WO2016140079A1 - 流量制御弁 - Google Patents

流量制御弁 Download PDF

Info

Publication number
WO2016140079A1
WO2016140079A1 PCT/JP2016/054795 JP2016054795W WO2016140079A1 WO 2016140079 A1 WO2016140079 A1 WO 2016140079A1 JP 2016054795 W JP2016054795 W JP 2016054795W WO 2016140079 A1 WO2016140079 A1 WO 2016140079A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
housing
control valve
flow control
sliding contact
Prior art date
Application number
PCT/JP2016/054795
Other languages
English (en)
French (fr)
Inventor
信吾 村上
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017503416A priority Critical patent/JP6429988B2/ja
Priority to CN201680013048.3A priority patent/CN107407432B/zh
Priority to US15/555,278 priority patent/US10927972B2/en
Priority to DE112016001026.5T priority patent/DE112016001026T5/de
Publication of WO2016140079A1 publication Critical patent/WO2016140079A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0856Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in more than one plane perpendicular to the axis of the plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/087Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with spherical plug
    • F16K11/0873Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with spherical plug the plug being only rotatable around one spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/043Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves

Definitions

  • the present invention relates to a flow rate control valve used for controlling the flow rate of cooling water for automobiles.
  • Patent Document 1 As a conventional flow control valve applied to the flow control of cooling water for automobiles, for example, the one described in Patent Document 1 below is known.
  • This flow control valve is a so-called rotary valve that performs flow control according to the rotational position (phase) of the rotor, which is a substantially cylindrical valve body, and is opened by superposition of the opening of the housing and the opening of the rotor.
  • the valve is closed by urging the sealing member against the outer peripheral wall, which is the non-opening portion of the rotor, with the urging force of the elastic member elastically mounted on the opening portion of the housing.
  • the mold when distributing the cooling water to the plurality of auxiliary machines by the flow rate control valve, that is, when forming a plurality of openings of the rotor in the circumferential direction, when trying to perform the openings simultaneously with the molding of the valve body, Depending on the quantity and position of the openings, the mold may need to be divided into a plurality of parts (for example, divided into three parts). In this case, the division causes unevenness due to a so-called parting line at a circumferential position corresponding to the mating surface of the mold on the outer peripheral wall of the rotor.
  • the present invention has been devised in view of such technical problems, and an object thereof is to provide a flow control valve capable of suppressing damage to the seal surface of the seal member.
  • the present invention provides an airtight seal between the housing and the valve body by slidingly contacting the outer peripheral surface of the valve body between the housing and the valve body rotatably supported inside the housing.
  • a parting line is provided at a position where the seal member does not slide on the valve body. It is characterized by.
  • each communication port and each opening are overlapped with each other, and a stepped portion that is lowered inward in the radial direction from the sliding contact surface is provided in advance on the sliding contact surface of the valve body in which the seal member is in sliding contact. All aspects, such as arranging at the stepped portion, are included.
  • the seal surface of the seal member is in sliding contact with the parting line, thereby suppressing damage to the seal surface of the seal member.
  • the parting line is provided in the non-sealing area which is a non-sealing area, there is an advantage that it is used for the good manufacture of the valve body without any processing in forming the parting line.
  • FIG. 5 is a sectional view taken along line AA in FIG. 4.
  • A) is the principal part enlarged view of FIG. 5
  • B) is the BB sectional drawing of (a).
  • It is a side view of the flow control valve shown in FIG. It is CC sectional view taken on the line of FIG.
  • FIG. 4 is a perspective view of the valve body shown in FIG. 3, and (a) to (d) are views showing a state seen from different viewpoints.
  • (A) is an arrow view seen from the D direction of FIG. 10 (a)
  • (b) is the EE sectional view taken on the line of FIG. 10 (a).
  • FIG. 4 is a perspective view of the speed reduction mechanism shown in FIG.
  • FIG. 3 It is a top view of the deceleration mechanism shown in FIG. It is the FF sectional view taken on the line of FIG. It is a figure explaining the operating state of the flow control valve concerning the present invention, and (a) is a state where all the discharge ports are out of communication, (b) is a state where only the 1st discharge port is connected, (c) FIG. 4 is a development view of the valve body housing portion showing a state in which the first and second discharge ports are in communication with each other, and FIG. 1 shows a first embodiment of the present invention, where (a) shows a state before the first seal member passes through the first stepped portion, and (b) shows a state where the first seal member passes through the first stepped portion. It is a principal part sectional view shown.
  • FIG. 1 It is a perspective view of the valve body showing the other example of the valve body shown in FIG.
  • the 2nd Embodiment of this invention is shown, (a) is the state before a 3rd sealing member passes a 3rd level
  • cooling water circulating system for automotive cooling water
  • FIG. 1 to 18 show a first embodiment of a flow control valve according to the present invention.
  • the flow rate control valve CV is disposed on the side of the engine EG (specifically, a cylinder head (not shown)). It is arranged between.
  • the cooling water pressurized by the water pump WP and guided to the flow control valve CV through the introduction passage L0 is supplied to the heating heat exchanger HT, the oil cooler OC, and the radiator RD via the first to third pipes L1 to L3.
  • Each flow is distributed to the side, and each flow rate is controlled.
  • the cooling water led to the heating heat exchanger HT is led to the EGR cooler EC and then returned to the engine EG side.
  • the flow rate control valve CV is provided with a bypass passage BL that bypasses the introduction passage L0 and directly leads the cooling water to the throttle chamber TC, and the cooling water guided from the engine EG side with the bypass passage BL. Can always be supplied to the throttle chamber TC. Then, the cooling water supplied to the throttle chamber TC is guided to the EGR cooler EC and is returned to the engine EG side through the EGR cooler EC, similarly to the heating heat exchanger HT.
  • a symbol WT in FIG. 1 indicates a water temperature sensor.
  • the arrangement of the flow control valve CV is not limited to the arrangement immediately after the engine EG, and may be arranged immediately before the engine EG as shown in FIG. 2, for example, depending on the specifications of the mounting target. It can be changed as appropriate. Further, since the distribution to the throttle chamber TC does not correspond to the cooling water flow rate control target as will be described later, the presence or absence of the bypass passage BL also conforms to the specification of the mounting target as shown in FIG. It can be changed accordingly.
  • the flow control valve CV includes a first housing 11 that houses a valve body 3 and an electric motor 4 described later. And a second housing 12 that houses a speed reduction mechanism 5 to be described later, and an end wall 11b of the first housing 11 that separates the first housing 11 and the second housing 12 from each other.
  • a rotary shaft 2 rotatably supported by a bearing B1 held by 11b, and a substantially cylindrical valve body 3 fixed to one end of the rotary shaft 2 and rotatably supported in the first housing 11.
  • an electric motor 4 disposed in parallel with the valve body 3 in the first housing 11 and used for driving control of the valve body 3, and interposed between the motor output shaft 4 c of the electric motor 4 and the rotary shaft 2.
  • a speed reduction mechanism 5 for transmitting by rolling reduction rate is mainly comprised.
  • the first housing 11 is cast from an aluminum alloy material, and a substantially cylindrical valve body accommodating portion 13 that is biased toward one end side in the width direction and accommodates the valve body 3 opens toward one end side in the axial direction.
  • a substantially cylindrical motor housing portion 14 that is formed and is adjacent to the valve body housing portion 13 and is biased toward the other end in the width direction to house the electric motor 4 is opened toward the other end in the axial direction. It is formed and fixed to a side portion of the engine (not shown) by a bolt (not shown) via a first flange portion 11a formed and extending in the outer peripheral area of the one end side opening of the valve body housing portion 13.
  • annular seal member SL1 is interposed between the first flange portion 11a of the first housing 11 and the engine side portion, and the inside of the valve body housing portion 13 is hermetically sealed by the seal member SL1. It is the structure held by.
  • the valve body accommodating portion 13 is configured as an inlet 10 which is a main communication port whose one end side opening communicates with the inside of the engine (not shown) and introduces cooling water from the inside of the engine.
  • the cooling water is guided to an inner peripheral side passage 17 and an outer peripheral side passage 18 respectively formed on the inner peripheral side and the outer peripheral side of the body 3.
  • the peripheral wall of the valve body accommodating portion 13 is provided with a plurality of first to third communication ports which are a plurality of substantially cylindrical communication ports provided for connection to the first to third pipes L1 to L3 at predetermined circumferential positions.
  • the discharge ports E1 to E3 are formed to penetrate in the radial direction.
  • the 3rd discharge port E3 is arrange
  • a build-up used for sliding guidance of first to third seal members S1 to S3 described later is provided at the inner ends of the first to third discharge ports E1 to E3, as shown in FIG. 5 and FIG. 6, a build-up used for sliding guidance of first to third seal members S1 to S3 described later is provided.
  • a part 19 is provided.
  • the built-up portion 19 has each discharge port E1 so that the inner end surface thereof is substantially flat, that is, the amount of projection of each seal member S1 to S3 from the inner end of each discharge port E1 to E3 is suppressed.
  • the first housing 11 is integrally provided. With this construction, the build-up portion 19 can suppress the deformation of the seal members S1 to S3, and the wear of the seal members S1 to S3 caused by the deformation of the seal members S1 to S3 can be suppressed. ing.
  • Sealing means for sealing is provided on the inner peripheral side of the first to third discharge ports E1 to E3, when the first to third discharge ports E1 to E3 are closed, the space between the discharge ports E1 to E3 and the valve body 3 is airtight. Sealing means for sealing is provided. This sealing means is accommodated in the inner end side of each of the discharge ports E1 to E3 so as to be movable back and forth, and seals between each of the discharge ports E1 to E3 and the valve body 3 by slidingly contacting the outer peripheral surface of the valve body 3.
  • the substantially cylindrical sealing members S1 to S3 and the pipes so as to be seated on the opening edges of the pipes L1 to L3 (the retainer member 16 for the first pipe L1) on the outer ends of the discharge ports E1 to E3.
  • a first to a third that are elastically mounted with a predetermined preload between the opening edges of L1 to L3 and the inner end surfaces of the seal members S1 to S3, and bias the seal members S1 to S3 toward the valve body 3 side.
  • the coil springs SP1 to SP3 and the inner peripheral surfaces of the discharge ports E1 to E3 and the outer peripheral surfaces of the seal members S1 to S3 are accommodated in recesses formed in the inner peripheral surfaces of the discharge ports E1 to E3.
  • the outer peripheral surface of each of the seal members S1 to S3 Each outlet E1 ⁇ E3 by sliding contact with the well-known O-ring SL2 for sealing between the respective seal members S1 ⁇ S3, and a.
  • Each of the sealing members S1 to S3 is formed in a first conical taper shape formed in a substantially conical taper shape on the inner peripheral edge on one end side which is the valve body 3 side so as to be in sliding contact with first to third seal sliding contact portions D1 to D3 described later.
  • the third seal surfaces S1a to S3a are provided, and on the other end side, flat first to third seating surfaces S1b to S3b used for seating on one end side of each of the coil springs SP1 to SP3 are formed.
  • the seal surfaces S1a to S3a have intermediate portions (specifically, points F in FIG. 6A) in the thickness width direction (radial direction) with respect to the seal sliding contact portions D1 to D3. Only the slidable contact, so-called line contact.
  • the seal portion F when the valve is closed is configured to be inside the opening widths of first to third openings M1 to M3, which will be described later, in the rotation axis direction of the valve body 3. Yes.
  • the other end side of the valve body accommodating portion 13 is such that the inner end faces the outer peripheral passage 18 and the fourth pipe L4 is connected to the outer end.
  • a fourth discharge port E4 that guides the cooling water to the throttle chamber TC is formed so as to penetrate the bypass passage BL (see FIG. 1). That is, with this configuration, it is possible to always distribute the cooling water guided to the outer peripheral passage 18 to the throttle chamber TC via the fourth pipe L4 regardless of the rotation phase of the valve body 3 described later. Yes.
