WO2020202745A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2020202745A1
WO2020202745A1 PCT/JP2020/002828 JP2020002828W WO2020202745A1 WO 2020202745 A1 WO2020202745 A1 WO 2020202745A1 JP 2020002828 W JP2020002828 W JP 2020002828W WO 2020202745 A1 WO2020202745 A1 WO 2020202745A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
layer
aqueous electrolyte
Prior art date
Application number
PCT/JP2020/002828
Other languages
English (en)
French (fr)
Inventor
貴志 神
鈴木 慎也
史治 新名
翔 鶴田
柳田 勝功
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080018312.9A priority Critical patent/CN113519077A/zh
Priority to JP2021511149A priority patent/JPWO2020202745A1/ja
Priority to US17/442,219 priority patent/US20220166007A1/en
Publication of WO2020202745A1 publication Critical patent/WO2020202745A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide as a positive electrode active material.
  • Patent Document 1 describes a compound of a predetermined element having a melting point of 750 ° C. or higher among the elements of Groups 4 to 6 on the particle surface of the lithium transition metal composite oxide (TiO 2, etc.).
  • Patent Document 2 it is produced by firing in a state where a boric acid compound is present on the particle surface of a lithium transition metal composite oxide, and the content of carbonate ion is 0.15% by weight or less and borate ion.
  • a positive electrode active material having a content of 0.01% by weight to 5.0% by weight is disclosed.
  • An object of the present disclosure is to provide a non-aqueous electrolyte secondary battery having a low initial resistance and capable of suppressing an increase in resistance during a high temperature cycle.
  • the non-aqueous electrolyte secondary battery is a non-aqueous electrolyte secondary battery including an electrode body including a positive electrode, a negative electrode, and a separator, and a non-aqueous electrolyte, and the positive electrode is at least positive electrode active. It has substance A.
  • the positive electrode active material A is a general formula Li a Ni b Co c Mn d Al e M f Og (in the formula, M is at least one element selected from groups 4, 5, and 6).
  • Li x M y O z (wherein, 1 ⁇ x ⁇ 4,1 ⁇ y ⁇ 5,1 ⁇ z ⁇ 12)
  • a first layer composed of the lithium metal compound and formed on the particle surface of the lithium transition metal composite oxide, and a second layer composed of the boron compound and formed on the first layer.
  • the first layer is formed on the particle surface of the lithium transition metal composite oxide over the entire area without interposing the second layer.
  • non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, an increase in battery resistance during a high temperature cycle can be suppressed.
  • the particle surface of the lithium-transition metal composite oxide represented by the general formula Li x M y O represented by the presence of lithium metal compound in z is known to be reduced initial resistance of the battery. It is considered that the lithium metal compound functions as a lithium ion conductor and contributes to the reduction of the charge transfer resistance of the positive electrode. On the other hand, the presence of the lithium metal compound on the particle surface of the lithium transition metal composite oxide cannot suppress the increase in battery resistance during a high temperature cycle, and may rather increase the resistance.
  • the present inventors form a first layer composed of a lithium metal compound and a second layer composed of a boron compound and covering the first layer on the particle surface of the lithium transition metal composite oxide. Therefore, we succeeded in suppressing the increase in resistance during high-temperature cycles while reducing the initial resistance.
  • the presence of a second layer of boron compound covering the first layer forms a strong film containing M and boron on the particle surface of the positive electrode active material during the high temperature cycle, which causes the non-aqueous electrolyte in the positive electrode. It is considered that the side reaction and the elution of the metal in the positive electrode active material were suppressed, and the increase in battery resistance was suppressed.
  • the non-aqueous electrolyte secondary battery 10 in which the wound electrode body 14 is housed in the exterior body 11 made of a laminated sheet is illustrated, but the exterior body is not limited to this, and for example, a cylindrical shape, a square shape, and a coin. It may be an outer can of a shape or the like. Further, the electrode body may be a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via a separator.
  • FIG. 1 is a perspective view showing the appearance of the non-aqueous electrolyte secondary battery 10 which is an example of the embodiment.
  • the non-aqueous electrolyte secondary battery 10 includes an exterior body 11 composed of two laminated films 11A and 11B.
  • the non-aqueous electrolyte secondary battery 10 includes an electrode body 14 housed in the exterior body 11 and a non-aqueous electrolyte secondary battery 10.
  • the exterior body 11 has, for example, a substantially rectangular shape in a plan view, and includes a housing portion 12 in which an electrode body 14 and a non-aqueous electrolyte are housed, and a sealing portion 13 formed around the housing portion 12.
  • the laminated films 11A and 11B are generally composed of a resin film containing a metal layer such as aluminum.
  • the accommodating portion 12 can be provided by forming a recess capable of accommodating the electrode body 14 in at least one of the laminated films 11A and 11B.
  • the recess is formed only in the laminated film 11A.
  • the sealing portion 13 is formed by joining the peripheral portions of the laminated films 11A and 11B to each other.
  • the sealing portion 13 is formed in a frame shape having substantially the same width so as to surround the accommodating portion 12.
  • the non-aqueous electrolyte secondary battery 10 includes a pair of electrode leads (positive electrode lead 15 and negative electrode lead 16) connected to the electrode body 14.
  • the positive electrode lead 15 and the negative electrode lead 16 are pulled out from the same end portion of the exterior body 11 to the outside of the exterior body 11.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent for example, esters, ethers, nitriles, amides, and a mixed solvent of two or more of these are used.
  • the non-aqueous solvent may contain a halogen substituent in which a part of hydrogen in these solvents is replaced with a halogen atom such as fluorine.
  • the non-aqueous electrolyte is not limited to the liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
  • the electrolyte salt for example, a lithium salt such as LiPF 6 is used.
  • FIG. 2 is a perspective view of the electrode body 14 which is an example of the embodiment.
  • the electrode body 14 includes a positive electrode 20, a negative electrode 30, and a separator 40, and the positive electrode 20 and the negative electrode 30 are spirally wound through the separator 40 to form a flat winding. It is a revolving electrode body.
  • the positive electrode 20 has a positive electrode tab 21 in which a part of the electrode plate is a convex portion protruding in the axial direction of the electrode body 14.
  • the negative electrode 30 has a negative electrode tab 31 protruding in the same direction as the positive electrode tab 21.
  • a plurality of positive electrode tabs 21 and negative electrode tabs 31 are formed at regular intervals in the longitudinal direction of each electrode plate.
  • the electrode body 14 is formed by superimposing and winding the positive electrode 20 and the negative electrode 30 via the separator 40 so that the positive electrode tab 21 and the negative electrode tab 31 are alternately arranged in the longitudinal direction of the electrode plate.
  • the positive electrode tabs 21 and the negative electrode tabs 31 overlap each other, and the positive electrode tab laminated portion 22 is formed at one end in the width direction of the electrode body 14, and the negative electrode tab laminated portion 32 is formed at the other end in the width direction.
  • the positive electrode lead 15 is welded to the positive electrode tab laminated portion 22, and the negative electrode lead 16 is welded to the negative electrode tab laminated portion 32.
  • the positive electrode 20, the negative electrode 30, and the separator 40 constituting the electrode body 14 will be described in detail, particularly the positive electrode 20.
  • the positive electrode 20 has a positive electrode core body and a positive electrode mixture layer provided on the surface of the positive electrode core body.
  • a foil of a metal such as aluminum that is stable in the potential range of the positive electrode 20, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the positive electrode mixture layer contains a positive electrode active material, a conductive material, and a binder, and is preferably provided on both sides of the positive electrode core body excluding the portion to which the positive electrode lead 15 is connected.
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder, and the like is applied to the surface of a positive electrode core, the coating film is dried, and then compressed to form a positive electrode mixture layer. It can be manufactured by forming it on both sides of the core body.
  • Examples of the conductive material contained in the positive electrode mixture layer include carbon materials such as carbon black, acetylene black, ketjen black, and graphite.
  • Examples of the binder contained in the positive electrode mixture layer include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide, acrylic resin, and polyolefins. These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or salts thereof, polyethylene oxide (PEO) and the like.
  • the positive electrode mixture layer has at least positive electrode active material A as the positive electrode active material.
  • the positive electrode active material A is composed of a lithium transition metal composite oxide and a lithium metal compound, and is composed of a first layer formed on the particle surface of the lithium transition metal composite oxide and a boron compound, and is a first layer. Includes a second layer formed on top.
  • the positive electrode active material A is a secondary particle in which primary particles are aggregated.
  • the first layer is formed on the particle surface of the lithium transition metal composite oxide over the entire area without interposing the second layer.
  • the positive electrode active material A contains a lithium transition metal composite oxide / a first layer / a second layer in order from the inside of the particles. That is, it can be said that the positive electrode active material A is a core-shell particle in which a shell composed of a first layer and a second layer is formed on the surface of the core particle made of a lithium transition metal composite oxide.
  • a first layer made of a lithium metal compound on the surface of secondary particles of a lithium transition metal composite oxide, the initial resistance of the battery can be reduced, and a second layer made of a boron compound covering the first layer can be formed. By forming it, it is possible to suppress an increase in battery resistance during a high temperature cycle.
