WO2020202814A1 - 圧電振動デバイス - Google Patents

圧電振動デバイス Download PDF

Info

Publication number
WO2020202814A1
WO2020202814A1 PCT/JP2020/005308 JP2020005308W WO2020202814A1 WO 2020202814 A1 WO2020202814 A1 WO 2020202814A1 JP 2020005308 W JP2020005308 W JP 2020005308W WO 2020202814 A1 WO2020202814 A1 WO 2020202814A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
electrodes
sealing member
electrode
integrated circuit
Prior art date
Application number
PCT/JP2020/005308
Other languages
English (en)
French (fr)
Inventor
宏樹 吉岡
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to CN202080006889.8A priority Critical patent/CN113228260B/zh
Priority to US17/429,914 priority patent/US20220216847A1/en
Publication of WO2020202814A1 publication Critical patent/WO2020202814A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape

Definitions

  • the present invention relates to a piezoelectric vibration device used in various electronic devices such as communication devices.
  • piezoelectric vibrators and piezoelectric oscillators are widely used as piezoelectric vibration devices.
  • a temperature-compensated piezoelectric oscillator that compensates for the frequency-temperature characteristics of a piezoelectric oscillator is widely used as a frequency source for portable communication devices whose temperature environment changes.
  • the temperature-compensated piezoelectric oscillator is equipped with an integrated circuit element with a built-in temperature sensor and temperature compensation circuit.
  • a compensation voltage is generated to control the oscillation frequency based on the detection temperature of the temperature sensor built in the integrated circuit element (see, for example, Patent Document 1).
  • a surface mount type temperature compensation type piezoelectric oscillator its external connection terminal is bonded to an external circuit board using a bonding material such as solder and mounted.
  • a bonding material such as solder and mounted.
  • the integrated circuit element is directly connected to the external connection terminal via internal wiring or the like.
  • the piezoelectric vibrator is connected to the integrated circuit element via internal wiring or the like, and is not directly connected to the external connection terminal.
  • the heat from the heat source of the external circuit board conducted to the external connection terminal of the temperature-compensated piezoelectric oscillator is rapidly conducted to the integrated circuit element via the external connection terminal having good thermal conductivity and the internal wiring. Will be done. Therefore, the gradient of the temperature rise of the integrated circuit element is steeper than the gradient of the temperature rise of the piezoelectric vibrator. Therefore, the temperature difference between the integrated circuit element and the piezoelectric vibrator becomes large. Until this temperature difference is reduced and the integrated circuit element and the piezoelectric vibrator reach a thermal equilibrium state, accurate temperature compensation becomes difficult, and frequency fluctuation, so-called frequency drift, occurs.
  • This frequency drift occurs not only when the energization of the electronic component that is the heat source mounted on the external circuit board is started, but also when the energization of the electronic component is stopped. That is, when the energization of the electronic component that is the heat source mounted on the external circuit board is stopped, the heat from the electronic component is not conducted to the temperature-compensated piezoelectric oscillator, so that the temperature of the temperature-compensated piezoelectric oscillator Decreases. At this time, the heat of the integrated circuit element is quickly conducted to the external connection terminal via the internal wiring or the like having good thermal conductivity and dissipated. Therefore, the gradient of the temperature drop of the integrated circuit element is steeper than the gradient of the temperature drop of the piezoelectric vibrator. Therefore, the temperature difference between the integrated circuit element and the piezoelectric vibrator becomes large. Frequency drift occurs until this temperature difference is reduced and the integrated circuit element and the piezoelectric vibrator reach a thermal equilibrium state.
  • the present invention has been made in view of the above points, and allows the temperature difference between the piezoelectric vibrator and the integrated circuit element generated by heat from an external circuit board on which the piezoelectric vibration device is mounted.
  • the purpose is to suppress it.
  • the piezoelectric vibration device of the present invention has a piezoelectric vibrator having a plurality of external connection terminals and a plurality of mounting electrodes, and a plurality of mounting terminals connected to the plurality of mounting electrodes, and the piezoelectric vibration A piezoelectric vibration device including an integrated circuit element mounted on a child.
  • the piezoelectric vibrator includes a piezoelectric diaphragm in which excitation electrodes are formed on both main surfaces thereof, and a first sealing member that covers and seals one main surface side of both main surfaces of the piezoelectric diaphragm.
  • the piezoelectric diaphragm is provided with a second sealing member that covers and seals the other main surface side of both main surfaces.
  • a pair of mounting electrodes are electrically connected to the excitation electrodes formed on both main surfaces thereof, and the remaining plurality of mounting electrodes are connected to the plurality of external connections. It is electrically connected to each terminal,
  • the remaining plurality of mounting electrodes each include a wiring pattern for electrically connecting the plurality of external connection terminals and the plurality of mounting terminals of the integrated circuit element.
  • the wiring pattern of at least one mounting electrode of the remaining plurality of mounting electrodes has a narrow constriction.
  • the remaining plurality of mounting electrodes other than the pair of mounting electrodes connected to the excitation electrodes on both main surfaces of the piezoelectric diaphragm are each of a plurality of external connection terminals and a plurality of integrated circuit elements. Each has a wiring pattern that electrically connects to the mounting terminals.
  • the wiring pattern of at least one mounting electrode of the remaining plurality of mounting electrodes has a narrow constriction that hinders heat conduction. Therefore, when the heat generated by the heat source of the external circuit board on which the piezoelectric vibration device is mounted is conducted from the external connection terminal of the piezoelectric vibration device to the integrated circuit element via the wiring pattern, the heat is transferred. Conduction can be blocked by constrictions in the wiring pattern.
  • the gradient of the temperature rise of the integrated circuit element can be made gentle, the temperature difference between the integrated circuit element and the piezoelectric vibrator can be suppressed, and the integrated circuit element and the piezoelectric vibrator can be quickly brought into a thermal equilibrium state. ..
  • the heat generation of the heat source of the external circuit board is stopped and the temperature of the piezoelectric vibration device is lowered, the heat of the integrated circuit element is conducted to the external connection terminal via the wiring pattern and dissipated.
  • the conduction of heat can be hindered by the narrowed portion of the wiring pattern.
  • the gradient of the temperature drop of the integrated circuit element can be made gentle, the temperature difference between the integrated circuit element and the piezoelectric vibrator can be suppressed, and the integrated circuit element and the piezoelectric vibrator can be quickly brought into a thermal equilibrium state. ..
  • the piezoelectric vibrator has a three-layer laminated structure in which each main surface side of the piezoelectric diaphragm having excitation electrodes formed on both main surfaces thereof is sealed with the first and second sealing members. Therefore, it is possible to reduce the thickness (lower height) as compared with the package structure in which the piezoelectric vibrating piece is housed in the container having the recessed housing part and sealed with the lid.
  • the wiring pattern of all the mounting electrodes of the remaining plurality of mounting electrodes has the narrowed portion.
  • the heat generated by the heat source of the external circuit board on which the piezoelectric vibration device is mounted is more effectively prevented from being conducted from the external connection terminal to the integrated circuit element via the wiring pattern. be able to. Further, the heat generation of the heat source of the external circuit board is stopped, and the heat of the integrated circuit element can be more effectively prevented from being conducted to the external connection terminal via the wiring pattern and dissipated. As a result, the temperature difference between the integrated circuit element and the piezoelectric vibrator can be suppressed, and the integrated circuit element and the piezoelectric vibrator can be brought into a thermal equilibrium state more quickly.
  • the plurality of mounting electrodes are provided on the outer surface of the first sealing member, and the plurality of external connection terminals are provided on the outer surface of the second sealing member.
  • the piezoelectric vibrator has a first sealing member, a piezoelectric vibrating plate, and a plurality of through electrodes penetrating the second sealing member in the thickness direction, and a plurality of mountings of the remainder.
  • the electrodes are electrically connected to the plurality of external connection terminals via the plurality of through electrodes.
  • an external connection terminal to be joined to an external circuit board is provided on the outer surface of the second sealing member constituting one surface of the piezoelectric vibrator, and constitutes the other surface of the piezoelectric vibrator.
  • a mounting electrode to which the mounting terminal of the integrated circuit element is connected is provided on the outer surface of the first sealing member. The remaining plurality of mounting electrodes are electrically connected to the plurality of external connection terminals via the plurality of through electrodes that penetrate the first and second sealing members and the piezoelectric diaphragm in the thickness direction.
  • the heat generated by the heat generated by the heat source of the external circuit board on which the piezoelectric vibration device is mounted is the external connection terminal having good thermal conductivity, the through electrode, and the remaining plurality of mounting electrodes of the piezoelectric vibration device. It will be conducted to a plurality of mounting terminals of the integrated circuit element via. In this case, the heat conduction is hindered by the narrowed portion of the wiring pattern of the remaining plurality of mounting electrodes, so that the heat is not quickly conducted to the integrated circuit element.
  • the gradient of the temperature rise of the integrated circuit element becomes gentle, the temperature difference between the integrated circuit element and the piezoelectric vibrator can be suppressed, and the integrated circuit element and the piezoelectric vibrator can be quickly brought into a thermal equilibrium state. ..
  • the heat generated by the heat source of the external circuit board is stopped, and the heat of the integrated circuit element is conducted from the mounting terminal to the remaining plurality of mounting electrodes, the plurality of through electrodes, and the external connection terminal to be dissipated.
  • the heat conduction is hindered by the narrowed portion of the wiring pattern of the remaining plurality of mounting electrodes, so that the gradient of the temperature drop of the integrated circuit element becomes gentle.
  • the temperature difference between the integrated circuit element and the piezoelectric vibrator can be suppressed, and the integrated circuit element and the piezoelectric vibrator can be quickly brought into a thermal equilibrium state.
  • the constricted portion of the wiring pattern is formed closer to the through electrode than the connection portion between the mounting electrode and the mounting terminal of the integrated circuit element. ..
  • the constriction portion that hinders heat conduction is formed closer to the through electrode of the wiring pattern connecting the through electrode and the mounting terminal of the integrated circuit element, and therefore away from the mounting terminal of the integrated circuit element. Therefore, heat conduction can be suppressed at a position away from the integrated circuit element.
  • the constricted portion of the wiring pattern is formed outside the mounting region on which the integrated circuit element is mounted.
  • the constriction portion that hinders the conduction of heat is formed outside the mounting region where the integrated circuit element is mounted, the conduction of heat is suppressed outside the mounting region where the integrated circuit element is mounted. be able to.
  • the width of the narrowed portion of the wiring pattern is 40 ⁇ m or less.
  • the width of the narrowed portion of the wiring pattern is 40 ⁇ m or less, heat conduction can be effectively suppressed.
  • the plurality of mounting terminals are arranged near the outer periphery thereof, and are electrically connected to the excitation electrodes formed on both main surfaces thereof.
  • the pair of mounting electrodes has a wiring pattern for excitation electrodes extending inward from the plurality of mounting terminals in the mounting region where the integrated circuit element is mounted.
  • a pair of mounting electrodes electrically connected to the excitation electrodes on both main surfaces of the piezoelectric vibrating plate of the piezoelectric vibrator are inside the mounting terminals in the mounting region of the integrated circuit element. It has a wiring pattern for each excitation electrode that extends to.
  • the wiring pattern for the excitation electrode of the pair of mounting electrodes is substantially point-symmetric with the center of the mounting region on which the integrated circuit element is mounted as a point of symmetry.
  • the wiring pattern for each excitation electrode of the pair of mounting electrodes is substantially point-symmetrical with the center of the mounting region as the point of symmetry, the wiring pattern for each excitation electrode is generated by the heat radiation from the integrated circuit element. It is heated almost evenly. Since the heat of each heated wiring pattern for the excitation electrode is conducted to both main surfaces of the piezoelectric diaphragm, the temperature of both main surfaces of the piezoelectric diaphragm can be raised in a well-balanced manner.
  • the excitation electrode wiring pattern of the pair of mounting electrodes extends to at least the vicinity of the central portion in the mounting region where the integrated circuit element is mounted.
  • the wiring pattern for the excitation electrode of the mounting electrode extends to the vicinity of the central portion of the mounting region where the integrated circuit element is mounted, the central portion of the integrated circuit element that has been driven and becomes hot.
  • the wiring pattern for the excitation electrode is efficiently heated by the heat radiation from the vicinity.
  • the heat of the heated wiring pattern for the excitation electrode is conducted to the piezoelectric vibrator, and the temperature of the piezoelectric vibrator can be efficiently increased.
  • the remaining plurality of mounting electrodes other than the pair of mounting electrodes connected to the excitation electrodes on both main surfaces of the piezoelectric diaphragm are each of a plurality of external connection terminals and a plurality of integrated circuit elements. Each has a wiring pattern that electrically connects to the mounting terminals.
  • the wiring pattern of at least one mounting electrode of the remaining plurality of mounting electrodes has a narrow constriction that hinders heat conduction. Therefore, when the heat generated by the heat source of the external circuit board on which the piezoelectric vibration device is mounted is conducted from the external connection terminal of the piezoelectric vibration device to the integrated circuit element via the wiring pattern, the heat is conducted. Can be prevented by the narrowed portion of the wiring pattern.
  • the gradient of the temperature rise of the integrated circuit element can be made gentle, the temperature difference between the integrated circuit element and the piezoelectric vibrator can be suppressed, and the integrated circuit element and the piezoelectric vibrator can be quickly brought into a thermal equilibrium state. ..
  • the heat generation of the heat source of the external circuit board is stopped and the heat of the integrated circuit element is conducted from the mounting terminal to the external connection terminal via the wiring pattern and dissipated, the heat conduction is reduced. It can be hindered by the constriction of the wiring pattern.
  • the gradient of the temperature drop of the integrated circuit element can be made gentle, the temperature difference between the integrated circuit element and the piezoelectric vibrator can be suppressed, and the integrated circuit element and the piezoelectric vibrator can be quickly brought into a thermal equilibrium state. ..
  • the piezoelectric vibrator has a three-layer laminated structure in which each main surface side of the piezoelectric vibrating plate in which excitation electrodes are formed on both main surfaces are individually sealed by the first and second sealing members. Compared to a package structure in which a piezoelectric vibrating piece is housed in a container having a recessed housing and sealed with a lid, the thickness can be reduced (lower height).
  • FIG. 1 is a schematic configuration diagram of a temperature-compensated crystal oscillator according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing one main surface side of the crystal diaphragm of FIG.
  • FIG. 3 is a schematic plan view showing the other main surface side seen through from one main surface side of the crystal diaphragm of FIG. 1.
  • FIG. 4 is a schematic plan view showing one main surface side of the first sealing member of FIG.
  • FIG. 5 is a schematic plan view showing the other main surface side seen through from one main surface side of the first sealing member of FIG. 1.
  • FIG. 6 is a schematic plan view showing one main surface side of the second sealing member of FIG. FIG.
  • FIG. 7 is a schematic plan view showing the other main surface side seen through from one main surface side of the second sealing member of FIG. 1.
  • FIG. 8 is a diagram showing a simulation result of the relationship between the length of the wiring and the heat conduction time.
  • FIG. 9 is a diagram showing a simulation result of the relationship between the width of the wiring and the heat conduction time.
  • FIG. 10 is a schematic configuration diagram of a temperature-compensated crystal oscillator according to another embodiment of the present invention.
  • FIG. 11 is a schematic plan view showing one main surface side of the first sealing member according to the embodiment of FIG.
  • FIG. 12 is a schematic plan view showing one main surface side of the first sealing member according to another embodiment of the present invention.
  • FIG. 13 is a schematic configuration diagram of a temperature-compensated crystal oscillator according to still another embodiment of the present invention.
  • FIG. 14 is a schematic plan view showing one main surface side of the first sealing member according to the embodiment of FIG.
  • FIG. 15A is a diagram showing a modified example of the narrowed portion of the wiring pattern of FIG.
  • FIG. 15B is a diagram showing another modification of the narrowed portion of the wiring pattern of FIG.
  • FIG. 15C is a diagram showing still another modification of the narrowed portion of the wiring pattern of FIG.
  • FIG. 1 is a schematic configuration diagram of a temperature-compensated crystal oscillator according to an embodiment of the present invention.
  • the temperature-compensated crystal oscillator 1 of this embodiment includes a crystal oscillator 2 and an IC 3 as an integrated circuit element mounted on the crystal oscillator 2.
