WO2020203452A1 - 粉砕装置 - Google Patents

粉砕装置 Download PDF

Info

Publication number
WO2020203452A1
WO2020203452A1 PCT/JP2020/012949 JP2020012949W WO2020203452A1 WO 2020203452 A1 WO2020203452 A1 WO 2020203452A1 JP 2020012949 W JP2020012949 W JP 2020012949W WO 2020203452 A1 WO2020203452 A1 WO 2020203452A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
crushing
heat insulating
mortar
unit
Prior art date
Application number
PCT/JP2020/012949
Other languages
English (en)
French (fr)
Inventor
勝 三角
尚泉 杉本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN202080013623.6A priority Critical patent/CN113597342B/zh
Priority to JP2021511496A priority patent/JPWO2020203452A1/ja
Publication of WO2020203452A1 publication Critical patent/WO2020203452A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G1/00Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/04Apparatus specially adapted for manufacture or treatment of cocoa or cocoa products
    • A23G1/16Circular conches, i.e. rollers being displaced on a closed or circular rolling circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/02Feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating

Definitions

  • One aspect of the present invention relates to a crushing device for crushing a solid raw material such as cacao beans.
  • the present application claims priority based on Japanese Patent Application No. 2019-068932 filed in Japan on March 29, 2019, the contents of which are incorporated herein by reference.
  • an electric powder grinder disclosed in Patent Document 1 As a crushing device of this type, for example, an electric powder grinder disclosed in Patent Document 1 is known.
  • the material to be crushed is charged and crushed by a charging unit having an opening to be sent to the next stage, a coarse powder grinding unit that roughly crushes the material to be crushed from the introduction adjustment unit, and a coarse powder grinding unit. It is provided with a fine powder grinding unit that further finely crushes the material to be crushed, and an adjusting unit that adjusts the amount of the material to be crushed into the fine powder grinding unit.
  • the temperature of the introduction region of the object to be crushed in the pulverized region where the object to be crushed is set to be lower than the temperature at which the oil contained in the object to be crushed is extracted, and the temperature of the discharge region is set.
  • cocoa beans which are the objects to be crushed, are easily crushed when they are warmed to some extent.
  • a desired temperature a temperature at which crushing can be performed efficiently
  • Patent Document 1 As described above, in the pulverized region, the oil content of the pulverized object is lower than the extraction temperature in the initial pulverization stage (introduction region) of the object to be pulverized. It cannot be said that the object to be crushed has been heated to a temperature at which crushing can be performed efficiently. Therefore, the technique disclosed in Patent Document 1 has a problem that the object to be pulverized cannot be optimally pulverized.
  • One aspect of the present invention is to realize a crushing device capable of optimally crushing a crushed object and preventing sticking of the crushed object to be crushed.
  • the crushing device has a crushing unit driven by rotation, and has a crushing unit for crushing a solid raw material in the crushing unit and the crushing unit inside.
  • the temperature control container to be accommodated, the temperature detection unit that detects the temperature inside the temperature control container, the heating unit provided in the temperature control container, and the temperature inside the temperature control container detected by the temperature detection unit. It is characterized by including a control unit that controls the operation of the heating unit so as to maintain the temperature at a predetermined temperature.
  • the crushed material can be optimally crushed, and the crushed material to be crushed can be prevented from sticking.
  • FIG. 1 It is a perspective view of the crushing apparatus which concerns on Embodiment 1 of this invention. It is an exploded perspective view of the crushing apparatus shown in FIG. It is a perspective view of the crushing unit shown in FIG. It is an exploded perspective view of the crushing unit shown in FIG. It is a perspective view which includes the vertical cross section of the crushing unit shown in FIG. It is a front view of the vertical cross-sectional portion of the crushing unit shown in FIG. It is a block diagram of the control part which controls the temperature control device provided in the crushing device shown in FIG. (A) and (b) are diagrams showing a schematic configuration of a temperature control device included in the crushing device shown in FIG. It is a perspective view of the crushing apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 It is an exploded perspective view of the crushing apparatus shown in FIG. It is a perspective view of the crushing unit shown in FIG. It is an exploded perspective view of the crushing unit shown in FIG. It is a perspective view which includes the vertical cross section of the crushing unit shown
  • FIG. 5 is a block diagram of a control unit that controls a temperature control device included in the crushing device shown in FIG. It is a figure which shows the schematic structure of the temperature control device included in the crushing device shown in FIG. (A) and (b) are diagrams showing the arrangement positions of the intake port and the intake port of the temperature control device shown in FIG.
  • the crushing method in which the particle size of the crushed material is adjusted by the clearance between the rotating grindstone like a millstone and the fixed grindstone, has the same basic idea even if the material is changed from natural stone to ceramic or metal. is there. This is the same in both dry crushing and wet crushing, which is a typical example in which crushing of buckwheat seeds in buckwheat production is performed by dry method and crushing of soybean in tofu production is performed by wet method. .. Milling by the stone mill method is used in various fields, but it is carried out by adjusting the clearance between the rotary grindstone part and the fixed grindstone part so that the desired particle size can be obtained by one-step crushing regardless of whether it is dry or wet. Has been done. Further, even in a crusher made of a metal such as stainless steel, the clearance between the rotary blade and the fixed blade is designed and implemented so that the crushed product of the desired size can be obtained by one-step crushing. ..
  • cacao nibs which is a coarsely crushed roasted cacao bean
  • the stone mill method may be used, and the clearance between the stone mills is adjusted step by step. Grinding should be repeated multiple times with a gradual reduction in clearance until the desired smooth chocolate is obtained.
  • the size of a single grain of cacao, which is the raw material is relatively large and disadvantageous for clearance. That is, since cacao is gradually finely crushed, it takes time to obtain the desired particles.
  • cacao For crushing cacao, wet crushing is adopted by utilizing the fact that the melting point of cacao is about 35 ° C and it becomes a liquid (paste) due to the frictional heat between the mortar and cacao nibs during crushing cacao nibs.
  • the temperatures of cacao and mortar during crushing are determined by the circumstances and have not been controlled in the past. If the temperature is low, the cacao cannot flow in the mortar and sticks to the groove, cannot be crushed, and the load on the motor increases. On the other hand, if the temperature is too high, the cocoa may be scorched, degrading the quality of the cocoa.
  • FIG. 1 is a perspective view of a crushing device 1 including a crushing unit 11 as the crusher of the present embodiment.
  • FIG. 2 is an exploded perspective view of the crushing apparatus 1 shown in FIG.
  • FIG. 3 is a perspective view of the crushing unit 11 shown in FIG.
  • FIG. 4 is an exploded perspective view of the crushing unit 11 shown in FIG.
  • FIG. 5 is a perspective view including a vertical cross section of the crushing unit 11 shown in FIG.
  • FIG. 6 is a front view of a vertical cross-sectional portion of the crushing unit 11 shown in FIG.
  • the crushing unit 11 is preferably made of a material having good thermal conductivity.
  • the crushing device 1 includes a crushing unit 11, a heat insulating container 12, a hopper 13, a motor 14, and a cocoa mass take-out lever 15.
  • the crushing unit 11 is housed inside the heat insulating container (temperature control container) 12, and the hopper 13 is mounted on the crushing unit 11.
  • the hopper 13 accommodates a solid material.
  • the case where the solid raw material is cacao nibs will be described.
  • the motor 14 is provided below the crushing device 1 and rotates the crushing portion 26 of the crushing unit 11.
  • the cocoa mass take-out lever 15 is located on the side of the crushing device 1. By rotating the cacao mass take-out lever 15 downward, the cacao mass (cacao powder) of the cacao nibs crushed by the crushing unit 11 can be taken out from the take-out port 16.
  • the crushing unit 11 is detachably fitted to the heat insulating container 12 and the hopper 13 is detachably fitted to the crushing unit 11 for cleaning. Further, the crushing unit 11 is provided with a handle (not shown), and the crushing unit 11 can be attached / detached by using this handle.
  • the crushing unit 11 has a housing portion 21 at the upper portion and a collection / transport portion 22 at the lower portion.
  • the housing portion 21 has a handle 23 used when the crushing unit 11 is taken in and out of the inside of the heat insulating container 12.
  • a hopper receiving portion 24, an introduction portion 25, and a crushing portion 26 are provided from top to bottom.
  • the hopper receiving portion 24 receives the hopper 13 arranged on the crushing unit 11.
  • the hopper receiving portion 24 has an opening at the lower end portion.
  • the hopper 13 houses the cacao nibs, and the introduction unit 25 receives the cacao nibs supplied from the hopper 13 via the hopper receiving unit 24.
  • the introduction portion 25 has an opening 25a at the lower end portion.
  • the crushing portion 26 has a conical mortar 27 in the central portion and a flat mortar 28 around the conical mortar 27.
  • the conical mortar 27 includes an inner mortar 29 which is a rotary mortar and an outer mortar 30 which is a fixed mortar.
  • the outer mortar 30 has a cylindrical shape, and the inner mortar 29 is inserted into the outer mortar 30 and has a shape in which the outer diameter gradually decreases from the lower part to the upper part.
  • the inside of the outer mortar 30 at the upper end of the conical mortar 27 is the inlet portion 33 of the cacao nibs.
  • the conical mortar 27 grinds the cacao nibs introduced from the introduction unit 25 into coarse cacao mass.
  • the flat mortar 28 is composed of a lower mortar 31 which is a rotary mortar and an upper mortar 32 which is a fixed mortar.
  • the lower mortar 31 is fixed to the outer peripheral portion of the inner mortar 29 and is integrated with the inner mortar 29.
  • the upper mortar 32 is fixed to the outer peripheral portion of the outer mortar 30 and is integrated with the outer mortar 30.
