WO2020202705A1 - 制御弁 - Google Patents

制御弁 Download PDF

Info

Publication number
WO2020202705A1
WO2020202705A1 PCT/JP2020/001404 JP2020001404W WO2020202705A1 WO 2020202705 A1 WO2020202705 A1 WO 2020202705A1 JP 2020001404 W JP2020001404 W JP 2020001404W WO 2020202705 A1 WO2020202705 A1 WO 2020202705A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
opening
communication port
control valve
valve body
Prior art date
Application number
PCT/JP2020/001404
Other languages
English (en)
French (fr)
Inventor
ラクシュマン クマル ハリ
振宇 申
信吾 村上
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN202080024136.XA priority Critical patent/CN113795654A/zh
Priority to JP2021511126A priority patent/JP7185765B2/ja
Priority to US17/437,792 priority patent/US11614023B2/en
Publication of WO2020202705A1 publication Critical patent/WO2020202705A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/087Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with spherical plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the present invention relates to a control valve.
  • Patent Document 1 As a conventional control valve, for example, the one described in Patent Document 1 below is known.
  • this control valve has a bypass passage that constantly discharges cooling water and provides it for constant circulation of cooling water regardless of the rotation position of the valve body.
  • This bypass passage is formed between the housing and the valve body (diameter gap), and is connected to the outside through a constant circulation port provided in the housing.
  • the present invention has been devised in view of such technical problems, and an object of the present invention is to provide a control valve capable of ensuring a sufficient flow rate of cooling water for constant circulation.
  • the present invention is a control valve provided in a cooling circuit of an automobile engine, and as one aspect thereof, a valve body accommodating portion for accommodating a valve body and a main communication port opening in the axial direction of the valve body accommodating portion.
  • a constant circulation port that opens to the valve body accommodating portion at a directional position is provided, and the valve body is provided with a sub-opening that overlaps with the constant circulation port at least when it does not overlap with the sub-communication port.
  • a sufficient flow rate of cooling water for constant circulation can be secured.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 4 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 8 is a cross-sectional view taken along the line DD of FIG.
  • (a) is a state in which only the third discharge port is in communication
  • (b) is a state in which only the second discharge port is in communication
  • (c) is a constant discharge.
  • (d) is the state which communicated with the 1st and 2nd discharge ports
  • (e) is the state where the 1st and 3rd discharge ports communicated.
  • a first modification of the first embodiment of the control valve according to the present invention is shown, and is a view corresponding to an arrow view seen from the E direction of FIG.
  • a second modification of the first embodiment of the control valve according to the present invention is shown, and is a view corresponding to an arrow view seen from the E direction of FIG. It is the schematic corresponding to the vertical sectional view of the control valve which showed the 2nd Embodiment of the control valve which concerns on this invention.
  • cooling water a circulation system of cooling water for automobiles (hereinafter, simply abbreviated as "cooling water") similar to the conventional one. ..
  • FIG. 1 shows a block diagram showing a configuration of a cooling water circulation circuit, which is a cooling circuit of an automobile engine, to which a control valve according to the present invention is applied.
  • the control valve CV is arranged on the side of the engine EG (specifically, a cylinder head (not shown)). Then, as shown in FIG. 1, this control valve CV is arranged between the heater HT, the oil cooler OC, and the radiator RD.
  • the heater HT is a heating heat exchanger that exchanges heat to produce warm air from an air conditioner (not shown).
  • the oil cooler OC cools the oil for lubricating the sliding portion inside the engine EG.
  • the radiator RD cools the cooling water used for cooling the engine EG.
  • the symbol WP in the figure is a water pump used for circulating cooling water.
  • reference numeral WT is a water temperature sensor used for driving control of the control valve CV, and the control valve CV is driven and controlled based on the control current of the electronic controller CU according to the detection result of the water temperature sensor WT.
  • reference numeral TC is a throttle chamber that controls the flow rate of air mixed with the fuel burned inside the engine EG.
  • the cooling water discharged from the water pump WP is guided to the control valve CV through the introduction passage L0.
  • the valve body 3 of the control valve CV is driven and controlled by the electronic controller CU based on the operating state of the engine EG such as the detection result by the water temperature sensor WT.
  • the cooling water guided to the control valve CV via the introduction passage L0 is distributed to the heater HT, the oil cooler OC, and the radiator RD, respectively, via the first to third pipes L1 to L3.
  • control valve CV is provided with a bypass passage BL for directly guiding the cooling water from the engine EG to the throttle chamber TC by bypassing the introduction passage L0.
  • the bypass passage BL constantly supplies the cooling water guided to the control valve CV via the introduction passage L0 to the throttle chamber TC.
  • control valve CV is applied as a so-called 1in-3Out type distribution device, distributes the cooling water flowing in from the introduction passage L0 to the first to third pipes L1 to L3, and distributes the cooling water at the time of the distribution. Control the flow rate of.
  • an engine EG which is an internal combustion engine is illustrated as one aspect of an automobile engine.
  • the engine is powered by energy such as a motor or a fuel cell as well as the engine EG. Includes any device to convert.
  • FIG. 2 shows an exploded perspective view of the control valve CV according to the present invention.
  • FIG. 3 shows a perspective view of the control valve CV according to the present invention as viewed from the second housing 12 side
  • FIG. 4 shows a plan view of the control valve CV shown in FIG. 3
  • FIG. 5 is FIG.
  • the bottom view of the control valve CV shown in the above is shown.
  • the direction parallel to the rotation axis Z of the rotation axis 2 is the "axial direction”
  • the direction orthogonal to the rotation axis Z of the rotation axis 2 is the "diameter direction”
  • the circumference of the rotation axis Z of the rotation axis 2 The direction of is described as "circumferential direction”.
  • the "axial direction” will be described with the upper side in FIG. 2 as the “one end side” and the lower side as the “other end side”.
  • control valve CV is housed in a tubular valve body 3 rotatably supported inside the housing 1 via a rotation shaft 2 and a housing 1, and rotationally drives the valve body 3. It has an electric motor 4 and a speed reduction mechanism 5 housed in a housing 1 that decelerates and transmits the rotation of the electric motor 4.
  • the housing 1 is formed in two in the axial direction, and is provided so as to close the first housing 11 accommodating the valve body 3 and the electric motor 4 and the opening on one end side of the first housing 11 for deceleration. It is composed of a second housing 12 for accommodating the mechanism 5. Both the first housing 11 and the second housing 12 are molded of a synthetic resin material, for example, polyphenylene sulfide (PPS) resin, and are fixed by a plurality of bolts 13.
  • PPS polyphenylene sulfide
  • the first housing 11 is attached in parallel to the hollow cylindrical valve body accommodating portion 111 accommodating the valve body 3 and the valve body accommodating portion 111, and is a hollow cylindrical motor accommodating the motor body 41 of the electric motor 4. It has a housing unit 112 and.
  • the first housing 11 is attached to a cylinder block (not shown) via a mounting portion (specifically, flange portions 114a, 114b, 114c, which will be described later) provided at the other end in the axial direction. It is fixed by a fixing member, for example, a plurality of bolts.
  • a gasket S0 formed in an annular shape between the mounting portion and the cylinder block (not shown), the space between the mounting portion and the cylinder block (not shown) is hermetically sealed. ..
  • valve body accommodating portion 111 in the axial direction is closed by the end wall 113, and the other end side is formed with an opening (see FIG. 5).
  • a plurality of (three in this embodiment) flange portions 114a, 114b, which attach the first housing 11 to a cylinder block (not shown) is provided so as to extend substantially radially outward.
  • the flange portions 114a, 114b, 114c are arranged at substantially equal intervals in the circumferential direction.
  • through holes having a circular cross section are formed through the tips of the flange portions 114a, 114b, and 114c along the axial direction, and each of the through holes is made of a metal formed in a cylindrical shape.
  • a sleeve 14 made of metal is press-fitted.
  • the sleeve 14 has a height (axial dimension) equivalent to that of the flange portions 114a, 114b, 114c, and is configured to receive the axial force of a bolt (not shown) by the sleeve 14.
  • a covered cylindrical boss portion 115 is formed so as to project toward the second housing 12 side on the end wall 113 of the valve body accommodating portion 111.
  • a through hole 116 through which the rotation shaft 2 is inserted is formed in the end wall of the boss portion 115.
  • a pair of flat plate-shaped bearing portions 117, 117 used for bearings of the support shafts 51, 52 of the speed reduction mechanism 5 are formed upright. Bearing holes 117a and 117a that rotatably support the support shafts 51 and 52 are formed through the pair of bearing portions 117 and 117, respectively.
  • the valve body accommodating portion 111, the heater HT, the oil cooler OC, and the radiator RD are connected to the side wall (peripheral wall) of the valve body accommodating portion 111.
  • Discharge ports E1 to E3 are provided.
  • the first and second discharge ports E1 and E2 are radial openings E11 formed through along the radial direction as shown in FIGS. 2 to 5.
  • the first and second discharge ports E1 and E2 each have an internal passage (not shown) formed in a substantially T shape, and the radial openings E11 and E21 are closed by the caps C1 and C2. , It is connected to the heater HT and the oil cooler OC via the axial openings E12 and E22.
  • the caps C1 and C2 each have a plurality of ribs C11 and C21 radially provided, and the meat stealing portions C12 and C22 are formed between the ribs C11 and C21.
  • the third discharge port E3 and the constant discharge port E4 each have a cylindrical shape, and an opening is formed in the peripheral wall of the first housing 11.
  • a third pipe L3 connected to the radiator RD is attached to the outer end of the radial opening E31, and a fourth pipe connected to the throttle chamber TC is attached to the outer end of the radial opening E41.
  • L4 is attached.
  • the first and second caps C1 and C2 and the third and fourth pipes L3 and L4 are all fixed to the first housing 11 by a plurality of screw SWs.
  • the second housing 12 is formed in a bottomed tubular shape that straddles the valve body accommodating portion 111 and the motor accommodating portion 112 and opens the valve body accommodating portion 111 and the motor accommodating portion 112 so as to be covered. Then, the second housing 12 is attached to the first housing 11 so as to cover the valve body accommodating portion 111 and the motor accommodating portion 112, so that the deceleration mechanism accommodating the deceleration mechanism 5 by the internal space of the second housing 12 A housing portion 121 is formed. Further, a connector connecting portion 120 for connecting to the electronic controller CU is integrally provided on the side portion of the second housing 12, and the electric motor 4 and the electronic controller CU are connected to each other via the connector connecting portion 120. It is electrically connected.
  • the motor main body 41 is housed in the motor housing portion 112 so that the output shaft 42 faces the second housing 12 side. Then, the electric motor 4 is provided at a plurality of opening edges of the motor accommodating portion 112 via a flange portion 43 provided at the end of the motor main body 41 on the output shaft 42 side so as to extend outward in the radial direction. It is fixed by the bolt 44.
  • the electric motor 4 is driven and controlled by an in-vehicle electronic controller CU (see FIG. 1), and by rotating and driving the valve body 3 according to the operating state of the vehicle, cooling water for the radiator RD and the like (see FIG. 1) is supplied. Appropriate distribution is achieved.
  • the reduction mechanism 5 is a drive mechanism composed of two sets of staggered gears, the first gear G1 and the second gear G2.
  • the first gear G1 is provided coaxially with the output shaft 42 of the electric motor 4, and is arranged so as to be orthogonal to the output shaft 42 of the electric motor 4 and the first screw gear WG1 that rotates integrally with the output shaft 42. It is composed of a first oblique gear HG1 which is rotationally supported by a first support shaft 51 and meshes with a first screw gear WG1.
  • the second gear G2 is rotationally supported by the second support shaft 52 and is fixed to the rotary shaft 2 and meshes with the second screw gear WG2 and the second screw gear WG2 that rotates integrally with the first oblique gear HG1.
  • the first oblique gear HG1 and the second screw gear WG2 are composite gear members in which both gears HG1 and WG2 formed in a tubular shape are arranged in series and integrally formed, and the composite gear member. It is rotationally supported by a pair of bearing portions 117, 117 of the first housing 11 via the first and second support shafts 51, 52 inserted at both ends of the first housing 11. From such a configuration, the rotational driving force output from the output shaft 42 of the electric motor 4 is decelerated in two stages via the first gear G1 and the second gear G2 and transmitted to the valve body 3.
  • FIG. 6 shows a cross-sectional view of the control valve CV cut along the line AA of FIG.
  • FIG. 7 shows a cross-sectional view of the control valve CV cut along the line BB of FIG.
  • FIG. 8 shows a cross-sectional view of the control valve CV cut along the line CC of FIG. 4
  • FIG. 9 shows a cross-sectional view of the control valve cut along the line DD of FIG. ..
  • the direction parallel to the rotation axis Z of the rotation axis 2 is the "axial direction”
  • the direction orthogonal to the rotation axis Z of the rotation axis 2 is the “diameter direction”
  • the circumference of the rotation axis Z of the rotation axis 2 The direction of is described as “circumferential direction”. Further, the "axial direction” will be described with the upper side in FIGS. 6 to 8 as the “one end side” and the lower side as the “other end side”.
  • the first housing 11 is formed with a bottomed cylindrical valve body accommodating portion 111 in which one end side in the axial direction is closed by the end wall 113 and the other end side is open to the outside. ing. Further, a through hole 116 through which the rotation shaft 2 is inserted is inserted into the boss portion 115 provided on the end wall 113 of the valve body accommodating portion 111, and communicates the valve body accommodating portion 111 with the speed reduction mechanism accommodating portion 121 described later. It is formed along the axial direction so as to. In other words, the through hole 116 is provided in the axial direction in the direction opposite to the opening direction of the introduction port E0, which will be described later, and is formed in the valve body accommodating portion 111.
  • the second housing 12 attached to one end side of the first housing 11 is formed in a bottomed tubular shape in which one end side in the axial direction is closed by the bottom wall 122 and the other end side facing the end wall 113 is open. There is. That is, by covering the second housing 12 so as to close one end side of the first housing 11 in the axial direction, the reduction mechanism accommodating portion 121 is formed in the internal space of the second housing 12, and the reduction mechanism accommodating portion 121 is formed. The deceleration mechanism 5 is housed in the space.
  • the first housing 11 has a main communication port at the other end of the valve body accommodating portion 111 in the axial direction for communicating with the inside of a cylinder block (not shown) and introducing cooling water from the cylinder block side.
  • a certain introduction port E0 is formed as an opening. That is, in a state where the control valve CV is attached to an engine (cylinder block) (not shown), the introduction port E0 communicates with the opening on the cylinder block side, and the valve body from the cylinder block side via the introduction port E0. Cooling water is introduced into the accommodating portion 111.
  • first to third discharge ports E1 to E3 are formed on the peripheral wall of the valve body accommodating portion 111.
  • first to third discharge ports E1 to E3 which are sub-communication ports, are formed in the valve body accommodating portion 111 along the radial direction.
