WO2020203400A1 - 蓄電素子 - Google Patents

蓄電素子 Download PDF

Info

Publication number
WO2020203400A1
WO2020203400A1 PCT/JP2020/012642 JP2020012642W WO2020203400A1 WO 2020203400 A1 WO2020203400 A1 WO 2020203400A1 JP 2020012642 W JP2020012642 W JP 2020012642W WO 2020203400 A1 WO2020203400 A1 WO 2020203400A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
positive electrode
particle size
active material
inorganic
Prior art date
Application number
PCT/JP2020/012642
Other languages
English (en)
French (fr)
Inventor
智也 土川
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN202080025728.3A priority Critical patent/CN113950757A/zh
Priority to JP2021511469A priority patent/JP7424368B2/ja
Priority to US17/598,506 priority patent/US20220190321A1/en
Priority to EP20785400.1A priority patent/EP3930042A4/en
Publication of WO2020203400A1 publication Critical patent/WO2020203400A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage element.
  • Secondary batteries represented by lithium-ion secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density.
  • the secondary battery generally includes an electrode body having a pair of electrodes electrically separated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between both electrodes. It is configured to charge and discharge.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as power storage elements other than secondary batteries.
  • the power storage element may generate heat when it is handled improperly.
  • the separator melts, causing contact between the positive electrode and the negative electrode, which may cause a short circuit.
  • a separator in which a heat-resistant porous layer containing a filler as a main component is provided on a porous layer mainly composed of a thermoplastic resin in a non-aqueous secondary battery. Is described to be used.
  • the heat-resistant porous layer can prevent a short circuit between the positive electrode and the negative electrode.
  • the separator provided with the heat-resistant porous layer as described above is used, the electric resistance is lowered between the positive electrode and the negative electrode when heat is generated.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a power storage element having high electrical resistance between electrodes even when heat is generated due to improper handling. is there.
  • One aspect of the present invention made to solve the above problems includes an electrode having a mixture layer containing active material particles, and a separator containing inorganic particles and having an inorganic layer facing the mixture layer.
  • This is a power storage element in which the active material particles have two or more peaks in a volume-based particle size distribution, and the average particle size of the inorganic particles is 1.2 ⁇ m or less.
  • FIG. 1 is a schematic cross-sectional view showing a secondary battery according to an embodiment of the power storage element of the present invention.
  • FIG. 2 is a schematic perspective view showing a secondary battery according to an embodiment of the power storage element of the present invention.
  • FIG. 3 is a schematic view showing a power storage device configured by assembling a plurality of secondary batteries according to an embodiment of the power storage element of the present invention.
  • One aspect of the present invention includes an electrode having a mixture layer containing active material particles and a separator containing inorganic particles and having an inorganic layer facing the mixture layer, and the active material particles are volume-based.
  • a power storage element having two or more peaks in a particle size distribution and having an average particle diameter of 1.2 ⁇ m or less of the inorganic particles.
  • the electrical resistance between the electrodes is high even if it is handled improperly and heat is generated. That is, according to the power storage element, even when heat is generated due to improper handling, a decrease in resistance between the positive electrode and the negative electrode is suppressed, and good insulation is sufficiently maintained. The reason for this effect is not clear, but the following reasons are presumed.
  • a conventional resin separator is used, the resin of the separator melted due to heat generation flows into the porous mixture layer, so that a short circuit occurs between the positive and negative electrodes.
  • the separator when heat is generated, the inorganic particles forming the inorganic layer flow into the mixture layer together with the molten resin, so that the positive electrode and the negative electrode are formed. And cannot be sufficiently insulated, resulting in a decrease in electrical resistance.
  • inorganic particles having an average particle diameter of 1.2 ⁇ m or less are used for the inorganic layer of the separator.
  • the inorganic layer formed of the inorganic particles having such a small particle size is a porous layer having a relatively small pore size. Therefore, the resin of the molten separator is easily held by the inorganic layer, and as a result, it becomes difficult for the resin to flow into the mixture layer.
  • the power storage element active material particles having two or more peaks in the particle size distribution are used in the mixture layer of the electrodes.
  • the voids between the large particles are filled with small particles, and the porosity is relatively low. Therefore, the resin of the molten separator and the inorganic particles of the inorganic layer are less likely to enter the voids in the mixture layer.
  • the power storage element has a structure in which the resin and inorganic particles melted by heat generation do not easily flow into the inside of the mixture layer, which reduces the resistance between the electrodes when heat generation occurs. It is presumed that it can be suppressed.
  • the "particle size distribution" of the active material particles is a measured value by the following method.
  • a laser diffraction type particle size distribution measuring device (SALD-2200, manufactured by Shimadzu Corporation) is used as the measuring device, and Wing SALD-2200 is used as the measurement control software.
  • SALD-2200 As a measurement method, a scattering type measurement mode is adopted, and a wet cell for measurement containing a dispersion liquid in which active material particles are dispersed in a solvent is placed in an ultrasonic environment for 5 minutes and then set in an apparatus.
  • the scattered light distribution is obtained by irradiating with laser light and measuring.
  • the particle size distribution can be obtained by approximating the obtained scattered light distribution with a lognormal distribution.
  • the "average particle size" of the inorganic particles can be measured using a scanning electron microscope (SEM). Specifically, it is as follows. (1) The power storage element is disassembled, the separator is taken out, and then immersed in a solvent to separate the inorganic particles by filtration. (2) Ten particles are randomly selected from an image (planar image) obtained by observing inorganic particles with SEM (10000 times). (3) Observe the grain boundaries and the like of the 10 selected particles, determine the major axis R1 and the minor axis R2 of each particle, and use the average value of R1 and R2 as the particle size of each particle. The major axis R1 is the largest diameter in the particle image of the SEM. Further, the minor axis R2 is a diameter in the direction perpendicular to the major axis R1 in the particle image of the SEM. (4) The average value of the particle diameters of the 10 selected particles obtained above is defined as the average particle diameter.
  • the aspect ratio of the inorganic particles is 7 or more.
  • the resin of the molten separator is more easily held by the inorganic layer, and the molten resin is less likely to flow from the inorganic layer to the mixture layer.
  • the aspect ratio of the inorganic particles is high, the inorganic particles themselves do not easily enter the mixture layer. That is, by using inorganic particles having such a high aspect ratio, it is possible to further increase the electrical resistance between the electrodes when heat is generated.
  • the "aspect ratio" of the inorganic particles is a value defined by the following (1) to (3).
  • Inorganic particles have three length parameters (r1, r2 and b).
  • the three parameters satisfy the relationship of r1 ⁇ r2> b.
  • the aspect ratio is represented by a / b.
  • the above r1 corresponds to the major axis of the inorganic particles
  • r2 corresponds to the minor axis of the inorganic particles
  • b corresponds to the thickness of the inorganic particles.
  • Examples of the method for measuring the aspect ratio of the inorganic particles include the following methods.
  • the active material particles include particles A and particles B having different mode diameters, and the particle size ratio (A / B) which is the mode diameter of the particles A to the mode diameter of the particles B is 3 or more, and the particles.
  • the content ratio (A / B), which is the content of the particles A to the content of B, is preferably 4/6 or more.
  • the active material particles have two peaks in the volume-based particle size distribution
  • the active material particles include particles A and particles B having different mode diameters, and the particle size is larger in the particle size distribution.
  • the particle size corresponding to the peak of the particle A is the mode diameter (most frequent diameter) of the particle A
  • the particle size corresponding to the peak on the smaller particle size side is the mode diameter (most frequent diameter) of the particle B.
  • the content ratio is a volume ratio and can be obtained from a volume-based particle size distribution.
  • the particle size corresponding to this saddle is defined as the boundary between the particle types.
  • the particles corresponding to the peak having the highest peak height are the particles A, and the particles corresponding to the peak having a particle size smaller than the particle A.
  • the particle having the highest peak height is referred to as particle B.