  • a central shaft 37 is provided at the center of the inner mortar 29 and the lower mortar 31.
  • the flat mortar 28 grinds the coarse cocoa mass formed by the conical mortar 27 into fine cocoa mass.
  • the recovery transport unit 22 has a cocoa mass receiving portion 41 including a material receiving portion 34 that directly receives the cocoa mass at the upper portion, has a transport passage 35 connected to the material receiving portion 34, and is driven and transmitted under the material receiving portion 34. It has a part 36.
  • a crushing portion 26 is arranged on the material receiving portion 34, and the material receiving portion 34 receives the cocoa mass formed by the crushing portion 26.
  • the transport passage 35 transports the cocoa mass received by the material receiving unit 34 downward.
  • the drive transmission unit 36 transmits the driving force of the motor 14 to the central shaft 37 of the crushing unit 26 mounted on the material receiving unit 34, and rotates the crushing unit 26 (inner mill 29 and lower mill 31).
  • FIGS. 4 and 5 show a state in which the adhesion prevention / stirring member 44 is provided on the inner mortar 29 of the conical mortar 27.
  • FIG. 7 is a block diagram of a control unit that controls a temperature control device included in the crushing device 1 shown in FIG. 8 (a) and 8 (b) are views showing a schematic configuration of a temperature control device included in the crushing device 1 shown in FIG.
  • the temperature control device includes a heat insulating container 12, a first fan (circulation fan) 17a for circulating air in the heat insulating container 12, and a second fan (cooling) for taking in outside air into the heat insulating container 12.
  • a temperature sensor (temperature detection unit) 20 for detecting the temperature inside the container 12, a first fan 17a, a second fan 17b, a first heater 18a, a second heater 18b, and a switch according to the detection results of the temperature sensor 20.
  • a control unit 51 that controls the drive of 19 is included. As described above, since the crushing unit 11 is removable from the crushing device 1, the first fan 17a, the second fan 17b, the first heater 18a, and the second heater 18b are provided in addition to the crushing unit 11. Has been done.
  • the heat insulating container 12 is a substantially cylindrical container that houses the crushing unit 11 inside, and forms a space around the housed crushing unit 11. By warming or cooling the air existing in this space, the temperature in the space is maintained at a predetermined temperature. The details of this predetermined temperature will be described later.
  • the cylindrical portion of the heat insulating container 12 is made of glass, it is not limited to glass.
  • the crushing unit 11 can be attached to and detached from the heat insulating container, and it can be confirmed through the glass whether the crushing unit is fitted in the correct position (front and back, up and down) in the heat insulating container. Further, since it can be confirmed at a glance whether or not the crushing unit 11 is set in the crushing device 1, the hopper 13 is attached in a state where the crushing unit 11 is forgotten to be inserted, and the stopper (shutter) of the hopper 13 is accidentally turned. If this happens, it is possible to prevent the cacao nibs from spilling into the heat insulating container 12.
  • the first fan 17a is composed of, for example, a propeller fan, and as shown in FIG. 8, the intake side faces diagonally upward (outside the heat insulating container 12) and the exhaust side faces diagonally downward (inside the heat insulating container 12) on the upper surface 12a of the heat insulating container 12.
  • the air is taken in from the inside of the heat insulating container 12 and exhausted into the heat insulating container 12 again. That is, the first fan 17a functions as a circulation fan that circulates the air in the heat insulating container 12. Specifically, when the first fan 17a is driven, the air in the heat insulating container 12 turns to the intake side through the gaps on both sides of the first fan 17a and is sucked in, and again on the exhaust side of the first fan 17a.
  • the air warmed by the first heater 18a and the second heater 18b is circulated in the heat insulating container 12, and the air existing in the space of the portion surrounded by the glass in the heat insulating container 12 is warmed. That is, by using the first fan 17a, the air in the heat insulating container 12 is actively circulated, and the air in the heat insulating container 12 can be heated to a predetermined temperature more quickly.
  • the second fan 17b is made of, for example, a sirocco fan, is provided at a position facing the first fan 17a on the upper surface 12a of the heat insulating container 12, and sucks outside air from the outside of the heat insulating container 12 to suck the outside air from the heat insulating container 12. Discharge inside. When the outside air is discharged from the second fan 17b, the temperature of the air in the heat insulating container 12 is lowered. That is, the second fan 17b functions as a cooling fan.
  • the second fan 17b is driven when the temperature inside the heat insulating container 12 becomes too high due to the circulation of air in the heat insulating container 12 by the first fan 17a, so that the temperature inside the heat insulating container 12 is lowered.
  • the second fan 17b is driven to cool the inside of the heat insulating container 12. As a result, the temperature of the air in the heat insulating container 12 is kept constant.
  • the first heater 18a is composed of, for example, a sheathed heater, is provided in the upper part of the heat insulating container 12, and heats the air in the heat insulating container 12.
  • the second heater 18b like the first heater 18a, includes a sheathed heater, is provided at the lower part of the heat insulating container 12, and heats the air in the heat insulating container 12.
  • the first heater 18a and the second heater 18b are not limited to the seeds heater, and may be other general heaters.
  • general heaters include nichrome, ceramics, carbon (carbon having PTC (Positive Temperature Confficient) characteristics), halogen and the like.
  • both the first heater 18a and the second heater 18b are provided.
  • at least the second heater 18b may be provided. This is because the second heater 18b is provided in the lower part of the heat insulating container 12 and the first fan 17a is provided in the upper part of the heat insulating container 12, so that the warm air rising in the heat insulating container 12 and the first fan This is because the air discharged downward from the 17a is mixed, so that the temperature of the entire air in the heat insulating container 12 can be circulated and warmed quickly.
  • the purpose of warming the air in the heat insulating container 12 is to warm the conical mortar 27 and the flat mortar 28 constituting the crushing portion 26 of the crushing unit 11. That is, the heat insulating container 12 functions as a mortar temperature adjusting means for adjusting the temperature of the conical mortar 27 and the flat mortar 28.
  • the cocoa mass receiving portion 41 is arranged in the vicinity of the rotating side mortar of the crushing unit 11 in order to control the temperature of the crushing unit 11, and its side wall 41a is slid by the flat mortar 28. It is located higher than the surface (mortar sliding surface) 42. In this case, since the wind does not directly hit the mortar sliding surface 42 of the flat mortar 28, it is possible to suppress the adhesion and accumulation of crushed material (cocoa mass) on the mortar side surface and prevent the mortar side surface from being blocked. .. Further, it may form a part of a transport path for transporting the object to be crushed.
  • the frictional heat generated by pulverization is efficiently dissipated, and the mortar temperature can be adjusted to a predetermined temperature without becoming too high.
  • the frictional heat generated by the crushing is transmitted to the cocoa mass receiving portion 41, and by keeping the transport path for transporting the object to be crushed warm, it is possible to prevent the object to be crushed from sticking in the transfer path. Therefore, the cocoa mass receiving portion 41 is preferably made of a metal material (AL: aluminum) having good thermal conductivity.
  • AL aluminum
  • the melting point of the oil constituting the cacao beans is 30 ° C to 40 ° C
  • the conical mortar 27 and the flat mortar 28 are heated to 30 ° C to 40 ° C
  • the cacao nibs can be efficiently crushed.
  • 50% of the cocoa beans are made of oil, and when the cocoa beans are crushed, the oil oozes. Therefore, by bringing the temperature of the conical mortar 27 and the flat mortar 28 close to the melting point of the oil constituting the cacao beans, the oozing oil melts and becomes easy to be crushed.
  • the cacao beans can be efficiently crushed, and the cacao nibs obtained by coarsely crushing the cocoa beans by the conical mortar 27 and the flat mortar 28 are also warmed, so that they are small. You can crush cacao nibs with force. Therefore, cocoa mass obtained by crushing cacao nibs can be efficiently obtained.
  • the temperature of the air in the heat insulating container 12 is controlled so that the temperature of the conical mortar 27 and the flat mortar 28 can be maintained at a temperature (higher than 30 ° C. to 40 ° C.) for making the temperature of the conical mortar 27 to 40 ° C.
  • the temperature control (temperature control control) of the air of the heat insulating container 12 having the above configuration will be described.
  • the control unit 51 drives the first fan 17a, the second fan 17b, the first heater 18a, the first heater 18a, and the switch 19 so as to maintain the temperature inside the heat insulating container 12 detected by the temperature sensor 20 at a predetermined temperature.
  • the predetermined temperature is a temperature at which the cacao beans to be crushed can be optimally crushed and the crushed cacao bean powder does not adhere.
  • the drive of the two fans 17b, the first heater 18a, the first heater 18a, and the switch 19 is controlled to warm the air in the heat insulating container 12.
  • the control unit 51 controls the drive of the first heater 18a and the second heater 18b so as to maintain the temperature inside the heat insulating container 12 detected by the temperature sensor 20 at a predetermined temperature. In this case, the temperature inside the heat insulating container 12 is maintained at a predetermined temperature by the operation of the first heater 18a and the second heater 18b.
  • the predetermined temperature maintained in the heat insulating container 12 may be at least a temperature equal to or higher than the melting point of the solid raw material.
  • the temperature sensor 20 preferably directly detects the temperatures of the conical mortar 27 and the flat mortar 28 of the crushing unit 11, but since the crushing unit 11 is detachable from the heat insulating container 12, it is provided on the heat insulating container 12 side. I have no choice. Therefore, the temperature of the conical mortar 27 and the flat mortar 28 of the crushing unit 11 is indirectly detected by detecting the temperature of the air in the heat insulating container 12.
