WO2022234908A1 - 고분자 필름을 포함하는 집전체 및 이의 제조방법 - Google Patents

고분자 필름을 포함하는 집전체 및 이의 제조방법 Download PDF

Info

Publication number
WO2022234908A1
WO2022234908A1 PCT/KR2021/016902 KR2021016902W WO2022234908A1 WO 2022234908 A1 WO2022234908 A1 WO 2022234908A1 KR 2021016902 W KR2021016902 W KR 2021016902W WO 2022234908 A1 WO2022234908 A1 WO 2022234908A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
metal
polymer
layer
polymer film
Prior art date
Application number
PCT/KR2021/016902
Other languages
English (en)
French (fr)
Inventor
손정우
장성호
김우하
이남정
윤성수
이중훈
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21930590.1A priority Critical patent/EP4109603A1/en
Priority to CN202180023762.1A priority patent/CN117157783A/zh
Priority to US17/914,920 priority patent/US20240186528A1/en
Publication of WO2022234908A1 publication Critical patent/WO2022234908A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • B29C48/023Extruding materials comprising incompatible ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/08Transition metals
    • B29K2305/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3406Components, e.g. resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a current collector and a method for manufacturing the same, and more particularly, to a current collector including a polymer film and a method for manufacturing the same.
  • a rechargeable battery capable of charging and discharging has been widely used as an energy source for a wireless mobile device.
  • the secondary battery is attracting attention as an energy source for electric vehicles, hybrid electric vehicles, etc., which have been proposed as a way to solve air pollution such as conventional gasoline vehicles and diesel vehicles using fossil fuels. Therefore, the types of applications using secondary batteries are diversifying due to the advantages of secondary batteries, and it is expected that secondary batteries will be applied to more fields and products in the future than now.
  • These secondary batteries are sometimes classified into lithium ion batteries, lithium ion polymer batteries, lithium polymer batteries, etc. depending on the composition of the electrode and electrolyte, and among them, the possibility of electrolyte leakage is small, and the usage of lithium ion polymer batteries, which are easy to manufacture, is low.
  • the electrode assembly built into the battery case consists of a positive electrode, a negative electrode, and a separator structure interposed between the positive electrode and the negative electrode, and is a power generating element capable of charging and discharging. It is classified into a jelly-roll type wound with a separator interposed therebetween, and a stack type in which a plurality of positive and negative electrodes of a predetermined size are sequentially stacked with a separator interposed therebetween.
  • Such electrodes may be manufactured by coating an electrode slurry including an electrode active material on a current collector and drying the electrode mixture layer to form an electrode mixture layer.
  • a metal having excellent electrical conductivity such as copper or aluminum
  • a current collector in which a polymer film and a metal are composited is being developed in order to reduce the weight of the current collector.
  • the elastic modulus of a typical polymer film is 0.1 to 5 GPa, which is very low compared to copper (117 GPa) or aluminum (69 GPa).
  • the thickness had to be increased 10 times or more in order to have the same physical properties as the metal current collector. This causes a problem in that the volume and mass of the electrode increase.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a polymer-metal composite current collector with improved mechanical properties and a method for manufacturing the same.
  • a current collector according to the present invention is a current collector comprising a composite polymer film layer, the composite polymer film layer comprising: a polymer matrix; and a fiber-shaped or plate-shaped metal material dispersed in the polymer matrix, wherein the metal material is oriented in one direction.
  • the metal material is at least one selected from the group consisting of aluminum, copper, indium, titanium, tin, nickel, iron, tungsten, chromium, cobalt, gold, and silver
  • the polymer film is a polyolefin-based resin
  • the fiber-shaped metal material may have a cross-sectional diameter of 10 to 500 nm and a length of 0.5 to 200 ⁇ m.
  • the plate-shaped metal material may have a thickness of 10 to 500 nm, and a width and length of 0.5 to 200 ⁇ m.
  • the metal material may include two or more different metals.
  • the metal material may have an angle formed with the longitudinal axis of the polymer film layer of 20° or less, and an angle formed with the thickness direction axis of 70 to 90°.
  • the thickness of the polymer film layer may be 10 to 200 ⁇ m.
  • the current collector according to the present invention is formed on at least one surface of the polymer film, and may further include a metal layer having a thickness of 1 ⁇ m or less.
  • the present invention also provides a method for manufacturing the current collector as described above.
  • a method of manufacturing a current collector according to the present invention comprises: a deposition step of depositing a metal on at least one surface of a base film made of a polymer material to form a deposition layer; A primary extrusion step of pulverizing and mixing the base film on which the deposition layer is formed, and extruding the polymer-metal composite material; and a secondary extrusion step of extruding the polymer-metal composite material to form a polymer film layer in which fiber-shaped or plate-shaped metal materials are oriented in one direction in a polymer matrix; includes
  • the metal is at least one selected from the group consisting of aluminum, copper, indium, titanium, tin, nickel, iron, tungsten, chromium, cobalt, gold, and silver
  • the base film is a polyolefin-based resin, It may be at least one selected from the group consisting of polyamide-based resins, polyester-based resins, and polyalkyl (meth)acrylate-based resins.
  • the thickness of the deposition layer may be 50 to 400 nm, and the thickness of the base film may be 20 to 400 ⁇ m.
  • the volume ratio of the deposition layer and the base film may be 0.5:99.5 to 10:90.
  • the deposition layer may have a structure in which two or more different types of metal layers are stacked.
  • the base film on which the deposition layer is formed may be extruded by a twin-screw extruder.
  • the extrusion of the polymer-metal composite material may be performed by a single screw extruder.
  • the method of manufacturing a current collector according to the present invention may further include forming a metal layer on at least one surface of the polymer film.
  • the present invention can improve the mechanical properties of the current collector including the polymer film layer by dispersing the metal material in the form of a fever or plate in the polymer film layer in a state oriented in one direction.
  • FIG. 1 is a schematic view showing a longitudinal cross-section of a current collector according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a cross-section in the width direction of a current collector according to an embodiment of the present invention.
  • FIG 3 is a schematic view showing a longitudinal cross-section of a current collector according to another embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a procedure of a method for manufacturing a current collector according to the present invention.
  • FIG. 5 is a schematic view showing the sequence of the manufacturing method of the current collector according to the present invention and changes accordingly.
  • 6 to 8 are schematic views showing each process of the manufacturing method of the current collector according to the present invention.
  • 9 to 11 are SEM photographs showing cross-sections of polymer film layers according to Examples and Comparative Examples and photographs showing element distribution.
  • “under” another part this includes not only cases where it is “directly under” another part, but also cases where there is another part in between.
  • “on” may include the case of being disposed not only on the upper part but also on the lower part.
  • the longitudinal direction of the polymer film or the current collector means the direction in which the polymer is extruded when the polymer film layer is formed or the direction in which the film travels during the manufacturing and processing process of the current collector (MD direction, x-axis direction) do.
  • the width direction means a direction (y-axis direction) perpendicular to the longitudinal direction in the plane formed by the film layer.
  • a current collector according to the present invention is a current collector comprising a composite polymer film layer, the composite polymer film layer comprising: a polymer matrix; and a fiber-shaped or plate-shaped metal material dispersed in the polymer matrix, wherein the metal material is oriented in one direction.
  • the present invention can improve the mechanical properties of the current collector including the polymer film layer by dispersing the metal material in the form of a fever or plate in the polymer film layer in a state oriented in one direction.
  • FIG. 1 is a schematic view showing a longitudinal cross-section of a current collector according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a cross-section of a current collector according to an embodiment of the present invention.
  • the current collector 1 includes a polymer film layer 10 .
  • the polymer film layer 10 is a main body of the current collector, which makes the current collector lighter and provides flexibility to the current collector as compared to the case of using a metal.
  • the polymer film layer 10 includes a polymer matrix 11 as shown in FIGS. 1 and 2 ; and a metal material 12 dispersed in the polymer matrix 11 .
  • the polymer material used for the polymer matrix 11 may serve as a matrix in which a metal material to be described later is dispersed, provide flexibility to the current collector, and have enough rigidity to be used as the current collector.
  • the polymer film may be at least one selected from the group consisting of a polyolefin-based resin, a polyamide-based resin, a polyester-based resin, and a polyalkyl (meth)acrylate-based resin.
  • the polyolefin-based resin may be high-density, medium-density, low-density, linear low-density polyethylene, crystalline polypropylene, amorphous polypropylene, or polybutylene.
  • the polyamide-based resin may be, for example, nylon 6, nylon 6,6, nylon 610, or nylon 12.
  • the polyester-based resin may be, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), or polyethylene naphthalate.
  • the polyalkyl (meth) acrylate-based resin may be, for example, polymethyl methacrylate, polymethyl acrylate, polyethyl acrylate or polybutyl acrylate.
  • the metal material 12 has a size of a minimum nanometer level, and is uniformly dispersed in the polymer matrix 11 .
  • the metal material 12 may have a fiber shape or a plate shape.
  • the fiber shape means that the metal material 12 dispersed in the polymer matrix 11 has a thin fiber shape as shown in FIG. 2A .
  • that the metal material 12 is plate-shaped means that the metal material 12 has a flat shape, such as a strip or sheet, as shown in FIG. 2B .
  • the metal material 12 has a long shape in one direction.
  • the metal material 12 is oriented in one direction in the polymer matrix 11 to improve the mechanical properties of the polymer film layer 10 .
  • the metal material 12 may be oriented in the longitudinal direction (x-axis direction) of the polymer film layer 10 as shown in FIGS. 1 and 2 .
  • the metal material 12 may be at least one selected from the group consisting of aluminum, copper, indium, titanium, tin, nickel, iron, tungsten, chromium, cobalt, gold, and silver, but may be processed together with a film. If it is easy and the mechanical properties of the polymer film layer can be improved, there is no particular limitation on the type. More specifically, as the metal material, a metal having a melting point such as aluminum, copper, titanium, nickel, tungsten, and iron that is higher than a temperature set during extrusion of a material constituting a polymer matrix to be described later may be used.
  • the metal when the melting point is lower than the temperature set during the melting and extrusion of the polymer material, the metal may be melted to form a spherical shape without forming a plate-like or fibrous shape.
  • the melting point of the metal material may be 200°C or higher, specifically 600°C or higher, and more specifically 800°C or higher.
  • the diameter of the cross section of the metal material 12 may be 10 to 500 nm, 100 to 400 nm, or 150 to 350 nm, and the length of the metal material 12 is 0.5 to 200 ⁇ m, 0.5 to 150 ⁇ m or 0.5 to 100 ⁇ m.
  • the metal material 12 when the metal material 12 is plate-shaped, the metal material may have a thickness of 10 to 500 nm, 100 to 400 nm, or 150 to 350 nm, and a width and length of 0.5 to 200 ⁇ m, 0.5 to 150 ⁇ m, or 0.5 to 100 ⁇ m. can be
  • the size (diameter or thickness, length) of the metal material is too small out of the above range, the effect of increasing the mechanical properties is not great, and when the size of the metal material is too large outside the above range, the base film on the base film as described below
  • the thickness of the deposition layer formed on the must be increased, in this case, there is a problem that cracks may occur in the deposition layer and increase the cost.
  • the metal material 12 is formed in the polymer matrix 11 within the polymer matrix 11 . It can be well bonded to the metal material 12 can be prevented from escaping to the outside of the polymer matrix (11).
  • the metal material 12 may be oriented in the longitudinal direction (x-axis direction) of the polymer film layer 10 as described above, thereby improving mechanical properties in the longitudinal direction of the polymer film layer 10 .
  • the metal material 12 has an angle formed with the longitudinal axis (x-axis) of the polymer film layer 10 of 20° or less, 15° or less, or 10° or less, and is formed with the thickness direction axis (z-axis). The angle may be between 70 and 90 degrees or between 80 and 90 degrees.
  • the metal material 12 may occupy 80% or more, 90% or more, or 95% or more of the total metal material having the orientation angle as described above. When the orientation degree of the metal material 12 is within the above range, the mechanical properties of the polymer film layer 10 may be effectively improved.
  • the metal material 12 may include two or more different metals. This includes both a case in which different metal materials are made of different metals, and a case in which one metal material includes two or more different metals. Accordingly, the strength, flexibility, and processability of the polymer film layer can be set at a desired level. In this case, the type and content ratio (eg, volume ratio) of the metal material may be selected in consideration of the strength, flexibility and processability of the polymer film layer to be achieved. For example, a metal material having relatively high strength may be used to increase the strength of the polymer film layer, and a metal material having high ductility or malleability or a metal material having a relatively low melting point may be used for flexibility or workability.
  • a metal material having relatively high strength may be used to increase the strength of the polymer film layer
  • a metal material having high ductility or malleability or a metal material having a relatively low melting point may be used for flexibility or workability.
  • the thickness of the polymer film layer 10 may be 10 to 200 ⁇ m, specifically, may be 50 to 150 ⁇ m. That is, the current collector 1 according to the present invention may exhibit mechanical properties similar to those of a metal current collector while having a thickness similar to that of a general metal current collector.
  • the thickness of the polymer film layer 10 is less than 10 ⁇ m, the thickness of the current collector is too small to exhibit desired mechanical properties, and when the thickness of the polymer film layer 10 exceeds 200 ⁇ m, the thickness of the current collector is excessively increased. Therefore, there is a problem in that the volume and weight of the electrode and battery cell increase.
  • FIG 3 is a schematic view showing a longitudinal cross-section of a current collector according to another embodiment of the present invention.
  • the current collector 2 may further include a metal layer 20 formed on at least one surface of the polymer film layer 10 .
  • the metal layer 20 additionally supplements the mechanical rigidity of the polymer film layer 10 and increases the electrical conductivity of the current collector 2 .