  • the crystal oscillator 2 includes a crystal diaphragm 4 which is a piezoelectric diaphragm, a first sealing member 5 which covers and airtightly seals one main surface side of the crystal diaphragm 4, and the other of the crystal diaphragm 4. It is provided with a second sealing member 6 that covers the main surface side and seals airtightly.
  • the first and second sealing members 5 and 6 are joined to both main surfaces of the crystal diaphragm 4, respectively, to form a so-called sandwich structure package.
  • the package of the crystal oscillator 2 is a rectangular parallelepiped and has a rectangular shape in a plan view.
  • the package size of the crystal oscillator 2 of this embodiment is, for example, 1.0 mm ⁇ 0.8 mm in a plan view, and the size and height are reduced.
  • the package size is not limited to the above, and different sizes can be applied.
  • the IC3 mounted on the crystal oscillator 2 is an integrated circuit element having a rectangular parallelepiped outer shape in which an oscillation circuit, a temperature sensor, and a temperature compensation circuit are integrated into one chip.
  • FIG. 2 is a schematic plan view showing one main surface side of the crystal diaphragm 4
  • FIG. 3 is a schematic plan view showing the other main surface side seen through from one main surface side of the crystal diaphragm 4.
  • FIG. 2 is a schematic plan view showing the front surface side of the crystal diaphragm 4
  • FIG. 3 is a schematic plan view showing the back surface side seen through from the front surface side of the crystal diaphragm 4.
  • the crystal diaphragm 4 of this embodiment is an AT-cut crystal plate, and both front and back main surfaces thereof are XZ'planes.
  • the crystal diaphragm 4 has a substantially rectangular vibrating portion 41, a frame portion 43 that surrounds the vibrating portion 41 with a space (gap) 42 interposed therebetween, and a connecting portion 44 that connects the vibrating portion 41 and the frame portion 43. And have.
  • the vibrating portion 41, the frame portion 43, and the connecting portion 44 are integrally formed. Although not shown, the vibrating portion 41 and the connecting portion 44 are formed thinner than the frame portion 43.
  • a pair of first and second excitation electrodes 45 and 46 are formed on both the front and back main surfaces of the vibrating portion 41, respectively.
  • the first and second extraction electrodes 47 and 48 are drawn out from the first and second excitation electrodes 45 and 46, respectively.
  • the first extraction electrode 47 on the front surface side is drawn out through the connecting portion 44 to the connecting joint pattern 401 formed on the frame portion 43.
  • the second drawing electrode 48 on the back surface side is drawn out to the connecting joint pattern 402 formed on the frame portion 43 via the connecting portion 44.
  • the connection pattern 402 extends along the short side of the rectangular crystal diaphragm 4 in a plan view and reaches the periphery of the fifth through electrode 415, which will be described later.
  • the stress acting on the vibrating portion 41 can be reduced as compared with the configuration in which the vibrating portion 41 is connected by the connecting portion 44 at two or more locations. ..
  • first and second sealing bonding patterns 403 and 404 for joining the crystal diaphragm 4 to the first and second sealing members 5 and 6, respectively, are formed. , Is formed.
  • the first and second sealing joint patterns 403 and 404 are formed in an annular shape over the entire circumference of the frame portion 43 so as to substantially follow the outer peripheral edge thereof except for the four corners of the crystal diaphragm 4. ..
  • a first sealing bonding pattern 51 corresponding to the first sealing bonding pattern 403 on the front surface of the crystal diaphragm 4 is formed on the back surface of the first sealing member 5.
  • a second sealing joint pattern 61 corresponding to the second sealing joint pattern 404 on the back surface of the crystal diaphragm 4 is formed on the surface of the second sealing member 6. .
  • the first sealing member 5, the crystal diaphragm 4 and the second sealing member 6 are superposed on each other, and the annular first sealing bonding pattern 51 of the first sealing member 5 and the crystal diaphragm 4 is formed.
  • 403 are diffusion-bonded to each other, and the annular second-sealing bonding patterns 404 and 61 of the crystal diaphragm 4 and the second sealing member 6 are diffusion-bonded to each other.
  • both the front and back surfaces of the crystal diaphragm 4 are sealed by the first and second sealing members 5 and 6, and a storage space in which the vibrating portion 41 of the crystal diaphragm 4 is housed is formed.
  • the crystal diaphragm 4 and the three crystal plates of the first and second sealing members 5 and 6 are laminated to form a package containing the vibrating portion 41.
  • the crystal unit is made thinner (lower in height) than the crystal unit in which the crystal vibrating piece is housed in a ceramic container having a recess as a storage space and the lid is joined and sealed. be able to.
  • the crystal diaphragm 4 is formed with five first to fifth through electrodes 411 to 415 penetrating between both main surfaces of the front and back surfaces.
  • Each through electrode 411 to 415 is configured such that a metal film is adhered to the inner wall surface of the through hole.
  • the first to fourth through electrodes 411 to 414 are formed at the four corners of the crystal diaphragm 4 outside the annular first and second sealing joint patterns 403 and 404.
  • the fifth through electrode 415 is formed inside the annular first and second sealing joint patterns 403 and 404, and is formed in a frame portion 43 near one short side of the rectangular crystal diaphragm 4 in a plan view. There is.
  • connection patterns 421 to 424 are formed around the through electrodes 411 to 414 at the four corners of the surface of the crystal diaphragm 4 and outside the annular first sealing joint pattern 403. ..
  • Each through electrode 411 to 414 is electrically connected to each connection pattern 421 to 424, respectively.
  • connection pattern 431 to 434 is formed around the through electrodes 411 to 414 at the four corners of the back surface of the crystal diaphragm 4 and outside the annular second sealing joint pattern 404. ..
  • Each through electrode 411 to 414 is electrically connected to each connection pattern 431 to 434, respectively.
  • the first to fourth through electrodes 501 to 504 and the first to first through electrodes 101 to 414 corresponding to the first to fourth through electrodes 411 to 414 of the crystal diaphragm 4 are used.
  • the four through electrodes 601 to 604 are formed as described later (see FIGS. 5 and 6).
  • connection pattern 425 is formed around the fifth through electrode 415 on the surface of the crystal diaphragm 4.
  • the fifth through electrode 415 and the connection pattern 425 are electrically connected.
  • connection pattern 402 connected to the extraction electrode 48 drawn from the second excitation electrode 46 extends around the fifth through electrode 415 on the back surface of the crystal diaphragm 4. ing.
  • the fifth through electrode 415 is electrically connected to the connection pattern 402, and therefore the fifth through electrode 415 is electrically connected to the second excitation electrode 46.
  • connection joint pattern 401 connected to the connection joint pattern 425 and the first extraction electrode 47 is formed, and two connection joint patterns 441 and 442 are formed on the other side in the long side direction.
  • connection patterns 425,401; 441,442 are formed substantially symmetrically with the center line CL in the long side direction of the crystal diaphragm 4. Further, the connection joining patterns 425 and 441 and the connecting joining patterns 401 and 442 are formed substantially symmetrically with respect to the center line in the short side direction of the crystal diaphragm 4. That is, these connection patterns 425, 401, 441, 442 are formed substantially symmetrically in the long side direction and the short side direction of the crystal diaphragm 4.
  • connection patterns 421 to 424 around the through electrodes 411 to 414 at the four corners of the surface of the crystal diaphragm 4 are also formed symmetrically in the long side direction and the short side direction of the crystal diaphragm 4.
  • connection patterns 425, 401, 441, 442; 421 to 424 are formed substantially symmetrically or symmetrically in the long side direction and the short side direction of the crystal diaphragm 4 in this way, they are added at the time of diffusion bonding.
  • the pressing force can be equalized.
  • connection joint pattern 402 extending to the periphery of the is formed, and two connection joint patterns 451 and 452 are formed on the other side in the long side direction. These connection patterns 402, 451 and 452 are also formed substantially symmetrically in the long side direction and the short side direction of the crystal diaphragm 4.
  • the connecting patterns 431 to 434 for each connection around the through electrodes 411 to 414 at the four corners of the back surface of the crystal diaphragm 4 are also formed symmetrically in the long side direction and the short side direction of the crystal diaphragm 4.
  • the first and second excitation electrodes 45 and 46 of the crystal diaphragm 4, the first and second extraction electrodes 47 and 48, the first and second sealing bonding patterns 403 and 404, and the connecting bonding patterns 401 and 402. , 421 to 425, 431 to 434, 441, 442, 451 and 452 are configured by, for example, Au being laminated and formed on a base layer made of, for example, Ti or Cr.
  • FIG. 4 is a schematic plan view showing the front surface side of the first sealing member 5
  • FIG. 5 is a schematic plan view showing the back surface side seen through from the front surface side of the first sealing member 5.
  • the first sealing member 5 is a rectangular parallelepiped substrate made of an AT-cut quartz plate similar to the quartz diaphragm 4. As shown in FIG. 5, the back surface of the first sealing member 5 has a first sealing bonding pattern 51 for joining and sealing the first sealing bonding pattern 403 on the front surface of the quartz diaphragm 4. Is formed.
  • the first sealing joint pattern 51 is formed in an annular shape over the entire circumference of the first sealing member 5 so as to substantially follow the outer peripheral edge thereof except for the four corners of the first sealing member 5.
  • the first sealing member 5 is formed with six first to sixth through electrodes 501 to 506 penetrating between both main surfaces on the front and back surfaces. Each through electrode 501 to 506 is configured such that a metal film is adhered to the inner wall surface of the through hole.
  • the first to fourth through electrodes 501 to 504 are formed at the four corners of the first sealing member 5 having a rectangular shape in a plan view, similarly to the first to fourth through electrodes 411 to 414 of the crystal diaphragm 4.
  • the fifth through electrode 505 is inside the annular first sealing bonding pattern 51 so as to correspond to the connecting bonding pattern 441 on the surface of the crystal diaphragm 4, and is one of the first sealing members 5. It is formed closer to the short side.
  • the sixth through electrode 506 is formed inside the annular first sealing bonding pattern 51 and closer to the other short side so as to correspond to the connecting bonding pattern 401 on the surface of the crystal diaphragm 4. There is.
  • connection bonding patterns 511 to 514 are formed around the through electrodes 501 to 504 at the four corners of the back surface of the first sealing member 5, respectively.
  • Each through electrode 501 to 504 is electrically connected to each connection pattern 511 to 514, respectively.
  • connection pattern 515 is formed around the fifth through electrode 505 on the back surface of the first sealing member 5, and the fifth through electrode 505 is electrically connected to the connection pattern 515.
  • the connection pattern 515 is connected to the opposite side of the first sealing member 5 in the long side direction (left-right direction in FIG. 5) so as to correspond to the connection pattern 425 on the surface of the crystal diaphragm 4.
  • a joint pattern 518 is formed.
  • the connection pattern 518 and the connection pattern 515 around the fifth through electrode 505 are electrically connected by a connection wiring pattern 519. Therefore, the connection pattern 518 on the back surface of the first sealing member 5 is electrically connected to the fifth through electrode 505 of the first sealing member 5.
  • connection pattern 518 of the first sealing member 5 is diffusion-bonded to the connection pattern 425 around the fifth through electrode 415 on the surface of the crystal diaphragm 4, so that the crystal diaphragm It is electrically connected to the fifth through electrode 415 of No. 4.
  • the fifth through electrode 415 of the crystal vibrating plate 4 is electrically connected to the second exciting electrode 46 on the back surface of the crystal vibrating plate 4, so that the first sealing member 5 is joined for connection.
  • the pattern 518 will be electrically connected to the second excitation electrode 46 of the crystal oscillator plate 4.
  • the connection joint pattern 518 of the first sealing member 5 is electrically connected to the connection joint pattern 515 around the fifth through electrode 505 via the connection wiring pattern 519.
  • the second excitation electrode 46 on the back surface of the crystal diaphragm 4 has a fifth through electrode 415 of the crystal diaphragm 4, a connection pattern 518 of the first sealing member 5, a connection wiring pattern 519, and a connection. It will be electrically connected to the fifth through electrode 505 of the first sealing member 5 via the joining pattern 515.
  • connection bonding pattern 516 corresponding to the connection bonding pattern 401 on the front surface of the crystal diaphragm 4 is formed around the sixth through electrode 506 on the back surface of the first sealing member 5.
  • the sixth through electrode 506 is electrically connected to the connection pattern 516 for connection.
  • the connection pattern 516 is connected to the opposite side of the first sealing member 5 in the long side direction (horizontal direction in FIG. 5) so as to correspond to the connection pattern 442 on the surface of the crystal diaphragm 4.
  • the joint pattern 517 for use is formed.
  • connection bonding pattern 516 of the first sealing member 5 is diffusion-bonded to the connection bonding pattern 401 on the surface of the crystal diaphragm 4, so that the connection bonding pattern 401 and the first drawer electrode 47 It is electrically connected to the first excitation electrode 45 via. That is, the sixth through electrode 506 of the first sealing member 5 is electrically connected to the first excitation electrode 45 of the crystal diaphragm 4.
  • the connecting bonding patterns 515 to 518 on the back surface of the first sealing member 5 are the first so that the pressing force applied at the time of diffusion bonding can be made uniform.
  • the sealing member 5 is formed substantially symmetrically in the long side direction and the short side direction. Further, the connection patterns 511 to 514 around the through electrodes 501 to 504 at the four corners of the back surface of the first sealing member 5 are also formed symmetrically in the long side direction and the short side direction of the first sealing member 5. ing.
  • the surface of the first sealing member 5 is the surface on which the IC3 is mounted.
  • FIG. 4 which shows the surface of the first sealing member 5
  • the outer shape of the rectangular shape of the IC3 mounted on the first sealing member 5 in a plan view and the six first to sixth mounting terminals of the IC3 are shown by virtual lines.
  • the outer shape of 31 to 36 is shown.
  • first to sixth mounting electrodes 521 to 526 to which the first to sixth mounting terminals 31 to 36 of the IC 3 are connected are formed. Has been done.
  • the first to sixth mounting electrodes 521 to 526 are electrode pads (not shown) to which the mounting terminals 31 to 36 of the IC3 are joined in a rectangular mounting area S surrounded by virtual lines on which the IC3 is mounted. ) Is included in the first to sixth terminal joints 531 to 536. Further, the first to sixth mounting electrodes 521 to 526 extend from the first to sixth terminal joints 531 to 536 of the mounting region S to the outside of the mounting region S, and the through electrodes 501, 505, 502, 503 respectively. , 506 and 504 are respectively provided with first to sixth electrode connecting portions 541 to 546 that are electrically connected to each other.
  • the IC3 is joined to the surface of the first sealing member 5 by a FCB (Flip Chip Bonding) method using a metal bump (for example, Au bump or the like) 7 as a metal member.
  • a metal bump for example, Au bump or the like
  • metal plating or metal paste may be used for joining.
  • An underfill resin 8 as a sealing resin is filled between the IC 3 and the first sealing member 5 in order to protect the active surface of the IC 3 and secure the mechanical bonding strength.
  • the first sealing bonding pattern 51, the connecting bonding patterns 511 to 518, the connecting wiring pattern 519, and the first to sixth mounting electrodes 521 to 526 of the first sealing member 5 are of the crystal diaphragm 4. Similar to the first and second sealing bonding patterns 403 and 404, for example, Au is laminated and formed on the base layer made of, for example, Ti or Cr.
  • FIG. 6 is a schematic plan view showing the front surface side of the second sealing member 6
  • FIG. 7 is a schematic plan view showing the back surface side seen through from the front surface side of the second sealing member 6.
  • the second sealing member 6 is a rectangular parallelepiped substrate made of an AT-cut crystal plate similar to the crystal diaphragm 4 and the first sealing member 5.
  • the surface of the second sealing member 6 has a second sealing bonding pattern 61 for bonding and sealing to the second sealing bonding pattern 404 on the back surface of the crystal diaphragm 4. Is formed.
  • the second sealing joint pattern 61 is formed in an annular shape over the entire circumference of the second sealing member 6 so as to substantially follow the outer peripheral edge thereof except for the four corners of the second sealing member 6. ..
  • the second sealing member 6 is formed with four first to fourth through electrodes 601 to 604 that penetrate between both main surfaces on the front and back surfaces. Each through electrode 601 to 604 is configured such that a metal film is adhered to the inner wall surface of the through hole.
  • the first to fourth through electrodes 601 to 604 are formed at the four corners of the rectangle of the second sealing member 6 which is rectangular in a plan view, similarly to the first to fourth through electrodes 411 to 414 of the crystal diaphragm 4. ..
  • connecting bonding patterns 611 to 614 are formed around the through electrodes 601 to 604 at the four corners of the surface of the second sealing member 6, respectively. Each through electrode 601 to 604 is electrically connected to each connection pattern 611 to 614, respectively.
  • a total of four connecting joint patterns 621, 622; 623, 624, two each near each short side inside the annular second sealing joint pattern 61 of the second sealing member 6, are crystal vibrations. It is formed so as to correspond to the connection joining patterns 451 and 452, 402 on the back surface of the plate 4.
  • the second sealing member 6 has a connecting pattern 621, 622, 623 for connecting the surface of the second sealing member 6 so that the pressing force applied during diffusion bonding can be made uniform.
  • the 624 and the connecting patterns 611 to 614 at the four corners are formed symmetrically in the long side direction and the short side direction of the second sealing member 6.
  • four first to fourth external connection terminals 631 to 634 for mounting the temperature-compensated crystal oscillator 1 on an external circuit board are provided on the back surface of the second sealing member 6. It is provided.
  • the first external connection terminal 631 is an external connection terminal for power supply
  • the second external connection terminal 632 is an external connection terminal for oscillation output
  • the third external connection terminal 633 is an external connection terminal for inputting a control voltage
  • the fourth external connection terminal 634 is an external connection terminal for grounding.