  • the particle size (D10) of the active material particles having a cumulative degree of 10% is 3 ⁇ m or less, and the particle size (D90) having a cumulative degree of 90% is 10 ⁇ m or more.
  • the active material particles satisfy such a condition, it means that the particle size distribution of the active material particles is wide.
  • the effect of the present invention exerted by using inorganic particles having an average particle diameter of 1.2 ⁇ m or less in the inorganic layer of the separator is particularly remarkable.
  • the “particle size (D10)” and “particle size (D90)” of the active material particles are the volume-based integrated distributions calculated in accordance with JIS-Z-8819-2 (2001) of 10% and 90. It means a value that becomes%. Specifically, based on the volume-based particle size distribution of the active material particles described above, the particle size corresponding to a cumulative degree of 10% is defined as the particle size (D10), and the particle size corresponding to a cumulative degree of 90% is defined as the particle size (D90).
  • the packing density of the mixture layer is preferably 2.8 g / cm 3 or more, and more preferably 3.2 g / cm 3 .
  • the mixture layer is such a relatively dense layer, the resin and inorganic particles of the molten separator are less likely to flow into the inside of the mixture layer, and the electrical resistance between the electrodes during heat generation can be further increased. ..
  • the "filling density" of the mixture layer means the value obtained by dividing the mass of the mixture layer by the apparent volume of the mixture layer.
  • the apparent volume means the volume including the void portion, and can be obtained as the product of the thickness and the area of the mixture layer.
  • the power storage element has positive and negative electrodes, a separator, and an electrolyte.
  • a non-aqueous electrolyte secondary battery hereinafter, also simply referred to as “secondary battery”.
  • the positive electrode and the negative electrode usually form electrode bodies that are alternately laminated or wound through a separator.
  • the electrode body is housed in a case, and the case is filled with a non-aqueous electrolyte.
  • the non-aqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • a known metal case, resin case or the like which is usually used as a case of a secondary battery can be used.
  • the secondary battery 10 as an embodiment of the present invention is schematically shown in FIG.
  • the secondary battery 10 has a positive electrode 11, a separator 12, and a negative electrode 13 stacked in this order.
  • the positive electrode 11 and the separator 12 and the separator 12 and the negative electrode 13 are separated from each other for convenience, but they may be in contact with each other. Further, in FIG. 1, the description of other components of the secondary battery 10 such as the case is omitted.
  • the positive electrode 11 has a positive electrode base material 14 and a positive electrode mixture layer 15 laminated on the positive electrode base material 14.
  • the positive electrode 11 is a sheet having the above-mentioned laminated structure.
  • the positive electrode base material 14 has conductivity.
  • metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used.
  • aluminum and aluminum alloys are preferable from the viewpoint of balance of potential resistance, high conductivity and cost.
  • examples of the formation form of the positive electrode base material 14 include a foil and a vapor-deposited film, and the foil is preferable from the viewpoint of cost. That is, aluminum foil is preferable as the positive electrode base material 14.
  • As the aluminum or aluminum alloy A1085 or the like specified in JIS-H-4000 (2014) can be exemplified.
  • the positive electrode mixture layer 15 contains positive electrode active material particles.
  • the positive electrode mixture layer 15 contains optional components such as a conductive agent, a binder (binding agent), a thickener, and a filler, if necessary.
  • the positive electrode mixture layer 15 can usually be formed by applying a slurry of a positive electrode mixture containing each of these components to a positive electrode base material 14 and drying it. The packing density of the positive electrode mixture layer 15 and the like can be adjusted by pressing or the like.
  • the positive electrode active material particles are particles of the positive electrode active material.
  • the positive electrode active material include composite oxides represented by Li x MO y (M represents at least one kind of transition metal) (Li x CoO 2 and Li x NiO 2 having a layered ⁇ -NaFeO type 2 crystal structure).
  • Li x MnO 3 Li x Ni ⁇ Co (1- ⁇ ) O 2 , Li x Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ ) O 2, etc., Li x Mn 2 O 4 , which has a spinel-type crystal structure, Li x Ni ⁇ Mn (2- ⁇ ) O 4 etc.), Li w Me x (XO y ) z (Me represents at least one kind of transition metal, X represents, for example, P, Si, B, V, etc.)
  • Examples of the represented polyanionic compounds LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.
  • the elements or polyanions in these compounds may be partially substituted with other elements or anion species.
  • the positive electrode active material particles have two or more peaks in the volume-based particle size distribution.
  • the upper limit of the number of peaks is not particularly limited and may be 4 or 3.
  • the number of peaks may be 2.
  • the positive electrode active material particles preferably contain particles A and particles B having different mode diameters. These mode diameters correspond to the diameters of the peak positions in the particle size distribution.
  • the type of the positive electrode active material constituting the particle A and the type of the positive electrode active material constituting the particle B may be the same or different. Hereinafter, it will be described assuming that the mode diameter of the particle A is larger than the mode diameter of the particle B.
  • the lower limit of the particle size ratio (A / B), which is the mode diameter of the particle A with respect to the mode diameter of the particle B, is preferably 3, more preferably 3.3, and even more preferably 4.
  • the particle size ratio (A / B) is preferably 3, more preferably 3.3, and even more preferably 4.
  • the upper limit of the particle size ratio (A / B) 6 is preferable, 5 is more preferable, and 4 is further preferable in some cases.
  • the particle size ratio (A / B) By setting the particle size ratio (A / B) to the above upper limit or less, appropriate porosity can be ensured and battery characteristics can be improved. Further, by setting the particle size ratio (A / B) to the above upper limit or less, there is a possibility that the effect of suppressing the decrease in resistance between the electrodes at the time of heat generation can be enhanced.
  • the lower limit of the mode diameter of the particle A 5 ⁇ m is preferable, 8 ⁇ m is more preferable, 10 ⁇ m is further preferable, and 15 ⁇ m is further preferable in some cases.
  • the upper limit of the mode diameter of the particle A is preferably 30 ⁇ m, more preferably 20 ⁇ m, further preferably 17 ⁇ m, and even more preferably 15 ⁇ m.
  • the lower limit of the mode diameter of the particle B 1 ⁇ m is preferable, 2 ⁇ m is more preferable, 3 ⁇ m is further preferable, and 3.5 ⁇ m may be further preferable.
  • the upper limit of the mode diameter of the particle B is preferably 8 ⁇ m, more preferably 5 ⁇ m, further preferably 4 ⁇ m, and even more preferably 3.5 ⁇ m.
  • the mode diameters of the particles A and the particles B are in the above range, the degree of filling and the porosity of the positive electrode mixture layer 15 become more suitable.
  • the lower limit of the content ratio (A / B), which is the content of the particles A to the content of the particles B, is preferably 4/6, more preferably 5/5, and even more preferably 6/4 in terms of volume ratio.
  • the upper limit of the content ratio (A / B) is preferably 9/1, more preferably 8/2, further preferably 7/3, and even more preferably 6.5 / 3.5 in terms of volume ratio.
  • the upper limit of the particle size (D10) of the positive electrode active material particles having a cumulative degree of 10% may be, for example, 5 ⁇ m, 4 ⁇ m, or 3.5 ⁇ m, but 3 ⁇ m is preferable.
  • the lower limit of the particle size (D90) having a cumulative degree of 90% is preferably 10 ⁇ m, more preferably 15 ⁇ m.
  • a small D10 and a large D90 mean that the particle size distribution is wide.
  • the lower limit of the particle size (D10) of the positive electrode active material particles having a cumulative degree of 10% is preferably 1 ⁇ m, more preferably 2 ⁇ m.
  • the upper limit of the particle size (D90) of the positive electrode active material particles having a cumulative degree of 90% is preferably 50 ⁇ m, more preferably 30 ⁇ m.
  • the lower limit of the content of the positive electrode active material particles in the positive electrode mixture layer 15 is preferably 80% by mass, more preferably 90% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 96% by mass is more preferable.
  • the content of the positive electrode active material particles in the positive electrode mixture layer 15 is within the above range, the degree of filling and porosity of the positive electrode mixture layer 15 become more suitable, and the effect of suppressing a decrease in resistance during heat generation is enhanced. be able to.
  • the conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect the battery performance.
  • a conductive agent include natural or artificial graphite, carbon black such as furnace black, acetylene black, and Ketjen black, metals, conductive ceramics, and the like.
  • the shape of the conductive agent include powder, fibrous, and tubular shapes.
  • binder examples include a fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), a thermoplastic resin such as polyethylene, polypropylene, polyacrylic, and polyimide; an ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), elastomers such as fluororubber; polysaccharide polymers and the like.