  • Lithium transition metal composite oxide constituting the positive electrode active material A (hereinafter referred to as "lithium-transition metal complex oxide A") of the general formula Li a Ni b Co c Mn d Al e M f O g (wherein Among them, M is at least one element selected from Group 4, Group 5, and Group 6, 0.8 ⁇ a ⁇ 1.2, b ⁇ 0.82, 0 ⁇ c ⁇ 0.08, 0.05. It is a composite oxide represented by ⁇ d ⁇ 0.12, 0 ⁇ e ⁇ 0.05, 0.01 ⁇ f ⁇ 0.05, 1 ⁇ g ⁇ 2).
  • the content of Ni is preferably 82 to 92 mol%, more preferably 82 to 90 mol%, based on the total number of moles of the metal element excluding Li.
  • the content of Co is preferably 3 to 8 mol%, more preferably 5 to 8 mol%, based on the total number of moles of the metal elements excluding Li. If the Co content exceeds 8 mol%, the increase in resistance during the high temperature cycle cannot be suppressed.
  • the Mn content is preferably 6 to 10 mol% with respect to the total number of moles of the metal element excluding Li. If the Mn content is less than 5 mol%, the increase in resistance during the high temperature cycle cannot be suppressed.
  • the lithium transition metal composite oxide A may contain an element other than Li, Ni, Co, Mn, and M as long as the object of the present disclosure is not impaired.
  • the first layer (wherein, 1 ⁇ x ⁇ 4,1 ⁇ y ⁇ 5,1 ⁇ z ⁇ 12) the general formula Li x M y O z composed of lithium metal compound represented by the.
  • the first layer may be formed so as to cover the entire surface of the secondary particles of the lithium transition metal composite oxide A, or may be scattered on the particle surface.
  • M in the above general formula is at least one element selected from Group 4, Group 5, and Group 6, and is preferably at least one element selected from Ti, Nb, W, and Zr. That is, the lithium transition metal composite oxide A preferably contains at least one selected from Ti, Nb, W, and Zr. Further, the lithium metal compound constituting the first layer preferably contains at least one selected from Ti, Nb, W, and Zr.
  • Suitable lithium metal compounds are, for example, Li 2 TiO 3 , Li 4 Ti 5 O 12 , LiTIO 4 , Li 2 Ti 2 O 5 , LiTIO 2 , Li 3 NbO 4 , LiNbO 3 , Li 4 Nb 2 O 7 , Li 8 Nb 6 O 19 , Li 2 ZrO 3 , LiZrO 2 , Li 4 ZrO 4 , Li 2 WO 4 , Li 4 WO 5 .
  • the content of the first layer is preferably 0.001 to 1 mol% based on the element of M in the above general formula, preferably 0.01 to the total number of moles of the metal elements excluding Li of the positive electrode active material A. 0.5 mol% is more preferable.
  • the content of the first layer is within the above range, it becomes easy to suppress an increase in battery resistance during a high temperature cycle.
  • the second layer is composed of a boron compound and is formed on the first layer.
  • the second layer preferably covers the entire area of the first layer. That is, it is preferable that the first layer is not exposed on the surface of the positive electrode active material A.
  • a part of the second layer may be formed directly on the particle surface of the lithium transition metal composite oxide A.
  • the second layer may be formed, for example, by covering the entire surface of the secondary particle surface of the lithium transition metal composite oxide A including the region where the first layer is formed.
  • the second layer was not formed between the surface of the secondary particles of the lithium transition metal composite oxide A and the first layer, but faced opposite to the lithium transition metal composite oxide A of the first layer. It is formed only on the surface. Further, the lithium metal compound constituting the first layer and the boron compound constituting the second layer do not coexist with each other, and the boundary between the first layer and the second layer can be confirmed by, for example, XPS.
  • the boron compound constituting the second layer may be a compound containing B, and is not particularly limited, but is preferably an oxide or a lithium oxide.
  • Examples of the boron compound include boron oxide (B 2 O 3 ) and lithium borate (Li 2 B 4 O 7 ).
  • the content of the second layer is preferably 0.1 to 1.5 mol%, preferably 0.5 to 1.0, based on the total number of moles of metal elements excluding Li of the positive electrode active material A, based on the boron element. More preferably mol%. When the content of the second layer is within the above range, it becomes easy to suppress an increase in battery resistance during a high temperature cycle.
  • the average primary particle size of the positive electrode active material A is, for example, 100 nm to 1000 nm.
  • the average particle size (average secondary particle size) of the positive electrode active material A is, for example, 8 ⁇ m to 15 ⁇ m.
  • the particle size of the positive electrode active material A is substantially equal to the particle size of the lithium transition metal composite oxide A.
  • the average primary particle size of the positive electrode active material is determined by analyzing the SEM image of the particle cross section observed by a scanning electron microscope (SEM). For example, the positive electrode 20 or the positive electrode active material is embedded in the resin, a cross section is prepared by cross section polisher (CP) processing, and the cross section is photographed by SEM. Thirty primary particles are randomly selected from the SEM image, and the grain boundaries of the primary particles are observed. Then, after specifying the outer shape of the primary particles, the major axis (longest diameter) of each of the 30 primary particles is obtained, and the average value thereof is taken as the average primary particle diameter.
  • SEM scanning electron microscope
  • the average secondary particle size is also obtained from the SEM image of the particle cross section. Specifically, 30 secondary particles are randomly selected from the SEM image, and the grain boundaries of the selected 30 secondary particles are observed. Then, after specifying the outer shape of the secondary particles, the major axis (longest diameter) of each of the 30 secondary particles is obtained, and the average value thereof is taken as the average secondary particle diameter.
  • the positive electrode active material A is produced, for example, by the following process.
  • Nickel cobalt manganese composite hydroxide is calcined at 400 ° C. to 600 ° C. to obtain nickel cobalt manganese composite oxide.
  • the composite oxide, a lithium compound such as lithium hydroxide, and a compound containing a metal element selected from Group 4, Group 5, and Group 6 are mixed at a predetermined molar ratio to form oxygen. atmosphere, and fired under the conditions of 700 ° C. ⁇ 900 ° C., a lithium transition metal composite oxide of lithium metal compound represented by Li x M y O z on the surface of the particles of the (first layer) is stuck precursor obtain.
  • the precursor and the boron compound are mixed at a predetermined molar ratio and calcined in an oxygen atmosphere under the conditions of 150 ° C. to 400 ° C.
  • the positive electrode 20 preferably has a positive electrode active material A and a positive electrode active material B as the positive electrode active material.
  • the positive electrode active material B is preferably secondary particles in which primary particles are aggregated.
  • the average primary particle size of the positive electrode active material B is 0.5 ⁇ m or more, and is larger than the average primary particle size of the positive electrode active material A.
  • the average primary particle size of the positive electrode active material B is, for example, 0.5 ⁇ m to 4 ⁇ m.
  • the average secondary particle size of the positive electrode active material B is 2 ⁇ m to 7 ⁇ m, which is smaller than the average secondary particle size of the positive electrode active material A.
  • the positive electrode active material B may be composed of only primary particles instead of secondary particles.
  • Lithium transition metal composite oxide constituting the positive electrode active material B (hereinafter sometimes referred to as “lithium-transition metal composite oxide B”) has the general formula Li a Ni b Co c Mn d M e O f (wherein, M is at least one element selected from Group 4, Group 5, and Group 6, 0.8 ⁇ a ⁇ 1.2, b ⁇ 0.80, 0 ⁇ c ⁇ 0.15, 0 ⁇ d ⁇ 0 .15, 0 ⁇ e ⁇ 0.05, 1 ⁇ f ⁇ 2).
  • the lithium transition metal composite oxide B may have the same composition as the lithium transition metal composite oxide A.
  • the amount of Co in the positive electrode active material B is preferably equal to or larger than the amount of Co in the positive electrode active material A.
  • the positive electrode active material B is (wherein, 1 ⁇ x ⁇ 4,1 ⁇ y ⁇ 5,1 ⁇ z ⁇ 12) the general formula Li x M y O z is composed of lithium metal compound represented by the lithium transition metal It is preferable to include a surface layer formed on the surface of the secondary particles of the composite oxide B.
  • the surface layer is a layer corresponding to the first layer of the positive electrode active material A, and may be formed so as to cover the entire surface of the secondary particles of the lithium transition metal composite oxide B, and may be formed as a point on the particle surface. It may be present.
  • M in the above general formula is at least one element selected from Group 4, Group 5, and Group 6, and is preferably at least one element selected from Ti, Nb, W, and Zr.
  • Suitable lithium metal compounds are Li 2 TiO 3 , Li 4 Ti 5 O 12 , Li IO 4 , Li 2 Ti 2 O 5 , LiTIO 2 , Li 3 NbO 4 , LiNbO 3 , Li 4 Nb 2 O 7 , Li 8 Nb. 6 O 19 , Li 2 ZrO 3 , LiZrO 2 , Li 4 ZrO 4 , Li 2 WO 4 , Li 4 WO 5 .
