WO2022065959A1 - 전극 - Google Patents

전극 Download PDF

Info

Publication number
WO2022065959A1
WO2022065959A1 PCT/KR2021/013155 KR2021013155W WO2022065959A1 WO 2022065959 A1 WO2022065959 A1 WO 2022065959A1 KR 2021013155 W KR2021013155 W KR 2021013155W WO 2022065959 A1 WO2022065959 A1 WO 2022065959A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
binder
less
electrode
material layer
Prior art date
Application number
PCT/KR2021/013155
Other languages
English (en)
French (fr)
Inventor
이근성
이일하
송인택
김기환
목영봉
이호찬
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/024,531 priority Critical patent/US20230317955A1/en
Priority to CN202180066634.5A priority patent/CN116325235A/zh
Priority to EP21872987.9A priority patent/EP4191699A1/en
Publication of WO2022065959A1 publication Critical patent/WO2022065959A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to an electrode.
  • Energy storage technology is being applied to mobile phones, camcorders, notebook PCs, electric vehicles, and the like.
  • One of the research fields of energy storage technology is a rechargeable battery capable of charging and discharging, and research and development for improving the capacity density and specific energy of the secondary battery is in progress.
  • An electrode (positive electrode or negative electrode) applied to a secondary battery is usually manufactured by forming an active material layer including an electrode active material and a binder on a current collector.
  • the adhesive force between the active material particles and the adhesive force between the active material layer and the current collector must be secured.
  • the adhesive force between the particles in the active material layer or the adhesive force between the active material layer and the current collector is secured by the binder.
  • An object of the present application is to provide an electrode comprising a current collector and an active material layer, which can secure a high level of inter-particle adhesion and adhesion between the active material layer and the current collector compared to the binder content in the active material layer. do.
  • the properties in which the measurement temperature affects the results are results measured at room temperature unless otherwise specified.
  • room temperature refers to a natural temperature that has been heated or not reduced, for example, any temperature within the range of 10°C to 30°C, and a temperature of about 23°C or about 25°C. In the present specification, the unit of temperature is Celsius (°C) unless otherwise specified.
  • the properties in which the measured pressure affects the results are results measured at normal pressure, unless otherwise specified.
  • atmospheric pressure is a natural pressure that is not pressurized or depressurized, and usually means about 1 atmosphere of atmospheric pressure.
  • the corresponding physical property is a physical property measured at natural humidity that is not specifically controlled at room temperature and/or pressure.
  • the electrode of the present application the current collector; and an active material layer present on one surface of the current collector.
  • 1 is a cross-sectional view of such an electrode, and shows a structure including a current collector 100 and an active material layer 200 .
  • the active material layer may be formed in contact with the surface of the current collector, or another layer may exist between the current collector and the active material layer. For example, an intermediate layer may exist between the current collector and the active material layer as will be described later.
  • the active material layer may include at least an electrode active material and a binder.
  • the active material layer basically includes an electrode active material and a binder, and the adhesive force is expressed by the binder. Therefore, in order to secure the adhesive force, it is necessary to place as many binders as possible in positions where the expression of the adhesive force is required.
  • the affinity of each component in the slurry used to form the active layer or the affinity of each component in the slurry and the current collector must be carefully considered.
  • the migration of the binder to the upper part of the active layer occurs during the electrode formation process or after the electrode is manufactured, it is not easy to control the position of the binder, and when the content of the binder in the slurry is small, such control is not easier.
  • the binder 2001 present in the active material layer normally migrates to the upper portion of the active material layer during and/or after the electrode manufacturing process and/or manufacturing, the electrode active material 1001 and It is not easy to distribute the binder 2001 between the current collectors 100 . That is, a portion of the binder contributing to the improvement of the adhesive force among the binders distributed on the current collector is small, and this tendency is further increased when the proportion of the binder in the active material layer is small.
  • the ratio of the area occupied by the binder confirmed by the standard peeling test is adjusted to a high level compared to the content of the binder included in the active material layer.
  • binder occupied area ratio is a percentage (100 ⁇ A2/A1) of the area (A2) in which the binder component is found to be present on the surface of the current collector after a standard peeling test described later to the total surface area (A1) of the current collector (100 ⁇ A2/A1) am.
  • the area in which the binder component is confirmed to be present in the above can be confirmed in the manner described in Examples through FE-SEM (Field Emission Scanning Electron Microscope) analysis.
  • the binder is included in the region where the binder component is confirmed to be present, and in some cases, other additional components (eg, thickener, etc.) may be included.
  • the ratio (A/W) of the occupied area ratio (A) of the binder and the content (W) of the electrode active material in the active material layer, confirmed in the following standard peeling test performed on the electrode may be 17 or more there is.
  • the electrode may satisfy Equation 1 below after the standard peel test.
  • Equation 1 A is the percentage (100 ⁇ A2/A1) of the area (A2) occupied by the binder on the surface of the current collector with respect to the total area (A1) of the surface of the current collector (100 ⁇ A2/A1), and W is the binder content in the active material layer percentage (wt%).
  • the unit of the ratio A/W may be wt -1 .
  • the content of the binder is substantially the same as the content ratio of the binder in the solid content (part excluding the solvent) of the slurry when the composition of the slurry in the electrode manufacturing process is known.
  • the content of the binder may be confirmed through TGA (Thermogravimetric analysis) analysis of the active material.
  • TGA Thermogravimetric analysis
  • SBR Styrene-Butadiene Rubber
  • the ratio A/W is 17.5 or more, 18 or more, 18.5 or more, 19 or more, 19.5 or more, 20 or more, 20.5 or more, 21 or more, 21.5 or more, 22 or more, 22.5 or more, 23 or more, 23.5 or more, 24 or more , 24.5 or more, 25 or more, or 25.5 or more, or 50 or less, 49 or less, 48 or less, 47 or less, 46 or less, 45 or less, 44 or less, 43 or less, 42 or less, 41 or less, 40 or less, 39 or less, 38 or less, 37 or less, 36 or less, 35 or less, 34 or less, 33 or less, 32 or less, 31 or less, 30 or less, 29 or less, 28 or less, 27 or less, 26 or less, 25 or less, 24 or less, 23 or less, 22 or less, 21 or less , 20 or less, 19 or less, or 18 or less.
  • the A/W ratio is determined by controlling the composition of the slurry (for example, the affinity of the solvent and the binder), the affinity of each component in the slurry and the surface of the current collector, and/or the average particle diameter of the particulate matter in the slurry. can be achieved
  • the average particle diameter of the particulate matter is a so-called D50 particle diameter or median diameter obtained by laser diffraction method, and the method of obtaining this particle diameter is described in Examples.
  • the average particle diameter mentioned in this specification for the particulate binder and particulate active material in the active material layer is the average particle diameter before rolling, unless otherwise specified.
  • the average particle diameter in consideration of the weight fraction of the two types of particulate binders is used herein as the particulate binder (or electrode active material).
  • the said standard peeling test is 3M's Scotch Magic Tape Cat. This is done using the 810R.
  • the electrode is cut to a size of about 20 mm in width and about 100 mm in length.
  • the Scotch Magic Tape Cat. The 810R is also cut so that the horizontal length is 10 mm and the vertical length is 60 mm.
  • the Scotch magic tape Cat. Attach the 810R (300) in a cross state. The attachment was performed according to the standard peel test of the Magic Tape Cat. 810R (300) may be performed so that a certain portion protrudes. Then, holding the protruding part, the magic tape Cat.
  • the 810R (300) is peeled off.
  • the peeling rate and the peeling angle are not particularly limited, but the peeling rate may be about 20 mm/sec, and the peeling angle may be about 30 degrees.
  • the Scotch Magic Tape Cat The attachment of the 810R (300) is attached by reciprocating and pushing the surface of the tape with a roller having a weight of about 1 kg and a radius and width of 50 mm and 40 mm, respectively, once after attaching the tape.
  • Scotch Magic Tape Cat When the 810R (300) is peeled off, the component of the active material layer 200 is the Scotch Magic Tape Cat. It is peeled off together with 810R (300). Then the new Scotch Magic Tape Cat. Repeat the above process using the 810R (300).
  • Scotch Magic Tape Cat The standard peeling test may be performed by performing until the component of the active material layer 200 is not observed on the 810R (300).
  • Scotch Magic Tape Cat When the component of the active material layer 200 is not smeared on the 810R (300), the surface of the scotch magic tape peeled from the active material layer and the surface of the unused scotch magic tape are compared, and when the contrast between the two is substantially the same, the active material layer It can be determined that the components of
  • the ratio of the area occupied by the binder on the current collector can be confirmed.
  • the type of the current collector applied in the present application is not particularly limited, and a known current collector may be used.
  • the surface characteristics (water contact angle, etc.) of the current collector may be controlled as will be described later.
  • the current collector for example, a film, sheet or foil ( foil) can be used.
  • one having a surface characteristic to be described later may be selected from among the current collectors, or the surface characteristic may be adjusted by additional processing.
  • the thickness and shape of the current collector are not particularly limited, and an appropriate type is selected within a known range.
  • the active material layer formed on the current collector includes an electrode active material and a binder.
  • a known material may be used as the binder, and components known to contribute to bonding of components such as the active material in the active material layer and bonding between the active material layer and the current collector may be used.
  • binders that can be applied, PVDF (Poly (vinylidene fluoride)), PVA (poly (vinyl alcohol)), polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM) ), sulfonated EPDM, SBR (Styrene-Butadiene rubber), fluororubber, and other known binders may be used in one or a combination of two or more.
  • PVDF Poly (vinylidene fluoride)
  • PVA poly (vinyl alcohol)
  • EPDM ethylene-propylene-diene terpolymer
  • SBR Styrene-Butadiene rubber
  • fluororubber and other known binders
  • a particulate binder as the binder.
  • a ratio of particle diameters between the particulate binder and the electrode active material layer may be controlled in order to control the distribution of the binder in the electrode active material layer.
  • the ratio (D1/D2) of the average particle diameter (D1, unit nm) of the particulate electrode active material to the average particle diameter (D2, unit nm) of the particulate binder may be in the range of 10 to 1,000.
  • the ratio (D1/D2) is 20 or more, 30 or more, 40 or more, 50 or more, 60 or more, 70 or more, 80 or more, 90 or more, 100 or more, 110 or more, 120 or more, or 130 or more, or 900 or less in another example. , 800 or less, 700 or less, 600 or less, 500 or less, 400 or less, 300 or less, 200 or less, or 150 or less.
  • the binder may have an average particle diameter (D2) in the range of 50 nm to 500 nm.
  • the average particle diameter (D2) of the binder is about 70 nm or more, about 90 nm or more, about 110 nm or more, about 130 nm or more, or about 140 nm or more, or about 480 nm or less, about 460 nm or less, 440 nm or less, 420 nm or less, 400 nm or less, about 380 nm or less, about 360 nm or less, about 340 nm or less, about 320 nm or less, about 300 nm or less, about 280 nm or less, about 260 nm or less, about 240 nm or less, It may be about 220 nm or less, about 200 nm or less, about 180 nm or less, or about 160 nm or less.
  • the average particle diameter (D1) of the electrode active material may be in the range of 1 ⁇ m to 100 ⁇ m.
  • the average particle diameter (D1) is about 3 ⁇ m or more, about 5 ⁇ m or more, about 7 ⁇ m or more, about 9 ⁇ m or more, about 11 ⁇ m or more, about 13 ⁇ m or more, about 15 ⁇ m or more, about 17 ⁇ m or more, or It may be about 19 ⁇ m or more, or about 90 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less.
  • Each of the average particle diameters D1 and D2 is an average particle diameter of each material in the slurry applied to prepare the active material layer. Therefore, when an actual electrode is manufactured through a rolling process, there may be a slight difference from the average particle diameters D1 and D2 of each component found in the active material layer.
  • binder having a solubility parameter in a range to be described later as the binder.
  • the ratio of the binder in the active material layer may be about 0.5 to 10% by weight.
  • the proportion is within the range of 1 wt% or more, 1.5 wt% or more, 2 wt% or more, 2.5 wt% or more, 3 wt% or more, 3.5 wt% or more, or 4 wt% or more and/or 9.5 wt% or less, 9 wt% or less, 8.5 wt% or less, 8 wt% or less, 7.5 wt% or less, 7 wt% or less, 6.5 wt% or less, 6 wt% or less, 5.5 wt% or less, 5 wt% or less, or 4.5 wt% or less It may be further controlled within the range of the following degree.
  • the electrode active material included in the active material layer may be a positive active material or a negative active material, and the specific type is not particularly limited.
  • a positive active material LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 , LiNiMnCoO 2 , and LiNi 1-x-yz Co x M1 y M2 z O 2 (M1 and M2 are each independently Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, any one selected from the group consisting of Mg and Mo, x, y and z are each independently 0 ⁇ 0 ⁇ ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 0 ⁇ x+y+z ⁇ 1), etc.) may be used, and the negative active material includes natural graphite, artificial graphite, carbonaceous material.
  • LTO lithium-containing titanium composite oxide
  • Si Si, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe metals
  • an active material including a composite of the metal (Me) and carbon.
  • the active material in the active material layer may be in the range of 1000 to 10000 parts by weight based on 100 parts by weight of the binder.
  • the ratio is 1500 parts by weight or more, 2000 parts by weight or more, 2500 parts by weight or more, 3000 parts by weight or more, 3500 parts by weight or more, 4000 parts by weight or more, or 4500 parts by weight or more, 9500 parts by weight or less, 9000 parts by weight or more.
  • the amount may be 3500 parts by weight or less, 3000 parts by weight or less, or 2500 parts by weight or less.
  • the active material layer may further include other necessary components in addition to the above components.
  • the active material layer may further include a conductive material.
  • a conductive material for example, a known component may be used without any particular limitation as long as it exhibits conductivity without causing chemical changes in the current collector and the electrode active material.
  • graphite such as natural graphite and artificial graphite
  • carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • zinc oxide such as potassium titanate
  • One or a mixture of two or more selected from a polyphenylene derivative of a conductive metal such as titanium oxide and the like may be used.
  • the content of the conductive material is not particularly limited as being controlled as needed, but may be included in an appropriate ratio within the range of usually 0.1 to 20 parts by weight or 0.3 to 12 parts by weight relative to 100 parts by weight of the active material.
  • a method of determining the content of the conductive material to an appropriate level in consideration of the cycle life of the battery and the like is known.
  • the active material layer contains other known components (eg, thickeners such as carboxymethyl cellulose (CMC, carboxymethyl cellulose), starch, hydroxypropyl cellulose or regenerated cellulose, etc.) required in addition to the above components. You may.
  • thickeners such as carboxymethyl cellulose (CMC, carboxymethyl cellulose), starch, hydroxypropyl cellulose or regenerated cellulose, etc.
  • the thickness of the active material layer is not particularly limited, and may be controlled to have an appropriate level of thickness in consideration of desired performance.
  • the thickness of the active material layer may be in the range of about 10 to 500 ⁇ m. In another example, the thickness is about 30 ⁇ m or more, 50 ⁇ m or more, 70 ⁇ m or more, 90 ⁇ m or more, or 100 ⁇ m or more, or about 450 ⁇ m or less, 400 ⁇ m or less, 350 ⁇ m or less, 300 ⁇ m or less, 250 ⁇ m or less, 200 It may be on the order of micrometers or less or 150 micrometers or less.
  • the active material layer may be formed to have a porosity of a certain level.
  • the porosity is usually controlled by rolling during the manufacture of the electrode.
  • the active material layer may have a porosity of about 35% or less.
  • the porosity is in the range of 33% or less, 31% or less, 29% or less, or 27% or less and/or 5% or more, 7% or more, 9% or more, 11% or more, 13% or more, 15% or more, 17% or less. It may be further adjusted within the range of at least 19%, at least 21%, at least 23%, or at least 25%.
  • the rolling process controlled to have the porosity may contribute to the formation of the network region and the blank region, which are the object of the present application, as will be described later.
  • the porosity is a value calculated by comparing the ratio of the difference between the actual density of the active material layer and the density after rolling, and a method for calculating the porosity of the active material layer in this way is known.
  • An additional layer may be present in order to control the surface properties of the current collector in order to achieve an appropriate distribution of the binder during the manufacturing process of the electrode.
  • an intermediate layer including a silane compound may exist between the active material layer and the current collector in the electrode.
  • the type of the intermediate layer is not particularly limited as long as it is possible to achieve the surface characteristics of the current collector to be described later.
  • the intermediate layer may be a layer including the silane compound of Formula 1 below.
  • R 1 is an alkyl group having 6 or less carbon atoms or an alkenyl group having 6 or less carbon atoms, the alkyl group of R 1 may be optionally substituted with one or more amino groups, and R 2 to R 4 are each independently 1 to 4 carbon atoms. is the alkyl group of
  • the alkyl group or alkenyl group in Formula 1 may be linear, branched, or cyclic, and in a suitable example, may be a straight-chain alkyl group or alkenyl group.
  • R 1 of Formula 1 is a linear alkyl group having 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 2 to 4 carbon atoms, or a straight chain alkenyl group having 2 to 6 carbon atoms, 2 to 4 carbon atoms, or 2 to 4 carbon atoms, or , may be a straight-chain aminoalkyl group having 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 2 to 4 carbon atoms.
  • the intermediate layer may include the silane compound as a main component, for example, the content of the silane compound in the intermediate layer is 70 wt% or more, 75 wt% or more, 80 wt% or more, 85 wt% or more, 90 wt% or more Or it may be about 95% by weight or more.
  • the upper limit of the content of the silane compound in the intermediate layer is 100% by weight.
  • the component may be a component such as a solvent used in the intermediate layer formation process, or an active material layer constituent that has been transferred from the active material layer.
  • the thickness of the intermediate layer may be appropriately set in consideration of the desired surface properties, for example, may be in the range of about 0.5 to 50 ⁇ m.
  • the thickness is about 1 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, 7 ⁇ m or more, or 9 ⁇ m or more, or about 45 ⁇ m or less, 40 ⁇ m or less, 35 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less, 20 It may be on the order of less than ⁇ m or less than 15 ⁇ m.
  • the above-described electrode may be manufactured in the manner described below.
  • the electrode is manufactured by coating the slurry on the current collector, drying it, and then performing a rolling process.
  • the present application by controlling the composition of the slurry, the surface properties of the current collector on which the slurry is coated, drying conditions, and/or rolling conditions in the above process, a desired network region and a blank region may be formed.
  • a relatively hydrophobic binder (suitably relatively hydrophobic and a particulate binder having a specific average particle diameter) dispersed in a certain amount in a relatively polar solvent may be applied.
  • This slurry is coated on a current collector whose surface properties are controlled, as will be described later.
  • the affinity between the solvent and the surface of the current collector affects the contact angle of the solvent on the surface of the current collector, and the contact angle is constant in the slurry due to capillary action when the solvent is evaporated. directional force can be formed.
  • the affinity of the binder and the solvent and the amount of the binder (and the particle size in the case of a particulate binder) affect the dispersion state of the binder in the slurry, and the affinity between the binder and the surface of the current collector is determined in the slurry. It affects the dispersion state of the binder in
  • the desired binder arrangement is determined through the dispersion state of the binder and the evaporation of the solvent when the slurry of the composition to be described later is formed on the current collector having the surface properties described later, and the shear force in the slurry generated thereby. was confirmed to be achieved.
  • the slurry applied to the manufacturing process may include a solvent.
  • a solvent one capable of properly dispersing slurry components such as an electrode active material is usually applied, and examples thereof include water, methanol, ethanol, isopropyl alcohol, acetone, dimethyl sulfoxide, formamide and/or dimethylformamide. etc. are exemplified.
  • the dipole moment of the solvent is in another example about 1.35 D or more, 1.4 D or more, 1.45 D or more, 1.5 D or more, 1.55 D or more, 1.6 D or more, 1.65 D or more, 1.7 D or more, 1.75 D or more, 1.8 D or more, or to be further controlled within the range of 1.85 D or more and/or 5 D or less, 4.5 D or less, 4 D or less, 3.5 D or less, 3 D or less, 2.5 D or less, 2 D or less, or 1.9 D or less.
  • the dipole moment of a solvent is known per solvent.
  • the binder included in the slurry an appropriate one of the above-described types of binders may be selected and used.
  • a binder having a solubility parameter of about 10 to 30 MPa1/2 as the binder In another example, the solubility parameter is 11 MPa1/2 or more, 12 MPa1/2 or more, 13 MPa1/2 or more, 14 MPa1/2 or more, 15 MPa1/2 or more, or 16 MPa1/2 or more, or 28 MPa1/2 or less, 26 MPa1/2 or less, 24 MPa1/2 or less, 22 MPa1/2 or less, 20 MPa1/2 or less, or 18 MPa1/2 or less.
  • solubility parameter of such a binder can be confirmed through literature (eg, Yanlong Luo et al., 2017, etc.).
  • a type having the above solubility parameter may be selected.
  • a particulate binder may be used as the binder.
  • the content of the binder in the slurry may be controlled in consideration of a desired dispersion state.
  • B is the weight (g) of the binder in the slurry
  • S is the weight (g) of the solvent in the slurry.
  • the concentration is 0.5% or more, 1% or more, 1.5% or more, 2% or more, 2.5% or more, 3% or more, or 3.5% or more, or 9% or less, 8% or less, 7% or less, 6% or less , 5% or less, 4% or less, 3% or less, or 2.5% or less.
  • the slurry may include the electrode active material in addition to the above components.
  • the electrode active material an appropriate type may be selected from the above-described types, and it has the above-mentioned average particle diameter (D50 particle diameter) in consideration of the contribution to the desired dispersion state, and the ratio with the average particle diameter of the binder is within the above range.
  • An electrode active material in the form of particles may be used.
  • the ratio of the electrode active material in the slurry may be adjusted so that the ratio of the electrode active material in the active material layer can be achieved.
  • the slurry may include other components including the above-described conductive material and thickener depending on the purpose.
  • the above slurry may be applied on the surface of the current collector.
  • the coating method is not particularly limited, and a known coating method, for example, spin coating, comma coating, bar coating, etc. may be applied.
  • the surface properties of the current collector to which the slurry is applied may be controlled.
  • the surface of the current collector to which the slurry is applied may have a water contact angle of 50 degrees or more.
  • the water contact angle is 100 degrees or less, 95 degrees or less, 90 degrees or less, 85 degrees or less, 80 degrees or less, or 75 degrees or less in another example and/or 55 degrees or more, 60 degrees or more, 65 degrees or more, 70 degrees or less It may be further controlled within a range of about degrees or more, 75 degrees or more, 85 degrees or more, or 90 degrees or more.
  • the surface of the current collector to which the slurry is applied may have a DM (diiodomethane) contact angle of 30 degrees or more.
  • the DM contact angle is within the range of 70 degrees or less, 65 degrees or less, 60 degrees or less, 55 degrees or less, 50 degrees or less, or 45 degrees or less and/or 35 degrees or more, 40 degrees or more, 45 degrees or more, 50 degrees or less. It may be further controlled within a range of about degrees or more, 55 degrees or more, or 60 degrees or more.
  • the surface of the current collector to which the slurry is applied may have a surface energy of 65 mN/m or less.
  • the surface energy is 60 mN / m or less, 55 mN / m or less, 50 mN / m or less, 45 mN / m or less, 40 mN / m or less, 35 mN / m or less or 30 mN / m or less in another example, It may be on the order of 25 mN/m or more, 27 mN/m or more, or 29 mN/m or more.
  • the surface of the current collector to which the slurry is applied may have a dispersion energy of less than 45 mN/m.
  • the dispersion energy may be about 40 mN/m or less, 35 mN/m or less, or 30 mN/m or less, or about 23 mN/m or more, 25 mN/m or more, or 27 mN/m or more.
  • the surface of the current collector to which the slurry is applied may have a polar energy of 20 mN/m or less.
  • the dispersion energy is 18 mN/m or less, 16 mN/m or less, 14 mN/m or less, 12 mN/m or less, 10 mN/m or less, 8 mN/m or less, 6 mN/m or less, 4 mN/m or less, 2 mN/m or less, or 1.5 mN/m or less, or 0.5 mN/m or more, 1 mN/m or more, 1.5 mN/m or more, 2 mN/m or more, 2.5 mN/m or more, 3 mN /m or more, 3.5 mN/m or more, 4 mN/m or more, 4.5 mN/m or more, 5 mN/m or more, 5.5 mN/m or more, 6 mN/m or more, 6.5 mN/
  • the surface energy, the dispersion energy, and the polar energy are physical quantities that can be obtained by the Owens-Wendt-Rabel-Kaelble (OWRK) method based on the water contact angle and the DM contact angle.
  • ORRK Owens-Wendt-Rabel-Kaelble
  • a desired active material layer can be obtained by applying the above-mentioned slurry to the surface of a current collector that satisfies at least one, two or more, or all of the above-mentioned surface properties.
  • a current collector exhibiting the water contact angle and the like may be selected, but since there are cases in which the current collector does not normally satisfy the above-described properties, surface treatment may be performed to satisfy the desired surface properties. there is.
  • the above-mentioned surface properties may be satisfied by forming the above-described intermediate layer on the surface of the current collector, or by applying other known treatments (especially hydrophobicization) such as plasma treatment.
  • the intermediate layer may be prepared, for example, by coating, annealing, washing and drying processes using a coating solution in which the above-described silane compound is dispersed in a solvent.
  • various treatment methods such as plasma treatment for controlling the surface characteristics of the current collector are known.
  • a drying process of the slurry may be performed.
  • the conditions under which the drying process is performed are not particularly limited, but it may be appropriate to adjust the drying temperature within the range of about 150° C. to 400° C. in consideration of the desired location of the binder.
  • the drying temperature is about 170 °C or higher, 190 °C or higher, 210 °C or higher, or 225 °C or higher, or 380 °C or lower, 360 °C or lower, 340 °C or lower, 320 °C or lower, 300 °C or lower, 280 °C or lower, It may be about 260 degrees C or less or 240 degrees C or less.
  • the drying time may also be controlled in consideration of the dispersion state in consideration of the desired location of the binder, for example, may be adjusted within the range of about 10 seconds to 200 seconds. In another example, the time is within the range of 20 seconds or more, 30 seconds or more, 40 seconds or more, 50 seconds or more, 60 seconds or more, 70 seconds or more, 80 seconds or more, or 85 seconds or more and/or 190 seconds or less, 180 seconds or less, It may be further controlled within the range of 170 seconds or less, 160 seconds or less, 150 seconds or less, 140 seconds or less, 130 seconds or less, 120 seconds or less, 110 seconds or less, 100 seconds or less, or 95 seconds or less.
  • the drying process may be followed by a rolling process.
  • the position of the binder may also be adjusted depending on the rolling conditions (eg, pressure during rolling, etc.).
  • the rolling may be performed so that the porosity of the rolled slurry (active material layer) is about 35% or less.
  • the desired network area and blank area can be effectively formed by pressure applied during rolling performed to have such a porosity.
  • the porosity is, in another example, 33% or less, 31% or less, 29% or less, or 27% or less and/or 5% or more, 7% or more, 9% or more, 11% or more, 13% or more, 15% or less It may be further adjusted within the range of at least 17%, at least 19%, at least 21%, at least 23%, or at least 25%.
  • the thickness of the rolled slurry (ie, the active material layer) is within the range of the thickness of the active material layer described above.
  • an additional process eg, a cutting process, etc. may be performed.
  • the present application also relates to an electrochemical device including the electrode as described above, for example, a secondary battery.
  • the battery chemical device may include the electrode as an anode and/or a cathode.
  • the electrode of the present application is used as a cathode and/or anode, other configurations or methods of manufacturing the electrochemical device are not particularly limited, and a known method may be applied.
  • the present application can provide an electrode including a current collector and an active material layer, which can secure a high level of interparticle adhesion and adhesion between the active material layer and the current collector compared to the binder content in the active material layer.
  • FIG. 1 is a cross-sectional view of an exemplary electrode of the present application.
  • FIG. 2 is a conceptual diagram of a state in which an active material layer is formed in the prior art.
  • FIG. 3 is a conceptual diagram of a state in which a standard peel test is performed.