  • the first and second discharge ports E1 and E2 of the first to third discharge ports E1 to E3 each have an internal passage formed through a substantially T-shape, and the diameter of the internal passages.
  • the outer ends of the radial openings E11 and E21 that open in the direction are closed by the caps C1 and C2, respectively, so that the openings are opened to the flange portions 114a and 114b via the axial openings E12 and E22, respectively.
  • a substantially L-shaped third pipe L3 whose intermediate portion is bent at a substantially right angle is connected to the third discharge port E3.
  • the first discharge port E1 is connected to, for example, a heater HT via the axial opening E12.
  • the cooling water discharged from the axial opening E12 of the first discharge port E1 is supplied to the heater HT via a cylinder block (not shown).
  • the second discharge port E2 is connected to, for example, the oil cooler OC via the axial opening E22. Specifically, the cooling water discharged from the axial opening E22 of the second discharge port E2 is supplied to the oil cooler OC via a cylinder block (not shown).
  • the third discharge port E3 is connected to, for example, the radiator RD via the third pipe L3.
  • first to third discharge ports E1 to E3 are positioned in different axial directions on the peripheral wall of the first housing 11, and the first to third seal members S1 to S3, which will be described later, are on the valve body 3.
  • the first to third openings M1 to M3, which are arranged at adjacent axial positions, are arranged at axial intervals that can overlap with each other.
  • the first to third discharge ports E1 to E3 are arranged on the peripheral wall of the first housing 11 at different circumferential positions, specifically, at positions shifted in phase by approximately 90 ° (FIG. 4). reference).
  • first to third discharge ports E1 to E3 are the first to third, respectively.
  • a sealing mechanism for airtightly sealing between the third discharge ports E1 to E3 and the valve body 3 is provided.
  • This sealing mechanism is made of metal that urges the substantially cylindrical first to third sealing members S1 to S3 and the first to third sealing members S1 to S3 formed of a synthetic resin material toward the valve body 3. It is composed of the first to third coil springs SP1 to SP3.
  • first to third outlets E1 to E3 (third openings E13, E23, E33) can be slidably contacted with the first to third discharge ports E1 to E3, respectively.
  • Seal rings SR1 to SR3 are attached.
  • the first to third seal members S1 to S3 are formed of a predetermined fluororesin (PTFE (polytetrafluoroethylene) in this embodiment) and are housed on the inner peripheral side of the first to third discharge ports E1 to E3. Therefore, they are provided so as to be able to move forward and backward toward the valve body 3 side.
  • the first to third coil springs SP1 to SP3 are arranged between the first and second caps C1 and C2 and the third pipe L3 and the first to third seal members S1 to S3 with a predetermined set load. These are urging members that urge the seal members S1 to S3 toward the valve body 3, respectively.
  • a constant discharge port E4 as a constant communication port for discharging cooling water regardless of the phase (rotational position) of the valve body 3 is provided on the peripheral wall of the valve body accommodating portion 111. It is formed so as to penetrate diagonally with respect to the peripheral wall of the valve body accommodating portion 111.
  • the constant discharge port E4 is provided along a direction that does not intersect the rotation axis Z of the valve body 3, does not overlap with the rotation axis Z of the valve body 3 in the penetrating direction, and the plan view extends in the circumferential direction. It has an elliptical shape or an oval shape (see FIG. 8).
  • the constant discharge port E4 is provided at a position different from the first to third discharge ports E1 to E3 in the circumferential direction and at a position overlapping with the first to third discharge ports E1 to E3 in the axial direction. Be done. That is, the constant discharge port E4 is at a position different from that of the first to third discharge ports E1 to E3 in the circumferential direction, and is an opening of the valve body 3 in the axial direction (third opening M3 in the present embodiment). It is provided at a position where it overlaps with.
  • the constant discharge port E4 is provided at a position where it overlaps with the third opening M3, which is an existing opening of the valve body 3 that overlaps with the third discharge port E3, and the third discharge port E3 and the third opening M3 Is configured to be shareable. Further, the constant discharge port E4 is set to an opening area smaller than the opening of the valve body 3 (third opening M3 in the present embodiment), and in the present embodiment, the center Q of the constant discharge port E4 is in the axial direction.
  • the third opening M3 is arranged so as to be offset from the central portion (reference line X shown in FIG. 8) to the introduction port E0 side. At this time, the constant discharge port E4 is provided so that the entire discharge port E4 overlaps with the third opening M3 in the axial direction.
  • the constant discharge port E4 has a third opening when the third opening M3 of the valve body 3 does not overlap with the third discharge port E3 in the circumferential direction. It is provided at a position where it can overlap with the portion M3.
  • the "constant communication port" according to the present invention is the first when the first to third openings M1 to M3 of the valve body 3 and the first to third discharge ports E1 to E3 do not overlap in the circumferential direction.
  • the third opening It does not exclude that the part M3 and the constant discharge port E4 overlap each other.
  • the cooling water introduced into the valve body accommodating portion 111 via the introduction port E0 is introduced between the first housing 11 and the valve body 3 (between the radial directions).
  • the cooling water guided through the inner peripheral side (internal passage 118 described later) of the valve body 3 flows in through the third opening M3.
  • the cooling water guided through the inner peripheral side of the valve body 3 merges with the cooling water guided through the bypass passage BL through the third opening M3 and is constantly discharged. It is discharged from outlet E4.
  • the rotating shaft 2 has a rod shape having a constant outer diameter, is arranged so as to penetrate the through hole 116 and straddle the valve body accommodating portion 111 and the deceleration mechanism accommodating portion 121, and is accommodated and held on the inner peripheral side of the boss portion 115. It is rotatably supported by the bearing B1. Further, the space between the rotating shaft 2 and the through hole 116 is liquidtightly sealed by a cylindrical sealing member 21 press-fitted from the valve body accommodating portion 111 side. That is, the seal member 21 prevents the cooling water in the valve body accommodating portion 111 from flowing out to the second housing 12 side through the through hole 116. Further, a dust seal 22 is arranged between the seal member 21 and the bearing B1.
  • the dust seal 22 suppresses the intrusion of dust into the valve body accommodating portion 111 in the deceleration mechanism accommodating portion 121. As a result, the entrainment of dust between the through hole 116 and the seal member 21 is suppressed, and the seal member 21 is protected.
  • the valve body 3 is formed of a predetermined hard resin material, has a bottomed cylindrical shape having a constant outer diameter, and is provided so that the introduction portion M0, which is an opening on the other end side, faces the introduction port E0 side. Therefore, the cooling water can be introduced into the internal passage 118 formed on the inner peripheral side. Then, one end of the valve body 3 in the axial direction is press-fitted and fixed to the rotating shaft 2 via a metal insert member 30 embedded in the inner peripheral side of the one end, while being fixed to the introduction port E0 side. The other end facing the surface is rotatably supported by a bearing B2 held on the inner peripheral side of the introduction port E0.
  • the first to third openings M1 to M3 that can communicate with E3 are formed through each of them along the radial direction.
  • the first to third openings M1 to M3 are set in a shape and quantity according to the control content of the valve body 3, such as a perfect circle or an oval extending in the circumferential direction.
  • the third opening M3 has a larger opening area than the constant discharge port E4 (see FIG. 8), and in addition to the third discharge port E3, depending on the rotation position of the valve body 3. , It is configured to be able to communicate with the constant discharge port E4.
  • the control valve CV configured as described above passes through the first discharge port E1 by controlling the valve body 3 at a circumferential position where at least a part of the first opening M1 and the first discharge port E1 overlap.
  • the cooling water is distributed to the heater HT.
  • the oil cooler OC is controlled via the second discharge port E2 by controlling the valve body 3 at a circumferential position where at least a part of the second opening M2 and the second discharge port E2 overlap. Distribute the cooling water to.
  • the valve body 3 is controlled at a circumferential position where at least a part of the third opening M3 and the third discharge port E3 overlaps, so that the third discharge port E3 (third pipe) is controlled.
  • Cooling water is distributed to the radiator RD via L3). Then, when the cooling water is distributed, the degree of overlap (overlapping area) between the first to third openings M1 to M3 and the first to third discharge ports E1 to E3 changes, so that the cooling water at the time of distribution is changed. Flow rate changes.
  • FIG. 10A and 10B are development views of the control valve CV used to explain the operating state of the control valve CV.
  • FIG. 10A shows a state in which only the third discharge port E3 communicates
  • FIG. 10B shows only the second discharge port E2.
  • C is a state in which all of the first to third discharge ports E1 to E3 are in communication, and only the constant discharge port E4 is in communication
  • (d) is a state in which the first and second discharge ports E1 and E1 are in communication.
  • a state in which E2 is communicated, and (e) indicates a state in which the first and third outlets E1 and E3 are communicated with each other.
  • the first to third openings M1 to M3 of the valve body 3 are indicated by solid lines, and the first to third discharge ports E1 to E3 and the constant discharge ports E4 of the first housing 11 are indicated by broken lines. It is displayed, and the state in which the outlets E1 to E4 and the openings M1 to M3 overlap and communicate with each other is indicated by hatching.
  • the control valve CV is driven and controlled by the control current from the electronic controller CU, which is calculated and output based on the vehicle operating state, so that the first to third outlets E1 are driven according to the vehicle operating state.
  • the valve body 3 is controlled so that the relative phases of the first to third openings M1 to M3 with respect to E3 and the constant discharge port E4 are mainly the first to fifth phases shown in FIGS. 10A to 10E. Will be done.
  • the control valve CV is controlled to the third phase during the cold start state, that is, the so-called cold start, and as shown in FIG. 10 (c), the first to third outlets E1 to E3 are all non-existent. It will be in a fully closed state for communication.
  • the third opening M3 and the constant discharge port E4 overlap each other, so that more cooling is performed from the constant discharge port E4 to the throttle chamber TC together with the cooling water guided through the bypass passage BL. Water is supplied. That is, since it is necessary to prevent the throttle chamber TC from freezing at the time of the cold start, the throttle chamber TC is communicated with the third opening M3 and the constant discharge port E4 in addition to the bypass passage BL. More cooling water than usual is supplied. As a result, a sufficient flow rate of the cooling water supplied from the constant discharge port E4 to the throttle chamber TC can be ensured, and the throttle chamber TC can be effectively cooled.
  • the constant discharge port E4 and the third opening M3 do not overlap each other, and both are in a non-communication state, and the constant discharge port E4 passes through the bypass passage BL. Only cooling water is discharged. As a result, excess cooling water is not always discharged through the discharge port E4, and a sufficient flow rate of the cooling water supplied from the third discharge port E3 to the radiator RD is ensured, so that the cooling water is effective. Cooling can be achieved. The same can be said for the second, fourth, and fifth phases.
  • the constant discharge port E4 and the third opening M3 do not overlap, and both are not overlapped.
  • the flow rate of the cooling water to the heater HT, the oil cooler OC, and the radiator RD is ensured by setting the communication state. In this way, when the first to third openings M1 to M3 and the first to third outlets E1 to E3 overlap, the discharge ports E4 and the third opening M3 should not always overlap. Therefore, the efficiency of supplying cooling water to each device such as the heater HT, the oil cooler OC, and the radiator RD can be improved.
  • control valve according to the present embodiment can solve the problem of the conventional control valve by achieving the following effects.
  • control valve CV is a control valve provided in a cooling circuit of an automobile engine (engine EG in this embodiment), and is a rotary shaft 2, a valve body accommodating portion 111 into which the rotary shaft 2 is inserted, and a valve.
  • a constant circulation port that opens in the valve body accommodating portion 111 at an axial position that overlaps with the discharge ports E1 to E3) and allows cooling water to constantly flow in relation to the main communication port (introduction port E0).
  • the main opening (introduction portion M0) that is arranged in the valve body accommodating portion 111 and is connected to the rotating shaft 2 and overlaps with the main communication port (introduction port E0).
  • the first to third openings M3 which are sub-openings and the first to third discharge ports E1 to E3 which are sub-communication ports do not overlap each other.
  • the first to third openings M1 to M3 (third opening M3 in this embodiment), which are sub-openings, and the constant discharge port E4 are configured to overlap each other.
  • the bypass passage BL and the valve body 3 The cooling water that has passed through the internal passage 118 of the above can be discharged through the constant discharge port E4. That is, when it is necessary to supply more cooling water through the constant discharge port E4, for example, at the time of cold start (cold start), the flow rate of the cooling water discharged from the constant discharge port E4 is secured. be able to.
  • the sub-openings (first to third openings M1 to M3) and the sub-communication ports (first to third discharge ports E1 to E3) overlap each other according to the rotation position of the rotation shaft 2. At this time, the sub-openings (first to third openings M1 to M3) and the constant communication port (constant discharge port E4) do not overlap each other.
  • the discharge of excess cooling water from the constant discharge port E4 is suppressed by that amount (valve body).
  • the portion that constantly flows into the discharge port E4 from the third opening M3 via the internal passage 118 of 3) communicates with the first to third openings M1 to M3 and the first to third discharge ports E1 to E3.
  • the constant circulation port (constant discharge port E4) is formed in an elliptical shape extending in the circumferential direction.
  • the rotary shaft 2 is connected to one end side of the valve body 3 in the axial direction, and the main opening (introduction portion M0) opens to the other end side of the valve body 3 in the axial direction.
  • the sub-openings (first to third discharge ports E1 to E3) are formed, and the opening is formed in the radial direction with respect to the rotation axis Z of the valve body 3, and the constant circulation port (constant discharge port E4) is formed in the axial direction. It is provided on the main opening (introduction portion M0) side of the central portion of the sub-opening (third opening M3 in the present embodiment).
  • the constant discharge port E4 is the introduction port E0 rather than the central portion (reference line X shown in FIG. 8) of the sub-opening (third opening M3 in the present embodiment) in the axial direction. It is arranged unevenly on the side. That is, as a result of making it possible to bring the constant discharge port E4 closer to the inlet (introduction portion M0) of the internal passage 118, the discharge efficiency of the cooling water discharged from the constant discharge port E4 via the internal passage 118 is improved. Can be made to.
  • the sub-openings (first to third openings M1 to M3) have a larger opening area than the constant circulation port (constant discharge port E4).
  • the sub-communication ports (first to third discharge ports E1 to E3) are connected to at least one of the radiator RD, the heater HT, and the oil cooler OC.
  • the sub-communication port (third discharge port E3) is connected to the radiator RD.
