 슬러리 조성물, 이를 이용하여 제조된 음극 및 이차전지
WO2019103526A1 (ko) 이차전지용 양극 슬러리 조성물, 이를 이용하여 제조된 이차전지용 양극 및 이차전지
WO2014204204A1 (ko) 도전성 방열시트, 이를 포함하는 전기부품 및 전자제품
WO2021020805A1 (ko) 복합 음극 활물질, 이의 제조방법, 이를 포함하는 음극, 및 이차전지
WO2023132709A1 (ko) 고체 이차 전지용 양극 및 이를 포함하는 고체 이차 전지
WO2022234908A1 (ko) 고분자 필름을 포함하는 집전체 및 이의 제조방법
WO2020179978A1 (ko) 이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법
WO2022065813A1 (ko) 미세 쇼트 방지를 위한 고분자층을 포함하는 전고체전지용 음극 및 이를 포함하는 전고체전지
WO2019078691A1 (ko) 고수명 및 초고에너지 밀도의 리튬 이차전지
WO2022065959A1 (ko) 전극
WO2022164280A1 (ko) 전극
WO2022164284A1 (ko) 전극
WO2023101214A1 (ko) 리튬 금속 전극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2022164287A1 (ko) 전극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20781896

Country of ref document: EP

Kind code of ref document: A1