  • 10 to 12 are FE-SEM images of the surface of the current collector of Comparative Examples 1 to 3, respectively.
  • the contact angle and surface energy were measured using a drop shape analyzer device from KRUSS (manufacturer: KRUSS, trade name: DSA100). 3 ⁇ L of water or DM (Diiodomethane) drops were dropped at a rate of about 3 ⁇ l/sec, respectively, and each contact angle was measured by a tangent angle measurement method. Surface energy, dispersion energy, and polar energy were respectively calculated using the OWRK (Owens-Wendt-Rabel-Kaelble) method through the contact angle between water and DM.
  • OWRK Owens-Wendt-Rabel-Kaelble
  • the standard peeling test was performed by 3M's Scotch Magic Tape Cat. 810R was used.
  • the electrodes prepared in Examples or Comparative Examples were cut to a size of about 20 mm in width and 100 mm in length to obtain a sample.
  • the Scotch magic tape Cat. On the active material layer of the obtained sample, the Scotch magic tape Cat.
  • the 810R was attached by reciprocating and pushing once using a roller having a weight of 1 kg, a radius of 50 mm, and a width of 40 mm.
  • the scotch magic tape was cut to have a width of about 10 mm and a length of about 60 mm, and as shown in FIG. 3, the scotch magic tape and the electrode active material layer were attached to cross the length of about 20 mm as shown in FIG.
  • the affected area was grabbed and peeled off. At this time, the peeling speed and the peeling angle were set to a speed of about 20 mm/sec and an angle of about 30 degrees. Each time it was peeled off, it was replaced with a new scotch tape. This process was repeated until the components of the active material layer did not come off on the surface of the Scotch magic tape. Whether or not the components of the active material layer bleed was observed with the naked eye, and it was determined that the components of the active material layer did not bleed when the contrast was not substantially changed compared to the unused tape.
  • the area occupied by the binder on the surface of the current collector was confirmed.
  • the surface of the current collector was photographed at a magnification of 500 times with an FE-SEM (Field Emission Scanning Electron Microscope) device (manufacturer: HITACHI, trade name: S4800) to obtain an image.
  • FE-SEM Field Emission Scanning Electron Microscope
  • HITACHI Field Emission Scanning Electron Microscope
  • S4800 Field Emission Scanning Electron Microscope
  • the part where the brightness is 80 or less and the part that satisfies the part where the brightness is 160 or higher due to the height within the closed curve consisting of the part is defined as the part occupied by the binder, and the area where the binder is not It is designated as an area that does not exist.
  • the average particle diameter (D50 particle diameter) of the particulate binder and the electrode active material was measured with Marvern's MASTERSIZER3000 equipment in accordance with ISO-13320 standards. In the measurement, water was used as a solvent.
  • the particulate binder is dispersed in the solvent and laser is irradiated, the laser is scattered by the binder dispersed in the solvent, and the intensity and directionality of the scattered laser vary depending on the size of the particles, so this is based on the Mie theory.
  • the average diameter can be obtained by analysis.
  • a volume-based cumulative graph of the particle size distribution is obtained through conversion to the diameter of a sphere having the same volume as the dispersed binder, and the particle diameter (median diameter) at 50% of the graph is calculated as the average particle diameter (D50 particle diameter) ) was designated.
  • the electrode After rolling, the electrode was cut to have a width of about 20 mm, and the adhesive force was measured according to a known method for measuring the adhesive force of the active material layer.
  • the peeling angle was 90 degrees, and the peeling rate was about 5 mm/sec. After the measurement, the portion where the peak was stabilized was averaged and defined as the adhesive force.
  • Copper foil was used as the current collector, and after adjusting the surface properties in the following manner, it was applied to the manufacture of the electrode.
  • a coating solution in which ethyl trimethoxy silane was dispersed in ethanol as a solvent at a concentration of about 1 wt % was coated on the surface of the copper foil to a thickness of about 10 ⁇ m using a bar coater. After coating, annealing was performed at 100° C. for about 5 minutes, washed with ethanol, and dried at 100° C. for about 5 minutes to form a silane coating layer.
  • the surface energy of the silane coating layer was about 29.7 mN/m
  • the dispersion energy was about 28.3 mN/m
  • the polar energy was about 1.4 mN/m.
  • the water contact angle was about 95 degrees
  • the DM contact angle was about 60.4 degrees.
  • the slurry is water, SBR (Styrene-Butadiene rubber) binder, thickener (CMC, carboxymethyl cellulose), electrode active material (1) (artificial graphite (GT), average particle diameter (D50 particle diameter): 20 ⁇ m) and electrode active material (2) ( Prepared by mixing natural graphite (PAS), average particle diameter (D50 particle diameter): 15 ⁇ m) in a weight ratio of 51:2:0.6:37.1:9.3 (water:SBR:CMC:active material (1):active material (2)) did In the above, water is a solvent having a dipole moment of about 1.84 D, and the SBR binder is a binder having a solubility parameter of about 16.9 MPa1/2.
  • the solubility parameter of the SBR binder is the value described in Yanlong Luo et al., 2017.
  • the SBR binder was a particulate binder, and had an average particle diameter (D50 particle diameter, median particle diameter) of about 150 nm.
  • the slurry was applied to a thickness of about 280 ⁇ m on the surface of the silane coating layer by a gap coating method, and dried at a temperature of about 230° C. for about 90 seconds. After drying, a slurry layer having a thickness of about 180 ⁇ m was obtained, and the dried slurry layer was rolled to a final thickness of about 110 ⁇ m and a porosity of about 26% with a conventional electrode rolling mill to form an active material layer.
  • the porosity of the active material layer is a value calculated by comparing the ratio of the difference between the actual density and the density after rolling.
  • the content of the SBR binder in the active material layer of the electrode is about 4 wt%
  • the content of the electrode active material (GT+PAS) is about 95 wt%.
  • Copper foil was used as the current collector, and after adjusting the surface properties in the following manner, it was applied to the manufacture of the electrode.
  • a coating solution in which allyl trimethoxy silane was dispersed in ethanol as a solvent at a concentration of about 1 wt % was coated on the surface of the copper foil to a thickness of about 10 ⁇ m using a bar coater. After coating, annealing was performed at 100° C. for about 5 minutes, washed with ethanol, and dried at 100° C. for about 5 minutes to form a silane coating layer.
  • the surface energy of the silane coating layer was about 30.6 mN/m, the dispersion energy was about 29.5 mN/m, and the polar energy was about 1.1 mN/m.
  • the water contact angle was about 95.8 degrees, and the DM contact angle was about 58.4 degrees.
  • Example 2 the same slurry as used in Example 1 was applied to the surface of the silane coating layer with a thickness of about 280 ⁇ m by a gap coating method, and dried at a temperature of about 230° C. for about 90 seconds. After drying, a slurry layer having a thickness of about 180 ⁇ m was obtained, and the dried slurry layer was rolled to a final thickness of about 110 ⁇ m and a porosity of about 26% with a conventional electrode rolling mill to form an active material layer.
  • the method of calculating the porosity of the active material layer and the contents of the SBR binder and the electrode active material in the active material layer of the electrode are the same as in Example 1.
  • Copper foil was used as the current collector, and after adjusting the surface properties in the following manner, it was applied to the manufacture of the electrode.
  • a coating solution in which 3-aminopropyl trimethoxy silane was dispersed in ethanol as a solvent at a concentration of about 1 wt % was coated on the surface of the copper foil to a thickness of about 10 ⁇ m using a bar coater. After coating, the coating layer was annealed at 100° C. for about 5 minutes, washed with ethanol, and dried again at 100° C. for about 5 minutes to form a silane coating layer.
  • the surface energy of the silane coating layer was about 28.3 mN/m
  • the dispersion energy was about 27.1 mN/m
  • the polar energy was about 1.2 mN/m.
  • the water contact angle was about 96.8 degrees
  • the DM contact angle was about 62.6 degrees.
  • Example 2 the same slurry as used in Example 1 was applied to the surface of the silane coating layer with a thickness of about 280 ⁇ m by a gap coating method, and dried at a temperature of about 230° C. for about 90 seconds. After drying, a slurry layer having a thickness of about 180 ⁇ m was obtained, and the dried slurry layer was rolled to a final thickness of about 110 ⁇ m and a porosity of about 26% with a conventional electrode rolling mill to form an active material layer.
  • the method of calculating the porosity of the active material layer and the contents of the SBR binder and the electrode active material in the active material layer of the electrode are the same as in Example 1.
  • a copper foil whose surface properties were controlled in the same manner as in Example 1 was used as a current collector.
  • the slurry is water, SBR (Styrene-Butadiene rubber) binder, thickener (CMC, carboxymethyl cellulose), electrode active material (1) (artificial graphite (GT), average particle diameter (D50 particle diameter): 20 ⁇ m) and electrode active material (2) ( Manufactured by mixing natural graphite (PAS), average particle diameter (D50 particle diameter): 15 ⁇ m) in a weight ratio of 48.5:1:0.5:45:5 (water:SBR:CMC:active material (1):active material (2)) did
  • water is a solvent having a dipole moment of about 1.84 D
  • the SBR binder is a binder having a solubility parameter of about 16.9 MPa1/2.
  • the solubility parameter of the SBR binder is the value described in Yanlong Luo et al., 2017.
  • the SBR binder was a particulate binder, and had an average particle diameter (D50 particle diameter, median particle diameter) of about 150 nm.
  • the slurry was applied to a thickness of about 280 ⁇ m on the surface of the silane coating layer by a gap coating method, and dried at a temperature of about 230° C. for about 90 seconds. After drying, a slurry layer having a thickness of about 180 ⁇ m was obtained, and the dried slurry layer was rolled to a final thickness of about 110 ⁇ m and a porosity of about 26% with a conventional electrode rolling mill to form an active material layer.
  • a method of calculating the porosity of the active material layer is the same as in Example 1.
  • the content of the SBR binder in the active material layer of the electrode is about 2 wt%, and the content of the electrode active material is about 97 wt%.
  • a copper foil whose surface properties were controlled in the same manner as in Example 2 was used as a current collector.
  • Example 4 the same slurry as used in Example 4 was applied to the surface of the silane coating layer with a thickness of about 280 ⁇ m by a gap coating method, and dried at a temperature of about 230° C. for about 90 seconds. After drying, a slurry layer having a thickness of about 180 ⁇ m was obtained, and the dried slurry layer was rolled to a final thickness of about 110 ⁇ m and a porosity of about 26% with a conventional electrode rolling mill to form an active material layer.
  • the method of calculating the porosity of the active material layer and the contents of the SBR binder and the electrode active material in the active material layer of the electrode are the same as in Example 4.
  • a copper foil whose surface properties were controlled in the same manner as in Example 3 was used as a current collector.
  • Example 4 the same slurry as used in Example 4 was applied to the surface of the silane coating layer with a thickness of about 280 ⁇ m by a gap coating method, and dried at a temperature of about 230° C. for about 90 seconds. After drying, a slurry layer having a thickness of about 180 ⁇ m was obtained, and the dried slurry layer was rolled to a final thickness of about 110 ⁇ m and a porosity of about 26% with a conventional electrode rolling mill to form an active material layer.
  • the method of calculating the porosity of the active material layer and the contents of the SBR binder and the electrode active material in the active material layer of the electrode are the same as in Example 4.
  • the surface energy of the untreated copper foil surface was about 71.2 mN/m, the dispersion energy was about 45 mN/m, and the polar energy was about 26.2 mN/m.
  • Example 2 the same slurry as used in Example 1 was applied to the surface of the copper foil layer in a thickness of about 280 ⁇ m by a gap coating method, and dried at a temperature of about 230° C. for about 90 seconds. After drying, a slurry layer having a thickness of about 180 ⁇ m was obtained, and the dried slurry layer was rolled to a final thickness of about 110 ⁇ m and a porosity of about 26% with a conventional electrode rolling mill to form an active material layer.
  • the method of calculating the porosity of the active material layer and the contents of the SBR binder and the electrode active material in the active material layer of the electrode are the same as in Example 1.
  • Copper foil was used as the current collector, and after adjusting the surface properties in the following manner, it was applied to the manufacture of the electrode.
  • a coating solution in which dodecyl trimethoxy silane was dispersed in ethanol as a solvent at a concentration of about 1 wt % was coated on the surface of the copper foil to a thickness of about 10 ⁇ m using a bar coater. After coating, annealing was performed at 100° C. for about 5 minutes, washed with ethanol, and dried at 100° C. for about 5 minutes to form a silane coating layer.
  • the surface energy of the silane coating layer was about 27.7 mN/m
  • the dispersion energy was about 27.4 mN/m
  • the polar energy was about 0.3 mN/m.
  • the water contact angle was about 102.6 degrees
  • the DM contact angle was about 62.2 degrees.
  • Example 2 The same slurry as used in Example 1 was applied to the surface of the silane coating layer with a thickness of about 280 ⁇ m by a gap coating method, and dried at a temperature of about 230° C. for about 90 seconds. After drying, a slurry layer having a thickness of about 180 ⁇ m was obtained, and the dried slurry layer was rolled to a final thickness of about 110 ⁇ m and a porosity of about 26% with a conventional electrode rolling mill to form an active material layer.
  • the method of calculating the porosity of the active material layer and the contents of the SBR binder and the electrode active material in the active material layer of the electrode are the same as in Example 1.
  • the surface energy of the untreated copper foil surface was about 71.2 mN/m, the dispersion energy was about 45 mN/m, and the polar energy was about 26.2 mN/m.
  • Example 4 the same slurry as used in Example 4 was applied to the surface of the copper foil layer in a thickness of about 280 ⁇ m by a gap coating method, and dried at a temperature of about 230° C. for about 90 seconds. After drying, a slurry layer having a thickness of about 180 ⁇ m was obtained, and the dried slurry layer was rolled to a final thickness of about 110 ⁇ m and a porosity of about 26% with a conventional electrode rolling mill to form an active material layer.
  • the method of calculating the porosity of the active material layer and the contents of the SBR binder and the electrode active material in the active material layer of the electrode are the same as in Example 4.
  • Examples and Comparative Examples were subjected to a standard peel test in the manner described above, and the area occupied by the binder was checked.
  • 4 to 9 are FE-SEM images of Examples 1 to 6, respectively, and
  • FIGS. 10 to 12 are FE-SEM images of Comparative Examples 1 to 3, respectively.
  • Example comparative example One 2 3 4 5 6 One 2 3 Binder Occupied Area Ratio (A) (%) 85.9 89.3 93.6 52.6 59 59.7 55.3 53.7 34.5 Binder content (W) (wt%) in the active material layer 4.1 4.1 4.1 2.3 2.3 2.3 4.1 4.1 2.3 A/W 21 21.8 22.8 22.9 25.7 26 13.5 13.1 15
  • Example comparative example One 2 3 4 5 6 One 2 3 Adhesion (gf/20mm) 44 41.4 40.8 15.3 21.8 17.3 38.1 39.5 14.9