  • the content of the surface layer in the positive electrode active material B is preferably lower than the content of the first layer in the positive electrode active material A.
  • the content of the surface layer is preferably 0.001 to 1.0 mol%, preferably 0.01 to 1.0 mol%, based on the element of M in the above general formula, with respect to the total number of moles of metal elements excluding Li of the positive electrode active material B. 0.5 mol% is more preferable.
  • the ratio of the content of the first layer in the positive electrode active material B to the content of the first layer in the positive electrode active material A is preferably 1.1 or more.
  • the positive electrode active material B preferably further contains a second surface layer formed on the surface layer.
  • the second surface layer is a layer corresponding to the second layer of the positive electrode active material A, and is composed of a boron compound.
  • the second surface layer preferably covers the entire surface layer (hereinafter, referred to as "first surface layer"). When the first surface layer is scattered on the particle surface of the lithium transition metal composite oxide B, a part of the second surface layer may be formed directly on the particle surface of the lithium transition metal composite oxide B.
  • the second surface layer was not formed between the surface of the secondary particles of the lithium transition metal composite oxide B and the first surface layer, and faced the opposite side to the lithium transition metal composite oxide A of the first surface layer. It is formed only on the surface. That is, the first surface layer is formed on the particle surface of the lithium transition metal composite oxide B over the entire area without passing through the second surface layer.
  • the boron compound constituting the second surface layer may be a compound containing B, and is not particularly limited, but is preferably an oxide or a lithium oxide.
  • Examples of the boron compound include boron oxide (B 2 O 3 ) and lithium borate (Li 2 B 4 O 7 ).
  • the content of the second surface layer in the positive electrode active material B may be lower than the content of the second layer in the positive electrode active material A.
  • the content of the second layer is preferably 0.1 to 1.5 mol% based on the boron element with respect to the total number of moles of the metal element excluding Li of the positive electrode active material B, and is 0.5 to 1. 0 mol% is more preferable.
  • the positive electrode active material B is produced, for example, by the following process.
  • Nickel cobalt manganese composite hydroxide is calcined at 400 ° C. to 600 ° C. to obtain nickel cobalt manganese composite oxide.
  • the composite oxide, a lithium compound such as lithium hydroxide, and a compound containing a metal element selected from Group 4, Group 5, and Group 6 are mixed at a predetermined molar ratio, and further. by adding an alkali component such as potassium hydroxide at a predetermined concentration, an oxygen atmosphere, and fired under the conditions of 650 ° C.
  • ⁇ 850 ° C. is represented by Li x M y O z on the particle surface of the lithium-transition metal composite oxide A precursor to which the lithium metal compound (first surface layer) is adhered is obtained. (3) The precursor and the boron compound are mixed at a predetermined molar ratio and calcined in an oxygen atmosphere under the conditions of 150 ° C. to 400 ° C.
  • the negative electrode 30 has a negative electrode core body and a negative electrode mixture layer provided on the surface of the negative electrode core body.
  • a foil of a metal such as copper that is stable in the potential range of the negative electrode 30, a film on which the metal is arranged on the surface, or the like can be used.
  • the negative electrode mixture layer contains a negative electrode active material and a binder, and is preferably provided on both sides of the negative electrode core body excluding the portion to which the negative electrode lead 16 is connected, for example.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder, and the like is applied to the surface of the negative electrode core, the coating film is dried, and then compressed to form a negative electrode mixture layer of the negative electrode core. It can be produced by forming it on both sides.
  • the negative electrode mixture layer contains, for example, a carbon-based active material that reversibly occludes and releases lithium ions as a negative electrode active material.
  • Suitable carbon-based active materials are natural graphite such as scaly graphite, massive graphite, earthy graphite, and graphite such as artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB).
  • a Si-based active material composed of at least one of Si and a Si-containing compound may be used, or a carbon-based active material and a Si-based active material may be used in combination.
  • the binder contained in the negative electrode mixture layer fluororesin, PAN, polyimide, acrylic resin, polyolefin or the like can be used as in the case of the positive electrode 20, but styrene-butadiene rubber (SBR) is used. Is preferable.
  • the negative electrode mixture layer preferably further contains CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA) and the like. Above all, it is preferable to use SBR in combination with CMC or a salt thereof, PAA or a salt thereof.
  • the separator 40 a porous sheet having ion permeability and insulating property is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • the material of the separator 40 polyolefins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator 40 may have either a single-layer structure or a laminated structure. A heat-resistant layer or the like may be formed on the surface of the separator.
  • the precursor and boric acid (H 3 BO 3 ) are mixed so that the total amount of Ni, Co and Mn and the molar ratio of B to B are 1: 0.01, and this mixture is mixed in an oxygen atmosphere.
  • a positive electrode active material A in which the surface of the lithium metal compound (first layer) was covered with a boron compound (second layer) was obtained.
  • the composition of the positive electrode active material A was Li 1.03 Ni 0.85 Co 0.08 Mn 0.07 Zr 0.01 O 2 .
  • the positive electrode active material A had an average primary particle diameter of 800 nm and an average particle diameter (average secondary particle diameter) of 12.1 ⁇ m.
  • Positive electrode active material A, acetylene black, and polyvinylidene fluoride (PVdF) are mixed at a mass ratio of 96.3: 2.5: 1.2, and N-methyl-2-pyrrolidone (NMP) is used as a dispersion medium.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry is applied to both sides of the positive electrode core made of aluminum foil, the coating film is dried and compressed, and then cut into a predetermined electrode size to form positive electrode mixture layers on both sides of the positive electrode core.
  • the positive electrode was prepared.
  • Negative electrode active material sodium salt of carboxymethyl cellulose (CMC-Na), and styrene-butadiene rubber (SBR) are mixed at a mass ratio of 100: 1: 1 and water is used as a dispersion medium to prepare a negative electrode mixture.
  • a slurry was prepared.
  • the negative electrode mixture slurry is applied to both sides of the negative electrode core made of copper foil, the coating film is dried and compressed, and then cut into a predetermined electrode size to form negative electrode mixture layers on both sides of the negative electrode core.
  • the negative electrode was prepared.
  • LiPF 6 is dissolved at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) are mixed in a volume ratio of 3: 3: 4. did. Further, vinylene carbonate (VC) was dissolved in this mixed solvent at a concentration of 2% by mass to prepare a non-aqueous electrolyte solution.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the positive electrode to which the aluminum positive electrode lead is attached and the negative electrode to which the nickel negative electrode lead is attached are spirally wound through a polyethylene separator and molded into a flat shape to form a wound electrode body. Made.
  • This electrode body was housed in an exterior body made of aluminum laminate, and after injecting the non-aqueous electrolyte solution, the opening of the exterior body was sealed to prepare a 650 mAh non-aqueous electrolyte secondary battery.
  • Example 2 In the synthesis of the positive electrode active material A, titanium oxide (TiO 2 ) was used instead of ZrO 2 , and nickel cobalt-manganese composite oxide, lithium hydroxide, and titanium oxide (TiO 2 ) were used as Ni, Co, and Mn.
  • TiO 2 titanium oxide
  • Ni, Co, and Mn nickel cobalt-manganese composite oxide, lithium hydroxide, and titanium oxide (TiO 2 ) were used as Ni, Co, and Mn.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the total amount of Li was mixed so that the molar ratio of Li and Ti was 1: 1.08: 0.03.
  • Example 3 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that niobium oxide (Nb 2 O 5 ) was used instead of ZrO 2 in the synthesis of the positive electrode active material A.
  • niobium oxide Nb 2 O 5
  • Example 4 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that tungsten oxide (WO 3 ) was used instead of ZrO 2 in the synthesis of the positive electrode active material A.
  • tungsten oxide WO 3
  • the composition of the positive electrode active material B was confirmed by ICP to be Li 1.03 Ni 0.85 Co 0.08 Mn 0.07 Ti 0.03 O 2 .
  • the positive electrode active material B had an average primary particle size of 2 ⁇ m and an average secondary particle size of 5 ⁇ m.
  • the non-aqueous electrolyte 2 is the same as in Example 2 except that the positive electrode active material A and the positive electrode active material B are mixed at a mass ratio of 7: 3 and used as the positive electrode active material. The next battery was manufactured.
  • Example 6> In the synthesis of the positive electrode active material B, the molar ratio of nickel-cobalt-manganese composite oxide, lithium hydroxide, titanium oxide, the total amount of Ni, Co, and Mn, and Li and Ti is 1: 1.08.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that the mixture was mixed so as to have a ratio of 0.01.
  • the precursor and H 3 BO 3 were mixed so that the total amount of Ni, Co, and Mn and the molar ratio of B were 1: 0.01, and this mixture was mixed in an oxygen atmosphere at 300 ° C.
  • the positive electrode active material B whose surface of the lithium metal compound (first surface layer) was covered with the boron compound (second surface layer) was obtained.
  • the positive electrode active material B had an average primary particle size of 2 ⁇ m and an average secondary particle size of 5 ⁇ m.