  • the third discharge port E3 connected to the radiator RD is set to have a relatively large flow path cross-sectional area, and accordingly, the opening area of the third opening M3 is also set to be relatively large. Therefore, by configuring the third opening M3 and the constant discharge port E4 so as to overlap each other as in the present embodiment, it is possible to secure a larger flow rate of the cooling water discharged from the constant discharge port E4. ..
  • the rotary shaft 2 is connected to one end side of the valve body 3 in the axial direction, and the main opening (introduction portion M0) opens to the other end side of the valve body 3 in the axial direction.
  • the sub-opening (third opening M3 in the present embodiment) is formed, and the opening is formed in the radial direction with respect to the rotation axis Z of the valve body 3, and the housing 1 is formed with the sub-communication port (the present embodiment) in the axial direction.
  • the valve body 3 has a main communication port side sub-communication port (second discharge port E2 in the present embodiment) provided on the main communication port (introduction port E0) side of the third discharge port E3). It has a main communication port side sub-opening (second opening M2 in this embodiment) that overlaps with the communication port-side sub-communication port (second discharge port E2 in the present embodiment).
  • the second discharge port E2 is provided on the introduction port E0 side of the third discharge port E3 in the axial direction, and the second opening is on the introduction portion M0 side of the third opening M3. It has a so-called two-stage configuration in which M2 is provided. As a result, cooling water can be supplied to a plurality of predetermined devices (oil cooler OC and radiator RD in this embodiment) via the second and third outlets E2 and E3.
  • the housing 1 is provided on the rotating shaft 2 side of the auxiliary communication port (third discharge port E3 in the present embodiment) in the axial direction (in the present embodiment).
  • the valve body 3 has a first discharge port E1), and the valve body 3 has a rotary shaft side sub-opening (first opening M1 in the present embodiment) that overlaps with the rotary shaft-side sub-communication port (first discharge port E1 in the present embodiment). ).
  • the first discharge port E1 is provided on the rotation shaft 2 side of the third discharge port E3 in the axial direction, and is more than the third opening M3. It has a so-called three-stage structure in which the first opening M1 is provided on the rotation shaft 2 side.
  • cooling water can be supplied to a plurality of predetermined devices (heater HT, oil cooler OC, and radiator RD in this embodiment) via the first to third outlets E1 to E3.
  • the main communication port side sub communication port (second discharge port E2) is connected to the oil cooler OC
  • the sub communication port (third discharge port E3) is connected to the radiator RD, and the rotation shaft.
  • the side sub-communication port (third discharge port E3) is connected to the heater HT.
  • cooling water can be supplied to each device of the heater HT, the oil cooler OC, and the radiator RD as in the present embodiment.
  • the sub-communication port (third discharge port E3) overlaps with the sub-opening (third opening M3) according to the rotation position of the rotation shaft 2, while the sub-communication port on the rotation shaft side (third opening M3).
  • the flow rate of the cooling water discharged from the constant discharge port E4 is increased, and the cooling water discharged from the constant discharge port E4 is increased.
  • the flow rate can be secured.
  • the housing 1 has a plurality of sub-communication ports (first to third outlets E1 to E3), and the valve body 3 has a plurality of sub-openings (first to third openings). It has M1 to M3).
  • Cooling water can be supplied to the heater HT, the oil cooler OC, and the radiator RD).
  • FIG. 11 shows a first modification of the first embodiment of the control valve according to the present invention, in which the axial position of the constant discharge port E4 in the first embodiment is changed.
  • the basic configuration other than such changes is the same as that of the first embodiment. Therefore, the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 11 is a view corresponding to an arrow view seen from the E direction of FIG. 9, and is a front view of the state in which the constant discharge port E4 and the third opening M3 are overlapped with each other as viewed from the inside of the valve body 3. Is shown.
  • the direction parallel to the rotation axis Z of the valve body 3 is the "axial direction”
  • the direction orthogonal to the rotation axis Z of the valve body 3 is the “diametric direction”
  • the circumference of the rotation axis Z of the valve body 3 The direction of is described as "circumferential direction”.
  • the constant discharge port E4 is arranged at the central portion of the third opening M3 in the axial direction. Specifically, the center Q of the constant discharge port E4 is provided so as to be located in the vicinity of the reference line X shown in FIG. 11 in the axial direction.
  • the constant circulation port (constant discharge port E4) is provided at the center of the sub-opening (third opening M3 in the present embodiment) in the axial direction.
  • the third opening M3 is formed in an elliptical or oval shape having the largest circumferential width in the central portion. Therefore, by arranging the constant discharge port E4 in the central portion of the third opening M3 in the axial direction, the time during which the constant discharge port E4 and the third opening M3 overlap each other when the valve body 3 rotates can be increased. It is possible to secure it for a long time. As a result, it is possible to secure a larger flow rate of the cooling water discharged from the constant discharge port E4.
  • FIG. 12 shows a second modification of the first embodiment of the control valve according to the present invention, in which the axial position of the constant discharge port E4 in the first embodiment is changed.
  • the basic configuration other than such changes is the same as that of the first embodiment. Therefore, the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 12 is a view corresponding to an arrow view seen from the E direction of FIG. 9, and is a front view of the state in which the constant discharge port E4 and the third opening M3 overlap each other as viewed from the inside of the valve body 3. Is shown.
  • the direction parallel to the rotation axis Z of the valve body 3 is the "axial direction”
  • the direction orthogonal to the rotation axis Z of the valve body 3 is the “diametric direction”
  • the circumference of the rotation axis Z of the valve body 3 The direction of is described as "circumferential direction”.
  • the constant discharge port E4 is provided so as to be biased toward the first opening M1 side from the central portion of the third opening M3 in the axial direction.
  • the center Q of the constant discharge port E4 is provided so as to be on the side opposite to the introduction port E0 in the axial direction and on the rotation shaft 2 side with respect to the reference line X shown in FIG. There is.
  • the constant circulation port (constant discharge port E4) is the rotary shaft side communication port (first discharge) rather than the sub-opening (third opening M3 in the present embodiment) in the axial direction. It is provided on the exit E1) side.
  • the streamline of the cooling water that flows from the introduction port E0 to the constant discharge port E4 through the third opening M3 is gently reduced. can do.
  • the constant discharge port E4 and the third opening M3 overlap each other, the cooling water easily flows from the internal passage 118 to the constant discharge port E4 through the third opening M3.
  • the discharge property of the cooling water is improved, and the flow rate of the cooling water always discharged from the discharge port E4 can be secured.
  • FIG. 13 shows a second embodiment of the control valve according to the present invention, in which the form of the valve body 3 is changed from the first embodiment.
  • the basic configuration other than such changes is the same as that of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 13 shows a side view of the valve body 3 of the control valve CV according to the second embodiment of the present invention.
  • the direction parallel to the rotation axis Z of the valve body 3 is the "axial direction”
  • the direction orthogonal to the rotation axis Z of the valve body 3 is the “diametric direction”
  • the circumference of the rotation axis Z of the valve body 3 The direction of is described as "circumferential direction”.
  • the valve body 3 has a first spherical portion R1 formed in a spherical shape, unlike the first embodiment having a constant outer diameter. It is configured by connecting the second spherical surface portion R2 in series in the axial direction.
  • the first spherical surface portion R1 is provided on one end side in the axial direction of the valve body 3, that is, on the rotation shaft 2 side, and the second spherical surface portion R2 is provided on the other end side in the axial direction of the valve body 3, that is, on the introduction port E0 side. ..
  • the width of the first spherical surface portion R1 in the axial direction is set to be relatively smaller than that of the second spherical surface portion R2.
  • the first spherical surface portion R1 is an elongated hole extending in the circumferential direction of the valve body 3, and the first opening M1 overlapping the first discharge port E1 is provided at a predetermined position in the circumferential direction of the valve body 3 in the radial direction. It is formed through through.
  • the second spherical surface portion R2 is an elongated hole extending in the circumferential direction of the valve body 3, and a third opening M3 overlapping the third discharge port E3 has a diameter at a predetermined position in the circumferential direction of the valve body 3.
  • the third opening M3 is provided so as to overlap with the constant discharge port E4 provided at a position in the circumferential direction different from the third discharge port E3.
  • the peripheral wall of the first housing 11 is provided with a constant discharge port E4 at a position where it overlaps with the third opening M3 of the valve body 3 in the axial direction.
  • the valve body 3 has a spherical portion (second spherical portion R2 in the present embodiment) at least in a part thereof, and a sub-opening portion (third opening M3 in the present embodiment). ) Is formed on a spherical surface portion (second spherical surface portion R2 in the present embodiment).
  • the present invention can be applied to the valve body 3 in which the third opening M3 is provided in the second spherical surface portion R2, and the same effects as those in the first embodiment can be obtained.
  • the first and second spherical surfaces R1 and R2 all have the same spherical surface along the circumferential direction, but the first and second spherical surfaces R1 and R2 have the same spherical surface. It is sufficient that the first to third seal members S1 to S3 are provided in the circumferential direction range in which sliding contact is possible with the rotation of the valve body 3, and the first to third seal members S1 to S3 do not necessarily have to be formed over the entire circumferential direction. In other words, the first and second spherical portions R1 and R2 may be formed only in a part of the circumferential direction range where the first to third seal members S1 to S3 can be slidably contacted.
  • the quantity of the "spherical surface portion" according to the present invention can be freely changed according to the specifications of the control valve CV and the like. That is, one spherical surface portion may be configured as a whole, or three spherical surface portions corresponding to the first to third openings M1 to M3 may be connected in series in the axial direction. Further, when the valve body 3 rotates in a predetermined circumferential range, two spherical portions are provided in the axial direction in a part of the circumferential region, and one spherical portion in the axial direction is provided in the other circumferential region. It is also possible to adopt a configuration such as providing.
  • control valve according to the present invention is not limited to the configuration of each of the above-described embodiments, and can be freely changed according to the specifications of the engine to which the invention is applied as long as it can exhibit the functions and effects of the present invention. is there.
  • control valve in the above-described embodiment and the like, one applied to the circulation system of cooling water is exemplified, but the control valve is not limited to cooling water but also various fluids such as lubricating oil. It goes without saying that it is applicable to.
  • the shape and arrangement of the constant discharge port E4 can be freely changed according to the specifications of the control valve CV.
  • the constant discharge port E4 is not limited to the configuration of the embodiment that overlaps with the third opening M3, and may be configured to overlap any of the openings M1 to M3 of the first to third openings M3.
  • control valve based on the embodiment described above, for example, the one described below can be considered.
  • the control valve is a control valve provided in a cooling circuit of an automobile engine, and has a rotating shaft, a valve body accommodating portion into which the rotating shaft is inserted, and the valve body accommodating portion.
  • the housing to be held the valve body arranged in the valve body accommodating portion and connected to the rotation shaft, the main opening overlapping with the main communication port, and at least the sub communication according to the rotation position of the rotation shaft. It includes a valve body having a sub-opening that is in a state of overlapping with the circulation port at all times when it does not overlap with the mouth.
  • the constant circulation port is formed in an elliptical shape extending in the circumferential direction.
  • the constant circulation port is provided at the center of the sub-opening in the axial direction.
  • the rotating shaft is connected to one end of the valve body in the axial direction, and the main opening is in the axial direction of the valve body.
  • An opening is formed on the other end side of the valve body, the sub-opening is formed in the radial direction with respect to the rotation axis of the valve body, and the constant circulation port is formed in the axial direction from the central portion of the sub-opening. It is provided on the main opening side.
  • the sub-opening has a larger opening area than the constant circulation port.
  • the sub-communication port is connected to at least one of a radiator, a heater and an oil cooler.
  • the sub-communication port is connected to the radiator.
  • the rotating shaft is connected to one end of the valve body in the axial direction, and the main opening is in the axial direction of the valve body.
  • An opening is formed on the other end side of the valve body, the sub-opening is formed in the radial direction with respect to the rotation axis of the valve body, and the housing is formed on the main communication port side of the sub communication port in the axial direction. It has a main communication port side sub-communication port provided, and the valve body has a main communication port side sub-opening that overlaps with the main communication port side sub-communication port.
  • the housing has a rotating shaft-side sub-communication port provided on the rotating shaft side of the sub-communication port in the axial direction.
  • the valve body has a rotary shaft side sub-opening that overlaps with the rotary shaft side sub-communication port.
  • the main communication port side sub communication port is connected to the oil cooler, the sub communication port is connected to the radiator, and the rotary shaft side.
  • the sub-communication port is connected to the heater.
  • the sub-communication port overlaps the sub-opening, depending on the rotational position of the rotating shaft, while the rotating shaft side sub-communication port and the said.
  • the second state where they do not overlap while the constant circulation port overlaps with the sub-opening, the rotating shaft side sub-communication port and the rotating shaft side sub-opening, the sub-communication port and the sub-opening, and the above.
  • the third state in which the main communication port side sub-communication port and the main communication port side sub-opening do not overlap, the rotating shaft side sub-communication port, the rotating shaft side sub-opening, and the main communication port side sub-communication port The fourth state in which the sub-opening on the main communication port side and the sub-opening do not overlap, the sub-opening and the sub-opening, the constant circulation port and the sub-opening do not overlap, and the sub-communication port and the sub-opening , The constant circulation port and the sub-opening, the rotating shaft side sub-communication port and the rotating shaft side sub-opening overlap, while the main communication port side sub-communication port and the main communication port side sub-opening overlap. It has a fifth state that does not match.
  • the valve body has a spherical portion at least in part, and the sub-opening is formed in the spherical portion.
  • the housing has the plurality of sub-communication ports and the valve body has the plurality of sub-openings.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)