Abstract

본 출원은 전극, 그를 포함하는 전기 화학 소자 및 이차 전지에 대한 것이다. 본 출원은, 집전체와 활물질층을 포함하는 전극에 대한 것이고, 상기 활물질층 내의 바인더 함량 대비 높은 수준의 입자간 접착력과 활물질층과 집전체간의 접착력을 확보할 수 있는 전극을 제공할 수 있다. 본 출원에서는 또한 상기 전극을 포함하는 전기 화학 소자 및 이차 전지를 제공할 수 있다.

Description

전극
본 출원은, 전극에 대한 것이다.
에너지 저장 기술은, 휴대폰, 캠코더 및 노트북 PC이나, 전기 자동차 등까지 적용 영역이 확대되고 있다.
에너지 저장 기술의 연구 분야 중 하나는 충방전이 가능한 이차 전지이고, 이러한 이차 전지의 용량 밀도 및 비에너지를 향상시키기 위한 연구 개발이 진행되고 있다.
이차 전지에 적용되는 전극(양극 또는 음극)은, 통상 집전체상에 전극 활물질과 바인더를 포함하는 활물질층을 형성하여 제조한다.
이차 전지의 전극에서 활물질간의 전자의 이동 및 집전체와 활물질층간의 전자 이동을 원활하게 유도하기 위해서는, 활물질 입자간의 접착력과 활물질층과 집전체간의 접착력이 확보되어야 한다.
또한, 활물질층 내에서 입자들간의 접착력이 부족하면, 전극으로부터 입자가 탈락하는 현상이 일어날 수 있고, 이러한 현상은 전지의 안정성과 성능을 떨어뜨리게 된다. 예를 들면, 음극과 양극의 표면에서 입자간의 불충분한 접착력으로 인해 탈락된 입자는 전지 내부에서 마이크로쇼트(microshort) 등을 발생시켜 성능의 저하 및 단락으로 인한 화재의 원인이 될 수 있다.
활물질층과 집전체의 접착력이 떨어지게 되면, 활물질층과 집전체간의 전자의 이동 속도가 감소하고, 이는 속도 특성과 싸이클 특성의 저하의 원인이 되기도 한다.
활물질층에서 입자간의 접착력이나, 활물질층층과 집전체간의 접착력은 바인더에 의해 확보된다.
따라서, 활물질층에 더 많은 바인더를 도입하면, 더 높은 접착력을 확보할 수 있다.
그렇지만, 이러한 경우에 바인더의 비율이 늘어난 만큼 활물질의 비율이 감소하게 되므로 전극 저항의 증가, 전도도의 감소 등에 의한 전지의 성능 저하 문제가 발생하게 된다.
본 출원은 전극에 대한 것이다. 본 출원은, 집전체와 활물질층을 포함하는 전극으로서, 상기 활물질층 내의 바인더 함량 대비 높은 수준의 입자간 접착력과 활물질층과 집전체간의 접착력을 확보할 수 있는 전극을 제공하는 것을 하난의 목적으로 한다.
본 명세서에서 언급하는 물성 중에서 측정 온도가 결과에 영향을 미치는 물성은, 특별히 달리 언급하지 않는 한, 상온에서 측정한 결과이다.
용어 상온은 가온되거나, 감온되지 않은 자연 그대로의 온도이고, 예를 들면, 10℃ 내지 30℃의 범위 내의 어느 한 온도, 약 23℃ 또는 약 25℃ 정도의 온도를 의미한다. 또한, 본 명세서에서 온도의 단위는 특별히 달리 규정하지 않는 한 섭씨(℃)이다.
본 명세서에서 언급하는 물성 중에서 측정 압력이 결과에 영향을 미치는 물성은, 특별히 달리 언급하지 않는 한, 상압에서 측정한 결과이다.
용어 상압은 가압 또는 감압되지 않은 자연 그대로의 압력이고, 통상 대기압 수준의 약 1기압 정도를 의미한다.
본 명세서에서 측정 습도가 결과에 영향을 미치는 물성의 경우, 해당 물성은 상기 상온 및/또는 상압 상태에서 특별히 조절되지 않은 자연 그대로의 습도에서 측정한 물성이다.
본 출원의 전극은, 집전체; 및 상기 집전체의 일면에 존재하는 활물질층을 포함한다. 도 1은, 이러한 전극의 단면도이고, 집전체(100)과 활물질층(200)을 포함하는 구조를 나타낸다. 상기 전극 구조에서 활물질층은 집전체의 표면과 접하여 형성되어 있을 수도 있고, 집전체와 활물질층의 사이에 다른 층이 존재할 수도 있다. 예를 들면, 후술하는 바와 같이 상기 집전체와 활물질층의 사이에는 중간층이 존재할 수도 있다.
상기 활물질층은 적어도 전극 활물질과 바인더를 포함할 수 있다.
본 출원에서는 활물질층 내의 바인더의 분포, 특히 집전체에 인접하는 활물질층 내의 바인더의 분포의 제어를 통해서, 상기 활물질층 내의 입자간의 높은 접착력을 확보하고, 동시에 활물질층과 집전체간의 높은 접착력을 확보할 수 있다. 활물질층은, 기본적으로 전극 활물질과 바인더를 포함하는데, 접착력은 바인더에 의해서 발현된다. 따라서, 접착력의 확보를 위해서는, 접착력의 발현이 필요한 위치에 가급적 많은 바인더를 위치시킬 필요가 있다.
그렇지만, 이를 위해서는, 활성층의 형성에 사용되는 슬러리 내의 각 성분들의 친화성(affinity)이나, 슬러리 내의 각 성분들과 집전체와의 친화성을 면밀히 고려하여야 한다. 또한, 전극의 형성 과정 중이나 전극 제조 후에 바인더가 활성층의 상부로 이행(migration)하는 현상이 발생하기 때문에, 바인더의 위치를 조절하는 것은 쉽지 않은 과제이며, 슬러리 내에 바인더의 함량이 작은 경우에 이러한 제어는 더욱 쉽지 않다. 예를 들어, 도 2에 개념적으로 나타낸 바와 같이, 통상 활물질층에 존재하는 바인더(2001)는 전극 제조 과정 및/또는 제조 후에 활물질층의 상부로 이행하는 현상이 발생하기 때문에 전극 활물질(1001)과 집전체(100)의 사이에 바인더(2001)를 분포시키는 것은 쉽지 않다. 즉, 집전체상에 분포한 바인더 중에서 접착력의 향상에 기여하는 바인더는 일부분이며, 활물질층 내에 바인더의 비율이 적은 경우에 이러한 경향은 더욱 커진다.
본 출원에서는, 접착력 향상이 필요한 부분(예를 들면, 집전체의 표면과 전극 활물질의 사이 등)에 바인더를 집중적으로 분포시켜서 적은 바인더 함량 하에서도 우수한 접착력을 달성할 수 있는 전극을 제공할 수 있다.
본 출원에서는 표준 박리 시험에 의해 확인되는 바인더의 점유 면적 비율을 활물질층에 포함되는 바인더의 함량 대비 높은 수준으로 조절한다.
용어 바인더의 점유 면적 비율은, 후술하는 표준 박리 시험 후에 집전체의 표면에서 바인더 성분이 존재하는 것으로 확인되는 면적(A2)의 집전체 전체 표면 면적(A1)에 대한 백분율(100×A2/A1)이다. 상기에서 바인더 성분이 존재하는 것으로 확인되는 면적은 FE-SEM(Field Emission Scanning Electron Microscope) 분석을 통해서 실시예에 기재된 방식으로 확인할 수 있다. 상기 확인 과정에서 바인더 성분이 존재하는 것으로 확인되는 영역에는 바인더가 포함되고, 경우에 따라서는 기타 추가 성분(예를 들면, 증점제 등)을 포함할 수도 있다.
하나의 예시에서 상기 전극에 대해서 수행되는 하기 표준 박리 시험에서 확인되는 상기 바인더의 점유 면적 비율(A)과 상기 활물질층 내의 전극 활물질의 함량(W)의 비율(A/W)은, 17 이상일 수 있다.
즉, 상기 전극은 상기 표준 박리 시험 후 하기 수식 1을 만족할 수 있다.
[수식 1]
17 ≤ A/W
수식 1에서 A는 상기 집전체 표면의 전체 면적(A1)에 대한 상기 집전체 표면에서 상기 바인더가 점유하는 면적(A2)의 백분율(100×A2/A1)이고, W는 상기 활물질층 내의 바인더 함량 비율(wt%)이다.
상기 수식 1의 점유 면적 비율 A의 단위는 %이고, 바인더 함량 비율 W의 단위는 중량%(wt%)이기 때문에, 상기 비율 A/W의 단위는 wt-1일 수 있다.
상기 바인더의 함량은, 전극 제조 과정에서의 슬러리의 조성을 아는 경우에 해당 슬러리의 고형분(용매를 제외한 부분) 내에서의 바인더의 함량 비율과 실질적으로 같다. 또한, 전극 제조 과정에서의 슬러리의 조성을 모르는 경우에 상기 바인더의 함량은 활물질에 대한 TGA (Thermogravimetric analysis) 분석을 통해 확인할 수 있다. 예를 들어, 바인더로서 SBR(Styrene-Butadiene Rubber) 바인더를 적용하는 경우에 상기 활물질층에 대한 TGA 분석을 수행하여, 분당 10℃의 속도로 승온하여 얻어지는 온도-질량 곡선의 370℃ 내지 440℃ 감소분에서 얻어지는 SBR 바인더의 함량을 통해서 상기 바인더의 함량을 확인할 수 있다.
상기 비율 A/W는 다른 예시에서 17.5 이상, 18 이상, 18.5 이상, 19 이상, 19.5 이상, 20 이상, 20.5 이상, 21 이상, 21.5 이상, 22 이상, 22.5 이상, 23 이상, 23.5 이상, 24 이상, 24.5 이상, 25 이상 또는 25.5 이상이거나, 50 이하, 49 이하, 48 이하, 47 이하, 46 이하, 45 이하, 44 이하, 43 이하, 42 이하, 41 이하, 40 이하, 39 이하, 38 이하, 37 이하, 36 이하, 35 이하, 34 이하, 33 이하, 32 이하, 31 이하, 30 이하, 29 이하, 28 이하, 27 이하, 26 이하, 25 이하, 24 이하, 23 이하, 22 이하, 21 이하, 20 이하, 19 이하 또는 18 이하 정도일 수도 있다.
위와 같은 A/W 비율 하에서 적용 바인더 대비 높은 수준의 접착력이 확보되는 전극을 제공할 수 있다.
본 출원에서는 슬러리의 조성(예를 들면, 용매와 바인더의 친화성), 슬러리 내의 각 성분과 집전체 표면상의 친화성 및/또는 슬러리 내의 입자상 물질의 평균 입경의 제어를 통해서 상기 A/W 비율을 달성할 수 있다.
본 명세서에서 입자상 물질의 평균 입경은, 레이저 회절법에 의해 구해지는 소위 D50 입경 또는 메디안 입경(median diameter)이며, 이 입경을 구하는 방식은 실시예에 기재되어 있다. 또한, 예를 들어, 활물질층이 압연된 층인 경우에 상기 활물질층 내의 입자상 바인더 및 입자상 활물질에 대해서 본 명세서에서 언급되는 평균 입경은, 특별히 달리 규정하지 않는 한, 압연 전의 평균 입경이다.
또한, 일 예시에서 활물질층 내에 평균 입경이 서로 다른 2종의 입자상 바인더(또는 전극 활물질)가 존재하는 경우에, 상기 2종의 입자상 바인더의 중량 분율을 감안한 평균 입경을 본 명세서에서 입자상 바인더(또는 전극 활물질)의 평균 입경으로 규정할 수 있다. 예를 들어, 평균 입경이 D1인 입자상 바인더(또는 전극 활물질)가 W1의 중량으로 존재하고, 평균 입경이 D2인 입자상 바인더(또는 전극 활물질)가 W2의 중량으로 존재하는 경우에 평균 입경 D는 D=(D1×W1+D2×W2)/(W1+W2)로 규정될 수 있다. 상기 확인 시에 입경 D1 및 D2와 중량 W1 및 W2는 각각 서로 동일 단위의 값이다.
상기 표준 박리 시험은, 3M사의 스카치 매직 테이프 Cat. 810R을 사용하여 수행한다. 표준 박리 시험을 수행하기 위해서 우선 전극을 가로가 20 mm 정도이고, 세로가 100 mm 정도인 크기로 재단한다. 상기 스카치 매직 테이프 Cat. 810R도 가로의 길이가 10 mm이고, 세로의 길이가 60 mm 가 되도록 재단한다. 그 후 도 4에 나타난 바와 같이 전극의 활물질층(200)상에 상기 스카치 매직 테이프 Cat. 810R(300)을 크로스 상태로 부착한다. 상기 부착은 표준 박리 시험을 상기 매직 테이프 Cat. 810R(300)이 일정 부분 돌출되도록 수행할 수 있다. 그 후 상기 돌출 부위를 잡고 상기 매직 테이프 Cat. 810R(300)을 박리한다. 이 때 박리 속도 및 박리 각도는 특별히 제한되는 것은 아니지만, 박리 속도는 약 20mm/sec 정도로 하고, 박리 각도는 약 30도 정도로 할 수 있다. 또한, 상기 스카치 매직 테이프 Cat. 810R(300)의 부착은, 테이프 부착 후 테이프의 표면을 무게가 1kg 정도이고, 반경 및 폭이 각각 50mm 및 40 mm의 롤러로 1회 왕복하여 밀어줌으로써 부착한다.
상기 과정을 통해서 스카치 매직 테이프 Cat. 810R(300)을 박리하면, 활물질층(200)의 성분이 상기 스카치 매직 테이프 Cat. 810R(300)와 함께 박리된다. 이어서 새로운 스카치 매직 테이프 Cat. 810R(300)를 사용하여 상기 과정을 반복한다.
이 과정을 상기 스카치 매직 테이프 Cat. 810R(300)상에 활물질층(200)의 성분이 묻어나오지 않아서 관찰되지 않을 때까지 수행하여 상기 표준 박리 시험을 진행할 수 있다.
스카치 매직 테이프 Cat. 810R(300)상에 활물질층(200)의 성분이 묻어나오지 않은 것은 활물질층으로부터 박리된 스카치 매직 테이프의 표면과 미사용 스카치 매직 테이프의 표면을 비교하여, 양자의 명암이 실질적으로 동일한 경우에 활물질층의 성분이 묻어나오지 않는 것으로 판정할 수 있다(육안 관찰).
표준 박리 시험을 진행하는 구체적인 방식은 실시예에 기재되어 있다.
위와 같은 표준 박리 시험 후에 집전체상에 바인더의 점유 면적 비율을 확인할 수 있다.
본 출원에서 적용되는 집전체의 종류는 특별히 제한되지 않고, 공지의 집전체를 사용할 수 있다. 전술한 비율 A/W의 구현을 위해서 후술하는 바와 같이 집전체의 표면 특성(수접촉각 등)이 제어될 수 있다. 집전체로는, 예를 들면, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리, 카본, 니켈, 티탄 또는 은으로 표면 처리된 스테인리스스틸, 알루미늄-카드뮴 합금 등으로 되는 필름, 시트 또는 호일(foil)을 사용할 수 있다. 목적하는 네트워크 영역 및 블랭크 영역의 구현을 위해서 상기 집전체 중에서 후술하는 표면 특성을 가지는 것이 선택되거나, 혹은 추가 처리에 의해서 상기 표면 특성이 조절될 수 있다.
집전체의 두께 및 형태 등도 특별히 제한되지 않으며, 공지의 범위 내에서 적정 종류가 선택된다.
집전체상에 형성되는 활물질층은, 전극 활물질과 바인더를 포함한다.