  • the metal layer 20 may be formed by, for example, vapor deposition, and has a thin thickness of 1 ⁇ m or less, or 0.5 ⁇ m or less. Accordingly, it is possible to supplement the mechanical rigidity of the current collector 2 and to minimize an increase in the volume and weight of the electrode while improving electrical conductivity.
  • the metal layer may have a thickness of 50 nm or more, 100 nm or more, or 200 nm or more.
  • the present invention provides an electrode including the current collector as described above.
  • the electrode includes an electrode mixture layer formed on at least one surface of the current collector as described above.
  • the electrode mixture layer is formed by coating an electrode slurry including an electrode active material, a conductive material, and a binder on a current collector.
  • the electrode active material may be an anode active material or a cathode active material.
  • the cathode active material is a material capable of causing an electrochemical reaction, as a lithium transition metal oxide, containing two or more transition metals, for example, lithium cobalt oxide (LiCoO 2 ) substituted with one or more transition metals.
  • a lithium transition metal oxide containing two or more transition metals, for example, lithium cobalt oxide (LiCoO 2 ) substituted with one or more transition metals.
  • the negative electrode active material includes, for example, carbon such as non-graphitizable carbon and graphitic carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : metal composite oxides such as Al, B, P, Si, elements of Groups 1, 2 and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , metal oxides such as Bi 2 O 5 ; conductive polymers such
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the positive active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the binder is a component that assists in bonding between the active material and the conductive material and bonding to the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the positive active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, poly propylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyrene rubber, fluororubber, various copolymers, and the like.
  • the present invention provides a method of manufacturing the current collector as described above.
  • FIG. 4 is a flowchart showing the sequence of a method for manufacturing a current collector according to the present invention
  • FIG. 5 is a schematic diagram showing the sequence of the method for manufacturing a current collector according to the present invention and changes accordingly.
  • the method for manufacturing a current collector according to the present invention comprises a deposition step (S1) of depositing a metal on at least one surface of a base film made of a polymer material to form a deposition layer; A primary extrusion step (S2) of pulverizing and mixing the base film on which the deposition layer is formed, and extruding the polymer-metal composite material; and a second extrusion step (S3) of extruding the polymer-metal composite material to form a polymer film layer in which a fiber-shaped or plate-shaped metal material is oriented in one direction in a polymer matrix; includes
  • the method for manufacturing a current collector according to the present invention is to extrude a base film of a polymer material having a metal deposition layer formed thereon to make a polymer-metal composite material, and by extruding it again, a polymer-metal composite current collector with improved mechanical properties can be manufactured. will be.
  • 6 to 8 are schematic views showing each process of the manufacturing method of the current collector according to the present invention.
  • the base film 30 is a polyolefin-based raw material constituting the polymer matrix of the current collector according to the present invention. It may be at least one selected from the group consisting of a resin, a polyamide-based resin, a polyester-based resin, and a polyalkyl (meth)acrylate-based resin. Specific details regarding the resin are the same as described above.
  • a metal is deposited on the base film 30 to form a deposition layer 40 .
  • the deposition layer may be formed on at least one surface of the base film.
  • the deposition layer 40 is a raw material of the metal material of the current collector according to the present invention, and is selected from the group consisting of aluminum, copper, indium, titanium, tin, nickel, iron, tungsten, chromium, cobalt, gold, and silver. may be more than one species.
  • a metal having a melting point such as aluminum, copper, titanium, nickel, tungsten, iron, etc., higher than a temperature set during extrusion of a base film (a base film having a deposition layer) to be described later may be used.
  • a metal having a melting point such as aluminum, copper, titanium, nickel, tungsten, iron, etc.
  • the melting point of the metal material may be 200°C or higher, specifically 600°C or higher, and more specifically 800°C or higher.
  • the metal by depositing a metal on the base film 30, the metal can be coated on the base film to a thickness of a nanometer level.
  • the metal particles are better bonded to the base film 30 compared to the case where the metal particles are simply dispersed in the film.
  • the deposition layer may be formed on the entire surface or a portion of the base film.
  • the thickness of the deposition layer 40 may be 50 to 400 nm, 100 to 350 nm, or 150 to 300 nm
  • the thickness of the base film 30 may be 20 to 400 ⁇ m, 50 to 350 ⁇ m, or 100 to 300 ⁇ m. have.
  • the thickness of the deposition layer is less than the above range or the thickness of the base film exceeds the above range, the volume of the deposition layer is too small compared to the base film, so it is difficult to satisfy the desired physical properties of the current collector.
  • the thickness of the deposition layer exceeds the above range, or the thickness of the base film is less than the above range, cracks may occur in the deposition layer, the manufacturing cost increases, and it is difficult to achieve weight reduction of the current collector.
  • the volume ratio of the deposition layer 40 and the base film 30 may be 0.5:99.5 to 10:90, 0.5:99.5 to 5:95, 0.5:99.5 to 3:97, or 0.5:99.5 to 1.5:98.5. .
  • a sufficient amount of a metal material may be included in the polymer film layer to be described later while reducing the weight of the current collector.
  • the volume ratio may be calculated using the thickness and area of the base film and the deposition layer. When the volume of the deposition layer is too small compared to the base film, it is difficult to improve mechanical properties, and when the volume of the deposition layer is too large, the manufacturing cost increases, and cracks may occur in the deposition layer.
  • the deposition layer 40 may have a structure in which two or more different types of metal layers are stacked.
  • the metal material in the polymer film layer may include two or more different metals when the current collector is manufactured. Accordingly, the strength, flexibility, and processability of the polymer film layer can be set at a desired level.
  • the thickness of each layer constituting the deposition layer and the type of metal may be selected in consideration of the strength, flexibility, and workability of the polymer film layer. For example, a metal material having relatively high strength may be used to increase the strength of the polymer film layer, and a metal material having high ductility or malleability or a metal material having a low melting point may be used for flexibility or workability.
  • the deposition layer 40 may be formed by an evaporation method, a sputtering method, or an aerosol deposition method.
  • the evaporation method is to evaporate or sublimate a target material using an electron beam or an electric filament in a chamber of normal pressure or high vacuum (5x10 -5 to 1x10 -7 Torr) to deposit the target material on the adherend.
  • the sputtering method is a method in which a target material is deposited on an adherend by flowing a gas such as argon into a vacuum chamber and applying a voltage to the generated plasma.
  • the target located in the evaporation boat and crucible containing tungsten (W) or molybdenum (Mo) is evaporated in a high vacuum (5x10 -5 to 1x10 -7 Torr) or atmospheric pressure.
  • the deposition rate may be 0.1 nm/sec to 10 nm/sec.
  • sputtering when using a sputtering method, this may be performed at a process pressure of 1 mTorr to 100 mTorr, 1 mTorr to 75 mTorr, or 1 mTorr to 50 mTorr.
  • sputtering may be performed in a chamber containing a sputtering gas such as argon (Ar) or helium (He) or a reactive gas such as oxygen, nitrogen, or a mixture thereof. Details of other deposition methods are known to those skilled in the art, and thus detailed descriptions thereof will be omitted.
  • the deposition layer may be formed by a roll-to-roll process, and may be performed by the deposition unit 100 having the structure shown in FIG. 6 .
  • the base film unwound from the unwinding roll 110 travels along the surface of the traveling roll 120 , and the metal component evaporated from the metal source 130 located at a predetermined distance is formed. It may be deposited on the base film 30 .
  • the base film 30 on which the deposition layer 40 is formed may be wound on the rewinding roll 140 .
  • the polymer-metal composite material 50 is manufactured by extruding the base film on which the deposition layer is formed. Specifically, as shown in FIG. 7 , the base film 30 is pulverized and mixed, followed by extrusion. At this time, the extrusion is performed after pulverizing and mixing the base film 30 on which the deposition layer is formed, and melting it. The melting may be carried out at a temperature of 180 °C or higher, and specifically, it may be performed at a temperature of 200 °C or higher. Alternatively, a hot press melter may be used.
  • the melt obtained through the melting process is extruded to form a polymer-metal composite material.
  • This process may be extruded by the twin-screw extruder (200).
  • a metal material can be easily dispersed in a polymer matrix.
  • the metal inside may be formed in a plate shape or a fever shape.
  • the polymer-metal composite material 50 is extruded again as shown in FIG. 8 .
  • the extruded material can be made into a film form, and as the polymer-metal composite material 50 is extruded into a film form, the plate-shaped or fiber-shaped metal material is formed of the film. It is oriented once again in the longitudinal direction (extrusion direction).
  • being oriented in the longitudinal direction means that the plate-shaped or the fiber-shaped metallic material is aligned to have a predetermined angular range on the longitudinal axis and the thickness direction axis as described above.
  • Extrusion of the polymer-metal composite material 50 may be performed after pulverizing, mixing, and melting the polymer-metal composite material 50 , and the extrusion may be performed by the single screw extruder 300 .
  • the metal material inside the polymer-metal composite material may be oriented in one direction along the extrusion direction while the polymer metal composite material is uniformly discharged.
  • the extruded polymer film may be subjected to a cooling process, which may be performed by leaving the polymer film at room temperature or by using a separate cooler.
  • the method of manufacturing a current collector according to the present invention may further include forming a metal layer on at least one surface of the polymer film layer prepared by the method described above.
  • the metal layer may be formed by, for example, vapor deposition, and has a thin thickness of 1 ⁇ m or less, or 0.5 ⁇ m or less. Accordingly, it is possible to compensate for the mechanical rigidity of the current collector and to minimize an increase in the volume and weight of the electrode while improving electrical conductivity.
  • a base film aluminum metal was deposited to a thickness of 100 nm on a polymethyl methacrylate (PMMA) resin film having a thickness of 210 ⁇ m to form a deposition layer.
  • PMMA polymethyl methacrylate
  • After the base film on which the deposition layer was formed was pulverized, mixed at 180° C. and 50 rpm using a twin-screw extruder, and then extruded to prepare a polymer-metal composite material.
  • the polymer-metal composite material was again extruded using a single screw extruder to form a polymer film layer having a thickness of 100 ⁇ m.
  • a polymer film layer was formed in the same manner as in Example 1-1, except that 100 nm of indium metal was deposited on the base film.
  • a polymer film layer was formed by extruding the PMMA resin film in the same manner as in Example 1-1 without forming a deposition layer.
  • the elastic modulus and elongation at break of the polymer film layers according to Examples 1-1 and 1-2 and Comparative Example 1 were measured.
  • the elastic modulus and elongation at break were measured according to the measurement method of ASTM D 882 using a universal testing machine (UTM). The results are shown in Table 1 below.
  • the film of Example obtained by depositing a metal on the base film and extruding it and extruding the polymer-metal composite material again has superior mechanical properties compared to Comparative Example 1. This is because the metal material in the form of a fiber or plate was oriented in the extrusion direction inside the film.
  • a base film aluminum metal was deposited to a thickness of 300 nm on a polypropylene (PP) resin film having a thickness of 210 ⁇ m to form a deposition layer. At this time, the ratio of the metal to the total volume of the base film on which the deposition layer was formed was 1.5%.
  • the base film on which the deposition layer was formed was pulverized, mixed at 180° C. and 50 rpm using a twin-screw extruder, and then extruded to prepare a polymer-metal composite material. The polymer-metal composite material was again extruded using a single screw extruder to form a polymer film layer having a thickness of 100 ⁇ m.
  • Metallic copper (Cu) was deposited on both sides of the polymer film layer to a thickness of 150 nm using an E-beam evaporator to prepare a current collector having a metal layer.
  • a current collector was prepared in the same manner as in Example 2-1.
  • Example 2 As shown in Table 2, after sequentially depositing indium (In) and aluminum (Al) to a thickness of 20 nm and 300 nm, respectively, on a polypropylene (PP) resin film as a base film, the current collector in the same manner as in Example 2-1 was prepared.
  • PP polypropylene
  • a current collector was prepared by extruding a PP resin film in the same manner as in Example 2-1 without forming a deposition layer.
  • a current collector was prepared in the same manner as in Example 2-1, except that aluminum was deposited to a thickness of 20 nm on the base film.
  • the polymer film layer prepared according to Example 2-1, Example 2-5 and Comparative Example 2-1 was put into FESEM (JEOL JSM-7610F), and SEM photograph of the longitudinal section and EDS (energy dispersive X-ray) spectroscopy) were obtained, and these were shown in FIGS. 9 (Example 2-1), 10 (Example 2-5), and 11 (Comparative Example 2-1), respectively.
  • 9 to 11 (a) and (b) are SEM images magnified by 3000 times and 500 times, respectively, of the sample, and in FIG. 9 (c) is a photograph showing the distribution of aluminum metal through EDS. In FIG. 10, (c) shows the distribution of aluminum metal, and (d) shows the distribution of indium metal through EDS.
  • the line formed in the region A in FIGS. 9 to 11 is a Cu metal layer deposited on the polymer film layer.
  • Example 2-1 Al 300 2006.6 90.1 1.5
  • Example 2-2 Ni 100 1793.9 70.0 0.5
  • Example 2-3 In 300 1621.4 53.6 1.5
  • Example 2-4 In 100 1563.1 48.1 0.5
  • Example 2-5 In 20 1865.4 76.7 0.1 Al 300 1.5 Comparative Example 2-1 - - 1055.5 0.0 - Comparative Example 2-2 Al 20 1070.2 1.3 0.1
  • the current collector according to an embodiment of the present invention includes a metal material (B) of a fiber or plate shape having a thickness or a cross-sectional diameter in nm and a length in ⁇ m units.
  • B a metal material of a fiber or plate shape having a thickness or a cross-sectional diameter in nm and a length in ⁇ m units.
  • Table 2 it can be seen that the current collector of Example in which a metal is deposited on a film at a predetermined volume ratio and extruded and the polymer-metal composite material is extruded again has superior mechanical properties compared to Comparative Example 2-1. have. This is because, as shown in FIGS. 9 and 10 , the metal material in the form of a fiber or plate was oriented in the extrusion direction inside the film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은 집전체 및 이의 제조방법에 관한 것으로, 본 발명에 따른 집전체는 복합 고분자 필름층을 포함하는 집전체로서, 상기 복합 고분자 필름층은, 고분자 매트릭스; 및 상기 고분자 매트릭스 내에 분산되어 있는 피버(fiber) 형상 또는 판상형의 금속 물질들을 포함하고, 상기 금속 물질은 일 방향으로 배향되어 있다.