Abstract

本発明に係る制御弁(CV)は、副開口部である第3開口部(M3)と副連通口である第3排出口(E3)とが重なり合わないときに第3開口部(M3)と常時排出口(E4)とが重なり合うように構成されている。これにより、例えば冷機始動時など常時循環用の冷却水の流量が必要なときに、バイパス通路(BL)から導かれる冷却水に加えて、内部通路(118)を経由して導かれる冷却水を、常時排出口(E4)を介して排出させることにより、常時循環用の冷却水の流量を十分に確保することができる。

Description

制御弁
 本発明は、制御弁に関する。
 従来の制御弁としては、例えば以下の特許文献1に記載されたものが知られている。
 概略を説明すれば、この制御弁は、弁体の回転位置に関係なく冷却水を常時排出して冷却水の常時循環に供するパイパス通路を有している。このバイパス通路は、ハウジングと弁体の間(径方向隙間)に形成され、ハウジングに設けられた常時循環口を介して外部に接続されている。
特開2016-160872号公報
 しかしながら、前記従来の制御弁では、前記バイパス通路が、ハウジングと弁体の間に形成されているため、流路断面積が小さく、常時循環用の冷却水の流量を十分に確保できないおそれがあった。
 本発明は、かかる技術的課題に鑑みて案出されたものであり、常時循環用の冷却水の流量を十分に確保できる制御弁を提供することを目的としている。
 本発明は、自動車の機関の冷却回路に設けられる制御弁であって、その一態様として、弁体を収容する弁体収容部と、前記弁体収容部の軸方向に開口する主連通口と、前記弁体収容部の径方向に開口する副連通口とを有するハウジングに、周方向において前記副連通口と異なる周方向位置であって、かつ軸方向において前記副連通口とオーバーラップする軸方向位置にて前記弁体収容部に開口する常時循環口が設けられ、前記弁体に、少なくとも前記副連通口と重なり合わないときに前記常時循環口と重なり合う副開口部が設けられている。
 本発明によれば、常時循環用の冷却水の流量を十分に確保することができる。
本発明に係る制御弁が適用される自動車用冷却水の循環回路の構成を表したブロック図である。 本発明の第1実施形態に係る制御弁の分解斜視図である。 本発明に係る制御弁を第2ハウジング側から見た斜視図である。 図3に示す制御弁の平面図である。 図3に示す制御弁の底面図である。 図5のA-A線断面図である。 図5のB-B線断面図である。 図4のC-C線断面図である。 図8のD-D線断面図である。 本発明に係る制御弁の作動説明に供する図であって、(a)は第3排出口のみが連通した状態、(b)は第2排出口のみが連通した状態、(c)は常時排出口のみが連通した状態、(d)は第1、第2排出口が連通した状態、(e)は第1、第3排出口が連通した状態を示す弁体収容部の展開図である。 本発明に係る制御弁の第1実施形態の第1変形例を示し、図9のE方向から見た矢視図に相当する図である。 本発明に係る制御弁の第1実施形態の第2変形例を示し、図9のE方向から見た矢視図に相当する図である。 本発明に係る制御弁の第2実施形態を表した、制御弁の縦断面図に相当する概略図である。
 以下、本発明に係る制御弁の実施形態を、図面に基づいて説明する。なお、下記の各実施形態では、本発明に係る制御弁を、従来と同様の自動車用冷却水(以下、単に「冷却水」と略称する。)の循環系に適用したものを例に説明する。
 (冷却水の循環回路の構成)
 図1は、本発明に係る制御弁が適用される、自動車の機関の冷却回路である冷却水の循環回路の構成を表したブロック図を示している。
 制御弁CVは、エンジンEG(具体的には図示外のシリンダヘッド)の側部に配置される。そして、この制御弁CVは、図1に示すように、ヒータHTと、オイルクーラOCと、ラジエータRDとの間に配置されている。ヒータHTは、図示外のエアコンの温風を作り出すために熱交換を行う暖房熱交換器である。オイルクーラOCは、エンジンEG内部の摺動部分を潤滑するためのオイルを冷却する。ラジエータRDは、エンジンEGの冷却に供する冷却水を冷却する。
 ここで、図中の符号WPは、冷却水の循環に供するウォータポンプである。また、符号WTは、制御弁CVの駆動制御に供する水温センサであって、当該水温センサWTの検出結果に応じて電子コントローラCUの制御電流に基づき制御弁CVが駆動制御される。また、符号TCは、エンジンEGの内部で燃焼される燃料と混合される空気の流量を制御するスロットルチャンバーである。
 具体的には、ウォータポンプWPから吐出された冷却水が、導入通路L0を通じて制御弁CVへと導かれる。そして、水温センサWTによる検出結果などエンジンEGの運転状態に基づき、電子コントローラCUによって制御弁CVの弁体3が駆動制御される。これにより、導入通路L0を介して制御弁CVに導かれた冷却水が、第1~第3配管L1~L3を介して、ヒータHT、オイルクーラOC及びラジエータRDにそれぞれ分配される。
 また、制御弁CVには、導入通路L0をバイパスすることによって冷却水をエンジンEGからスロットルチャンバーTCへと直接導くためのバイパス通路BLが設けられている。このバイパス通路BLは、導入通路L0を介して制御弁CVに導かれた冷却水を、スロットルチャンバーTCに常時供給する。
 このように、制御弁CVは、いわゆる1in-3Out形式の分配デバイスとして適用され、導入通路L0より流入した冷却水を第1~第3配管L1~L3に分配すると共に、当該分配時の冷却水の流量を制御する。
 なお、本実施形態では、自動車の機関の一態様として、内燃機関であるエンジンEGを例示しているが、当該機関には、エンジンEGのみならず、例えばモータや燃料電池など、エネルギを動力に変換するあらゆる装置が含まれる。
 〔第1実施形態〕
 (制御弁の構成)
 図2は、本発明に係る制御弁CVの分解斜視図を示している。また、図3は、本発明に係る制御弁CVを第2ハウジング12側から見た斜視図を示し、図4は、図3に示す制御弁CVの平面図を示し、図5は、図3に示す制御弁CVの底面図を示している。なお、各図の説明では、回転軸2の回転軸線Zに平行な方向を「軸方向」、回転軸2の回転軸線Zに直交する方向を「径方向」、回転軸2の回転軸線Z周りの方向を「周方向」として説明する。また、前記「軸方向」については、図2中の上方を「一端側」、下方を「他端側」として説明する。
 図2に示すように、制御弁CVは、ハウジング1の内部において回転軸2を介して回転可能に支持された筒状の弁体3と、ハウジング1に収容され、弁体3を回転駆動する電動モータ4と、ハウジング1に収容され、電動モータ4の回転を減速して伝達する減速機構5と、を有する。
 ハウジング1は、軸方向に2分割に形成されていて、弁体3及び電動モータ4を収容する第1ハウジング11と、第1ハウジング11の一端側の開口部を閉塞するように設けられ、減速機構5を収容する第2ハウジング12と、から構成される。第1ハウジング11と第2ハウジング12は、共に合成樹脂材料、例えばポリフェニレンサルファイド(PPS)樹脂によって成形されていて、複数のボルト13により固定されている。
 第1ハウジング11は、弁体3を収容する中空円筒状の弁体収容部111と、弁体収容部111に並列して付設され、電動モータ4のモータ本体41を収容する中空円筒状のモータ収容部112と、を有する。そして、この第1ハウジング11は、軸方向の他端部に設けられた取付部(具体的には、後述するフランジ部114a,114b,114c)を介して図示外のシリンダブロックに、図示外の固定部材、例えば複数のボルトにより固定される。なお、前記取付部と図示外のシリンダブロックとの間には、環状に形成されたガスケットS0を介在させることによって、前記取付部と図示外のシリンダブロックとの間が液密にシールされている。
 弁体収容部111は、軸方向の一端側が端壁113により閉塞され、他端側が開口形成される(図5参照)。弁体収容部111の軸方向の他端部には、図5に示すように、第1ハウジング11を図示外のシリンダブロックに取り付ける複数(本実施形態では3つ)のフランジ部114a,114b,114cが、概ね放射状に、径方向の外側へと延びるように設けられている。各フランジ部114a,114b,114cは、周方向において、ほぼ等間隔に配置されている。また、各フランジ部114a,114b,114cの先端部には、それぞれ断面が円形の貫通孔が軸方向に沿って貫通形成されていて、当該各貫通孔には、それぞれ円筒状に形成された金属製のスリーブ14が圧入されている。なお、このスリーブ14は、各フランジ部114a,114b,114cと同等の高さ(軸方向寸法)を有し、このスリーブ14によって図示外のボルトの軸力を受ける構成となっている。
 また、図2に示すように、弁体収容部111の端壁113には、有蓋円筒状のボス部115が、第2ハウジング12側へ突出形成されている。このボス部115の端壁には、回転軸2が挿入され貫通する貫通孔116が貫通形成されている。また、弁体収容部111の端壁113には、減速機構5の支持軸51,52の軸受けに供する平板状の1対の軸受部117,117が、直立形成されている。この1対の軸受部117,117には、それぞれ支持軸51,52を回転可能に支持する軸受孔117a,117aが貫通形成されている。
 また、第1ハウジング11には、弁体収容部111の側壁(周壁)に、弁体収容部111とヒータHT、オイルクーラOC、ラジエータRD(図1参照)とを接続する第1~第3排出口E1~E3が設けられている。この第1~第3排出口E1~E3のうち、第1、第2排出口E1,E2は、図2~図5に示すように、径方向に沿って貫通形成された径方向開口部E11,E21を介して第1ハウジング11の周壁に開口すると共に(図2参照)、軸方向に沿って貫通形成された軸方向開口部E12,E22を介してフランジ部114a,114bの内側端面に開口している(図5参照)。すなわち、第1、第2排出口E1,E2は、それぞれ概ねT字状に形成された内部通路(図示外)を有し、径方向開口部E11,E21がキャップC1,C2により閉塞されると共に、軸方向開口部E12,E22を介してヒータHT及びオイルクーラOCに接続される。キャップC1,C2は、それぞれ放射状に複数のリブC11,C21が設けられると共に、当該各リブC11,C21の間に肉盗み部C12,C22が形成された形態を有する。一方、第3排出口E3及び常時排出口E4は、それぞれ円筒状を呈し、第1ハウジング11の周壁に開口形成されている。そして、径方向開口部E31の外端部には、ラジエータRDに接続される第3配管L3が取り付けられ、径方向開口部E41の外端部には、スロットルチャンバーTCに接続される第4配管L4が取り付けられている。なお、第1、第2キャップC1,C2及び第3、第4配管L3,L4は、いずれも複数のスクリュSWによって第1ハウジング11に固定されている。
 第2ハウジング12は、弁体収容部111とモータ収容部112とに跨って当該弁体収容部111及びモータ収容部112を被覆可能に開口する有底筒状に形成されている。そして、この第2ハウジング12が、弁体収容部111及びモータ収容部112を覆うように第1ハウジング11に取り付けられることで、第2ハウジング12の内部空間によって、減速機構5を収容する減速機構収容部121が形成される。また、第2ハウジング12の側部には、電子コントローラCUとの接続に供するコネクタ接続部120が一体に設けられていて、このコネクタ接続部120を介して、電動モータ4と電子コントローラCUとが電気的に接続される。
 電動モータ4は、出力軸42が第2ハウジング12側へ臨むかたちでモータ本体41がモータ収容部112内に収容される。そして、この電動モータ4は、モータ本体41の出力軸42側の端部に径方向の外側へと延びるように設けられたフランジ部43を介して、モータ収容部112の開口縁部に複数のボルト44により固定される。なお、電動モータ4は、車載の電子コントローラCU(図1参照)によって駆動制御され、車両の運転状態に応じて弁体3を回転駆動することによって、ラジエータRD等(図1参照)に対する冷却水の適切な分配が実現される。
 減速機構5は、2組の食い違い歯車である第1歯車G1及び第2歯車G2により構成された駆動機構である。第1歯車G1は、電動モータ4の出力軸42と同軸上に設けられ、出力軸42と一体となって回転する第1ねじ歯車WG1と、電動モータ4の出力軸42と直交するように配置される第1支持軸51によって回転支持され、第1ねじ歯車WG1と噛み合う第1斜歯歯車HG1と、で構成される。第2歯車G2は、第2支持軸52によって回転支持され、第1斜歯歯車HG1と一体となって回転する第2ねじ歯車WG2と、回転軸2に固定され、第2ねじ歯車WG2と噛み合う第2斜歯歯車HG2と、で構成される。ここで、第1斜歯歯車HG1と第2ねじ歯車WG2とは、筒状に形成された両歯車HG1,WG2が直列に並んで一体に構成された複合歯車部材であって、この複合歯車部材の両端部に挿入される第1、第2支持軸51,52を介して、第1ハウジング11の1対の軸受部117,117に回転支持される。このような構成から、電動モータ4の出力軸42から出力された回転駆動力が、第1歯車G1及び第2歯車G2を介して2段階に減速されて弁体3へと伝達される。