  • the side of the third discharge port E3 has a valve body accommodating portion 13 in an emergency in which the valve body 3 cannot be driven, for example, when the electric system fails.
  • a fail-safe valve 20 that enables communication between the (outer peripheral side passage 18) and the third discharge port E3 is provided, and the supply of cooling water to the radiator RD is ensured even when the valve body 3 is stationary. Thus, overheating of the engine EG can be prevented.
  • the fail-safe valve 20 is accommodated in a valve accommodation hole 11c that communicates the outer peripheral side passage 18 and the third pipe L3, and is substantially cylindrical that allows the cooling water to flow in from the inner end side (outer peripheral side passage 18 side). And a wax (not shown) filled therein expands when the cooling water temperature exceeds a predetermined temperature.
  • the rod 22a is fixed to the distal end side of the rod 22a of the thermo element 22 so that the rod 22a advances to the outer end side of the flow path component member 21, and the outer end side of the flow path component member 21.
  • Coil spring And 4 are composed mainly from.
  • the second housing 12 has one end facing the first housing 11 straddling the valve body housing portion 13 and the motor housing portion 14 so as to cover the housing portions 13 and 14. Is fixed to the other end side of the first housing 11 by a plurality of bolts BT1 through a second flange portion 12a that is formed in a concave shape that opens to the outer peripheral area of the one end side opening.
  • a speed reduction mechanism accommodating portion 15 that accommodates the speed reduction mechanism 5 is formed between the other end side of the one housing 11.
  • the rotating shaft 2 is rotatably supported by the bearing B1 accommodated and disposed in a shaft insertion hole 11d formed through the end wall 11b corresponding to the other end wall of the valve body accommodating portion 13, and is axially supported.
  • a valve body 3 is fixed to one end, and a second bevel gear HG2 described later is fixed to the other end so as to be integrally rotatable.
  • An annular seal member SL4 is interposed between the outer peripheral surface of the rotary shaft 2 and the inner end side opening edge of the shaft insertion hole 11d, and the seal member SL4 rotates with the shaft insertion hole 11d. The inflow of cooling water from the valve body housing part 13 side to the speed reduction mechanism housing part 15 through the radial clearance with the shaft 2 is suppressed.
  • the valve body 3 is integrally molded from a predetermined synthetic resin material, and as shown in FIGS. 5 and 10 to 12, one end side in the axial direction is cooled water guided from the inlet 10 of the first housing 11. Is formed as an inflow port 3 a for inflow into the inner peripheral side passage 17. On the other hand, the other end side is closed by the end wall 3b, and a plurality of substantially arc-shaped communication ports 3c that allow the inner peripheral side passage 17 and the outer peripheral side passage 18 to communicate with each other are provided in the circumferential direction on the end wall 3b. A notch is formed along.
  • a substantially cylindrical shaft fixing portion 3d provided for attachment to the rotary shaft 2 extends along the axial direction at the central portion of the end wall 3b corresponding to the axial center of the valve body 3,
  • a metal insert member 3e is integrally formed on the inner peripheral side of the shaft fixing portion 3d so as to be press-fitted and fixed to the rotary shaft 2 via the insert member 3e.
  • valve body 3 is brought into sliding contact with the seal members S1 to S3 to provide a substantially spherical seal sliding contact portion (first to third seal sliding contact portions D1 to D3 to be described later) that provide a sealing action when the valve is closed. )
  • the discharge ports E1 to E3 are opened and closed by rotating within a predetermined angular range of about 180 ° in the circumferential direction. Yes.
  • the valve body 3 is rotationally supported by a bearing B2 that is fitted and held on the inner peripheral side of the introduction port 10 via a bearing portion 3g having a large diameter formed at one end. Has been.
  • the valve body 3 is formed in the first axial region X1 on one end side, the second axial region X2 on the other end side, and the two axial regions in forming the seal sliding contact portions D1 to D3. Broadly divided.
  • the first and second axial regions X1 and X2 are formed substantially evenly with a substantially intermediate position in the axial direction of the valve body 3 as a boundary.
  • at least hole edges of first to third openings M1 to M3 described later are formed in a substantially spherical shape, that is, a curved surface having substantially the same curvature.
  • the curvature is configured to be the same as the rotation radius of the valve body 3.
  • the first axial direction region X1 is provided over substantially a half circumference, and is provided over a first seal sliding contact portion D1 that is in sliding contact with the first seal member S1, and the remaining substantially half circumference.
  • a first seal sliding contact portion D2 that is in sliding contact with the second seal member S2.
  • the first seal sliding contact portion D1 is provided with a first opening portion M1 having a long hole shape that is set to have an axial width that overlaps with the first discharge port E1 almost without excess or shortage along the circumferential direction. ing.
  • the second seal sliding contact portion D2 is provided with a second opening portion M2 having a long hole shape that is set to have an axial width that overlaps with the second discharge port E2 substantially without excess or deficiency along the circumferential direction. It has been.
  • the first opening M1 and the second opening M2 are superposed in different circumferential positions in the first axial region X1 in the rotational axis direction of the valve body 3.
  • the valve body 3 is reduced in size in the axial direction.
  • Such a superposition arrangement is not limited to the case where the superposition is complete in the axial direction as in the present embodiment.
  • the valve body 3 is superposed, and thus the axial direction of the valve body 3 can be shortened by the amount of polymerization.
  • the second axial direction area X2 is provided over a half circumference, and is provided over a third sliding contact portion D3 that is in sliding contact with the third seal member S3, and the remaining circumferential area.
  • a non-seal slidable contact portion D4 that does not face the third discharge port E3 and does not provide a sealing action by the third seal member S3.
  • the third seal sliding contact portion D3 is provided with a long-hole-shaped third opening M3 set in the circumferential direction so as to overlap with the third discharge port E3 without substantial excess or deficiency. ing.
  • the non-seal sliding contact portion D4 is provided with an auxiliary suction port M4 having a substantially rectangular shape in plan view along the circumferential direction.
  • the auxiliary suction port M4 serves to introduce the cooling water flowing in the outer peripheral side passage 18 into the inner peripheral side passage 17, and in addition to the inlet 3a, the auxiliary suction port M4 also serves as an inner periphery of the cooling water.
  • the introduction of the cooling water into the side passage 17 is possible, and a larger amount of cooling water is taken into the inner circumferential side passage 17 and discharged from the discharge ports E1 to E3, thereby reducing the introduction resistance of the cooling water. Yes.
  • the non-seal sliding contact portion D4 is a so-called non-use area, unlike the first to third seal sliding contact portions D1 to D3 formed in a substantially spherical shape, the non-seal sliding contact portion D4 is a flat surface having an aspherical shape. Thus, the weight of the valve body 3 and the yield of the material constituting the valve body 3 are reduced.
  • first to fourth states shown in FIG. In this order, the communication states with the first to third discharge ports E1 to E3 are switched.
  • the first axial region X1 includes a first valve opening region O1 and a second valve opening region O2 used for valve opening by the first and second openings M1 and M2.
  • the first valve closing region C1 and the second valve closing region C2 are provided for valve closing by the first and second seal members S1 and S2.
  • the second axial region X2 is also used for third valve opening region O3 used for valve opening by the third opening M3 and for valve closing by the third seal member S3.
  • a third valve closing region C3 and a non-use region UA constituting the non-seal sliding contact portion D4 are configured.
  • first opening M1 which is in the vicinity of the boundary between the first valve opening region O1 and the first valve closing region C1
  • first step portion N1 that is recessed radially inward.
  • a straight line is formed continuously from one end side to the other end side.
  • a concave second step portion N2 that is recessed radially inward is also formed at the circumferential end of the third opening M3 that is in the vicinity of the boundary between the third valve opening region O3 and the third valve closing region C3.
  • the first and second axial regions X1 and X2 are notched in a straight line extending from one end side to the other end side.
  • the third seal sliding contact portion D3 exceeds 180 ° as shown in FIG. 11 (a). Since the circumferential range is set, the molding of the valve body 3 is performed by dividing the molding die into three parts in order to avoid so-called undercutting. Specifically, as shown in FIGS. 11A and 11B, the first region A1 is formed by the first type, the second region A2 is formed by the second type, and the third region A3 is formed by the third type. Yes.
  • a first parting line P1 is formed at the connecting portion between the first mold and the second mold at the center in the width direction of the first step N1, and the second step.
  • a second parting line P2 is provided at the connection portion between the second mold and the third mold, and the first mold and the third mold are further connected.
  • a third parting line P3 is formed at the connecting portion.
  • the first to third molds are molded so that the first to third parting lines P1 to P3 are formed at the respective circumferential positions.
  • a pair of contact portions 3 f that serve to restrict the rotation of the valve body 3 are provided at both ends of the third valve closing region C ⁇ b> 3 at the other end of the valve body 3. , 3f are provided.
  • the contact portions 3 f and 3 f are provided so as to be able to contact a rotation restricting portion 11 e protruding from the other peripheral wall of the valve body housing portion 13.
  • the rotation range of the valve body 3 is regulated within the predetermined angle range by coming into contact with the portion 11e. Since the contact portions 3f and 3f are inevitably provided in accordance with the configuration of the valve body 3, the rotation restricting stopper is separately provided by using the contact portions 3f and 3f. There is no need to provide the flow rate control valve CV, and the cost is reduced.
  • the electric motor 4 includes a flange portion 4 b provided at a base end portion of the motor body 4 a in a state where the motor body 4 a is housed in the motor housing portion 14 of the first housing 11.
  • the motor output shaft 4c faces into the speed reduction mechanism accommodating portion 15 of the second housing 12 through the opening on the one end side of the motor accommodating portion 14. It is out.
  • the electric motor 4 is driven and controlled by a vehicle-mounted electronic controller (not shown), and the valve body 3 is controlled to rotate according to the vehicle operating state, thereby appropriately distributing the cooling water to the radiator RD and the like. Realized.
  • the speed reduction mechanism 5 is a drive mechanism composed of two worm gears. As shown in FIGS. 13 to 15, the speed reduction mechanism 5 is linked to a motor output shaft 4c and reduces the rotation of the electric motor 4 to a first worm gear G1. A second worm gear G2 connected to the first worm gear G1 and further decelerating the rotation of the electric motor 4 transmitted through the first worm gear G1 and transmitting it to the rotary shaft 2; The worm gear G2 is disposed so as to be substantially orthogonal to the first worm gear G1.
  • the first worm gear G1 is integrally provided on the outer periphery of the motor output shaft 4c.
  • the first screw gear WG1 rotates integrally with the motor output shaft 4c, and the first screw gear WG1 substantially parallel to the motor rotation shaft 4c.
  • a first inclined tooth which is integrally provided on the outer periphery of one end side of the rotary shaft 30 provided perpendicularly to the first shaft and which decelerates and outputs the rotation of the first screw gear WG1 by meshing with the first screw gear WG1.
  • a gear HG1 is integrally provided on the outer periphery of the motor output shaft 4c.
  • a first inclined tooth which is integrally provided on the outer periphery of one end side of the rotary shaft 30 provided perpendicularly to the first shaft and which decelerates and outputs the rotation of the first screw gear WG1 by meshing with the first screw gear WG1.
  • a gear HG1 which is integrally provided on the outer periphery of one end side of the
  • the second worm gear G2 is integrally provided on the outer circumference of the other end of the rotary shaft 30, and is orthogonal to the second screw gear WG2 and a second screw gear WG2 that rotates integrally with the first inclined gear HG1.
  • a second inclined tooth which is fixed to the outer periphery of the other end of the rotary shaft 2 arranged in a shape so as to be integrally rotatable and decelerates and outputs the rotation of the second screw gear WG2 by meshing with the second screw gear WG2.