Description

고분자 필름을 포함하는 집전체 및 이의 제조방법
본 출원은 2021.05.07. 자 한국 특허 출원 제10-2021-0059193호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 집전체 및 이의 제조방법에 관한 것으로, 상세하게는 고분자 필름을 포함하는 집전체 및 이의 제조방법에 관한 것이다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는, 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차, 하이브리드 전기자동차 등의 에너지원으로서도 주목받고 있다. 따라서, 이차전지를 사용하는 애플리케이션의 종류는 이차전지의 장점으로 인해 매우 다양화되고 있으며, 향후에는 지금보다는 많은 분야와 제품들에 이차전지가 적용될 것으로 예상된다.
이러한 이차전지는 전극과 전해액의 구성에 따라 리튬이온 전지, 리튬이온 폴리머 전지, 리튬 폴리머 전지 등으로 분류되기도 하며, 그 중 전해액의 누액 가능성이 적으며, 제조가 용이한 리튬이온 폴리머 전지의 사용량이 늘어나고 있다. 일반적으로, 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류되며, 전지케이스에 내장되는 전극조립체는 양극, 음극, 및 상기 양극과 상기 음극 사이에 개재된 분리막 구조로 이루어져 충방전이 가능한 발전소자로서, 활물질이 도포된 긴 시트형의 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형과, 소정 크기의 다수의 양극과 음극을 분리막에 개재된 상태에서 순차적으로 적층한 스택형으로 분류된다.
이러한 전극들은 집전체 상에 전극 활물질을 포함하는 전극 슬러리를 코팅한 후 건조하여 전극 합제층을 형성함으로써 제조될 수 있다. 이 때, 일반적인 집전체는 구리 또는 알루미늄과 같이 전기 전도성이 우수한 금속이 사용될 수 있으며, 최근에는 집전체의 경량화를 위하여 고분자 필름 및 금속을 복합화한 집전체의 개발이 진행되고 있다.
그러나, 이와 같은 고분자와 금속을 복합화한 집전체의 경우, 일반적인 고분자 필름의 탄성 모듈러스가 0.1 내지 5 GPa 수준으로, 구리(117GPa) 또는 알루미늄(69GPa)에 비해 매우 낮은 수준이다. 이로 인해 고분자-금속 복합 집전체의 경우 금속 집전체 수준의 물성을 가지기 위해 두께를 10배 이상 두껍게 해야 하는 문제가 있었다. 이는 전극의 부피 및 질량이 증가하는 문제를 야기한다.
본 발명은 상기와 같은 과제를 해결하기 위해 안출된 것으로 기계적 물성이 향상된 고분자-금속 복합 집전체 및 이의 제조방법을 제공하는 것을 목적으로 한다.
본 발명에 따른 집전체는 복합 고분자 필름층을 포함하는 집전체로서, 상기 복합 고분자 필름층은, 고분자 매트릭스; 및 상기 고분자 매트릭스 내에 분산되어 있는 피버(fiber) 형상 또는 판상형의 금속 물질들을 포함하고, 상기 금속 물질은 일 방향으로 배향되어 있다.
구체적인 예에서, 상기 금속 물질은 알루미늄, 구리, 인듐, 티탄, 주석, 니켈, 철, 텅스텐, 크롬, 코발트, 금, 은을 포함하는 군에서 선택되는 1종 이상이고, 상기 고분자 필름은 폴리올레핀계 수지, 폴리아미드계 수지, 폴리에스테르계 수지, 폴리알킬(메트)아크릴레이트계 수지를 포함하는 군에서 선택되는 1종 이상일 수 있다.
구체적인 예에서, 상기 피버 형상의 금속물질은 단면의 직경이 10 내지 500nm이고, 길이는 0.5 내지 200㎛일 수 있다.
구체적인 예에서, 상기 판상형의 금속 물질은 두께가 10 내지 500nm이고, 폭 및 길이가 0.5 내지 200㎛일 수 있다.
하나의 예에서, 상기 금속 물질은 서로 다른 2종 이상의 금속을 포함할 수 있다.
구체적인 예에서, 상기 금속 물질은 고분자 필름층의 길이 방향 축과 이루는 각도가 20° 이하이고, 두께 방향 축과 이루는 각도가 70 내지 90°일 수 있다.
구체적인 예에서, 상기 고분자 필름층의 두께는 10 내지 200㎛일 수 있다.
다른 하나의 예에서, 본 발명에 따른 집전체는 상기 고분자 필름의 적어도 일면에 형성되며, 두께 1㎛ 이하의 금속층을 더 포함할 수 있다.
또한 본 발명은 상기와 같은 집전체의 제조방법을 제공한다.
본 발명에 따른 집전체의 제조방법은 고분자 소재의 베이스 필름의 적어도 일면에 금속을 증착하여 증착층을 형성하는 증착 단계; 증착층이 형성된 베이스 필름을 분쇄, 혼합한 후, 압출하여 고분자-금속 복합 재료를 제조하는 1차 압출 단계; 및 상기 고분자-금속 복합 재료를 압출하여, 고분자 매트릭스 내에 피버(fiber) 형상 또는 판상형의 금속 물질들이 일 방향으로 배향된 고분자 필름층을 형성하는 2차 압출 단계; 를 포함한다.
구체적인 예에서, 상기 금속은 알루미늄, 구리, 인듐, 티탄, 주석, 니켈, 철, 텅스텐, 크롬, 코발트, 금, 은을 포함하는 군에서 선택되는 1종 이상이고, 상기 베이스 필름은 폴리올레핀계 수지, 폴리아미드계 수지, 폴리에스테르계 수지, 폴리알킬(메트)아크릴레이트계 수지를 포함하는 군에서 선택되는 1종 이상일 수 있다.
구체적인 예에서, 상기 증착층의 두께는 50 내지 400nm이고, 베이스 필름의 두께는 20 내지 400㎛일 수 있다.
이 때, 상기 증착층과 베이스 필름의 부피비는 0.5:99.5 내지 10:90일 수 있다.
하나의 예에서, 상기 증착층은 서로 다른 종류의 금속층이 2층 이상 적층된 구조일 수 있다.
구체적인 예에서, 증착층이 형성된 베이스 필름은 이축 압출기에 의해 압출될 수 있다.
또한, 고분자-금속 복합 재료의 압출은 일축 압출기에 의해 수행될 수 있다.
다른 하나의 예에서, 본 발명에 따른 집전체의 제조방법은 상기 고분자 필름의 적어도 일면에 금속층을 형성하는 단계를 더 포함할 수 있다.
본 발명은 고분자 필름층 내에 피버 형상 또는 판상형의 금속 물질을 일 방향으로 배향된 상태로 분산시킴으로써 고분자 필름층을 포함하는 집전체의 기계적 물성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 집전체의 길이 방향 단면을 나타낸 모식도이다.
도 2는 본 발명의 일 실시예에 따른 집전체의 폭 방향 단면을 나타낸 모식도이다.
도 3은 본 발명의 다른 실시예에 따른 집전체의 길이 방향 단면을 나타낸 모식도이다.
도 4는 본 발명에 따른 집전체의 제조방법의 순서를 나타낸 흐름도이다.
도 5는 본 발명에 따른 집전체의 제조방법의 순서 및 이에 따른 변화를 나타낸 개략도이다.
도 6 내지 도 8은 본 발명에 따른 집전체의 제조방법의 각 과정을 나타낸 개략도이다.
도 9 내지 도 11은 실시예 및 비교예에 따른 고분자 필름층의 단면을 나타낸 SEM 사진 및 원소 분포를 나타낸 사진이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 “상에” 배치된다고 하는 것은 상부뿐 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
한편, 본 발명에서, 고분자 필름 또는 집전체의 길이 방향이란, 고분자 필름층 형성 시 고분자가 압출되는 방향 또는 집전체의 제조 및 가공 공정 시 필름이 주행하는 방향(MD 방향, x축 방향)을 의미한다. 폭 방향은 필름층이 형성하는 면에서 상기 길이 방향에 수직한 방향(y축 방향)을 의미한다.
이하 본 발명에 대해 자세히 설명한다.
본 발명에 따른 집전체는 복합 고분자 필름층을 포함하는 집전체로서, 상기 복합 고분자 필름층은, 고분자 매트릭스; 및 상기 고분자 매트릭스 내에 분산되어 있는 피버(fiber) 형상 또는 판상형의 금속 물질들을 포함하고, 상기 금속 물질은 일 방향으로 배향되어 있다.
전술한 바와 같이, 이와 같은 고분자와 금속을 복합화한 집전체의 경우, 일반적인 고분자 필름의 기계적 물성이 금속 집전체에 비해 매우 낮은 수준이다. 이로 인해 고분자-금속 복합 집전체의 경우 금속 집전체 수준의 물성을 가지기 위해 두께를 10배 이상 두껍게 해야 하는 문제가 있었다. 이는 전극의 부피 및 질량이 증가하는 문제를 야기한다.
본 발명은 고분자 필름층 내에 피버 형상 또는 판상형의 금속 물질을 일 방향으로 배향된 상태로 분산시킴으로써 고분자 필름층을 포함하는 집전체의 기계적 물성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 집전체의 길이 방향 단면을 나타낸 모식도이며, 도 2는 본 발명의 일 실시예에 따른 집전체의 폭 방향 단면을 나타낸 모식도이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 집전체(1)는 고분자 필름층(10)을 포함한다. 상기 고분자 필름층(10)은 집전체의 본체로서, 집전체를 경량화하고, 금속을 사용하는 경우에 비해 집전체에 유연성을 제공한다.