 図6は、図5のA-A線に沿って切断した制御弁CVの断面図を示している。また、図7は、図5のB-B線に沿って切断した制御弁CVの断面図を示している。さらに、図8は、図4のC-C線に沿って切断した制御弁CVの断面図、図9は、図8のD-D線に沿って切断した制御弁の断面図を示している。なお、各図の説明では、回転軸2の回転軸線Zに平行な方向を「軸方向」、回転軸2の回転軸線Zに直交する方向を「径方向」、回転軸2の回転軸線Z周りの方向を「周方向」として説明する。また、前記「軸方向」については、図6~図8中の上方を「一端側」、下方を「他端側」として説明する。
 図6~図8に示すように、第1ハウジング11には、軸方向の一端側が端壁113により閉塞され、かつ他端側が外部に開口する有底円筒状の弁体収容部111が形成されている。また、弁体収容部111の端壁113に設けられたボス部115には、回転軸2が挿入され貫通する貫通孔116が、弁体収容部111と後述する減速機構収容部121とを連通するように、軸方向に沿って形成されている。換言すれば、貫通孔116は、軸方向において、後述する導入口E0が開口する方向と反対側の方向に設けられ、弁体収容部111に開口形成されている。
 また、第1ハウジング11の一端側に取り付けられる第2ハウジング12は、軸方向の一端側が底壁122により閉塞され、かつ端壁113と対向する他端側が開口する有底筒状に形成されている。すなわち、第1ハウジング11の軸方向の一端側を閉塞するように第2ハウジング12が被せられることで、第2ハウジング12の内部空間に減速機構収容部121が形成され、この減速機構収容部121に内に、減速機構5が収容されている。
 また、第1ハウジング11には、弁体収容部111の軸方向の他端部に、図示外のシリンダブロックの内部と連通して当該シリンダブロック側から冷却水を導入するための主連通口である導入口E0が開口形成されている。すなわち、制御弁CVが図示外のエンジン(シリンダブロック)に取り付けられた状態で、この導入口E0が前記シリンダブロック側の開口部と連通し、当該導入口E0を介してシリンダブロック側から弁体収容部111に冷却水が導入されるようになっている。
 また、弁体収容部111の周壁には、外部と弁体収容部111を連通する横断面ほぼ円形状となる複数の副連通口が、第1~第3排出口E1~E3として形成されている。換言すれば、弁体収容部111の周壁には、副連通口である第1~第3排出口E1~E3が、それぞれ径方向に沿って弁体収容部111に開口形成されている。ここで、第1~第3排出口E1~E3のうち第1、第2排出口E1,E2は、いずれも概ねT字状に貫通形成された内部通路を有し、この内部通路のうち径方向に開口する径方向開口部E11,E21の外端部がそれぞれキャップC1,C2によって閉塞されることで、軸方向開口部E12,E22を介してフランジ部114a,114b側に開口している。一方、第3排出口E3には、中間部が概ね直角に曲折された概ねL字状の第3配管L3が接続されている。そして、第1排出口E1は、軸方向開口部E12を介して、例えばヒータHTに接続される。具体的には、第1排出口E1の軸方向開口部E12から排出された冷却水は、図示外のシリンダブロックを介して、ヒータHTに供給される。第2排出口E2は、軸方向開口部E22を介して、例えばオイルクーラOCに接続される。具体的には、第2排出口E2の軸方向開口部E22から排出された冷却水は、図示外のシリンダブロックを介して、オイルクーラOCに供給される。第3排出口E3は、第3配管L3を介して、例えばラジエータRDに接続される。
 ここで、第1~第3排出口E1~E3は、それぞれ第1ハウジング11の周壁上において異なる軸方向位置であって、かつ後述する第1~第3シール部材S1~S3が弁体3上においてそれぞれ隣接する軸方向位置に配置される第1~第3開口部M1~M3とオーバーラップ可能な軸方向間隔で配置されている。また、第1~第3排出口E1~E3は、それぞれ第1ハウジング11の周壁上において異なる周方向位置、具体的には、概ね90°ずつ位相をずらした位置に配置されている(図4参照)。
 また、第1~第3排出口E1~E3の内端部(第1、第2排出口E1,E2にあっては径方向開口部E11,E21の内端部)には、それぞれ第1~第3排出口E1~E3と弁体3との間を気密にシールするシール機構が設けられている。このシール機構は、合成樹脂材料によって形成された概ね円筒状の第1~第3シール部材S1~S3と、第1~第3シール部材S1~S3を弁体3側へ付勢する金属製の第1~第3コイルスプリングSP1~SP3と、から構成される。また、第1~第3シール部材S1~S3の外周側には、それぞれ第1~第3排出口E1~E3(第3開口部E13,E23,E33)と摺接可能な第1~第3シールリングSR1~SR3が取り付けられている。
 第1~第3シール部材S1~S3は、所定のフッ素樹脂(本実施形態では、PTFE(ポリテトラフルオロエチレン))により形成され、第1~第3排出口E1~E3の内周側に収容されて、それぞれ弁体3側へ向けて進退移動可能に設けられている。第1~第3コイルスプリングSP1~SP3は、第1、第2キャップC1,C2及び第3配管L3と、第1~第3シール部材S1~S3との間に所定のセット荷重をもって配置され、それぞれシール部材S1~S3を弁体3側へ付勢する付勢部材である。
 また、図8,図9に示すように、弁体収容部111の周壁には、弁体3の位相(回転位置)によらず冷却水を排出する常時連通口としての常時排出口E4が、弁体収容部111の周壁に対して斜めに貫通形成されている。換言すれば、常時排出口E4は、弁体3の回転軸線Zと交差しない方向に沿って設けられ、貫通方向において弁体3の回転軸線Zとオーバーラップせず、平面視が周方向に延びる楕円形状ないし長円形状となっている(図8参照)。また、常時排出口E4は、周方向において第1~第3排出口E1~E3とは異なる位置であって、かつ軸方向において第1~第3排出口E1~E3とオーバーラップする位置に設けられる。すなわち、常時排出口E4は、周方向において第1~第3排出口E1~E3とは異なる位置であって、かつ軸方向において弁体3の開口部(本実施形態では第3開口部M3)と重なり合う位置に設けられる。換言すれば、常時排出口E4は、第3排出口E3と重なり合う弁体3の既存の開口部である第3開口部M3と重なり合う位置に設けられ、第3排出口E3と第3開口部M3を共用可能に構成されている。また、常時排出口E4は、弁体3の開口部(本実施形態では第3開口部M3)よりも小さい開口面積に設定され、本実施形態では、当該常時排出口E4の中心Qが軸方向において第3開口部M3の中央部(図8中に示す基準線X)よりも導入口E0側となるように偏倚して配置されている。なお、この際、常時排出口E4は、軸方向において、全体が第3開口部M3とオーバーラップするように設けられている。
 さらに、常時排出口E4は、後述(例えば図10(c)参照)するように、周方向において、弁体3の第3開口部M3が第3排出口E3と重なり合わないときに第3開口部M3と重なり合うことが可能な位置に設けられている。ここで、本発明に係る「常時連通口」は、周方向において弁体3の第1~第3開口部M1~M3と第1~第3排出口E1~E3とが重なり合わないときに第3開口部M3と重なり合うことが可能な位置に設けられていればよく、第1~第3開口部M1~M3と第1~第3排出口E1~E3とが重なり合う状態のときに第3開口部M3と常時排出口E4とが重なり合うことを除外するものではない。
 このように構成された常時排出口E4には、導入口E0を介して弁体収容部111内に導入された冷却水が、第1ハウジング11と弁体3との間(径方向間)に形成されるバイパス通路BLを通じて流入すると共に、弁体3の内周側(後述する内部通路118)を通じて導かれた冷却水が、第3開口部M3を介して流入する。換言すれば、弁体3の内周側(後述する内部通路118)を通じて導かれた冷却水が、第3開口部M3を介して、バイパス通路BLを通じて導かれた冷却水と合流し、常時排出口E4から排出される。
 回転軸2は、一定の外径を有する棒状を呈し、貫通孔116を貫通して弁体収容部111と減速機構収容部121とに跨って配置され、ボス部115の内周側に収容保持された軸受B1によって回転可能に支持される。また、回転軸2と貫通孔116の間は、弁体収容部111側から圧入される円筒状のシール部材21によって液密にシールされている。すなわち、このシール部材21により、貫通孔116を通じた、弁体収容部111内の冷却水の第2ハウジング12側への流出が抑止されている。さらに、シール部材21と軸受B1との間には、ダストシール22が配置されている。すなわち、このダストシール22により、減速機構収容部121内の粉塵の弁体収容部111側への侵入が抑制されている。これにより、貫通孔116とシール部材21との間における粉塵の噛み込みが抑制され、シール部材21が保護されている。
 弁体3は、所定の硬質樹脂材料によって形成され、一定の外径を有する有底円筒状を呈し、他端側の開口部である導入部M0が導入口E0側へ臨むように設けられることで、内周側に形成される内部通路118に冷却水を導入可能となっている。そして、この弁体3は、軸方向の一端部が、当該一端部の内周側に埋設された金属製のインサート部材30を介して回転軸2に圧入固定される一方、導入口E0側へと臨む他端部が、導入口E0の内周側に保持される軸受B2によって回転可能に支持されている。
 また、弁体3の周壁には、第1ハウジング11の第1~第3排出口E1~E3に対応する軸方向位置に、所定の回転位置(位相)において第1~第3排出口E1~E3と連通可能な第1~第3開口部M1~M3が、それぞれ径方向に沿って貫通形成されている。なお、第1~第3開口部M1~M3については、例えば真円や周方向に延びる長円など、弁体3の制御内容に応じた形状や数量に設定されている。また、本実施形態では、第3開口部M3は、常時排出口E4よりも大きな開口面積を有し(図8参照)、弁体3の回転位置に応じて、第3排出口E3のほかに、常時排出口E4とも連通可能に構成されている。
 以上のように構成された制御弁CVは、第1開口部M1と第1排出口E1の少なくとも一部が重なる周方向位置に弁体3が制御されることによって、第1排出口E1を介してヒータHTに冷却水を分配する。同様に、制御弁CVは、第2開口部M2と第2排出口E2の少なくとも一部が重なる周方向位置に弁体3が制御されることによって、第2排出口E2を介してオイルクーラOCに冷却水を分配する。また、同様に、制御弁CVは、第3開口部M3と第3排出口E3の少なくとも一部が重なる周方向位置に弁体3が制御されることによって、第3排出口E3(第3配管L3)を介してラジエータRDに冷却水を分配する。そして、この冷却水の分配に際し、第1~第3開口部M1~M3と第1~第3排出口E1~E3との重なり具合(重なり合う面積)が変化することで、当該分配時の冷却水の流量が変化する。
 (制御弁の作動説明)
 図10は、制御弁CVの作動状態の説明に供する当該制御弁CVの展開図であって、(a)は第3排出口E3のみが連通した状態、(b)は第2排出口E2のみが連通した状態、(c)は態第1~第3排出口E1~E3の全てが非連通となり、常時排出口E4のみが連通した状態、(d)は第1、第2排出口E1,E2が連通した状態、(e)は第1、第3排出口E1,E3が連通した状態を示している。そして、本図では、弁体3の第1~第3開口部M1~M3を実線で表示すると共に、第1ハウジング11の第1~第3排出口E1~E3及び常時排出口E4を破線で表示し、各排出口E1~E4と各開口部M1~M3とが重なり合って連通した状態をハッチングによって表示している。
 制御弁CVは、車両運転状態に基づき演算及び出力される電子コントローラCUからの制御電流によって電動モータ4が駆動制御されることにより、前記車両運転状態に応じて、第1~第3排出口E1~E3及び常時排出口E4に対する第1~第3開口部M1~M3の相対位相が主として図10(a)~(e)に示す第1~第5位相となるように、弁体3が制御される。
 図10(a)に示す第1位相では、第1~第3排出部E1~E3のうち第3排出口E3のみが第3開口部M3と連通した状態となり、第1、第2排出口E1,E2については非連通の状態となる。これにより、第1位相では、第3排出口E3から第3配管L3を通じてラジエータRDにのみ冷却水が供給され、第3排出口E3と第3開口部M3とが重なり合う量に基づき、その供給量が変化する。
 続いて、図10(b)に示す第2位相では、第1~第3排出口E1~E3のうち第2排出口E2のみが第2開口部M2と連通した状態となり、第1、第3排出口E1,E3については非連通の状態となる。これにより、第2位相では、第2排出口E2を介してオイルクーラOCにのみ冷却水が供給され、第2排出口E2と第2開口部M2とが重なり合う量に基づき、その供給量が変化する。
 続いて、図10(c)に示す第3位相では、第1~第3排出口E1~E3のいずれもが非連通の状態となり、常時排出口E4のみが連通した状態となる。これにより、第3位相では、ヒータHT、オイルクーラOC、ラジエータRDのいずれにも冷却水は供給されず、スロットルチャンバーTCに対してのみ、常時排出口E4を介して、バイパス通路BLを通じて導かれる冷却水と併せて、より多くの冷却水が供給される。
 続いて、図10(d)に示す第4位相では、第1~第3排出口E1~E3のうち第3排出口E3のみが非連通の状態となり、第1、第2排出口E1,E2と第1、第2開口部M1,M2とが連通した状態となる。これにより、第4位相では、第1、第2排出口E1,E2を介してヒータHT及びオイルクーラOCに対して冷却水が供給され、第1、第2排出口E1,E2と第1、第2開口部M1,M2とが重なり合う量に基づき、その供給量が変化する。