  • a gear HG2 is integrally provided on the outer circumference of the other end of the rotary shaft 30, and is orthogonal to the second screw gear WG2 and a second screw gear WG2 that rotates integrally with the first inclined gear HG1.
  • a second inclined tooth which is fixed to the outer periphery of the other end of the rotary shaft 2 arranged in a shape so as to be integrally rotatable and decelerates and outputs the rotation of the second screw gear WG2
  • the first to third openings M1 to M3 of the valve body 3 are indicated by broken lines, while the first to third discharge ports E1 to E3 of the first housing 11 are hatched.
  • the discharge ports E1 to E3 and the openings M1 to M3 can be relatively distinguished by painting and displaying the state in which the two E1 to E3 and M1 to M3 are overlapped and communicated. Shall.
  • the flow control valve CV is driven and controlled by the control current from the electronic controller (not shown) that is calculated and output based on the driving state of the vehicle, so that the flow control valve CV corresponds to the driving state of the vehicle.
  • the rotational position (phase) of the valve body 3 is controlled so that the relative relationship between the discharge ports E1 to E3 and the openings M1 to M3 is as follows.
  • any of the first to third openings M1 to M3 is in a non-communication state with respect to the discharge ports E1 to E3.
  • the cooling water is not supplied to any of the heating heat exchanger HT, the oil cooler OC, and the radiator RD.
  • any of the first to third openings M1 to M3 is in communication with the discharge ports E1 to E3.
  • the cooling water is supplied to all of the heating heat exchanger HT, the oil cooler OC, and the radiator RD, and the first to third discharge ports E1 to E3 and the first to third openings are provided.
  • the supply amount changes based on the amount of polymerization with the parts M1 to M3.
  • the projecting parting line accompanying the molding is protruded from the sealing region of the valve body, so that the sealing member is slidably contacted with the parting line.
  • the sealing surface of the sealing member may be damaged by the ridge.
  • the concave first and second step portions that are recessed lower than the outer peripheral surfaces of the first to third seal sliding contact portions D1 to D3 that are seal sliding contact surfaces.
  • N1 and N2 are provided, and the first and second parting lines P1 and P2 are provided in the stepped portions N1 and N2, so that the seal surfaces S1a to S3a of the seal members S1 to S3 are provided to the parting lines.
  • first and second stepped portions N1 and N2 are formed by recesses that are recessed radially inward, the first and second parting lines P1 and P2 are respectively connected to the first and second parting lines P1 and P2. It becomes possible to arrange
  • FIG. 1
  • the third parting line P3 in the first axial region X1, the third parting line P3 is located at the boundary between the first and second seal sliding contact portions D1 and D2,
  • the forward and reverse rotation of the valve body 3 suppresses the inconvenience that each seal surface S1a, S2a passes (crosses) the third parting line P3, and the seal part S1a, S2a is in contact with the third parting line P3. Damage due to sliding contact can be suppressed.
  • both the first and second stepped portions N1 and N2 are configured to be connected to the seal sliding contact portions D1 to D3 via smooth curved surfaces, the stepped portions N1 and N2 The formation of corners at the boundary portions of the seal members is suppressed, and damage to the seal surfaces S1a to S3a when the seal members S1 to S3 pass through the step portions N1 and N2 can be more effectively suppressed.
  • the circumferential widths of the first and second stepped portions N1 and N2 are set smaller than the circumferential widths of the first to third seal members S1 to S3, as shown in FIG.
  • the inconvenience that the seal members S1 to S3 drop off to the first and second stepped portions N1 and N2 is suppressed, and smooth sliding contact of the seal members S1 to S3 can be ensured.
  • first and second stepped portions N1 and N2 are provided at the circumferential ends of the first to third openings M1 to M3, the openings M1 to M3 are arranged in the middle. It becomes possible to form integrally, without dividing
  • the valve body 3 is good. It is used for manufacturing.
  • the seal portions F of the seal surfaces S1a to S3a when the valve is closed are configured to be inside the opening widths of the openings M1 to M3 in the rotation axis direction of the valve body 3. Therefore, even when the seal surfaces S1a to S3a are damaged by sliding contact with the opening edges of the openings M1 to M3, it is possible to maintain a good sealing action by the seal surfaces S1a to S3a.
  • a built-up portion 19 is provided at the inner end of each of the discharge ports E1 to E3.
  • the portion 19 makes it possible to further narrow the gap between the inner peripheral surface of the one housing 11 and the outer peripheral surface of the valve body 3, and from the inner ends of the discharge ports E1 to E3 of the seal members S1 to S3.
  • the amount of protrusion can be suppressed.
  • the deformation of each of the seal members S1 to S3 is suppressed, and a stable sealing action by each of the seal members S1 to S3 can be secured, and each of the seal members S1 to S3 (each seal surface) that can be generated by the deformation.
  • the wear of S1a to S3a) can be suppressed, and the durability of each of the seal members S1 to S3 can be improved.
  • the build-up portion 19 since the build-up portion 19 is formed integrally with the first housing 11, it is not necessary to separately provide the build-up portion 19 and the flow control valve CV is good. It is used for manufacturing. At this time, the build-up portion 19 can be easily formed by casting, and the production of the flow control valve CV can be further improved. Moreover, also when the 1st housing 11 is shape
  • FIG. 19 shows a second embodiment of the flow control valve according to the present invention, in which the configurations of the first and second step portions N1, N2 in the first embodiment are changed.
  • the first embodiment is the same as the first embodiment except for the configuration associated with the formation of the first and second step portions N1 and N2 and the step portions N1 and N2 described later.
  • the first and second stepped portions N1 and N2 are not the concave shape (groove shape) exemplified in the first embodiment, but in the circumferential direction of the seal sliding contact portions D1 to D3.
  • the first and second parting lines P1 and P2 are arranged on the stepped portion formed by differentiating the curvatures in the circumferential direction across the stepped portions N1 and N2.
  • the first and second stepped portions N1 and N2 change the curvature of the outer peripheral surface of the valve body 3, that is, the curvature before and after the circumferential direction sandwiching the first and second stepped portions N1 and N2. Therefore, it is not necessary to separately form the respective stepped portions N1 and N2, and the valve body 3 can be favorably manufactured and reduced in cost.
  • first and second stepped portions N1 and N2 are not formed in a concave shape as in the first embodiment, but are configured by simple steps, as shown in FIG.
  • the seal members S1 to S3 pass, at least a part of the first to third seal surfaces S1a to S3a comes into sliding contact with the first and second step portions N1 and N2.
  • the slidable contact portion becomes the outer edge of each of the seal surfaces S1a to S2a, and the slidable contact with the seal portion F can be avoided. The damage to the part F can also be suppressed.
  • the present invention is not limited to the configuration according to each of the above embodiments.
  • the parting lines P1 and P2 are provided at positions where the seal members S1 to S3 are not in sliding contact with the valve body 3. Not only in the form in which the parts N1 and N2 are provided and the parting lines P1 and P2 are arranged in the stepped parts N1 and N2, but also in the unused area obtained by increasing the diameter of the valve body 3, for example.
  • a form in which each parting line P1, P2 is arranged (corresponding to the third parting line P3) is also included.
  • the stepped portions N1 and N2 are formed in advance in the seal sliding contact portions D1 to D3, and the parting lines P1 and P2 are disposed in the stepped portions N1 and N2.
  • a part of each of the parting lines P1 and P2 is placed on the non-sliding portion of each of the sealing members S1 to S3, for example, the parting lines P1 and P2 are disposed on the non-seal sliding contact portion that becomes the unused area.
  • the application of the flow rate control valve CV is described as an example of the application of the cooling water to the circulation system.
  • the flow rate control valve CV is not limited to the cooling water.
  • the present invention can be applied to various fluids.
  • the flow control valve is provided in a valve body housing portion configured in a hollow shape, and communicates from the main communication port for introduction or discharge of fluid and the valve body housing portion from the radial direction.
  • a housing having a plurality of communication ports for introducing or discharging the fluid in the valve body accommodating portion, and is rotatably supported in the housing, and the polymerization state of the communication ports is in accordance with the rotational position.
  • a valve body having a plurality of opening portions that change, and provided between the housing and the valve body, and is in sliding contact with the outer peripheral surface of the valve body to seal between the radial direction of the valve body and the housing.
  • a seal member, and at least the communication ports and the openings overlap in a circumferential range of the valve body, and the sliding contact surface of the valve body in sliding contact with the seal member, Radially inward relative to the sliding surface Comprising the step portion is provided as low as.
  • the stepped portion is formed by a concave portion recessed inward in the radial direction.
  • the circumferential width of the recess is set smaller than the circumferential width of the seal member that passes through the recess.
  • the sliding contact surface of the valve body and the recess are connected via a smooth curved surface.
  • the recess is provided at a circumferential end of the opening.
  • the recess is continuously provided from one end side to the other end side in the rotation axis direction of the valve body.
  • the stepped portion is formed by changing the curvature of the outer periphery of the valve body.
  • the sliding contact portion of the seal member in a state where the communication port and the opening portion are not overlapped is in the rotation axis direction of the valve body. It is comprised so that it may become an inner side with respect to the opening width of the said opening part.
  • a plurality of the openings are provided at different circumferential positions on the outer periphery of the valve body, and at least a part of the openings is the valve body. It is superposed in the direction of the rotation axis.
  • a built-up portion provided for sliding guide of the seal member is provided at an inner end of the communication port.
  • the build-up portion is formed integrally with the housing.
  • valve body is formed by injection molding a synthetic resin material.
  • the flow control valve is in sliding contact with the outer peripheral surface of the valve body between the housing and the valve body rotatably supported in the housing.
  • a sealing member that seals between the radial direction of the housing and the valve body, and by changing the polymerization state of the communication port that communicates the inside and the outside of the housing and the opening that communicates the inside and the outside of the valve body,
  • the flow rate control valve for changing the flow rate of the fluid flowing out from the inner peripheral side of the valve body through the communication port and the opening or flowing into the inner peripheral side of the valve body, out of the circumferential range of the valve body
  • a stepped portion that is at least in a range where each of the communication ports and each of the openings overlaps, and is lowered inward in the radial direction with respect to the sliding contact surface on the sliding contact surface of the valve body in which the sealing member is in sliding contact Is provided
  • the flow control valve is provided in a hollow valve body housing portion, and is provided with a main communication port for introducing or discharging fluid, and the valve body housing portion.
  • a housing having a plurality of communication ports communicating from the radial direction and used for introducing or discharging fluid in the valve body housing portion, and rotatably supported in the housing, and depending on the rotation position, the communication ports,
  • the valve body having a plurality of openings in which the polymerization state of the valve body changes, and the radial direction between the valve body and the housing is provided between the housing and the valve body, and is in sliding contact with the outer peripheral surface of the valve body And a parting line is provided at a position where the seal member does not slidably contact with the valve body.
  • At least a part of the parting line is provided in a range in which the outer peripheral surface of the valve body and the seal member are in sliding contact in a circumferential range of the valve body.
  • At least a part of the parting line slides between an outer peripheral surface of the valve body and the seal member in a circumferential range of the valve body. It is provided in a range that does not touch.
  • a surface of the outer periphery of the valve body, in which the outer peripheral surface of the valve body and the seal member are in sliding contact, is formed in a substantially spherical shape,
  • the surface on which the outer peripheral surface of the valve body and the seal member do not slide is formed in an aspherical shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)
  • Taps Or Cocks (AREA)