상기 고분자 필름층(10)은 도 1 및 도 2에 도시된 바와 같이 고분자 매트릭스(11); 및 상기 고분자 매트릭스(11) 내에 분산되어 있는 금속 물질(12)을 포함한다.
상기 고분자 매트릭스(11)에 사용되는 고분자 소재는 후술하는 금속 물질이 분산되는 매트릭스 역할을 수행하며, 집전체에 유연성을 제공하고, 집전체로 사용될 수 있을 정도의 강성을 가지고 있는 것을 사용할 수 있다. 예를 들어, 상기 고분자 필름은 폴리올레핀계 수지, 폴리아미드계 수지, 폴리에스테르계 수지, 폴리알킬(메트)아크릴레이트계 수지를 포함하는 군에서 선택되는 1종 이상을 사용할 수 있다.
이 때, 상기 폴리올레핀계 수지는 고밀도, 중밀도, 저밀도, 선형 저밀도 폴리에틸렌, 결정성 폴리프로필렌, 비정성 폴리프로필렌, 또는 폴리부틸렌일 수 있다.
상기 폴리아미드계 수지의 경우 예를 들어 나일론 6, 나일론 6,6, 나일론 610, 또는 나일론 12일 수 있다.
상기 폴리에스테르계 수지는 예를 들어 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 또는 폴리에틸렌 나프탈레이트일 수 있다.
상기 폴리알킬(메트)아크릴레이트계 수지는 예를 들어 폴리메틸메타크릴레이트, 폴리메틸아크릴레이트, 폴리에틸아크릴레이트 또는 폴리부틸아크릴레이트일 수 있다.
상기 금속 물질(12)의 경우 최소 나노미터 수준의 크기를 갖는 것으로, 고분자 매트릭스(11) 내에 균일하게 분산된다.
더욱 상세하게는 상기 금속 물질(12)은 피버(fiber) 형상 또는 판상형일 수 있다. 여기서, 피버 형상이라는 것은 도 2의 (a)와 같이 고분자 매트릭스(11) 내에 분산된 금속 물질(12)이 가느다란 섬유 형상인 것을 의미한다. 반면에, 금속 물질(12)이 판상형이라는 것은 도 2의 (b)와 같이 금속 물질(12)이 스트립 또는 시트와 같이 편평한 형상인 것을 의미한다.
즉, 상기 금속 물질(12)은 일 방향으로 길이가 긴 형태를 갖는다. 상기 금속 물질(12)은 고분자 매트릭스(11) 내에서 일 방향으로 배향됨으로써 고분자 필름층(10)의 기계적 물성을 향상시킨다. 구체적으로, 상기 금속 물질(12)은 도 1 및 도 2에 도시된 바와 같이 고분자 필름층(10)의 길이 방향(x축 방향)으로 배향될 수 있다.
상기 금속 물질(12)은 알루미늄, 구리, 인듐, 티탄, 주석, 니켈, 철, 텅스텐, 크롬, 코발트, 금, 은을 포함하는 군에서 선택되는 1종 이상을 사용할 수 있으나, 필름과 함께 가공되기 용이하고 고분자 필름층의 기계적 물성을 향상시킬 수 있으면 그 종류에 특별한 제한은 존재하지 않는다. 더욱 상세하게는, 상기 금속 물질은 알루미늄, 구리, 티탄, 니켈, 텅스텐, 철 등 녹는점이 후술하는 고분자 매트릭스를 구성하는 소재의 압출 시 설정되는 온도보다 높은 금속을 사용할 수 있다. 이는 녹는점이 고분자 소재의 용융 및 압출 시 설정되는 온도보다 낮을 경우 금속이 용융되어 판상형 또는 피버 형상을 이루지 못하고 구형을 이룰 수 있기 때문이다. 예를 들어, 상기 금속 물질의 녹는점은 200℃ 이상, 상세하게는 600℃ 이상, 더욱 상세하게는 800℃ 이상일 수 있다.
상기 금속 물질(12)이 피버 형상일 경우, 금속 물질(12)의 단면의 직경은 10 내지 500nm, 100 내지 400nm 또는 150 내지 350nm일 수 있고, 금속 물질(12)의 길이는 0.5 내지 200㎛, 0.5 내지 150㎛ 또는 0.5 내지 100㎛일 수 있다.
아울러, 상기 금속 물질(12)이 판상형인 경우 금속 물질은 두께가 10 내지 500nm, 100 내지 400nm 또는 150 내지 350nm일 수 있으며, 폭 및 길이가 0.5 내지 200㎛, 0.5 내지 150㎛ 또는 0.5 내지 100㎛일 수 있다.
금속 물질의 크기(직경 또는 두께, 길이)가 상기 범위를 벗어나 지나치게 작을 경우 기계적 물성 증가 효과가 크지 않으며, 금속 물질의 크기가 상기 범위를 벗어나 지나치게 클 경우 이를 제조하기 위해 후술하는 바와 같이 베이스 필름 상에 형성되는 증착층의 두께가 두꺼워져야 하는데, 이 경우 증착층에 크랙이 발생할 수 있고 비용이 증가하게 되는 문제가 있다.
이와 같이, 본 발명은 고분자 매트릭스(11)에 나노미터 수준의 크기를 갖는 피버 또는 판상형의 금속 물질(12)을 분산시킴으로써, 금속 물질(12)이 고분자 매트릭스(11) 내에서 고분자 매트릭스(11)에 잘 결합할 수 있으며, 금속 물질(12)이 고분자 매트릭스(11) 외부로 빠져 나오는 것을 방지할 수 있다.
또한, 상기 금속 물질(12)은 전술한 바와 같이 고분자 필름층(10)의 길이 방향(x축 방향)으로 배향됨으로써 고분자 필름층(10)의 길이 방향으로의 기계적 물성을 향상시킬 수 있다. 구체적으로, 상기 금속 물질(12)은 고분자 필름층(10)의 길이 방향 축(x축)과 이루는 각도가 20° 이하, 15° 이하 또는 10° 이하 이고, 두께 방향 축(z축)과 이루는 각도가 70 내지 90° 또는 80 내지 90°일 수 있다. 아울러 상기 금속 물질(12)은 상기와 같은 배향 각도를 이루는 것이 전체 금속 물질의 80% 이상, 90% 이상 또는 95% 이상을 차지할 수 있다. 금속 물질(12)의 배향 정도가 상기 범위일 때 고분자 필름층(10)의 기계적 물성이 효과적으로 향상될 수 있다.
하나의 예에서, 상기 금속 물질(12)은 서로 다른 2종 이상의 금속을 포함할 수 있다. 이는 서로 다른 금속 물질이 각각 서로 다른 금속으로 되어 있는 경우 및 하나의 금속 물질이 서로 다른 2종 이상의 금속을 포함하는 경우를 모두 포함한다. 이에 따라 고분자 필름층의 강도 및 유연성, 가공성을 원하는 수준에서 설정 가능하다. 이 때, 상기 금속 물질의 종류 및 함량비(예를 들어, 부피비)는 달성하고자 하는 고분자 필름층의 강도, 유연성 및 가공성 등을 고려하여 선택할 수 있다. 예를 들어, 고분자 필름층의 강도를 높이기 위해서는 상대적으로 강도가 큰 금속 소재를 사용할 수 있으며, 유연성 또는 가공성을 위해서는 연성 또는 전성이 큰 금속 소재 또는 녹는점이 상대적으로 낮은 금속 소재를 사용할 수도 있다.
한편, 상기 고분자 필름층(10)의 두께는 10 내지 200㎛일 수 있으며, 상세하게는 50 내지 150㎛일 수 있다. 즉, 본 발명에 따른 집전체(1)는 일반적인 금속 집전체와 비슷한 두께를 가지면서도 금속 집전체와 비슷한 기계적 물성을 나타낼 수 있다. 고분자 필름층(10)의 두께가 10㎛ 미만일 경우 집전체의 두께가 지나치게 작아 원하는 기계적 물성을 나타내기 어려우며, 고분자 필름층(10)의 두께가 200㎛를 초과할 경우 집전체의 두께가 지나치게 증가하여 전극 및 전지셀의 부피 및 중량이 증가한다는 문제가 있다.
도 3은 본 발명의 다른 실시예에 따른 집전체의 길이 방향 단면을 나타낸 모식도이다.
도 3을 참조하면, 본 발명에 따른 집전체(2)는 고분자 필름층(10)의 적어도 일면에 형성되는 금속층(20)을 더 포함할 수 있다. 상기 금속층(20)은 고분자 필름층(10)에 추가적으로 기계적 강성을 보완하며, 집전체(2)의 전기 전도성을 증가시킨다.
상기 금속층(20)은 예를 들어 증착에 의해 형성될 수 있으며, 1㎛ 이하, 또는 0.5㎛ 이하의 얇은 두께를 가진다. 이로써 집전체(2)의 기계적 강성을 보완하고, 전기 전도성을 향상시키면서도 전극의 부피 및 중량이 증가하는 것을 최소화할 수 있다. 또한, 상기 금속층은 50nm 이상, 100nm 이상, 또는 200nm이상의 두께를 가질 수 있다.
또한, 본 발명은 앞서 설명한 바와 같은 집전체를 포함하는 전극을 제공한다.
상기 전극은 앞서 설명한 바와 같은 집전체의 적어도 일면에 형성된 전극 합제층을 포함한다. 상기 전극 합제층은 집전체 상에 전극 활물질, 도전재 및 바인더를 포함하는 전극 슬러리를 코팅하여 형성된다. 상기 전극 활물질은 음극 활물질 또는 양극 활물질일 수 있다.