  • fluororesin polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resin such as polyethylene, polypropylene, polyacrylic, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR sulfonated EPDM
  • SBR styrene-butadiene rubber
  • elastomers such as fluororubber
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • methyl cellulose examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • the filler is not particularly limited as long as it does not adversely affect the battery performance.
  • the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, magnesia, zeolite, glass, aluminosilicate and the like.
  • the lower limit of the packing density of the positive electrode mixture layer 15 As the lower limit of the packing density of the positive electrode mixture layer 15, 2.8 g / cm 3 is preferable, and 3.2 g / cm 3 is more preferable.
  • the separator 12 is arranged on the positive electrode mixture layer 15 of the positive electrode 11. Further, the separator 12 is arranged between the positive electrode 11 and the negative electrode 13.
  • the separator 12 has a resin layer 16 and an inorganic layer 17 laminated on the resin layer 16. The inorganic layer 17 may be provided on the positive electrode 11 side of the resin layer 16.
  • the separator 12 is a sheet having the above-mentioned laminated structure.
  • the resin layer 16 is a porous resin film containing a resin as a main component.
  • the "main component” refers to the component having the highest content on a mass basis.
  • the woven fabric or non-woven fabric is also included in the porous resin film.
  • the resin of the resin layer 16 for example, polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of strength, and polyethylene is more preferable. Further, from the viewpoint of oxidative decomposition resistance, for example, polyimide or aramid is preferable. Moreover, you may combine these resins.
  • a thermoplastic resin can be preferably used. In the case of a thermoplastic resin, the shutdown function at the time of heat generation is effectively generated. On the other hand, in the case of a thermoplastic resin, the melted resin tends to flow out due to heat generation, so that there is a great advantage in adopting the present invention.
  • the lower limit of the resin content in the resin layer 16 is preferably 60% by mass, more preferably 80% by mass, and even more preferably 95% by mass.
  • the upper limit of this content may be 100% by mass.
  • the inorganic layer 17 is provided so as to face the positive electrode mixture layer 15. That is, the inorganic layer 17 exists between the resin layer 16 and the positive electrode mixture layer 15.
  • the inorganic layer 17 contains inorganic particles.
  • the inorganic layer 17 usually further contains a binder that binds the inorganic particles.
  • the inorganic layer 17 is porous, whereby ionic conductivity can be ensured.
  • the inorganic layer 17 can be formed, for example, by applying an inorganic layer forming material containing each component of the inorganic layer 17 and a dispersion medium on the surface of the resin layer 16 and drying the material.
  • the upper limit of the average particle size of the inorganic particles in the inorganic layer 17 is 1.2 ⁇ m, and 0.7 ⁇ m may be more preferable.
  • the inorganic layer 17 becomes a relatively dense porous layer. Therefore, the resin melted from the resin layer 16 is easily held by the inorganic layer 17, and it is possible to suppress a decrease in resistance between the electrodes when heat is generated.
  • the lower limit of the average particle size of the inorganic particles 0.1 ⁇ m is preferable, 0.3 ⁇ m is more preferable, and 0.5 ⁇ m, 0.8 ⁇ m or 1.0 ⁇ m may be further preferable.
  • Good ionic conductivity can be ensured by setting the average particle size of the inorganic particles to the above lower limit or more. Further, by setting the average particle diameter of the inorganic particles to the above lower limit or more, it becomes difficult for the inorganic particles to flow into the positive electrode mixture layer 15 even when heat generation occurs. Therefore, even when heat is generated, good insulation between the electrodes can be ensured and a decrease in resistance can be further suppressed.
  • the lower limit of the aspect ratio of the inorganic particles may be, for example, 2, but 5 is preferable, and 7 is more preferable.
  • the upper limit of this aspect ratio is, for example, 100 and may be 50.
  • the above-mentioned inorganic particles are usually particles having substantially no conductivity.
  • the inorganic particles include inorganic oxides such as silica, alumina, titania, zirconia, magnesia, ceria, itria, zinc oxide and iron oxide, inorganic nitrides such as silicon nitride, titanium nitride and boron nitride, and silicon carbide.
  • inorganic particles having a high aspect ratio include kaolinite and boehmite.
  • binder of the inorganic layer 17 a binder that can fix inorganic particles, does not dissolve in an electrolyte, and is electrochemically stable in the range of use is usually used.
  • the binder include those described above as the binder used for the positive electrode mixture layer 15.
  • the average thickness of the inorganic layer 17 is not particularly limited, but the lower limit is preferably 0.1 ⁇ m, more preferably 0.2 ⁇ m, and even more preferably 0.5 ⁇ m, 1 ⁇ m or 2 ⁇ m.
  • the resin of the molten resin layer 16 can be particularly sufficiently retained.
  • the lower limit of the ratio of the average thickness of the inorganic layer 17 to the average thickness of the resin layer 16 is preferably 0.1, more preferably 0.2.
  • the upper limit of the average thickness of the inorganic layer 17 is preferably 10 ⁇ m, more preferably 6 ⁇ m.
  • the negative electrode 13 has a negative electrode base material 18 and a negative electrode mixture layer 19 laminated on the negative electrode base material 18.
  • the negative electrode 13 is a sheet having the above-mentioned laminated structure.
  • the negative electrode base material 18 has conductivity.
  • the negative electrode base material 18 can have the same configuration as the positive side base material 14, but as a material, metals such as copper, nickel, stainless steel, nickel-plated steel, or alloys thereof are used, and copper or copper alloys are used. Is preferable. That is, copper foil is preferable as the negative electrode base material 18. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • the negative electrode mixture layer 19 contains negative electrode active material particles.
  • the negative electrode mixture layer 19 contains optional components such as a conductive agent, a binder (binding agent), a thickener, and a filler, if necessary.
  • the optional components such as the conductive agent, the binder, the thickener, and the filler, the same components as those of the positive electrode mixture layer 15 can be used.
  • the negative electrode mixture layer 19 can usually be formed by applying a slurry of a negative electrode mixture containing each of these components to the negative electrode base material 18 and drying it.
  • the negative electrode active material particles are particles of the negative electrode active material.
  • the negative electrode active material a material capable of occluding and releasing lithium ions is usually used.
  • Specific negative electrode active materials include, for example, metals or semimetals such as Si and Sn; metal oxides or semimetal oxides such as Si oxide and Sn oxide; polyphosphate compounds; graphite (graphite) and non-graphite. Examples thereof include carbon materials such as carbon (graphitizable carbon or non-graphitizable carbon).
  • Non-aqueous electrolyte The non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes.
  • a non-aqueous electrolyte solution may be used as the non-aqueous electrolyte.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvent a known non-aqueous solvent usually used as a non-aqueous solvent for a non-aqueous electrolyte for a general power storage element can be used.
  • the non-aqueous solvent include cyclic carbonate, chain carbonate, ester, ether, amide, sulfonamide, lactone, nitrile and the like. Among these, it is preferable to use at least cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination.
  • the volume ratio of the cyclic carbonate to the chain carbonate is not particularly limited, but is, for example, 5:95 or more and 50:50 or less. Is preferable.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VEC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • FEC fluoroethylene carbonate
  • difluoroethylene examples thereof include carbonate (DFEC), styrene carbonate, catechol carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate and the like.
  • electrolyte salt a known electrolyte salt usually used as a non-aqueous electrolyte electrolyte salt for a general power storage element can be used.
  • electrolyte salt examples include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like, but lithium salt is preferable.
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , and LiN (SO). 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other fluorinated hydrocarbon groups Lithium salt having the above can be mentioned.
  • inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , and LiN (SO). 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF
  • the non-aqueous electrolyte may contain components other than the non-aqueous solvent and the electrolyte salt as long as the effects of the present invention are not impaired.
  • the other components include various additives contained in a general non-aqueous electrolyte for a power storage device.
  • the method for manufacturing the secondary battery is not particularly limited.
  • the method for manufacturing the secondary battery includes, for example, a step of manufacturing a positive electrode and a negative electrode, a step of preparing a non-aqueous electrolyte, and an electrode body in which positive electrodes and negative electrodes are alternately superimposed by laminating or winding through a separator.
  • the step of forming the above, the step of accommodating the positive electrode and the negative electrode (electrode body) in the battery container, and the step of injecting the non-aqueous electrolyte into the battery container are provided.