 続いて、図10(e)に示す第5位相では、第1~第3排出口E1~E3のうち第2排出口E2のみが非連通の状態となり、第1、第3排出口E1,E3と第1、第3開口部M1,M3とが連通した状態となる。これにより、第5位相では、第1、第3排出口E1,E3を介してヒータHT及びラジエータRDに冷却水が供給され、第1、第3排出口E1,E3と第1、第3開口部M1,M3とが重なり合う量に基づき、その供給量が変化する。
 以上のように、制御弁CVは、冷機始動状態、いわゆるコールドスタート時には前記第3位相に制御され、図10(c)に示すように、第1~第3排出口E1~E3がいずれも非連通となる全閉状態となる。一方、当該コールドスタート時には、第3開口部M3と常時排出口E4とが重なり合うことによって、バイパス通路BLを通じて導かれる冷却水と併せて、常時排出口E4からスロットルチャンバーTCへと、より多くの冷却水が供給される。すなわち、当該コールドスタート時には、スロットルチャンバーTCの凍結防止を図る必要があるため、バイパス通路BLに加えて、第3開口部M3と常時排出口E4とを連通させることにより、スロットルチャンバーTCに対し、通常よりも多くの冷却水が供給される。これにより、常時排出口E4からスロットルチャンバーTCに供給される冷却水の十分な流量が確保され、スロットルチャンバーTCの効果的な冷却を図ることができる。
 一方、暖機後、冷却水の温度が上昇すると、前記第1位相に制御され、第3排出口E3のみが第3開口部M3と連通した状態となる。このとき、図10(a)に示すように、常時排出口E4と第3開口部M3とは重なり合わず、両者は非連通の状態となり、常時排出口E4からは、バイパス通路BLを経由した冷却水のみが排出される。これにより、常時排出口E4を介して余分な冷却水が排出されることがなく、第3排出口E3からラジエータRDに供給される冷却水の十分な流量が確保され、冷却水の効果的な冷却を図ることができる。なお、前記第2、第4、第5位相についても同様のことが言える。すなわち、図10(b)(d)(e)に示すように、前記第2、第4、第5位相においても、常時排出口E4と第3開口部M3とが重なり合わず、両者を非連通の状態とすることによって、ヒータHTやオイルクーラOC、ラジエータRDに対する冷却水の流量が確保される。このように、第1~第3開口部M1~M3と第1~第3排出口E1~E3とが重なり合うときは、常時排出口E4と第3開口部M3とが重なり合わないようにすることによって、ヒータHTやオイルクーラOC、ラジエータRDといった各デバイスに対する冷却水の供給効率を向上させることができる。
 (本実施形態の作用効果)
 従来の制御弁では、導入口より導入された冷却水が、ハウジングと弁体の間に形成されたバイパス通路のみを介して常時排出口に流入し、当該常時排出口からスロットルチャンバーに冷却水が供給されていた。このように、従来は、常時排出口に繋がる通路が前記バイパス通路のみであったため、当該バイパス通路のみでは流路断面積が小さく、スロットルチャンバーの凍結防止に必要な冷却水の流量を十分に確保できないおそれがあった。
 これに対し、本実施形態に係る制御弁では、以下の効果が奏せられることで、前記従来の制御弁の課題を解決することができる。
 すなわち、制御弁CVは、自動車の機関(本実施形態ではエンジンEG)の冷却回路に設けられる制御弁であって、回転軸2と、回転軸2が挿入される弁体収容部111と、弁体収容部111に開口する主連通口(導入口E0)と、回転軸2の回転軸線Zに対する周方向において弁体収容部111に開口する副連通口(第1~第3排出口E1~E3)と、前記周方向において副連通口(第1~第3排出口E1~E3)と異なる周方向位置であって、かつ前記回転軸線Zに沿う軸方向において副連通口(第1~第3排出口E1~E3)とオーバーラップする軸方向位置にて弁体収容部111に開口し、主連通口(導入口E0)との関係で冷却水が常時通流する常時循環口(常時排出口E4)と、を有するハウジング1と、弁体収容部111に配置され、回転軸2と繋がっている弁体であって、主連通口(導入口E0)と重なり合う主開口部(導入部M0)と、回転軸2の回転位置に応じて少なくとも副連通口(第1~第3排出口E1~E3)と重なり合わないときに常時循環口(常時排出口E4)と重なり合う状態となる副開口部(本実施形態では第3開口部M3)と、を有する弁体3と、を備えている。
 このように、本実施形態に係る制御弁CVでは、副開口部である第1~第3開口部M3と副連通口である第1~第3排出口E1~E3とが重なり合わないときに副開口部である第1~第3開口部M1~M3(本実施形態では第3開口部M3)と常時排出口E4とが重なり合うように構成されている。これにより、例えば冷機始動時(コールドスタート時)など、第1~第3開口部M1~M3と第1~第3排出口E1~E3とが重なり合わないときに、バイパス通路BL及び弁体3の内部通路118を経由した冷却水を、常時排出口E4を介して排出させることができる。すなわち、例えば冷機始動時(コールドスタート時)など、常時排出口E4を介してより多くの冷却水の供給が必要となる場合に、当該常時排出口E4から排出される冷却水の流量を確保することができる。
 また、本実施形態では、回転軸2の回転位置に応じて、副開口部(第1~第3開口部M1~M3)と副連通口(第1~第3排出口E1~E3)が重なり合うとき、副開口部(第1~第3開口部M1~M3)と常時連通口(常時排出口E4)が重なり合わない状態を有する。
 かかる態様に基づき、暖機後には、第3開口部M3と常時排出口E4とを非連通とすることで、常時排出口E4からの余分な冷却水の排出を抑制し、その分(弁体3の内部通路118を経由して第3開口部M3から常時排出口E4に流入する分)を、第1~第3開口部M1~M3と第1~第3排出口E1~E3とを連通させることによって、ヒータHT、オイルクーラOC及びラジエータRDといった各デバイスに対して、より多くの冷却水を供給することができる。これにより、暖機後は、ヒータHT、オイルクーラOC及びラジエータRDといった各デバイスに対する冷却水の供給効率を向上させることができる。
 また、本実施形態では、常時循環口(常時排出口E4)は、前記周方向に延びる楕円形に形成されている。
 かかる構成により、常時排出口E4の開口面積を大きく確保することが可能となる。その結果、第3開口部M3と常時排出口E4とが重なり合った際の、内部通路118側から常時排出口E4に流入する冷却水の流量を増やすことができ、常時排出口E4から排出される冷却水の流量を、より多く確保することができる。
 また、本実施形態では、回転軸2は、弁体3の前記軸方向の一端側と繋がっていて、主開口部(導入部M0)は、弁体3の前記軸方向の他端側に開口形成され、副開口部(第1~第3排出口E1~E3)は、弁体3の回転軸線Zに対する径方向に開口形成され、常時循環口(常時排出口E4)は、前記軸方向において副開口部(本実施形態では第3開口部M3)の中央部よりも主開口部(導入部M0)側に設けられている。
 このように、本実施形態では、常時排出口E4が、軸方向において副開口部(本実施形態では第3開口部M3)の中央部(図8中に示す基準線X)よりも導入口E0側に偏倚して配置されている。すなわち、常時排出口E4を、内部通路118の入口(導入部M0)に近づけることが可能となる結果、当該内部通路118を経由して常時排出口E4から排出される冷却水の排出効率を向上させることができる。
 また、本実施形態では、副開口部(第1~第3開口部M1~M3)は、常時循環口(常時排出口E4)よりも大きい開口面積を有する。
 かかる構成により、第3開口部M3と常時排出口E4とが重なり合う面積を増大させることが可能となる。その結果、第3開口部M3と常時排出口E4とが重なり合った際の、内部通路118側から常時排出口E4に流入する冷却水の流量を増やすことができ、常時排出口E4から排出される冷却水の流量を、より多く確保することができる。
 また、本実施形態では、副連通口(第1~第3排出口E1~E3)は、ラジエータRD、ヒータHT及びオイルクーラOCの少なくとも1つに繋がっている。
 かかる構成により、例えば前記冷機始動時において、常時排出口E4から排出される冷却水の流量を、より多く確保することが可能となる。
 また、本実施形態では、副連通口(第3排出口E3)は、ラジエータRDに接続されている。
 通常、ラジエータRDに接続される第3排出口E3は、流路断面積が比較的大きく設定され、これに伴い、第3開口部M3の開口面積も比較的大きく設定される。そこで、本実施形態のように、第3開口部M3と常時排出口E4とが重なり合うように構成することによって、常時排出口E4から排出される冷却水の流量を、より多く確保することができる。
 また、本実施形態では、回転軸2は、弁体3の前記軸方向の一端側と繋がっていて、主開口部(導入部M0)は、弁体3の前記軸方向の他端側に開口形成され、副開口部(本実施形態では第3開口部M3)は、弁体3の前記回転軸線Zに対する径方向に開口形成され、ハウジング1は、前記軸方向において副連通口(本実施形態では第3排出口E3)よりも主連通口(導入口E0)側に設けられた主連通口側副連通口(本実施形態では第2排出口E2)を有し、弁体3は、主連通口側副連通口(本実施形態では第2排出口E2)と重なり合う主連通口側副開口部(本実施形態では第2開口部M2)を有する。
 このように、本実施形態では、軸方向において、第3排出口E3よりも導入口E0側に第2排出口E2が設けられ、第3開口部M3よりも導入部M0側に第2開口部M2が設けられた、いわゆる2段構成となっている。これにより、第2、第3排出口E2,E3を介して所定の複数のデバイス(本実施形態ではオイルクーラOC及びラジエータRD)に冷却水を供給することができる。
 また、本実施形態では、ハウジング1は、前記軸方向において副連通口(本実施形態では第3排出口E3)よりも回転軸2側に設けられた回転軸側副連通口(本実施形態では第1排出口E1)を有し、弁体3は、回転軸側副連通口(本実施形態では第1排出口E1)と重なり合う回転軸側副開口部(本実施形態では第1開口部M1)を有する。
 このように、本実施形態では、前記2段構成に加え、さらに、軸方向において、第3排出口E3よりも回転軸2側に第1排出口E1が設けられ、第3開口部M3よりも回転軸2側に第1開口部M1が設けられた、いわゆる3段構成となっている。これにより、第1~第3排出口E1~E3を介して所定の複数のデバイス(本実施形態ではヒータHT、オイルクーラOC及びラジエータRD)に冷却水を供給することができる。
 また、本実施形態では、主連通口側副連通口(第2排出口E2)は、オイルクーラOCに接続され、副連通口(第3排出口E3)は、ラジエータRDに接続され、回転軸側副連通口(第3排出口E3)は、ヒータHTに接続される。
 かかる構成により、本実施形態のように、ヒータHT、オイルクーラOC及びラジエータRDの各デバイスに冷却水を供給することができる。
 また、本実施形態では、回転軸2の回転位置に応じて、副連通口(第3排出口E3)が副開口部(第3開口部M3)と重なり合う一方で、回転軸側副連通口(第1排出口E1)と回転軸側副開口部(第1開口部M1)、常時循環口(常時排出口E4)と副開口部(第3開口部M3)、主連通口側副連通口(第2排出口E2)と主連通口側副開口部(第2開口部M2)が重なり合わない第1状態(第1位相)と、主連通口側副連通口(第2排出口E2)が主連通口側副開口部(第2開口部M2)と重なり合う一方で、副連通口(第3排出口E3)と副開口部(第3開口部M3)、常時循環口(常時排出口E4)と副開口部(第3開口部M3)、回転軸側副連通口(第1排出口E1)と回転軸側副開口部(第1開口部M1)が重なり合わない第2状態(第2位相)と、常時循環口(常時排出口E4)が副開口部(第3開口部M3)と重なり合う一方で、回転軸側副連通口(第1排出口E1)と回転軸側副開口部(第1開口部M1)、副連通口(第3排出口E3)と副開口部(第3開口部M3)、主連通口側副連通口(第2排出口E2)と主連通口側副開口部(第2開口部M2)が重なり合わない第3状態(第3位相)と、回転軸側副連通口(第1排出口E1)と回転軸側副開口部(第1開口部M1)、主連通口側副連通口(第2排出口E2)と主連通口側副開口部(第2開口部M2)が重なり合う一方で、副連通口(第3排出口E3)と副開口部(第3開口部M3)、常時循環口(常時排出口E4)と副開口部(第3開口部M3)が重なり合わない第4状態(第4位相)と、副連通口(第3排出口E3)と副開口部(第3開口部M3)、常時循環口(常時排出口E4)と副開口部(第3開口部M3)、回転軸側副連通口(第1排出口E1)と回転軸側副開口部(第1開口部M1)が重なり合う一方で、主連通口側副連通口(第2排出口E2)と主連通口側副開口部(第2開口部M2)が重なり合わない第5状態(第5位相)と、を有する。
 かかる制御態様に基づいて、特に第3状態(第3位相)に制御することで、常時排出口E4から排出される冷却水の流量を増大させ、当該常時排出口E4から排出される冷却水の流量を確保することができる。
 また、本実施形態では、ハウジング1は、複数の副連通口(第1~第3排出口E1~E3)を有し、弁体3は、複数の副開口部(第1~第3開口部M1~M3)を有する。