본 발명에서 양극 활물질은, 전기화학적 반응을 일으킬 수 있는 물질로서, 리튬 전이금속 산화물로서, 2 이상의 전이금속을 포함하고, 예를 들어, 1 또는 그 이상의 전이금속으로 치환된 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 1 또는 그 이상의 전이금속으로 치환된 리튬 망간 산화물; 화학식 LiNi1-yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B, Cr, Zn 또는 Ga 이고 상기 원소 중 하나 이상의 원소를 포함, 0.01≤y≤0.7 임)으로 표현되는 리튬 니켈계 산화물; Li1+zNi1/3Co1/3Mn1/3O2, Li1+zNi0.4Mn0.4Co0.2O2 등과 같이 Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ae (여기서, -0.5≤z≤0.5, 0.1≤b≤0.8, 0.1≤c≤0.8, 0≤d≤0.2, 0≤e≤0.2, b+c+d<1임, M = Al, Mg, Cr, Ti, Si 또는 Y 이고, A = F, P 또는 Cl 임)으로 표현되는 리튬 니켈 코발트 망간 복합산화물; 화학식 Li1+xM1-yM'yPO4-zXz(여기서, M = 전이금속, 바람직하게는 Fe, Mn, Co 또는 Ni 이고, M' = Al, Mg 또는 Ti 이고, X = F, S 또는 N 이며, -0.5≤x≤+0.5, 0≤y≤0.5, 0≤z≤0.1 임)로 표현되는 올리빈계 리튬 금속 포스페이트 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로오즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 터폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
또한, 본 발명은 앞서 설명한 바와 같은 집전체의 제조방법을 제공한다.
도 4는 본 발명에 따른 집전체의 제조방법의 순서를 나타낸 흐름도이며, 도 5는 본 발명에 따른 집전체의 제조방법의 순서 및 이에 따른 변화를 나타낸 개략도이다.
도 4 및 도 5를 참조하면, 본 발명에 따른 집전체의 제조방법은 고분자 소재의 베이스 필름의 적어도 일면에 금속을 증착하여 증착층을 형성하는 증착 단계(S1); 증착층이 형성된 베이스 필름을 분쇄, 혼합한 후, 압출하여 고분자-금속 복합 재료를 제조하는 1차 압출 단계(S2); 및 상기 고분자-금속 복합 재료를 압출하여, 고분자 매트릭스 내에 피버(fiber) 형상 또는 판상형의 금속 물질들이 일 방향으로 배향된 고분자 필름층을 형성하는 2차 압출 단계(S3); 를 포함한다.
본 발명에 따른 집전체의 제조방법은 금속 증착층이 형성된 고분자 소재의 베이스 필름을 압출하여 고분자-금속 복합 재료로 만들고, 이를 다시 압출함으로써 기계적 물성이 향상된 고분자-금속 복합 집전체를 제조할 수 있는 것이다.
도 6 내지 도 8은 본 발명에 따른 집전체의 제조방법의 각 과정을 나타낸 개략도이다.
도 6 내지 도 8을 도 5와 함께 참조하면, 먼저, 고분자 소재의 베이스 필름(30)을 준비한다, 상기 베이스 필름(30)은 본 발명에 따른 집전체의 고분자 매트릭스를 구성하는 원료로서 폴리올레핀계 수지, 폴리아미드계 수지, 폴리에스테르계 수지, 폴리알킬(메트)아크릴레이트계 수지를 포함하는 군에서 선택되는 1종 이상일 수 있다. 상기 수지에 관한 구체적인 내용은 전술한 바와 동일한다.
베이스 필름(30)이 준비되면, 도 5와 같이 상기 베이스 필름(30) 상에 금속을 증착하여 증착층(40)을 형성한다. 증착층은 베이스 필름의 적어도 일면에 형성될 수 있다. 증착층(40)은 본 발명에 따른 집전체의 금속 물질의 원료로서, 알루미늄, 구리, 인듐, 티탄, 주석, 니켈, 철, 텅스텐, 크롬, 코발트, 금, 은을 포함하는 군에서 선택되는 1종 이상일 수 있다. 더욱 상세하게는, 상기 금속 물질은 알루미늄, 구리, 티탄, 니켈, 텅스텐, 철 등 녹는점이 후술하는 베이스 필름(증착층이 형성된 베이스 필름)의 압출 시 설정되는 온도보다 높은 금속을 사용할 수 있다. 이는 녹는점이 상기 설정되는 온도보다 낮을 경우 금속이 용융되어 유동함에 따라 판상형 또는 피버 형상을 이루지 못하고 구형을 이룰 수 있기 때문이다. 예를 들어, 상기 금속 물질의 녹는점은 200℃ 이상, 상세하게는 600℃ 이상, 더욱 상세하게는 800℃ 이상일 수 있다.
본 발명에서는 베이스 필름(30) 상에 금속을 증착함으로써, 나노미터 수준의 두께로 금속을 베이스 필름 상에 코팅할 수 있다. 이와 같이 베이스 필름(30) 상에 증착층(40)을 형성함으로써 단순히 필름 내부에 금속 입자를 분산시킨 경우에 비해 금속 입자가 베이스 필름(30)에 잘 결합하게 된다. 상기 증착층은 베이스 필름의 전면 또는 일부 영역에 형성될 수 있다.
이 때, 증착층(40)의 두께는 50 내지 400nm, 100 내지 350nm 또는 150 내지 300nm일 수 있으며, 베이스 필름(30)의 두께는 20 내지 400㎛, 50 내지 350㎛ 또는 100 내지 300㎛일 수 있다. 증착층의 두께가 상기 범위 미만이거나, 베이스 필름의 두께가 상기 범위를 초과할 경우 증착층의 부피가 베이스 필름에 비해 지나치게 작아 달성하고자 하는 집전체의 물성을 만족하기 어렵다. 반대로, 증착층의 두께가 상기 범위를 초과하거나, 베이스 필름의 두께가 상기 범위 미만일 경우 증착층에 크랙이 발생할 수 있고, 제조 단가가 상승하며, 집전체의 경량화 달성이 어렵다.
또한, 증착층(40)과 베이스 필름(30)의 부피비는 0.5:99.5 내지 10:90, 0.5:99.5 내지 5:95, 0.5:99.5 내지 3:97 또는 0.5:99.5 내지 1.5:98.5일 수 있다. 상기 수치 범위를 만족하는 경우 집전체를 경량화하면서도 후술하는 고분자 필름층의 내부에 충분한 양의 금속 물질을 포함시킬 수 있다. 상기 부피비는 베이스 필름 및 증착층의 두께 및 면적을 이용하여 산출할 수 있다. 증착층의 부피가 베이스 필름에 비해 지나치게 작을 경우 기계적 물성 향상이 어려우며, 증착층의 부피가 지나치게 클 경우 제조 단가가 상승하며, 증착층에 크랙이 발생할 수 있다.
또한, 본 발명에서, 상기 증착층(40)은 서로 다른 종류의 금속층이 2층 이상 적층된 구조일 수 있다. 이와 같이 증착층(40)을 서로 다른 금속으로 구성된 2층 이상의 구조로 형성함으로써, 집전체 제조 시 고분자 필름층 내의 금속 물질이 서로 다른 2종 이상의 금속을 포함하도록 할 수 있다. 이에 따라 고분자 필름층의 강도 및 유연성, 가공성을 원하는 수준에서 설정 가능하다. 이 때, 상기 증착층을 구성하는 각 층의 두께 및 금속의 종류는 하는 고분자 필름층의 강도, 유연성 및 가공성 등을 고려하여 선택할 수 있다. 예를 들어, 고분자 필름층의 강도를 높이기 위해서는 상대적으로 강도가 큰 금속 소재를 사용할 수 있으며, 유연성 또는 가공성을 위해서는 연성 또는 전성이 큰 금속 소재 또는 녹는점이 낮은 금속 소재를 사용할 수 있다.
상기 증착층(40)의 형성은 이베퍼레이션(Evaporation) 방법, 스퍼터링(sputtering) 방법 또는 에어로졸 증착(Aerosol Deposition)에 의한 것일 수 있다. 상기 이베퍼레이션 방법이란, 상압 또는 고진공(5x10-5~1x10-7Torr)의 챔버 내에서 전자빔이나 전기 필라멘트를 이용하여 타겟 재료를 증발 또는 승화시켜 피착물에 증착하는 것이다. 또한, 상기 스퍼터링 방법이란, 아르곤 등의 기체를 진공의 챔버 내에 흘려 보내고, 전압을 인가하여 발생한 플라즈마에 의해 타겟 물질이 피착물에 증착되는 방법이다.
구체적으로, 이베퍼레이션 방법을 사용할 경우 고진공 상태(5x10-5~1x10-7Torr) 또는 상압에서 텅스텐(W) 또는 몰리브덴(Mo)을 포함하는 증착 보트(evaporation boat) 및 crucible에 위치한 타겟을 증발 또는 기화가 일어날 때까지 전압을 가하거나 전자빔의 전력을 증가시킨 후, 0.1nm/sec 내지 10nm/sec의 증착 속도 조건 하에서 수행될 수 있다.
또는 스퍼터링 방법을 사용할 경우, 이는 1 mTorr 내지 100 mTorr, 1 mTorr 내지 75 mTorr, 또는 1 mTorr 내지 50 mTorr의 공정압력에서 수행될 수 있다. 또한 아르곤(Ar) 또는 헬륨(He)과 같은 스퍼터 가스 또는 산소, 질소 또는 이들의 혼합 기체와 같은 반응성 가스를 포함하는 챔버에서 스퍼터링이 수행될 수 있다. 기타 증착 방법에 관한 자세한 내용은 통상의 기술자에게 공지된 사항이므로 자세한 설명을 생략한다.
한편, 상기 증착층의 형성은 롤투롤 공정에 의해 수행될 수 있으며, 도 6과 같은 구조의 증착부(100)에 의해 수행될 수 있다. 예를 들어, 도 6과 같이 언와인딩 롤(110)에서 권출된 베이스 필름은 주행 롤(120)의 표면을 따라 주행하면서, 일정 거리 이격된 곳에 위치하는 금속 공급원(130)으로부터 증발된 금속 성분이 베이스 필름(30) 상에 증착될 수 있다. 증착층(40) 형성이 완료된 베이스 필름(30)은 리와인딩 롤(140)에 권취될 수 있다.
증착이 완료되면, 증착층이 형성된 베이스 필름을 압출하여 고분자-금속 복합 재료(50)를 제조한다. 구체적으로, 도 7과 같이, 베이스 필름을(30) 분쇄, 혼합한 후 압출이 수행된다. 이 때, 상기 압출은 증착층이 형성된 베이스 필름(30)을 분쇄 및 혼합하고, 이를 용융시킨 이후 수행된다. 상기 용융은 180℃ 이상의 온도에서 수행될 수 있으며, 상세하게는 200℃ 이상의 온도에서도 수행될 수 있다. 또한, Hot press 용융기를 사용할 수 있다.