Abstract

 ハウジング(1)と該ハウジング(1)内に回転可能に支持される弁体(3)との径方向間に、弁体(3)の外周面に摺接することでハウジング(1)と弁体(3)との径方向間を気密にシールするシール部材(S1~S3)を備えた流量制御弁(CV)において、シール摺接部(D1~D3)の外周面であるシール摺接面よりも低く窪む凹状の段差部(N1,N2)を設け、該段差部(N1,N2)内にパーティングライン(P1,P2)を設けたことで、シール部材(S1~S3)のシール面(S1a~S3a)がパーティングライン(P1,P2)を通過する際の該パーティングライン(P1,P2)との摺接によるシール面(S1a~S3a)の損傷を抑制することができる。

Description

流量制御弁
 本発明は、例えば自動車用冷却水の流量制御に供する流量制御弁に関する。
 例えば自動車用冷却水の流量制御に適用される従来の流量制御弁としては、例えば以下の特許文献1に記載されたようなものが知られている。
 この流量制御弁は、ほぼ筒状の弁体たるロータの回転位置(位相)に応じて流量制御を行ういわゆるロータリ式のバルブであって、ハウジングの開口部とロータの開口部との重合により開弁し、前記ハウジングの開口部に弾装された弾性部材の付勢力をもってシール部材をロータの非開口部である外周壁に付勢することにより閉弁する構成となっている。
特開2013-249904号公報
 ところで、前記流量制御弁によって冷却水を複数の補機へと分配する場合、すなわち前記ロータの開口部を周方向に複数形成する場合に、該開口部を弁体の成形と同時に行おうとすると、該開口部の数量及び位置によっては、成形型を複数に分割(例えば3分割)しなければならない場合がある。この場合には、かかる分割によって、ロータの外周壁における成形型の合わせ面に相当する周方向位置に、いわゆるパーティングラインによる凹凸を招来してしまう。
 そうなると、前記従来の流量制御弁のように、シール部材をロータの外周壁に押し付けてシールすることにより閉弁する構成を採る場合、該シール部材が前記凹凸と摺接することで、該シール部材のシール面を損傷してしまうおそれがある。
 本発明は、かかる技術的課題に鑑みて案出されたものであって、シール部材のシール面の損傷を抑制し得る流量制御弁を提供することを目的としている。
 本発明は、ハウジングと該ハウジングの内部に回転可能に支持される弁体との径方向間に、前記弁体の外周面に摺接することによって前記ハウジングと前記弁体との径方向間を気密にシールするシール部材を備え、前記ハウジングの内外を連通する連通口と前記弁体の内外を連通する開口部との重合状態を変化させることによって、前記連通口及び前記開口部を通じて前記弁体の内周側から流出、又は前記弁体の内周側へと流入する流体の流量を変化させる流量制御弁において、前記弁体における前記シール部材の摺接しない位置に、パーティングラインを設けたことを特徴としている。
 なお、前記弁体におけるシール部材の摺接しない位置にパーティングラインを設けることには、単にシール部材の摺接しない非シール領域(不使用領域)に配置することのほか、弁体の周方向範囲のうち少なくとも各連通口と各開口部とが重合する範囲であってシール部材が摺接する弁体の摺接面に予め該摺接面よりも径方向内側へと低くなる段差部を設けて該段差部に配置することなど、あらゆる態様が含まれる。
 本発明によれば、シール部材のシール面がパーティングラインに摺接する不都合を回避することができ、これによって、当該シール部材のシール面の損傷を抑制することができる。
 この際、パーティングラインを非シール領域である不使用領域に設ける場合には、該パーティングラインの形成にあたって何らの加工も必要なく、弁体の良好な製造に供されるメリットがある。
 他方、前述のように、弁体のシール摺接面に予め段差部を形成して該段差部にパーティングラインを配置する場合には、前記非シール領域の削減が可能となり、弁体の小径化に供されるメリットがある。
本発明に係る流量制御弁の自動車用冷却水の循環系への適用説明に供する冷却水回路図である。 本発明に係る流量制御弁の他の適用例を示す冷却水回路図である。 本発明の第1実施形態に係る流量制御弁の分解斜視図である。 図3に示す流量制御弁の平面図である。 図4のA-A線断面図である。 (a)は図5の要部拡大図、(b)は(a)のB-B線断面図である。 図4に示す流量制御弁の側面図である。 図7のC-C線断面図である。 図3に示すフェールセーフバルブの縦断面図であって、(a)は閉弁状態、(b)は開弁状態を示す図である。 図3に示す弁体の斜視図であって、(a)~(d)はそれぞれ別の視点から見た状態を示す図である。 (a)は図10(a)のD方向から見た矢視図、(b)は図10(a)のE-E線断面図である。 弁体の側面図であって、(a)は第1パーティングライン、(b)は第2パーティングライン、(c)は第3パーティングラインを表した図である。 図3に示す減速機構の斜視図である。 図13に示す減速機構の平面図である。 図14のF-F線断面図である。 本発明に係る流量制御弁の作動状態の説明する図であって、(a)は全ての排出口が非連通となる状態、(b)は第1排出口のみが連通した状態、(c)は第1、第2排出口が連通した状態、(d)は全ての排出口が連通した状態を示す弁体収容部の展開図である。 本発明の第1実施形態を示し、(a)は第1シール部材が第1段差部を通過する前の状態、(b)は第1シール部材が第1段差部を通過している状態を示す要部断面図である。 図3に示す弁体の他例を表した弁体の斜視図である。 本発明の第2実施形態を示し、(a)は第3シール部材が第3段差部を通過する前の状態、(b)は第3シール部材が第3段差部を通過している状態を示す要部断面図である。
 以下、本発明に係る流量制御弁の各実施形態を図面に基づき説明する。なお、下記各実施形態では、本発明に係る流量制御弁を従来と同様の自動車用冷却水(以下、単に「冷却水」と略称する。)の循環系に適用したものを例に説明する。
 〔第1実施形態〕
 図1~図18は本発明に係る流量制御弁の第1実施形態を示しており、まず、この流量制御弁CVが適用される冷却水の循環回路について説明すると、図1に示すように、当該流量制御弁CVは、エンジンEG(具体的には、図示外のシリンダヘッド)の側部に配置され、該エンジンEGと暖房熱交換器HT(EGRクーラEC)、オイルクーラOC及びラジエータRDとの間に配置されている。そして、ウォータポンプWPによって加圧され導入通路L0を通じて当該流量制御弁CVに導かれた冷却水が、第1~第3配管L1~L3を介して暖房熱交換器HT、オイルクーラOC及びラジエータRD側へとそれぞれ分配されると共に、その各流量が制御されるようになっている。なお、この際、前記暖房熱交換器HTへと導かれた冷却水については、EGRクーラECへと導かれた後、エンジンEG側へと還流されるようになっている。
 また、前記流量制御弁CVには、前記導入通路L0をバイパスして冷却水をスロットルチャンバーTCへと直接導くバイパス通路BLが設けられ、該バイパス通路BLをもって、エンジンEG側から導かれた冷却水を常時スロットルチャンバーTCへと供給可能となっている。そして、該スロットルチャンバーTCに供給された冷却水は、前記暖房熱交換器HTと同様、EGRクーラECへと導かれて、該EGRクーラECを通じてエンジンEG側へと還流される。図1中における符号WTは水温センサを示している。
 なお、前記流量制御弁CVの配置については、上記エンジンEG直後の配置に限定されるものではなく、例えば図2に示すようなエンジンEG直前に配置してもよく、搭載対象の仕様に応じて適宜変更することができる。また、前記スロットルチャンバーTCへの分配については、後述するように冷却水の流量制御対象に該当しないことから、同図にも示すように、前記バイパス通路BLの有無についても、搭載対象の仕様に応じて適宜変更することができる。
 続いて、前記流量制御弁CVの具体的な構成について説明すると、この流量制御弁CVは、図3、図15に示すように、後述の弁体3及び電動モータ4を収容する第1ハウジング11と後述する減速機構5を収容する第2ハウジング12とからなるハウジング1と、第1ハウジング11と第2ハウジング12とを隔成する第1ハウジング11の端壁11bに挿通配置され、該端壁11bに保持される軸受B1によって回転自在に支持された回転軸2と、該回転軸2の一端部に固定され、第1ハウジング11内にて回転自在に支持されたほぼ円筒状の弁体3と、第1ハウジング11内にて弁体3と並列に配置され、弁体3の駆動制御に供する電動モータ4と、該電動モータ4のモータ出力軸4cと回転軸2との間に介装され、電動モータ4の回転速度を減速して伝達する減速機構5と、から主として構成されている。
 前記第1ハウジング11は、アルミニウム合金材料によって鋳造されてなるもので、幅方向一端側に偏倚して弁体3を収容するほぼ筒状の弁体収容部13が軸方向一端側に向けて開口形成されると共に、該弁体収容部13に隣接するかたちで、幅方向他端側に偏倚して電動モータ4を収容するほぼ筒状のモータ収容部14が軸方向他端側に向けて開口形成され、前記弁体収容部13の一端側開口の外周域に延設される第1フランジ部11aを介して図示外のエンジンの側部に図示外のボルトによって取付固定されている。なお、かかる取付の際、第1ハウジング11の第1フランジ部11aと前記エンジン側部との間には環状のシール部材SL1が介装され、該シール部材SL1によって弁体収容部13内が気密に保持される構成となっている。
 前記弁体収容部13は、前記一端側開口が図示外のエンジン内部と連通して該エンジン内部からの冷却水を導入する主連通口である導入口10として構成され、該導入口10を通じて弁体3の内周側及び外周側にそれぞれ形成される内周側通路17及び外周側通路18に前記冷却水をそれぞれ導くようになっている。また、前記弁体収容部13の周壁には、所定の周方向位置に、前記第1~第3配管L1~L3との接続に供するほぼ円筒状の複数の連通口である第1~第3排出口E1~E3が、径方向に貫通形成されている。そして、この第1~第3排出口E1~E3のうち、暖房熱交換器HTと連通する中径状の第1排出口E1と、オイルクーラOCと連通する小径状の第2排出口E2とが弁体収容部13の軸方向において重合(径方向にほぼ対向)して配置されると共に、オイルクーラOCと連通する小径状の第2排出口E2と、ラジエータRDと連通する大径状の第3排出口E3とが弁体収容部13の軸方向に並列に隣接して配置され、第1、第2排出口E1,E2が導入口10側に、第3排出口E3が端壁11b側に、それぞれ偏倚して設けられている。
 ここで、前記第1~第3排出口E1~E3の内側端には、図5、図6に示すように、後述する第1~第3シール部材S1~S3の摺動案内に供する肉盛部19が設けられている。この肉盛部19は、その内側端面がほぼ平坦状となるように、すなわち各排出口E1~E3の内側端からの各シール部材S1~S3の突出量を抑制するように、各排出口E1~E3の内側端にアルミニウム合金材料を鋳造することによって、第1ハウジング11に一体に設けられている。かかる構成から、当該肉盛部19をもって、各シール部材S1~S3の変形を抑制することができ、各シール部材S1~S3の変形により生じる該各シール部材S1~S3の摩耗の抑制が図られている。
 前記第1~第3排出口E1~E3の内周側には、当該第1~第3排出口E1~E3を閉じる際に該各排出口E1~E3と弁体3との間を気密にシールするシール手段が設けられている。このシール手段は、各排出口E1~E3の内端側において進退移動可能に収容され、弁体3の外周面に摺接することによって各排出口E1~E3と弁体3との間をシールするほぼ円筒状のシール部材S1~S3と、各排出口E1~E3の外端側にて各配管L1~L3の開口縁(第1配管L1についてはリテーナ部材16)に着座するように該各配管L1~L3の開口縁と各シール部材S1~S3の内側端面との間に所定の予圧をもって弾装され、該各シール部材S1~S3を弁体3側へと付勢する第1~第3コイルスプリングSP1~SP3と、各排出口E1~E3の内周面に切欠形成された凹部内に収容されるかたちで各排出口E1~E3の内周面と各シール部材S1~S3の外周面との間に介装され、該各シール部材S1~S3の外周面と摺接することにより各排出口E1~E3と各シール部材S1~S3との間をシールする周知のOリングSL2と、から構成されている。
 前記各シール部材S1~S3は、弁体3側となる一端側の内周縁に、後述の第1~第3シール摺接部D1~D3と摺接するほぼ円錐テーパ状に形成された第1~第3シール面S1a~S3aが設けられる一方、他端側には、各コイルスプリングSP1~SP3の一端側の着座に供する平坦状の第1~第3着座面S1b~S3bが形成されている。かかる構成から、前記各シール面S1a~S3aについては、前記各シール摺接部D1~D3に対し、厚さ幅方向(径方向)の中間部(具体的には図6(a)の点F参照)のみが摺接する、いわゆる線接触をもって摺接するようになっている。なお、本実施形態では、閉弁時における当該シール部Fが弁体3の回転軸方向における後述する第1~第3開口部M1~M3の開口幅に対して内側となるように構成されている。
 また、前記弁体収容部13の他端側には、図7、図8に示すように、内端側が外周側通路18に臨み、かつ外端側に第4配管L4が接続されることで冷却水をスロットルチャンバーTCへと導く第4排出口E4が貫通形成され、これによって、前記バイパス通路BL(図1参照)が構成されている。すなわち、かかる構成より、外周側通路18に導かれた冷却水を、後述する弁体3の回動位相にかかわらず常に第4配管L4を介してスロットルチャンバーTCへ分配することが可能となっている。
 さらに、前記第3排出口E3の側部には、図3、図8、図9に示すように、例えば電気系失陥時など弁体3を駆動することができない非常時に弁体収容部13(外周側通路18)と第3排出口E3とを連通可能にするフェールセーフバルブ20が設けられていて、弁体3の不動状態であっても、ラジエータRDに対する冷却水の供給を確保することにより、エンジンEGのオーバーヒートを防ぐことが可能となっている。