  • the above injection can be performed by a known method. After injection, a secondary battery can be obtained by sealing the injection port.
  • the case where the electrode having the mixture layer containing the active material particles having two or more peaks in the volume-based particle size distribution is the positive electrode has been described.
  • the positive electrode mixture of the positive electrode has been described.
  • the positive electrode and the separator are arranged so that the layer and the inorganic layer of the separator face each other.
  • such an electrode may be a negative electrode. That is, the negative electrode active material particles contained in the negative electrode mixture layer of the negative electrode may have two or more peaks in the volume-based particle size distribution.
  • the negative electrode and the separator may be arranged so that the negative electrode mixture layer of the negative electrode and the inorganic layer of the separator face each other.
  • both the active material layers of the positive electrode and the negative electrode may contain active material particles having two or more peaks in the particle size distribution.
  • inorganic layers may be provided on both sides of the separator.
  • the active material particles may be composed of three or more kinds of particles having different mode diameters.
  • a mixture of two types of particles (particle A and particle B) having different mode diameters is preferable.
  • the mode in which the power storage element is a non-aqueous electrolyte secondary battery has been described, but other power storage elements may be used.
  • other power storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and secondary batteries in which the electrolyte contains water.
  • an intermediate layer may be provided between the positive electrode base material and the positive electrode mixture layer, or between the negative electrode base material and the negative electrode mixture layer. By including conductive particles such as carbon particles in such an intermediate layer, the contact resistance between the base material and the mixture layer can be reduced.
  • FIG. 2 shows a schematic view of a rectangular secondary battery 20 which is an embodiment of the power storage element according to the present invention.
  • the figure is a perspective view of the inside of the battery container.
  • the electrode body 21 is housed in the battery container 22.
  • the electrode body 21 is formed by winding a positive electrode and a negative electrode through a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 23 via the positive electrode lead 23'
  • the negative electrode is electrically connected to the negative electrode terminal 24 via the negative electrode lead 24'.
  • the configuration of the power storage element according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), and a flat battery.
  • the present invention can also be realized as a power storage device including a plurality of the above power storage elements.
  • An embodiment of the power storage device is shown in FIG. In FIG. 3, the power storage device 30 includes a plurality of power storage units 25. Each power storage unit 25 includes a plurality of power storage elements (secondary battery 20).
  • the power storage device 30 can be mounted as a power source for automobiles such as electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid vehicles (PHEV).
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • PHEV plug-in hybrid vehicles
  • Example 1 (1) Production of Positive Electrode Positive electrode active material particles b (NCM523: LiNi 1 / ) in which particles A having a mode diameter of 10 ⁇ m and particles B having a mode diameter of 3 ⁇ m are mixed at a volume ratio of 6: 4 as positive electrode active material particles. 2 Co 1/5 Mn 3/10 O 2 ) was prepared. In addition, acetylene black was used as the conductive agent, and polyvinylidene fluoride (PVDF) was used as the binder.
  • NCM523 LiNi 1 /
  • acetylene black was used as the conductive agent
  • PVDF polyvinylidene fluoride
  • a paste-like positive electrode mixture was prepared by adding an appropriate amount of N-methyl-2-pyrrolidone (NMP) to a mixture of positive electrode active material particles b, a conductive agent, and a binder in a mass ratio of 91: 5: 4 to adjust the viscosity.
  • NMP N-methyl-2-pyrrolidone
  • This positive electrode mixture was applied to both sides of an aluminum foil (positive electrode base material) and dried to prepare a positive electrode having a positive electrode mixture layer formed on the positive electrode base material.
  • the average thickness of the obtained positive electrode mixture layer was 140 ⁇ m.
  • a portion where the positive electrode base material was exposed was provided on the positive electrode without forming a positive electrode mixture layer, and the portion where the positive electrode base material was exposed and the positive electrode lead were joined.
  • Negative Electrode Graphite (graphite) was used as the negative electrode active material particles, styrene-butadiene rubber (SBR) was used as the binder, and carboxymethyl cellulose (CMC) was used as the thickener.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • An appropriate amount of water was added to a mixture of negative electrode active material particles, a binder and a thickener in a mass ratio of 95: 3: 2 to adjust the viscosity, and a paste-like negative electrode mixture was prepared.
  • a negative electrode was produced by applying this negative electrode mixture to both sides of a copper foil (negative electrode base material) and drying it. A portion where the negative electrode base material was exposed was provided on the negative electrode without forming a negative electrode mixture, and the portion where the negative electrode base material was exposed and the negative electrode lead were joined.
  • a polyethylene porous sheet having an average thickness of 15 ⁇ m was prepared.
  • the viscosity was adjusted by adding an appropriate amount of carboxymethyl cellulose (CMC) to a mixture of inorganic particles f (material: alumina, aspect ratio: 7, average particle diameter: 1.2 ⁇ m) and a binder at a mass ratio of 95: 5.
  • CMC carboxymethyl cellulose
  • a paste-like inorganic layer forming material was prepared. This inorganic layer forming material was applied to one side of the porous sheet and dried. As a result, an inorganic layer having an average thickness of 5 ⁇ m was formed on the surface of the porous sheet (resin layer) to obtain a separator.
  • Example 1 [Examples 2 to 4, Comparative Examples 1 to 6] Examples 2 to 4 and Examples 2 to 4 and the same as in Example 1 except that the types of positive electrode active material particles in the production of the positive electrode and the types of the inorganic particles in the production of the separator are as shown in Table 1.
  • Table 1 shows the mode diameter and content ratio of the particles contained in the positive electrode active material particles used, the cumulative 10% particle size (D10) and the cumulative 90% particle size (D90) of the positive electrode active material particles.
  • the packing density of the positive electrode mixture layer and the average particle size and aspect ratio of the inorganic particles used are also shown. These were measured by the method described above.
  • the positive electrode active material particles a to d used in Examples and Comparative Examples were measured by the above method, the positive electrode active material particles a had a particle size distribution having one peak, and the positive electrode active material particles b and c. And d were particle size distributions with two peaks.
  • positive electrode active material particles b, c or d having two or more peaks in the particle size distribution are used, and inorganic particles f or g having an average particle diameter of 1.2 ⁇ m or less are applied to the inorganic layer of the separator.
  • the electrical resistance between the positive and negative electrodes after heating is high. That is, in Examples 1 to 4, it can be seen that the decrease in resistance between the electrodes can be suppressed even when heat generation occurs.
  • Such an effect is obtained by using inorganic particles having an average particle diameter of 1.2 ⁇ m or less for the inorganic layer of the separator, which makes it difficult for the molten resin of the resin layer to flow out from the inorganic layer, and causes two or more peaks in the particle size distribution. It is presumed that the use of the particles as the positive electrode active material particles made it difficult for the molten resin and the inorganic particles to flow into the positive electrode mixture layer. That is, in Examples 1 to 4, it is presumed that the resin and inorganic particles of the separator remain between the positive electrode and the negative electrode for the above reasons even after heating, and the insulating property due to these remains.
  • the average particle diameter of the inorganic layer of the separator was 1.
  • the amount of increase in resistance after heating is particularly large by using inorganic particles of 2 ⁇ m or less.
  • the positive electrode active material particles b have a particle size (D10) having a cumulative degree of 10% of 3 ⁇ m or less and a particle size (D90) having a cumulative degree of 90% of 10 ⁇ m or more.
  • D10 particle size
  • D90 particle size
  • the resistance reduction suppressing effect exhibited by using inorganic particles having an average particle diameter of 1.2 ⁇ m or less in the inorganic layer of the separator can be remarkably exhibited. Recognize.
  • the resistance itself after heating is highest in Example 4. It is presumed that this is because the formed positive electrode mixture layer has a structure that makes it most difficult for molten resin and inorganic particles to penetrate.
  • the present invention can be applied to electronic devices such as personal computers and communication terminals, non-aqueous electrolyte secondary batteries used as power sources for automobiles, and the like.