이후, 용융 과정을 통해 얻어진 용융물을 압출하여 고분자-금속 복합 재료를 형성한다. 이러한 과정은 이축 압출기(200)에 의해 압출될 수 있다. 이축 압출기의 경우 고분자 매트릭스 내에 용이하게 금속 물질을 용이하게 분산시킬 수 있다. 이 과정에서 내부의 금속이 판상형 또는 피버 형상으로 형성될 수 있다.
고분자-금속 복합 재료(50)가 제조되면, 도 8과 같이 고분자-금속 복합 재료(50)를 다시 압출한다. 이 때 고분자-금속 복합 재료(50)를 압출한 이후, 압출된 재료를 필름 형태로 만들 수 있으며, 고분자-금속 복합 재료(50)가 필름 형태로 압출되면서 판상형 또는 피버 형상의 금속 물질이 필름의 길이 방향(압출 방향)으로 다시 한 번 배향된다. 여기서 길이 방향으로 배향된다는 것은 판상형 또는 피버 형상의 금속 물질이 전술한 바와 같이 길이 방향 축과 두께 방향 축에 소정의 각도 범위를 갖도록 정렬된다는 것을 의미한다.
고분자-금속 복합 재료(50)의 압출은 상기 고분자-금속 복합 재료(50)를 분쇄, 혼합 및 용융 시킨 후 수행될 수 있으며, 상기 압출은 일축 압출기(300)에 의해 수행될 수 있다. 일축 압출기에 의해 압출을 수행함으로써, 고분자 금속 복합 재료가 균일하게 토출되면서, 고분자-금속 복합 재료 내부의 금속 물질이 압출 방향을 따라 일 방향으로 배향될 수 있다.
이후, 압출된 고분자 필름은 냉각 과정을 거칠 수 있으며, 이는 고분자 필름을 상온에 방치하는 방법으로 수행되거나, 별도의 냉각기를 사용하여 수행될 수 있다.
다른 하나의 예에서, 본 발명에 따른 집전체의 제조방법은 앞서 설명한 방법으로 제조된 고분자 필름층의 적어도 일면에 금속층을 형성하는 단계를 더 포함할 수 있다.
상기 금속층은 예를 들어 증착에 의해 형성될 수 있으며, 1㎛ 이하, 또는 0.5㎛ 이하의 얇은 두께를 가진다. 이로써 집전체의 기계적 강성을 보완하고, 전기 전도성을 향상시키면서도 전극의 부피 및 중량이 증가하는 것을 최소화할 수 있다.
이하 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1-1
베이스 필름으로서, 두께 210㎛인 폴리메틸메타크릴레이트(PMMA) 수지 필름 상에 알루미늄 금속을 100nm 두께로 증착하여 증착층을 형성하였다. 증착층이 형성된 베이스 필름을 분쇄한 후, 이축 압출기를 사용하여 180℃, 50rpm으로 혼합한 후 압출하여 고분자-금속 복합 재료를 제조하였다. 상기 고분자-금속 복합 재료를 다시 일축 압출기를 사용하여 압출하여 100㎛ 두께의 고분자 필름층을 형성하였다.
실시예 1-2
베이스 필름 상에 인듐 금속을 100nm로 증착한 것을 제외하고 실시예 1-1과 동일하게 고분자 필름층을 형성하였다.
비교예 1
증착층을 형성하지 않고, PMMA 수지 필름을 실시예 1-1과 동일한 방법으로 압출하여 고분자 필름층을 형성하였다.
실험예 1
상기 실시예 1-1, 1-2 및 비교예 1에 따른 고분자 필름층의 탄성 모듈러스 및 파단 연신율을 측정하였다. 상기 탄성 계수 및 파단 연신율은 Universal testing machine(UTM)을 이용하여 ASTM D 882의 측정법에 따라 측정하였다. 그 결과는 하기 표 1과 같다.
탄성 모듈러스(GPa) 파단 연신율(%)
실시예 1-1 12.0 24
실시예 1-2 9.5 20
비교예 1 1.1 13
상기 표 1을 참조하면, 베이스 필름 상에 금속을 증착하고, 이를 압출하여 형성된 고분자-금속 복합 재료를 다시 압출한 실시예의 필름은 비교예 1에 비해 기계적 물성이 우수함을 알 수 있다. 이는 필름의 내부에 피버 또는 판상형의 금속 물질이 압출 방향으로 배향되었기 때문이다.
실시예 2-1
베이스 필름으로서, 두께 210㎛인 폴리프로필렌(PP) 수지 필름 상에 알루미늄 금속을 300nm 두께로 증착하여 증착층을 형성하였다. 이 때, 증착층이 형성된 베이스 필름 전체 부피에서 금속이 차지하는 비율은 1.5%였다. 증착층이 형성된 베이스 필름을 분쇄한 후, 이축 압출기를 사용하여 180℃, 50rpm으로 혼합한 후 압출하여 고분자-금속 복합 재료를 제조하였다. 상기 고분자-금속 복합 재료를 다시 일축 압출기를 사용하여 압출하여 100㎛ 두께의 고분자 필름층을 형성하였다.
상기 고분자 필름층의 양면에 금속 구리(Cu)를 E-beam Evaporator를 사용하여 150nm의 두께로 증착하여 금속층이 형성된 집전체를 제조하였다.
실시예 2-2 내지 2-4
하기 표 2와 같이 금속을 PP 베이스 필름 상에 소정의 두께로 증착 후, 실시예 2-1과 동일하게 집전체를 제조하였다.
실시예 2-5
표 2에 나타난 바와 같이, 베이스 필름으로서 폴리프로필렌(PP) 수지 필름 상에 인듐(In) 및 알루미늄(Al)을 각각 20nm 및 300nm 두께로 순차적으로 증착 후, 실시예 2-1과 동일하게 집전체를 제조하였다.
비교예 2-1
증착층을 형성하기 않고, PP 수지 필름을 실시예 2-1과 동일한 방법으로 압출하여 집전체를 제조하였다.
비교예 2-2
베이스 필름 상에 알루미늄을 20nm 두께로 증착한 것을 제외하고 실시예 2-1과 동일하게 집전체를 제조하였다.
실험예 2
실시예 2-1, 실시예 2-5 및 비교예 2-1에 따라 제조된 고분자 필름층을 FESEM(JEOL社 JSM-7610F)에 투입하여 길이 방향 단면의 SEM 사진 및 EDS(energy dispersive X-ray spectroscopy) 사진을 얻었으며, 이를 각각 도 9(실시예 2-1), 도 10(실시예 2-5) 및 도 11(비교예 2-1)에 도시하였다. 도 9 내지 도 11에서, (a) 및 (b)는 샘플을 각각 3000배 및 500배로 확대한 SEM 사진이며, 도 9에서 (c)는 알루미늄 금속의 분포를 EDS를 통해 나타낸 사진이다. 도 10에서 (c)는 알루미늄 금속의 분포를, (d)는 인듐 금속의 분포를 EDS를 통해 나타낸 것이다. 아울러, 도 9 내지 11에서 영역 A 내에 형성된 선은 고분자 필름층에 증착된 Cu 금속층이다.
실험예 3
동역학 분석 장치(Dynamic Mechanical Analysis, DMA)로서 TA社Q800을 사용하여, 시편에 0.1%의 스트레인을 가하면서 상온 및 주파수 1Hz의 조건에서 복합 모듈러스를 측정하였다. 그 결과는 하기 표 2와 같다.
증착 물질 증착 두께(nm) E*(MPa) E*(%) PP 수지 필름 대비 금속의 부피비(%)
실시예 2-1 Al 300 2006.6 90.1 1.5
실시예 2-2 Ni 100 1793.9 70.0 0.5
실시예 2-3 In 300 1621.4 53.6 1.5
실시예 2-4 In 100 1563.1 48.1 0.5
실시예 2-5 In 20 1865.4 76.7 0.1
Al 300 1.5
비교예 2-1 - - 1055.5 0.0 -
비교예 2-2 Al 20 1070.2 1.3 0.1
도 9 내지 11을 참조하면, 본원 발명의 실시예에 따른 집전체는 내부에 두께 또는 단면의 직경이 nm 단위이고, 길이가 ㎛ 단위를 갖는 피버 또는 판상형의 금속 물질(B)을 포함함을 알 수 있다. 표 2를 참조하면, 필름 상에 소정의 부피비로 금속을 증착하고, 이를 압출하여 형성된 고분자-금속 복합 재료를 다시 압출한 실시예의 집전체는 비교예 2-1에 비해 기계적 물성이 우수함을 알 수 있다. 이는 도 9 및 도 10과 같이 필름의 내부에 피버 또는 판상형의 금속 물질이 압출 방향으로 배향되었기 때문이다.
또한, 증착층의 두께가 실시예에 비해 작은 비교예 2-2의 경우, 고분자 필름층의 내부에 금속 물질이 충분하게 형성되지 못해 기계적 물성이 실시예에 비해 감소하였음을 알 수 있다.
다만, 인듐(In) 금속을 사용한 실시예 2-3 및 실시예 2-4의 경우 인듐의 낮은 녹는점(160℃)으로 인하여 제조 과정 중 가공성이 향상되었다는 장점이 있으나, 압출 시 설정된 온도보다 높은 녹는점을 가진 알루미늄 또는 니켈을 사용한 경우에 비해 집전체의 물성이 감소한 것을 알 수 있는데, 이는 도 10과 같이 압출 과정에서 용융된 인듐 금속이 유동하면서 선형 뿐만 아니라 구형 형태로 존재할 수 있기 때문이다. 이 경우 증착층을 2층 구조로 형성하여, Al과 같은 다른 금속 소재로 이루어진 증착층을 더 형성함으로써 집전체의 물성을 더욱 향상시킬 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
한편, 본 명세서에서 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 자명하다.
(부호의 설명)
1, 2: 집전체
10: 고분자 필름층
11: 고분자 매트릭스
12: 금속 물질
20: 금속층
30: 베이스 필름
40: 증착층
50: 고분자-금속 복합 재료
100: 증착부
110: 언와인딩 롤
120: 주행 롤
130: 금속 공급원
140: 리와인딩 롤
200: 이축 압출기
300: 일축 압출기