 前記フェールセーフバルブ20は、外周側通路18と第3配管L3とを連通するバルブ収容孔11cに収容され、内端側(外周側通路18側)からの冷却水の流入を許容するほぼ筒状の流路構成部材21と、該流路構成部材21の内周側に収容されるかたちで設けられ、冷却水温が所定温度を超えると内部に充填されたワックス(図示外)が膨張することでロッド22aが流路構成部材21の外端側へと進出するように構成されたサーモエレメント22と、該サーモエレメント22のロッド22aの先端側に固定され、前記流路構成部材21の外端側に開口形成された流出孔21aの開閉に供する弁部材23と、該弁部材23と流路構成部材21との間に所定の予圧をもって弾装され、弁部材23を閉弁方向へと付勢するコイルスプリング24と、から主として構成されている。
 かかる構成により、通常状態(冷却水温が所定温度未満)では、コイルスプリング24の付勢力をもって弁部材23のほぼ円錐テーパ状に形成された弁部23aが流出孔21aの外側孔縁に圧接することにより閉弁状態が維持される。一方、高温状態(冷却水温が所定温度以上)になると、前記サーモエレメント22内のワックスが膨張し前記コイルスプリング24の付勢力に抗してロッド22aと共に弁部材23が外端側へと進出移動することにより開弁され、図示外の流入孔と前記流出孔21aとが連通することとなって、外周側通路18に導かれた冷却水が第3配管L3を通じてラジエータRDへと供給されることとなる。
 なお、かかる温度上昇のほか、冷却水の圧力が所定圧力を超えた場合にも、弁部材23がコイルスプリング24の付勢力に抗して押し退けられることで、前記図示外の流入孔と流出孔21aとが連通し、これによって流量制御弁CVの内部圧力が減少する結果、該流量制御弁CVの故障を回避することが可能となっている。
 前記第2ハウジング12は、図3、図15に示すように、第1ハウジング11と対向する一端側が弁体収容部13とモータ収容部14とに跨って該両収容部13,14を覆うように開口する凹状に形成され、該一端側開口の外周域に延設される第2フランジ部12aを介して第1ハウジング11の他端側に複数のボルトBT1によって固定されることで、該第1ハウジング11の他端側との間に、減速機構5を収容する減速機構収容部15が形成されている。なお、前記第1、第2ハウジング11,12の接合に際しては、該接合面間に環状のシール部材SL3が介装されることによって、減速機構収容部15内が気密に保持されている。
 前記回転軸2は、弁体収容部13の他端壁に相当する前記端壁11bに貫通形成された軸挿通孔11d内に収容配置される前記軸受B1によって回転自在に支持され、軸方向の一端部には弁体3が、他端部には後述する第2斜歯歯車HG2がそれぞれ一体回転可能に固定される。なお、この回転軸2の外周面と軸挿通孔11dの内端側開口縁との間には環状のシール部材SL4が介装されていて、該シール部材SL4によって、前記軸挿通孔11dと回転軸2との間の径方向隙間を通じた弁体収容部13側から減速機構収容部15への冷却水の流入が抑止されている。
 前記弁体3は、所定の合成樹脂材料により一体に型成形され、図5、図10~図12に示すように、軸方向の一端側が、第1ハウジング11の導入口10より導かれる冷却水の内周側通路17への流入に供する流入口3aとして開口形成される。一方、他端側は端壁3bによって閉塞されると共に、該端壁3bには、内周側通路17と外周側通路18とを連通可能にするほぼ円弧状の複数の連通口3cが周方向に沿って切欠形成されている。そして、この弁体3の軸心に相当する前記端壁3bの中央部には、前記回転軸2への取付に供するほぼ筒状の軸固定部3dが軸方向に沿って延設され、該軸固定部3dの内周側には、金属製のインサート部材3eが一体成形されることで、該インサート部材3eを介して回転軸2に圧入固定されるようになっている。
 また、前記弁体3は、各シール部材S1~S3と摺接することにより閉弁時のシール作用に供するほぼ球面状のシール摺接部(後述する第1~第3シール摺接部D1~D3)が軸方向に直列に連接されてなる団子形状に構成され、周方向約180°の所定の角度範囲内で回動することにより前記各排出口E1~E3の開閉が行われるようになっている。なお、当該回動に際し、この弁体3は、一端部に大径状に拡径形成された軸受部3gを介して、導入口10の内周側に嵌着保持される軸受B2により回転支持されている。
 ここで、前記弁体3は、前記各シール摺接部D1~D3の形成にあたって、一端側の第1軸方向領域X1と、他端側の第2軸方向領域X2、2つの軸方向領域に大別される。なお、この第1、第2軸方向領域X1,X2は、弁体3の軸方向ほぼ中間位置を境にほぼ均等に形成されている。そして、このいずれの軸方向領域X1,X2においても、少なくとも後述する第1~第3開口部M1~M3の孔縁が縦断面ほぼ球面状、すなわちほぼ同一の曲率を有する曲面状に形成されると共に、該曲率が弁体3の回転半径と同一となるように構成されている。
 前記第1軸方向領域X1は、図11(b)に示すように、ほぼ半周にわたって設けられ、第1シール部材S1と摺接する第1シール摺接部D1と、残余のほぼ半周にわたって設けられ、第2シール部材S2と摺接する第1シール摺接部D2と、で構成される。そして、前記第1シール摺接部D1には、第1排出口E1とほぼ過不足なく重合する軸方向幅に設定された長孔形状の第1開口部M1が、周方向に沿って設けられている。同様に、前記第2シール摺接部D2には、第2排出口E2とほぼ過不足なく重合する軸方向幅に設定された長孔形状の第2開口部M2が、周方向に沿って設けられている。
 ここで、本実施形態では、上述のように前記第1開口部M1と前記第2開口部M2とが前記第1軸方向領域X1における異なる周方向位置に弁体3の回転軸方向において重合するように設けられていることで、弁体3の軸方向の小型化が図られている。
 なお、かかる重合配置としては、本実施形態のように軸方向において完全に重合しているものに限られず、例えば図18に示すように、前記各開口部M1~M3の少なくとも一部が軸方向に重合するかたちで構成されていれば足り、これによって、かかる重合量分の弁体3の軸方向短縮を図ることができる。
 前記第2軸方向領域X2は、図11(a)に示すように、半周以上にわたって設けられ、第3シール部材S3と摺接する第3摺接部D3と、残余の周方向領域にわたって設けられ、第3排出口E3とは対向せず前記第3シール部材S3によるシール作用に供しない非シール摺接部D4と、で構成される。そして、前記第3シール摺接部D3には、第3排出口E3とほぼ過不足なく重合する軸方向幅に設定された長孔形状の第3開口部M3が、周方向に沿って設けられている。
 また、前記非シール摺接部D4には、平面視ほぼ矩形状の補助吸入口M4が、周方向に沿って設けられている。なお、この補助吸入口M4は、外周側通路18を流れる冷却水の内周側通路17への導入に供するもので、前記流入口3aに加えて当該補助吸入口M4によっても冷却水の内周側通路17への導入を可能とし、より多くの冷却水を内周側通路17内へと取り込んで各排出口E1~E3から排出させることにより、冷却水の導入抵抗の低減化が図られている。加えて、この非シール摺接部D4はいわゆる不使用領域であることから、ほぼ球面状に形成される前記第1~第3シール摺接部D1~D3とは異なり、非球面状となる平坦状に形成され、これによって、弁体3の軽量化及び該弁体3を構成する材料の歩留まりの低減が図られている。
 以上のようにして設けられる前記第1~第3開口部M1~M3の各形状及び周方向位置については、弁体3の回動に伴って図16に示した後述する第1~第4状態の順に前1~第3排出口E1~E3との連通状態が切り替わるように設定されている。
 また、前記第1軸方向領域X1は、図11(b)に示すように、第1、第2開口部M1,M2による開弁に供する第1開弁領域O1及び第2開弁領域O2と、第1、第2シール部材S1,S2による閉弁に供する第1閉弁領域C1及び第2閉弁領域C2と、で構成される。同様に、前記第2軸方向領域X2も、図11(a)に示すように、第3開口部M3による開弁に供する第3開弁領域O3と、第3シール部材S3による閉弁に供する第3閉弁領域C3と、前記非シール摺接部D4を構成する不使用領域UAと、で構成される。
 そして、前記第1開弁領域O1と前記第1閉弁領域C1の境界部近傍となる第1開口部M1の周方向端には、径方向内側へ窪む凹状の第1段差部N1が、前記第1軸方向領域X1において、一端側から他端側に向かって連続する直線状に切欠形成されている。同様に、前記第3開弁領域O3と前記第3閉弁領域C3の境界部近傍となる第3開口部M3の周方向端にも、径方向内側へ窪む凹状の第2段差部N2が、前記第1、第2軸方向領域X1,X2において、一端側から他端側に向かって連続する直線状に切欠形成されている。
 ここで、前記第1~第3シール摺接部D1~D3及び非シール摺接部D4のうち、第3シール摺接部D3については、図11(a)に示すように、180°を超える周方向範囲に設定されていることから、弁体3の成形にあたっては、いわゆるアンダーカットを回避するべく、成形型を3分割にして行う。具体的には、図11(a)(b)に示すように、第1領域A1が第1型、第2領域A2が第2型、第3領域A3が第3型によって、それぞれ形成されている。
 そして、前記第1段差部N1の幅方向中央部には、図12(a)に示すように、第1型と第2型との接続部分に第1パーティングラインP1が、前記第2段差部N2の幅方向中央部には、図12(b)に示すように、第2型と第3型との接続部分に第2パーティングラインP2が、さらに、第1型と第3型との接続部分には、図12(c)に示すように、第3パーティングラインP3が形成されるようになっている。換言すれば、前記各周方向位置に第1~第3パーティングラインP1~P3が形成されるように前記第1~第3型によって型成形されている。
 また、前記弁体3の段差形状に基づき、該弁体3の他端部における第3閉弁領域C3の両端部には、該弁体3の回動規制に供する1対の当接部3f,3fが設けられている。この当接部3f,3fは、図10、図11に示すように、前記弁体収容部13の他端側周壁に突設される回転規制部11eと当接可能に設けられ、該回転規制部11eと当接することで弁体3の回動範囲が前記所定角度範囲内に規制されるようになっている。なお、この当接部3f,3fは、前記弁体3の構成に伴い必然的に設けられるものであるから、該当接部3f,3fを利用することによって、前記回動規制用のストッパを別途設ける必要がなく、流量制御弁CVのコスト低減等に供される。
 前記電動モータ4は、図14、図15に示すように、モータ本体4aが第1ハウジング11のモータ収容部14内に収容された状態でモータ本体4aの基端部に設けられたフランジ部4bを介して当該モータ収容部14の開口縁部に複数のボルトBT2によって取付固定され、モータ出力軸4cがモータ収容部14の一端側開口を通じて第2ハウジング12の減速機構収容部15内へと臨んでいる。なお、この電動モータ4は、車載の電子コントローラ(図示外)により駆動制御され、車両運転状態に応じて弁体3を回動制御することにより、前記ラジエータRD等に対する冷却水の適切な分配が実現される。
 前記減速機構5は、2つのウォームギヤにより構成された駆動機構であって、図13~図15に示すように、モータ出力軸4cと連係し、電動モータ4の回転を減速する第1ウォームギヤG1と、該第1ウォームギヤG1に接続され、この第1ウォームギヤG1を介して伝達される電動モータ4の回転をさらに減速して回転軸2に伝達する第2ウォームギヤG2と、から構成され、前記第2ウォームギヤG2は、前記第1ウォームギヤG1に対しほぼ直交するかたちで配置されている。
 前記第1ウォームギヤG1は、モータ出力軸4cの外周に一体的に設けられ、該モータ出力軸4cと一体回転する第1ねじ歯車WG1と、モータ回転軸4cとほぼ平行に前記第1ねじ歯車WG1と直交するかたちで設けられる回転軸30の一端側外周に一体的に設けられ、前記第1ねじ歯車WG1と噛合することにより該第1ねじ歯車WG1の回転を減速して出力する第1斜歯歯車HG1と、で構成されている。
 前記第2ウォームギヤG2は、前記回転軸30の他端側外周に一体的に設けられ、前記第1斜歯歯車HG1と一体回転する第2ねじ歯車WG2と、該第2ねじ歯車WG2と直交するかたちで配置される回転軸2の他端側外周に一体回転可能に固定され、前記第2ねじ歯車WG2と噛合することで該第2ねじ歯車WG2の回転を減速して出力する第2斜歯歯車HG2と、で構成されている。
 以下、前記流量制御弁CVの具体的な作動状態について、図16に基づいて説明する。なお、当該説明にあたって、図16では、弁体3の第1~第3開口部M1~M3については破線で示す一方、第1ハウジング11の第1~第3排出口E1~E3についてはハッチングを施して表示し、これら両者E1~E3,M1~M3が重合し連通した状態を塗り潰して表示することによって、便宜上、各排出口E1~E3と各開口部M1~M3の相対的な識別を図るものとする。
 すなわち、前記流量制御弁CVは、車両の運転状態に基づいて演算及び出力される前記図示外の電子コントローラからの制御電流によって電動モータ4が駆動制御されることにより、前記車両運転状態に応じて前記排出口E1~E3と前記各開口部M1~M3との相対関係が以下の状態となるように、弁体3の回転位置(位相)が制御されることとなる。
 図16(a)に示す第1状態では、第1~第3開口部M1~M3のいずれもが前記各排出口E1~E3に対して非連通状態となる。これにより、当該第1状態では、暖房熱交換器HT、オイルクーラOC及びラジエータRDのいずれに対しても冷却水が供給されないこととなる。
 前記第1状態の後、図16(b)に示す第2状態では、第1開口部M1のみが連通状態となり、第2、第3開口部M2,M3については非連通状態となる。これにより、当該第2状態では、かかる連通状態に基づいて、第1排出口E1から第1配管L1を通じて暖房熱交換器HTに対してのみ冷却水が供給され、第1排出口E1と第1開口部M1との重合量に基づいてその供給量が変化することとなる。
 前記第2状態の後、図16(c)に示す第3状態では、第3開口部M3のみが非連通状態となり、第1、第2開口部M1,M2については連通状態となる。これにより、当該第3状態では、かかる連通状態に基づいて、第1、第2排出口E1,E2から第1、第2配管L1,L2を通じてそれぞれ暖房熱交換器HT及びオイルクーラOCに対して冷却水が供給され、第1、第2排出口E1~E2と第1、第2開口部M1~M2との重合量に基づいてその供給量が変化することとなる。