  • the temperature inside the heat insulating container 12 can be maintained at a predetermined temperature only by driving control of the first heater 18a and the second heater 18b. Further, by adding the drive control of the first fan 17a and the second fan 17b, the temperature inside the heat insulating container 12 can be quickly and stably maintained at a predetermined temperature.
  • FIG. 9 is a perspective view of the crushing device according to the second embodiment of the present invention.
  • FIG. 10 is a block diagram of a control unit that controls a temperature control device included in the crushing device shown in FIG.
  • FIG. 11 is a diagram showing a schematic configuration of a temperature control device included in the crushing device shown in FIG. 12 (a) and 12 (b) are views showing the arrangement positions of the intake port and the exhaust port of the temperature control device shown in FIG.
  • the crushing device 2 has substantially the same configuration as the crushing device 1 of the first embodiment, but includes a heat insulating container 112 instead of the heat insulating container 12. Similar to the heat insulating container 12, the heat insulating container 112 accommodates the crushing unit 11 and maintains the conical mortar 27 and the flat mortar 28 constituting the crushing unit 11 at a predetermined temperature. Unlike the heat insulating container 12, the heat insulating container 112 takes in air from the outside of the heat insulating container 112 and exhausts it to the outside instead of internal circulation, so that the temperature of the air in the heat insulating container 112 is maintained at a predetermined temperature. There is. A temperature control device for adjusting the temperature inside the heat insulating container 112, including the heat insulating container 112, will be described below.
  • the crushing device 2 is provided with a substantially disk-shaped intake / exhaust member 113 that surrounds the periphery of the introduction portion 13a of the hopper 13.
  • the intake / exhaust member 113 has a plurality of slits 113a formed concentrically, and the exhaust port 114 and the intake port 115 are formed by the plurality of continuous slits 113a. Is forming.
  • the number of slits 113a used by the exhaust port 114 is larger than the number of slits 113a used by the intake port 115.
  • the intake / exhaust member 113 is formed of a substantially disk-shaped member, and a plurality of slits 113a notched in a rectangular shape from the center to the outside are arranged concentrically. Has been done. A part of these slits 113a is used to form an exhaust port 114 and an intake port 115. That is, the exhaust port 114 and the intake port 115 are formed by a plurality of continuous slits 113a.
  • the exhaust port 114 discharges the air in the heat insulating container 112 to the outside. Since the intake / exhaust member 113 is provided between the hopper 13 and the heat insulating container 12, the exhaust port 114 is provided above the heat insulating container 12.
  • the intake port 115 takes in air into the heat insulating container 112.
  • a third fan 17c for intake is provided in the vicinity of the intake port 115, and by driving the third fan 17c, outside air can be positively introduced from the intake port 115 and discharged to the heat insulating container 112. it can.
  • the heat insulating container 112 discharges the air inside to the outside and takes in the air from the outside. That is, in the present embodiment, the air is actively taken in and out of the heat insulating container 112.
  • the third fan 17c is composed of a sirocco fan like the second fan 17b of the first embodiment, and is sucked by the third fan 17c in the vicinity of the third fan 17c (below the heat insulating container 112).
  • a copper discharge pipe 40 is provided for discharging air toward the bottom of the heat insulating container 112.
  • the discharge pipe 40 is arranged so as to discharge air toward the second heater 18b (heating portion) on the bottom surface (lower part) of the heat insulating container 112. That is, the discharge pipe 40 blows the air taken in by the third fan 17c toward the conical mortar 27 and the flat mortar 28 of the crushing unit 11.
  • the conical mortar 27 and the flat mortar 28 are prevented from becoming too hot, and the air warmed by the second heater 18b is pushed out by the air discharged from the exhaust pipe 40, so that the ceiling of the heat insulating container 112 is topped. It moves toward the exhaust port 114 of the intake / exhaust member 113 provided on the surface.
  • the third fan 17c By driving the third fan 17c in this way, the air taken in from the intake port 115 of the intake / exhaust member 113 is discharged from the discharge pipe 40, circulates inside the heat insulating container 112, and is circulated in the exhaust port 114. Is discharged from.
  • the number of slits 113a used by the exhaust port 114 is larger than the number of slits 113a used by the intake port 115. This is because the intake port 115 can be actively taken in by the third fan 17c, but the exhaust port 114 is not provided with an exhaust fan and cannot be forcibly exhausted, so many slits 113a are used. This is because the air is naturally exhausted.
  • the temperature control (temperature control) of the air in the heat insulating container 112 having the above configuration will be described below.
  • the control unit 52 drives the first fan 17a, the third fan 17c, the first heater 18a, the first heater 18a, and the switch 19 so as to maintain the temperature inside the heat insulating container 12 detected by the temperature sensor 20 at a predetermined temperature.
  • the predetermined temperature is a temperature at which the cacao beans to be crushed can be optimally crushed and the crushed cacao bean powder does not stick.
  • control unit 52 controls the drive of the first heater 18a and the second heater 18b so as to maintain the temperature inside the heat insulating container 112 detected by the temperature sensor 20 at a predetermined temperature, and the first fan. It controls the drive of the 17a and the third fan 17c.
  • the temperature inside the heat insulating container 12 can be maintained at a predetermined temperature only by driving control of the first heater 18a and the second heater 18b. Further, by adding the drive control of the first fan 17a and the third fan 17c, the temperature inside the heat insulating container 12 can be quickly and stably maintained at a predetermined temperature.
  • the temperatures of the conical mortar 27 and the flat mortar 28 of the crushing unit 11 rise due to friction, and become higher than the predetermined temperature (30 ° C to 40 ° C). If the temperature rises too high, the oil will bleed too much on the surface of the cacao nibs, and the cacao nibs will stick to each other and become fooled, and clogging will easily occur at the inlets of the conical mortar 27 and the flat mortar 28. In this case, the temperature of the air in the heat insulating container 112 is lowered by driving the third fan 17c to introduce the outside air from the intake port 115, and the temperatures of the conical mortar 27 and the flat mortar 28 of the crushing unit 11 are lowered. As a result, it is possible to solve the problem caused by the temperature becoming higher than the predetermined temperature (30 ° C. to 40 ° C.) (cacao nibs stick to each other and become fooled).
  • the control unit 52 not only controls the drive of the third fan 17c according to the temperature detected by the temperature sensor 20, but also controls the drive of the first heater 18a, the second heater 18b, and the first fan 17a to control the heat insulation container 112. It is possible to control the heating and cooling of the air inside.
  • the crushing device 2 when the crushing device 2 is started to be used at the beginning of the day, the temperature of the entire device is low at the beginning of use, so the first heater 18a and the second heater 18b are turned on in order to raise the temperature.
  • the temperature of the conical mortar 27 and the flat mortar 28 of the crushing unit 11 rises due to frictional heat.
  • the third fan 17c that functions as a cooling fan is turned to introduce outside air into the heat insulating container 112 to lower the temperature of the air, and the conical mortar 27 and the flat mortar 28 are lowered. To cool.
  • cocoa mass remains in the conical mortar 27 and the flat mortar 28.
  • the temperature of this powder becomes lower than the melting point of the oil constituting the cacao beans, the cacao powder solidifies in the conical mortar 27 and the flat mortar 28. Therefore, the crushing device 2 does not work. Therefore, the crushing device 2 turns on the first heater 18a and the second heater 18b even when it is not in operation, and maintains the conical mortar 27 and the flat mortar 28 at a certain temperature.
  • the heat insulating container 12 of the first embodiment and the heat insulating container 112 of the second embodiment are formed of a heat insulating material instead of glass.
  • the heat insulating material may be an air layer formed by holding two pieces of glass at predetermined intervals, a foam-based material such as urethane foam, or another material. May be good.
  • the crushing unit 11 is a rotary mortar powder system in which the upper surface and the lower surface of the conical mortar 27 and the flat mortar 28 are in sliding contact with each other, and the conical mortar 27 and the flat mortar 28 may be elastically supported.
  • the rotation method in which the flat mortar 28 slides the mortars slide with each other, so that the frictional heat can be effectively generated as compared with the frictional heat through the raw material. Further, the frictional heat can be adjusted by elastically supporting the mortars.
  • the transport passage 35 of the recovery transport unit 22 for transporting the crushed material is also configured so as not to come into contact with the air in the heat insulating container 12. This is because when the wind directly hits the transport passage 35, the temperature of the transport passage 35 drops too much and the crushed material sticks.
  • the temperature sensors 20 provided in the crushing devices 1 and 2 are sensors that detect the temperature inside the heat insulating container 12, but indirectly detect the temperatures of the conical mortar 27 and the flat mortar 28. Therefore, the rotation speeds of the conical mortar 27 and the flat mortar 28 may be controlled according to the temperature detected by the temperature sensor 20. For example, when the conical mortar 27 and the flat mortar 28 rotate at 300 rpm to obtain a desired amount of production, or when the temperature rises too much due to frictional heat or the like, the rotation speed is lowered from 300 rpm to reduce friction and adjust to the set temperature. To do. As a result, it is possible to prevent the temperatures of the conical mortar 27 and the flat mortar 28 from becoming too high.
  • the heat insulating containers 12 and 112 may be fixed to the flat mortar 28 on the rotating side and may rotate in synchronization with the flat mortar 28.
  • the rotation of the heat insulating containers 12 and 112 causes an air flow to be generated around the conical mortar 27 and the flat mortar 28, and it is possible to promote heat dissipation.
  • the rotation speed of the flat mortar 28 may be controlled according to the temperature detected by the temperature sensor 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Crushing And Grinding (AREA)