  • the first to fourth external connection terminals 631 to 634 are arranged at the four corners of the second sealing member 6 having a rectangular shape in a plan view.
  • First to fourth through electrodes 601 to 604 are formed in the region where the external connection terminals 631 to 634 are provided, and the through electrodes 601 to 604 are connected to the external connection terminals 631 to 634, respectively. It is electrically connected.
  • the second sealing bonding pattern 61 of the second sealing member 6, the connecting bonding patterns 611 to 614, 621 to 624, and the first to fourth external connection terminals 631 to 634 are the first of the crystal diaphragm 4.
  • Au is laminated and formed on a base layer made of, for example, Ti or Cr, similarly to the second sealing bonding patterns 403 and 404.
  • the crystal unit 2 is joined without using a special bonding material such as an adhesive as in the prior art. That is, the crystal diaphragm 4 and the first sealing member 5 are diffusion-bonded in a state where the first sealing bonding patterns 403 and 51 are overlapped, and the crystal diaphragm 4 and the second sealing member 5 are bonded. 6 and 6 are diffusion-bonded in a state in which the respective second sealing bonding patterns 404 and 61 are overlapped. As a result, the sandwich-structured package shown in FIG. 1 is manufactured, and the accommodation space in which the vibrating portion 41 of the crystal diaphragm 4 is accommodated is hermetically sealed by both sealing members 5 and 6.
  • a special bonding material such as an adhesive as in the prior art. That is, the crystal diaphragm 4 and the first sealing member 5 are diffusion-bonded in a state where the first sealing bonding patterns 403 and 51 are overlapped, and the crystal diaphragm 4 and the second sealing member 5 are bonded. 6 and 6 are diffusion-bonded in a state
  • a bonding material is generated and bonded by diffusion bonding between the first sealing bonding pattern 403 of the crystal diaphragm 4 and the first sealing bonding pattern 51 of the first sealing member 5. Further, a bonding material is generated and bonded by diffusion bonding between the second sealing bonding pattern 404 of the crystal diaphragm 4 and the second sealing bonding pattern 61 of the second sealing member 6.
  • connection bonding patterns are also diffusion-bonded in a superposed state, and are bonded by the bonding material generated by the diffusion bonding.
  • connection bonding patterns 421 to 424 at the four corners of the front surface of the crystal diaphragm 4 and the connection bonding patterns 511 to 514 at the four corners of the back surface of the first sealing member 5 are diffusion-bonded.
  • the connection pattern 441, 442 near one short side inside the annular first sealing joint pattern 403 on the front surface of the crystal diaphragm 4, and the connection connection pattern 515 on the back surface of the first sealing member 5.
  • Diffusion bonding with 517 is performed.
  • Diffusion bonding with 516 is performed.
  • connection bonding patterns 431 to 434 at the four corners of the back surface of the crystal diaphragm 4 and the connection bonding patterns 611 to 614 on the front surface of the second sealing member 6 are diffusion-bonded.
  • the connection pattern 451 and 452 on the inner side of the annular second sealing joint pattern 404 on the back surface of the crystal diaphragm 4 and the connection pattern 621 on the front surface of the second sealing member 6. 622 is diffusion-bonded.
  • the connection pattern 402 on the other short side of the inside of the annular second sealing joint pattern 404 on the back surface of the crystal diaphragm 4, and the connection joint patterns 623 and 624 on the surface of the second sealing member 6. Is diffusely joined.
  • the first to fourth through electrodes 601 to 604 electrically connected to the first to fourth external connection terminals 631 to 634 on the back surface of the second sealing member 6 are second sealed.
  • the first to fourth through electrodes 411 to 414 of the crystal diaphragm 4 are the connection patterns 421 to 424 and the back surface of the first sealing member 5 around the through electrodes 411 to 414 on the surface of the crystal diaphragm 4.
  • the bonding material generated by diffusion bonding with each of the connection patterns 511 to 514 of the above is electrically connected to the first to fourth through electrodes 501 to 504 of the first sealing member 5.
  • the first to fourth external connection terminals 631 to 634 on the back surface of the second sealing member 6 are connected to the crystal diaphragm 4 via the first to fourth through electrodes 601 to 604 of the second sealing member 6. It is electrically connected to the 1st to 4th through electrodes 411 to 414, respectively, and is further connected to the 1st to 4th through electrodes 501 to 504 of the 1st sealing member 5 via the 1st to 4th through electrodes 411 to 414. Each is electrically connected.
  • the first to fourth through electrodes 501 to 504 of the first sealing member 5 are the first, third, fourth, and sixth mounting electrodes 521 on the surface of the first sealing member 5.
  • 523, 524, 526 are electrically connected to the electrode connection portions 541, 543, 544, 546, respectively, so that the first to fourth external connection terminals 631 to 634 on the back surface of the second sealing member 6 are , 541, 543, 544, 546 of the first, third, fourth, and sixth mounting electrodes 521, 523, 524, 546 on the surface of the first sealing member 5, respectively.
  • connection bonding pattern 401 connected to the first excitation electrode 45 on the surface of the crystal diaphragm 4 shown in FIG. 2 via the first extraction electrode 47 is the first sealing member 5 shown in FIG. It is electrically connected to the sixth through electrode 506 of the first sealing member 5 by the bonding material generated by diffusion bonding with the connecting bonding pattern 516 around the sixth through electrode 506 on the back surface. As shown in FIG. 4, the sixth through electrode 506 of the first sealing member 5 is electrically connected to the fifth electrode connecting portion 545 of the fifth mounting electrode 525 on the surface of the first sealing member 5. There is.
  • the first excitation electrode 45 of the crystal diaphragm 4 is connected to the fifth electrode connection portion 545 of the fifth mounting electrode 525 of the first sealing member 5 via the sixth through electrode 506 of the first sealing member 5. It is electrically connected.
  • the fifth through electrode 415 electrically connected to the second excitation electrode 46 on the back surface of the crystal diaphragm 4 shown in FIG. 3 via the second extraction electrode 48 and the connection pattern 402 is shown in FIG. It is electrically connected to the connection pattern 425 on the surface of the crystal diaphragm 4 shown.
  • the bonding material produced by diffusion bonding between the connection pattern 425 of the crystal diaphragm 4 and the connection pattern 518 on the back surface of the first sealing member 5 shown in FIG. 5 makes the crystal diaphragm 4 the first.
  • the 5 through electrode 415 is electrically connected to the connection pattern 518 on the back surface of the first sealing member 5.
  • connection joint pattern 518 on the back surface of the first sealing member 5 is connected to the connection joint pattern 515 around the fifth through electrode 505 via the connection wiring pattern 519.
  • the connection pattern 515 on the back surface of the first sealing member 5 is electrically connected to the fifth through electrode 505, and the fifth through electrode 505 is the first sealing as shown in FIG. It is electrically connected to the second electrode connecting portion 542 of the second mounting electrode 522 on the surface of the member 5.
  • the second excitation electrode 46 on the back surface of the crystal diaphragm 4 has a fifth through electrode 415 of the crystal diaphragm 4, a connection pattern 518 on the back surface of the first sealing member 5, a connection wiring pattern 519, and a connection. It is electrically connected to the second electrode connection portion 542 of the second mounting electrode 522 on the surface of the first sealing member 5 via the joining pattern 515 and the fifth through electrode 505 of the first sealing member 5. .
  • the first to fourth external connection terminals 631 to the second sealing member 6 on the back surface side of the crystal oscillator 2 shown in FIG. 1 The 634 is mounted by being bonded to an external circuit board (not shown) by a bonding material such as solder.
  • the first to fourth external connection terminals 631 to 634 are provided with the first to fourth through electrodes 601 to 604, 411 to 414, 501 to 504 and the like which form a part of the internal wiring. It is directly connected via.
  • the first and second excitation electrodes 45 and 46 of the crystal oscillator 2 are connected to the IC3, and the first and second excitation electrodes 45 and 46 are on the back surface of the second sealing member 6. It is not directly connected to the first to fourth external connection terminals 631 to 634.
  • the heat generated by the heat generated by the electronic component that is the heat source mounted on the circuit board is conducted to the temperature-compensated crystal oscillator 1, and the first to fourth external connection terminals 631 to 634 have good thermal conductivity. And it is rapidly conducted to the IC3 via the first to fourth through electrodes 601 to 604, 411 to 414, 501 to 504 and the like. Therefore, the gradient of the temperature rise of the IC 3 is steeper than the gradient of the temperature rise of the crystal oscillator 2. Therefore, the temperature difference between the crystal oscillator 2 and the IC 3 becomes large, and until this temperature difference is reduced and the crystal oscillator 2 and the IC 3 reach a thermal equilibrium state, accurate temperature compensation becomes difficult and frequency fluctuations occur. , So-called frequency drift occurs.
  • This frequency drift also occurs when the energization of the electronic component that is the heat source mounted on the external circuit board is stopped. That is, when the energization of the electronic component mounted on the external circuit board is stopped, the heat from the electronic component is not conducted to the temperature-compensated crystal oscillator 1, so that the temperature of the temperature-compensated crystal oscillator 1 Decreases.
  • the heat of the IC 3 is transferred to the first to fourth external parts via the first to fourth through electrodes 601 to 604, 411 to 414, 501 to 504, etc., which have better thermal conductivity than the crystal oscillator 2. It is quickly conducted to the connection terminals 631 to 634 to dissipate heat. Therefore, the gradient of the temperature drop of the IC 3 is steeper than the gradient of the temperature drop of the crystal oscillator 2. Therefore, the temperature difference between the crystal oscillator 2 and the IC 3 becomes large, and frequency drift occurs.
  • the temperature between the IC 3 and the crystal oscillator 2 generated by the start and stop of energization of the electronic component as a heat source mounted on the external circuit board is suppressed so that the IC 3 and the crystal oscillator 2 are quickly brought into a thermal equilibrium state.
  • the gradient of the temperature rise or the gradient of the temperature drop of the IC3 caused by the start or stop of energization of the electronic component as the heat source mounted on the external circuit board is made gentle, and the IC3 and the crystal oscillator are used.
  • the temperature difference from 2 is suppressed.
  • the remaining first, third, fourth, and sixth mounting electrodes 521, 523, 524, 526 excluding the pair of second, fifth mounting electrodes 522, 525 are the first to fourth wiring patterns. It has 571 to 574, respectively.
  • the first to fourth wiring patterns 571 to 574 are the first, third, fourth, and sixth electrode connection portions 541, 543, 544, 546 around the first to fourth through electrodes 501 to 504, and the IC3.
  • Each wiring pattern 571 to 574 has narrowed portions 5711, 5722, 5733, and 5744 in which the width of the wiring is narrower than that of the other portions.
  • Each of the narrowed portions 5711, 5722, 5733, and 5744 has a shape in which one side of each wiring pattern 571 to 574 is cut out in a rectangular shape.
  • the width of the wiring of each narrowed portion 5711, 5722, 5733, 5744 is, for example, 100 ⁇ m or less, preferably 40 ⁇ m or less, and in this embodiment, 40 ⁇ m or less.
  • FIG. 8 is a diagram showing a change in the time until the temperature of the outer surface of the other block reaches 0.9 ° C. when the length of the wiring is changed, and the horizontal axis indicates the length of the wiring.
  • the vertical axis shows the time, respectively.
  • FIG. 9 is a diagram showing a change in the time until the temperature of the outer surface of the other block reaches 0.9 ° C. when the width of the wiring is changed, and the horizontal axis indicates the width of the wiring.
  • the vertical axis shows the time, respectively.
  • the width of the wiring does not differ much in time even if it is narrowed up to about 40 ⁇ m, but when it is narrower than about 40 ⁇ m, the time sharply increases and becomes about three times. ing.
  • the first, third, fourth, and sixth electrode connection portions 541, 543, 544, 546 around the first to fourth through electrodes 501 to 504 and the first IC3 are used.
  • 3rd, 4th, 6th mounting terminals 31, 33, 34, 36 are joined.
  • the fourth wiring patterns 571 to 574 have narrowed portions 5711, 5722, 5733, and 5744 in which the width of the wiring is narrowed.
  • the narrowed portions 5711, 5722, 5733, 5744 join the first to fourth through electrodes 501 to 504 and the first, third, fourth, and sixth mounting terminals 31, 33, 34, 36 of the IC3. It is possible to prevent the conduction of heat between the first, third, fourth and sixth terminal joints 531, 533, 534, 536.
  • Energization of an electronic component that is a heat source of an external circuit board on which the temperature-compensated crystal oscillator 1 is mounted is started, the electronic component generates heat, and the heat is conducted to the temperature-compensated pressure crystal oscillator 1. Further, the IC3 is routed through the first to fourth external connection terminals 631 to 634, the first to fourth through electrodes 601 to 604, 411 to 414, 501 to 504, and the first to fourth wiring patterns 571 to 574. Is conducted to. In this case, the conduction of heat to the IC 3 can be suppressed by the narrowed portions 5711, 5722, 5733, 5744 of the first to fourth wiring patterns 571 to 574.
  • the gradient of the temperature rise of the IC3 becomes gentle, and the temperature difference between the IC3 and the crystal oscillator 2 can be suppressed. Therefore, the IC 3 and the crystal diaphragm 4 can be quickly brought into a thermal equilibrium state, and frequency drift can be suppressed.
  • the heat from the electronic component is not conducted to the temperature-compensated crystal oscillator 1, so that the temperature-compensated crystal oscillator 1 is not conducted.
  • the temperature drops.
  • the heat of the IC3 is transferred from the first, third, fourth, and sixth mounting terminals 31, 33, 34, 36 of the IC3 to the first to fourth wiring patterns 571 to 574 and the first to fourth through electrodes. It is conducted to the first to fourth external connection terminals 631 to 634 via 501 to 504, 411 to 414, 601 to 604, and dissipates heat.
  • the heat from the IC 3 is suppressed from being conducted to the first to fourth through electrodes 501 to 504 by the narrowed portions 5711, 5722, 5733, and 5744 of the first to fourth wiring patterns 571 to 574.
  • the gradient of the temperature drop of the IC3 becomes gentle, and the temperature difference between the IC3 and the crystal oscillator 2 can be suppressed. Therefore, the IC 3 and the crystal diaphragm 4 can be quickly brought into a thermal equilibrium state, and frequency drift can be suppressed.
  • all the wiring patterns 571 to 574 of the first to fourth wiring patterns 571 to 574 have constricted portions 5711, 5722, 5733, and 5744, respectively, but as another embodiment of the present invention, At least one of the wiring patterns may have a constricted portion.
  • FIG. 10 is a schematic configuration diagram of a temperature-compensated crystal oscillator according to another embodiment of the present invention, and is a schematic configuration diagram corresponding to FIG.
  • FIG. 11 is a schematic plan view showing the surface side of the first sealing member 5a of the crystal oscillator 2a of the temperature-compensated crystal oscillator 1a of FIG. 10, and is a view corresponding to FIG.
  • the same or corresponding reference numerals are given to the same or corresponding parts as those in the first embodiment.
  • FIGS. 3 other than the electrode pattern on the front surface of the IC 3a and the first sealing member 5a, that is, the back surface of the first sealing member 5a, the crystal diaphragm 4 and the second sealing member 6 are shown in FIGS. 3. It is the same as the first embodiment shown in FIGS. 5 to 7, and the description thereof will be omitted.
  • the mounting direction of the IC 3a with respect to the first sealing member 5a is different from that of the first embodiment, and the electrode pattern of the first sealing member 5a is different accordingly. That is, in the first embodiment, as shown in FIG. 4, the IC3 is mounted so that its long side direction is orthogonal to the long side direction of the first sealing member 5. On the other hand, in this embodiment, as shown in FIG. 11, the IC3a is mounted so that the long side direction thereof and the long side direction of the first sealing member 5a are along the same direction.
  • FIG. 11 showing the surface of the first sealing member 5a, the outer shape of the rectangular shape of the IC3a mounted on the first sealing member 5a and the six first to sixth mounting terminals 31a of the IC3a are shown by virtual lines.
  • the outer shape of the temperature sensor 301a built in the 36a and the IC3a is shown.
  • first to sixth mounting electrodes 521a to 526a to which the first to sixth mounting terminals 31a to 36a of the IC 3a are connected are formed. Has been done.
  • the first to sixth mounting electrodes 521a to 526a are electrode pads (not shown) to which the mounting terminals 31a to 36a of the IC3a are joined in a rectangular mounting area Sa surrounded by a virtual line on which the IC3a is mounted. ) Is included in the first to sixth terminal joints 531a to 536a. Further, the first to sixth mounting electrodes 521a to 526a extend from the first to sixth terminal joints 531a to 536a of the mounting region Sa to the outside of the mounting region Sa, and each through electrode 501, 505, 503, 502 , 506 and 504 are provided with first to sixth electrode connecting portions 541a to 546a, which are electrically connected to each other.
  • first to sixth mounting electrodes 521a to 526a On the surface of the first sealing member 5a, a pair of second and fifth mountings connected to the first and second excitation electrodes 45 and 46 of the crystal diaphragm 4.
  • the remaining first, fourth, third, and sixth mounting electrodes 521a, 524a, 523a, and 526a excluding the electrodes 522a and 525a have the first to fourth wiring patterns 571a to 574a, respectively.
  • the first to fourth wiring patterns 571a to 574a are the first, fourth, third, and sixth electrode connection portions 541a, 544a, 543a, 546a around the first to fourth through electrodes 501 to 504, and the IC3a.
  • Each of the wiring patterns 571a to 574a has narrowed portions 5711a, 5722a, 5733a, and 5744a in which the width of the wiring is narrower than that of the other portions.
  • the first to fourth wiring patterns 571a to 574a connecting the above have narrowed portions 5711a, 5722a, 5733a, 5744a in which the width of the wiring is narrowed.
  • the narrowed portions 5711a, 5722a, 5733a, 5744a join the first to fourth through electrodes 501 to 504 and the first, fourth, third, and sixth mounting terminals 31a, 34a, 33a, and 36a of the IC3a. It is possible to prevent heat conduction between the first, fourth, third and sixth terminal joints 531a, 534a, 533a and 536a.
  • the gradient of the temperature rise of the IC3a when the energization of the electronic component serving as the heat source of the external circuit board on which the temperature-compensated crystal oscillator 1a is mounted is started is gentle. Can be.
  • the gradient of the temperature drop of the IC3a when the energization of the electronic component serving as a heat source mounted on the external circuit board is stopped can be made gentle.