 前記第3状態の後、図16(d)に示す第4状態では、第1~第3開口部M1~M3のいずれもが前記各排出口E1~E3に対して連通状態となる。これにより、かかる第4状態では、暖房熱交換器HT、オイルクーラOC及びラジエータRDのいずれに対しても冷却水が供給され、第1~第3排出口E1~E3と第1~第3開口部M1~M3との重合量に基づいてその供給量が変化することとなる。
 以下、本実施形態に係る前記流量制御弁CVの特徴的な作用効果について、図17に基づいて説明する。
 前述したように、前記従来の流量制御弁では、弁体のシール領域に型成形に伴う凸状のパーティングラインが突設されることで、該パーティングラインにシール部材が摺接し、該パーティングラインによってシール部材のシール面の損傷を招来してしまうおそれがあった。
 これに対し、本実施形態に係る前記流量制御弁CVでは、シール摺接面たる第1~第3シール摺接部D1~D3の外周面よりも低く窪む凹状の第1、第2段差部N1,N2を設け、該各段差部N1,N2内に第1、第2パーティングラインP1,P2を設けたことにより、前記各シール部材S1~S3のシール面S1a~S3aが各パーティングラインP1,P2を通過する(横切る)際、該各パーティングラインP1,P2に各シール面S1a~S3aが摺接する不都合が抑制され、該各シール面S1a~S3aの各パーティングラインP1,P2との摺接による損傷を抑制することができる。
 しかも、前記第1、第2段差部N1,N2については、径方向内側へ窪む凹部によって形成されていることから、前記第1、第2パーティングラインP1,P2をそれぞれ当該第1、第2段差部N1,N2に容易に配置することが可能となり、弁体3の良好な製造に供される。
 一方、前記第3パーティングラインP3に関しては、第1軸方向領域X1においては、当該第3パーティングラインP3が第1、第2シール摺接部D1,D2の境界に位置することによって、前記弁体3の正逆回動により、各シール面S1a,S2aが第3パーティングラインP3を通過する(横切る)不都合が抑制され、該各シール面S1a,S2aの第3パーティングラインP3との摺接による損傷を抑制することができる。一方、第2軸方向領域X2においては、当該第3パーティングラインP3が前記不使用領域UAに位置することによって、第3シール面S3aが第3パーティングラインP3と摺接する不都合が抑制され、該第3シール面S3aの第3パーティングラインP3との摺接による損傷を抑制することができる。
 また、前記第1、第2段差部N1,N2のいずれも、各シール摺接部D1~D3と滑らかな曲面を介して連接するように構成されていることから、各段差部N1,N2との境界部における角部の形成が抑制され、各シール部材S1~S3が各段差部N1,N2を通過する際の各シール面S1a~S3aの損傷をより効果的に抑制することができる。
 また、前記第1、第2段差部N1,N2では、それぞれの周方向幅が第1~第3シール部材S1~S3の周方向幅よりも小さく設定されていることから、図17に示すように、当該各シール部材S1~S3が第1、第2段差部N1,N2へと脱落してしまう不都合が抑制され、該各シール部材S1~S3の円滑な摺接を確保することができる。
 また、前記第1、第2段差部N1,N2は、その大半が第1~第3開口部M1~M3の周方向端に設けられていることから、該各開口部M1~M3を途中で分割することなく一体に形成することが可能となり、弁体3の良好な製造やコスト低減に供される。
 しかも、前記第1、第2パーティングラインP2,P3は、いずれも弁体3の回転軸方向の一端側から他端側へ向かって連続的に形成されていることから、弁体3の良好な製造に供される。
 また、本実施形態では、閉弁時における各シール面S1a~S3aのシール部Fが弁体3の回転軸方向における各開口部M1~M3の開口幅に対して内側となるように構成されていることから、各シール面S1a~S3aが各開口部M1~M3の開口縁との摺接によって損傷した場合でも、各シール面S1a~S3aによる良好なシール作用を維持することができる。
 さらに、前記第1~第3排出口E1~E3における各シール部材S1~S3の収容支持に際して、各排出口E1~E3の内側端に肉盛部19が設けられていることから、該肉盛部19によって、前記1ハウジング11の内周面と弁体3の外周面との隙間をより狭くすることが可能となり、各シール部材S1~S3の前記各排出口E1~E3の内側端からの突出量を抑制することができる。これにより、各シール部材S1~S3の変形が抑制され、該各シール部材S1~S3による安定したシール作用を確保することができると共に、前記変形によって生じ得る各シール部材S1~S3(各シール面S1a~S3a)の摩耗の抑制が可能となり、該各シール部材S1~S3の耐久性の向上にも供される。
 なお、前記肉盛部19の形成にあたっても、該肉盛部19が第1ハウジング11に一体に形成されていることで、該肉盛部19を別途設ける必要がなく、流量制御弁CVの良好な製造に供される。また、この際、鋳造にて前記肉盛部19を容易に形成でき、流量制御弁CVの製造をさらに良好なものとすることができる。また、第1ハウジング11を樹脂材で成形した場合も、射出成形により前記肉盛部19を容易に形成することができる。
 〔第2実施形態〕
 図19は、本発明に係る流量制御弁の第2実施形態を示したものであって、前記第1実施形態における第1、第2段差部N1,N2の構成を変更したものである。なお、この第1、第2段差部N1,N2及び後述する各段差部N1,N2の形成に伴う構成以外は、前記第1実施形態と同様である。
 すなわち、本実施形態では、前記第1、第2段差部N1,N2が、前記第1実施形態で例示した凹状(溝状)ではなく、前記各シール摺接部D1~D3の周方向において、各段差部N1,N2を挟む周方向前後の曲率を異ならしめることによって形成される段部によって構成され、該段部に前記第1、第2パーティングラインP1,P2が配置されている。
 かかる本実施形態の構成によっても、前記各シール部材S1~S3のシール面S1a~S3aが第1、第2パーティングラインP1,P2を通過する際、該各パーティングラインP1,P2に各シール面S1a~S3aが摺接する不都合が抑制され、該各シール面S1a~S3aの各パーティングラインP1,P2との摺接による損傷を抑制することができる。
 しかも、本実施形態の場合、前記第1、第2段差部N1,N2が、弁体3の外周面の曲率、すなわち第1、第2段差部N1,N2を挟む周方向前後の曲率を変化させることによって形成されているため、該各段差部N1,N2を別途形成する必要がなく、弁体3の良好な製造やコスト低減に供される。
 また、本実施形態に係る第1、第2段差部N1,N2が前記第1実施形態のような凹状ではなく、単なる段部によって構成されていることから、図19(b)に示すように、前記各シール部材S1~S3の通過時には、少なからず第1~第3シール面S1a~S3aの一部が第1、第2段差部N1,N2と摺接することとなる。ところが、この場合の摺接部分は前記各シール面S1a~S2aの外端縁となって、前記シール部Fとの摺接は回避できるため、当該各段差部N1,N2との摺接によるシール部Fの損傷についても抑制することができる。
 本発明は前記各実施形態に係る構成に限定されるものではなく、例えば前記各排出口E1~E3の大きさや前記各開口部M1~M3の形状、数量及び配置(周方向位置)、冷却水の通流方向(導入口10から各排出口E1~E3)等は勿論、前記各段差部N1,N2の数量(前記弁体3の成形に係る型分割数)や前記各パーティングラインP1,P2の周方向位置(配置)など、前述した本発明の作用効果を奏し得る形態であれば、流量制御弁CVの仕様等に応じて自由に変更することができる。
 特に、本発明は、弁体3における前記各シール部材S1~S3が摺接しない位置に前記各パーティングラインP1,P2が設けられていれば足り、前述の実施形態のように、前記各段差部N1,N2を設けて該各段差部N1,N2に前記各パーティングラインP1,P2を配置する形態のみならず、例えば弁体3を大径化するなどして得られる不使用領域に前記各パーティングラインP1,P2を配置する形態(前記第3パーティングラインP3が相当)も含まれる。
 なお、前記実施形態のように、前記各シール摺接部D1~D3に予め前記各段差部N1,N2を形成し該各段差部N1,N2に前記各パーティングラインP1,P2を配置するなど、該各パーティングラインP1,P2の一部を前記各シール部材S1~S3の摺接範囲に設けることで、前記不使用領域となる非シール摺接部の削減が可能となり、弁体3の小径化に供されるメリットがある。
 他方、前記不使用領域となる非シール摺接部上に前記各パーティングラインP1,P2を配置するなど、該各パーティングラインP1,P2の一部を前記各シール部材S1~S3の非摺接範囲に設けることにより、該各パーティングラインP1,P2の形成にあたって何らの加工も必要なく、弁体3の良好な製造に供されるメリットがある。
 また、前記各実施形態では、前記流量制御弁CVの適用の一例として冷却水の循環系への適用を例示して説明したが、当該流量制御弁CVは、冷却水のみならず、例えば潤滑油など様々な流体について適用可能であることは言うまでもない。
 以上説明した実施形態に基づく流量制御弁としては、例えば、以下に述べる態様のものが考えられる。
 すなわち、当該流量制御弁は、その1つの態様において、中空状に構成された弁体収容部に設けられ、流体の導入又は排出に供する主連通口と、前記弁体収容部と径方向から連通して当該弁体収容部内の流体の導入又は排出に供する複数の連通口とを有するハウジングと、前記ハウジング内に回転可能に支持され、その回転位置に応じて前記各連通口との重合状態が変化する複数の開口部を有する弁体と、前記ハウジングと前記弁体との間に設けられ、前記弁体の外周面に摺接することで該弁体と前記ハウジングとの径方向間をシールするシール部材と、を備え、前記弁体の周方向範囲のうち少なくとも前記各連通口と前記各開口部とが重合する範囲であって、前記シール部材が摺接する前記弁体の摺接面に、該摺接面に対して径方向内側へと低くなる段差部が設けられている。
 前記流量制御弁の好ましい態様において、前記段差部は、前記径方向内側へ窪む凹部によって形成されている。
 別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記凹部の周方向幅は、前記凹部を通過する前記シール部材の周方向幅よりも小さく設定されている。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記弁体の摺接面と前記凹部とは滑らかな曲面を介して連接している。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記凹部は、前記開口部の周方向端に設けられている。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記凹部は、前記弁体の回転軸方向において一端側から他端側へ向かって連続的に設けられている。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記段差部は、前記弁体の外周の曲率を変化させることによって形成されている。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記連通口と前記開口部とが重合していない状態における前記シール部材の摺接部が、前記弁体の回転軸方向における前記開口部の開口幅に対して内側となるように構成されている。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記開口部は、前記弁体の外周の異なる周方向位置に複数設けられ、該開口部のうち少なくとも一部が前記弁体の回転軸方向に重合して設けられている。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記連通口の内側端に、前記シール部材の摺動案内に供する肉盛部が設けられている。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記肉盛部は、前記ハウジングに一体に形成されている。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記弁体は、合成樹脂材料を射出成形することによって形成されている。
 また、別の観点から、流量制御弁は、その1つの態様において、ハウジングと該ハウジングの内部に回転可能に支持される弁体との径方向間に、前記弁体の外周面に摺接することによって前記ハウジングと前記弁体との径方向間をシールするシール部材を備え、前記ハウジングの内外を連通する連通口と前記弁体の内外を連通する開口部との重合状態を変化させることによって、前記連通口及び前記開口部を通じて前記弁体の内周側から流出、又は前記弁体の内周側へと流入する流体の流量を変化させる流量制御弁において、前記弁体の周方向範囲のうち少なくとも前記各連通口と前記各開口部とが重合する範囲であって、前記シール部材が摺接する前記弁体の摺接面に、該摺接面に対して径方向内側へと低くなる段差部が設けられている。
 また、別の観点から、流量制御弁は、その1つの態様において、中空状に構成された弁体収容部に設けられ、流体の導入又は排出に供する主連通口と、前記弁体収容部と径方向から連通して当該弁体収容部内の流体の導入又は排出に供する複数の連通口とを有するハウジングと、前記ハウジング内に回転可能に支持され、その回転位置に応じて前記各連通口との重合状態が変化する複数の開口部を有する弁体と、前記ハウジングと前記弁体との間に設けられ、前記弁体の外周面に摺接することで該弁体と前記ハウジングとの径方向間をシールするシール部材と、を備え、前記弁体における前記シール部材が摺接しない位置に、パーティングラインが設けられている。
 前記流量制御弁の好ましい態様において、前記パーティングラインのうち少なくとも一部は、前記弁体の周方向範囲のうち前記弁体の外周面と前記シール部材とが摺接する範囲に設けられている。
 別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記パーティングラインのうち少なくとも一部は、前記弁体の周方向範囲のうち前記弁体の外周面と前記シール部材とが摺接しない範囲に設けられている。
 さらに別の好ましい態様では、前記流量制御弁の態様のいずれかにおいて、前記弁体の外周のうち該弁体の外周面と前記シール部材とが摺接する面は、ほぼ球面状に形成され、該弁体の外周面と前記シール部材とが摺接しない面は、非球面状に形成されている。