바인더로는 공지의 물질을 사용할 수 있고, 활물질층 내에서 활물질 등의 성분들의 결합 및 활물질층과 집전체의 결합에 기여하는 것으로 알려진 성분들을 사용할 수 있다. 적용될 수 있는 바인더로는, PVDF(Poly(vinylidene fluoride)), PVA(poly(vinyl alcohol)), 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, SBR(Styrene-Butadiene rubber), 불소 고무 및 기타 공지된 바인더 중에서 선택된 1종 또는 2종 이상의 조합이 사용될 수 있다.
적합한 네트워크 영역의 형성을 위해서 바인더로는 입자상 바인더를 사용하는 것이 적절하다.
전극 활물질로서, 입자상 물질이 사용되는 경우에, 전극 활물질층 내에서의 바인더의 분포의 제어를 위해서 상기 입자상 바인더와 상기 전극 활물질층간의 입경의 비율이 제어될 수 있다.
예를 들면, 상기 입자상 전극 활물질의 평균 입경(D1, 단위 nm)과 입자상 바인더의 평균 입경(D2, 단위 nm)의 비율(D1/D2)이 10 내지 1,000의 범위 내에 있을 수 있다. 상기 비율(D1/D2)은 다른 예시에서 20 이상, 30 이상, 40 이상, 50 이상, 60 이상, 70 이상, 80 이상, 90 이상, 100 이상, 110 이상, 120 이상 또는 130 이상이거나, 900 이하, 800 이하, 700 이하, 600 이하, 500 이하, 400 이하, 300 이하, 200 이하 또는 150 이하 정도일 수 있다.
상기에서 바인더는 평균 입경(D2)이 50 nm 내지 500 nm의 범위 내에 있을 수 있다. 다른 예시에서 상기 바인더의 평균 입경(D2)은, 약 70nm 이상, 약 90 nm 이상, 약 110 nm 이상, 약 130 nm 이상 또는 약 140 nm 이상이거나, 약 480 nm 이하, 약 460 nm 이하, 440 nm 이하, 420 nm 이하, 400 nm 이하, 약 380 nm 이하, 약 360 nm 이하, 약 340 nm 이하, 약 320 nm 이하, 약 300 nm 이하, 약 280 nm 이하, 약 260 nm 이하, 약 240 nm 이하, 약 220 nm 이하, 약 200 nm 이하, 약 180 nm 이하 또는 약 160 nm 이하 정도일 수 있다.
상기에서 전극 활물질의 평균 입경(D1)은 1 μm 내지 100 μm의 범위 내에 있을 수 있다. 다른 예시에서 상기 평균 입경(D1)은, 약 3μm 이상, 약 5 μm 이상, 약 7 μm 이상, 약 9 μm 이상, 약 11 μm 이상, 약 13 μm 이상, 약 15 μm 이상, 약 17 μm 이상 또는 약 19 μm 이상이거나, 약 90 μm 이하, 80 μm 이하, 70 μm 이하, 60 μm 이하, 50 μm 이하, 40 μm 이하, 30 μm 이하 또는 20 μm 이하 정도일 수도 있다.
상기 각 평균 입경 D1 및 D2는, 활물질층 제조를 위해 적용되는 슬러리 내에서의 각 물질의 평균 입경이다. 따라서, 실제 전극이 압연 공정을 거쳐 제조되는 경우에는, 활물질층 내에서 확인되는 각 성분의 평균 입경 D1 및 D2과는 다소 차이가 있을 수 있다.
이유가 명확한 것은 아니지만, 위와 같은 입경 비율에 의해서 전극 제조 과정 중의 슬러리 내에서는 목적하는 바인더의 위치를 달성할 수 있는 바인더의 분산 상태가 달성되고, 또한 바인더의 이행(migration) 현상도 적절하게 조절되는 것으로 예상된다.
또한, 적합한 네트워크 영역의 형성을 위해서 상기 바인더로는 후술하는 범위의 용해도 파라미터(solubility parameter)를 가지는 바인더의 사용이 유리할 수 있다.
본 출원에서는 활물질층 내에 바인더의 비율을 상대적으로 적게 가져가면서도 높은 수준의 접착력을 확보할 수 있다. 예를 들면, 활물질층 내의 상기 바인더의 비율은 약 0.5 내지 10 중량% 정도일 수 있다. 상기 비율은 다른 예시에서 1 중량% 이상, 1.5 중량% 이상, 2 중량% 이상, 2.5 중량% 이상, 3 중량% 이상, 3.5 중량% 이상 또는 4 중량% 이상 정도의 범위 내 및/또는 9.5 중량% 이하, 9 중량% 이하, 8.5 중량% 이하, 8 중량% 이하, 7.5 중량% 이하, 7 중량% 이하, 6.5 중량% 이하, 6 중량% 이하, 5.5 중량% 이하, 5 중량% 이하 또는 4.5 중량% 이하 정도의 범위 내에서 추가로 제어될 수도 있다.
활물질층에 포함되는 상기 전극 활물질은 양극 활물질 또는 음극 활물질일 수 있으며, 구체적인 종류는 특별히 제한되지 않는다. 예를 들어, 양극 활물질로는 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi1-x-yzCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z <0.5, 0 < x+y+z ≤ 1을 만족) 등을 포함하는 활물질을 사용할 수 있고, 음극 활물질로는 천연흑연, 인조흑연, 탄소질 재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체 등을 포함하는 활물질을 사용할 수 있다.
본 출원에서는 활물질층 내에 상기 활물질의 비율을 상대적으로 높게 유지하면서도 우수한 접착력의 확보가 가능하다.
예를 들면, 상기 활물질층 내에 상기 활물질은, 상기 바인더 100 중량부 대비 1000 내지 10000 중량부의 범위 내일 수 있다. 상기 비율은 다른 예시에서 1500 중량부 이상, 2000 중량부 이상, 2500 중량부 이상, 3000 중량부 이상, 3500 중량부 이상, 4000 중량부 이상 또는 4500 중량부 이상이거나, 9500 중량부 이하, 9000 중량부 이하, 8500 중량부 이하, 8000 중량부 이하, 7500 중량부 이하, 7000 중량부 이하, 6500 중량부 이하, 6000 중량부 이하, 5500 중량부 이하, 5000 중량부 이하, 4500 중량부 이하, 4000 중량부 이하, 3500 중량부 이하, 3000 중량부 이하 또는 2500 중량부 이하 정도일 수도 있다.
활물질층은 상기 성분 외에도 필요한 다른 성분을 추가로 포함할 수도 있다. 예를 들면, 활물질층은, 도전재를 추가로 포함할 수 있다. 도전재로는, 예를 들면, 집전체 및 전극 활물질의 화학적 변화를 유발하지 않으며서 도전성을 나타내는 것이라면 특별한 제한 없이 공지의 성분을 사용할 수 있다. 예를 들면, 도전재로는, 천연 흑연이나, 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연; 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화무리 폴리페닐렌 유도체 등에서 선택된 1종 또는 2종 이상의 혼합 등을 사용할 수 있다.
도전재의 함량은 필요에 따라 제어되는 것으로 특별히 제한되는 것은 아니지만, 통상 활물질 100 중량부 대비 0.1 내지 20 중량부 또는 0.3 내지 12 중량부의 범위 내에서 적정 비율로 포함될 수 있다. 도전재의 함량을 전지의 사이클 수명(cycle life) 등을 고려하여 적정 수준으로 결정하는 방식은 공지이다.
활물질층은 상기 성분에 추가로 필요한 다른 공지의 성분(예를 들면, 카르복시메틸셀룰로우즈(CMC, carboxymethyl cellulose), 전분, 히드록시프로필셀룰로우즈 또는 재생 셀룰로우즈 등의 증점제 등)을 포함할 수도 있다.
활물질층의 두께에는 특별한 제한은 없으며, 목적하는 성능을 고려하여 적정 수준의 두께를 가지도록 제어될 수 있다.
예를 들어, 활물질층의 두께는 약 10 내지 500μm의 범위 내에 있을 수 있다. 상기 두께는 다른 예시에서 약 30 μm 이상, 50 μm 이상, 70μm 이상, 90 μm 이상 또는 100 μm 이상 정도이거나, 약 450 μm 이하, 400 μm 이하, 350 μm 이하, 300 μm 이하, 250 μm 이하, 200 μm 이하 또는 150 μm 이하 정도일 수도 있다.
활물질층은, 일정 수준의 공극률을 가지도록 형성될 수 있다. 공극률은 통상 전극의 제조 과정에서 압연에 의해 제어된다. 활물질층은 공극률이 약 35% 이하 정도일 수 있다. 상기 공극률은 33% 이하, 31% 이하, 29% 이하 또는 27% 이하의 범위 내 및/또는 5% 이상, 7% 이상, 9% 이상, 11% 이상, 13% 이상, 15% 이상, 17% 이상, 19% 이상, 21% 이상, 23% 이상 또는 25% 이상의 범위 내에서 추가로 조절될 수도 있다. 상기 공극률을 가지도록 제어되는 압연 공정은 후술하는 바와 같이 본 출원에서 목적으로 하는 네트워크 영역 및 블랭크 영역의 형성에 기여할 수 있다. 상기에서 공극률은 활질층의 실제 밀도와 압연 후 밀도의 차이의 비율을 비교하는 방식으로 계산한 값이고, 이러한 방식으로 활물질층의 공극율을 계산하는 방식은 공지이다.
전극의 제조 과정에서 적절한 바인더의 분포를 달성하기 위하여 집전체의 표면 특성의 제어를 위해서 추가적인 층이 존재할 수 있다.
예를 들면, 상기 전극에서 활물질층과 집전체의 사이에는 실란 화합물을 포함하는 중간층이 존재할 수 있다.
이 때 중간층의 종류는 후술하는 집전체의 표면 특성의 달성이 가능한 것이라면 특별한 제한은 없다.
예를 들면, 상기 중간층은, 하기 화학식 1의 실란 화합물을 포함하는 층일 수 있다.
[화학식 1]
Figure PCTKR2021013155-appb-img-000001
화학식 1에서 R1은 탄소수 6 이하의 알킬기 또는 탄소수 6 이하의 알케닐기이고, 상기 R1의 알킬기는 임의로 하나 이상의 아미노기로 치환되어 있을 수 있으며, R2 내지 R4는 각각 독립적으로 탄소수 1 내지 4의 알킬기이다.
상기 화학식 1에서의 알킬기 또는 알케닐기는 직쇄형, 분지형 또는 고리형일 수 있으며, 적절한 예시에서는 직쇄형 알킬기 또는 알케닐기일 수 있다.
일 예시에서 화학식 1의 R1은, 탄소수 1 내지 6, 탄소수 1 내지 4 또는 탄소수 2 내지 4의 직쇄형 알킬기이거나, 탄소수 2 내지 6, 탄소수 2 내지 4 또는 탄소수 2 내지 4의 직쇄형 알케닐기이거나, 탄소수 1 내지 6, 탄소수 1 내지 4 또는 탄소수 2 내지 4의 직쇄형 아미노알킬기일 수 있다.
중간층은 상기 실란 화합물을 주성분으로 포함할 수 있으며, 예를 들면, 상기 중간층 내의 상기 실란 화합물의 함량은 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상, 90 중량% 이상 또는 95 중량% 이상 정도일 수 있다. 중간층 내에서의 상기 실란 화합물의 함량의 상한은 100 중량%이다. 중간층에서 상기 실란 화합물 외의 성분이 존재하는 경우에 그 성분은, 중간층 형성 과정에서 사용된 용매 등의 성분이거나, 혹은 활물질층에서 이행하여 온 활물질층 구성 성분일 수 있다.
중간층의 두께는 목적하는 표면 특성을 고려하여 적절하게 설정할 수 있으며, 예를 들면, 대략 0.5 내지 50μm의 범위 내에 있을 수 있다.
상기 두께는 다른 예시에서 약 1 μm 이상, 3 μm 이상, 5μm 이상, 7 μm 이상 또는 9 μm 이상 정도이거나, 약 45 μm 이하, 40 μm 이하, 35 μm 이하, 30 μm 이하, 25 μm 이하, 20 μm 이하 또는 15 μm 이하 정도일 수도 있다.
이상 기술한 전극은 후술하는 방식으로 제조할 수 있다. 통상 전극은, 슬러리를 집전체에 코팅하고, 건조 후 압연 공정을 거쳐 제조한다. 본 출원에서는 상기 과정에서 슬러리의 조성, 상기 슬러리가 코팅되는 집전체의 표면 특성, 건조 조건 및/또는 압연 조건을 제어함으로써, 목적하는 네트워크 영역 및 블랭크 영역을 형성할 수 있다.
예를 들면, 본 출원의 제조 과정에서는 슬러리로서, 상대적으로 극성인 용매 내에 상대적으로 소수성인 바인더(적절하게는 상대적으로 소수성이면서 특정 평균 입경을 가지는 입자상 바인더)를 일정 함량으로 분산시킨 것을 적용할 수 있다. 이러한 슬러리는, 후술하는 바와 같이 표면 특성이 제어된 집전체상에 코팅된다. 이유가 명확한 것은 아니지만, 위와 같은 슬러리가 집전체에 코팅되면, 슬러리 내의 바인더의 분산 상태, 슬러리의 용매와 집전체 표면의 친화성(affinity), 집전체 표면과 슬러리의 바인더의 친화성(affinity) 및/또는 입자상 물질이 적용되는 경우에 그들간의 입경 관계 등이 서로 상호 조합되어 목적하는 형태의 바인더 위치를 제어하는 것으로 예상된다.
예를 들어, 용매와 집전체 표면의 친화성(affinity)은, 상기 집전체 표면상에서의 용매의 접촉각에 영향을 주고, 상기 접촉각은 용매의 증발 시에 모세관 현상(Capillary action) 등에 의해 슬러리 내에 일정 방향의 힘을 형성할 수 있다. 바인더와 용매의 친화성(affinity)과 바인더의 양(또한 입자상 바인더의 경우 그 입경)은 슬러리 내에서의 바인더의 분산 상태에 영향을 주고, 바인더와 집전체 표면의 친화성(affinity)은 슬러리 내에서의 바인더의 분산 상태나 집전체 표면으로의 바인더 분포 형태 등에 영향을 주게 된다.
본 출원에서는 후술하는 조성의 슬러리가 후술하는 표면 특성의 집전체상에 형성되었을 때의 바인더의 분산 상태와 용매의 증발 양태, 그에 의해 발생하는 슬러리 내에서의 전단력 등을 통해 목적하는 바인더의 배치가 달성되는 것을 확인하였다.
예를 들어, 상기 제조 공정에 적용되는 슬러리는 용매를 포함할 수 있다. 상기 용매로는, 통상 전극 활물질 등의 슬러리 성분을 적절하게 분산시킬 수 있는 것이 적용되고, 그 예에는 물, 메탄올, 에탄올, 이소프로필 알코올, 아세톤, 디메틸설폭사이드, 포름아미드 및/또는 디메틸포름아미드 등이 예시된다.
본 출원에서는 상기와 같은 용매 중에 쌍극자 모멘트(dipole moment)가 대략 1.3D 이상인 용매를 사용하는 것이 필요할 수 있다. 상기 용매의 쌍극자 모멘트는 다른 예시에서 약 1.35D 이상, 1.4 D 이상, 1.45 D 이상, 1.5 D 이상, 1.55 D 이상, 1.6 D 이상, 1.65 D 이상, 1.7 D 이상, 1.75 D 이상, 1.8 D 이상 또는 1.85 D 이상 정도의 범위 내 및/또는 5 D 이하, 4.5 D 이하, 4 D 이하, 3.5 D 이하, 3 D 이하, 2.5 D 이하, 2 D 이하 또는 1.9 D 이하 정도의 범위 내에서 추가로 제어될 수 있다. 용매의 쌍극자 모멘트는 용매별로 공지되어 있다.