Abstract

本発明の一態様は、活物質粒子を含む合材層を有する電極と、無機粒子を含み、上記合材層に対向する無機層を有するセパレータとを備え、上記活物質粒子が、体積基準の粒度分布において2つ以上のピークを有し、上記無機粒子の平均粒子径が、1.2μm以下である蓄電素子である。

Description

蓄電素子
 本発明は、蓄電素子に関する。
 リチウムイオン二次電池に代表される二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記二次電池は、一般的には、セパレータで電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解質を備え、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 蓄電素子においては、正常ではない取り扱いがされた場合などに、発熱が生じることがある。発熱が生じると、セパレータが溶融することにより、正極と負極とが接触し、短絡が生じる場合がある。特許文献1には、このような発熱に伴う短絡を防ぐために、非水二次電池において、熱可塑性樹脂を主体とする多孔質層に、フィラーを主体として含む耐熱多孔質層が設けられたセパレータを用いることが記載されている。
特開2013-254639号公報
 特許文献1に記載の非水二次電池によれば、セパレータの熱可塑性樹脂が溶融した場合であっても、耐熱多孔質層によって正極と負極との短絡が防止できるとされている。しかし、上記のような耐熱多孔質層が備わるセパレータを用いた場合であっても、発熱の際に正極と負極と間において電気抵抗の低下が生じる。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、正常ではない取り扱いがされて発熱が生じた場合も、電極間の電気抵抗が高い蓄電素子を提供することである。
 上記課題を解決するためになされた本発明の一態様は、活物質粒子を含む合材層を有する電極と、無機粒子を含み、上記合材層に対向する無機層を有するセパレータとを備え、上記活物質粒子が、体積基準の粒度分布において2つ以上のピークを有し、上記無機粒子の平均粒子径が、1.2μm以下である蓄電素子である。
 本発明によれば、正常では無い取り扱いがされて発熱が生じた場合も、電極間の電気抵抗が高い蓄電素子を提供することができる。
図1は、本発明の蓄電素子の一実施形態に係る二次電池を示す模式的断面図である。 図2は、本発明の蓄電素子の一実施形態に係る二次電池を示す模式的斜視図である。 図3は、本発明の蓄電素子の一実施形態に係る二次電池を複数個集合して構成した蓄電装置を示す模式図である。
 本発明の一態様は、活物質粒子を含む合材層を有する電極と、無機粒子を含み、上記合材層に対向する無機層を有するセパレータとを備え、上記活物質粒子が、体積基準の粒度分布において2つ以上のピークを有し、上記無機粒子の平均粒子径が、1.2μm以下である蓄電素子である。
 当該蓄電素子においては、正常では無い取り扱いがされて発熱が生じた場合も、電極間の電気抵抗が高い。すなわち、当該蓄電素子によれば、正常では無い取り扱いがされて発熱が生じた場合も、正極と負極との間の抵抗低下が抑制され、良好な絶縁性が十分に保たれる。このような効果が生じる理由は定かでは無いが、以下の理由が推測される。従来の樹脂製のセパレータを用いた場合は、発熱に伴って溶融したセパレータの樹脂が、多孔質状の合材層中に流れ込むため、正負極間で短絡が生じる。また、セパレータに無機層が設けられている場合であっても、発熱が生じた際に、無機層を形成する無機粒子が、溶融した樹脂と共に合材層中に流れ込むことなどにより、正極と負極とを十分には絶縁することができず、電気抵抗の低下が生じる。これに対し、当該蓄電素子においては、セパレータの無機層に、平均粒子径が1.2μm以下の無機粒子が用いられている。このように小さい粒径の無機粒子から形成された無機層は、孔径が比較的小さい多孔質層となっている。このため、溶融したセパレータの樹脂は、無機層によって保持されやすくなり、その結果、合材層にまで流れ込み難くなる。さらに、当該蓄電素子においては、電極の合材層に、粒度分布において2つ以上のピークを有する活物質粒子が用いられている。このような活物質粒子から形成された合材層においては、大粒子間の空隙が小粒子で埋められた、多孔度が比較的低い層となっている。このため、溶融したセパレータの樹脂や無機層の無機粒子は、合材層内の空隙に入り難くなる。このように、当該蓄電素子によれば、発熱によって溶融した樹脂や無機粒子が合材層の内部にまで流れ込み難い構造となっており、これにより、発熱が生じた場合の電極間の抵抗低下を抑制することができると推測される。
 ここで、活物質粒子の「粒度分布」は、以下の方法による測定値である。測定装置としてレーザー回折式粒度分布測定装置(SALD-2200、株式会社島津製作所製)、測定制御ソフトとしてWing SALD-2200を用いる。測定手法としては、散乱式の測定モードを採用し、活物質粒子を溶媒中に分散させた分散液を入れた測定用湿式セルを5分間超音波環境下に置いた後、装置にセットし、レーザー光を照射して測定を行い、散乱光分布を得る。得られた散乱光分布を対数正規分布により近似することで、粒度分布を得ることができる。
 また、無機粒子の「平均粒子径」は、走査型電子顕微鏡(SEM)を用いて測定できる。具体的には、下記の通りである。
(1)蓄電素子を解体して、セパレータを取り出した後、溶剤中に浸漬し、無機粒子を濾過により分離する。
(2)無機粒子をSEM(10000倍)で観察して得られた画像(平面画像)から、ランダムに粒子10個を選択する。
(3)選択した10個の粒子について粒界等を観察し、それぞれの粒子の長径R1と短径R2を求め、R1とR2の平均値をそれぞれの粒子の粒子径とする。なお、長径R1は、上記SEMの粒子画像における最も大きい径である。また、短径R2は、上記SEMの粒子画像における長径R1に垂直な方向の径である。
(4)上記で求めた、選択した10個の粒子の粒子径の平均値を、平均粒子径とする。
 上記無機粒子のアスペクト比が7以上であることが好ましい。無機層においてこのようにアスペクト比の高い無機粒子を用いることで、溶融したセパレータの樹脂がより無機層で保持されやすくなり、溶融した樹脂が、無機層から合材層へ流れ込み難くなる。また、無機粒子のアスペクト比が高い場合、この無機粒子自体も、合材層中へ入り込みにくい。すなわち、このようにアスペクト比の高い無機粒子を用いることで、発熱が生じた際の電極間の電気抵抗をより高めることができる。
 ここで、無機粒子の「アスペクト比」とは、以下の(1)~(3)により定義される値である。
(1)無機粒子が、3つの長さのパラメーター(r1、r2及びb)を有する。
(2)3つのパラメーターは、r1≧r2>bの関係を満たす。
(3)r1とr2との平均値をaとする場合、アスペクト比はa/bで表される。
 上記r1は無機粒子の長径、r2は無機粒子の短径、bは無機粒子の厚さに相当する。無機粒子のアスペクト比の測定方法としては、以下の方法を挙げることができる。SOC=0%(放電末期状態)まで放電した蓄電素子を、露点-20℃以下の環境下にて解体し、セパレータを取り出す。セパレータを取り出した後、溶剤中に浸漬し、無機粒子を濾過により分離する。無機粒子を光学顕微鏡で観察し、サイズの大きい上位20個の無機粒子のr1、r2及びbをそれぞれ測定した上で、r1、r2及びbの各平均値を算出する。なお、平面視及び側面視から各無機粒子を観察し、平面視及び側面視において同じ無機粒子を測定する。また、r1は、平面視の観察における最も大きい径である。r2は、平面視の観察におけるr1に垂直な方向の径である。bは、側面視の観察における最も大きい長さ(厚さ)である。
 上記活物質粒子が、モード径の異なる粒子Aと粒子Bとを含み、上記粒子Bのモード径に対する上記粒子Aのモード径である粒径比(A/B)が3以上であり、上記粒子Bの含有量に対する上記粒子Aの含有量である含有量比(A/B)が4/6以上であることが好ましい。合材層の活物質粒子が、このような粒径比及び含有量比である2種の粒子を含む場合、合材層が、溶融したセパレータの樹脂や無機粒子が特に流れ込み難い、良好な充填状態となる。従って、このような場合、発熱が生じた際の電極間の電気抵抗をより高めることができる。
 ここで、「活物質粒子が体積基準の粒度分布において2つのピークを有する」場合、「活物質粒子がモード径の異なる粒子Aと粒子Bとを含み、上記粒度分布において、粒径の大きい側のピークに対応する粒径が、粒子Aのモード径(最頻径)であり、粒径の小さい側のピークに対応する粒径が、粒子Bのモード径(最頻径)である」と定義する。また、上記含有量比は、体積比であり、体積基準の粒度分布から求められる。含有量比を求める際、活物質の粒度分布において隣り合うピーク間に鞍部を有する場合、すなわち各粒子種の粒度分布に重なりがある場合、この鞍部に対応する粒径を粒子種間の境界とする。なお、活物質粒子が、体積基準の粒度分布において3つ以上のピークを有する場合、ピーク高さが最も高いピークに対応する粒子を粒子A、粒子Aよりも粒径が小さいピークに対応する粒子のうち、ピーク高さがもっとも高い粒子を粒子Bとする。
 上記活物質粒子の累積度10%の粒径(D10)が3μm以下であり、累積度90%の粒径(D90)が10μm以上であることが好ましい。活物質粒子がこのような条件を満たすことは、この活物質粒子の粒度の分布が広いことを意味する。このような活物質粒子が用いられている場合、セパレータの無機層に平均粒子径が1.2μm以下の無機粒子を用いることにより発揮される本発明の効果が特に顕著に生じる。
 なお、活物質粒子の「粒径(D10)」及び「粒径(D90)」とは、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が10%及び90%となる値を意味する。具体的には、上述の活物質粒子の体積基準の粒度分布に基づき、累積度10%にあたる粒子径を粒径(D10)、累積度90%にあたる粒子径を粒径(D90)とする。
 上記合材層の充填密度が2.8g/cm以上であることが好ましく、3.2g/cmがより好ましい。合材層がこのように比較的密な層である場合、溶融したセパレータの樹脂や無機粒子が合材層の内部により流れ込み難くなり、発熱の際の電極間の電気抵抗をより高めることができる。
 なお、合材層の「充填密度」とは、合材層の質量を合材層の見かけの体積で除した値をいう。見かけの体積とは、空隙部分を含む体積をいい、合材層の厚さと面積との積として求めることができる。
<二次電池(蓄電素子)>
 本発明の一実施形態に係る蓄電素子は、電極である正極及び負極、セパレータ、並びに電解質を有する。以下、蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重ね合わされた電極体を形成する。この電極体はケースに収納され、このケース内に非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。また、上記ケースとしては、二次電池のケースとして通常用いられる公知の金属ケース、樹脂ケース等を用いることができる。
 本発明の一実施形態としての二次電池10を図1に模式的に示す。二次電池10は、この順に重ねあわされた正極11、セパレータ12及び負極13を有する。なお、図1においては、正極11とセパレータ12との間、及びセパレータ12と負極13との間は、便宜上離間して図示しているが、これらは互いに接触していてよい。また、図1においては、ケース等、二次電池10の他の構成要素の記載は省略している。
(正極)
 正極11は、正極基材14、及びこの正極基材14に積層される正極合材層15を有する。正極11は、上記積層構造のシートである。
 正極基材14は、導電性を有する。正極基材14の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材14の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材14としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085等が例示できる。