Abstract

被粉砕物の粉砕を最適に行え、且つ、粉砕された被粉砕物の固着を防止し得る粉砕装置を実現すること。本発明の粉砕装置は、粉砕ユニットを内部に収容する保温容器を備え、温度センサが検出する保温容器内の温度を所定温度に維持するように、保温容器内に設けられた第1ヒータおよび第2ヒータの動作を制御する。

Description

粉砕装置
 本発明の一態様は、カカオ豆等の固体原料を粉砕する粉砕装置に関する。本願は、2019年3月29日に日本で出願された特願2019-068932号に基づき優先権を主張し、その内容をここに援用する。
 この種の粉砕装置としては、例えば特許文献1に開示されている電動粉挽き機が知られている。この電動粉挽き機は、被粉砕物が投入され、次段に送る開口を有する投入部と、導入調整部からの被粉砕物を粗く粉砕する粗粉挽き部と、粗粉挽き部で粉砕された被粉砕物をさらに細かく粉砕する精細粉挽き部と、精細粉挽き部への被粉砕物の導入量を調整する調整部とを備えている。
日本国公開公報「特開2018-69136号公報」(2018年5月10日公開)
 ところで、特許文献1では、被粉砕物が粉砕される粉砕領域における、被粉砕物の導入領域の温度を、被粉砕物が有する油分が抽出される温度より低くなるようにし、排出領域の温度を、被粉砕物が有する油分が抽出される温度より高くすることで、被粉砕物であるカカオ豆の粉同士の固着を防止している。
 しかしながら、一般に、被粉砕物であるカカオ豆はある程度温められていると粉砕が容易になる。特に、粉砕装置における粉砕初期段階で、カカオ豆が所望する温度(粉砕を効率的に行える温度)まで温められた状態にすれば、粉砕を最適に行うことができる。
 しかしながら、特許文献1では、上述したとおり、粉砕領域において、被粉砕物の粉砕初期段階(導入領域)において、被粉砕物が有する油分が抽出される温度より低くなるように構成されているので、被粉砕物を粉砕が効率的に行える温度まで温められているとは言えない。従って、特許文献1に開示された技術では、被粉砕物の粉砕を最適に行えないという問題が生じる。
 本発明の一態様は、被粉砕物の粉砕を最適に行え、且つ、粉砕された被粉砕物の固着を防止し得る粉砕装置を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る粉砕装置は、回転駆動される粉砕部を有し、固体原料を前記粉砕部にて粉砕する粉砕ユニットと、前記粉砕ユニットを内部に収容する温調容器と、前記温調容器内の温度を検出する温度検出部と、前記温調容器内に設けられた加熱部と、前記温度検出部が検出する前記温調容器内の温度を所定温度に維持するように前記加熱部の動作を制御する制御部とを備えていることを特徴としている。
 本発明の一態様によれば、被粉砕物の粉砕を最適に行うことができ、且つ、粉砕された被粉砕物の固着を防止することができる。
本発明の実施形態1に係る粉砕装置の斜視図である。 図1に示した粉砕装置の分解斜視図である。 図1に示した粉砕ユニットの斜視図である。 図3に示した粉砕ユニットの分解斜視図である。 図3に示した粉砕ユニットの縦断面を含む斜視図である。 図5に示した粉砕ユニットの縦断面部分の正面図である。 図1に示した粉砕装置が備える温調装置を制御する制御部のブロック図である。 (a)(b)は、図1に示した粉砕装置が備える温調装置の概略構成を示す図である。 本発明の実施形態2に係る粉砕装置の斜視図である。 図9に示す粉砕装置が備える温調装置を制御する制御部のブロック図である。 図9に示す粉砕装置が備える温調装置の概略構成を示す図である。 (a)(b)は、図11に示した温調装置の吸気口および吸気口の配置位置を示す図である。
 (固体原料の粉砕についての概要)
 穀類や豆類等の固体の粉砕は、固体が粉砕されることによって用途が飛躍的に拡大するため、さまざまな食品に対して利用されている。しかしながら、均一な粉砕物を効率良く、かつ風味の劣化を防いで行うことの困難さもまた良く知られているところである。粉砕効率を重視すれば、粉砕物の粒子が粗く不均一となり、小麦粉、蕎麦粉等では滑らかさが失われ、うどんや蕎麦の品質が低下するのみならず、粉砕時に余分な熱が掛かるために酸化による風味の劣化が起こり易い。粉砕時に余分な摩擦熱が粉砕物に加わった場合、お茶では新鮮な風味が損なわれ、豆乳では青臭さの強いものになってしまう。臼をゆっくりと回転させて粉砕物を粉砕するという古くからの考え方は、摩擦熱の発生が抑えられるので、加工中の粉砕物の風味の劣化を防ぐという点で極めて理にかなっている。
 石臼のように回転する砥石と固定された砥石の間のクリアランスによって、粉砕物の粒度を調整するという粉砕方式は、材質が天然石からセラミック、金属へと変わっても、基本的な考えは同じである。これは乾式粉砕においても、湿式粉砕に於いても同様であり、蕎麦製造における蕎麦の実の粉砕は乾式で行われ、豆腐製造に於ける大豆の粉砕は湿式で行われている代表例である。石臼方式での粉砕は、様々な分野で利用されているが、乾式、湿式を問わず1段の粉砕で目的の粒子サイズとなるよう、回転砥石部と固定砥石部のクリアランス調整を行って実施されている。また、材質をステンレスの様な金属とした粉砕機においても、その回転刃と固定刃とのクリアランスの調整は、1段の粉砕で目的のサイズの粉砕物となるよう設計され、実施されている。
 例えば、チョコレートの場合、カカオニブと呼ばれる、焙煎したカカオ豆を粗粉砕した原料を使用する。チョコレート工房など店舗で粉砕する場合は石臼方式を利用することがあり、石臼同士のクリアランスを段階的に調整する。所望の滑らかなチョコレートになるまで、クリアランスを徐々に狭くしながら粉砕を複数回繰り返す必要がある。原料であるカカオの一粒のサイズはクリアランスに対して比較的大きく不利である。すなわち、カカオは徐々に細かく粉砕されるので、目的とする粒子となるまでに時間が掛かることとなる。
 カカオの粉砕には、カカオの融点が35℃程度であり、カカオニブ粉砕時の臼とカカオニブとの摩擦熱により液(ペースト)状となることを利用し、湿式粉砕を採用する。粉砕中のカカオおよび臼の温度は成り行きで決まることになり従来制御されてこなかった。温度が低ければ、カカオが臼内で流動できず溝に固着し、粉砕できない上、モータへの負荷が増大することになる。一方温度が高すぎる場合は、カカオが焦げ付くことがあり、カカオの品質を低下させることになる。
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。図1は、本実施形態の粉砕機としての粉砕ユニット11を備える粉砕装置1の斜視図である。図2は、図1に示した粉砕装置1の分解斜視図である。図3は、図1に示した粉砕ユニット11の斜視図である。図4は、図3に示した粉砕ユニット11の分解斜視図である。図5は、図3に示した粉砕ユニット11の縦断面を含む斜視図である。図6は、図5に示した粉砕ユニット11の縦断面部分の正面図である。なお、粉砕ユニット11は、熱伝導性の良い材料で構成されているのが好ましい。
 (粉砕装置1の概要)
 図1および図2に示すように、粉砕装置1は、粉砕ユニット11、保温容器12、ホッパー13、モータ14およびカカオマス取出しレバー15を備えている。
 粉砕ユニット11は保温容器(温調容器)12の内部に収容され、ホッパー13は粉砕ユニット11の上に取り付けられている。ホッパー13は固体原料を収容する。本実施形態では固体原料がカカオニブである場合について説明する。モータ14は粉砕装置1の下部に設けられ、粉砕ユニット11の粉砕部26を回転させる。カカオマス取出しレバー15は粉砕装置1の側部に位置する。カカオマス取出しレバー15が下方へ回転操作されることにより、粉砕ユニット11にて粉砕されたカカオニブのカカオマス(カカオ粉末)を取出し口16から取り出すことができる。