 かかる構成とすることで、第1~第3排出口E1~E3と第1~第3開口部M1~M3との重なり合いをもって、第1~第3排出口E1~E3を介して複数のデバイス(ヒータHT、オイルクーラOC及びラジエータRD)に冷却水を供給することができる。
 (第1変形例)
 図11は、本発明に係る制御弁の第1実施形態の第1変形例を示し、前記第1実施形態における常時排出口E4の軸方向位置を変更したものである。なお、かかる変更点以外の基本的な構成については、前記第1実施形態と同様である。そのため、前記第1実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。
 図11は、図9のE方向から見た矢視図に相当する図であって、常時排出口E4と第3開口部M3とが重なり合った状態を、弁体3の内側から見た正面図を示している。なお、本図の説明では、弁体3の回転軸線Zに平行な方向を「軸方向」、弁体3の回転軸線Zに直交する方向を「径方向」、弁体3の回転軸線Z周りの方向を「周方向」として説明する。
 図11に示すように、本変形例では、常時排出口E4が、軸方向において、第3開口部M3の中央部に配置されている。具体的には、常時排出口E4の中心Qが、軸方向において、図11中に示す基準線Xの近傍に位置するように設けられている。
 以上のように、本変形例では、常時循環口(常時排出口E4)は、前記軸方向において副開口部(本実施形態では第3開口部M3)の中央部に設けられている。
 本実施形態では、図11に示すように、第3開口部M3が、中央部の周方向幅が最も大きくなる、楕円ないし長円状に形成されている。そこで、常時排出口E4が、軸方向において第3開口部M3の中央部に配置されることによって、弁体3の回転に際して、常時排出口E4と第3開口部M3とが重なり合う時間を、より長く確保することが可能となる。これにより、常時排出口E4から排出される冷却水について、より多くの流量を確保することができる。
 (第2変形例)
 図12は、本発明に係る制御弁の第1実施形態の第2変形例を示し、前記第1実施形態における常時排出口E4の軸方向位置を変更したものである。なお、かかる変更点以外の基本的な構成については、前記第1実施形態と同様である。そのため、前記第1実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。
 図12は、図9のE方向から見た矢視図に相当する図であって、常時排出口E4と第3開口部M3とが重なり合った状態を、弁体3の内側から見た正面図を示している。なお、本図の説明では、弁体3の回転軸線Zに平行な方向を「軸方向」、弁体3の回転軸線Zに直交する方向を「径方向」、弁体3の回転軸線Z周りの方向を「周方向」として説明する。
 図12に示すように、本変形例では、常時排出口E4が、軸方向において、第3開口部M3の中央部よりも第1開口部M1側に偏倚して設けられている。具体的には、常時排出口E4の中心Qが、軸方向において、導入口E0と反対側であって、図12中に示す基準線Xよりも回転軸2側に位置するように設けられている。
 以上のように、本変形例では、常時循環口(常時排出口E4)は、前記軸方向において副開口部(本実施形態では第3開口部M3)よりも回転軸側連通口(第1排出口E1)側に設けられている。
 このように、常時排出口E4が、導入口E0から遠い側に配置されることで、導入口E0から第3開口部M3を介して常時排出口E4へと流れ込む冷却水の流線を緩やかにすることができる。これにより、常時排出口E4と第3開口部M3とが重なり合った際に、内部通路118から第3開口部M3を介して常時排出口E4へと冷却水が流入しやすくなる。その結果、冷却水の排出性が向上し、常時排出口E4から排出される冷却水の流量を確保することができる。
 〔第2実施形態〕
 図13は、本発明に係る制御弁の第2実施形態を示し、前記第1実施形態に対し、弁体3の形態を変更したものである。なお、かかる変更点以外の基本的な構成については、前記第1実施形態と同様である。そのため、第1実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。
 図13は、本発明の第2実施形態に係る制御弁CVの弁体3の側面図を示している。なお、本図の説明では、弁体3の回転軸線Zに平行な方向を「軸方向」、弁体3の回転軸線Zに直交する方向を「径方向」、弁体3の回転軸線Z周りの方向を「周方向」として説明する。
 図13に示すように、本実施形態に係る制御弁CVでは、弁体3が、一定の外径を有する前記第1実施形態とは異なり、それぞれ球面状に形成された第1球面部R1と第2球面部R2とが軸方向に直列に接続されることによって構成されている。第1球面部R1は、弁体3の軸方向一端側、すなわち回転軸2側に設けられ、第2球面部R2は、弁体3の軸方向他端側、すなわち導入口E0側に設けられる。また、第1球面部R1は、第2球面部R2に対して、軸方向の幅が比較的小さく設定されている。そして、第1球面部R1は、弁体3の周方向に延びる長孔であって、弁体3の周方向の所定位置に、第1排出口E1と重なり合う第1開口部M1が、径方向に沿って貫通形成されている。同様に、第2球面部R2は、弁体3の周方向に延びる長孔であって、弁体3の周方向の所定位置に、第3排出口E3と重なり合う第3開口部M3が、径方向に沿って貫通形成されている。この第3開口部M3は、第3排出口E3と異なる周方向位置に設けられた常時排出口E4とも重なり合うように設けられている。換言すれば、第1ハウジング11の周壁には、軸方向おいて弁体3の第3開口部M3と重なり合う位置に、常時排出口E4が設けられている。
 以上のように、本実施形態では、弁体3は、少なくとも一部に、球面部(本実施形態では第2球面部R2)を有し、副開口部(本実施形態では第3開口部M3)は、球面部(本実施形態では第2球面部R2)に形成されている。
 このように、第3開口部M3が第2球面部R2に設けられた弁体3に対しても本発明を適用可能であり、前記第1実施形態と同様の作用効果が奏せられる。
 なお、本実施形態では、第1、第2球面部R1,R2が、いずれも周方向に沿って同一の球面を有する構成となっているが、第1、第2球面部R1,R2については、弁体3の回転に伴い第1~第3シール部材S1~S3が摺接可能な周方向範囲に設けられていればよく、必ずしも周方向の全域にわたって形成されている必要はない。換言すれば、第1、第2球面部R1,R2は、第1~第3シール部材S1~S3が摺接可能な、一部の周方向範囲にのみ形成されていてもよい。
 また、本発明に係る「球面部」の数量は、制御弁CVの仕様等に応じて自由に変更可能である。すなわち、全体で1つの球面部が構成されていてもよく、また、第1~第3開口部M1~M3に対応する3つの球面部が軸方向に直列に接続されていてもよい。さらには、弁体3が所定の周方向範囲を回動する場合、一部の周方向領域では、軸方向に2つの球面部を設け、他の周方向領域では、軸方向に1つの球面部が設ける、といった構成を採ることも可能である。
 本発明に係る制御弁は、前記各実施形態等の構成に限定されるものではなく、本発明の作用効果を奏し得る形態であれば、適用する機関の仕様等に応じて自由に変更可能である。
 特に、前記実施形態等では、制御弁の適用の一例として、冷却水の循環系に適用したものが例示されているが、当該制御弁は、冷却水のみならず、例えば潤滑油など様々な流体について適用可能であることは言うまでもない。
 また、前記実施形態等では、本発明に係る副連通口の一例として第1~第3排出口E1~E3からなる3つの連通口が設けられた態様が例示されているが、当該副連通口については、少なくとも1つ設けられていればよく、第1~第3排出口E1~E3の3つに限定されるものではない。
 また、常時排出口E4の形状や配置は、制御弁CVの仕様に応じて、自由に変更可能である。また、常時排出口E4は、第3開口部M3と重なり合う前記実施形態の構成に限られず、第1~第3開口部M1~M3のいずれの開口部と重なり合うように構成してもよい。
 以上説明した実施形態等に基づく制御弁としては、例えば以下に述べる態様のものが考えられる。
 すなわち、当該制御弁は、その1つの態様において、自動車の機関の冷却回路に設けられる制御弁であって、回転軸と、前記回転軸が挿入される弁体収容部と、前記弁体収容部に開口する主連通口と、前記回転軸の回転軸線に対する周方向において前記弁体収容部に開口する副連通口と、前記周方向において前記副連通口と異なる周方向位置であって、かつ前記回転軸線に沿う軸方向において前記副連通口とオーバーラップする軸方向位置にて前記弁体収容部に開口し、前記主連通口との関係で冷却水が常時通流する常時循環口と、を有するハウジングと、前記弁体収容部に配置され、前記回転軸と繋がっている弁体であって、前記主連通口と重なり合う主開口部と、前記回転軸の回転位置に応じて少なくとも前記副連通口と重なり合わないときに前記常時循環口と重なり合う状態となる副開口部と、を有する弁体と、を備えている。
 前記制御弁の好ましい態様において、前記回転軸の回転位置に応じて、前記副開口部と前記副連通口が重なり合うとき、前記副開口部と前記常時循環口が重なり合わない状態を有する。
 別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記常時循環口は、前記周方向に延びる楕円形に形成されている。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記常時循環口は、前記軸方向において前記副開口部の中央部に設けられている。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記回転軸は、前記弁体の前記軸方向の一端側と繋がっていて、前記主開口部は、前記弁体の前記軸方向の他端側に開口形成され、前記副開口部は、前記弁体の前記回転軸線に対する径方向に開口形成され、前記常時循環口は、前記軸方向において前記副開口部の中央部よりも前記主開口部側に設けられている。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記副開口部は、前記常時循環口よりも大きい開口面積を有する。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記副連通口は、ラジエータ、ヒータ及びオイルクーラの少なくとも1つに繋がっている。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記副連通口は、前記ラジエータに接続される。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記回転軸は、前記弁体の前記軸方向の一端側と繋がっていて、前記主開口部は、前記弁体の前記軸方向の他端側に開口形成され、前記副開口部は、前記弁体の前記回転軸線に対する径方向に開口形成され、前記ハウジングは、前記軸方向において前記副連通口よりも前記主連通口側に設けられた主連通口側副連通口を有し、前記弁体は、前記主連通口側副連通口と重なり合う主連通口側副開口部を有する。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記ハウジングは、前記軸方向において前記副連通口よりも前記回転軸側に設けられた回転軸側副連通口を有し、前記弁体は、前記回転軸側副連通口と重なり合う回転軸側副開口部を有する。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記主連通口側副連通口は、前記オイルクーラに接続され、前記副連通口は、前記ラジエータに接続され、前記回転軸側副連通口は、前記ヒータに接続される。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記回転軸の回転位置に応じて、前記副連通口が前記副開口部と重なり合う一方で、前記回転軸側副連通口と前記回転軸側副開口部、前記常時循環口と前記副開口部、前記主連通口側副連通口と前記主連通口側副開口部が重なり合わない第1状態と、前記主連通口側副連通口が前記主連通口側副開口部と重なり合う一方で、前記副連通口と前記副開口部、前記常時循環口と前記副開口部、前記回転軸側副連通口と前記回転軸側副開口部が重なり合わない第2状態と、前記常時循環口が前記副開口部と重なり合う一方で、前記回転軸側副連通口と前記回転軸側副開口部、前記副連通口と前記副開口部、前記主連通口側副連通口と前記主連通口側副開口部が重なり合わない第3状態と、前記回転軸側副連通口と前記回転軸側副開口部、前記主連通口側副連通口と前記主連通口側副開口部が重なり合う一方で、前記副連通口と前記副開口部、前記常時循環口と前記副開口部が重なり合わない第4状態と、前記副連通口と前記副開口部、前記常時循環口と前記副開口部、前記回転軸側副連通口と前記回転軸側副開口部が重なり合う一方で、前記主連通口側副連通口と前記主連通口側副開口部が重なり合わない第5状態と、を有する。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記弁体は、少なくとも一部に、球面部を有し、前記副開口部は、前記球面部に形成されている。
 さらに別の好ましい態様では、前記制御弁の態様のいずれかにおいて、前記ハウジングは、複数の前記副連通口を有し、前記弁体は、複数の前記副開口部を有する。