 正極合材層15は、正極活物質粒子を含む。正極合材層15は、必要に応じて導電剤、バインダー(結着剤)、増粘剤、フィラー等の任意成分を含む。正極合材層15は、通常、これらの各成分を含む正極合材のスラリーを正極基材14に塗工し、乾燥させることで形成することができる。なお、プレス等によって、正極合材層15の充填密度等を調整することができる
 上記正極活物質粒子は、正極活物質の粒子である。正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα-NaFeO型結晶構造を有するLiCoO,LiNiO,LiMnO,LiNiαCo(1-α),LiNiαMnβCo(1-α-β)等、スピネル型結晶構造を有するLiMn,LiNiαMn(2-α)等)、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO,LiMnPO,LiNiPO,LiCoPO,Li(PO,LiMnSiO,LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。
 上記正極活物質粒子は、体積基準の粒度分布において2つ以上のピークを有する。このピーク数の上限としては、特に限定されず、4であってもよく、3であってもよい。このピーク数は2であってよい。
 上記正極活物質粒子は、モード径の異なる粒子Aと粒子Bとを含むことが好ましい。これらのモード径は、上記粒度分布におけるピーク位置の径に対応する。粒子Aを構成する正極活物質の種類と、粒子Bを構成する正極活物質の種類とは、同一であっても異なっていてもよい。以下、粒子Aのモード径が、粒子Bのモード径より大きいとして説明する。
 粒子Bのモード径に対する粒子Aのモード径である粒径比(A/B)の下限は、3が好ましく、3.3がより好ましく、4がさらに好ましい場合もある。粒径比(A/B)を上記下限以上とすることで、より空隙の小さい正極合材層15を形成することができ、溶融した樹脂や無機粒子の侵入をより抑えることができる。一方、この粒径比(A/B)の上限としては、6が好ましく、5がより好ましく、4がさらに好ましい場合もある。粒径比(A/B)を上記上限以下とすることで、適度な多孔性を確保でき、電池特性を高めることができる。また、粒径比(A/B)を上記上限以下とすることで、発熱の際の電極間の抵抗低下抑制効果が高めることができる可能性がある。
 粒子Aのモード径の下限としては、5μmが好ましく、8μmがより好ましく、10μmがさらに好ましく、15μmがよりさらに好ましい場合もある。一方、粒子Aのモード径の上限としては、30μmが好ましく、20μmがより好ましく、17μmがさらに好ましく、15μmがよりさらに好ましい場合もある。粒子Bのモード径の下限としては、1μmが好ましく、2μmがより好ましく、3μmがさらに好ましく、3.5μmがよりさらに好ましい場合もある。一方、粒子Bのモード径の上限としては、8μmが好ましく、5μmがより好ましく、4μmがさらに好ましく、3.5μmがよりさらに好ましい場合もある。粒子A及び粒子Bのモード径が上記範囲であることで、正極合材層15の充填の程度や多孔度がより好適な状態となる。
 粒子Bの含有量に対する上記粒子Aの含有量である含有量比(A/B)の下限は、体積比で4/6が好ましく、5/5がより好ましく、6/4がさらに好ましい。一方、この含有量比(A/B)の上限は、体積比で9/1が好ましく、8/2がより好ましく、7/3がさらに好ましく、6.5/3.5がよりさらに好ましい。粒子Bの含有量に対する上記粒子Aの含有量である含有量比(A/B)が上記範囲であることで、正極合材層15の充填の程度や多孔度がより好適な状態となる。
 上記正極活物質粒子の累積度10%の粒径(D10)の上限は、例えば5μm、4μm又は3.5μmであってもよいが、3μmが好ましい。この累積度90%の粒径(D90)の下限は10μmが好ましく、15μmがより好ましい。D10が小さく、D90が大きいことは、粒度分布が広いことを意味する。正極活物質粒子の粒度分布が比較的広い場合、セパレータ12の無機層に平均粒子径が1.2μm以下の無機粒子を用いることにより発揮される、発熱時の抵抗低下抑制効果を顕著に発揮することができる。なお、正極活物質粒子の累積度10%の粒径(D10)の下限は、1μmが好ましく、2μmがより好ましい。正極活物質粒子の累積度90%の粒径(D90)の上限は、50μmが好ましく、30μmがより好ましい。このような粒度分布を有する正極活物質粒子を用いることで、正極合材層15の充填の程度や多孔度がより好適な状態となり、発熱時の抵抗低下抑制効果等を高めることができる。
 正極合材層15における正極活物質粒子の含有量の下限としては、80質量%が好ましく、90質量%がより好ましい。一方、この含有量の上限としては、99質量%が好ましく、96質量%がより好ましい。正極合材層15における正極活物質粒子の含有量が上記範囲内である場合、正極合材層15の充填の程度や多孔度がより好適な状態となり、発熱時の抵抗低下抑制効果等を高めることができる。
 上記導電剤としては、電池性能に悪影響を与えない導電性材料であれば特に限定されない。このような導電剤としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、金属、導電性セラミックス等が挙げられる。導電剤の形状としては、粉状、繊維状、チューブ状等が挙げられる。
 上記バインダー(結着剤)としては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。
 上記フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、マグネシア、ゼオライト、ガラス、アルミノケイ酸塩等が挙げられる。
 正極合材層15の充填密度の下限としては、2.8g/cmが好ましく、3.2g/cmがより好ましい。正極合材層15がこのように比較的密である場合、溶融したセパレータ12の樹脂や無機粒子が正極合材層15の内部により流れ込み難くなる。一方、正極合材層15の充填密度の上限としては、3.8g/cmが好ましく、3.4g/cmがより好ましい。正極合材層15の充填密度を上記上限以下とすることで、十分なイオン伝導性を確保することなどができる。なお、この充填密度は、粒子A、Bの粒径や含有量比、正極合材層15に対するプレスなどによって調整することができる。
(セパレータ)
 セパレータ12は、正極11の正極合材層15上に配置されている。また、セパレータ12は、正極11と負極13との間に配置されている。セパレータ12は、樹脂層16、及びこの樹脂層16に積層される無機層17を有する。無機層17は、樹脂層16における正極11側に設けられていてもよい。セパレータ12は、上記積層構造のシートである。
 樹脂層16は、樹脂を主成分とする多孔質性の樹脂フィルムである。「主成分」とは、質量基準で最も含有量が多い成分をいう。なお、織布又は不織布も多孔質性の樹脂フィルムに含まれる。樹脂層16の樹脂としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、ポリエチレンがより好ましい。また、耐酸化分解性の観点からは、例えばポリイミドやアラミド等が好ましい。また、これらの樹脂を複合してもよい。この樹脂は、熱可塑性樹脂を好適に用いることができる。熱可塑性樹脂である場合、発熱の際のシャットダウン機能が効果的に生じる。一方、熱可塑性樹脂である場合、発熱に伴い溶融した樹脂の流出が生じやすくなるため、本発明を採用する利点が大きい。
 樹脂層16における樹脂の含有量の下限としては、60質量%が好ましく、80質量%がより好ましく、95質量%がさらに好ましい。この含有量の上限としては、100質量%であってよい。
(無機層)
 無機層17は、正極合材層15に対向して設けられている。すなわち、無機層17は、樹脂層16と正極合材層15との間に存在する。
 無機層17は、無機粒子を含む。無機層17は、通常、無機粒子を結着させるバインダーをさらに含む。無機層17は、多孔質状であり、これによりイオン伝導性を確保することができる。無機層17は、例えば、樹脂層16の表面に無機層17の各成分と分散媒を含む無機層形成材料を塗工し、乾燥させることによって形成することができる。
 無機層17中の無機粒子の平均粒子径の上限は、1.2μmであり、0.7μmがより好ましいこともある。この無機粒子の平均粒子径が上記上限以下であることで、無機層17は比較的密な多孔質層となる。このため、樹脂層16から溶融した樹脂が無機層17で保持されやすく、発熱が生じた場合の電極間の抵抗低下を抑制することができる。
 一方、上記無機粒子の平均粒子径の下限としては、0.1μmが好ましく、0.3μmがより好ましく、0.5μm、0.8μm又は1.0μmがさらに好ましい場合もある。無機粒子の平均粒子径を上記下限以上とすることで、良好なイオン伝導性を確保することができる。また、無機粒子の平均粒子径を上記下限以上とすることで、発熱が生じた場合にも、無機粒子が正極合材層15内に流れ込みにくくなる。このため、発熱が生じた場合も、電極間の良好な絶縁性を確保し、抵抗低下をより抑制することができる。
 上記無機粒子のアスペクト比の下限としては、例えば2であってもよいが、5が好ましく、7がより好ましい。このようにアスペクト比の高い無機粒子を用いることで、発熱が生じた場合の電極間の抵抗低下をより抑制することができる。なお、このアスペクト比の上限としては、例えば100であり、50であってよい。
 上記無機粒子は、通常、実質的に導電性を有さない粒子である。上記無機粒子としては、シリカ、アルミナ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の無機酸化物、窒化ケイ素、窒化チタン、窒化ホウ素等の無機窒化物、その他、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ベーマイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、アルミノシリケート、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂、ガラス等を挙げることができる。なお、アスペクト比の高い無機粒子としては、カオリナイト、ベーマイト等を挙げることができる。
 無機層17のバインダーは、無機粒子を固定でき、電解質に溶解せず、かつ使用範囲で電気化学的に安定であるものが、通常用いられる。上記バインダーとしては、正極合材層15に用いられるバインダーとして上述したもの等を挙げることができる。
 無機層17の平均厚さとしては特に限定されないが、下限としては0.1μmが好ましく、0.2μmがより好ましく、0.5μm、1μm又は2μmがさらに好ましい。無機層17の平均厚さを上記下限以上とすることで、溶融した樹脂層16の樹脂を特に十分に保持することができる。同様の観点から、樹脂層16の平均厚さに対する無機層17の平均厚さの比の下限としては、0.1が好ましく、0.2がより好ましい。一方、無機層17の平均厚さの上限としては、10μmが好ましく、6μmがより好ましい。無機層17の平均厚さを上記上限以下とすることで、二次電池10の小型化、高エネルギー密度化を図ることができる。
(負極)
 負極13は、負極基材18、及びこの負極基材18に積層される負極合材層19を有する。負極13は、上記積層構造のシートである。
 負極基材18は、導電性を有する。負極基材18は、正極基材14と同様の構成とすることができるが、材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。つまり、負極基材18としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。
 負極合材層19は、負極活物質粒子を含む。負極合材層19は、必要に応じて導電剤、バインダー(結着剤)、増粘剤、フィラー等の任意成分を含む。導電剤、結着剤、増粘剤、フィラー等の任意成分は、正極合材層15と同様のものを用いることができる。負極合材層19は、通常、これらの各成分を含む負極合材のスラリーを負極基材18に塗工し、乾燥させることで形成することができる。
 上記負極活物質粒子は、負極活物質の粒子である。負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材質が用いられる。具体的な負極活物質としては、例えばSi、Sn等の金属又は半金属;Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;ポリリン酸化合物;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。
(非水電解質)
 非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
 上記非水溶媒としては、一般的な蓄電素子用の非水電解質の非水溶媒として通常用いられる公知の非水溶媒を用いることができる。上記非水溶媒としては、環状カーボネート、鎖状カーボネート、エステル、エーテル、アミド、スルホン、ラクトン、ニトリル等を挙げることができる。これらの中でも、環状カーボネート又は鎖状カーボネートを少なくとも用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比(環状カーボネート:鎖状カーボネート)としては、特に限定されないが、例えば5:95以上50:50以下とすることが好ましい。
 上記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、カテコールカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等を挙げることができる。
 上記鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート等を挙げることができる。
 上記電解質塩としては、一般的な蓄電素子用の非水電解質の電解質塩として通常用いられる公知の電解質塩を用いることができる。上記電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を挙げることができるが、リチウム塩が好ましい。
 上記リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のフッ化炭化水素基を有するリチウム塩などを挙げることができる。
 上記非水電解質は、本発明の効果を阻害しない限り、上記非水溶媒、及び電解質塩以外の他の成分を含有していてもよい。上記他の成分としては、一般的な蓄電素子用非水電解質に含有される各種添加剤を挙げることができる。
(二次電池の製造方法)
 当該二次電池の製造方法は、特に限定されない。当該二次電池の製造方法は、例えば、正極及び負極を作製する工程、非水電解質を調製する工程、正極及び負極を、セパレータを介して積層又は巻回することにより交互に重畳された電極体を形成する工程、正極及び負極(電極体)を電池容器に収容する工程、並びに上記電池容器に上記非水電解質を注入する工程を備える。上記注入は、公知の方法により行うことができる。注入後、注入口を封止することにより二次電池を得ることができる。
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。
 上記実施の形態においては、体積基準の粒度分布において2つ以上のピークを有する活物質粒子を含む合材層を有する電極が、正極である場合を説明したが、この場合、正極の正極合材層と、セパレータの無機層とが対向するように、正極とセパレータとが配設される。また、このような電極が負極であってもよい。すなわち、負極が有する負極合材層に含まれる負極活物質粒子が、体積基準の粒度分布において2つ以上のピークを有していてもよい。なお、この場合、負極の負極合材層と、セパレータの無機層とが対向するように、負極とセパレータとが配設されていてよい。また、正極及び負極の双方の活物質層が、粒度分布において2つ以上のピークを有する活物質粒子を含んでいてもよい。この場合、セパレータの両面に無機層が設けられていてよい。
 また、活物質粒子は、モード径の異なる3種以上の粒子から構成されていてもよい。但し、粒度分布の制御のしやすさなどから、モード径の異なる2種の粒子(粒子A及び粒子B)の混合物であることが好ましい。
 上記実施の形態においては、蓄電素子が非水電解質二次電池である形態を説明したが、その他の蓄電素子であってもよい。その他の蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)や、電解質が水を含む二次電池などが挙げられる。その他、例えば正極基材と正極合材層との間や、負極基材と負極合材層との間に、中間層が設けられていてもよい。このような中間層において、例えば炭素粒子等の導電性粒子を含むことで基材と合材層との接触抵抗を低減することができる。
 図2に、本発明に係る蓄電素子の一実施形態である矩形状の二次電池20の概略図を示す。なお、同図は、電池容器内部を透視した図としている。図2に示す二次電池20は、電極体21が電池容器22に収納されている。電極体21は、正極と負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード23’を介して正極端子23と電気的に接続され、負極は、負極リード24’を介して負極端子24と電気的に接続されている。
 さらに、本発明に係る蓄電素子の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の蓄電素子を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図3に示す。図3において、蓄電装置30は、複数の蓄電ユニット25を備えている。それぞれの蓄電ユニット25は、複数の蓄電素子(二次電池20)を備えている。上記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(1)正極の製造
 正極活物質粒子として、モード径が10μmの粒子Aとモード径が3μmの粒子Bとが6:4の体積比で混合された正極活物質粒子b(NCM523:LiNi1/2Co1/5Mn3/10)を用意した。また、導電剤としてアセチレンブラック、及びバインダーとしてポリフッ化ビニリデン(PVDF)を用いた。正極活物質粒子b、導電剤、及びバインダーを91:5:4の質量比で混合した混合物にN-メチル-2-ピロリドン(NMP)を適量加えて粘度を調整し、ペースト状の正極合材を作製した。この正極合材をアルミニウム箔(正極基材)の両面に塗布して乾燥することにより、正極基材上に正極合材層が形成された正極を作製した。なお、得られた正極合材層の平均厚さは140μmであった。正極には正極合材層を形成しないで、正極基材が露出した部分を設け、正極基材が露出した部分と正極リードとを接合した。
(2)負極の製造
 負極活物質粒子としてグラファイト(黒鉛)、バインダーとしてスチレン-ブタジエンゴム(SBR)及び増粘剤としてカルボキシメチルセルロース(CMC)用いた。負極活物質粒子、バインダー及び増粘剤を95:3:2の質量比で混合した混合物に水を適量加えて粘度を調整し、ペースト状の負極合材を作製した。この負極合材を銅箔(負極基材)の両面に塗布して乾燥させることにより負極を作製した。負極には負極合材を形成しないで、負極基材が露出した部分を設け、負極基材が露出した部分と負極リードとを接合した。
(3)セパレータの製造
 平均厚み15μmのポリエチレン製の多孔性シートを用意した。一方、無機粒子f(材質:アルミナ、アスペクト比:7、平均粒子径:1.2μm)及びバインダーを95:5の質量比で混合した混合物にカルボキシメチルセルロース(CMC)を適量加えて粘度を調整し、ペースト状の無機層形成材料を調製した。この無機層形成材料を多孔性シートの片面に塗工し、乾燥させた。これにより、多孔性シート(樹脂層)の表面に平均厚みが5μmの無機層を形成し、セパレータを得た。
(4)電極体の製造
 得られた正極(3.0cm×3.0cm)、セパレータ(3.5cm×3.5cm)及び負極(3.2cm×3.2cm)をこの順に積層し、電極体を得た。なお、正極の正極合材層とセパレータの無機層とが対向するようにこれらを重ね合わせた。
[実施例2~4、比較例1~6]
 正極の製造の際の正極活物質粒子の種類、及びセパレータの製造の際の無機粒子の種類を表1に示すとおりとしたこと以外は、実施例1と同様にして、実施例2~4及び比較例1~6の各電極体を得た。表1には、用いた正極活物質粒子に含まれる粒子のモード径及び含有量比、正極活物質粒子の累積度10%粒径(D10)及び累積度90%粒径(D90)、得られた正極合材層の充填密度、並びに用いた無機粒子の平均粒子径及びアスペクト比をあわせて示す。これらは、上記した方法により測定した。実施例及び比較例で用いた正極活物質粒子a~dの粒度分布を上記した方法により測定したところ、正極活物質粒子aは1つのピークを有する粒度分布であり、正極活物質粒子b、c及びdは2つのピークを有する粒度分布であった。
[評価]
(加熱後の抵抗測定)
 得られた各電極体について、2枚のSUS製の板で挟み、0.3N・mのトルクで圧迫し、200℃で1時間加熱した。加熱後、各電極体における正極と負極との間の電気抵抗を抵抗計RM3545(日置電機株式会社製)により測定した。測定結果を表1に示す。また、表1においては、同じ活物質粒子を用いた実施例及び比較例間において比較した、平均粒子径が1.8μmである無機粒子eを用いた比較例を基準とした抵抗増加量を示す。すなわち、例えば活物質粒子aを用いた比較例1~3においては、比較例1を基準とした抵抗増加量を示している。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示されるように、粒度分布において2つ以上のピークを有する正極活物質粒子b、c又はdを用い、セパレータの無機層に平均粒子径が1.2μm以下の無機粒子f又はgを用いた実施例1~4は、加熱後の正負極間の電気抵抗が高い。すなわち、実施例1~4においては、発熱が生じた場合も、電極間の抵抗低下が抑制できることがわかる。このような効果は、セパレータの無機層に平均粒子径が1.2μm以下の無機粒子を用いることで、樹脂層の溶融樹脂が無機層から流出し難くなり、粒度分布において2つ以上のピークを有する粒子を正極活物質粒子に用いることで、溶融樹脂や無機粒子が正極合材層内に流れ込み難くなったことによると推測される。すなわち、実施例1~4においては、加熱後においても、上記のような理由によりセパレータの樹脂及び無機粒子が正極と負極との間に残り、これらによる絶縁性が維持されると推測される。
 また、表1の「抵抗増加量」の値に着目すると、実施例1~4の中でも、正極活物質粒子bを用いた実施例1、2は、セパレータの無機層に平均粒子径が1.2μm以下の無機粒子を用いることによる、加熱後の抵抗増加量が特に大きい。正極活物質粒子bは、累積度10%の粒径(D10)が3μm以下、累積度90%の粒径(D90)が10μm以上である。このような正極活物質粒子が用いられている場合、セパレータの無機層に平均粒子径が1.2μm以下の無機粒子を用いることにより発揮される、抵抗低下抑制効果が顕著に発揮されることがわかる。また、実施例1~4の中で、加熱後の抵抗自体は、実施例4が最も高い。これは、形成された正極合材層が、最も溶融樹脂や無機粒子を侵入させ難い構造となっているためと推測される。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質二次電池などに適用できる。
10、20 二次電池
11 正極
12 セパレータ
13 負極
14 正極基材
15 正極合材層
16 樹脂層
17 無機層
18 負極基材
19 負極合材層
21 電極体
22 電池容器
23 正極端子
23’正極リード
24 負極端子
24’負極リード
25 蓄電ユニット
30 蓄電装置
 