 粉砕装置1では、清掃のために、粉砕ユニット11は、保温容器12に対して着脱可能に嵌合され、ホッパー13は、粉砕ユニット11に対して着脱可能に嵌合されている。また、粉砕ユニット11には、ハンドル(図示せず)が設けられており、このハンドルを利用し当該粉砕ユニット11の着脱を行うようになっている。
 (粉砕ユニット11の構成)
 図3から図6示すように、粉砕ユニット11は、上部に筐体部21を有し、下部に回収搬送部22を有している。筐体部21は、粉砕ユニット11を保温容器12の内部に対して出し入れする際に使用するハンドル23を有している。筐体部21の内部には、上から下方へ、ホッパー受部24、導入部25および粉砕部26が設けられている。
 ホッパー受部24は、粉砕ユニット11の上に配置されるホッパー13を受ける。ホッパー受部24は下端部に開口部を有する。ホッパー13はカカオニブを収容しており、導入部25は、ホッパー13からホッパー受部24を介して供給されるカカオニブを受け入れる。導入部25は下端部に開口部25aを有する。
 粉砕部26は、中央部にコニカル臼27を有し、コニカル臼27の周りに平臼28を有する。コニカル臼27は、回転臼である内臼29と固定臼である外臼30とからなる。外臼30は円筒形状を有し、内臼29は外臼30に挿入され、下部から上部へ向かうにしたがって、外径が漸次小さくなった形状を有する。コニカル臼27の上端部における外臼30の内側は、カカオニブの入口部33となっている。コニカル臼27は、導入部25から投入されたカカオニブを粉砕し、粗いカカオマスとする。
 平臼28は、回転臼である下臼31と固定臼である上臼32とからなる。下臼31は内臼29の外周部に固定され、内臼29と一体となっている。上臼32は外臼30の外周部に固定され、外臼30と一体となっている。内臼29および下臼31の中心部には中心軸37が設けられている。平臼28は、コニカル臼27にて形成された粗いカカオマスを微細なカカオマスに粉砕する。
 回収搬送部22は、上部にカカオマスを直接受ける材料受部34を含むカカオマス受部41を有し、材料受部34に接続された搬送通路35を有し、材料受部34の下に駆動伝達部36を有している。材料受部34の上には粉砕部26が配置され、材料受部34は粉砕部26にて形成されたカカオマスを受ける。搬送通路35は、材料受部34が受けたカカオマスを下方へ搬送する。駆動伝達部36は、モータ14の駆動力を材料受部34上に載置されている粉砕部26の中心軸37に伝達し、粉砕部26(内臼29および下臼31)を回転させる。
 なお、図4および図5では、コニカル臼27の内臼29に付着防止・撹拌部材44が設けられている状態を示している。
 (温調装置)
 図7は、図1に示した粉砕装置1が備える温調装置を制御する制御部のブロック図である。図8の(a)(b)は、図1に示した粉砕装置1が備える温調装置の概略構成を示す図である。
 本実施形態に係る温調装置は、保温容器12と、保温容器12内で空気を循環させるための第1ファン(循環ファン)17a、保温容器12内に外気を取り込むための第2ファン(冷却ファン)17b、保温容器12内を温めるための第1ヒータ(加熱部)18aおよび第2ヒータ(加熱部)18b、第1ヒータ18aおよび第2ヒータ18bのオン・オフするためのスイッチ19、保温容器12内の温度を検出するための温度センサ(温度検出部)20、温度センサ20の検出結果に応じて、第1ファン17a、第2ファン17b、第1ヒータ18a、第2ヒータ18b、スイッチ19の駆動を制御する制御部51を含んでいる。なお、上述した通り、粉砕ユニット11は、粉砕装置1から着脱可能となっているため、第1ファン17a、第2ファン17b、第1ヒータ18a、第2ヒータ18bは、粉砕ユニット11以外に設けられている。
 保温容器12は、内部に粉砕ユニット11を収容する略円筒形状の容器であって、収容した粉砕ユニット11の周囲に空間を形成する。この空間に存在する空気を暖めたり、冷やしたりすることで、当該空間内の温度を所定温度に維持するようになっている。この所定温度の詳細については後述する。なお、保温容器12の円筒形部分はガラスで形成されているが、ガラスに限定されるものではない。
 なお、保温容器12の円筒形部分をガラスで形成した場合、以下のようなメリットがある。すなわち、粉砕ユニット11を保温容器に着脱できる構成であり、保温容器内に粉砕ユニットが正しい位置(前後、上下)へ嵌合されているかをガラスを通して確認することができる。また、粉砕ユニット11が粉砕装置1にセットされているか否かをガラスを通して一目で確認できるため、粉砕ユニット11を入れ忘れた状態でホッパー13を取り付けて、誤ってホッパー13の栓(シャッター)を回してしまうと、カカオニブが保温容器12内にこぼれ落ちてしまうことを防止することができる。
 また、粉砕ユニット11からカカオマスが漏れる等のエラー発生の有無を目視で確認でき、保温容器12内部の清掃時の視認性を良くすることができる。
 第1ファン17aは、例えばプロペラファンからなり、図8に示すように、保温容器12の上面12aにおいて、吸気側が斜め上(保温容器12外側)、排気側が斜め下(保温容器12内側)に向くように配置され、空気を保温容器12の内部から吸気して、再び保温容器12内に排気するように駆動する。つまり、第1ファン17aは、保温容器12内の空気を循環させる循環ファンとして機能している。具体的には、第1ファン17aが駆動すると、保温容器12内の空気が、当該第1ファン17aの両サイドの隙間から吸気側に回って吸われて、再び当該第1ファン17aの排気側から保温容器12の内部に排出される。これにより、第1ヒータ18a、第2ヒータ18bによって温められた空気を保温容器12内で循環させて、当該保温容器12内のガラスで囲まれた部分の空間に存在する空気が温まる。つまり、第1ファン17aを用いることで、保温容器12内の空気を積極的に循環させることになり、より早く保温容器12内の空気を所定温度まで温めることが可能となる。
 一方、第2ファン17bは、例えばシロッコファンからなり、保温容器12の上面12aの第1ファン17aと対向する位置に設けられており、保温容器12の外部から外気を吸って、当該保温容器12内に排出する。この第2ファン17bから外気が排出されると、当該保温容器12の空気の温度を下げることになる。つまり、第2ファン17bは、冷却ファンとして機能する。
 第2ファン17bは、第1ファン17aによる保温容器12部の空気の循環によって当該保温容器12内部の温度が高くなりすぎるときに駆動し、保温容器12内の温度を下げるようになっている。例えば、温度センサ20によって検出された保温容器12内の温度が所定温度よりも高くなると、第2ファン17bを駆動させ、当該保温容器12内を冷却する。これにより、保温容器12内の空気の温度が一定に保たれる。
 第1ヒータ18aは、例えばシーズヒータからなり、保温容器12内の上部に設けられ、当該保温容器12内の空気を加熱する。第2ヒータ18bは、第1ヒータ18aと同様にシーズヒータからなり、保温容器12内の下部に設けられ、当該保温容器12内の空気を加熱する。なお、第1ヒータ18a、第2ヒータ18bとしては、シーズヒータに限定されるものではなく、他の一般的なヒータであってもよい。例えば、一般的なヒータとして、ニクロム、セラミック、カーボン(PTC(Positive Temperature Confficient)特性を有するカーボン)、ハロゲン等ある。また、その他の加熱方式として、ペルチェ素子、ヒートポンプ式等を用いる加熱方式がある。