Claims (14)

  1.  自動車の機関の冷却回路に設けられる制御弁であって、
     回転軸と、
     前記回転軸が挿入される弁体収容部と、前記弁体収容部に開口する主連通口と、前記回転軸の回転軸線に対する周方向において前記弁体収容部に開口する副連通口と、前記周方向において前記副連通口と異なる周方向位置であって、かつ前記回転軸線に沿う軸方向において前記副連通口とオーバーラップする軸方向位置にて前記弁体収容部に開口し、前記主連通口との関係で冷却水が常時通流する常時循環口と、を有するハウジングと、
     前記弁体収容部に配置され、前記回転軸と繋がっている弁体であって、前記主連通口と重なり合う主開口部と、前記回転軸の回転位置に応じて少なくとも前記副連通口と重なり合わないときに前記常時循環口と重なり合う状態となる副開口部と、を有する弁体と、
     を備えたことを特徴とする制御弁。
  2.  請求項1に記載の制御弁において、
     前記回転軸の回転位置に応じて、前記副開口部と前記副連通口が重なり合うとき、前記副開口部と前記常時循環口が重なり合わない状態を有することを特徴とする制御弁。
  3.  請求項1に記載の制御弁において、
     前記常時循環口は、前記周方向に延びる楕円形に形成されていることを特徴とする制御弁。
  4.  請求項3に記載の制御弁において、
     前記常時循環口は、前記軸方向において前記副開口部の中央部に設けられたことを特徴とする制御弁。
  5.  請求項1に記載の制御弁において、
     前記回転軸は、前記弁体の前記軸方向の一端側と繋がっていて、
     前記主開口部は、前記弁体の前記軸方向の他端側に開口形成され、
     前記副開口部は、前記弁体の前記回転軸線に対する径方向に開口形成され、
     前記常時循環口は、前記軸方向において前記副開口部の中央部よりも前記主開口部側に設けられたことを特徴とする制御弁。
  6.  請求項1に記載の制御弁において、
     前記副開口部は、前記常時循環口よりも大きい開口面積を有することを特徴とする制御弁。
  7.  請求項1に記載の制御弁において、
     前記副連通口は、ラジエータ、ヒータ及びオイルクーラの少なくとも1つに繋がっていることを特徴とする制御弁。
  8.  請求項7に記載の制御弁において、
     前記副連通口は、前記ラジエータに接続されることを特徴とする制御弁。
  9.  請求項8に記載の制御弁において、
     前記回転軸は、前記弁体の前記軸方向の一端側と繋がっていて、
     前記主開口部は、前記弁体の前記軸方向の他端側に開口形成され、
     前記副開口部は、前記弁体の前記回転軸線に対する径方向に開口形成され、
     前記ハウジングは、前記軸方向において前記副連通口よりも前記主連通口側に設けられた主連通口側副連通口を有し、
     前記弁体は、前記主連通口側副連通口と重なり合う主連通口側副開口部を有することを特徴とする制御弁。
  10.  請求項9に記載の制御弁において、
     前記ハウジングは、前記軸方向において前記副連通口よりも前記回転軸側に設けられた回転軸側副連通口を有し、
     前記弁体は、前記回転軸側副連通口と重なり合う回転軸側副開口部を有することを特徴とする制御弁。
  11.  請求項10に記載の制御弁において、
     前記主連通口側副連通口は、前記オイルクーラに接続され、
     前記副連通口は、前記ラジエータに接続され、
     前記回転軸側副連通口は、前記ヒータに接続されることを特徴とする制御弁。
  12.  請求項10に記載の制御弁において、
     前記回転軸の回転位置に応じて、
     前記副連通口が前記副開口部と重なり合う一方で、前記回転軸側副連通口と前記回転軸側副開口部、前記常時循環口と前記副開口部、前記主連通口側副連通口と前記主連通口側副開口部が重なり合わない第1状態と、
     前記主連通口側副連通口が前記主連通口側副開口部と重なり合う一方で、前記副連通口と前記副開口部、前記常時循環口と前記副開口部、前記回転軸側副連通口と前記回転軸側副開口部が重なり合わない第2状態と、
     前記常時循環口が前記副開口部と重なり合う一方で、前記回転軸側副連通口と前記回転軸側副開口部、前記副連通口と前記副開口部、前記主連通口側副連通口と前記主連通口側副開口部が重なり合わない第3状態と、
     前記回転軸側副連通口と前記回転軸側副開口部、前記主連通口側副連通口と前記主連通口側副開口部が重なり合う一方で、前記副連通口と前記副開口部、前記常時循環口と前記副開口部が重なり合わない第4状態と、
     前記副連通口と前記副開口部、前記常時循環口と前記副開口部、前記回転軸側副連通口と前記回転軸側副開口部が重なり合う一方で、前記主連通口側副連通口と前記主連通口側副開口部が重なり合わない第5状態と、
     を有することを特徴とする制御弁。
  13.  請求項1に記載の制御弁において、
     前記弁体は、少なくとも一部に、球面部を有し、
     前記副開口部は、前記球面部に形成されたことを特徴とする制御弁。
  14.  請求項1に記載の制御弁において、
     前記ハウジングは、複数の前記副連通口を有し、
     前記弁体は、複数の前記副開口部を有することを特徴とする制御弁。
PCT/JP2020/001404 2019-03-29 2020-01-17 制御弁 WO2020202705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080024136.XA CN113795654A (zh) 2019-03-29 2020-01-17 控制阀
JP2021511126A JP7185765B2 (ja) 2019-03-29 2020-01-17 制御弁
US17/437,792 US11614023B2 (en) 2019-03-29 2020-01-17 Control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065983 2019-03-29
JP2019-065983 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202705A1 true WO2020202705A1 (ja) 2020-10-08

Family

ID=72667892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001404 WO2020202705A1 (ja) 2019-03-29 2020-01-17 制御弁

Country Status (4)

Country Link
US (1) US11614023B2 (ja)
JP (1) JP7185765B2 (ja)
CN (1) CN113795654A (ja)
WO (1) WO2020202705A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210153798A (ko) * 2020-06-10 2021-12-20 현대자동차주식회사 하이브리드 차량의 냉각 시스템 및 방법
JP7548596B2 (ja) 2022-09-30 2024-09-10 株式会社東海理機 ロータリバルブ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160872A (ja) * 2015-03-04 2016-09-05 日立オートモティブシステムズ株式会社 流量制御弁
JP2018123887A (ja) * 2017-02-01 2018-08-09 日立オートモティブシステムズ株式会社 流量制御弁

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014001515B4 (de) * 2013-03-21 2019-08-08 Hitachi Automotive Systems, Ltd. Flussraten-Steuerventil
WO2015163181A1 (ja) * 2014-04-25 2015-10-29 日立オートモティブシステムズ株式会社 冷却制御装置、流量制御弁及び冷却制御方法
WO2016140079A1 (ja) * 2015-03-03 2016-09-09 日立オートモティブシステムズ株式会社 流量制御弁
JP6838485B2 (ja) * 2017-05-09 2021-03-03 株式会社デンソー 冷却水制御弁装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160872A (ja) * 2015-03-04 2016-09-05 日立オートモティブシステムズ株式会社 流量制御弁
JP2018123887A (ja) * 2017-02-01 2018-08-09 日立オートモティブシステムズ株式会社 流量制御弁

Also Published As

Publication number Publication date
JP7185765B2 (ja) 2022-12-07
US11614023B2 (en) 2023-03-28
US20220154626A1 (en) 2022-05-19
CN113795654A (zh) 2021-12-14
JPWO2020202705A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
US10458562B2 (en) Control valve
JP7284771B2 (ja)
JP6846083B2 (ja) 弁及び冷却水の循環システム
CN110953376B (zh) 阀装置
CN108005773B (zh) 控制阀
JP5048112B2 (ja) 流体循環システム用の改良型シーリングを有する制御弁
JP6501641B2 (ja) 流量制御弁
KR101500391B1 (ko) 멀티 유량 제어밸브를 갖는 엔진
JP5914176B2 (ja) ロータリ式バルブ
US10508748B2 (en) Control valve
WO2020202705A1 (ja) 制御弁
KR101896376B1 (ko) 통합 유량 제어 밸브
JP7037963B2 (ja) 制御弁
JP7064825B2 (ja) 流量制御弁
JP7058736B2 (ja) 制御弁、流量制御弁
JP7240185B2 (ja) 制御弁
WO2021054139A1 (ja) 制御弁
JP7101544B2 (ja) 制御弁
WO2022107433A1 (ja) 弁装置
JP2020148241A (ja) 制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782148

Country of ref document: EP

Kind code of ref document: A1