  • the temperature difference between the IC 3a and the crystal oscillator 2a can be suppressed, and the IC 3a and the crystal oscillator 2a can be quickly brought into a thermal equilibrium state, and frequency drift can be suppressed.
  • the sixth through electrode 506 of the first sealing member 5a electrically connected to the first excitation electrode 45 of the crystal diaphragm 4 is for the fifth mounting. It is electrically connected to the fifth electrode connection portion 545a of the electrode 525a. Therefore, the first excitation electrode 45 of the crystal diaphragm 4 is connected to the fifth electrode connection portion 545a of the fifth mounting electrode 525a of the first sealing member 5a via the sixth through electrode 506 of the first sealing member 5a. It is electrically connected.
  • the fifth through electrode 505 of the first sealing member 5a electrically connected to the second excitation electrode 46 of the crystal diaphragm 4 is the second through electrode 522a of the second mounting electrode 522a. It is electrically connected to the electrode connection portion 542a. Therefore, the second excitation electrode 46 on the back surface of the crystal diaphragm 4 is the second electrode of the second mounting electrode 522a on the surface of the first sealing member 5a via the fifth through electrode 505 of the first sealing member 5a. It is electrically connected to the connection portion 542a.
  • the first to sixth mounting terminals 31a to 36a of the IC3a are arranged near the outer periphery of the IC3a having a rectangular shape in a plan view. Specifically, the first to sixth mounting terminals 31a to 36a are located at positions near the long sides, which are the opposite sides of one of the two sets of rectangular facing sides, along the long sides. Arranged in a row. The opposite side of the one set may be a "short side" instead of the "long side".
  • the first to sixth mounting electrodes 521a to 526a formed on the surface of the first sealing member 5a a pair connected to the excitation electrodes 46 and 45 of the crystal diaphragm 4 respectively.
  • the second and fifth mounting electrodes 522a and 525a of the above have a fifth wiring pattern 565 and a sixth wiring pattern 566, respectively.
  • the fifth wiring pattern 565 and the sixth wiring pattern 566 are wiring patterns for the excitation electrode extending inward of the mounting region Sa of the rectangular plan view on which the IC3a is mounted.
  • Each of the wiring patterns 565 and 566 is formed to be wide in order to increase the facing area with the IC3a mounted in the mounting area Sa.
  • the fifth and sixth wiring patterns 565 and 566 are the first to third mounting terminals 31a to 33a and the fourth to sixth mounting terminals 34a to 36a arranged in two rows of the IC3a in the rectangular mounting area Sa. The space between them extends along the long side direction of the IC3a (the left-right direction in FIG. 11), and extends diagonally toward the second and fifth mounting terminals 32a and 35a near the center, respectively.
  • the fifth wiring pattern 565 extends so that the temperature sensor 301a built in the IC3a completely overlaps with the rectangular projection area projected on the mounting area Sa.
  • Sixth wiring patterns 565 and 566 are formed so as to face the IC3a.
  • the fifth and sixth wiring patterns 565 facing the IC 3a immediately below the IC 3a due to heat dissipation from the IC 3a.
  • the 566 is heated.
  • the fifth and sixth wiring patterns 565 and 566 extend from the electrode connection portions 542a and 545a of the second and fifth mounting electrodes 522a and 525a.
  • the electrode connecting portions 542a and 545a are electrically connected to the fifth and sixth through electrodes 505 and 506. Further, the fifth through electrode 505 is connected to the second excitation electrode 46 on the back surface of the crystal diaphragm 4. On the other hand, the sixth through electrode 506 is connected to the first excitation electrode 45 on the surface of the crystal diaphragm 4.
  • the wiring patterns 565 and 566 are heated by heat radiation from the high temperature IC3a. The heat is conducted to the excitation electrodes 46 and 45 of the crystal diaphragm 4 and the temperature rises.
  • the IC3a having a temperature higher than that of the crystal oscillator 2a dissipates the heat to lower the temperature, while the crystal oscillator 2a has the second and fifth wiring patterns 562,565 heated by the heat dissipated from the IC3a.
  • the heat is conducted from the center to raise the temperature, and the temperature difference between the IC3a and the crystal oscillator 2a is suppressed to quickly reach a thermal equilibrium state.
  • the second mounting electrode 522a having the fifth wiring pattern 565 and the fifth mounting electrode 525a having the sixth wiring pattern 566 have the center O of the mounting region Sa of the rectangular plan view as a point of symmetry.
  • the pattern is formed so as to be point-symmetrical.
  • the fifth and sixth wiring patterns 565 and 566 receive heat radiation from the high temperature IC3a in a well-balanced manner and are efficiently heated.
  • the fifth wiring pattern 565 is formed so as to include the entire projection region of the temperature sensor 301a built in the IC3a, the fifth wiring pattern 565 is formed by heat dissipation from the portion of the temperature sensor 301a of the IC3a.
  • the fifth wiring pattern 565 facing directly below is heated, and the heat is conducted to the crystal diaphragm 4 of the crystal oscillator 2a.
  • the portion of the temperature sensor 301a of the IC 3a and the crystal diaphragm 4 can be quickly brought into a thermal equilibrium state, and accurate temperature compensation can be performed.
  • FIG. 12 is a schematic plan view showing the surface side of the first sealing member 5b of the crystal oscillator of the temperature-compensated crystal oscillator of another embodiment of the present invention, and is a diagram corresponding to FIG. 11 above.
  • FIG. 11 other than the electrode pattern on the front surface of the IC 3b and the first sealing member 5b, that is, the back surface of the first sealing member 5b, the crystal diaphragm 4 and the second sealing member 6 are shown in FIG. It is the same as the above-described embodiment shown in FIG. 11, and the description thereof will be omitted.
  • the mounting direction of the IC 3b with respect to the first sealing member 5b is different from that of the above embodiment of FIG. 11, and the electrode pattern of the first sealing member 5b is different accordingly. That is, in the above embodiment, as shown in FIG. 11, the IC3a is mounted so that the long side direction thereof and the long side direction of the first sealing member 5a are along the same direction. In the embodiment, as shown in FIG. 12, the IC3b is mounted so that its long side direction is orthogonal to the long side direction of the first sealing member 5b.
  • the first to sixth mounting electrodes 521b to 526b are electrode pads (not shown) to which the mounting terminals 31b to 36b of the IC3b are joined in a rectangular mounting area Sb surrounded by a virtual line on which the IC3b is mounted (not shown). ) Is included in the first to sixth terminal joints 531b to 536b. Further, the first to sixth mounting electrodes 521b to 526b extend from the first to sixth terminal joints 531b to 536b of the mounting region Sb to the outside of the mounting region Sb, and the through electrodes 501, 505, 502, 503 respectively. , 506 and 504 are provided with first to sixth electrode connecting portions 541b to 546b, which are electrically connected to each other.
  • first to sixth mounting electrodes 521b to 526b On the surface of the first sealing member 5b, a pair of second and fifth mountings connected to the first and second excitation electrodes 45 and 46 of the crystal diaphragm 4.
  • the remaining first, third, fourth, and sixth mounting electrodes 521b, 523b, 524b, and 526b excluding the electrodes 522b and 525b have the first to fourth wiring patterns 571b to 574b, respectively.
  • the first to fourth wiring patterns 571b to 574b are the first, third, fourth, and sixth electrode connection portions 541b, 543b, 544b, 546b and IC3b around the first to fourth through electrodes 501 to 504.
  • Each of the wiring patterns 571b to 574b has narrowed portions 5711b, 5722b, 5733b, and 5744b in which the width of the wiring is narrower than that of the other portions.
  • the first to fourth wiring patterns 571b to 574b to be connected have narrowed portions 5711b, 5722b, 5733b, 5744b in which the width of the wiring is narrowed.
  • the narrowed portions 5711b, 5722b, 5733b, 5744b join the first to fourth through electrodes 501 to 504 and the first, third, fourth, and sixth mounting terminals 31b, 33b, 34b, and 36b of the IC3b. It is possible to prevent heat conduction between the first, third, fourth, and sixth terminal joints 531b, 533b, 534b, and 536b.
  • the gradient of the temperature rise of the IC3b when the electric component serving as the heat source of the external circuit board on which the temperature-compensated crystal oscillator is mounted is started to be energized is made gentle.
  • the gradient of the temperature drop of the IC3b when the energization of the electronic component as the heat source mounted on the external circuit board is stopped can be made gentle.
  • the temperature difference between the IC3b and the crystal oscillator can be suppressed, the IC3b and the crystal oscillator can be quickly brought into a thermal equilibrium state, and frequency drift can be suppressed.
  • first to sixth mounting electrodes 521b to 526b formed on the surface of the first sealing member 5b a pair connected to the excitation electrodes 46 and 45 of the crystal diaphragm 4 respectively.
  • the second and fifth mounting electrodes 522b and 525b have a fifth wiring pattern 565b and a sixth wiring pattern 566b, respectively.
  • the fifth wiring pattern 565b and the sixth wiring pattern 566b are wiring patterns for excitation electrodes extending inward of the mounting region Sb of the rectangular plan view on which the IC3b is mounted.
  • the fifth and sixth wiring patterns 565b and 566b are the first to third mounting terminals 31b to 33b and the fourth to sixth mounting terminals arranged in two rows in the rectangular mounting area Sb on which the IC3b is mounted. It extends between 34b and 36b.
  • the sixth wiring pattern 566b extends so that the temperature sensor 301b built in the IC3b completely overlaps the rectangular projection area projected on the mounting area Sb.
  • the second and fifth terminal joint portions 532a and 535a of the second and fifth mounting electrodes 522a and 525a and the second and fifth electrode connection portions 542a and 545a are They were placed apart and were electrically connected between them by fifth and sixth wiring patterns 565 and 566, respectively.
  • the second and fifth terminal junctions 532b and 535b of the second and fifth mounting electrodes 522b and 525b and the second and second terminals of the second and fifth mounting electrodes 522b and 525b are used.
  • the fifth electrode connecting portions 542b and 545b are arranged close to each other and are electrically connected to each other. Therefore, the fifth and sixth wiring patterns 565b and 566b do not electrically connect the second and fifth terminal joints 532b and 535b to the second and fifth electrode connection portions 542b and 545b, but rather heat. It has only the function of conduction.
  • the second mounting electrode 522b having the fifth wiring pattern 565b and the fifth mounting electrode 525b having the sixth wiring pattern 566b have the center O of the mounting region Sb of the rectangular plan view as a point of symmetry.
  • the pattern is formed so as to be point-symmetrical.
  • the fifth and sixth wiring patterns 565b and 566b are connected to the excitation electrodes 46 and 45 of the crystal diaphragm 4, respectively, heat is dissipated from the IC 3b having a temperature higher than that of the crystal oscillator 2b.
  • the heat of each of the wiring patterns 565b and 566b heated by is conducted to the excitation electrodes 46 and 45 of the crystal diaphragm 4 to increase the temperature.
  • the high temperature IC3b dissipates the heat and the temperature drops, while the heat is conducted to the crystal oscillator from the fifth and sixth wiring patterns 565b and 566b heated by the heat dissipating from the IC3b and the temperature is lowered. Is increased, the temperature difference between the IC3b and the crystal oscillator is suppressed, and a thermal equilibrium state is quickly reached.
  • FIG. 13 is a schematic configuration diagram of a temperature-compensated crystal oscillator according to another embodiment of the present invention, and is a schematic configuration diagram corresponding to FIG.
  • FIG. 14 is a schematic plan view showing the surface side of the first sealing member 5c of the crystal oscillator 2c of the temperature-compensated crystal oscillator 1c of FIG. 13, and is a view corresponding to FIG.
  • the same or corresponding reference numerals are given to the same or corresponding parts as those in the first embodiment.
  • FIGS. 3 other than the electrode pattern on the front surface of the IC 3c and the first sealing member 5c, that is, the back surface of the first sealing member 5c, the crystal diaphragm 4 and the second sealing member 6 are shown in FIGS. 3. It is the same as the first embodiment shown in FIGS. 5 to 7, and the description thereof will be omitted.
  • first to sixth mounting electrodes 521c to 526c to which the first to sixth mounting terminals 31c to 36c of the IC 3c are connected are formed on the surface of the first sealing member 5c. ing.
  • the first to sixth mounting electrodes 521c to 526c are electrode pads (not shown) to which the mounting terminals 31c to 36c of the IC3c are joined in a rectangular mounting area Sc surrounded by a virtual line on which the IC3c is mounted (not shown). ) Is included in the first to sixth terminal joints 531c to 536c. Further, the first to sixth mounting electrodes 521c to 526c extend from the first to sixth terminal joints 531c to 536c of the mounting region Sc to the outside of the mounting region Sc, and the through electrodes 504,505,502,503 , 506 and 501 are provided with first to sixth electrode connecting portions 541c to 546c, which are electrically connected to each other.
  • connecting joint patterns 551 and 552 extending along the short side are formed, respectively.
  • the first to fourth through electrodes 501 to 504 of the first sealing member 5c are the sixth, third, fourth, and first mounting electrodes 526c on the surface of the first sealing member 5c.
  • 523c, 524c, and 521c are electrically connected to the electrode connection portions 546c, 543c, 544c, and 541c, respectively, so that the first to fourth external connection terminals 631 to 634 on the back surface of the second sealing member 6 are
  • the sixth, third, fourth, and first mounting electrodes 526c, 523c, 524c, and 521c on the surface of the first sealing member 5c are electrically connected to the electrode connecting portions 546c, 543c, 544c, and 541c, respectively.
  • the sixth electrode connecting portion 546c around the first through electrode 501 of the sixth mounting electrode 526c is joined to the sixth terminal at a distant position. It is electrically connected to the portion 536c via a first wiring pattern 571c extending diagonally. Further, the first electrode connection portion 541c around the fourth through electrode 504 of the first mounting electrode 521c is electrically connected to the first terminal joint portion 531c at a distant position via the fourth wiring pattern 574c extending diagonally. Is connected.
  • the first wiring pattern 571c has a narrowed portion 5711c in the vicinity of the sixth electrode connecting portion 546c around the first through electrode 501, in which the width of the wiring is narrower than that of the other portions.
  • the fourth wiring pattern 574c has a narrowed portion 5744c in which the width of the wiring is narrower than that of the other portions in the vicinity of the first electrode connecting portion 541c around the fourth through electrode 504.
  • the narrowed portions 5711c and 5744c of the first and fourth wiring patterns 571c and 574c are formed so that the widths of the wiring patterns 571c and 574c extending from the sixth and first terminal joint portions 536c and 531c are gradually narrowed. There is.
  • the third and fourth mounting electrodes 523c and 524c of the first sealing member 5c are such that the third and fourth mounting electrodes 523c and 524c themselves are the third around the second and third through electrodes 502 and 503.
  • 4th electrode connection portions 543c, 544c and the 3rd and 4th terminal joint portions 533c, 534c to which the 3rd and 4th mounting terminals 33c and 34c of the IC3c are bonded are electrically connected to the 2nd and 3rd terminals.
  • Wiring patterns 572c and 573c are configured.
  • the width of the wiring of the third mounting electrode 523c as the second wiring pattern 572c is narrower than that of the other portions at a substantially intermediate position between the third electrode connection portion 543c and the third terminal joint portion 533c. It has a constricted portion 5722c.
  • the width of the wiring of the fourth mounting electrode 524c as the third wiring pattern 573c is narrower than that of the other portions at a substantially intermediate position between the fourth electrode connection portion 544c and the fourth terminal joint portion 534c. It has a constricted portion 5733c.
  • the narrowed portions 5722c and 5733c of the second and third wiring patterns 572c and 573c have a shape in which one side of the wiring patterns 572c and 573c is cut out in an elongated rectangular shape.
  • first to sixth mounting electrodes 521c to 526c on the surface of the first sealing member 5c a pair of second and second excitation electrodes 45 and 46 connected to the first and second excitation electrodes 45 and 46 of the crystal diaphragm 4.
  • the remaining sixth, third, fourth, and first mounting electrodes 526c, 523c, 524c, and 521c excluding the fifth mounting electrodes 522c and 525c each include the first to fourth wiring patterns 571c to 574c. ..
  • the first to fourth wiring patterns 571c to 574c are the sixth, third, fourth, and first terminal joint portions 536c, 533c, 534c, and 531c to which the first to fourth through electrodes 501 to 504 and the IC3c are joined. And electrically connect.
  • Each wiring pattern 571c to 574c has narrowed portions 5711c, 5722c, 5733c, and 5744c in which the width of the wiring is narrowed, respectively.
  • the narrowed portions 5711c, 5722c, 5733c, 5744c join the first to fourth through electrodes 501 to 504 to the sixth, third, fourth, and first mounting terminals 36c, 33c, 34c, and 31c of the IC3c. It is possible to prevent heat conduction between the sixth, third, fourth and first terminal joints 536c, 533c, 534c and 531c.
  • the gradient of the temperature rise of the IC3c when the electronic component serving as the heat source of the external circuit board on which the temperature-compensated crystal oscillator is mounted is started to be energized is made gentle.
  • the gradient of the temperature drop of the IC3c when the energization of the electronic component as the heat source mounted on the external circuit board is stopped can be made gentle.
  • the temperature difference between the IC3c and the crystal oscillator can be suppressed, the IC3c and the crystal oscillator can be quickly brought into a thermal equilibrium state, and frequency drift can be suppressed.
  • the shape of the narrowed portion of the wiring pattern is not particularly limited as long as the width is narrow, and is not limited to each of the above embodiments.
  • the sixth terminal joint portion is located near the sixth electrode connecting portion 546c around the first through electrode 501.
  • the narrowed portion 5711c1 having a constant width narrower than that of the wiring pattern 571c extending from the 536c may be used.
  • the narrowed portion 5711c2 may be such that the width gradually narrows from the sixth electrode connecting portion 546c around the first through electrode 501 toward the wiring pattern 571c.
  • one constricted portion is formed in one wiring pattern, but a plurality of constricted portions may be formed in one wiring pattern.
  • the IC is mounted on the first sealing member on the front surface side of the crystal unit, but the IC is mounted on the second sealing member 6 on the back surface side of the crystal unit. May be good.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