 保温容器12内の空気を迅速に加熱するという観点から、第1ヒータ18aと第2ヒータ18bの両方が設けられていることが好ましい。しかしながら、保温容器12内で空気が循環することを考慮した場合、少なくとも第2ヒータ18bを設けていればよい。これは、第2ヒータ18bは、保温容器12の下部に設けられ、第1ファン17aが保温容器12の上部に設けられているため、保温容器12内で上昇する温まった空気と、第1ファン17aから下方に排出される空気とが混ざるため、当該保温容器12内全体の空気の温度を循環させながら早く温めることが可能となるためである。
 ここで、保温容器12内の空気を温めることの目的は、粉砕ユニット11の粉砕部26を構成しているコニカル臼27、平臼28を温めることである。つまり、保温容器12は、コニカル臼27、平臼28の温度を調整する臼温度調整手段として機能する。
 図5または図6に示すように、カカオマス受部41は、粉砕ユニット11の温調を行うために、当該粉砕ユニット11の回転側臼近傍に配置され、その側壁41aは平臼28による摺動面(臼摺動面)42よりも高い位置にある。この場合、平臼28の臼摺動面42に直接風が当たらないようになるため、臼側面での粉砕物(カカオマス)の固着、堆積を抑制し、臼側面が塞がれることを防止できる。さらに、被粉砕物を搬送する搬送経路の一部を構成していてもよい。この場合、粉砕による摩擦熱を効率よく放熱し、臼温度が高くなり過ぎることなく、所定温度に調整可能となる。しかも、粉砕により発生した摩擦熱がカカオマス受部41に伝わり、被粉砕物を搬送するための搬送経路を保温することで、当該搬送経路での被粉砕物の固着を防ぐことができる。このため、カカオマス受部41は熱伝導性の良い金属材料(AL:アルミニウム)で構成するのが好ましい。
 ここで、カカオ豆を構成している油分の融点は30℃~40℃であるため、コニカル臼27、平臼28を30℃~40℃に温めると、カカオニブを効率よく粉砕することができる。カカオ豆の50%が油でできており、カカオ豆を粉砕すると油がにじみでる。このため、コニカル臼27、平臼28の温度を、カカオ豆を構成している油の融点に近づけることで、にじみ出た油が溶けて粉砕し易くなる。
 以上のように、コニカル臼27、平臼28を温めることで、カカオ豆を効率よく粉砕でき、且つ、コニカル臼27、平臼28によってカカオ豆を粗粉砕して得られるカカオニブも温まるので、小さい力でカカオニブを粉砕できる。従って、カカオニブを粉砕したカカオマスを効率よく得ることができる。
 ここで、保温容器12の空気の温度は、コニカル臼27、平臼28の温度を30℃~40℃にするための温度(30℃~40℃よりも高い温度)で維持できるように制御される。上記構成の保温容器12の空気の温度制御(温調制御)について説明する。
 (温調制御)
 制御部51は、温度センサ20が検出する保温容器12内の温度を所定温度に維持するように、第1ファン17a、第2ファン17b、第1ヒータ18a、第1ヒータ18a、スイッチ19の駆動を制御する。ここで、所定温度とは、被粉砕物であるカカオ豆の粉砕が最適に行え、且つ、粉砕されたカカオ豆の粉が固着しない温度とする。例えば、粉砕ユニット11内にコニカル臼27、平臼28の温度が、カカオ豆を構成する油の融点(固体原料の融点)である30℃~40℃になるように、第1ファン17a、第2ファン17b、第1ヒータ18a、第1ヒータ18a、スイッチ19の駆動を制御して、保温容器12内の空気を温める。
 なお、所定温度にするために、第1ファン17a、第2ファン17b、第1ヒータ18a、第1ヒータ18a、スイッチ19の全てを駆動制御する必要はなく、第1ヒータ18a、第2ヒータ18bのオン・オフのみを駆動制御してもよい。具体的には、制御部51は、温度センサ20が検出する保温容器12内の温度を所定温度に維持するように、第1ヒータ18aおよび第2ヒータ18bの駆動を制御する。この場合、保温容器12内の温度は第1ヒータ18aおよび第2ヒータ18bの動作により所定温度に維持される。つまり、保温容器12内の温度が所定温度になったとき、第1ヒータ18aおよび第2ヒータ18bをオフにする。なお、保温容器12内で維持される所定温度は、少なくとも、固体原料の融点以上の温度であればよい。
 また、温度センサ20は、粉砕ユニット11のコニカル臼27、平臼28の温度を直接検出するのが好ましいが、粉砕ユニット11を保温容器12から着脱自在にしているため、保温容器12側に設けざるを得ない。このため、保温容器12内の空気の温度を検出することで、粉砕ユニット11のコニカル臼27、平臼28の温度を間接的に検出している。
 上記のように、第1ヒータ18aと第2ヒータ18bの駆動制御だけでも、保温容器12内の温度を所定温度に維持することはできる。さらに、第1ファン17a、第2ファン17bの駆動制御を加えることで、保温容器12内の温度を迅速に且つ安定して所定温度で維持できる。
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 図9は、本発明の実施形態2に係る粉砕装置の斜視図である。図10は、図9に示す粉砕装置が備える温調装置を制御する制御部のブロック図である。図11は、図9に示す粉砕装置が備える温調装置の概略構成を示す図である。図12の(a)(b)は、図11に示した温調装置の吸気口および排気口の配置位置を示す図である。
 (粉砕装置2の概要)
 図9に示すように、粉砕装置2は、前記実施形態1の粉砕装置1とほぼ同じ構成であるが、保温容器12に代えて、保温容器112を備えている。保温容器112は、保温容器12と同様に、粉砕ユニット11を収容して、当該粉砕ユニット11を構成しているコニカル臼27、平臼28を所定温度で維持する。保温容器112は、保温容器12と異なり、内部循環ではなく、当該保温容器112の外部から吸気し、外部へ排気することで、保温容器112内の空気の温度を所定温度に保つようになっている。保温容器112を含んだ、当該保温容器112内の温度調整を行う温調装置について以下に説明する。
 (温調装置)
 保温容器112の吸排気を実現するために、粉砕装置2は、ホッパー13の導入部13aの周囲を囲む略円板状の吸排気部材113が設けられている。
 吸排気部材113は、図12の(a)(b)に示すように、同心円上に複数のスリット113aが形成されており、連続した複数個のスリット113aによって、排気口114と吸気口115を形成している。ここでは、排気口114が利用するスリット113aの数は、吸気口115が利用するスリット113aの数よりも多い。
 吸排気部材113は、図12(a)(b)に示すように、略円板状の部材からなり、中心から外に向かって長方形状に切り欠かれた複数のスリット113aが同心円状に配されている。これらスリット113aの一部を利用して、排気口114と吸気口115としている。すなわち、連続した複数個のスリット113aによって、排気口114と吸気口115を形成している。
 排気口114は、保温容器112内の空気を外部へ排出する。吸排気部材113は、ホッパー13と保温容器12との間に設けられているため、排気口114は保温容器12の上部に設けられていることになる。
 一方、吸気口115は、当該保温容器112内に空気を取り込む。吸気口115の近傍には吸気のための第3ファン17cが設けられ、当該第3ファン17cを駆動させることで、吸気口115から外気を積極的に導入し、保温容器112に排出することができる。これにより、保温容器112は、内部の空気を外部に排出すると共に、外部から空気を取り込むことになる。つまり、本実施形態では、保温容器112内への空気の吸排気を積極的に行う構成となっている。