상기 슬러리 내에 포함되는 바인더로는 상기 기술한 종류의 바인더 중 적절한 것이 선택되어 사용될 수 있다. 상기 용매 내에서 목적하는 분산 상태를 달성하기 위해서, 상기 바인더로는, 용해도 파라미터(solubility parameter)가 약 10 내지 30 MPa1/2 정도인 바인더를 사용하는 것이 필요할 수 있다. 상기 용해도 파라미터는 다른 예시에서 11 MPa1/2 이상, 12 MPa1/2 이상, 13 MPa1/2 이상, 14 MPa1/2 이상, 15 MPa1/2 이상 또는 16 MPa1/2 이상이거나, 28 MPa1/2 이하, 26 MPa1/2 이하, 24 MPa1/2 이하, 22 MPa1/2 이하, 20 MPa1/2 이하 또는 18 MPa1/2 이하일 수 있다. 이러한 바인더의 용해도 파라미터는 문헌(예를 들면, Yanlong Luo et al., 2017 등)을 통해 확인할 수 있다. 예를 들면, 상기 언급한 종류의 바인더에서 위와 같은 용해도 파라미털르 가지는 종류가 선택될 수 있다.
상기 바인더로는 입자상 바인더를 사용할 수 있으며, 예를 들면, 상기 언급한 범위의 평균 입경을 가지는 입자상 바인더를 사용하는 것이 목적하는 분산 상태의 달성에 유리할 수 있다.
바인더의 슬러리 내에서의 함량은 목적하는 분산 상태를 고려하여 제어될 수 있다. 예를 들면, 상기 바인더는 용매 대비 농도(=100×B/(B+S), B는 슬러리 내에서의 바인더의 중량(g)이고, S는 슬러리 내에서의 용매의 중량(g)이다.)가 0.1 내지 10% 정도가 되도록 슬러리에 포함될 수 있다. 상기 농도는 다른 예시에서 0.5% 이상, 1% 이상, 1.5% 이상, 2% 이상, 2.5% 이상, 3% 이상 또는 3.5% 이상이거나, 9% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하, 3% 이하 또는 2.5% 이하 정도일 수도 있다.
슬러리는 상기 성분 외에도 상기 전극 활물질을 포함할 수 있다. 전극 활물질로는 상기 기술한 종류 중에서 적정 종류가 선택될 수 있으며, 목적하는 분산 상태로의 기여를 고려하여 전술한 범위 평균 입경(D50 입경)을 가지고, 바인더의 평균 입경과의 비율이 상기 범위 내인 입자 형태의 전극 활물질을 사용할 수 있다.
슬러리 내에서의 전극 활물질의 비율은 상기 활물질층 내에서의 전극 활물질의 비율이 달성될 수 있도록 조절될 수 있다.
슬러리는 상기 성분 외에도 목적에 따라서 상기 기술한 도전재, 증점제 등을 포함하는 기타 성분을 포함할 수도 있다.
위와 같은 슬러리는 집전체의 표면상에 도포될 수 있다. 이 과정에서 도포 방식은 특별히 제한되지 않으며, 공지의 도포 방식, 예를 들면, 스핀 코팅, 콤마 코팅, 바 코팅 등의 방식을 적용할 수 있다.
상기 슬러리가 도포되는 집전체의 표면 특성이 제어될 수 있다.
예를 들면, 상기 슬러리가 도포되는 집전체의 표면은 수접촉각이 50도 이상일 수 있다. 상기 수접촉각은 다른 예시에서 100도 이하, 95도 이하, 90도 이하, 85도 이하, 80도 이하 또는 75도 이하 정도의 범위 내 및/또는 55도 이상, 60도 이상, 65도 이상, 70도 이상, 75도 이상, 85도 이상 또는 90도 이상 정도의 범위 내에서 추가로 제어될 수 있다.
예를 들면, 상기 슬러리가 도포되는 집전체의 표면은 DM(diiodomethane) 접촉각이 30도 이상일 수 있다. 상기 DM 접촉각은 다른 예시에서 70도 이하, 65도 이하, 60도 이하, 55도 이하, 50도 이하 또는 45도 이하 정도의 범위 내 및/또는 35도 이상, 40도 이상, 45도 이상, 50도 이상, 55도 이상 또는 60도 이상 정도의 범위 내에서 추가로 제어될 수 있다.
예를 들면, 상기 슬러리가 도포되는 집전체의 표면은 표면 에너지가 65 mN/m 이하일 수 있다. 상기 표면 에너지는 다른 예시에서 60mN/m 이하, 55 mN/m 이하, 50 mN/m 이하, 45 mN/m 이하, 40 mN/m 이하, 35 mN/m 이하 또는 30 mN/m 이하 정도이거나, 25 mN/m 이상, 27 mN/m 이상 또는 29 mN/m 이상 정도일 수도 있다.
예를 들면, 상기 슬러리가 도포되는 집전체의 표면은 분산 에너지(disperse energy)가 45 mN/m 미만일 수 있다. 상기 분산 에너지는 다른 예시에서 40mN/m 이하, 35 mN/m 이하 또는 30 mN/m 이하 정도이거나, 23 mN/m 이상, 25 mN/m 이상 또는 27 mN/m 이상 정도일 수도 있다.
예를 들면, 상기 슬러리가 도포되는 집전체의 표면은 극성 에너지(polar energy)가 20 mN/m 이하일 수 있다. 상기 분산 에너지는 다른 예시에서 18 mN/m 이하, 16 mN/m 이하, 14 mN/m 이하, 12 mN/m 이하, 10 mN/m 이하, 8 mN/m 이하, 6 mN/m 이하, 4 mN/m 이하, 2 mN/m 이하 또는 1.5 mN/m 이하이거나, 0.5 mN/m 이상, 1 mN/m 이상, 1.5 mN/m 이상, 2 mN/m 이상, 2.5 mN/m 이상, 3 mN/m 이상, 3.5 mN/m 이상, 4 mN/m 이상, 4.5 mN/m 이상, 5 mN/m 이상, 5.5 mN/m 이상, 6 mN/m 이상, 6.5 mN/m 이상 또는 7mN/m 이상 정도일 수도 있다.
상기에서 표면 에너지, 분산 에너지 및 극성 에너지는, 수접촉각 및 DM 접촉각을 기반으로 OWRK(Owens-Wendt-Rabel-Kaelble) 방식으로 얻을 수 있는 물리량이다.
상기한 표면 특성 중 적어도 하나, 혹은 2개 이상 혹은 모두를 만족하는 집전체 표면에 상기 언급한 슬러리를 적용하는 것에 의해 목적하는 활물질층을 얻을 수 있다.
상기 기술한 집전체 중에서 상기 수접촉각 등을 나타내는 집전체가 선택될 수 있지만, 통상 집전체는 상기 기술한 특성을 만족시키지 않는 경우가 있기 때문에 목적하는 표면 특성의 만족을 위해 표면 처리가 수행될 수도 있다.
예를 들면, 상기 집전체 표면상에 전술한 중간층을 형성하거나, 기타 플라즈마 처리 등 공지된 처리(특히 소수화 처리)를 적용하여 상기 표면 특성을 만족시킬 수 있다.
상기 중간층은, 예를 들면, 전술한 실란 화합물을 용매에 분산시킨 코팅액을 사용한 코팅, 어닐링, 세정 및 건조 공정 등을 통해 제조할 수 있다. 또한, 집전체의 표면 특성을 제어하는 플라즈마 처리 등의 처리 방식도 다양하게 알려져 있다.
상기 표면 특성이 조절된 집전체 표면에 슬러리를 도포한 후에 슬러리의 건조 공정이 수행될 수 있다. 건조 공정이 수행되는 조건은 특별히 제한되는 것은 아니지만, 목적하는 바인더의 위치 등을 고려할 때에 건조 온도를 약 150℃ 내지 400℃의 범위 내로 조절하는 것이 적절할 수 있다. 상기 건조 온도는 다른 예시에서 약 170℃ 이상, 190℃ 이상, 210℃ 이상 또는 225℃ 이상 정도이거나, 380℃ 이하, 360℃ 이하, 340℃ 이하, 320℃ 이하, 300℃ 이하, 280℃ 이하, 260℃ 이하 또는 240℃ 이하 정도일 수도 있다.
건조 시간도 목적하는 바인더의 위치 등을 고려한 분산 상태를 고려하여 제어될 수 있으며, 예를 들면, 약 10초 내지 200초의 범위 내에서 조절될 수 있다. 상기 시간은 다른 예시에서 20초 이상, 30초 이상, 40초 이상, 50초 이상, 60초 이상, 70초 이상, 80초 이상 또는 85초 이상의 범위 내 및/또는 190초 이하, 180초 이하, 170초 이하, 160초 이하, 150초 이하, 140초 이하, 130초 이하, 120초 이하, 110초 이하, 100초 이하 또는 95초 이하의 범위 내에서 추가로 제어될 수도 있다.
건조 공정에 이어서 압연 공정이 수행될 수 있다. 이러한 경우 압연 조건(예를 들면, 압연 시의 압력 등)에 의해서도 바인더의 위치 등이 조절될 수 있다.
예를 들면, 상기 압연은 압연된 슬러리(활물질층)의 공극률이 약 35% 이하 정도가 되도록 수행될 수 있다. 이와 같은 공극률을 가지도록 수행되는 압연 시에 가해지는 압력 등에 의해서 목적하는 네트워크 영역 및 블랭크 영역을 효과적으로 형성할 수 있다. 상기 공극률은, 다른 예시에서 33% 이하, 31% 이하, 29% 이하 또는 27% 이하의 범위 내 및/또는 5% 이상, 7% 이상, 9% 이상, 11% 이상, 13% 이상, 15% 이상, 17% 이상, 19% 이상, 21% 이상, 23% 이상 또는 25% 이상의 범위 내에서 추가로 조절될 수도 있다.
상기 압연된 슬러리(즉, 활물질층)의 두께는 대략 전술한 활물질층의 두께 범위 내이다.
본 출원의 전극의 제조 공정 중에는 상기 슬러리 코팅, 건조 및 압연 외에도 필요한 추가 공정(예를 들면, 재단 공정 등)이 수행될 수도 있다.
본 출원은 또한 상기와 같은 전극을 포함하는 전기 화학 소자, 예를 들면, 이차 전지에 대한 것이다.
상기 전지 화학 소자는 상기 전극을 양극 및/또는 음극으로 포함할 수 있다. 본 출원의 전극이 음극 및/또는 양극으로 사용되는 한 상기 전기 화학 소자의 다른 구성이나 제조 방법은 특별히 제한되지 않고, 공지의 방식이 적용될 수 있다.
본 출원은, 집전체와 활물질층을 포함하는 전극으로서, 상기 활물질층 내의 바인더 함량 대비 높은 수준의 입자간 접착력과 활물질층과 집전체간의 접착력을 확보할 수 있는 전극을 제공할 수 있다.
도 1은 본 출원의 예시적인 전극의 단면도이다.
도 2는, 종래 기술에서의 활물질층의 형성 상태의 개념도이다.
도 3은 표준 박리 시험이 수행되는 상태에 대한 개념도이다.
도 4 내지 9는 각각 실시예 1 내지 6의 집전체 표면의 FE-SEM 이미지이다.
도 10 내지 12는 각각 비교예 1 내지 3의 집전체 표면의 FE-SEM 이미지이다.
[부호의 설명]
100: 집전체
200: 활물질층
300: 스카치 매직 테이프
1001: 전극 활물질
2001: 바인더
이하, 실시예 및 비교예를 통해서 본 출원을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예로 제한되는 것은 아니다.
1. 접촉각 및 표면 에너지의 측정
접촉각 및 표면 에너지는 KRUSS社의 Drop shape analyzer 기기(제조사: KRUSS, 상품명: DSA100)를 사용하여 측정하였다. 3 μL의 물 또는 DM(Diiodomethane) 방울을 각각 약 3μl/sec의 속도로 떨어뜨려서 Tangent angle 측정 방식으로 각각의 접촉각을 측정하였다. 상기 물과 DM의 접촉각을 통해 OWRK(Owens-Wendt-Rabel-Kaelble) 방식으로 표면 에너지, 분산 에너지(Disperse Energy) 및 극성 에너지(Polar Energy)를 각각 계산하였다
2. 표준 박리 시험
표준 박리 시험은, 3M사의 스카치 매직 테이프 Cat. 810R을 사용하여 수행하였다. 실시예 또는 비교예에서 제조된 전극을 가로가 20mm 정도이고, 세로가 100mm 인 정도인 크기로 재단하여 샘플을 얻었다. 얻어진 샘플의 활물질층상에 상기 스카치 매직 테이프 Cat. 810R을 무게 1kg, 반경 50mm, 폭 40mm의 롤러를 이용하여 1회 왕복하여 밀어줌으로써 부착하였다. 이 때 상기 스카치 매직 테이프는 가로가 10mm 정도이고, 세로가 60mm 정도가 되도록 재단하여 사용하였으며, 도 3에 나타난 바와 같이 약 20mm 정도의 길이로 스카치 매직 테이프 및 전극 활물질층을 크로스되도록 부착하고, 돌출된 부위를 잡고 박리하였다. 이 때 박리 속도 및 박리 각도는 약 20mm/sec 정도의 속도 및 약 30도 정도의 각도로 하였다. 박리 시마다 새로운 스카치 테이프로 교체하여 사용하였다. 상기 과정을 스카치 매직 테이프의 표면에 활물질층의 성분이 묻어나오지 않을때까지 반복하였다. 활물질층의 성분이 묻어나오는지 여부는 육안으로 관찰하여 미사용 테이프 대비 명암이 실질적으로 변하지 않은 경우에 활물질층의 성분이 묻어나오지 않는 것으로 판정하였다.
3. 바인더의 점유 면적 확인
표준 박리 시험 후에 집전체 표면에서 바인더의 점유 면적을 확인하였다. 표준 박리 시험 후에 집전체의 표면을 FE-SEM (Field Emission Scanning Electron Microscope) 기기(제조사: HITACHI, 상품명: S4800)로 500배의 배율로 촬영하여 이미지를 얻었다. Image J software(제조사: Image J)의 Trainable Weka Segmentation Plug-in을 사용하여 바인더가 존재하여 집전체의 표면이 관찰되지 않는 영역과 집전체의 표면이 관찰되는 영역을 구분하고, 이를 기반으로 바인더의 점유 면적을 측정하였다. 상기 과정에서 Brightness를 기준으로 하여 Brightness가 80 이하인 부분과 해당 부분으로 이루어진 폐곡선 내에 높이로 인해 밝기가 160 이상으로 나타는 부분을 충족하는 부분을 바인더가 점유하는 부분으로 하고, 그렇지 않은 영역은 바인더가 존재하지 않는 영역으로 지정하였다.
4. 입자상 바인더 및 전극 활물질의 평균 입경(D50 입경)의 확인
입자상 바인더 및 전극 활물질의 평균 입경(D50 입경)은 ISO-13320 규격에 준거하여 Marvern사의 MASTERSIZER3000 장비로 측정하였다. 측정 시 용매로는 물을 사용하였다. 상기 용매 내에 입자상 바인더 등을 분산시키고 레이저를 조사하면, 용매 내에 분산된 바인더 등에 의해 레이저가 산란되게 되고, 상기 산란되는 레이저의 강도와 방향성값은 입자의 크기에 따라서 달라지기 때문에, 이를 Mie 이론으로 분석하여 평균 직경을 구할 수 있다. 상기 분석을 통해 분산된 바인더 등과 동일한 부피를 가진 구의 직경으로의 환산을 통해 입도 분포의 체적 기준 누적 그래프를 구하고, 상기 그래프의 누적 50%에서의 입자 지름(메디안 직경)을 상기 평균 입경(D50 입경)으로 지정하였다.