励振電極に接続された一対の実装用電極以外の残余の実装用電極は、外部接続端子とICの実装端子とを接続する配線パターンを備え、配線パターンは、熱の伝導を妨げる幅狭の狭窄部を有している。

Description

圧電振動デバイス
 本発明は、通信機器等の各種電子機器に用いられる圧電振動デバイスに関する。
 圧電振動デバイスとして、表面実装型の圧電振動子や圧電発振器が広く用いられている。例えば、圧電振動子の周波数温度特性を補償した温度補償型圧電発振器は、温度環境の変化する携帯型の通信機器の周波数源として広く用いられている。
 かかる温度補償型圧電発振器では、温度センサや温度補償回路を内蔵した集積回路素子を備えている。この集積回路素子に内蔵された温度センサの検出温度に基づいて、補償電圧を発生して発振周波数を制御している(例えば、特許文献1参照)。
特開2005-006030号公報
 表面実装型の温度補償型圧電発振器では、その外部接続端子が、半田等の接合材を用いて外部の回路基板に接合されて実装される。この外部の回路基板に実装されている熱源となる電子部品(例えばパワートランジスタ)への通電が開始されて、該電子部品が発熱すると、その熱は、当該回路基板に実装された温度補償型圧電発振器の外部接続端子へ伝導する。
 温度補償型圧電発振器では、集積回路素子は、外部接続端子に内部の配線等を介して直接接続されている。これに対して、圧電振動子は、内部の配線等を介して集積回路素子に接続されており、外部接続端子には、直接接続されていない。
 このため、温度補償型圧電発振器の外部接続端子に伝導した外部の回路基板の熱源からの熱は、熱伝導性が良好な外部接続端子及び内部の配線等を介して
集積回路素子に迅速に伝導される。このため、集積回路素子の温度上昇の勾配は、圧電振動子の温度上昇の勾配に比べて急となる。したがって、集積回路素子と圧電振動子との温度差が大きくなる。この温度差が縮まって、集積回路素子と圧電振動子とが熱平衡状態に達するまでの間は、正確な温度補償が困難となり、周波数変動、いわゆる周波数ドリフトが生じる。
 この周波数ドリフトは、外部の回路基板に実装されている熱源となる電子部品への通電が開始されたときに限らず、前記電子部品への通電が停止されたときにも同様に生じる。すなわち、外部の回路基板に実装されている熱源となる電子部品への通電が停止されると、該電子部品からの熱が温度補償型圧電発振器へ伝導されなくなるので、温度補償型圧電発振器の温度が低下する。このとき、集積回路素子の熱が、熱伝導性の良好な内部の配線等を介して外部接続端子へ迅速に伝導されて放熱される。このため、集積回路素子の温度降下の勾配は、圧電振動子の温度降下の勾配に比べて急となる。したがって、集積回路素子と圧電振動子との温度差が大きくなる。この温度差が縮まって、集積回路素子と圧電振動子とが熱平衡状態に達するまでの間は、周波数ドリフトが生じる。
 このように当該温度補償型圧電発振器が実装される外部の回路基板の熱源となる電子部品への通電の開始、停止によって、周波数ドリフトが生じる。このため、かかる電子部品への通電の開始(オン)、停止(オフ)が、比較的頻繁に行われる電子機器では、その影響が顕著となる。
 本発明は、上記のような点に鑑みてなされたものであって、当該圧電振動デバイスが搭載される外部の回路基板からの熱などによって生じる圧電振動子と集積回路素子との温度差を可及的に抑制することを目的とする。
 本発明では、上記目的を達成するために、次のように構成している。
 すなわち、本発明の圧電振動デバイスは、複数の外部接続端子及び複数の実装用電極を有する圧電振動子と、前記複数の実装用電極に接続される複数の実装端子を有して、前記圧電振動子に実装される集積回路素子とを備える圧電振動デバイスであって、
 前記圧電振動子は、その両主面に励振電極がそれぞれ形成された圧電振動板と、前記圧電振動板の前記両主面の一方の主面側を覆って封止する第1封止部材と、前記圧電振動板の前記両主面の他方の主面側を覆って封止する第2封止部材とを備え、
 前記複数の実装用電極の内、一対の実装用電極は、前記両主面にそれぞれ形成された前記励振電極に電気的にそれぞれ接続され、残余の複数の実装用電極は、前記複数の外部接続端子に電気的にそれぞれ接続されており、
 前記残余の複数の各実装用電極は、前記複数の各外部接続端子と前記集積回路素子の複数の各実装端子とを電気的に接続する配線パターンをそれぞれ備え、
 前記残余の複数の実装用電極の少なくとも1つの実装用電極の前記配線パターンは、幅狭の狭窄部を有する。
 本発明によれば、圧電振動板の両主面の励振電極に接続された一対の実装用電極以外の残余の複数の実装用電極は、複数の各外部接続端子と集積回路素子の複数の各実装端子とを電気的に接続する配線パターンをそれぞれ備えている。残余の複数の実装用電極の少なくとも1つの実装用電極の配線パターンは、熱の伝導を妨げる幅狭の狭窄部を有している。このため、当該圧電振動デバイスが実装される外部の回路基板の熱源の発熱による熱が、当該圧電振動デバイスの外部接続端子から前記配線パターンを介して集積回路素子へ伝導する場合に、その熱の伝導を、配線パターンの狭窄部によって妨げることができる。これによって、集積回路素子の温度上昇の勾配を緩やかにして、集積回路素子と圧電振動子との温度差を抑制し、集積回路素子と圧電振動子とを、迅速に熱平衡状態にすることができる。
 また、外部の回路基板の熱源の発熱が停止して、当該圧電振動デバイスの温度が低下する場合に、集積回路素子の熱が、前記配線パターンを介して外部接続端子に伝導して放熱されるが、その熱の伝導を、配線パターンの狭窄部によって妨げることができる。これによって、集積回路素子の温度降下の勾配を緩やかにして、集積回路素子と圧電振動子との温度差を抑制し、集積回路素子と圧電振動子とを、迅速に熱平衡状態にすることができる。
 更に、圧電振動子は、その両主面に励振電極がそれぞれ形成された圧電振動板の各主面側を、第1,第2封止部材でそれぞれ封止した三層の積層構造である。このため、窪んだ収容部を有する容器内に、圧電振動片を収容して蓋で封止するパッケージ構造に比べて、薄型化(低背化)を図ることができる。
 本発明の圧電振動デバイスの好ましい実施態様では、前記残余の複数の実装用電極の全ての実装用電極の前記配線パターンは、幅狭の前記狭窄部を有している。
 この実施態様によれば、当該圧電振動デバイスが実装される外部の回路基板の熱源の発熱による熱が、外部接続端子から前記配線パターンを介して集積回路素子へ伝導するのを一層効果的に妨げることができる。また、外部の回路基板の熱源の発熱が停止し、集積回路素子の熱が、前記配線パターンを介して外部接続端子に伝導して放熱されるのを一層効果的に妨げることができる。これによって、集積回路素子と圧電振動子との温度差を抑制して、集積回路素子と圧電振動子とを、一層迅速に熱平衡状態にすることができる。
 本発明の圧電振動デバイスの一実施態様では、前記第1封止部材の外面に、前記複数の実装用電極が設けられ、前記第2封止部材の外面に、前記複数の外部接続端子が設けられ、前記圧電振動子は、前記第1封止部材、前記圧電振動板、及び、前記第2封止部材を厚み方向に貫通する複数の貫通電極を有しており、前記残余の複数の実装用電極は、前記複数の貫通電極を介して前記複数の外部接続端子に電気的にそれぞれ接続されている。
 この実施態様によれば、圧電振動子の一方の面を構成する第2封止部材の外面に、外部の回路基板に接合される外部接続端子が設けられ、圧電振動子の他方の面を構成する第1封止部材の外面に、集積回路素子の実装用端子が接続される実装用電極が設けられる。残余の複数の実装用電極は、第1,第2封止部材及び圧電振動板を厚み方向に貫通する複数の貫通電極を介して複数の外部接続端子に電気的に接続される。
 したがって、当該圧電振動デバイスが実装される外部の回路基板の熱源の発熱による熱は、当該圧電振動デバイスの、熱伝導性の良好な外部接続端子、貫通電極、及び、残余の複数の実装用電極を介して集積回路素子の複数の実装端子に伝導することになる。この場合、その熱の伝導が、残余の複数の実装用電極の配線パターンの狭窄部によって妨げられるので、熱が、集積回路素子に迅速に伝導されなくなる。これによって、集積回路素子の温度上昇の勾配が緩やかとなり、集積回路素子と圧電振動子との温度差を抑制して、集積回路素子と圧電振動子とを、迅速に熱平衡状態にすることができる。
 また、外部の回路基板の熱源の発熱が停止して、集積回路素子の熱が、その実装端子から残余の複数の実装用電極、複数の貫通電極及び外部接続端子へ伝導されて放熱される。この場合、その熱の伝導が、残余の複数の実装用電極の配線パターンの狭窄部によって妨げられるので、集積回路素子の温度降下の勾配が緩やかとなる。これによって、集積回路素子と圧電振動子との温度差を抑制し、集積回路素子と圧電振動子とを、迅速に熱平衡状態にすることができる。
 本発明の圧電振動デバイスの他の実施態様では、前記配線パターンの前記狭窄部が、前記実装用電極と前記集積回路素子の前記実装端子との接続部よりも前記貫通電極寄りに形成されている。
 この実施態様によれば、熱の伝導を妨げる狭窄部は、貫通電極と集積回路素子の実装端子とを接続する配線パターンの貫通電極寄り、したがって、集積回路素子の実装端子から離れた位置に形成されているので、集積回路素子から離れた位置で、熱の伝導を抑制することができる。
 本発明の圧電振動デバイスの更に他の実施態様では、前記配線パターンの前記狭窄部が、前記集積回路素子が実装される実装領域外に形成されている。
 この実施態様によると、熱の伝導を妨げる狭窄部は、集積回路素子が実装される実装領域外に形成されているので、集積回路素子が実装される実装領域外で、熱の伝導を抑制することができる。
 本発明の一実施態様では、前記配線パターンの前記狭窄部の幅が、40μm以下である。
 この実施態様によると、配線パターンの狭窄部の幅が、40μm以下であるので、熱の伝導を効果的に抑制することができる。
 本発明の他の実施態様では、前記集積回路素子は、前記複数の実装端子がその外周寄りに配置されており、前記両主面にそれぞれ形成された前記励振電極に電気的にそれぞれ接続される前記一対の実装用電極は、前記集積回路素子が実装される実装領域において、前記複数の前記実装端子よりも内方まで延出されている励振電極用配線パターンを有する。
 この実施態様によると、圧電振動子の圧電振動板の両主面の励振電極に電気的にそれぞれ接続されている一対の実装用電極が、集積回路素子の実装領域において、実装端子よりも内方まで延出された各励振電極用配線パターンをそれぞれ有している。これによって、集積回路素子の温度が上昇して圧電振動子よりも高温となった場合には、集積回路素子からの放熱によって加熱された各励振電極用配線パターンの熱が、圧電振動子に効率的に伝導され、集積回路素子と圧電振動子との温度差を一層迅速に縮めて熱平衡状態にすることができる。
 本発明の更に他の実施態様では、前記一対の前記実装用電極の前記励振電極用配線パターンが、前記集積回路素子が実装される前記実装領域の中心を対称点として略点対称である。
 この実施態様によると、一対の実装用電極の各励振電極用配線パターンが、実装領域の中心を対称点として略点対称であるので、集積回路素子からの放熱によって、各励振電極用配線パターンが略均等に加熱される。加熱された各励振電極用配線パターンの熱が、圧電振動板の両主面に伝導されるので、圧電振動板の両主面の温度をバランスよく高めることができる。
 本発明の好ましい実施態様では、前記一対の前記実装用電極の前記励振電極用配線パターンは、前記集積回路素子が実装される前記実装領域において、少なくとも中央部近傍まで延出されている。
 この実施態様によると、実装用電極の励振電極用配線パターンが、集積回路素子が実装される実装領域の中央部近傍まで延出しているので、駆動されて高温となった集積回路素子の中央部近傍からの放熱によって、励振電極用配線パターンが効率的に加熱されることになる。これによって、加熱された励振電極用配線パターンの熱が、圧電振動子に伝導されて、圧電振動子の温度を効率的に高めることができる。
 本発明によれば、圧電振動板の両主面の励振電極に接続された一対の実装用電極以外の残余の複数の実装用電極は、複数の各外部接続端子と集積回路素子の複数の各実装端子とを電気的に接続する配線パターンをそれぞれ備えている。残余の複数の実装用電極の少なくとも1つの実装用電極の配線パターンは、熱の伝導を妨げる幅狭の狭窄部を有している。したがって、当該圧電振動デバイスが実装される外部の回路基板の熱源の発熱による熱が、当該圧電振動デバイスの外部接続端子から前記配線パターンを介して集積回路素子へ伝導する場合に、その熱の伝導を、配線パターンの狭窄部によって妨げることができる。これによって、集積回路素子の温度上昇の勾配を緩やかにして、集積回路素子と圧電振動子との温度差を抑制し、集積回路素子と圧電振動子とを、迅速に熱平衡状態にすることができる。
 また、外部の回路基板の熱源の発熱が停止し、集積回路素子の熱が、その実装端子から前記配線パターンを介して外部接続端子に伝導して放熱される場合に、その熱の伝導を、配線パターンの狭窄部によって妨げることができる。これによって、集積回路素子の温度降下の勾配を緩やかにして、集積回路素子と圧電振動子との温度差を抑制し、集積回路素子と圧電振動子とを、迅速に熱平衡状態にすることができる。
 更に、圧電振動子は、その両主面に励振電極がそれぞれ形成された圧電振動板の各主面側を、第1,第2封止部材でそれぞれ封止した三層の積層構造であるので、窪んだ収容部を有する容器内に、圧電振動片を収容して蓋で封止するパッケージ構造に比べて、薄型化(低背化)を図ることができる。
図1は、本発明の一実施形態に係る温度補償型水晶発振器の概略構成図である。 図2は、図1の水晶振動板の一方の主面側を示す概略平面図である。 図3は、図1の水晶振動板の一方の主面側から透視した他方の主面側を示す概略平面図である。 図4は、図1の第1封止部材の一方の主面側を示す概略平面図である。 図5は、図1の第1封止部材の一方の主面側から透視した他方の主面側を示す概略平面図である。 図6は、図1の第2封止部材の一方の主面側を示す概略平面図である。 図7は、図1の第2封止部材の一方の主面側から透視した他方の主面側を示す概略平面図である。 図8は配線の長さと熱伝導時間との関係のシミュレーション結果を示す図である。 図9は配線の幅と熱伝導時間との関係のシミュレーション結果を示す図である。 図10は、本発明の他の実施形態に係る温度補償型水晶発振器の概略構成図である。 図11は、図10の実施形態の第1封止部材の一方の主面側を示す概略平面図である。 図12は、本発明の他の実施形態の第1封止部材の一方の主面側を示す概略平面図である。 図13は、本発明の更に他の実施形態に係る温度補償型水晶発振器の概略構成図である。 図14は、図13の実施形態の第1封止部材の一方の主面側を示す概略平面図である。 図15Aは、図14の配線パターンの狭窄部の変形例を示す図である。 図15Bは、図14の配線パターンの狭窄部の他の変形例を示す図である。 図15Cは、図14の配線パターンの狭窄部の更に他の変形例を示す図である。
 以下、本発明の一実施形態を図面に基づいて詳細に説明する。本実施形態では、圧電振動デバイスとして温度補償型水晶発振器に適用して説明する。
 [第1実施形態]
 図1は、本発明の一実施形態に係る温度補償型水晶発振器の概略構成図である。
 この実施形態の温度補償型水晶発振器1は、水晶振動子2と、この水晶振動子2に実装された集積回路素子としてのIC3とを備えている。
 水晶振動子2は、圧電振動板である水晶振動板4と、水晶振動板4の一方の主面側を覆って気密に封止する第1封止部材5と、水晶振動板4の他方の主面側を覆って気密に封止する第2封止部材6とを備えている。
 この水晶振動子2では、水晶振動板4の両主面側に、第1,第2封止部材5,6がそれぞれ接合されて、いわゆるサンドイッチ構造のパッケージが構成される。この水晶振動子2のパッケージは、直方体であって、平面視矩形である。この実施形態の水晶振動子2のパッケージサイズは、平面視で、例えば、1.0mm×0.8mmであり、小型化及び低背化を図っている。
 なお、パッケージサイズは、上記に限定されるものではなく、異なるサイズであっても適用可能である。
 水晶振動子2に実装されるIC3は、発振回路、温度センサ及び温度補償回路を1チップ化した外形が直方体の集積回路素子である。
 次に、水晶振動子2を構成する水晶振動板4及び第1,第2封止部材5,6の各構成について説明する。
 図2は水晶振動板4の一方の主面側を示す概略平面図であり、図3は水晶振動板4の一方の主面側から透視した他方の主面側を示す概略平面図である。
 以下では、説明の便宜上、IC3に近い側(図1において上側)の一方の主面を表面、IC3から遠い側(図1において下側)の他方の主面を裏面として説明する。すなわち、図2は水晶振動板4の表面側を示す概略平面図であり、図3は水晶振動板4の表面側から透視した裏面側を示す概略平面図である。
 この実施形態の水晶振動板4は、ATカット水晶板であり、その表裏の両主面が、XZ´平面である。
 水晶振動板4は、略矩形の振動部41と、この振動部41の周囲を、空間(隙間)42を挟んで囲む枠部43と、振動部41と枠部43とを連結する連結部44とを備えている。振動部41、枠部43及び連結部44は、一体的に形成されている。図示していないが、振動部41及び連結部44は、枠部43に比べて薄く形成されている。
 振動部41の表裏の両主面には、一対の第1,第2励振電極45,46がそれぞれ形成されている。第1,第2励振電極45,46からは、第1,第2引出し電極47,48がそれぞれ引出されている。表面側の第1引出し電極47は、連結部44を経て枠部43に形成された接続用接合パターン401まで引出されている。裏面側の第2引出し電極48は、連結部44を経て枠部43に形成された接続用接合パターン402まで引出されている。この接続用接合パターン402は、平面視矩形の水晶振動板4の短辺に沿って延びて、後述の第5貫通電極415の周囲に達している。
 この実施形態では、振動部41を、一箇所の連結部44によって連結しているので、2箇所以上連結部44で連結する構成に比べて、振動部41に作用する応力を低減することができる。
 水晶振動板4の表裏の各主面には、水晶振動板4を、第1,第2封止部材5,6にそれぞれ接合するための第1,第2封止用接合パターン403,404が、形成されている。この第1,第2封止用接合パターン403,404は、枠部43の全周に亘って、水晶振動板4の四隅を除いてその外周縁に略沿うように環状にそれぞれ形成されている。第1封止部材5の裏面には、図5に示すように水晶振動板4の表面の第1封止用接合パターン403に対応する第1封止用接合パターン51が形成されている。また、第2封止部材6の表面には、図6に示すように水晶振動板4の裏面の第2封止用接合パターン404に対応する第2封止用接合パターン61が形成されている。
 後述のように、第1封止部材5、水晶振動板4及び第2封止部材6が重ね合わされて、第1封止部材5及び水晶振動板4の環状の第1封止用接合パターン51,403同士が拡散接合されると共に、水晶振動板4及び第2封止部材6の環状の第2封止用接合パターン404,61同士が拡散接合される。これによって、水晶振動板4の表裏両面が、第1,第2封止部材5,6によって封止されて、水晶振動板4の振動部41が収容された収容空間が構成される。
 このように水晶振動板4及び第1,2封止部材5,6の3枚の水晶板を積層して、振動部41を収容したパッケージが構成される。これによって、収容空間となる凹部を有するセラミック製の容器内に、水晶振動片を収容して蓋を接合して封止する構成の水晶振動子に比べて、薄型化(低背化)を図ることができる。
 水晶振動板4には、図2,図3に示すように、表裏の両主面間を貫通する5つの第1~第5貫通電極411~415が形成されている。各貫通電極411~415は、貫通孔の内壁面に金属膜が被着されて構成されている。第1~第4貫通電極411~414は、環状の第1,第2封止用接合パターン403,404の外側の水晶振動板4の四隅に形成されている。第5貫通電極415は、環状の第1,第2封止用接合パターン403,404の内側であって、平面視矩形の水晶振動板4の一方の短辺寄りの枠部43に形成されている。
 水晶振動板4の表面の四隅の各貫通電極411~414の周囲であって、環状の第1封止用接合パターン403の外側には、各接続用接合パターン421~424がそれぞれ形成されている。各貫通電極411~414は、各接続用接合パターン421~424にそれぞれ電気的に接続されている。
 水晶振動板4の裏面の四隅の各貫通電極411~414の周囲であって、環状の第2封止用接合パターン404の外側には、各接続用接合パターン431~434がそれぞれ形成されている。各貫通電極411~414は、各接続用接合パターン431~434にそれぞれ電気的に接続されている。
 第1封止部材5及び第2封止部材6には、水晶振動板4の第1~第4貫通電極411~414にそれぞれ対応する第1~第4貫通電極501~504及び第1~第4貫通電極601~604が、後述のようにそれぞれ形成されている(図5,図6参照)。
 水晶振動板4の表面の第5貫通電極415の周囲には、図2に示すように、接続用接合パターン425が形成されている。第5貫通電極415と接続用接合パターン425は電気的に接続されている。
 水晶振動板4の裏面の第5貫通電極415の周囲には、図3に示すように、第2励振電極46から引出された引出し電極48に接続されている接続用接合パターン402が延出されている。第5貫通電極415は、接続用接合パターン402に電気的に接続されており、したがって、第5貫通電極415は、第2励振電極46に電気的に接続されている。
 水晶振動板4の表面には、図2に示すように、振動部41を挟んで水晶振動板4の長辺方向(図2の左右方向)の一方側に、第5貫通電極415の周囲の接続用接合パターン425及び第1引出し電極47に連なる接続用接合パターン401が形成され、前記長辺方向の他方側には、二つの接続用接合パターン441,442が形成されている。
 これら接続用接合パターン425,401;441,442は、水晶振動板4の長辺方向の中心線CLに略対称に形成されている。また、接続用接合パターン425,441と、接続用接合パターン401,442とは、水晶振動板4の短辺方向の中心線に略対称に形成されている。すなわち、これら接続用接合パターン425,401,441,442は、水晶振動板4の長辺方向及び短辺方向に略対称に形成されている。
 水晶振動板4の表面の四隅の各貫通電極411~414の周囲の各接続用接合パターン421~424も水晶振動板4の長辺方向及び短辺方向に対称に形成されている。
 このように接続用接合パターン425,401,441,442;421~424を、水晶振動板4の長辺方向及び短辺方向に略対称又は対称に形成しているので、拡散接合する際に加わる押圧力を均等にすることができる。
 水晶振動板4の表面と同様に、水晶振動板4の裏面には、振動部41を挟んで水晶振動板4の長辺方向(図3の左右方向)の一方側に、第5貫通電極415の周囲まで延出されている接続用接合パターン402が形成され、前記長辺方向の他方側には、二つの接続用接合パターン451,452が形成されている。これら接続用接合パターン402,451,452も水晶振動板4の長辺方向及び短辺方向に略対称に形成されている。
 また、水晶振動板4の裏面の四隅の各貫通電極411~414の周囲の各接続用接合パターン431~434も水晶振動板4の長辺方向及び短辺方向に対称に形成されている。
 水晶振動板4の第1,第2励振電極45,46、第1,第2引出し電極47,48、第1,第2封止用接合パターン403,404、及び、接続用接合パターン401,402,421~425,431~434,441,442,451,452は、例えば、TiまたはCrからなる下地層上に、例えば、Auが積層形成されて構成されている。
 図4は第1封止部材5の表面側を示す概略平面図であり、図5は第1封止部材5の表面側から透視した裏面側を示す概略平面図である。
 第1封止部材5は、水晶振動板4と同様のATカット水晶板からなる直方体の基板である。この第1封止部材5の裏面には、図5に示すように水晶振動板4の表面の第1封止用接合パターン403に接合して封止するための第1封止用接合パターン51が形成されている。この第1封止用接合パターン51は、第1封止部材5の全周に亘って、第1封止部材5の四隅を除いてその外周縁に略沿うように環状に形成されている。
 第1封止部材5には、その表裏の両主面間を貫通する6つの第1~第6貫通電極501~506が形成されている。各貫通電極501~506は、貫通孔の内壁面に金属膜が被着されて構成されている。第1~第4貫通電極501~504は、水晶振動板4の第1~第4貫通電極411~414と同様に、平面視矩形の第1封止部材5の四隅に形成されている。第5貫通電極505は、水晶振動板4の表面の接続用接合パターン441に対応するように、環状の第1封止用接合パターン51の内側であって、第1封止部材5の一方の短辺寄りに形成されている。第6貫通電極506は、水晶振動板4の表面の接続用接合パターン401に対応するように、環状の第1封止用接合パターン51の内側であって、他方の短辺寄りに形成されている。
 第1封止部材5の裏面の四隅の各貫通電極501~504の周囲には、図5に示すように、接続用接合パターン511~514がそれぞれ形成されている。各貫通電極501~504は、各接続用接合パターン511~514にそれぞれ電気的に接続されている。
 第1封止部材5の裏面の第5貫通電極505の周囲には、接続用接合パターン515が形成されており、第5貫通電極505は、この接続用接合パターン515に電気的に接続されている。この接続用接合パターン515とは、第1封止部材5の長辺方向(図5の左右方向)の反対側に、水晶振動板4の表面の接続用接合パターン425に対応するように、接続用接合パターン518が形成されている。この接続用接合パターン518と、第5貫通電極505の周囲の接続用接合パターン515とは、接続用配線パターン519によって電気的に接続されている。したがって、第1封止部材5の裏面の接続用接合パターン518は、第1封止部材5の第5貫通電極505に電気的に接続されている。
 この第1封止部材5の接続用接合パターン518は、後述のように、水晶振動板4の表面の第5貫通電極415の周囲の接続用接合パターン425に拡散接合されるので、水晶振動板4の第5貫通電極415に電気的に接続される。この水晶振動板4の第5貫通電極415は、上記のように、水晶振動板4の裏面の第2励振電極46に電気的に接続されているので、第1封止部材5の接続用接合パターン518は、水晶振動板4の第2励振電極46に電気的に接続されることになる。この第1封止部材5の接続用接合パターン518は、接続用配線パターン519を介して第5貫通電極505の周囲の接続用接合パターン515に電気的に接続されている。したがって、水晶振動板4の裏面の第2励振電極46は、水晶振動板4の第5貫通電極415、第1封止部材5の接続用接合パターン518、接続用配線パターン519、及び、接続用接合パターン515を介して第1封止部材5の第5貫通電極505に電気的に接続されることになる。
 第1封止部材5の裏面の第6貫通電極506の周囲には、水晶振動板4の表面の接続用接合パターン401に対応する接続用接合パターン516が形成されている。第6貫通電極506は、この接続用接合パターン516に電気的に接続されている。この接続用接合パターン516とは、第1封止部材5の長辺方向(図5の左右方向)の反対側に、水晶振動板4の表面の接続用接合パターン442に対応するように、接続用接合パターン517が形成されている。
 第1封止部材5の接続用接合パターン516は、後述のように、水晶振動板4の表面の接続用接合パターン401に拡散接合されるので、この接続用接合パターン401及び第1引出し電極47を介して第1励振電極45に電気的に接続される。すなわち、第1封止部材5の第6貫通電極506は、水晶振動板4の第1励振電極45に電気的に接続される。
 第1封止部材5では、水晶振動板4と同様に、拡散接合する際に加わる押圧力を均等にできるように、第1封止部材5の裏面の接続用接合パターン515~518は、第1封止部材5の長辺方向及び短辺方向に略対称に形成されている。また、第1封止部材5の裏面の四隅の各貫通電極501~504の周囲の各接続用接合パターン511~514も第1封止部材5の長辺方向及び短辺方向に対称に形成されている。
 第1封止部材5の表面は、IC3が実装される面である。第1封止部材5の表面を示す図4においては、仮想線によって、第1封止部材5に実装されるIC3の平面視矩形の外形、及び、IC3の6つの第1~第6実装端子31~36の外形を示している。
 この図4に示されるように、第1封止部材5の表面には、IC3の第1~第6実装端子31~36がそれぞれ接続される第1~第6実装用電極521~526が形成されている。
 第1~第6実装用電極521~526は、IC3が実装される仮想線で囲まれた矩形の実装領域Sにおいて、IC3の各実装端子31~36がそれぞれ接合される電極パッド(図示せず)を含む第1~第6端子接合部531~536を備えている。更に、第1~第6実装用電極521~526は、実装領域Sの前記第1~第6端子接合部531~536から実装領域S外に延びて、各貫通電極501,505,502,503,506,504にそれぞれ電気的に接続される第1~第6電極接続部541~546を備えている。
 IC3は、図1に示されるように、金属部材としての金属バンプ(例えばAuバンプ等)7を用いて第1封止部材5の表面に、FCB(Flip  Chip  Bonding)法により接合される。金属バンプ7に代えて、金属メッキや金属ペーストを用いて接合してもよい。
 IC3と第1封止部材5との間には、IC3の能動面を保護すると共に、機械的接合強度を確保するために、封止樹脂としてのアンダーフィル樹脂8が充填される。
 第1封止部材5の第1封止用接合パターン51、接続用接合パターン511~518、接続用配線パターン519、及び、第1~第6実装用電極521~526は、水晶振動板4の第1,第2封止用接合パターン403,404等と同様に、例えば、TiまたはCrからなる下地層上に、例えば、Auが積層形成されて構成されている。
 この第1封止部材5の表面の他の構成については、後述する。
 図6は第2封止部材6の表面側を示す概略平面図であり、図7は第2封止部材6の表面側から透視した裏面側を示す概略平面図である。
 第2封止部材6は、水晶振動板4や第1封止部材5と同様のATカット水晶板からなる直方体の基板である。
 第2封止部材6の表面には、図6に示すように、水晶振動板4の裏面の第2封止用接合パターン404に接合して封止するための第2封止用接合パターン61が形成されている。この第2封止用接合パターン61は、第2封止部材6の全周に亘って、第2封止部材6の四隅を除いてその外周縁に略沿うように環状にそれぞれ形成されている。
 第2封止部材6には、その表裏の両主面間を貫通する4つの第1~第4貫通電極601~604が形成されている。各貫通電極601~604は、貫通孔の内壁面に金属膜が被着されて構成されている。第1~第4貫通電極601~604は、水晶振動板4の第1~第4貫通電極411~414と同様に、平面視矩形の第2封止部材6の矩形の四隅に形成されている。第2封止部材6の表面の四隅の各貫通電極601~604の周囲には、図6に示すように、接続用接合パターン611~614がそれぞれ形成されている。各貫通電極601~604は、各接続用接合パターン611~614にそれぞれ電気的に接続されている。
 第2封止部材6の環状の第2封止用接合パターン61の内側の各短辺寄りには、それぞれ二つずつ、合計四つの接続用接合パターン621,622;623,624が、水晶振動板4の裏面の接続用接合パターン451,452,402に対応するようにそれぞれ形成されている。
 第2封止部材6では、水晶振動板4と同様に、拡散接合する際に加わる押圧力を均等にできるように、第2封止部材6の表面の接続用接合パターン621,622,623,624及び四隅の接続用接合パターン611~614は、第2封止部材6の長辺方向及び短辺方向に対称に形成されている。
 第2封止部材6の裏面には、図7に示すように、当該温度補償型水晶発振器1を、外部の回路基板に実装するための4つの第1~第4外部接続端子631~634が設けられている。
 この例では、第1外部接続端子631は、電源用の外部接続端子であり、第2外部接続端子632は、発振出力用の外部接続端子である。第3外部接続端子633は、制御電圧入力用の外部接続端子であり、第4外部接続端子634はグランド(接地)用の外部接続端子である。
 第1~第4外部接続端子631~634は、平面視矩形の第2封止部材6の四つの角部にそれぞれ配置されている。各外部接続端子631~634が設けられている領域には、第1~第4貫通電極601~604がそれぞれ形成されており、各貫通電極601~604は、各外部接続端子631~634にそれぞれ電気的に接続されている。
 第2封止部材6の第2封止用接合パターン61、接続用接合パターン611~614,621~624、及び、第1~第4外部接続端子631~634は、水晶振動板4の第1,第2封止用接合パターン403,404等と同様に、例えば、TiまたはCrからなる下地層上に、例えば、Auが積層形成されて構成されている。
 この実施形態では、水晶振動子2は、従来技術のような接着剤等の接合専用材を用いることなく、接合される。すなわち、水晶振動板4と第1封止部材5とが、それぞれの第1封止用接合パターン403,51を重ね合わせた状態で拡散接合されると共に、水晶振動板4と第2封止部材6とが、それぞれの第2封止用接合パターン404,61を重ね合わせた状態で拡散接合される。これによって、図1に示すサンドイッチ構造のパッケージが製造され、水晶振動板4の振動部41が収容された収容空間が、両封止部材5,6によって気密に封止される。
 この場合、水晶振動板4の第1封止用接合パターン403と、第1封止部材5の第1封止用接合パターン51との拡散接合によって、接合材が生成されて接合される。また、水晶振動板4の第2封止用接合パターン404と、第2封止部材6の第2封止用接合パターン61との拡散接合によって、接合材が生成されて接合される。
 この拡散接合を、加圧した状態で行うことによって、接合材の接合強度を向上させることが可能である。
 また、この拡散接合の際に、上述した接続用接合パターン同士も重ね合わせられた状態で拡散接合され、拡散接合によって生成された接合材によって接合される。
 具体的には、水晶振動板4の表面の四隅の接続用接合パターン421~424と第1封止部材5の裏面の四隅の接続用接合パターン511~514とが拡散接合される。水晶振動板4の表面の環状の第1封止用接合パターン403の内側の一方の短辺寄りの接続用接合パターン441,442と、第1封止部材5の裏面の接続用接合パターン515,517とが拡散接合される。水晶振動板4の表面の環状の第1封止用接合パターン403の内側の他方の短辺寄りの接続用接合パターン425,401と、第1封止部材5の裏面の接続用接合パターン518,516とが拡散接合される。
 更に、水晶振動板4の裏面の四隅の接続用接合パターン431~434と、第2封止部材6の表面の接続用接合パターン611~614とが拡散接合される。水晶振動板4の裏面の環状の第2封止用接合パターン404の内側の一方の短辺寄りの接続用接合パターン451,452と、第2封止部材6の表面の接続用接合パターン621,622とが拡散接合される。水晶振動板4の裏面の環状の第2封止用接合パターン404の内側の他方の短辺寄りの接続用接合パターン402と、第2封止部材6の表面の接続用接合パターン623,624とが拡散接合される。
 上記の拡散接合によって、第2封止部材6の裏面の第1~第4外部接続端子631~634に電気的に接続されている第1~第4貫通電極601~604は、第2封止部材6の表面の各接続用接合パターン611~614と水晶振動板4の裏面の各接続用接合パターン431~434との拡散接合によって生成される接合材によって、水晶振動板4の第1~第4貫通電極411~414に電気的に接続される。
 水晶振動板4の第1~第4貫通電極411~414は、水晶振動板4の表面の各貫通電極411~414の周囲の各接続用接合パターン421~424と第1封止部材5の裏面の各接続用接合パターン511~514との拡散接合によって生成される接合材によって、第1封止部材5の第1~第4貫通電極501~504に電気的に接続される。
 したがって、第2封止部材6の裏面の第1~第4外部接続端子631~634は、第2封止部材6の第1~第4貫通電極601~604を介して水晶振動板4の第1~第4貫通電極411~414に電気的にそれぞれ接続され、更に、第1~第4貫通電極411~414を介して第1封止部材5の第1~第4貫通電極501~504に電気的にそれぞれ接続される。
 第1封止部材5の第1~第4貫通電極501~504は、図4に示すように、第1封止部材5の表面の第1,第3,第4,第6実装用電極521,523,524,526の各電極接続部541,543,544,546にそれぞれ電気的に接続されているので、第2封止部材6の裏面の第1~第4外部接続端子631~634は、第1封止部材5の表面の第1,第3,第4,第6実装用電極521,523,524,546の各電極接続部541,543,544,546にそれぞれ電気的に接続される。
 図2に示される水晶振動板4の表面の第1励振電極45に、第1引出し電極47を介して接続されている接続用接合パターン401は、図5に示される第1封止部材5の裏面の第6貫通電極506の周囲の接続用接合パターン516との拡散接合によって生成される接合材によって、第1封止部材5の第6貫通電極506に電気的に接続される。第1封止部材5の第6貫通電極506は、図4に示すように、第1封止部材5の表面の第5実装用電極525の第5電極接続部545に電気的に接続されている。
 したがって、水晶振動板4の第1励振電極45は、第1封止部材5の第6貫通電極506を介して第1封止部材5の第5実装用電極525の第5電極接続部545に電気的に接続される。
 図3に示される水晶振動板4の裏面の第2励振電極46に、第2引出し電極48及び接続用接合パターン402を介して電気的に接続されている第5貫通電極415は、図2に示される水晶振動板4の表面の接続用接合パターン425に電気的に接続されている。この水晶振動板4の接続用接合パターン425と、図5に示される第1封止部材5の裏面の接続用接合パターン518との拡散接合によって生成される接合材によって、水晶振動板4の第5貫通電極415が、第1封止部材5の裏面の接続用接合パターン518に電気的に接続される。この第1封止部材5の裏面の接続用接合パターン518は、接続用配線パターン519を介して第5貫通電極505の周囲の接続用接合パターン515に接続されている。この第1封止部材5の裏面の接続用接合パターン515は、第5貫通電極505に電気的に接続されており、この第5貫通電極505は、図4に示すように、第1封止部材5の表面の第2実装用電極522の第2電極接続部542に電気的に接続されている。
 したがって、水晶振動板4の裏面の第2励振電極46は、水晶振動板4の第5貫通電極415、第1封止部材5の裏面の接続用接合パターン518、接続用配線パターン519、接続用接合パターン515、及び、第1封止部材5の第5貫通電極505を介して第1封止部材5の表面の第2実装用電極522の第2電極接続部542に電気的に接続される。
 以上のような構成を有する表面実装型の温度補償型水晶発振器1では、図1に示される水晶振動子2の裏面側である第2封止部材6の第1~第4外部接続端子631~634が、半田等の接合材によって、図示しない外部の回路基板に接合されて実装される。
 この外部の回路基板に実装されている熱源となる電子部品(例えばパワートランジスタ)への通電が開始されて、該電子部品が発熱すると、その熱は、当該回路基板に実装された温度補償型圧水晶発振器1の第1~第4外部接続端子631~634へ伝導する。
 IC3は、上記のように、第1~第4外部接続端子631~634に、内部の配線の一部を構成する第1~第4貫通電極601~604,411~414,501~504等を介して直接接続されている。これに対して、水晶振動子2の第1,第2励振電極45,46は、IC3に接続されており、第1,第2励振電極45,46は、第2封止部材6の裏面の第1~第4外部接続端子631~634には直接接続されていない。
 このため、回路基板に実装されている熱源となる電子部品の発熱による熱は、温度補償型水晶発振器1に伝導し、更に、熱伝導性の良好な第1~第4外部接続端子631~634及び第1~第4貫通電極601~604,411~414,501~504等を介してIC3に迅速に伝導されることになる。このため、IC3の温度上昇の勾配は、水晶振動子2の温度上昇の勾配に比べて急となる。したがって、水晶振動子2とIC3との温度差が大きくなり、この温度差が縮まって、水晶振動子2とIC3とが熱平衡状態に達するまでの間は、正確な温度補償が困難となり、周波数変動、いわゆる周波数ドリフトが生じる。
 この周波数ドリフトは、外部の回路基板に実装されている熱源となる電子部品への通電が停止された場合にも同様に生じる。すなわち、外部の回路基板に実装されている前記電子部品への通電が停止されると、該電子部品からの熱が温度補償型水晶発振器1へ伝導されなくなるので、温度補償型水晶発振器1の温度が低下する。このとき、IC3の熱が、水晶振動子2に比べて、熱伝導性の良好な第1~第4貫通電極601~604,411~414,501~504等を介して第1~第4外部接続端子631~634へ迅速に伝導されて放熱される。このため、IC3の温度降下の勾配は、水晶振動子2の温度降下の勾配に比べて急となる。したがって、水晶振動子2とIC3との温度差が大きくなり、周波数ドリフトが生じる。
 この実施形態では、このような周波数ドリフトの発生を抑制するために、外部の回路基板に実装されている熱源となる電子部品への通電の開始、停止によって生じるIC3と水晶振動子2との温度差を抑制し、IC3と水晶振動子2とが、迅速に熱平衡状態となるように構成している。
 すなわち、この実施形態では、外部の回路基板に実装されている熱源となる電子部品への通電の開始あるいは停止によって生じるIC3の温度上昇の勾配あるいは温度降下の勾配を緩やかにし、IC3と水晶振動子2との温度差を抑制している。
 具体的には、図4に示される、第1封止部材5の表面の第1~第6実装電極521~526の内、水晶振動板4の第1,第2励振電極45,46に接続されている一対の第2,第5実装用電極522,525を除く残余の第1,第3,第4,第6実装用電極521,523,524,526は、第1~第4配線パターン571~574をそれぞれ有している。第1~第4配線パターン571~574は、第1~第4貫通電極501~504の周囲の第1,第3,第4,第6電極接続部541,543,544,546と、IC3の第1,第3,第4,第6実装端子31,33,34,36が接合される第1,第3,第4,第6端子接合部531,533,534,536とを電気的に接続する。各配線パターン571~574は、配線の幅が、他の部分に比べて幅狭となる狭窄部5711,5722,5733,5744をそれぞれ有している。各狭窄部5711,5722,5733,5744は、各配線パターン571~574の一側が矩形状に切り欠かれた形状となっている。
 各狭窄部5711,5722,5733,5744の配線の幅は、例えば、100μm以下、好ましくは、40μm以下であり、この実施形態では、40μm以下としている。
 ここで、熱伝導速度が、配線の長さ及び幅によって、どのように変化するかについて行ったシミュレーションの結果について説明する。
 このシミュレーションでは、2つのブロックを配線で接続し、一方のブロックの外側面の温度を、1℃に固定したときに、他方のブロックの外側面の温度が0.9℃に到達するまでの時間を、前記配線の長さを変化させた場合、及び、配線の幅を変化させた場合のそれぞれについて算出した。
 図8は、配線の長さを変化させた場合に、他方のブロックの外側面の温度が0.9℃に到達するまでの時間の変化を示す図であり、横軸が配線の長さを、縦軸が時間をそれぞれ示している。また、図9は、配線の幅を変化させた場合に、他方のブロックの外側面の温度が0.9℃に到達するまでの時間の変化を示す図であり、横軸が配線の幅を、縦軸が時間をそれぞれ示している。
 2つのブロックを接続する配線の長さが長い程、配線の幅が狭い程、他方のブロックの外側面の温度が、0.9℃に到達するまでの時間が長くなることが分る。
 図9に示されるように、配線の幅は、40μm程度までは、狭くなっても時間にあまり差はないが、40μm程度よりも狭くなると、時間が急激に長くなり、約3倍程度になっている。
 この実施形態では、上記のように、第1~第4貫通電極501~504の周囲の第1,第3,第4,第6電極接続部541,543,544,546と、IC3の第1,第3,第4,第6実装端子31,33,34,36が接合される第1,第3,第4,第6端子接合部531,533,534,536とを接続する第1~第4配線パターン571~574は、配線の幅が幅狭となる狭窄部5711,5722,5733,5744を有している。この狭窄部5711,5722,5733,5744によって、第1~第4貫通電極501~504と、IC3の第1,第3,第4,第6実装端子31,33,34,36が接合される第1,第3,第4,第6端子接合部531,533,534,536との間の熱の伝導を妨げることができる。
 当該温度補償型水晶発振器1が実装される外部の回路基板の熱源となる電子部品への通電が開始されて、該電子部品が発熱し、その熱が、温度補償型圧水晶発振器1に伝導し、更に、第1~第4外部接続端子631~634、第1~第4貫通電極601~604,411~414,501~504、及び、第1~第4配線パターン571~574を介してIC3に伝導される。この場合に、第1~第4配線パターン571~574の各狭窄部5711,5722,5733,5744によって、IC3への熱の伝導を抑制することができる。これによって、IC3の温度上昇の勾配は、緩やかとなり、IC3と水晶振動子2との温度差を抑制することができる。したがって、迅速にIC3と水晶振動板4とを熱平衡状態にすることができ、周波数ドリフトを抑制することができる。
 また、外部の回路基板に実装されている熱源となる電子部品への通電が停止された場合に、電子部品からの熱が温度補償型水晶発振器1へ伝導されなくなるので、温度補償型水晶発振器1の温度が低下する。このとき、IC3の熱が、IC3の第1,第3,第4,第6実装端子31,33,34,36から、第1~第4配線パターン571~574、第1~第4貫通電極501~504,411~414,601~604を介して第1~第4外部接続端子631~634へ伝導されて放熱される。この場合、第1~第4配線パターン571~574の各狭窄部5711,5722,5733,5744によって、IC3からの熱が、第1~第4貫通電極501~504へ伝導するのを抑制することができる。これによって、IC3の温度降下の勾配は、緩やかとなり、IC3と水晶振動子2との温度差を抑制することができる。したがって、迅速にIC3と水晶振動板4とを熱平衡状態にすることができ、周波数ドリフトを抑制することができる。
 上記実施形態では、第1~第4配線パターン571~574の全ての配線パターン571~574が狭窄部5711,5722,5733,5744をそれぞれ有しているが、本発明の他の実施形態として、少なくともいずれか1つの配線パターンが狭窄部を有する構成としてもよい。
 [第2実施形態]
 図10は、本発明の他の実施形態に係る温度補償型水晶発振器の概略構成図であり、上記図1に対応する概略構成図である。図11は、図10の温度補償型水晶発振器1aの水晶振動子2aの第1封止部材5aの表面側を示す概略平面図であり、上記図4に対応する図である。上記第1実施形態と同一又は対応する部分には、同一又は対応する参照符号を付す。
 この実施形態では、IC3a及び第1封止部材5aの表面の電極のパターン以外、すなわち、第1封止部材5aの裏面、水晶振動板4及び第2封止部材6は、上記図2、図3、図5~図7に示される上記第1実施形態と同様であり、その説明は省略する。
 この実施形態では、IC3aの第1封止部材5aに対する実装方向が、上記第1実施形態と異なると共に、それに応じて、第1封止部材5aの電極のパターンが異なる。すなわち、上記第1実施形態では、図4に示すように、IC3は、その長辺方向が第1封止部材5の長辺方向に直交するように実装されていた。これに対して、この実施形態では、図11に示されるように、IC3aは、その長辺方向と第1封止部材5aの長辺方向とが同一方向に沿うように実装されている。