 第3ファン17cは、前記実施形態1の第2ファン17bと同様に、シロッコファンからなり、当該第3ファン17cの近傍(保温容器112の下方)には、当該第3ファン17cによって吸気された空気を保温容器112の底部に向かって排出させるための銅製の排出用パイプ40が設けられている。排出用パイプ40は、保温容器112の底面(下部)の第2ヒータ18b(加熱部)の方に向かって空気を排出するように配置されている。
つまり、排出用パイプ40は、第3ファン17cによって吸気された空気を粉砕ユニット11のコニカル臼27、平臼28に向かって吹出すようになっている。これにより、コニカル臼27、平臼28が高温になりすぎるのを防止すると共に、第2ヒータ18bによって温められた空気が排出用パイプ40から排出される空気により押し出されて、保温容器112の天面に設けられた吸排気部材113の排気口114に向かって移動する。このように、第3ファン17cを駆動させることで、吸排気部材113の吸気口115から取り込まれた空気は、排出用パイプ40から排出され、保温容器112の内部を循環して、排気口114から排出される。
 なお、吸排気部材113は、上述した通り、排気口114が利用するスリット113aの数は、吸気口115が利用するスリット113aの数よりも多い。これは、吸気口115では、第3ファン17cによって積極的に吸気できるが、排気口114では、排気用のファンが設けられておらず、強制的に排気できないため、多くのスリット113aを利用して自然排気させるようにしているためである。
 上記構成の保温容器112の空気の温度制御(温調制御)について以下に説明する。
 (温調制御)
 制御部52は、温度センサ20が検出する保温容器12内の温度を所定温度に維持するように、第1ファン17a、第3ファン17c、第1ヒータ18a、第1ヒータ18a、スイッチ19の駆動を制御する。ここで、所定温度は、前記実施形態1で説明した通り、被粉砕物であるカカオ豆の粉砕が最適に行え、且つ、粉砕されたカカオ豆の粉が固着しない温度とする。
 具体的には、制御部52は、温度センサ20が検出する保温容器112内の温度を所定温度に維持するように、第1ヒータ18aおよび第2ヒータ18bの駆動を制御すると共に、第1ファン17aおよび第3ファン17cの駆動を制御する。
 第1ヒータ18aと第2ヒータ18bの駆動制御だけでも、保温容器12内の温度を所定温度に維持することはできる。さらに、第1ファン17a、第3ファン17cの駆動制御を加えることで、保温容器12内の温度を迅速に且つ安定して所定温度で維持できる。
 特に第3ファン17cの駆動を制御することで、保温容器112の吸気口115から積極的に外気を導入することが可能となり、当該保温容器112内で温まり過ぎた空気を迅速に冷却することが可能となる。これにより、保温容器112内の空気を所定温度で安定して維持することが可能となる。
 通常、粉砕装置2を連続運転していると、粉砕ユニット11のコニカル臼27、平臼28の温度が摩擦により上がり、所定温度(30℃~40℃)よりも高くなる。温度が上がり過ぎると、カカオニブの表面に油がにじみで過ぎて、カカオニブ同士が固着し、だまになり、コニカル臼27、平臼28の入口で詰まりが発生し易くなる。この場合、第3ファン17cを駆動させて吸気口115から外気を導入することで、保温容器112内の空気の温度を下げて、粉砕ユニット11のコニカル臼27、平臼28の温度を下げる。これにより、所定温度(30℃~40℃)よりも高くなることに起因する問題(カカオニブ同士が固着し、だまになる)を解消できる。
 制御部52は、温度センサ20による検出温度に応じて、第3ファン17cの駆動制御だけでなく、第1ヒータ18a、第2ヒータ18b、第1ファン17aの駆動制御することで、保温容器112内の空気の加熱制御および冷却制御を行うことができる。
 例えば、粉砕装置2を一日の最初に使い始めた場合、使い始めは装置全体の温度が低いので、温度を上げるために第1ヒータ18a、第2ヒータ18bをオンにする。その後、粉砕装置2を使い続けていると、粉砕ユニット11のコニカル臼27、平臼28が摩擦熱で温度上昇する。コニカル臼27、平臼28の温度が上がり過ぎた場合、冷却ファンとして機能する第3ファン17cを回して、保温容器112内に外気を導入し空気の温度を下げ、コニカル臼27、平臼28を冷却する。
 なお、一度、粉砕ユニット11のコニカル臼27、平臼28で粉砕すると、コニカル臼27、平臼28にカカオマス(どろどろのもの)が残る。この粉の温度がカカオ豆を構成する油の融点以下になると、カカオの粉がコニカル臼27、平臼28で固まってしまう。このため、粉砕装置2が動かなくなる。従って、粉砕装置2は、運転していない場合でも第1ヒータ18a、第2ヒータ18bをオン状態にし、コニカル臼27、平臼28をある程度の温度で維持するようにしている。
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 本実施形態に係る粉砕装置は、前記実施形態1の保温容器12、前記実施形態2の保温容器112をガラスではなく、断熱材にて形成されている。
 断熱材としては、ガラス2枚を所定の間隔で保持して形成される空気の層であってもよいし、発泡ウレタンなどの発泡系の材料であってもよいし、他の材料であってもよい。
 保温容器12および保温容器112を断熱材で形成することで、内部の空気の温度を一定に保ちやすくなる。
 また、粉砕ユニット11は、コニカル臼27、平臼28から成る上面と下面が互いに摺接する回転臼粉方式であり、コニカル臼27、平臼28を弾性支持してもよい。この場合、平臼28が摺動する回転方式を採用することで、臼同士が摺動するため原料を介した摩擦熱と比較し、効果的に摩擦熱を発生されることが可能となる。更に、臼同士を弾性支持することで摩擦熱を調整可能となる。
 コニカル臼27および平臼28によって粉砕された粉砕物を搬送する回収搬送部22において、コニカル臼27および平臼28、搬送通路35での粉砕物の詰まりを防止するために、以下のような措置が講じる。
 粉砕ユニット11内を構成しているコニカル臼27および平臼28に対して直接風が当たらないように構成されている。これは、コニカル臼27および平臼28に風が直接当たると当該コニカル臼27および平臼28の温度が下がり過ぎて、粉砕物が固着するためである。
 さらに、粉砕物を搬送するための回収搬送部22の搬送通路35も、保温容器12内の空気と接触しないよいように構成されている。これは、搬送通路35に風が直接当たると当該搬送通路35の温度が下がり過ぎて、粉砕物が固着するためである。
 なお、粉砕装置1,2に備えられた温度センサ20は、保温容器12内の温度を検出するセンサであるが、コニカル臼27および平臼28の温度を間接的に検出している。従って、この温度センサ20による検出温度に応じて、コニカル臼27および平臼28の回転数を制御してもよい。例えばコニカル臼27および平臼28が300rpmで回転することで、所望の生成量を得る場合、摩擦熱等で温度が上がりすぎた場合、300rpmよりも回転数を落とし摩擦を低減し設定温度に調整する。これにより、コニカル臼27および平臼28の温度が高くなりすぎることを防止できる。
 また、保温容器12、112は、回転する側の平臼28に固定され、当該平臼28と同期して回転するようにしてもよい。この場合、保温容器12、112が回転することで、コニカル臼27および平臼28の周囲に空気の流れが生じて、放熱を促すことが可能となる。この場合も、温度センサ20による検出温度に応じて、平臼28の回転数を制御してもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。