Claims (15)

  1. 복합 고분자 필름층을 포함하는 집전체로서,
    상기 복합 고분자 필름층은,
    고분자 매트릭스; 및
    상기 고분자 매트릭스 내에 분산되어 있는 피버(fiber) 형상 또는 판상형의 금속 물질들을 포함하고,
    상기 금속 물질은 일 방향으로 배향되어 있는 것을 특징으로 하는 집전체.
  2. 제1항에 있어서,
    상기 금속 물질은 알루미늄, 구리, 인듐, 티탄, 주석, 니켈, 철, 텅스텐, 크롬, 코발트, 금, 은을 포함하는 군에서 선택되는 1종 이상이고,
    상기 고분자 필름은 폴리올레핀계 수지, 폴리아미드계 수지, 폴리에스테르계 수지, 폴리알킬(메트)아크릴레이트계 수지를 포함하는 군에서 선택되는 1종 이상인 집전체.
  3. 제1항에 있어서,
    상기 피버 형상의 금속물질은 단면의 직경이 10 내지 500nm이고, 길이는 0.5 내지 200㎛인 집전체
  4. 제1항에 있어서,
    상기 판상형의 금속 물질은 두께가 10 내지 500nm이고, 폭 및 길이가 0.5 내지 200㎛인 집전체.
  5. 제1항에 있어서,
    상기 금속 물질은 서로 다른 2종 이상의 금속을 포함하는 집전체.
  6. 제1항에 있어서,
    상기 고분자 필름층의 두께는 10 내지 200㎛인 집전체.
  7. 제1항에 있어서,
    상기 고분자 필름의 적어도 일면에 형성되며, 두께 1㎛ 이하의 금속층을 더 포함하는 집전체.
  8. 고분자 소재의 베이스 필름의 적어도 일면에 금속을 증착하여 증착층을 형성하는 증착 단계;
    증착층이 형성된 베이스 필름을 분쇄, 혼합한 후, 압출하여 고분자-금속 복합 재료를 제조하는 1차 압출 단계; 및
    상기 고분자-금속 복합 재료를 압출하여, 고분자 매트릭스 내에 피버(fiber) 형상 또는 판상형의 금속 물질들이 일 방향으로 배향된 고분자 필름층을 형성하는 2차 압출 단계; 를 포함하는 집전체의 제조방법.
  9. 제8항에 있어서,
    상기 금속은 알루미늄, 구리, 인듐, 티탄, 주석, 니켈, 철, 텅스텐, 크롬, 코발트, 금, 은을 포함하는 군에서 선택되는 1종 이상이고,
    상기 베이스 필름은 폴리올레핀계 수지, 폴리아미드계 수지, 폴리에스테르계 수지, 폴리알킬(메트)아크릴레이트계 수지를 포함하는 군에서 선택되는 1종 이상인 집전체의 제조방법.
  10. 제8항에 있어서,
    상기 증착층의 두께는 50 내지 400nm이고, 베이스 필름의 두께는 20 내지 400㎛인 집전체의 제조방법.
  11. 제8항에 있어서,
    상기 증착층과 베이스 필름의 부피비는 0.5:99.5 내지 10:90인 집전체의 제조방법
  12. 제8항에 있어서,
    상기 증착층은 서로 다른 종류의 금속층이 2층 이상 적층된 구조인 집전체의 제조방법.
  13. 제8항에 있어서,
    상기 증착층이 형성된 베이스 필름은 이축 압출기에 의해 압출되는 집전체의 제조방법.
  14. 제8항에 있어서,
    고분자-금속 복합 재료의 압출은 일축 압출기에 의해 수행되는 집전체의 제조방법.
  15. 제8항에 있어서,
    상기 고분자 필름층의 적어도 일면에 금속층을 형성하는 단계를 더 포함하는 집전체의 제조방법.
PCT/KR2021/016902 2021-05-07 2021-11-17 고분자 필름을 포함하는 집전체 및 이의 제조방법 WO2022234908A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21930590.1A EP4109603A1 (en) 2021-05-07 2021-11-17 Current collector comprising polymer film, and method for manufacturing same
CN202180023762.1A CN117157783A (zh) 2021-05-07 2021-11-17 包括聚合物膜的集流体及其制造方法
US17/914,920 US20240186528A1 (en) 2021-05-07 2021-11-17 Current Collector Including Polymer Film and Method of Manufacturing the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0059193 2021-05-07
KR1020210059193A KR20220151898A (ko) 2021-05-07 2021-05-07 고분자 필름을 포함하는 집전체 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022234908A1 true WO2022234908A1 (ko) 2022-11-10