 第1封止部材5aの表面を示す図11においては、仮想線によって、第1封止部材5aに実装されるIC3aの平面視矩形の外形、IC3aの6つの第1~第6実装端子31a~36a、及び、IC3aに内蔵されている温度センサ301aの外形を示している。
 この図11に示されるように、第1封止部材5aの表面には、IC3aの第1~第6実装端子31a~36aがそれぞれ接続される第1~第6実装用電極521a~526aが形成されている。
 第1~第6実装用電極521a~526aは、IC3aが実装される仮想線で囲まれた矩形の実装領域Saにおいて、IC3aの各実装端子31a~36aがそれぞれ接合される電極パッド(図示せず)を含む第1~第6端子接合部531a~536aを備えている。更に、第1~第6実装用電極521a~526aは、実装領域Saの前記第1~第6端子接合部531a~536aから実装領域Sa外に延びて、各貫通電極501,505,503,502,506,504にそれぞれ電気的に接続される第1~第6電極接続部541a~546aを備えている。
 第1封止部材5aの表面の第1~第6実装電極521a~526aの内、水晶振動板4の第1,第2励振電極45,46に接続されている一対の第2,第5実装用電極522a,525aを除く残余の第1,第4,第3,第6実装用電極521a,524a,523a,526aは、第1~第4配線パターン571a~574aをそれぞれ有している。第1~第4配線パターン571a~574aは、第1~第4貫通電極501~504の周囲の第1,第4,第3,第6電極接続部541a,544a,543a,546aと、IC3aの第1,第4,第3,第6実装端子31a,34a,33a,36aが接合される第1,第4,第3,第6端子接合部531a,534a,533a,536aとを電気的に接続する。各配線パターン571a~574aは、配線の幅が、他の部分に比べて幅狭となる狭窄部5711a,5722a,5733a,5744aをそれぞれ有している。
 このように第1封止部材5aの第1~第4貫通電極501~504の周囲の第1,第4,第3,第6電極接続部541a,544a,543a,546a
と、IC3aの第1,第4,第3,第6実装端子31a,34a,33a,36aが接合される第1,第4,第3,第6端子接合部531a,534a,533a,536aとを接続する第1~第4配線パターン571a~574aは、配線の幅が幅狭となる狭窄部5711a,5722a,5733a,5744aを有している。この狭窄部5711a,5722a,5733a,5744aによって、第1~第4貫通電極501~504と、IC3aの第1,第4,第3,第6実装端子31a,34a,33a,36aが接合される第1,第4,第3,第6端子接合部531a,534a,533a,536aとの間の熱の伝導を妨げることができる。
 これによって、上記第1実施形態と同様に、当該温度補償型水晶発振器1aが実装される外部の回路基板の熱源となる電子部品への通電が開始された際のIC3aの温度上昇の勾配を緩やかにすることができる。また、外部の回路基板に実装されている熱源となる電子部品への通電が停止された際のIC3aの温度降下の勾配を緩やかにすることができる。これによって、IC3aと水晶振動子2aとの温度差を抑制して、迅速にIC3aと水晶振動子2aとを熱平衡状態にすることができ、周波数ドリフトを抑制することができる。
 この実施形態では、上記第1実施形態と同様に、水晶振動板4の第1励振電極45に電気的に接続されている第1封止部材5aの第6貫通電極506は、第5実装用電極525aの第5電極接続部545aに電気的に接続されている。したがって、水晶振動板4の第1励振電極45は、第1封止部材5aの第6貫通電極506を介して第1封止部材5aの第5実装用電極525aの第5電極接続部545aに電気的に接続される。
 上記第1実施形態と同様に、水晶振動板4の第2励振電極46に電気的に接続されている第1封止部材5aの第5貫通電極505は、第2実装用電極522aの第2電極接続部542aに電気的に接続されている。したがって、水晶振動板4の裏面の第2励振電極46は、第1封止部材5aの第5貫通電極505を介して第1封止部材5aの表面の第2実装用電極522aの第2電極接続部542aに電気的に接続される。
 この実施形態では、IC3aの温度が、水晶振動子2aの温度よりも高温になった場合に、その温度差をなくして、IC3aと水晶振動子2aとが、迅速に熱平衡状態となるように次のように構成している。
 図11に示されるように、IC3aの第1~第6実装端子31a~36aは、平面視矩形のIC3aの外周寄りに配置されている。具体的には、第1~第6実装端子31a~36aは、矩形の二組の対向辺の内の一方の組の対向辺である各長辺寄りの位置に、長辺に沿って、二列に配置されている。前記一方の組の対向辺は、「長辺」に代えて「短辺」としてもよい。
 この実施形態では、第1封止部材5aの表面に形成されている第1~第6実装用電極521a~526aの内、水晶振動板4の各励振電極46,45にそれぞれ接続されている一対の第2,第5実装用電極522a,525aは、第5配線パターン565及び第6配線パターン566をそれぞれ有している。第5配線パターン565及び第6配線パターン566は、IC3aが実装される平面視矩形の実装領域Saの内方に延出されている励振電極用配線パターンである。各配線パターン565,566は、実装領域Saに実装されるIC3aとの対向面積を大きくするために、幅広に形成されている。
 第5,第6配線パターン565,566は、矩形の実装領域Saにおいて、IC3aの二列に配置されている第1~第3実装端子31a~33aと第4~第6実装端子34a~36aとの間を、IC3aの長辺方向(図11の左右方向)に沿って延出し、中央付近で、第2,第5実装端子32a,35a側へそれぞれ斜めに屈曲して延びている。第5配線パターン565は、IC3aに内蔵された温度センサ301aを、実装領域Saに投影した矩形の投影領域と完全に重なるように延びている。
 このように、IC3aが実装される実装領域Saには、水晶振動板4の各励振電極46,45にそれぞれ接続されている一対の第2,第5実装用電極522a,525aの幅広の第5,第6配線パターン565,566が、IC3aに対向するように形成されている。
 IC3aが水晶振動子2aより高温となって、IC3aと水晶振動子2aとの間に温度差が生じると、IC3aからの放熱によって、その直下のIC3aに対向する第5,第6配線パターン565,566が加熱される。
 第5,第6配線パターン565,566は、第2,第5実装用電極522a,525aの各電極接続部542a,545aから延出されている。各電極接続部542a,545aは、第5,第6貫通電極505,506に電気的に接続されている。更に、第5貫通電極505は、水晶振動板4の裏面の第2励振電極46に接続されている。一方、第6貫通電極506は、水晶振動板4の表面の第1励振電極45に接続されている。
 このように第5,第6配線パターン565,566は、水晶振動板4の各励振電極46,45にそれぞれ接続されているので、高温のIC3aからの放熱によって加熱された各配線パターン565,566の熱は、水晶振動板4の各励振電極46,45に伝導されて温度が高まる。
 したがって、水晶振動子2aよりも高温のIC3aは、その熱を放熱して温度が低下する一方、水晶振動子2aには、IC3aからの放熱によって加熱された第2,第5配線パターン562,565から熱が伝導して温度が高まり、IC3aと水晶振動子2aとの温度差を抑制して迅速に熱平衡状態となる。
 これによって、IC3aに内蔵されている温度センサ301aの検出温度と、水晶振動子2aの温度との温度差に起因する周波数変動を抑制して、正確な温度補償を行うことが可能となる。
 この実施形態では、第5配線パターン565を有する第2実装用電極522aと、第6配線パターン566を有する第5実装用電極525aとは、平面視矩形の実装領域Saの中心Oを対称点として点対称となるようにパターンが形成されている。これによって、第5,第6配線パターン565,566は、高温のIC3aからの放熱をバランスよく受けて、効率的に加熱される。
 特に、この実施形態では、第5配線パターン565は、IC3aに内蔵された温度センサ301aの投影領域の全てを含むように形成されているので、IC3aの温度センサ301aの部分からの放熱によって、その直下で対向する第5配線パターン565が加熱され、その熱が、水晶振動子2aの水晶振動板4に伝導することになる。これによって、IC3aの温度センサ301aの部分と水晶振動板4とを速やかに熱平衡状態とすることができ、正確な温度補償を行うことが可能となる。
 その他の構成及び作用効果は、上記第1実施形態と同様である。
 図12は、本発明の他の実施形態の温度補償型水晶発振器の水晶振動子の第1封止部材5bの表面側を示す概略平面図であり、上記図11に対応する図である。
 なお、この実施形態では、IC3b及び第1封止部材5bの表面の電極のパターン以外、すなわち、第1封止部材5bの裏面、水晶振動板4及び第2封止部材6は、図10,図11に示される上記実施形態と同様であり、その説明は省略する。
 この実施形態では、IC3bの第1封止部材5bに対する実装方向が、図11の上記実施形態と異なると共に、それに応じて、第1封止部材5bの電極のパターンが異なる。すなわち、上記実施形態では、図11に示すように、IC3aは、その長辺方向と第1封止部材5aの長辺方向とが同一方向に沿うように実装されたのに対して、この実施形態では、図12に示すように、IC3bは、その長辺方向が第1封止部材5bの長辺方向に直交するように実装されている。
 第1封止部材5bの表面には、IC3bの第1~第6実装端子31b~36bの配列に応じて、各実装端子31b~36bがそれぞれ接続される第1~第6実装用電極521b~526bが形成されている。
 第1~第6実装用電極521b~526bは、IC3bが実装される仮想線で囲まれた矩形の実装領域Sbにおいて、IC3bの各実装端子31b~36bがそれぞれ接合される電極パッド(図示せず)を含む第1~第6端子接合部531b~536bを備えている。更に、第1~第6実装用電極521b~526bは、実装領域Sbの前記第1~第6端子接合部531b~536bから実装領域Sb外に延びて、各貫通電極501,505,502,503,506,504にそれぞれ電気的に接続される第1~第6電極接続部541b~546bを備えている。
 第1封止部材5bの表面の第1~第6実装電極521b~526bの内、水晶振動板4の第1,第2励振電極45,46に接続されている一対の第2,第5実装用電極522b,525bを除く残余の第1,第3,第4,第6実装用電極521b,523b,524b,526bは、第1~第4配線パターン571b~574bをそれぞれ有している。第1~第4配線パターン571b~574bは、第1~第4貫通電極501~504の周囲の第1,第3,第4,第6電極接続部541b,543b,544b,546bと、IC3bの第1,第3,第4,第6実装端子31b,33b,34b,36bが接合される第1,第3,第4,第6端子接合部531b,533b,534b,536bとを電気的に接続する。各配線パターン571b~574bは、配線の幅が、他の部分に比べて幅狭となる狭窄部5711b,5722b,5733b,5744bをそれぞれ有している。
 このように第1封止部材5bの第1~第4貫通電極501~504と、IC3bが接合される第1,第3,第4,第6端子接合部531b,533b,534b,536bとを接続する第1~第4配線パターン571b~574bは、配線の幅が幅狭となる狭窄部5711b,5722b,5733b,5744bを有している。この狭窄部5711b,5722b,5733b,5744bによって、第1~第4貫通電極501~504と、IC3bの第1,第3,第4,第6実装端子31b,33b,34b,36bが接合される第1,第3,第4,第6端子接合部531b,533b,534b,536bとの間の熱の伝導を妨げることができる。
 これによって、上記実施形態と同様に、当該温度補償型水晶発振器が実装される外部の回路基板の熱源となる電子部品への通電が開始された際のIC3bの温度上昇の勾配を緩やかにし、また、外部の回路基板に実装されている熱源となる電子部品への通電が停止された際のIC3bの温度降下の勾配を緩やかにすることができる。これによって、IC3bと水晶振動子との温度差を抑制して、迅速にIC3bと水晶振動子とを熱平衡状態にすることができ、周波数ドリフトを抑制することができる。
 この実施形態では、第1封止部材5bの表面に形成されている第1~第6実装用電極521b~526bの内、水晶振動板4の各励振電極46,45にそれぞれ接続されている一対の第2,第5実装用電極522b,525bは、第5配線パターン565b及び第6配線パターン566bをそれぞれ有している。第5配線パターン565b及び第6配線パターン566bは、IC3bが実装される平面視矩形の実装領域Sbの内方にそれぞれ延出されている励振電極用配線パターンである。第5,第6配線パターン565b,566bは、IC3bが実装される矩形の実装領域Sbにおいて、二列に配置されている第1~第3実装端子31b~33bと、第4~第6実装端子34b~36bとの間まで延出している。
 特に、第6配線パターン566bは、IC3bに内蔵された温度センサ301bを、実装領域Sbに投影した矩形の投影領域と完全に重なるように延びている。
 上記実施形態では、図11に示すように、第2,第5実装用電極522a,525aの第2,第5端子接合部532a,535aと第2,第5電極接続部542a,545aとは、離れて配置され、その間を、第5,第6配線パターン565,566によってそれぞれ電気的に接続した。
 これに対して、この実施形態では、第2,第5実装用電極522b,525bの第2,第5端子接合部532b,535bと、第2,第5実装用電極522b,525bの第2,第5電極接続部542b,545bとを、近接して配置して、それらを電気的にそれぞれ接続している。したがって、第5,第6配線パターン565b,566bは、第2,第5端子接合部532b,535bと第2,第5電極接続部542b,545bとの電気的な接続を行うのではなく、熱伝導の機能のみを有している。
 この実施形態でも、第5配線パターン565bを有する第2実装用電極522bと、第6配線パターン566bを有する第5実装用電極525bとは、平面視矩形の実装領域Sbの中心Oを対称点として点対称となるようにパターンが形成されている。
 この実施形態においても、第5,第6配線パターン565b,566bは、水晶振動板4の各励振電極46,45にそれぞれ接続されているので、水晶振動子2bより高温となったIC3bからの放熱によって加熱された各配線パターン565b,566bの熱は、水晶振動板4の各励振電極46,45に伝導されて温度が高まる。
 したがって、高温のIC3bは、その熱を放熱して温度が低下する一方、水晶振動子には、IC3bからの放熱によって加熱された第5,第6配線パターン565b,566bから熱が伝導して温度が高まり、IC3bと水晶振動子との温度差を抑制して迅速に熱平衡状態となる。
 これによって、IC3bの温度センサ301bの検出温度と水晶振動板4との温度差に起因する周波数変動を抑制して、正確な温度補償を行うことが可能となる。
 [第3実施形態]
 図13は、本発明の他の実施形態に係る温度補償型水晶発振器の概略構成図であり、上記図1に対応する概略構成図である。図14は、図13の温度補償型水晶発振器1cの水晶振動子2cの第1封止部材5cの表面側を示す概略平面図であり、上記図4に対応する図である。上記第1実施形態と同一又は対応する部分には、同一又は対応する参照符号を付す。
 この実施形態では、IC3c及び第1封止部材5cの表面の電極のパターン以外、すなわち、第1封止部材5cの裏面、水晶振動板4及び第2封止部材6は、上記図2、図3、図5~図7に示される上記第1実施形態と同様であり、その説明は省略する。
 図14に示されるように、第1封止部材5cの表面には、IC3cの第1~第6実装端子31c~36cがそれぞれ接続される第1~第6実装用電極521c~526cが形成されている。
 第1~第6実装用電極521c~526cは、IC3cが実装される仮想線で囲まれた矩形の実装領域Scにおいて、IC3cの各実装端子31c~36cがそれぞれ接合される電極パッド(図示せず)を含む第1~第6端子接合部531c~536cを備えている。更に、第1~第6実装用電極521c~526cは、実装領域Scの前記第1~第6端子接合部531c~536cから実装領域Sc外に延びて、各貫通電極504,505,502,503,506,501にそれぞれ電気的に接続される第1~第6電極接続部541c~546cを備えている。
 矩形の実装領域Scの各短辺寄りの中央には、短辺に沿って延びる接続用接合パターン551,552がそれぞれ形成されている。
 第1封止部材5cの第1~第4貫通電極501~504は、図14に示すように、第1封止部材5cの表面の第6,第3,第4,第1実装用電極526c,523c,524c,521cの各電極接続部546c,543c,544c,541cにそれぞれ電気的に接続されているので、第2封止部材6の裏面の第1~第4外部接続端子631~634は、第1封止部材5cの表面の第6,第3,第4,第1実装用電極526c,523c,524c,521cの各電極接続部546c,543c,544c,541cにそれぞれ電気的に接続される。
 この実施形態では、IC3cの実装端子31~36の配置の関係で、第6実装用電極526cの第1貫通電極501の周囲の第6電極接続部546cは、離れた位置にある第6端子接合部536cに、斜めに延びる第1配線パターン571cを介して電気的に接続されている。また、第1実装用電極521cの第4貫通電極504の周囲の第1電極接続部541cは、離れた位置にある第1端子接合部531cに、斜めに延びる第4配線パターン574cを介して電気的に接続されている。
 第1配線パターン571cは、第1貫通電極501の周囲の第6電極接続部546cの近傍で、配線の幅が他の部分に比べて幅狭となる狭窄部5711cを有している。第4配線パターン574cは、第4貫通電極504の周囲の第1電極接続部541cの近傍で、配線の幅が、他の部分に比べて幅狭となる狭窄部5744cを有している。第1,第4配線パターン571c,574cの各狭窄部5711c,5744cは、第6,第1端子接合部536c,531cから延びる各配線パターン571c,574cの幅が徐々に絞られるように形成されている。
 第1封止部材5cの第3,第4実装用電極523c,524cは、この第3,第4実装用電極523c,524c自体が、第2,第3貫通電極502,503の周囲の第3,第4電極接続部543c,544cと、IC3cの第3,第4実装端子33c,34cが接合される第3,第4端子接合部533c,534cとを電気的に接続する第2,第3配線パターン572c,573cを構成している。
 第2配線パターン572cとしての第3実装用電極523cは、第3電極接続部543cと第3端子接合部533cとの略中間位置で、配線の幅が、他の部分に比べて幅狭となる狭窄部5722cを有している。第3配線パターン573cとしての第4実装用電極524cは、第4電極接続部544cと第4端子接合部534cとの略中間位置で、配線の幅が、他の部分に比べて幅狭となる狭窄部5733cを有している。第2,第3配線パターン572c,573cの各狭窄部5722c,5733cは、各配線パターン572c,573cの一側が細長い矩形状に切り欠かれた形状となっている。
 このように第1封止部材5cの表面の第1~第6実装電極521c~526cの内、水晶振動板4の第1,第2励振電極45,46に接続されている一対の第2,第5実装用電極522c,525cを除く残余の第6,第3,第4,第1実装用電極526c,523c,524c,521cは、第1~第4配線パターン571c~574cをそれぞれ備えている。第1~第4配線パターン571c~574cは、第1~第4貫通電極501~504と、IC3cが接合される第6,第3,第4,第1端子接合部536c,533c,534c,531cとを電気的に接続する。各配線パターン571c~574cは、配線の幅が幅狭となる狭窄部5711c,5722c,5733c,5744cをそれぞれ有している。この狭窄部5711c,5722c,5733c,5744cによって、第1~第4貫通電極501~504と、IC3cの第6,第3,第4,第1実装端子36c,33c,34c,31cが接合される第6,第3,第4,第1端子接合部536c,533c,534c,531cとの間の熱の伝導を妨げることができる。
 これによって、上記第1実施形態と同様に、当該温度補償型水晶発振器が実装される外部の回路基板の熱源となる電子部品への通電が開始された際のIC3cの温度上昇の勾配を緩やかにし、また、外部の回路基板に実装されている熱源となる電子部品への通電が停止された際のIC3cの温度降下の勾配を緩やかにすることができる。これによって、IC3cと水晶振動子との温度差を抑制して、迅速にIC3cと水晶振動子とを熱平衡状態にすることができ、周波数ドリフトを抑制することができる。
 配線パターンの狭窄部の形状は、幅が狭くなっていれば特に限定されず、上記各実施形態に限られない。例えば、上記図14の第1配線パターン571cの狭窄部5711cの場合には、図15Aに示すように、第1貫通電極501の周囲の第6電極接続部546cの近傍で、第6端子接合部536cから延びる配線パターン571cに比べて幅の狭い一定幅の狭窄部5711c1であってもよい。あるいは、図15Bに示すように、第1貫通電極501の周囲の第6電極接続部546cから配線パターン571cに向けて徐々に幅が狭くなるような狭窄部5711c2であってもよい。あるいは、図15Cに示すように、第1貫通電極501の周囲の第6電極接続部546cの近傍で、配線パターン571cの幅方向の両側から円弧状に絞られるような狭窄部5711c3であってもよい。
 上記実施形態では、1つの配線パターンに1箇所の狭窄部を形成したが、1つの配線パターンに複数箇所の狭窄部を形成してもよい。
 上記各実施形態では、ICは、水晶振動子の表面側である第1封止部材に実装したが、ICは、水晶振動子の裏面側である第2封止部材6に実装するようにしてもよい。
 1,1a,1c                温度補償型水晶発振器
 2,2a,2c                水晶振動子
 3,3a,3c                IC(集積回路素子)
 4                      水晶振動板
 5,5a,5b,5c             第1封止部材
 6                      第2封止部材
 7                      金属バンプ(金属部材)
 8                      アンダーフィル樹脂
 31~36,31a~36a          第1~第6実装端子
 31b~36b,31c~36c        第1~第6実装端子
 45,46                  第1,第2励振電極
 411~415                第1~第5貫通電極
 501~506                第1~第6貫通電極
 601~604                第1~第4貫通電極
 521~526,521a~526a      第1~第6実装用電極
 521b~526b,521c~526c    第1~第6実装用電極
 531~536,531a~536a      第1~第6端子接合部
 531b~536b,531c~536c    第1~第6端子接合部
 541~546,541a~546a      第1~第6電極接続部
 541b~546b,541c~546c    第1~第6電極接続部
 571~574,571a~574a      第1~第4配線パターン
 571b~574b,571c~574c    第1~第4配線パターン
 565,566,565b,566b      励振電極用配線パターン
 631~634                第1~第4外部接続端子
 S,Sa,Sb,Sc             実装領域