4. 접착력의 측정
압연 후 전극을 폭이 20mm 정도가 되도록 재단하고, 공지의 활물질층 접착력 측정 방법에 따라 접착력을 측정하였다. 접착력 측정 시에 박리 각도는 90도로 하고, 박리 속도는 5 mm/sec 정도로 하였다. 측정 후에 peak이 안정화된 부분을 평균 내어 접착력으로 정의하였다.
실시예 1.
집전체로는 구리 호일(Cu foil)을 사용하였으며, 하기와 같은 방식으로 표면 특성을 조절한 후에 전극의 제조에 적용하였다.
우선 에틸 트리메톡시 실란을 용매인 에탄올에 1 중량% 정도의 농도로 분산시킨 코팅액을 바코터를 사용하여 상기 구리 호일의 표면에 약 10 μm 정도의 두께로 코팅하였다. 코팅 후에 100℃에서 5분 정도 어닐링하고, 에탄올로 세척한 후에 다시 100℃에서 5분 정도 건조하여 실란 코팅층을 형성하였다. 상기 실란 코팅층 표면의 표면 에너지는 약 29.7 mN/m 정도였고, 분산 에너지(Disperse Energy)는 약 28.3 mN/m였으며, 극성 에너지(Polar Energy)는 약 1.4 mN/m 정도였다. 또한, 수접촉각은 약 95도이고, DM 접촉각은 약 60.4도 정도였다.
슬러리는 물, SBR(Styrene-Butadiene rubber) 바인더, 증점제(CMC, carboxymethyl cellulose), 전극 활물질(1)(인조 흑연(GT), 평균 입경(D50 입경): 20 μm) 및 전극 활물질(2)(천연 흑연(PAS), 평균입경(D50 입경): 15 μm)을 51:2:0.6:37.1:9.3의 중량 비율 (물:SBR:CMC:활물질(1):활물질(2))로 혼합하여 제조하였다. 상기에서 물은 쌍극자 모멘트(dipole moment)가 약 1.84 D 정도인 용매이고, SBR 바인더는, 용해도 파라미터가 약 16.9 MPa1/2 정도인 바인더이다. 상기 SBR 바인더의 용해도 파라미터는 Yanlong Luo et al., 2017에 기재된 값이다. 또한, 상기 SBR 바인더는 입자상 바인더로서, 평균 입경(D50 입경, 메디안 입경)은, 약 150 nm 정도였다.
상기 슬러리를 갭 코팅의 방식으로 상기 실란 코팅층의 표면에 약 280 μm 정도의 두께로 도포하고, 약 230℃의 온도에서 약 90초 동안 건조하였다. 건조 후 180 μm 정도의 두께의 슬러리층을 얻고, 통상적인 전극용 압연기로 상기 건조된 슬러리층을 최종 두께가 약 110 μm 정도이고, 공극률이 약 26% 정도가 되도록 압연하여 활물질층을 형성하였다.
상기 활물질층의 공극률은 실제 밀도와 압연 후 밀도의 차이의 비율을 비교하는 방식으로 계산한 값이다. 또한, 슬러리의 조성을 고려할 때에 상기 전극의 활물질층 내의 SBR 바인더의 함량은 4 중량% 정도이고, 전극 활물질(GT+PAS)의 함량은 약 95 중량% 정도이다.
실시예 2.
집전체로는 구리 호일(Cu foil)을 사용하였으며, 하기와 같은 방식으로 표면 특성을 조절한 후에 전극의 제조에 적용하였다.
알릴(allyl) 트리메톡시 실란을 용매인 에탄올에 1 중량% 정도의 농도로 분산시킨 코팅액을 바코터를 사용하여 상기 구리 호일의 표면에 약 10 μm 정도의 두께로 코팅하였다. 코팅 후에 100℃에서 5분 정도 어닐링하고, 에탄올로 세척한 후에 다시 100℃에서 5분 정도 건조하여 실란 코팅층을 형성하였다. 상기 실란 코팅층 표면의 표면 에너지는 약 30.6 mN/m 정도였고, 분산 에너지(Disperse Energy)는 약 29.5 mN/m였으며, 극성 에너지(Polar Energy)는 약 1.1 mN/m 정도였다. 또한, 수접촉각은 약 95.8도이고, DM 접촉각은 약 58.4도 정도였다.
이어서 실시예 1에서 사용한 것과 동일한 슬러리를 갭 코팅의 방식으로 상기 실란 코팅층의 표면에 약 280 μm 정도의 두께로 도포하고, 약 230℃의 온도에서 약 90초 동안 건조하였다. 건조 후 180 μm 정도의 두께의 슬러리층을 얻고, 통상적인 전극용 압연기로 상기 건조된 슬러리층을 최종 두께가 약 110 μm 정도이고, 공극률이 약 26% 정도가 되도록 압연하여 활물질층을 형성하였다.
상기 활물질층의 공극률의 계산한 방식 및 전극의 활물질층 내의 SBR 바인더 및 전극 활물질의 함량은 실시예 1과 같다.
실시예 3.
집전체로는 구리 호일(Cu foil)을 사용하였으며, 하기와 같은 방식으로 표면 특성을 조절한 후에 전극의 제조에 적용하였다.
3-아미노프로필 트리메톡시 실란을 용매인 에탄올에 1 중량% 정도의 농도로 분산시킨 코팅액을 바코터를 사용하여 상기 구리 호일의 표면에 약 10 μm 정도의 두께로 코팅하였다. 코팅 후에 100℃에서 5분 정도 어닐링하고, 에탄올로 세척한 후에 다시 100℃에서 5분 정도 건조하여 실란 코팅층을 형성하였다. 상기 실란 코팅층 표면의 표면 에너지는 약 28.3 mN/m 정도였고, 분산 에너지(Disperse Energy)는 약 27.1 mN/m였으며, 극성 에너지(Polar Energy)는 약 1.2 mN/m 정도였다. 또한, 수접촉각은 약 96.8도이고, DM 접촉각은 약 62.6도 정도였다.
이어서 실시예 1에서 사용한 것과 동일한 슬러리를 갭 코팅의 방식으로 상기 실란 코팅층의 표면에 약 280 μm 정도의 두께로 도포하고, 약 230℃의 온도에서 약 90초 동안 건조하였다. 건조 후 180 μm 정도의 두께의 슬러리층을 얻고, 통상적인 전극용 압연기로 상기 건조된 슬러리층을 최종 두께가 약 110 μm 정도이고, 공극률이 약 26% 정도가 되도록 압연하여 활물질층을 형성하였다.
상기 활물질층의 공극률의 계산한 방식 및 전극의 활물질층 내의 SBR 바인더 및 전극 활물질의 함량은 실시예 1과 같다.
실시예 4.
실시예 1과 같은 방식으로 표면 특성이 조절된 구리 호일(Cu foil)을 집전체로 사용하였다.
슬러리는 물, SBR(Styrene-Butadiene rubber) 바인더, 증점제(CMC, carboxymethyl cellulose), 전극 활물질(1)(인조 흑연(GT), 평균 입경(D50 입경): 20 μm) 및 전극 활물질(2)(천연 흑연(PAS), 평균입경(D50 입경): 15 μm)을 48.5:1:0.5:45:5의 중량 비율 (물:SBR:CMC:활물질(1):활물질(2))로 혼합하여 제조하였다. 상기에서 물은 쌍극자 모멘트(dipole moment)가 약 1.84 D 정도인 용매이고, SBR 바인더는, 용해도 파라미터가 약 16.9 MPa1/2 정도인 바인더이다. 상기 SBR 바인더의 용해도 파라미터는 Yanlong Luo et al., 2017에 기재된 값이다. 또한, 상기 SBR 바인더는 입자상 바인더로서, 평균 입경(D50 입경, 메디안 입경)은, 약 150 nm 정도였다.
상기 슬러리를 갭 코팅의 방식으로 상기 실란 코팅층의 표면에 약 280 μm 정도의 두께로 도포하고, 약 230℃의 온도에서 약 90초 동안 건조하였다. 건조 후 180 μm 정도의 두께의 슬러리층을 얻고, 통상적인 전극용 압연기로 상기 건조된 슬러리층을 최종 두께가 약 110 μm 정도이고, 공극률이 약 26% 정도가 되도록 압연하여 활물질층을 형성하였다.
상기 활물질층의 공극률을 계산하는 방식은 실시예 1과 같다. 또한, 슬러리의 조성을 고려할 때에 상기 전극의 활물질층 내의 SBR 바인더의 함량은 2 중량% 정도이고, 전극 활물질의 함량은 약 97 중량% 정도이다.
실시예 5.
실시예 2와 같은 방식으로 표면 특성이 조절된 구리 호일(Cu foil)을 집전체로 사용하였다.
이어서 실시예 4에서 사용한 것과 동일한 슬러리를 갭 코팅의 방식으로 상기 실란 코팅층의 표면에 약 280 μm 정도의 두께로 도포하고, 약 230℃의 온도에서 약 90초 동안 건조하였다. 건조 후 180 μm 정도의 두께의 슬러리층을 얻고, 통상적인 전극용 압연기로 상기 건조된 슬러리층을 최종 두께가 약 110 μm 정도이고, 공극률이 약 26% 정도가 되도록 압연하여 활물질층을 형성하였다.
상기 활물질층의 공극률의 계산한 방식 및 전극의 활물질층 내의 SBR 바인더 및 전극 활물질의 함량은 실시예 4와 같다.
실시예 6.
실시예 3과 같은 방식으로 표면 특성이 조절된 구리 호일(Cu foil)을 집전체로 사용하였다.
이어서 실시예 4에서 사용한 것과 동일한 슬러리를 갭 코팅의 방식으로 상기 실란 코팅층의 표면에 약 280 μm 정도의 두께로 도포하고, 약 230℃의 온도에서 약 90초 동안 건조하였다. 건조 후 180 μm 정도의 두께의 슬러리층을 얻고, 통상적인 전극용 압연기로 상기 건조된 슬러리층을 최종 두께가 약 110 μm 정도이고, 공극률이 약 26% 정도가 되도록 압연하여 활물질층을 형성하였다.
상기 활물질층의 공극률의 계산한 방식 및 전극의 활물질층 내의 SBR 바인더 및 전극 활물질의 함량은 실시예 4와 같다.
비교예 1.
집전체인 구리 호일(Cu foil)에 별도의 처리를 하지 않고, 바로 전극의 제조에 적용하였다. 상기 미처리 구리 호일 표면의 표면 에너지는 약 71.2 mN/m 정도였고, 분산 에너지(Disperse Energy)는 약 45 mN/m였으며, 극성 에너지(Polar Energy)는 약 26.2 mN/m 정도였다.
이어서 실시예 1에서 사용한 것과 동일한 슬러리를 갭 코팅의 방식으로 상기 구리 호일층의 표면에 약 280 μm 정도의 두께로 도포하고, 약 230℃의 온도에서 약 90초 동안 건조하였다. 건조 후 180 μm 정도의 두께의 슬러리층을 얻고, 통상적인 전극용 압연기로 상기 건조된 슬러리층을 최종 두께가 약 110 μm 정도이고, 공극률이 약 26% 정도가 되도록 압연하여 활물질층을 형성하였다.
상기 활물질층의 공극률의 계산한 방식 및 전극의 활물질층 내의 SBR 바인더 및 전극 활물질의 함량은 실시예 1과 같다.
비교예 2.
집전체로는 구리 호일(Cu foil)을 사용하였으며, 하기와 같은 방식으로 표면 특성을 조절한 후에 전극의 제조에 적용하였다.
도데실 트리메톡시 실란을 용매인 에탄올에 1 중량% 정도의 농도로 분산시킨 코팅액을 바코터를 사용하여 상기 구리 호일의 표면에 약 10 μm 정도의 두께로 코팅하였다. 코팅 후에 100℃에서 5분 정도 어닐링하고, 에탄올로 세척한 후에 다시 100℃에서 5분 정도 건조하여 실란 코팅층을 형성하였다. 상기 실란 코팅층 표면의 표면 에너지는 약 27.7 mN/m 정도였고, 분산 에너지(Disperse Energy)는 약 27.4 mN/m였으며, 극성 에너지(Polar Energy)는 약 0.3 mN/m 정도였다. 또한, 수접촉각은 약 102.6도이고, DM 접촉각은 약 62.2도 정도였다.
실시예 1에서 사용한 것과 동일한 슬러리를 갭 코팅의 방식으로 상기 실란 코팅층의 표면에 약 280 μm 정도의 두께로 도포하고, 약 230℃의 온도에서 약 90초 동안 건조하였다. 건조 후 180 μm 정도의 두께의 슬러리층을 얻고, 통상적인 전극용 압연기로 상기 건조된 슬러리층을 최종 두께가 약 110 μm 정도이고, 공극률이 약 26% 정도가 되도록 압연하여 활물질층을 형성하였다.
상기 활물질층의 공극률의 계산한 방식 및 전극의 활물질층 내의 SBR 바인더 및 전극 활물질의 함량은 실시예 1과 같다.
비교예 3.
집전체인 구리 호일(Cu foil)에 별도의 처리를 하지 않고, 바로 전극의 제조에 적용하였다. 상기 미처리 구리 호일 표면의 표면 에너지는 약 71.2 mN/m 정도였고, 분산 에너지(Disperse Energy)는 약 45 mN/m였으며, 극성 에너지(Polar Energy)는 약 26.2 mN/m 정도였다.
이어서 실시예 4에서 사용한 것과 동일한 슬러리를 갭 코팅의 방식으로 상기 구리 호일층의 표면에 약 280 μm 정도의 두께로 도포하고, 약 230℃의 온도에서 약 90초 동안 건조하였다. 건조 후 180 μm 정도의 두께의 슬러리층을 얻고, 통상적인 전극용 압연기로 상기 건조된 슬러리층을 최종 두께가 약 110 μm 정도이고, 공극률이 약 26% 정도가 되도록 압연하여 활물질층을 형성하였다.
상기 활물질층의 공극률의 계산한 방식 및 전극의 활물질층 내의 SBR 바인더 및 전극 활물질의 함량은 실시예 4와 같다.
시험예 1. 바인더 점유 면적의 계산
실시예 및 비교예의 전극에 대해서 상기 기술된 방식으로 표준 박리 시험을 수행하고, 바인더의 점유 면적을 확인하였다. 도 4 내지 9는 각각 실시예 1 내지 6의 FE-SEM 이미지이고, 도 10 내지 12는 각각 비교예 1 내지 3의 FE-SEM 이미지이다.
그 결과를 하기 표 1에 기재하였다.
실시예 비교예
1 2 3 4 5 6 1 2 3
바인더 점유 면적 비율(A)(%) 85.9 89.3 93.6 52.6 59 59.7 55.3 53.7 34.5
활물질층 내 바인더 함량(W)(중량%) 4.1 4.1 4.1 2.3 2.3 2.3 4.1 4.1 2.3
A/W 21 21.8 22.8 22.9 25.7 26 13.5 13.1 15
표 1로부터 실시예의 경우 활물질층 내 바인더 함량 대비 높은 바인더의 점유 면적 비율이 확보되는 것을 확인할 수 있다.
시험예 2. 접착력의 확인
실시예 및 비교예에 대한 접착력 평가 결과는 하기 표 2와 같다.
실시예 비교예
1 2 3 4 5 6 1 2 3
접착력(gf/20mm) 44 41.4 40.8 15.3 21.8 17.3 38.1 39.5 14.9
표 2로부터 실시예의 경우 활물질층 내 바인더 함량 대비 높은 접착력이 확보되는 것을 확인할 수 있다.