  • the non-aqueous electrolyte 2 is the same as in Example 2 except that the positive electrode active material A and the positive electrode active material B are mixed at a mass ratio of 7: 3 and used as the positive electrode active material. The next battery was manufactured.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that in the synthesis of the positive electrode active material A, TiO 2 was not mixed, H 3 BO 3 was not mixed, and the subsequent firing was not performed.
  • the positive electrode active material A had an average primary particle diameter of 740 nm and an average secondary particle diameter of 11.1 ⁇ m.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that TiO 2 was not mixed in the synthesis of the positive electrode active material A.
  • the positive electrode active material A had an average primary particle diameter of 740 nm and an average secondary particle diameter of 11.1 ⁇ m.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that H 3 BO 3 was not mixed and subsequently fired in the synthesis of the positive electrode active material A.
  • the positive electrode active material A had an average primary particle size of 740 nm and an average secondary particle size of 12.1 ⁇ m.
  • the total amount of nickel-cobalt-manganese composite oxide, lithium hydroxide, H 3 BO 3 and Ni, Co, and Mn, and the molar ratio of Li and B are 1: 1.
  • a positive electrode active material precursor in which a boron compound was adhered to the particle surface of a lithium transition metal composite oxide was prepared by mixing the mixture so as to have a ratio of .08: 0.01 and firing in an oxygen atmosphere at 300 ° C. for 3 hours. Obtained.
  • the precursor and titanium oxide are mixed so that the total amount of Ni, Co, and Mn and the molar ratio of Ti are 1: 0.03, and this mixture is mixed in an oxygen atmosphere at 300 ° C. for 3 hours.
  • the positive electrode active material A was obtained by firing under the conditions of.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that the positive electrode was produced using the positive electrode active material A.
  • a cycle test was conducted under the following conditions, the resistance value after 150 cycles was obtained by the above method, and the rate of increase in the resistance value after 150 cycles with respect to the resistance value before the cycle test was calculated.
  • the evaluation results are shown in Table 1 as relative values with the rate of increase of the battery of Example 1 as 100.
  • Non-aqueous electrolyte secondary battery 11 Exterior body 12 Containment part 13 Sealing part 14 Electrode body 15 Positive electrode lead 16 Negative electrode lead 20 Positive electrode 21 Positive electrode tab 22 Positive electrode tab laminated part 30 Negative electrode 31 Negative electrode tab 32 Negative electrode tab laminated part 40 Separator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池において、正極は正極活物質Aを有する。正極活物質Aは、一般式LiNiCoMnAl(式中、Mは4族、5族、及び6族から選択される少なくとも1種の元素、0.8≦a≦1.2、b≧0.82、0<c≦0.08、0.05≦d≦0.12、0≦e≦0.05、0.01≦f≦0.05、1≦g≦2)で表されるリチウム遷移金属複合酸化物と、一般式Li(式中、1≦x≦4、1≦y≦5、1≦z≦12)で表されるリチウム金属化合物で構成され、リチウム遷移金属複合酸化物の粒子表面に形成された第1の層と、ホウ素化合物で構成され、第1の層上に形成された第2の層とを含む。第1の層は、その全域にわたって第2の層を介することなくリチウム遷移金属複合酸化物の粒子表面に形成されている。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関し、より詳しくは、正極活物質としてリチウム遷移金属複合酸化物を含む非水電解質二次電池に関する。
 従来、保存特性等の電池性能を改善するために、リチウム遷移金属複合酸化物の粒子表面に他の化合物を存在させた正極活物質が知られている。例えば、特許文献1には、リチウム遷移金属複合酸化物の粒子表面に、4族~6族の元素のうち当該元素の酸化物の融点が750℃以上である所定の元素の化合物(TiO等)を存在させた状態で焼成して製造される正極活物質が開示されている。また、特許文献2には、リチウム遷移金属複合酸化物の粒子表面にホウ酸化合物が存在した状態で焼成して製造され、炭酸イオンの含有量が0.15重量%以下、かつホウ酸イオンの含有量が0.01重量%~5.0重量%である正極活物質が開示されている。
特開2004-253305号公報 特開2010-040382号公報
 ところで、非水電解質二次電池では、正極における電荷移動抵抗を低減して、電池の初期抵抗を低く抑えることが求められている。また、非水電解質二次電池が高温環境下で充放電された場合、抵抗の上昇が起こり易いが、かかる抵抗上昇を抑制することは重要な課題である。本開示の目的は、初期抵抗が低く、高温サイクル時における抵抗上昇を抑制することができる非水電解質二次電池を提供することである。
 本開示の一態様である非水電解質二次電池は、正極、負極、及びセパレータを含む電極体と、非水電解質とを備える非水電解質二次電池であって、前記正極は、少なくとも正極活物質Aを有する。前記正極活物質Aは、一般式LiNiCoMnAl(式中、Mは4族、5族、及び6族から選択される少なくとも1種の元素、0.8≦a≦1.2、b≧0.82、0<c≦0.08、0.05≦d≦0.12、0≦e≦0.05、0.01≦f≦0.05、1≦g≦2)で表されるリチウム遷移金属複合酸化物と、一般式Li(式中、1≦x≦4、1≦y≦5、1≦z≦12)で表されるリチウム金属化合物で構成され、前記リチウム遷移金属複合酸化物の粒子表面に形成された第1の層と、ホウ素化合物で構成され、前記第1の層上に形成された第2の層とを含み、前記第1の層は、その全域にわたって前記第2の層を介することなく前記リチウム遷移金属複合酸化物の粒子表面に形成されている。
 本開示の一態様である非水電解質二次電池によれば、高温サイクル時における電池抵抗の上昇を抑制できる。
実施形態の一例である非水電解質二次電池の斜視図である。 実施形態の一例である電極体の斜視図である。
 従来、リチウム遷移金属複合酸化物の粒子表面に、一般式Liで表されるリチウム金属化合物を存在させることで、電池の初期抵抗を低減できることが知られている。当該リチウム金属化合物は、リチウムイオン伝導体として機能し、正極の電荷移動抵抗の低減に寄与すると考えられる。一方、リチウム遷移金属複合酸化物の粒子表面にリチウム金属化合物を存在させることでは、高温サイクル時における電池抵抗の上昇を抑制することはできず、かえって抵抗を上昇させる場合がある。
 本発明者らは、リチウム遷移金属複合酸化物の粒子表面に、リチウム金属化合物で構成される第1の層、及びホウ素化合物で構成され、第1の層を覆う第2の層を形成することで、初期抵抗を低減しつつ、高温サイクル時における抵抗上昇を抑制することに成功した。第1の層を覆うホウ素化合物の第2の層が存在することで、高温サイクル時にMとホウ素を含む強固な被膜が正極活物質の粒子表面に形成され、これにより、正極における非水電解質の副反応、及び正極活物質中の金属の溶出が抑えられて、電池抵抗の上昇が抑制されたと考えられる。
 以下、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体14がラミネートシートからなる外装体11に収容された非水電解質二次電池10を例示するが、外装体はこれに限定されず、例えば円筒形、角形、コイン形等の外装缶であってもよい。また、電極体は複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の外観を示す斜視図である。図1に例示するように、非水電解質二次電池10は、2枚のラミネートフィルム11A,11Bで構成された外装体11を備える。また、非水電解質二次電池10は、外装体11に収容される電極体14と、非水電解質とを備える。外装体11は、例えば平面視略長方形状を有し、電極体14及び非水電解質が収容される収容部12と、収容部12の周囲に形成された封止部13とを含む。ラミネートフィルム11A,11Bは、一般的に、アルミニウム等の金属層を含む樹脂フィルムで構成される。
 収容部12は、ラミネートフィルム11A,11Bの少なくとも一方に電極体14を収容可能な窪みを形成して設けることができる。図1に示す例では、当該窪みがラミネートフィルム11Aのみに形成されている。封止部13は、ラミネートフィルム11A,11Bの周縁部同士を接合して形成される。図1に示す例では、収容部12を囲むように略同じ幅で枠状に封止部13が形成されている。
 非水電解質二次電池10は、電極体14に接続される一対の電極リード(正極リード15及び負極リード16)を備える。図1に示す例では、正極リード15及び負極リード16が、外装体11の同じ端部から外装体11の外部に引き出されている。
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、及びこれらの2種以上の混合溶媒等が用いられる。非水溶媒は、これら溶媒の水素の一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。なお、非水電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。電解質塩には、例えばLiPF等のリチウム塩が使用される。
 図2は、実施形態の一例である電極体14の斜視図である。図2に例示するように、電極体14は、正極20、負極30、及びセパレータ40を含み、正極20と負極30がセパレータ40を介して渦巻状に巻回され、扁平状に成形された巻回型の電極体である。正極20は、極板の一部が電極体14の軸方向に突出した凸部である正極タブ21を有する。同様に、負極30は正極タブ21と同じ方向に突出した負極タブ31を有する。正極タブ21及び負極タブ31は、各極板の長手方向に一定の間隔で複数形成される。
 電極体14は、正極タブ21と負極タブ31が極板の長手方向に交互に並ぶように、セパレータ40を介して正極20と負極30を重ね合せて巻回することで形成される。電極体14では、正極タブ21同士及び負極タブ31同士がそれぞれ重なって、電極体14の幅方向一端部に正極タブ積層部22が、幅方向他端部に負極タブ積層部32が形成されている。なお、正極タブ積層部22には正極リード15が溶接され、負極タブ積層部32には負極リード16が溶接される。
 以下、電極体14を構成する正極20、負極30、及びセパレータ40について、特に正極20について詳説する。
 [正極]
 正極20は、正極芯体と、正極芯体の表面に設けられた正極合材層とを有する。正極芯体には、アルミニウムなど正極20の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質、導電材、及び結着材を含み、正極リード15が接続される部分を除く正極芯体の両面に設けられることが好ましい。正極20は、例えば正極芯体の表面に正極活物質、導電材、及び結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合材層を正極芯体の両面に形成することにより作製できる。
 正極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。正極合材層に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィンなどが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩等のセルロース誘導体、ポリエチレンオキシド(PEO)等が併用されてもよい。
 正極合材層は、正極活物質として、少なくとも正極活物質Aを有する。正極活物質Aは、リチウム遷移金属複合酸化物と、リチウム金属化合物で構成され、リチウム遷移金属複合酸化物の粒子表面に形成された第1の層と、ホウ素化合物で構成され、第1の層上に形成された第2の層とを含む。正極活物質Aは、一次粒子が凝集した二次粒子である。第1の層は、その全域にわたって第2の層を介することなくリチウム遷移金属複合酸化物の粒子表面に形成されている。
 正極活物質Aは、粒子内部から順に、リチウム遷移金属複合酸化物/第1の層/第2の層を含む。即ち、正極活物質Aは、リチウム遷移金属複合酸化物からなるコア粒子の表面に、第1の層と第2の層からなるシェルが形成されたコアシェル粒子といえる。リチウム遷移金属複合酸化物の二次粒子の表面にリチウム金属化合物からなる第1の層を形成することで電池の初期抵抗を低減でき、第1の層を覆うホウ素化合物からなる第2の層を形成することで高温サイクル時における電池抵抗の上昇を抑制できる。
 正極活物質Aを構成するリチウム遷移金属複合酸化物(以下、「リチウム遷移金属複合酸化物A」という場合がある)は、一般式LiNiCoMnAl(式中、Mは4族、5族、及び6族から選択される少なくとも1種の元素、0.8≦a≦1.2、b≧0.82、0<c≦0.08、0.05≦d≦0.12、0≦e≦0.05、0.01≦f≦0.05、1≦g≦2)で表される複合酸化物である。Niの含有率は、Liを除く金属元素の総モル数に対して、82~92モル%が好ましく、82~90モル%がより好ましい。
 リチウム遷移金属複合酸化物Aにおいて、Coの含有量は、Liを除く金属元素の総モル数に対して、3~8モル%が好ましく、5~8モル%がより好ましい。Coの含有量が8モル%を上回ると、高温サイクル時における抵抗上昇を抑制できない。また、Mnの含有量は、Liを除く金属元素の総モル数に対して、6~10モル%が好ましい。Mnの含有量が5モル%を下回ると、高温サイクル時における抵抗上昇を抑制できない。なお、リチウム遷移金属複合酸化物Aは、本開示の目的を損なわない範囲で、Li、Ni、Co、Mn、M以外の元素を含有していてもよい。
 上記第1の層は、一般式Li(式中、1≦x≦4、1≦y≦5、1≦z≦12)で表されるリチウム金属化合物で構成される。第1の層は、リチウム遷移金属複合酸化物Aの二次粒子の表面全域を覆うように形成されていてもよく、粒子表面に点在していてもよい。
 上記一般式におけるMは、4族、5族、及び6族から選択される少なくとも1種の元素であって、好ましくはTi、Nb、W、及びZrから選択される少なくとも1種である。即ち、リチウム遷移金属複合酸化物Aは、Ti、Nb、W、及びZrから選択される少なくとも1種を含有することが好ましい。また、第1の層を構成するリチウム金属化合物は、Ti、Nb、W、及びZrから選択される少なくとも1種を含有することが好ましい。好適なリチウム金属化合物は、例えばLiTiO、LiTi12、LiTiO、LiTi、LiTiO、LiNbO、LiNbO、LiNb、LiNb19,LiZrO、LiZrO、LiZrO、LiWO、LiWOである。
 第1の層の含有率は、正極活物質AのLiを除く金属元素の総モル数に対して、上記一般式におけるMの元素基準で0.001~1モル%が好ましく、0.01~0.5モル%がより好ましい。第1の層の含有率が当該範囲内であれば、高温サイクル時における電池抵抗の上昇を抑制し易くなる。
 上記第2の層は、上述の通り、ホウ素化合物で構成され、第1の層上に形成される。第2の層は、第1の層の全域を覆っていることが好ましい。即ち、第1の層は正極活物質Aの表面に露出していないことが好ましい。第1の層がリチウム遷移金属複合酸化物Aの粒子表面に点在する場合、第2の層の一部はリチウム遷移金属複合酸化物Aの粒子表面に直接形成されてもよい。第2の層は、例えば、第1の層が形成された領域を含むリチウム遷移金属複合酸化物Aの二次粒子表面の全域を覆って形成されてもよい。
 第2の層は、リチウム遷移金属複合酸化物Aの二次粒子表面と第1の層との間には形成されず、第1の層のリチウム遷移金属複合酸化物Aと反対側を向いた表面のみに形成される。また、第1の層を構成するリチウム金属化合物と、第2の層を構成するホウ素化合物とは互いに混在することなく、例えばXPSにより第1の層と第2の層の境界を確認できる。
 第2の層を構成するホウ素化合物は、Bを含有する化合物であればよく、特に限定されないが、酸化物又はリチウム酸化物であることが好ましい。ホウ素化合物の一例としては、酸化ホウ素(B)、ホウ酸リチウム(Li)等が挙げられる。第2の層の含有率は、正極活物質AのLiを除く金属元素の総モル数に対してホウ素元素基準で、0.1~1.5モル%が好ましく、0.5~1.0モル%がより好ましい。第2の層の含有率が当該範囲内であれば、高温サイクル時における電池抵抗の上昇を抑制し易くなる。
 正極活物質Aの平均一次粒子径は、例えば100nm~1000nmである。また、正極活物質Aの平均粒子径(平均二次粒子径)は、例えば8μm~15μmである。なお、正極活物質Aの粒径は、リチウム遷移金属複合酸化物Aの粒径と略等しい。
 正極活物質の平均一次粒子径は、走査型電子顕微鏡(SEM)によって観察される粒子断面のSEM画像を解析することにより求められる。例えば、正極20又は正極活物質を樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工により断面を作製し、この断面をSEMで撮影する。SEM画像から、ランダムに30個の一次粒子を選択し、一次粒子の粒界を観察する。そして、一次粒子の外形を特定した上で、30個の一次粒子それぞれの長径(最長径)を求め、それらの平均値を平均一次粒子径とする。
 平均二次粒子径についても、粒子断面のSEM画像から求められる。具体的には、上記SEM画像から、ランダムに30個の二次粒子を選択し、選択した30個の二次粒子の粒界を観察する。そして、二次粒子の外形を特定した上で、30個の二次粒子それぞれの長径(最長径)を求め、それらの平均値を平均二次粒子径とする。
 正極活物質Aは、例えば下記の工程で製造される。
(1)ニッケルコバルトマンガン複合水酸化物を400℃~600℃で焼成して、ニッケルコバルトマンガン複合酸化物を得る。
(2)当該複合酸化物と、水酸化リチウム等のリチウム化合物と、第4族、第5族、及び第6族から選択される金属元素を含む化合物とを所定のモル比で混合し、酸素雰囲気中、700℃~900℃の条件で焼成して、リチウム遷移金属複合酸化物の粒子表面にLiで表されるリチウム金属化合物(第1の層)が固着した前駆体を得る。
(3)当該前駆体と、ホウ素化合物とを所定のモル比で混合し、酸素雰囲気中、150℃~400℃の条件で焼成する。
 正極20は、正極活物質として、正極活物質Aと、正極活物質Bとを有することが好ましい。正極活物質Bは、正極活物質Aと同様に、一次粒子が凝集した二次粒子であることが好ましい。正極活物質Bの平均一次粒子径は、0.5μm以上で、かつ正極活物質Aの平均一次粒子径よりも大きい。正極活物質Bの平均一次粒子径は、例えば0.5μm~4μmである。また、正極活物質Bの平均二次粒子径は、2μm~7μmで、かつ正極活物質Aの平均二次粒子径よりも小さい。正極活物質Bは二次粒子ではなく、一次粒子のみで構成されてもよい。正極活物質Bを併用することにより、高温サイクル時の抵抗上昇をさらに抑制できる。
 正極活物質Bを構成するリチウム遷移金属複合酸化物(以下、「リチウム遷移金属複合酸化物B」という場合がある)は、一般式LiNiCoMn(式中、Mは4族、5族、及び6族から選択される少なくとも1種の元素、0.8≦a≦1.2、b≧0.80、0<c≦0.15、0<d≦0.15、0≦e≦0.05、1≦f≦2)で表される複合酸化物である。リチウム遷移金属複合酸化物Bは、リチウム遷移金属複合酸化物Aと同様の組成であってもよい。なお、正極活物質B中のCo量は、正極活物質A中のCo量と比較して同等又は多いことが好ましい。
 正極活物質Bは、一般式Li(式中、1≦x≦4、1≦y≦5、1≦z≦12)で表されるリチウム金属化合物で構成され、リチウム遷移金属複合酸化物Bの二次粒子の表面に形成された表層を含むことが好ましい。当該表層は、正極活物質Aの第1の層に相当する層であって、リチウム遷移金属複合酸化物Bの二次粒子の表面全域を覆うように形成されていてもよく、粒子表面に点在していてもよい。上記一般式におけるMは、4族、5族、及び6族から選択される少なくとも1種の元素であって、好ましくはTi、Nb、W、及びZrから選択される少なくとも1種である。好適なリチウム金属化合物は、LiTiO、LiTi12、LiTiO、LiTi、LiTiO、LiNbO、LiNbO、LiNb、LiNb19,LiZrO、LiZrO、LiZrO、LiWO、LiWOである。
 正極活物質Bにおける表層の含有率は、正極活物質Aにおける第1の層の含有率より低いことが好ましい。表層の含有率は、正極活物質BのLiを除く金属元素の総モル数に対して、上記一般式におけるMの元素基準で、0.001~1.0モル%が好ましく、0.01~0.5モル%がより好ましい。正極活物質Aにおける第1の層の含有率に対する、正極活物質Bにおける第1の層の含有率の比は1.1以上であることが好ましい。
 正極活物質Bは、さらに、上記表層上に形成された第2の表層を含むことが好ましい。第2の表層は、正極活物質Aの第2の層に相当する層であって、ホウ素化合物で構成される。第2の表層は、上記表層(以下、「第1の表層」とする)の全域を覆っていることが好ましい。第1の表層がリチウム遷移金属複合酸化物Bの粒子表面に点在する場合、第2の表層の一部はリチウム遷移金属複合酸化物Bの粒子表面に直接形成されてもよい。
 第2の表層は、リチウム遷移金属複合酸化物Bの二次粒子表面と第1の表層との間には形成されず、第1の表層のリチウム遷移金属複合酸化物Aと反対側を向いた表面のみに形成される。即ち、第1の表層は、その全域にわたって第2の表層を介することなくリチウム遷移金属複合酸化物Bの粒子表面に形成されている。
 第2の表層を構成するホウ素化合物は、Bを含有する化合物であればよく、特に限定されないが、酸化物又はリチウム酸化物であることが好ましい。ホウ素化合物の一例としては、酸化ホウ素(B)、ホウ酸リチウム(Li)等が挙げられる。正極活物質Bにおける第2の表層の含有率は、正極活物質Aにおける第2の層の含有率より低くてもよい。第2の層の含有率は、正極活物質BのLiを除く金属元素の総モル数に対して、ホウ素元素基準で、0.1~1.5モル%が好ましく、0.5~1.0モル%がより好ましい。
 正極活物質Bは、例えば下記の工程で製造される。
(1)ニッケルコバルトマンガン複合水酸化物を400℃~600℃で焼成して、ニッケルコバルトマンガン複合酸化物を得る。
(2)当該複合酸化物と、水酸化リチウム等のリチウム化合物と、第4族、第5族、及び第6族から選択される金属元素を含む化合物とを所定のモル比で混合し、さらに所定の濃度で水酸化カリウム等のアルカリ成分を加えて、酸素雰囲気中、650℃~850℃の条件で焼成して、リチウム遷移金属複合酸化物の粒子表面にLiで表されるリチウム金属化合物(第1の表層)が固着した前駆体を得る。
(3)当該前駆体と、ホウ素化合物とを所定のモル比で混合し、酸素雰囲気中、150℃~400℃の条件で焼成する。
 [負極]
 負極30は、負極芯体と、負極芯体の表面に設けられた負極合材層とを有する。負極芯体には、銅など負極30の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質及び結着材を含み、例えば負極リード16が接続される部分を除く負極芯体の両面に設けられることが好ましい。負極30は、例えば負極芯体の表面に負極活物質、及び結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合材層を負極芯体の両面に形成することにより作製できる。
 負極合材層には、負極活物質として、例えばリチウムイオンを可逆的に吸蔵、放出する炭素系活物質が含まれる。好適な炭素系活物質は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などの黒鉛である。また、負極活物質には、Si及びSi含有化合物の少なくとも一方で構成されるSi系活物質が用いられてもよく、炭素系活物質とSi系活物質が併用されてもよい。
 負極合材層に含まれる結着材には、正極20の場合と同様に、フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィン等を用いることもできるが、スチレン-ブタジエンゴム(SBR)を用いることが好ましい。また、負極合材層は、更に、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などを含むことが好ましい。中でも、SBRと、CMC又はその塩、PAA又はその塩を併用することが好適である。
 [セパレータ]
 セパレータ40には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ40の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ40は、単層構造、積層構造のいずれであってもよい。セパレータの表面には、耐熱層などが形成されていてもよい。
 以下、実施例により本開示を更に説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極活物質Aの合成]
 共沈により得られたニッケルコバルトマンガン複合水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。次に、当該複合酸化物と、水酸化リチウムと、酸化ジルコニウム(ZrO)とを、Ni、Co、Mnの総量と、Liと、Zrとのモル比が、1:1.08:0.01となるように混合した。この混合物を酸素雰囲気中、800℃、20時間の条件で焼成し、粉砕することにより、正極活物質前駆体を得た。当該前駆体と、ホウ酸(HBO)とを、Ni、Co、Mnの総量と、Bとのモル比が、1:0.01となるように混合し、この混合物を酸素雰囲気中、300℃、3時間の条件で焼成することにより、上記リチウム金属化合物(第1の層)の表面がホウ素化合物(第2の層)によって覆われた正極活物質Aを得た。
 ICPにより、正極活物質Aの組成は、Li1.03Ni0.85Co0.08Mn0.07Zr0.01であることが確認された。正極活物質Aの平均一次粒子径は800nm、平均粒子径(平均二次粒子径)は12.1μmであった。
 [正極の作製]
 正極活物質Aと、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)とを、96.3:2.5:1.2の質量比で混合し、分散媒としてN-メチル-2-ピロリドン(NMP)を用いて、正極合材スラリーを調製した。次に、正極合材スラリーをアルミニウム箔からなる正極芯体の両面に塗布し、塗膜を乾燥、圧縮した後、所定の電極サイズに切断し、正極芯体の両面に正極合材層が形成された正極を作製した。
 [負極の作製]
 負極活物質として、天然黒鉛を用いた。負極活物質と、カルボキシメチルセルロースのナトリウム塩(CMC‐Na)と、スチレン-ブタジエンゴム(SBR)とを、100:1:1の質量比で混合し、分散媒として水を用いて、負極合材スラリーを調製した。次に、負極合材スラリーを銅箔からなる負極芯体の両面に塗布し、塗膜を乾燥、圧縮した後、所定の電極サイズに切断し、負極芯体の両面に負極合材層が形成された負極を作製した。
 [非水電解液の調製]
 エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した混合溶媒に対して、LiPFを1mol/Lの濃度で溶解した。さらに、この混合溶媒に対して、ビニレンカーボネート(VC)を2質量%の濃度で溶解して、非水電解液を調製した。
 [電池の作製]
 アルミニウム製の正極リードを取り付けた上記正極、及びニッケル製の負極リードを取り付けた上記負極を、ポリエチレン製のセパレータを介して渦巻状に巻回し、扁平状に成形して巻回型の電極体を作製した。この電極体をアルミニウムラミネートで構成される外装体内に収容し、上記非水電解液を注入後、外装体の開口部を封止して、650mAhの非水電解質二次電池を作製した。
 <実施例2>
 正極活物質Aの合成において、ZrOの代わりに、酸化チタン(TiO)を用いてニッケルコバルトマンガン複合酸化物と、水酸化リチウムと、酸化チタン(TiO)とを、Ni、Co、Mnの総量と、Liと、Tiとのモル比が、1:1.08:0.03となるように混合したこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例3>
 正極活物質Aの合成において、ZrOの代わりに、酸化ニオブ(Nb)を用いたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例4>
 正極活物質Aの合成において、ZrOの代わりに、酸化タングステン(WO)を用いたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例5>
 [正極活物質Bの合成]
 共沈により得られたニッケルコバルトマンガン複合水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。次に、当該複合酸化物と、水酸化リチウムと、TiOとを、Ni、Co、Mnの総量と、Liと、Tiとのモル比が、1:1.08:0.03となるように混合した。さらに、この混合物に対して10質量%の水酸化カリウムを加え、酸素雰囲気中、750℃、40時間の条件で焼成後、粉砕、水洗、乾燥することにより、正極活物質Bを得た。
 正極活物質Bの組成は、ICPにより、Li1.03Ni0.85Co0.08Mn0.07Ti0.03であることが確認された。正極活物質Bの平均一次粒子径は2μm、平均二次粒子径は5μmであった。
 正極の作製において、正極活物質Aと、正極活物質Bとを、7:3の質量比で混合したものを正極活物質として用いたこと以外は、実施例2と同様にして非水電解質二次電池を作製した。
 <実施例6>
 正極活物質Bの合成において、ニッケルコバルトマンガン複合酸化物と、水酸化リチウムと、酸化チタンとを、Ni、Co、Mnの総量と、Liと、Tiとのモル比が、1:1.08:0.01となるように混合したこと以外は、実施例4と同様にして非水電解質二次電池を作製した。
 <実施例7>
 [正極活物質Bの合成]
 共沈により得られたニッケルコバルトマンガン複合水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。次に、当該複合酸化物と、水酸化リチウムと、TiOとを、Ni、Co、Mnの総量と、Liと、Tiとのモル比が、1:1.08:0.01となるように混合した。さらに、この混合物に対して10質量%で水酸化カリウムを加え、酸素雰囲気中、750℃、40時間の条件で焼成後、粉砕、水洗、乾燥することにより、正極活物質前駆体を得た。当該前駆体と、HBOとを、Ni、Co、Mnの総量と、Bとのモル比が、1:0.01となるように混合し、この混合物を酸素雰囲気中、300℃、3時間の条件で焼成することにより、上記リチウム金属化合物(第1の表層)の表面がホウ素化合物(第2の表層)によって覆われた正極活物質Bを得た。正極活物質Bの平均一次粒子径は2μm、平均二次粒子径は5μmであった。
 正極の作製において、正極活物質Aと、正極活物質Bとを、7:3の質量比で混合したものを正極活物質として用いたこと以外は、実施例2と同様にして非水電解質二次電池を作製した。
 <比較例1>
 正極活物質Aの合成において、TiOを混合せず、HBOの混合及びその後の焼成を行わなかったこと以外は、実施例2と同様にして非水電解質二次電池を作製した。正極活物質Aの平均一次粒子径は740nm、平均二次粒子径は11.1μmであった。
 <比較例2>
 正極活物質Aの合成において、TiOを混合しなかったこと以外は、実施例2と同様にして非水電解質二次電池を作製した。正極活物質Aの平均一次粒子径は740nm、平均二次粒子径は11.1μmであった。
 <比較例3>
 正極活物質Aの合成において、HBOの混合及びその後の焼成を行わなかったこと以外は、実施例2と同様にして非水電解質二次電池を作製した。正極活物質Aの平均一次粒子径は740nm、平均二次粒子径は12.1μmであった。
 <比較例4>
 正極活物質Aの合成において、Ni、Co、Mnのモル比が0.82:0.12:0.06となるようにニッケルコバルトマンガン複合水酸化物を合成したこと以外は、実施例2と同様にして非水電解質二次電池を作製した。
 <比較例5>
 正極活物質Aの合成において、リチウムニッケルコバルトマンガン複合酸化物と、TiOと、HBOとを混合して、酸素雰囲気中、300℃、3時間の条件で焼成したこと以外は、実施例2と同様にして非水電解質二次電池を作製した。X正極活物質Aの平均一次粒子径は700nm、平均二次粒子径は11.8μmであった。
 <比較例6>
 正極活物質Aの合成において、ニッケルコバルトマンガン複合酸化物と、水酸化リチウムと、HBOとを、Ni、Co、Mnの総量と、Liと、Bとのモル比が、1:1.08:0.01となるように混合して、酸素雰囲気中、300℃、3時間の条件で焼成し、リチウム遷移金属複合酸化物の粒子表面にホウ素化合物が固着した正極活物質前駆体を得た。当該前駆体と、酸化チタンとを、Ni、Co、Mnの総量と、Tiとのモル比が、1:0.03となるように混合し、この混合物を酸素雰囲気中、300℃、3時間の条件で焼成することにより、正極活物質Aを得た。この正極活物質Aを用いて正極を作製したこと以外は、実施例2と同様にして非水電解質二次電池を作製した。
 <比較例7>
 正極活物質Aの合成において、TiOの代わりに、酸化タングステン(WO)を用い、ニッケルコバルトマンガン複合酸化物と、水酸化リチウムと、酸化タングステン(WO)とを、Ni、Co、Mnの総量と、Liと、Wとのモル比が、1:1.08:0.01となるように混合したこと以外は、比較例3と同様にして非水電解質二次電池を作製した。
 <比較例8>
 正極活物質Aの合成において、TiOの代わりに、酸化タングステン(WO)を用いたこと以外は、比較例4と同様にして非水電解質二次電池を作製した。
 <比較例9>
 正極活物質Aの合成において、TiOの代わりに、酸化タングステン(WO)を用いたこと以外は、比較例5と同様にして非水電解質二次電池を作製した。
 <比較例10>
 正極活物質Aの合成において、TiOの代わりに、酸化タングステン(WO)を用いたこと以外は、比較例6と同様にして非水電解質二次電池を作製した。
 <比較例11>
 正極活物質Aの合成において、TiOの代わりに、酸化ニオブ(Nb)を用いたこと以外は、比較例3と同様にして非水電解質二次電池を作製した。
 <比較例12>
 正極活物質Aの合成において、TiOの代わりに、酸化ニオブ(Nb)を用いたこと以外は、比較例4と同様にして非水電解質二次電池を作製した。
 <比較例13>
 正極活物質Aの合成において、TiOの代わりに、酸化ニオブ(Nb)を用いたこと以外は、比較例5と同様にして非水電解質二次電池を作製した。
 <比較例14>
 正極活物質Aの合成において、TiOの代わりに、酸化ニオブ(Nb)を用いたこと以外は、比較例6と同様にして非水電解質二次電池を作製した。
 <比較例15>
 正極活物質Aの合成において、TiOの代わりに、酸化ジルコニウム(ZrO)を用いたこと以外は、比較例3と同様にして非水電解質二次電池を作製した。
 <比較例16>
 正極活物質Aの合成において、TiOの代わりに、酸化ジルコニウム(ZrO)を用いたこと以外は、比較例4と同様にして非水電解質二次電池を作製した。
 <比較例17>
 正極活物質Aの合成において、TiOの代わりに、酸化ジルコニウム(ZrO)を用いたこと以外は、比較例5と同様にして非水電解質二次電池を作製した。
 <比較例18>
 正極活物質Aの合成において、TiOの代わりに、酸化ジルコニウム(ZrO)を用いたこと以外は、比較例6と同様にして非水電解質二次電池を作製した。
 <比較例19>
 正極活物質Aの合成において、ニッケルコバルトマンガン複合酸化物と、水酸化リチウムと、酸化チタン(TiO)とを、Ni、Co、Mnの総量と、Liと、Tiとのモル比が、1:1.08:0.1となるように混合したこと以外は、実施例1と同様にして非水電解質二次電池を作製した。正極活物質Aについて、XRDにて測定した結果、リチウム遷移金属複合酸化物の粒子表面にLiTiOが付着していることが確認された。
 <比較例20>
 正極活物質Aの合成において、ニッケルコバルトマンガン複合酸化物と、水酸化リチウムと、酸化ニオブ(NbO)とを、Ni、Co、Mnの総量と、Liと、Nbとのモル比が、1:1.08:0.1となるように混合したこと以外は、実施例1と同様にして非水電解質二次電池を作製した。正極活物質Aについて、XRDにて測定した結果、リチウム遷移金属複合酸化物の粒子表面にLiNiOが付着していることが確認された。
 <比較例21>
 正極活物質Aの合成において、ニッケルコバルトマンガン複合酸化物と、水酸化リチウムと、酸化ジルコニウム(ZrO)とを、Ni、Co、Mnの総量と、Liと、Zrとのモル比が、1:1.08:0.1となるように混合したこと以外は、実施例1と同様にして非水電解質二次電池を作製した。正極活物質Aについて、XRDにて測定した結果、リチウム遷移金属複合酸化物の粒子表面にLiZrOが付着していることが確認された。
 [高温サイクル試験後の抵抗上昇率の評価]
 実施例及び比較例の各電池について、25℃の温度環境下、0.5Itの定電流で初期容量の半分まで充電した後、充電を止めて15分間放置した。その後、0.1Itの定電流で10秒間充電し、そのときの電圧を測定した後、10秒間の充電容量分を放電した。この充放電及び電圧測定を、0.1It~2Itの電流値で繰り返した。測定した電圧値と電流値の関係から抵抗値を求め、サイクル試験前の抵抗値とした。
 下記の条件でサイクル試験を行い、150サイクル後の抵抗値を上記方法により求めて、サイクル試験前の抵抗値に対する150サイクル後の抵抗値の上昇率を算出した。評価結果は、実施例1の電池の上昇率を100とする相対値として表1に示す。
 (サイクル試験)
 各電池を、60℃の温度環境下、0.5Itの定電流で電池電圧が4.2Vになるまで定電流充電を行い、4.2Vで電流値が1/50Itになるまで定電圧充電を行った。その後、0.5Itの定電流で電池電圧が2.5Vになるまで定電流放電を行った。この充放電サイクルを150サイクル繰り返した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の電池はいずれも、比較例の電池と比べて、高温サイクル試験後における抵抗上昇率が低い。また、正極活物質AとBを併用した場合(実施例4~6参照)、抵抗の上昇をさらに抑制できる。一方、リチウム遷移金属複合酸化物の粒子表面に第1の層及び第2の層の少なくとも一方が存在しない場合(比較例1~3、7、11、15)、粒子/第1の層/第2の層の層配置を有さない場合(比較例5、6、9、10、13、14、17、18)、及びリチウム遷移金属複合酸化物が所定の組成を有さない場合(比較例4、8、12、16)は、高温サイクル試験後に電池抵抗が大きく上昇した。
 10 非水電解質二次電池
 11 外装体
 12 収容部
 13 封止部
 14 電極体
 15 正極リード
 16 負極リード
 20 正極
 21 正極タブ
 22 正極タブ積層部
 30 負極
 31 負極タブ
 32 負極タブ積層部
 40 セパレータ

Claims (6)

  1.  正極、負極、及びセパレータを含む電極体と、非水電解質とを備える非水電解質二次電池であって、
     前記正極は、少なくとも正極活物質Aを有し、
     前記正極活物質Aは、
     一般式LiNiCoMnAl(式中、Mは4族、5族、及び6族から選択される少なくとも1種の元素、0.8≦a≦1.2、b≧0.82、0<c≦0.08、0.05≦d≦0.12、0≦e≦0.05、0.01≦f≦0.05、1≦g≦2)で表されるリチウム遷移金属複合酸化物と、
     一般式Li(式中、1≦x≦4、1≦y≦5、1≦z≦12)で表されるリチウム金属化合物で構成され、前記リチウム遷移金属複合酸化物の粒子表面に形成された第1の層と、
     ホウ素化合物で構成され、前記第1の層上に形成された第2の層と、
     を含み、
     前記第1の層は、その全域にわたって前記第2の層を介することなく前記リチウム遷移金属複合酸化物の粒子表面に形成されている、非水電解質二次電池。
  2.  前記第2の層は、前記第1の層の全域を覆っている、請求項1に記載の非水電解質二次電池。
  3.  前記一般式におけるMは、Ti、Nb、W、及びZrから選択される少なくとも1種である、請求項1又は2に記載の非水電解質二次電池。
  4.  前記正極は、前記正極活物質Aと、正極活物質Bとを有し、
     前記正極活物質A,Bは、一次粒子が凝集した二次粒子であって、
     前記正極活物質Bの平均一次粒子径は、0.5μm以上で、かつ前記正極活物質Aの平均一次粒子径よりも大きく、
     前記正極活物質Bの平均二次粒子径は、2μm~7μmで、かつ前記正極活物質Aの平均二次粒子径よりも小さい、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記正極活物質Bは、前記二次粒子の表面に形成された表層を含み、前記表層は、一般式Li(式中、1≦x≦4、1≦y≦5、1≦z≦12)で表されるリチウム金属化合物で構成され、
     前記正極活物質Bにおける前記表層の含有率は、前記正極活物質Aにおける前記第1の層の含有率よりも低い、請求項4に記載の非水電解質二次電池。
  6.  前記正極活物質Bは、前記表層上に形成された第2の表層を含み、前記第2の表層は、ホウ素化合物で構成される、請求項5に記載の非水電解質二次電池。
PCT/JP2020/002828 2019-03-29 2020-01-27 非水電解質二次電池 WO2020202745A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080018312.9A CN113519077A (zh) 2019-03-29 2020-01-27 非水电解质二次电池
JP2021511149A JPWO2020202745A1 (ja) 2019-03-29 2020-01-27
US17/442,219 US20220166007A1 (en) 2019-03-29 2020-01-27 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-065490 2019-03-29
JP2019065490 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202745A1 true WO2020202745A1 (ja) 2020-10-08

Family

ID=72668094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002828 WO2020202745A1 (ja) 2019-03-29 2020-01-27 非水電解質二次電池

Country Status (4)

Country Link
US (1) US20220166007A1 (ja)
JP (1) JPWO2020202745A1 (ja)
CN (1) CN113519077A (ja)
WO (1) WO2020202745A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012807A4 (en) * 2019-08-05 2022-09-07 Panasonic Holdings Corporation POSITIVE ELECTRODE ACTIVE MATERIAL FOR ANHYDROUS ELECTROLYTE SECONDARY BATTERIES AND ANHYDROUS ELECTROLYTE SECONDARY BATTERY
US11515533B2 (en) 2019-11-29 2022-11-29 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357499B2 (ja) * 2019-09-26 2023-10-06 パナソニックホールディングス株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029881A (ja) * 2005-02-23 2014-02-13 Lg Chem Ltd リチウムイオン移動度及び電池容量が改良された二次バッテリー
JP2015133318A (ja) * 2013-12-13 2015-07-23 日亜化学工業株式会社 非水電解液二次電池用正極活物質及びその製造方法
JP2015201388A (ja) * 2014-04-09 2015-11-12 日亜化学工業株式会社 非水系二次電池用正極活物質及びその製造方法
JP2016110889A (ja) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質、およびリチウムイオン二次電池
JP2016167439A (ja) * 2015-03-03 2016-09-15 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
JP2017033641A (ja) * 2015-07-29 2017-02-09 トヨタ自動車株式会社 非水電解質二次電池用正極活物質
JP2017033839A (ja) * 2015-08-04 2017-02-09 日立化成株式会社 リチウム二次電池用正極、リチウム二次電池及びリチウムイオン二次電池用正極の製造方法
JP2017084673A (ja) * 2015-10-29 2017-05-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788075B2 (ja) * 2001-07-02 2011-10-05 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびそれを用いたリチウム二次電池
JP4172024B2 (ja) * 2003-03-25 2008-10-29 日立金属株式会社 リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP5887168B2 (ja) * 2012-03-08 2016-03-16 株式会社日立製作所 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池モジュール、それらの製造方法
JP6775125B2 (ja) * 2015-09-30 2020-10-28 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質
US20200295366A1 (en) * 2016-03-30 2020-09-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6222337B2 (ja) * 2016-12-19 2017-11-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および該正極活物質を用いた非水系電解質二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029881A (ja) * 2005-02-23 2014-02-13 Lg Chem Ltd リチウムイオン移動度及び電池容量が改良された二次バッテリー
JP2015133318A (ja) * 2013-12-13 2015-07-23 日亜化学工業株式会社 非水電解液二次電池用正極活物質及びその製造方法
JP2015201388A (ja) * 2014-04-09 2015-11-12 日亜化学工業株式会社 非水系二次電池用正極活物質及びその製造方法
JP2016110889A (ja) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質、およびリチウムイオン二次電池
JP2016167439A (ja) * 2015-03-03 2016-09-15 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
JP2017033641A (ja) * 2015-07-29 2017-02-09 トヨタ自動車株式会社 非水電解質二次電池用正極活物質
JP2017033839A (ja) * 2015-08-04 2017-02-09 日立化成株式会社 リチウム二次電池用正極、リチウム二次電池及びリチウムイオン二次電池用正極の製造方法
JP2017084673A (ja) * 2015-10-29 2017-05-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012807A4 (en) * 2019-08-05 2022-09-07 Panasonic Holdings Corporation POSITIVE ELECTRODE ACTIVE MATERIAL FOR ANHYDROUS ELECTROLYTE SECONDARY BATTERIES AND ANHYDROUS ELECTROLYTE SECONDARY BATTERY
US11515533B2 (en) 2019-11-29 2022-11-29 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof

Also Published As

Publication number Publication date
JPWO2020202745A1 (ja) 2020-10-08
CN113519077A (zh) 2021-10-19
US20220166007A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
JP5315591B2 (ja) 正極活物質および電池
JP4061586B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
US11569492B2 (en) Positive-electrode active material and battery
JP5299719B2 (ja) リチウム二次電池
JP6160602B2 (ja) リチウムイオン二次電池
KR101671131B1 (ko) 비수 전해액 이차 전지
JP2007194202A (ja) リチウムイオン二次電池
JP2022009746A (ja) リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JP2005228706A (ja) 正極活物質および非水電解質二次電池
JP2004342500A (ja) 非水電解質二次電池および電池充放電システム
WO2020202745A1 (ja) 非水電解質二次電池
JP2001345101A (ja) 二次電池
JP7324120B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7324119B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP4746846B2 (ja) リチウムイオン電池用負極活物質、その製造方法およびリチウムイオン電池
WO2021241027A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP7325050B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
JP2013137939A (ja) 非水電解質二次電池
JP7478976B2 (ja) 二次電池用の正極活物質、及び二次電池
WO2022163455A1 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、及び非水電解質二次電池
WO2022163531A1 (ja) 非水電解質二次電池用活物質、及び非水電解質二次電池
WO2023189507A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021085112A1 (ja) 二次電池用の正極活物質、及び二次電池
WO2023120413A1 (ja) 二次電池用正極活物質、及び二次電池用正極活物質の製造方法
JP2002203600A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783357

Country of ref document: EP

Kind code of ref document: A1