Claims (17)

  1.  中空状に構成された弁体収容部に設けられ、流体の導入又は排出に供する主連通口と、前記弁体収容部と径方向から連通して当該弁体収容部内の流体の導入又は排出に供する複数の連通口とを有するハウジングと、
     前記ハウジング内に回転可能に支持され、その回転位置に応じて前記各連通口との重合状態が変化する複数の開口部を有する弁体と、
     前記ハウジングと前記弁体との間に設けられ、前記弁体の外周面に摺接することで該弁体と前記ハウジングとの径方向間をシールするシール部材と、
     を備え、
     前記弁体の周方向範囲のうち少なくとも前記各連通口と前記各開口部とが重合する範囲であって、前記シール部材が摺接する前記弁体の摺接面に、該摺接面に対して径方向内側へと低くなる段差部が設けられていることを特徴とする流量制御弁。
  2.  前記段差部は、前記径方向内側へ窪む凹部によって形成されていることを特徴とする請求項1に記載の流量制御弁。
  3.  前記凹部の周方向幅は、前記凹部を通過する前記シール部材の周方向幅よりも小さく設定されていることを特徴とする請求項2に記載の流量制御弁。
  4.  前記弁体の摺接面と前記凹部とは滑らかな曲面を介して連接していることを特徴とする請求項3に記載の流量制御弁。
  5.  前記凹部は、前記開口部の周方向端に設けられていることを特徴とする請求項4に記載の流量制御弁。
  6.  前記凹部は、前記弁体の回転軸方向において一端側から他端側へ向かって連続的に設けられていることを特徴とする請求項4に記載の流量制御弁。
  7.  前記段差部は、前記弁体の外周の曲率を変化させることによって形成されていることを特徴とする請求項1に記載の流量制御弁。
  8.  前記連通口と前記開口部とが重合していない状態における前記シール部材の摺接部が、前記弁体の回転軸方向における前記開口部の開口幅に対して内側となるように構成されていることを特徴とする請求項1に記載の流量制御弁。
  9.  前記開口部は、前記弁体の外周の異なる周方向位置に複数設けられ、該開口部のうち少なくとも一部が前記弁体の回転軸方向に重合して設けられていることを特徴とする請求項1に記載の流量制御弁。
  10.  前記連通口の内側端に、前記シール部材の摺動案内に供する肉盛部が設けられていることを特徴とする請求項1に記載の流量制御弁。
  11.  前記肉盛部は、前記ハウジングに一体に形成されていることを特徴とする請求項10に記載の流量制御弁。
  12.  前記弁体は、合成樹脂材料を射出成形することによって形成されていることを特徴とする請求項1に記載の流量制御弁。
  13.  ハウジングと該ハウジングの内部に回転可能に支持される弁体との径方向間に、前記弁体の外周面に摺接することによって前記ハウジングと前記弁体との径方向間をシールするシール部材を備え、
     前記ハウジングの内外を連通する連通口と前記弁体の内外を連通する開口部との重合状態を変化させることによって、前記連通口及び前記開口部を通じて前記弁体の内周側から流出、又は前記弁体の内周側へと流入する流体の流量を変化させる流量制御弁において、
     前記弁体の周方向範囲のうち少なくとも前記各連通口と前記各開口部とが重合する範囲であって、前記シール部材が摺接する前記弁体の摺接面に、該摺接面に対して径方向内側へと低くなる段差部が設けられていることを特徴とする流量制御弁。
  14.  中空状に構成された弁体収容部に設けられ、流体の導入又は排出に供する主連通口と、前記弁体収容部と径方向から連通して当該弁体収容部内の流体の導入又は排出に供する複数の連通口とを有するハウジングと、
     前記ハウジング内に回転可能に支持され、その回転位置に応じて前記各連通口との重合状態が変化する複数の開口部を有する弁体と、
     前記ハウジングと前記弁体との間に設けられ、前記弁体の外周面に摺接することで該弁体と前記ハウジングとの径方向間をシールするシール部材と、
     を備え、
     前記弁体における前記シール部材が摺接しない位置に、パーティングラインが設けられていることを特徴とする流量制御弁。
  15.  前記パーティングラインのうち少なくとも一部は、前記弁体の周方向範囲のうち前記弁体の外周面と前記シール部材とが摺接する範囲に設けられていることを特徴とする請求項14に記載の流量制御弁。
  16.  前記パーティングラインのうち少なくとも一部は、前記弁体の周方向範囲のうち前記弁体の外周面と前記シール部材とが摺接しない範囲に設けられていることを特徴とする請求項14に記載の流量制御弁。
  17.  前記弁体の外周のうち該弁体の外周面と前記シール部材とが摺接する面は、ほぼ球面状に形成され、該弁体の外周面と前記シール部材とが摺接しない面は、非球面状に形成されていることを特徴とする請求項16に記載の流量制御弁。
PCT/JP2016/054795 2015-03-03 2016-02-19 流量制御弁 WO2016140079A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017503416A JP6429988B2 (ja) 2015-03-03 2016-02-19 流量制御弁
CN201680013048.3A CN107407432B (zh) 2015-03-03 2016-02-19 流量控制阀
US15/555,278 US10927972B2 (en) 2015-03-03 2016-02-19 Flow rate control valve
DE112016001026.5T DE112016001026T5 (de) 2015-03-03 2016-02-19 Durchfluss-steuerventil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015040866 2015-03-03
JP2015-040866 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016140079A1 true WO2016140079A1 (ja) 2016-09-09