Family

ID=83932248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016902 WO2022234908A1 (ko) 2021-05-07 2021-11-17 고분자 필름을 포함하는 집전체 및 이의 제조방법

Country Status (5)

Country Link
US (1) US20240186528A1 (ko)
EP (1) EP4109603A1 (ko)
KR (1) KR20220151898A (ko)
CN (1) CN117157783A (ko)
WO (1) WO2022234908A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103387A1 (zh) * 2022-11-18 2024-05-23 扬州纳力新材料科技有限公司 阻燃型复合集流体、电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092607A (ja) * 2008-10-03 2010-04-22 Nissan Motor Co Ltd 双極型二次電池用集電体
KR20130076955A (ko) * 2011-12-29 2013-07-09 서울대학교산학협력단 차단특성이 우수한 비연계 금속입자가 분산된 다층구조 방사선 차폐재 및 이의 제조 방법
JP5316794B2 (ja) * 2009-06-24 2013-10-16 日本ゼオン株式会社 集電体及びその製造方法
KR20160025020A (ko) * 2013-07-08 2016-03-07 산요가세이고교 가부시키가이샤 수지 집전체용 분산제, 수지 집전체용 재료 및 수지 집전체
KR20210041627A (ko) * 2020-03-30 2021-04-15 닝더 엠프렉스 테크놀로지 리미티드 복합 집전체, 전극 시트, 전기 화학 장치 및 전자 장치
KR20210059193A (ko) 2019-11-15 2021-05-25 (주)프로젠 금형을 이용하여 발열체가 내장된 패드의 제조방법 및 이에 의해 제조되는 패드

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170045800A (ko) 2015-10-20 2017-04-28 주식회사 엘지화학 고분자 수지층을 포함하는 이차전지용 전극 집전체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092607A (ja) * 2008-10-03 2010-04-22 Nissan Motor Co Ltd 双極型二次電池用集電体
JP5316794B2 (ja) * 2009-06-24 2013-10-16 日本ゼオン株式会社 集電体及びその製造方法
KR20130076955A (ko) * 2011-12-29 2013-07-09 서울대학교산학협력단 차단특성이 우수한 비연계 금속입자가 분산된 다층구조 방사선 차폐재 및 이의 제조 방법
KR20160025020A (ko) * 2013-07-08 2016-03-07 산요가세이고교 가부시키가이샤 수지 집전체용 분산제, 수지 집전체용 재료 및 수지 집전체
KR20210059193A (ko) 2019-11-15 2021-05-25 (주)프로젠 금형을 이용하여 발열체가 내장된 패드의 제조방법 및 이에 의해 제조되는 패드
KR20210041627A (ko) * 2020-03-30 2021-04-15 닝더 엠프렉스 테크놀로지 리미티드 복합 집전체, 전극 시트, 전기 화학 장치 및 전자 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103387A1 (zh) * 2022-11-18 2024-05-23 扬州纳力新材料科技有限公司 阻燃型复合集流体、电池和用电装置

Also Published As

Publication number Publication date
US20240186528A1 (en) 2024-06-06
KR20220151898A (ko) 2022-11-15
EP4109603A1 (en) 2022-12-28
CN117157783A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019151833A1 (ko) 리튬 이차전지용 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
WO2020032471A1 (ko) 리튬 이차전지용 전극 및 그를 포함하는 리튬 이차전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2019093836A1 (ko) 원통형 젤리롤에 사용되는 스트립형 전극 및 그를 포함하는 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019168278A1 (ko) 음극 슬러리 조성물, 이를 이용하여 제조된 음극 및 이차전지
WO2022234908A1 (ko) 고분자 필름을 포함하는 집전체 및 이의 제조방법
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2020050559A1 (ko) 분리막 기재가 없는 이차전지용 분리막
WO2019143214A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022025506A1 (ko) 이차 전지용 전극 및 이를 포함하는 이차 전지
WO2024049139A1 (ko) 이차전지용 전극 제조 방법
WO2019050203A2 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2024117765A1 (ko) 전고체 전지용 양극 활물질, 전고체 전지용 양극 및 이를 포함하는 전고체 전지
WO2023075515A1 (ko) 양극재, 이를 포함하는 양극 및 리튬 이차 전지
WO2024147542A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022164281A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2024123083A1 (ko) 파우치 필름 적층체 및 이차 전지
WO2022235029A1 (ko) 리튬 메탈 전지용 음극 및 이를 포함하는 리튬 메탈 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17914920

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021930590

Country of ref document: EP

Effective date: 20220919

NENP Non-entry into the national phase

Ref country code: DE