Claims (6)

  1.  活物質粒子を含む合材層を有する電極と、
     無機粒子を含み、上記合材層に対向する無機層を有するセパレータと
     を備え、
     上記活物質粒子が、体積基準の粒度分布において2つ以上のピークを有し、
     上記無機粒子の平均粒子径が、1.2μm以下である蓄電素子。
  2.  上記無機粒子のアスペクト比が7以上である請求項1の蓄電素子。
  3.  上記活物質粒子が、モード径の異なる粒子Aと粒子Bとを含み、
     上記粒子Bのモード径に対する上記粒子Aのモード径である粒径比(A/B)が3以上であり、
     上記粒子Bの含有量に対する上記粒子Aの含有量である含有量比(A/B)が4/6以上である請求項1又は請求項2の蓄電素子。
  4.  上記活物質粒子の累積度10%の粒径(D10)が3μm以下であり、累積度90%の粒径(D90)が10μm以上である請求項1乃至請求項3の蓄電素子。
  5.  上記合材層の充填密度が2.8g/cm以上である、請求項1乃至請求項4の蓄電素子。
  6.  上記合材層の充填密度が3.2g/cm以上である、請求項1乃至請求項5の蓄電素子。
     
     
PCT/JP2020/012642 2019-03-29 2020-03-23 蓄電素子 WO2020203400A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080025728.3A CN113950757A (zh) 2019-03-29 2020-03-23 蓄电元件
JP2021511469A JP7424368B2 (ja) 2019-03-29 2020-03-23 蓄電素子
US17/598,506 US20220190321A1 (en) 2019-03-29 2020-03-23 Energy storage device
EP20785400.1A EP3930042A4 (en) 2019-03-29 2020-03-23 POWER STORAGE ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068528 2019-03-29
JP2019-068528 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203400A1 true WO2020203400A1 (ja) 2020-10-08

Family

ID=72667722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012642 WO2020203400A1 (ja) 2019-03-29 2020-03-23 蓄電素子

Country Status (5)

Country Link
US (1) US20220190321A1 (ja)
EP (1) EP3930042A4 (ja)
JP (1) JP7424368B2 (ja)
CN (1) CN113950757A (ja)
WO (1) WO2020203400A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230052527A (ko) * 2021-10-13 2023-04-20 주식회사 제라브리드 2차전지의 안정성과 사이클 수명을 향상시키기 위한 분리막

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254639A (ja) 2012-06-07 2013-12-19 Hitachi Maxell Ltd 非水二次電池
JP2016048668A (ja) * 2013-12-17 2016-04-07 日立マクセル株式会社 リチウムイオン二次電池
JP2017123269A (ja) * 2016-01-07 2017-07-13 三菱製紙株式会社 リチウムイオン二次電池用セパレータ電極一体型蓄電素子及びそれを用いてなるリチウムイオン二次電池
JP2019029205A (ja) * 2017-07-31 2019-02-21 パナソニック株式会社 非水電解質二次電池用正極、及び非水電解質二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430349B (zh) * 2011-03-16 2015-11-25 丰田自动车株式会社 非水电解质二次电池和车辆
CN104584279B (zh) * 2012-09-11 2018-08-07 株式会社杰士汤浅国际 非水电解质二次电池
HUE048838T2 (hu) * 2012-11-30 2020-08-28 Lg Chemical Ltd Elkülönítõ szekunder telephez, amely tartalmazza különbözõ felületi jellemzõkkel bíró szervetlen részecskék kettõs porózus rétegét, az ezt tartalmazó szekunder telep, és eljárás az elkülönítõ elkészítéséhez
JP7011890B2 (ja) * 2016-09-26 2022-01-27 株式会社Gsユアサ 蓄電素子
CN108448033A (zh) * 2017-02-16 2018-08-24 帝人株式会社 非水系二次电池用隔膜和非水系二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254639A (ja) 2012-06-07 2013-12-19 Hitachi Maxell Ltd 非水二次電池
JP2016048668A (ja) * 2013-12-17 2016-04-07 日立マクセル株式会社 リチウムイオン二次電池
JP2017123269A (ja) * 2016-01-07 2017-07-13 三菱製紙株式会社 リチウムイオン二次電池用セパレータ電極一体型蓄電素子及びそれを用いてなるリチウムイオン二次電池
JP2019029205A (ja) * 2017-07-31 2019-02-21 パナソニック株式会社 非水電解質二次電池用正極、及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930042A4

Also Published As

Publication number Publication date
EP3930042A1 (en) 2021-12-29
US20220190321A1 (en) 2022-06-16
EP3930042A4 (en) 2023-07-19
JP7424368B2 (ja) 2024-01-30
CN113950757A (zh) 2022-01-18
JPWO2020203400A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
CN103872385B (zh) 非水电解质二次电池
KR102012626B1 (ko) 비수 전해액 이차 전지
KR101846767B1 (ko) 비수 전해질 2차 전지
US20220302436A1 (en) Electrode, energy storage device, and method for manufacturing electrode
JP5999433B2 (ja) 非水電解液二次電池及びその製造方法
WO2020203400A1 (ja) 蓄電素子
US20200220176A1 (en) Electrode, energy storage device, and method for manufacturing electrode
KR101905061B1 (ko) 리튬 이온 이차 전지
JP7409132B2 (ja) 非水電解質蓄電素子
CN111435729B (zh) 锂离子二次电池
JP2018078029A (ja) 負極及び非水電解質蓄電素子
JP7103344B2 (ja) 非水電解質蓄電素子
JP7230798B2 (ja) 非水電解質蓄電素子及びその製造方法
JP6618385B2 (ja) リチウムイオン二次電池
JP6618386B2 (ja) リチウムイオン二次電池
JP7451995B2 (ja) 蓄電素子
WO2023276863A1 (ja) 非水電解質蓄電素子
JP6984590B2 (ja) 蓄電素子
WO2018180829A1 (ja) 蓄電素子
JP6747191B2 (ja) 蓄電素子
WO2017159674A1 (ja) 蓄電素子
WO2018056280A1 (ja) 非水電解質蓄電素子用負極、及び非水電解質蓄電素子
JP2021022543A (ja) 蓄電素子
JP2020077614A (ja) 電極及び電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020785400

Country of ref document: EP

Effective date: 20210921