Claims (9)

  1.  回転駆動される粉砕部を有し、固体原料を前記粉砕部にて粉砕する粉砕ユニットと、
     前記粉砕ユニットを内部に収容する温調容器と、
     前記温調容器内の温度を検出する温度検出部と、
     前記温調容器内に設けられた加熱部と、
     前記温度検出部が検出する前記温調容器内の温度を所定温度に維持するように、少なくとも前記加熱部の動作を制御する制御部とを備えていることを特徴とする粉砕装置。
  2.  前記温調容器内の空気を循環させる循環ファンを備えていることを特徴とする請求項1に記載の粉砕装置。
  3.  前記加熱部は前記温調容器の下部に設けられ、前記循環ファンは前記温調容器の上部に設けられていることを特徴とする請求項2に記載の粉砕装置。
  4.  前記温調容器は内部の空気を外部に排出する排気口を有していることを特徴とする請求項1から3のいずれか1項に記載の粉砕装置。
  5.  前記排気口は前記温調容器の上部に設けられていることを特徴とする請求項4に記載の粉砕装置。
  6.  前記温調容器は外気を内部に取り込む吸気口を有し、
     前記温調容器内には前記吸気口から外気を吸い込み、前記温調容器内に吹き出す吸気ファンが設けられ、
     前記制御部は、前記温度検出部が検出する前記温調容器内の温度を所定温度に維持するように前記加熱部および前記吸気ファンの動作を制御することを特徴とする請求項1から5のいずれか1項に記載の粉砕装置。
  7.  前記所定温度は、前記固体原料の融点以上の温度であることを特徴とする請求項1から6のいずれか1項に記載の粉砕装置。
  8.  前記粉砕ユニットに前記固体原料を投入するホッパーを備え、
     前記粉砕ユニットは前記温調容器に対して着脱可能に嵌合され、前記ホッパーは前記粉砕ユニットに対して着脱可能に嵌合されていることを特徴とする請求項1から7のいずれか1項に記載の粉砕装置。
  9.  前記温調容器は断熱材にて形成されていることを特徴とする請求項1から8のいずれか1項に記載の粉砕装置。
PCT/JP2020/012949 2019-03-29 2020-03-24 粉砕装置 WO2020203452A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080013623.6A CN113597342B (zh) 2019-03-29 2020-03-24 粉碎装置
JP2021511496A JPWO2020203452A1 (ja) 2019-03-29 2020-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-068932 2019-03-29
JP2019068932 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203452A1 true WO2020203452A1 (ja) 2020-10-08

Family

ID=72669077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012949 WO2020203452A1 (ja) 2019-03-29 2020-03-24 粉砕装置

Country Status (4)

Country Link
JP (1) JPWO2020203452A1 (ja)
CN (1) CN113597342B (ja)
TW (1) TWI828878B (ja)
WO (1) WO2020203452A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193742A (ja) * 1982-05-07 1983-11-11 増幸産業株式会社 摩砕装置
JPS622175U (ja) * 1985-06-21 1987-01-08
JPH05184298A (ja) * 1992-01-10 1993-07-27 Mitsubishi Heavy Ind Ltd カカオマスの処理方法
JP2001211874A (ja) * 2000-02-03 2001-08-07 Yamato Scient Co Ltd 恒温器
WO2018079092A1 (ja) * 2016-10-26 2018-05-03 パナソニックIpマネジメント株式会社 電動粉挽き機
JP2018094134A (ja) * 2016-12-14 2018-06-21 シャープ株式会社 飲料製造装置および飲料製造方法
CN108477362A (zh) * 2018-05-22 2018-09-04 泗县甘滋罗食品有限公司 一种巧克力调温罐
WO2019235445A1 (ja) * 2018-06-08 2019-12-12 シャープ株式会社 粉砕機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB329061A (en) * 1929-03-01 1930-05-15 Int Comb Ltd Improvements relating to pulverising mills
GB834007A (en) * 1955-05-20 1960-05-04 Henschel & Sohn Ges Mit Beschr Apparatus for producing pulverulent and/or granular material in flowable form
JP3246102B2 (ja) * 1993-08-04 2002-01-15 松下電器産業株式会社 生ゴミ処理機
JP2004089844A (ja) * 2002-08-30 2004-03-25 Showa Engineering Co Ltd 溶融流体の固化粉砕装置および固化粉砕方法
AT504854B1 (de) * 2007-02-15 2012-08-15 Erema Verfahren und vorrichtung zur aufbereitung eines materials
CN203737347U (zh) * 2013-12-21 2014-07-30 重庆市辣媳妇食品有限公司 温控型食品粉碎机
CN204583391U (zh) * 2015-04-21 2015-08-26 张有土 一种青饲料高效粉碎机
JP6689168B2 (ja) * 2016-09-07 2020-04-28 株式会社クボタ 撹拌粉砕処理装置
CN208131181U (zh) * 2017-12-18 2018-11-23 苏州兮然工业设备有限公司 氮化硅机械粉碎机及闭路循环的机械粉碎系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193742A (ja) * 1982-05-07 1983-11-11 増幸産業株式会社 摩砕装置
JPS622175U (ja) * 1985-06-21 1987-01-08
JPH05184298A (ja) * 1992-01-10 1993-07-27 Mitsubishi Heavy Ind Ltd カカオマスの処理方法
JP2001211874A (ja) * 2000-02-03 2001-08-07 Yamato Scient Co Ltd 恒温器
WO2018079092A1 (ja) * 2016-10-26 2018-05-03 パナソニックIpマネジメント株式会社 電動粉挽き機
JP2018094134A (ja) * 2016-12-14 2018-06-21 シャープ株式会社 飲料製造装置および飲料製造方法
CN108477362A (zh) * 2018-05-22 2018-09-04 泗县甘滋罗食品有限公司 一种巧克力调温罐
WO2019235445A1 (ja) * 2018-06-08 2019-12-12 シャープ株式会社 粉砕機

Also Published As

Publication number Publication date
CN113597342B (zh) 2023-07-11
JPWO2020203452A1 (ja) 2020-10-08
TWI828878B (zh) 2024-01-11
CN113597342A (zh) 2021-11-02
TW202034837A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
JP5071835B2 (ja) 粉砕物の製造装置および方法
JP6990846B2 (ja) 電動粉挽き機
KR100552222B1 (ko) 원두커피 분쇄장치
CN112236235B (zh) 粉碎机
WO2007125588A1 (ja) 粉砕物の製造装置、方法、粉砕物および加工品
WO2020203452A1 (ja) 粉砕装置
US5875978A (en) Grain mill
WO2021024839A1 (ja) 粉砕装置
JP2017074530A (ja) 粉砕機
WO2021015151A1 (ja) 粉砕装置
WO2021015150A1 (ja) 粉砕システム
JP7498713B2 (ja) 粉砕装置
JP7474244B2 (ja) 粉砕機
WO2020203451A1 (ja) 粉砕機
WO2020241463A1 (ja) 粉砕装置
JP2016036764A (ja) 気流粉砕設備及びこれを用いた低温粉砕方法
KR20200000904U (ko) 곡물 분쇄장치
WO2020241462A1 (ja) 粉砕装置
JP7474261B2 (ja) 粉砕装置
TWI840368B (zh) 粉碎機
JP3878467B2 (ja) コーヒー豆の焙煎装置
KR101706715B1 (ko) 분쇄 장치
KR101361736B1 (ko) 분쇄기
WO2022239364A1 (ja) 磨砕装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782697

Country of ref document: EP

Kind code of ref document: A1