Claims (19)

  1.  複数の外部接続端子及び複数の実装用電極を有する圧電振動子と、前記複数の実0装用電極に接続される複数の実装端子を有して、前記圧電振動子に実装される集積回路素子とを備える圧電振動デバイスであって、
     前記圧電振動子は、その両主面に励振電極がそれぞれ形成された圧電振動板と、前記圧電振動板の前記両主面の一方の主面側を覆って封止する第1封止部材と、前記圧電振動板の前記両主面の他方の主面側を覆って封止する第2封止部材とを備え、
     前記複数の実装用電極の内、一対の実装用電極は、前記両主面にそれぞれ形成された前記励振電極に電気的にそれぞれ接続され、残余の複数の実装用電極は、前記複数の外部接続端子に電気的にそれぞれ接続されており、
     前記残余の複数の各実装用電極は、前記複数の各外部接続端子と前記集積回路素子の複数の各実装端子とを電気的に接続する配線パターンをそれぞれ備え、
     前記残余の複数の実装用電極の少なくとも1つの実装用電極の前記配線パターンは、幅狭の狭窄部を有する、
     圧電振動デバイス。
  2.  前記残余の複数の実装用電極の全ての実装用電極の前記配線パターンは、幅狭の前記狭窄部を有する、
     請求項1に記載の圧電振動デバイス。
  3.  前記第1封止部材の外面に、前記複数の実装用電極が設けられ、
     前記第2封止部材の外面に、前記複数の外部接続端子が設けられ、
     前記圧電振動子は、前記第1封止部材、前記圧電振動板、及び、前記第2封止部材を厚み方向に貫通する複数の貫通電極を有しており、
     前記残余の複数の実装用電極は、前記複数の貫通電極を介して前記複数の外部接続端子に電気的にそれぞれ接続されている、
     請求項1に記載の圧電振動デバイス。
  4.  前記第1封止部材の外面に、前記複数の実装用電極が設けられ、
     前記第2封止部材の外面に、前記複数の外部接続端子が設けられ、
     前記圧電振動子は、前記第1封止部材、前記圧電振動板、及び、前記第2封止部材を厚み方向に貫通する複数の貫通電極を有しており、
     前記残余の複数の実装用電極は、前記複数の貫通電極を介して前記複数の外部接続端子に電気的にそれぞれ接続されている、
     請求項2に記載の圧電振動デバイス。
  5.  前記配線パターンの前記狭窄部が、前記実装用電極と前記集積回路素子の前記実装端子との接続部よりも前記貫通電極寄りに形成されている、
     請求項3に記載の圧電振動デバイス。
  6.  前記配線パターンの前記狭窄部が、前記実装用電極と前記集積回路素子の前記実装端子との接続部よりも前記貫通電極寄りに形成されている、
     請求項4に記載の圧電振動デバイス。
  7.  前記配線パターンの前記狭窄部が、前記集積回路素子が実装される実装領域外に形成されている、
     請求項3に記載の圧電振動デバイス。
  8.  前記配線パターンの前記狭窄部が、前記集積回路素子が実装される実装領域外に形成されている、
     請求項4に記載の圧電振動デバイス。
  9.  前記配線パターンの前記狭窄部が、前記集積回路素子が実装される実装領域外に形成されている、
     請求項5に記載の圧電振動デバイス。
  10.  前記配線パターンの前記狭窄部が、前記集積回路素子が実装される実装領域外に形成されている、
     請求項6に記載の圧電振動デバイス。
  11.  前記配線パターンの前記狭窄部の幅が、40μm以下である、
     請求項1ないし10のいずれか一項に記載の圧電振動デバイス。
  12.  前記集積回路素子は、前記複数の実装端子がその外周寄りに配置されており、
     前記両主面にそれぞれ形成された前記励振電極に電気的にそれぞれ接続される前記一対の実装用電極は、前記集積回路素子が実装される実装領域において、前記複数の前記実装端子よりも内方まで延出されている励振電極用配線パターンを有する、
     請求項1ないし10のいずれか一項に記載の圧電振動デバイス。
  13.  前記集積回路素子は、前記複数の実装端子がその外周寄りに配置されており、
     前記両主面にそれぞれ形成された前記励振電極に電気的にそれぞれ接続される前記一対の実装用電極は、前記集積回路素子が実装される実装領域において、前記複数の前記実装端子よりも内方まで延出されている励振電極用配線パターンを有する、
     請求項11に記載の圧電振動デバイス。
  14.  前記一対の前記実装用電極の前記励振電極用配線パターンが、前記集積回路素子が実装される前記実装領域の中心を対称点として略点対称である、
     請求項12に記載の圧電振動デバイス。
  15.  前記一対の前記実装用電極の前記励振電極用配線パターンが、前記集積回路素子が実装される前記実装領域の中心を対称点として略点対称である、
     請求項13に記載の圧電振動デバイス。
  16.  前記一対の前記実装用電極の前記励振電極用配線パターンは、前記集積回路素子が実装される前記実装領域において、少なくとも中央部近傍まで延出されている、
     請求項12に記載の圧電振動デバイス。
  17.  前記一対の前記実装用電極の前記励振電極用配線パターンは、前記集積回路素子が実装される前記実装領域において、少なくとも中央部近傍まで延出されている、
     請求項13に記載の圧電振動デバイス。
  18.  前記一対の前記実装用電極の前記励振電極用配線パターンは、前記集積回路素子が実装される前記実装領域において、少なくとも中央部近傍まで延出されている、
     請求項14に記載の圧電振動デバイス。
  19.  前記一対の前記実装用電極の前記励振電極用配線パターンは、前記集積回路素子が実装される前記実装領域において、少なくとも中央部近傍まで延出されている、
     請求項15に記載の圧電振動デバイス。
PCT/JP2020/005308 2019-03-29 2020-02-12 圧電振動デバイス WO2020202814A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080006889.8A CN113228260B (zh) 2019-03-29 2020-02-12 压电振动器件
US17/429,914 US20220216847A1 (en) 2019-03-29 2020-02-12 Piezoelectric vibrating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-065727 2019-03-29
JP2019065727A JP6908068B2 (ja) 2019-03-29 2019-03-29 圧電振動デバイス

Publications (1)

Publication Number Publication Date
WO2020202814A1 true WO2020202814A1 (ja) 2020-10-08

Family

ID=72668950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005308 WO2020202814A1 (ja) 2019-03-29 2020-02-12 圧電振動デバイス

Country Status (5)

Country Link
US (1) US20220216847A1 (ja)
JP (1) JP6908068B2 (ja)
CN (1) CN113228260B (ja)
TW (1) TWI716302B (ja)
WO (1) WO2020202814A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517905A (zh) * 2020-11-20 2022-05-20 斯坦雷电气株式会社 车辆用灯具用光源单元和车辆用灯具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224681A (ja) * 1993-01-27 1994-08-12 Murata Mfg Co Ltd 圧電共振子
JP2002100949A (ja) * 2000-09-22 2002-04-05 Kyocera Corp 圧電発振器及びその製造方法
JP2004320420A (ja) * 2003-04-16 2004-11-11 Toyo Commun Equip Co Ltd 圧電発振器とその製造方法
JP2011199579A (ja) * 2010-03-19 2011-10-06 Seiko Epson Corp 電子デバイス、および電子デバイスの製造方法
JP2017046206A (ja) * 2015-08-27 2017-03-02 京セラクリスタルデバイス株式会社 圧電デバイス
WO2018092776A1 (ja) * 2016-11-17 2018-05-24 株式会社大真空 圧電振動デバイス
WO2018097132A1 (ja) * 2016-11-24 2018-05-31 株式会社大真空 圧電振動デバイスおよびそれを備えたSiPモジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182905A (ja) * 1987-01-23 1988-07-28 Murata Mfg Co Ltd エネルギ−とじ込め型圧電共振子
US6587008B2 (en) * 2000-09-22 2003-07-01 Kyocera Corporation Piezoelectric oscillator and a method for manufacturing the same
JP4572465B2 (ja) * 2000-12-15 2010-11-04 株式会社村田製作所 電子部品装置の製造方法
JP3841304B2 (ja) * 2004-02-17 2006-11-01 セイコーエプソン株式会社 圧電発振器、及びその製造方法
JP2012156592A (ja) * 2011-01-21 2012-08-16 Seiko Epson Corp 圧電振動片、圧電振動子、電子デバイス
JP5765598B2 (ja) * 2011-12-27 2015-08-19 京セラ株式会社 電子部品
WO2016199645A1 (ja) * 2015-06-12 2016-12-15 株式会社大真空 圧電振動デバイス
US11152911B2 (en) * 2016-09-16 2021-10-19 Daishinku Corporation Piezoelectric resonator device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224681A (ja) * 1993-01-27 1994-08-12 Murata Mfg Co Ltd 圧電共振子
JP2002100949A (ja) * 2000-09-22 2002-04-05 Kyocera Corp 圧電発振器及びその製造方法
JP2004320420A (ja) * 2003-04-16 2004-11-11 Toyo Commun Equip Co Ltd 圧電発振器とその製造方法
JP2011199579A (ja) * 2010-03-19 2011-10-06 Seiko Epson Corp 電子デバイス、および電子デバイスの製造方法
JP2017046206A (ja) * 2015-08-27 2017-03-02 京セラクリスタルデバイス株式会社 圧電デバイス
WO2018092776A1 (ja) * 2016-11-17 2018-05-24 株式会社大真空 圧電振動デバイス
WO2018097132A1 (ja) * 2016-11-24 2018-05-31 株式会社大真空 圧電振動デバイスおよびそれを備えたSiPモジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517905A (zh) * 2020-11-20 2022-05-20 斯坦雷电气株式会社 车辆用灯具用光源单元和车辆用灯具

Also Published As

Publication number Publication date
JP2020167504A (ja) 2020-10-08
TW202037075A (zh) 2020-10-01
US20220216847A1 (en) 2022-07-07
JP6908068B2 (ja) 2021-07-21
TWI716302B (zh) 2021-01-11
CN113228260B (zh) 2024-10-08
CN113228260A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
TWI792541B (zh) 恆溫槽型壓電振盪器
TWI804937B (zh) 恒溫槽型壓電振盪器
JP7196934B2 (ja) 圧電振動デバイス
WO2020202814A1 (ja) 圧電振動デバイス
TWI784147B (zh) 壓電振動元件
JP7238265B2 (ja) 圧電振動デバイス
JP6601525B2 (ja) 圧電振動デバイス
TWI821840B (zh) 壓電振動裝置
JP2021158586A (ja) 圧電発振器
TWI827915B (zh) 恆溫槽型壓電振盪器
TWI812028B (zh) 恆溫槽型壓電振盪器
TWI804210B (zh) 恆溫槽型壓電振盪器
WO2023145483A1 (ja) 圧電振動子及び圧電振動デバイス
TW202347955A (zh) 恆溫槽型壓電振盪器
TW202332197A (zh) 壓電振動元件
JP2021158585A (ja) 圧電発振器
JP2022052951A (ja) 圧電発振器
JP2022057122A (ja) ヒータ基板及び圧電発振器
JP2021002745A (ja) 圧電デバイス及び圧電デバイスの製造方法
JP2010220041A (ja) 圧電発振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782662

Country of ref document: EP

Kind code of ref document: A1