Family

ID=56848199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054795 WO2016140079A1 (ja) 2015-03-03 2016-02-19 流量制御弁

Country Status (5)

Country Link
US (1) US10927972B2 (ja)
JP (1) JP6429988B2 (ja)
CN (1) CN107407432B (ja)
DE (1) DE112016001026T5 (ja)
WO (1) WO2016140079A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056004A1 (ja) * 2016-09-21 2018-03-29 日立オートモティブシステムズ株式会社 流量制御弁および冷却システム
JP2020112116A (ja) * 2019-01-15 2020-07-27 トヨタ自動車株式会社 エンジン冷却装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018106208A1 (de) * 2017-06-28 2019-01-03 Yamada Manufacturing Co., Ltd. Steuerventil
US11168797B2 (en) 2017-08-24 2021-11-09 Vitesco Technologies USA, LLC Combination multi-port valve
DE102018214174A1 (de) 2017-08-24 2019-02-28 Continental Automotive Systems, Inc. Kombinationsventil mit mehreren anschlüssen
JP7037963B2 (ja) * 2018-03-08 2022-03-17 日立Astemo株式会社 制御弁
JP7146540B2 (ja) * 2018-09-13 2022-10-04 株式会社山田製作所 制御バルブ
KR20200051391A (ko) 2018-11-05 2020-05-13 현대자동차주식회사 다방향 전환 밸브의 실링부재 및 그를 포함하는 다방향 전환 밸브
CN111720591B (zh) * 2019-03-18 2024-06-28 罗伯特·博世有限公司 分配阀和制冷系统
JP7227050B2 (ja) * 2019-03-27 2023-02-21 株式会社山田製作所 制御バルブ
JP7344663B2 (ja) * 2019-03-27 2023-09-14 株式会社山田製作所 制御バルブ
WO2020202705A1 (ja) * 2019-03-29 2020-10-08 日立オートモティブシステムズ株式会社 制御弁
EP3730821B1 (de) * 2019-04-23 2023-07-05 Vitesco Technologies GmbH Mehrwegeventil
US11719350B2 (en) 2019-06-12 2023-08-08 Vitesco Technologies USA, LLC Coolant flow control module
JP7176482B2 (ja) * 2019-06-17 2022-11-22 株式会社デンソー バルブ装置
DE102020201190A1 (de) * 2019-10-14 2021-04-15 Vitesco Technologies GmbH Fluidventil
JP7419752B2 (ja) * 2019-11-07 2024-01-23 株式会社デンソー バルブ装置
KR20210098087A (ko) 2020-01-31 2021-08-10 현대자동차주식회사 유량제어밸브 장치
KR20210119659A (ko) * 2020-03-25 2021-10-06 현대자동차주식회사 유량제어밸브 장치
JP2022161085A (ja) * 2021-04-08 2022-10-21 株式会社デンソー バルブ装置
US11988290B2 (en) 2021-11-02 2024-05-21 Vitesco Technologies USA, LLC Coolant flow control valve
KR20230068549A (ko) * 2021-11-11 2023-05-18 현대자동차주식회사 제어 밸브 및 이를 포함하는 차량용 냉각 시스템
US11703135B2 (en) 2021-12-03 2023-07-18 Vitesco Technologies USA, LLC Multi-port coolant flow control valve assembly
US11885407B1 (en) * 2022-07-15 2024-01-30 Textron Innovations Inc. Fluid scavenge system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206169A (ja) * 1988-02-10 1989-08-18 Toto Ltd 弁構造
JPH0828725A (ja) * 1994-07-20 1996-02-02 Showa Tekko Kk 多方弁構造
JP2000130610A (ja) * 1998-10-22 2000-05-12 Time Engineering Co Ltd ボールバルブ用樹脂ボール及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130610A (ja) * 1999-11-10 2001-05-15 Toto Kizai Kk 蓋付き密閉容器
US6488050B1 (en) * 2001-07-10 2002-12-03 Humphrey Products Company Pneumatic valve assembly
FR2827359B1 (fr) * 2001-07-11 2004-11-05 Valeo Thermique Moteur Sa Vanne de commande pour un circuit de refroidissement d'un moteur thermique de vehicule automobile
US8671982B2 (en) * 2006-10-27 2014-03-18 Audi Ag Rotary slide valve, in particular for a coolant circuit, which has a plurality of branches, of an internal combustion engine; electromechanical assembly
DE102007038124B4 (de) * 2007-08-03 2016-01-21 Südmo Holding GmbH Doppelsitzventil zur Trennung von Medien
FR2956181B1 (fr) * 2010-02-09 2012-02-24 Defontaine Dispositif de vanne multivoies pour la circulation de fluides
JP5914176B2 (ja) 2012-05-31 2016-05-11 株式会社ミクニ ロータリ式バルブ
WO2014130280A1 (en) * 2013-02-19 2014-08-28 Illinois Tool Works Inc. Internal combustion engine fluid-metering valve assembly
WO2014148126A1 (ja) * 2013-03-21 2014-09-25 日立オートモティブシステムズ株式会社 流量制御弁
CN203309202U (zh) * 2013-06-20 2013-11-27 浙江工商职业技术学院 一种无潴留多路控制球阀
JP2016023704A (ja) * 2014-07-18 2016-02-08 株式会社不二工機 流路切換弁
CN104265933B (zh) * 2014-09-09 2017-02-01 华英伦科技(宁波)有限公司 一种全封闭防老化耐溶蚀长寿命球阀
DE102015218391A1 (de) * 2015-09-24 2017-03-30 Mahle International Gmbh Elektrisch angetriebenes Ventil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206169A (ja) * 1988-02-10 1989-08-18 Toto Ltd 弁構造
JPH0828725A (ja) * 1994-07-20 1996-02-02 Showa Tekko Kk 多方弁構造
JP2000130610A (ja) * 1998-10-22 2000-05-12 Time Engineering Co Ltd ボールバルブ用樹脂ボール及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056004A1 (ja) * 2016-09-21 2018-03-29 日立オートモティブシステムズ株式会社 流量制御弁および冷却システム
JP2018048683A (ja) * 2016-09-21 2018-03-29 日立オートモティブシステムズ株式会社 流量制御弁および冷却システム
US10968809B2 (en) 2016-09-21 2021-04-06 Hitachi Automotive Systems, Ltd. Flow control valve and cooling system
US11371415B2 (en) 2016-09-21 2022-06-28 Hitachi Automotive Systems, Ltd. Flow control valve and cooling system
JP2020112116A (ja) * 2019-01-15 2020-07-27 トヨタ自動車株式会社 エンジン冷却装置
JP7068205B2 (ja) 2019-01-15 2022-05-16 トヨタ自動車株式会社 エンジン冷却装置

Also Published As

Publication number Publication date
US10927972B2 (en) 2021-02-23
CN107407432A (zh) 2017-11-28
US20180051815A1 (en) 2018-02-22
JPWO2016140079A1 (ja) 2017-10-05
JP6429988B2 (ja) 2018-11-28
CN107407432B (zh) 2019-05-31
DE112016001026T5 (de) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6429988B2 (ja) 流量制御弁
JP6837260B2 (ja)
JP6501641B2 (ja) 流量制御弁
JP6846083B2 (ja) 弁及び冷却水の循環システム
US10458562B2 (en) Control valve
JP6581367B2 (ja) 流量制御弁
JP6254402B2 (ja) 流量制御弁
JP6557044B2 (ja) 流量制御弁
JP6630395B2 (ja) バルブ装置
WO2016157630A1 (ja) 冷媒制御バルブ装置
US11149627B2 (en) Cooling-water control valve device
US11248712B2 (en) Rotary control valve
US11300220B2 (en) Valve device
JP6742489B2 (ja)
JP2019078392A (ja) 流体制御弁装置
JP6784577B2 (ja) 制御弁
US20220298957A1 (en) Control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555278

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001026

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758773

Country of ref document: EP

Kind code of ref document: A1