Claims (14)

  1. 집전체; 및 상기 집전체의 일면에 존재하고, 전극 활물질 및 바인더를 포함하는 활물질층을 포함하며,
    하기 표준 박리 시험 후 하기 수식 1을 만족하는 전극:
    표준 박리 시험: 상기 활물질층상에 스카치 매직 테이프 Cat. 810R을 부착 후 떼어내는 것을 상기 스카치 매직 테이프 Cat. 810R상에 상기 활물질층의 성분이 확인되지 않을 때까지 반복:
    [수식 1]
    17 ≤ A/W
    수식 1에서 A는 상기 집전체 표면의 전체 면적(A1)에 대한 상기 집전체 표면에서 상기 바인더가 점유하는 면적(A2)의 백분율(100×A2/A1)이고, W는 상기 활물질층 내의 바인더 함량 비율(wt%)이며, A/W의 단위는 wt-1이다.
  2. 제 1 항에 있어서, 집전체가 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성탄소, 구리, 카본, 니켈, 티탄, 은으로 표면 처리된 스테인리스 스틸 및 알루미늄-카드뮴 합금으로 이루어진 군에서 선택되는 하나 이상으로 되는 필름, 시트 또는 호일인 전극.
  3. 제 1 항에 있어서, 바인더는, PVDF(Poly(vinylidene fluoride)), PVA(poly(vinyl alcohol)), 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, SBR(Styrene-Butadiene rubber) 및 불소 고무로 이루어진 군에서 선택된 하나 이상을 포함하는 전극.
  4. 제 1 항에 있어서, 바인더가 입자상 바인더인 전극.
  5. 제 4 항에 있어서, 전극 활물질의 평균 입경(D1)과 바인더의 평균 입경(D2)의 비율(D1/D2)이 10 내지 1000의 범위 내에 있는 전극.
  6. 제 5 항에 있어서, 바인더는 평균 입경이 50 nm 내지 500 nm의 범위 내에 있는 전극.
  7. 제 1 항에 있어서, 활물질층 내의 바인더의 함량이 0.5 내지 10 중량%의 범위 내에 있는 전극.
  8. 제 1 항에 있어서, 전극 활물질은, LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2, LiNi1-x-yzCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z <0.5, 0 < x+y+z ≤ 1을 만족), 천연 흑연, 인조 흑연, 탄소질 재료, 리튬 함유 티타늄 복합 산화물, Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합로 이루어진 군에서 선택된 하나 이상을 포함하는 전극.
  9. 제 1 항에 있어서, 전극 활물질은 바인더 100 중량부 대비 1000 내지 10000 중량부로 포함되는 전극.
  10. 제 1 항에 있어서, 활물질층은 두께가 10 μm 내지 500 μm의 범위 내인 전극.
  11. 제 1 항에 있어서, 활물질층은, 공극률이 35% 이하인 전극.
  12. 제 1 항에 있어서, 활물질층과 집전체의 사이에 하기 화학식 1의 화합물을 포함하는 중간층이 존재하는 전극:
    [화학식 1]
    Figure PCTKR2021013155-appb-img-000002
    화학식 1에서 R1은 탄소수 6 이하의 알킬기 또는 탄소수 6 이하의 알케닐기이고, 상기 R1의 알킬기는 임의로 하나 이상의 아미노기로 치환되어 있을 수 있으며, R2 내지 R4는 각각 독립적으로 탄소수 1 내지 4의 알킬기이다.
  13. 제 1 항의 전극을 음극 또는 양극으로 포함하는 전기 화학 소자.
  14. 제 1 항의 전극을 음극 또는 양극으로 포함하는 이차 전지.
PCT/KR2021/013155 2020-09-28 2021-09-27 전극 WO2022065959A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/024,531 US20230317955A1 (en) 2020-09-28 2021-09-27 Electrode
CN202180066634.5A CN116325235A (zh) 2020-09-28 2021-09-27 电极
EP21872987.9A EP4191699A1 (en) 2020-09-28 2021-09-27 Electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200125979A KR20220042758A (ko) 2020-09-28 2020-09-28 전극
KR10-2020-0125979 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065959A1 true WO2022065959A1 (ko) 2022-03-31

Family

ID=80846798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013155 WO2022065959A1 (ko) 2020-09-28 2021-09-27 전극

Country Status (5)

Country Link
US (1) US20230317955A1 (ko)
EP (1) EP4191699A1 (ko)
KR (1) KR20220042758A (ko)
CN (1) CN116325235A (ko)
WO (1) WO2022065959A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729118B1 (ko) * 2005-05-17 2007-06-14 주식회사 엘지화학 다중 중첩 전기화학 셀을 포함하는 전기 화학 소자용바인더
US20120244435A1 (en) * 2009-12-24 2012-09-27 Kabushiki Kaisha Toyota Jidoshokki Negative electrode for lithium-ion secondary battery
KR20140051278A (ko) * 2011-08-04 2014-04-30 미쓰이금속광업주식회사 리튬 이온 이차 전지의 부극재 제조 방법 및 리튬 이온 이차 전지용 부극재
JP5522487B2 (ja) * 2009-07-31 2014-06-18 トヨタ自動車株式会社 電池用電極の製造方法
CN106972175A (zh) * 2016-01-14 2017-07-21 长春石油化学股份有限公司 表面处理铜箔

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729118B1 (ko) * 2005-05-17 2007-06-14 주식회사 엘지화학 다중 중첩 전기화학 셀을 포함하는 전기 화학 소자용바인더
JP5522487B2 (ja) * 2009-07-31 2014-06-18 トヨタ自動車株式会社 電池用電極の製造方法
US20120244435A1 (en) * 2009-12-24 2012-09-27 Kabushiki Kaisha Toyota Jidoshokki Negative electrode for lithium-ion secondary battery
KR20140051278A (ko) * 2011-08-04 2014-04-30 미쓰이금속광업주식회사 리튬 이온 이차 전지의 부극재 제조 방법 및 리튬 이온 이차 전지용 부극재
CN106972175A (zh) * 2016-01-14 2017-07-21 长春石油化学股份有限公司 表面处理铜箔

Also Published As

Publication number Publication date
US20230317955A1 (en) 2023-10-05
KR20220042758A (ko) 2022-04-05
CN116325235A (zh) 2023-06-23
EP4191699A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2021034145A1 (ko) 탄소나노튜브 분산액, 이를 포함하는 음극 슬러리, 음극 및 리튬 이차 전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2022080628A1 (ko) 전고체이차전지 및 그 제조방법
WO2016163705A1 (ko) 전극 및 이의 제조방법
WO2022086247A1 (ko) 이차전지용 건식 전극을 제조하기 위한 전극용 분체, 이의 제조방법, 이를 사용한 건식 전극의 제조방법, 건식 전극, 이를 포함하는 이차전지, 에너지 저장장치, 및 건식 전극 제조장치
WO2022119359A1 (ko) 리튬 금속 전지용 음극 집전체, 그 제조 방법 및 이를 포함하는 리튬 금속 전지
WO2017171372A1 (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차전지
WO2022065958A1 (ko) 전극
WO2022164244A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2022065959A1 (ko) 전극
WO2022164280A1 (ko) 전극
WO2023132709A1 (ko) 고체 이차 전지용 양극 및 이를 포함하는 고체 이차 전지
WO2022164284A1 (ko) 전극
WO2022164287A1 (ko) 전극
WO2022191645A1 (ko) 전극 및 이의 제조방법
WO2022010211A1 (ko) 전고체전지 및 이의 제조방법
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2018169336A1 (ko) 전극 및 이를 포함하는 리튬 이차전지
WO2021096094A1 (ko) 그래핀 나노시트의 제조방법
WO2024096517A1 (ko) 고체 전해질, 이의 제조방법 및 이를 포함하는 전고체 전지
WO2023027364A1 (ko) 비수계 용매 치환된 수계 바인더를 포함하는 절연 조성물을 이용한 이차전지용 전극 제조방법
WO2022197125A1 (ko) 이차 전지용 양극 슬러리 조성물, 이를 이용하여 제조된 양극 및 상기 양극을 포함하는 이차 전지
WO2023106664A1 (en) All soilid-state battery
WO2023204648A1 (ko) 전극용 필름, 이를 포함하는 전극, 이차전지, 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021872987

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE