WO2020202390A1 - アウタロータ型モータ - Google Patents

アウタロータ型モータ Download PDF

Info

Publication number
WO2020202390A1
WO2020202390A1 PCT/JP2019/014323 JP2019014323W WO2020202390A1 WO 2020202390 A1 WO2020202390 A1 WO 2020202390A1 JP 2019014323 W JP2019014323 W JP 2019014323W WO 2020202390 A1 WO2020202390 A1 WO 2020202390A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
end portion
fan
outer end
motor shaft
Prior art date
Application number
PCT/JP2019/014323
Other languages
English (en)
French (fr)
Inventor
直樹 松永
水口 博
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2019/014323 priority Critical patent/WO2020202390A1/ja
Priority to CN201980094499.8A priority patent/CN113615054A/zh
Priority to EP19922672.1A priority patent/EP3952070A4/en
Priority to JP2021511764A priority patent/JPWO2020202390A1/ja
Publication of WO2020202390A1 publication Critical patent/WO2020202390A1/ja
Priority to US17/485,954 priority patent/US20220014061A1/en
Priority to JP2023181125A priority patent/JP2024003017A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle

Definitions

  • the present invention relates to an outer rotor type motor.
  • Patent Document 1 describes an outer rotor type motor having a structure in which a rotor main body 31 is attached to a flange portion 43 integrally formed in the vicinity of a motor shaft 40, and an inner fan 70 is integrally attached to an upper surface of a bottom portion 33 of the rotor main body 31. It is disclosed.
  • An object of the present invention is to provide an outer rotor type motor having excellent strength and reliability.
  • the outer rotor type motor is an outer rotor type motor having a rotor in which a magnet is arranged on the inner peripheral surface of a cylindrical rotor yoke.
  • a motor shaft that rotatably supports the rotor and
  • a rotor mounting having a base end portion extending radially outward from the outer circumference of the motor shaft and an outer end portion formed radially outward from the outer circumference of the base end portion.
  • the outer end portion is formed at a position closer to the inner peripheral surface of the rotor yoke than the outer peripheral surface of the motor shaft, and the rotor is attached to the outer end portion.
  • the centrifugal force (load) that can be generated by the rotation of the rotor is generated by forming the outer end portion to which the rotor is mounted at a position closer to the inner peripheral surface of the rotor yoke than the outer peripheral surface of the motor shaft. It is possible to provide an outer rotor type motor with reduced influence and excellent strength reliability.
  • the figure explaining the installation of a fan The figure which shows typically the state which the rotor yoke is attached to the outer end part.
  • FIG. 1 is a cross-sectional view showing a configuration of an outer rotor type motor according to the first embodiment.
  • the outer rotor type motor 100 is an outer rotor type motor having a rotor 30 in which a plurality of magnets 35 are arranged on an inner peripheral surface of a cylindrical rotor yoke 31.
  • the motor shaft 10 is rotatably supported by bearings 82 and 84 provided in the motor housing 60.
  • the plurality of magnets 35 arranged on the inner peripheral surface of the rotor yoke 31 are arranged so as to form different magnetic poles alternately in the circumferential direction.
  • the rotor mounting member 20 is integrally formed with the motor shaft 10.
  • the rotor mounting member 20 has a base end portion 22 extending radially outward from the outer circumference of the motor shaft 10 and an outer end portion formed radially outward from the outer circumference of the base end portion. 24 and.
  • the outer end portion 24 (yoke mounting member 37) of the rotor mounting member 20 is located closer to the inner peripheral surface of the rotor yoke 31 (first distance (R1)) than the outer peripheral surface (cylinder body 34) of the motor shaft 10. > 0.5 x second distance (R2)), and the rotor 30 is attached to the outer end 24.
  • the motor shaft 10 rotatably supports the rotor 30, and the rotor 30 attached to the outer end portion 24 rotates by the rotation of the motor shaft 10.
  • the outer end portion 24 to which the rotor 30 is attached at a position closer to the inner peripheral surface (cylindrical body 34) of the cylindrical rotor yoke 31 than the outer peripheral surface of the motor shaft 10, it can be generated by the rotation of the rotor. It is possible to reduce the influence of centrifugal force (load) and provide an outer rotor type motor with excellent strength reliability.
  • FIG. 2 is an enlarged view of the structure of the rotor mounting member 20 shown in part A of FIG. 1, and the member thickness (thickness) of the base end portion 22 on the motor shaft 10 side is TH1 and is outward in the radial direction.
  • the member thickness (thickness) of the base end portion 22 on the outer end portion 24 side extending to is TH2.
  • the base end portion 22 is formed so that the thickness of the motor shaft 10 in the axial direction (hereinafter, also simply referred to as the axial direction) gradually decreases from the outer circumference of the motor shaft 10 toward the outer outer end portion 24 in the radial direction. Has been done.
  • the outer end portion 24 By forming the outer end portion 24 from the outer circumference of the base end portion 22 formed so as to ensure rigidity and prevent stress concentration from the outer circumference in the radial direction, the outer end portion 24 can be formed on the motor shaft. It is possible to form the rotor yoke 31 at a position closer to the inner peripheral surface (cylindrical body 34) of the cylindrical rotor yoke 31 than the outer peripheral surface of 10, whereby the centrifugal force (load) that can be generated by the rotation of the rotor 30 can be formed. It is possible to provide an outer rotor type motor with reduced influence and excellent strength reliability.
  • step portions 26 having different wall thicknesses are formed between the base end portion 22 and the outer end portion 24 along the axial direction of the motor shaft 10, and an opening of the rotor yoke 31 is formed.
  • the rotor 30 is attached to the outer end portion 24 by a yoke attachment member 37 (for example, a bolt) in a state where the rotor 30 is fitted to the step portion 26.
  • a yoke attachment member 37 for example, a bolt
  • the outer end portion is provided with the rotor 30 mounted.
  • the load acting on the 24 can be distributed to the base end 22 side.
  • the cylindrical rotor yoke 31 has a joint portion 32 formed so as to overlap the outer end portion 24, a tubular portion 34 formed so that a magnet 35 can be arranged along the inner peripheral surface, and a joint portion 32 and a tubular portion 34.
  • a plurality of curved portions are formed between the two, and the joint portion 38 has a joint portion 38 for joining the joint portion 32 and the tubular portion 34 via the plurality of curved portions.
  • the outer end portion 24 of the rotor mounting member 20 has a portion in contact with the coupling portion 32 formed in a plane in a direction intersecting the axial direction of the motor shaft 10 (hereinafter, also referred to as a vertical direction), and the rotor yoke.
  • the connecting portion 32 of 31 is formed in a plane shape so as to overlap the outer end portion 24 along the vertical direction.
  • the tubular portion 34 of the rotor yoke 31 is formed in a cylindrical shape, and a plurality of magnets 35 having magnetic poles alternately formed in the circumferential direction can be arranged on the inner peripheral surface of the tubular portion 34. ..
  • a plurality of curved portions 33, 36 are formed between the joint portion 32 and the tubular portion 34, and the joint portion 38 is formed with the joint portion 32 via the plurality of curved portions 33, 36. It is formed so as to join the cylinder portion 34 and the cylinder portion 34.
  • the joint portion 38 shows an example in which two curved portions 33 and 36 are provided as a plurality of curved portions, but the configuration example of the curved portion is not limited to this example, and two or more curved portions may be formed. It is possible.
  • the curved portion 36 (hereinafter, also referred to as “first curved portion”) is formed along the axial direction of the motor shaft 10 with the coupling portion 32 formed in the vertical direction with respect to the axial direction of the motor shaft 10 (motor).
  • the joint portion 38 is formed so as to be curved at a predetermined first angle (obtuse angle) toward the tubular portion 34 side with the tubular portion 34 formed substantially parallel to the axial direction of the shaft 10. ing.
  • the curved portion 33 joins the joint portion 38 curved at the first angle (obtuse angle) by the curved portion 36 (first curved portion) to the tubular portion 34. It is formed so as to be curved at a predetermined second angle (obtuse angle).
  • the first angle and the second angle are both obtuse angles, and can be set based on the shape design of the rotor yoke 31 (structure of the coupling portion 32, the tubular portion 34, etc.). That is, based on the structure of the joint portion 32, the tubular portion 34, etc., the first angle and the second angle of the joint portion 38 are set to the same angle, or the first angle is set to be larger than the second angle. Alternatively, the first angle can be set to be smaller than the second angle.
  • the rotor yoke 31 is formed as a cylindrical shape in which one opening of the tubular portion 34 is partially closed.
  • the stator 90 has a stator core having a core body having a substantially ring shape, and a plurality of coils wound around the stator core.
  • the stator 90 is formed of a motor housing 60 by a stator fastening member 92. It is fixed inside. With the stator 90 fixed inside the motor housing 60, the stator 90 and the magnet 35 arranged on the inner peripheral surface of the tubular portion 34 face each other.
  • a drive current is supplied to the coil of the stator 90 from an external motor control device (not shown) via a cable 93 and an electrical connection portion 95, and the rotor 30 is rotated by a magnetic field generated by the drive current. Further, the rotation information of the motor shaft 10 detected by the rotation detection element (not shown) can be transmitted to an external control device.
  • FIG. 7 is a diagram schematically showing a state in which the rotor yoke 31 is attached to the outer end portion 24 of the rotor mounting member 20, and the rotor yoke 31 is formed with a through hole 39B through which the yoke mounting member 37 (for example, a bolt) is inserted. ing.
  • the through hole 39B has a hole diameter larger than the diameter (screw diameter) of the yoke mounting member 37.
  • the yoke mounting member 37 and the first engaging portion 29B (screw hole) formed in the outer end portion 24 are engaged with each other, and the rotor yoke 31 is mounted on the outer end portion 24.
  • ST81 in FIG. 8 is a diagram showing a state in which the rotor mounting member 20 (base end portion 22, outer end portion 24) formed on the motor shaft 10 is viewed from the direction of arrow 71 in FIG.
  • the outer end portion 24 is engaged with a first engaging portion 29B (screw hole) capable of engaging with a yoke mounting member 37 for mounting the rotor yoke 31 (rotor 30) and a fan mounting member 44 for mounting the fan 40.
  • the second engaging portion 29A (screw hole) that can be fitted is formed concentrically.
  • ST82 in FIG. 8 is a diagram showing a state in which the rotor yoke 31 is attached to the outer end portion 24 as viewed from the direction of arrow 71 in FIG.
  • An opening 32B is formed in the center of the rotor yoke 31, and the rotor yoke 31 (rotor 30) is attached to the outer end portion 24 with the step portion 26 (FIG. 2) fitted in the opening 32B.
  • the through hole 39A is formed so that the fan mounting member 44 for mounting the fan 40 to the outer end portion 24 inserts the rotor yoke 31, and the yoke mounting member 37 is inserted into the rotor yoke 31.
  • the through hole 39B (FIG.
  • the through hole 39A has a hole diameter larger than the diameter (screw diameter) of the fan mounting member 44.
  • the outer rotor type motor 100 has a fan 70 (external fan) and a fan 40 (internal fan) as a cooling mechanism utilizing the rotational driving force of the motor.
  • the fan 70 (external fan) is attached to the motor shaft 10 by a fastening member such as a key. Further, the fan 40 (internal fan) is formed concentrically with the rotor yoke 31, and the fan 40 is attached to the outer end portion 24 with the rotor yoke 31 attached between the fan 40 and the outer end portion 24. Be done. The fan 40 is attached to the outer end portion 24 by a fan attachment member 44 such as a bolt.
  • the motor cover 65 On the side of the outer rotor type motor 100, the motor cover 65 is attached to the motor housing 60 by a cover fastening member 66 (for example, a bolt), and the fan 70 (external fan) is covered by the motor cover 65. ..
  • a cover fastening member 66 for example, a bolt
  • the fan 70 external fan
  • the fan 40 (internal fan) and the fan 70 (external fan) rotate due to the rotation of the motor shaft 10
  • the fan 40 (internal fan) circulates the air inside the outer rotor type motor 100 to circulate the rotor 30, the stator 90, and the like. Cooling.
  • the fan 70 (external fan) sends the air taken in from the intake opening (not shown) provided in the motor cover 65 to the outer wall (motor housing 60) side of the outer rotor type motor 100, and the outer rotor type motor 100. Cool the outer wall.
  • the air (external cooling air) sent by the fan 70 (external fan) cools the outer wall of the motor 100, and the heat generated between the internal circulating air circulated inside by the fan 40 (internal fan) and the outer wall. Promote exchange.
  • FIG. 5 is a diagram schematically showing a state in which the fan 40 is mounted on the outer end portion 24 of the rotor mounting member 20, and the fan mounting member 44 is attached to the rotor yoke 31 arranged between the outer end portion 24 and the fan 40.
  • a through hole 39A through which (for example, a bolt) is inserted is formed.
  • the fan mounting member 44 and the second engaging portion 29A (screw hole: FIG. 8) formed on the outer end portion 24 are engaged with each other, and the fan 40 is mounted on the outer end portion 24.
  • ST61 in FIG. 6 is a diagram showing a state in which the fan 40 attached to the outer end portion 24 is viewed from the direction of arrow 51 in FIG.
  • ST62 in FIG. 6 is a diagram showing a state in which the fan 40 alone is viewed from the direction of arrow 51 in FIG.
  • the fan 40 is formed with a through hole 46 through which the fan mounting member 44 is inserted.
  • the through hole 46 has a hole diameter larger than the diameter (screw diameter) of the fan mounting member 44.
  • the fan 40 is formed with a notch 47 formed larger than the outer diameter of the yoke mounting member 37 so as to avoid contact with the yoke mounting member 37 that mounts the rotor yoke 31 to the outer end portion 24. ing.
  • the rotor yoke 31 is attached to the outer end portion 24 by the yoke attachment member 37, and the fan 40 is further attached to the outer end portion 24 by the fan attachment member 44.
  • the notch 47 prevents the yoke attachment member 37 from coming into contact with the fan 40.
  • the yoke mounting member 37 and the fan 40 are not in contact with each other, if the fan mounting member 44 is removed with the rotor yoke 31 mounted, only the fan 40 can be removed from the outer end portion 24. That is, it becomes possible to remove only the fan 40 from the outer end portion 24 of the rotor mounting member 20 while maintaining the state in which the rotor yoke 31 (rotor 30) is attached to the outer end portion 24 of the rotor mounting member 20. , It becomes possible to improve maintainability in the outer rotor type motor.
  • the fan 40 has a fan main body 41 and a plurality of blade portions 42 arranged in the circumferential direction. With the fan 40 attached to the outer end portion 24, the blade portion 42 of the fan 40 is arranged in the space formed between the joint portion 38 curved by the plurality of curved portions 33 and 36 and the fan main body 41. To.
  • the joint portion 38 has a structure in which the joint portion 32 is linearly extended in the vertical direction without providing a curved portion, the space between the joint portion and the fan body 41 becomes narrow, and the fan The size of the blade is limited.
  • the size of the blade portion is configured in the same manner as the blade portion 42 of FIG. 1, the mounting position of the fan 40 shifts to the right side of the paper surface of FIG. 1 along the axial direction of the motor shaft 10, and the cooling mechanism becomes large. ..
  • the outer rotor type motor 100 By arranging the blade portion 42 in the space formed by bending the joint portion 38 by the plurality of curved portions 33 and 36, the outer rotor type motor 100 with a cooling mechanism utilizing the rotational driving force of the motor is further miniaturized. be able to. Further, since the joint portion 38 is curved by the plurality of curved portions 33 and 36, as shown in FIG. 1, the space in which the blade portion 42 can be arranged can be expanded, and the space can be further reduced while being made smaller. The outer rotor type motor 100 can be cooled by using the fan 40 having a larger area of the blade portion 42 and improved cooling performance.
  • FIG. 3 is a cross-sectional view showing the configuration of the outer rotor type motor 100 according to the second embodiment.
  • a fan 70 exital fan
  • a fan 40 internal fan
  • FIG. 3 it is also possible to arrange the fan 70 (external fan) on one end side of the motor shaft 10 and arrange the fan 40 (internal fan) on the other end side of the motor shaft 10.
  • the arrangement direction of the rotor mounting member 20 and the rotor 30 is opposite to the arrangement direction of FIG. 1, but the same effect as that of the outer rotor type motor 100 in the first embodiment can be obtained in this embodiment as well. Can be done.
  • FIG. 4 is a cross-sectional view showing the configuration of the outer rotor type motor 100 according to the third embodiment.
  • a configuration example of the outer rotor type motor 100 in which the rotor mounting member 20 is integrally formed with the motor shaft 10 by casting or machining has been described. It is also possible to configure it as a separate component from the motor shaft 10.
  • a tapered portion 11A is provided on the motor shaft 10
  • an engaging hole 11B that engages with the tapered portion 11A is provided on the rotor mounting member 20 side, and the tapered portion 11A and the tapered portion 11A are provided.
  • the rotor mounting member 20 may be positioned at a predetermined position on the motor shaft 10 by the engaging hole 11B.
  • the fan 70 (external fan) is arranged on one end side of the motor shaft 10 and the fan 40 (internal fan) is arranged on the other end side of the motor shaft 10 is shown.
  • the fan 70 (external fan) and the fan 40 (internal fan) may be arranged on one end side of the motor shaft 10, and in the present embodiment as well as the outer rotor type motor 100 in the first embodiment. The action effect of can be obtained.
  • the outer rotor type motor of the above embodiment has a rotor (for example, 30 in FIG. 1) in which a magnet (for example, 35 in FIG. 1) is arranged on the inner peripheral surface of a cylindrical rotor yoke (for example, 31 in FIG. 1).
  • An outer rotor type motor (for example, 100 in FIG. 1).
  • a motor shaft (for example, 10 in FIG. 1) that rotatably supports the rotor (30) and A base end portion (for example, 22 in FIG. 1) extending radially outward from the outer circumference of the motor shaft (10) and a base end portion (22) extending radially outward from the outer circumference.
  • a rotor mounting member eg, 20 in FIG.
  • the outer end portion (24) is formed at a position closer to the inner peripheral surface of the rotor yoke (31) than the outer peripheral surface of the motor shaft (10).
  • the rotor (10) is attached to the outer end portion (24).
  • the rotor 30 is mounted at a position closer to the inner peripheral surface of the cylindrical rotor yoke 31 than the outer peripheral surface of the motor shaft 10. It is possible to reduce the influence of the centrifugal force (load) that can be generated by the rotation of 30 and provide an outer rotor type motor having excellent strength reliability.
  • the base end portion (22) is directed toward the outer end portion (24) in the radial direction from the outer circumference of the motor shaft (10). It is formed so that the wall thickness in the axial direction of the is gradually reduced.
  • the rotor mounting member 20 is formed so that the axial wall thickness of the motor shaft gradually decreases toward the outer outer end portion in the radial direction.
  • the rigidity of the base portion of the outer end portion 24 to which the rotor 30 is attached is ensured, and the rotation of the rotor 30 causes the base end portion 22 to be located on the fixed end side (the portion on the motor shaft 10 side). It becomes possible to disperse the load (stress concentration) that can occur locally.
  • the outer end portion By forming the outer end portion in the radial direction from the outer circumference of the base end portion formed so as to ensure rigidity and prevent stress concentration, the outer end portion is formed on the outer peripheral surface of the motor shaft. It is possible to form the rotor yoke at a position closer to the inner peripheral surface of the cylindrical rotor yoke, which reduces the influence of centrifugal force (load) that may occur due to the rotation of the rotor and has excellent strength reliability. It becomes possible to provide an outer rotor type motor.
  • a step portion (for example, 26 in FIG. 2) is formed between the base end portion and the outer end portion along the axial direction of the motor shaft.
  • the rotor (30) is attached to the outer end portion (24) in a state where the opening of the rotor yoke (31) is fitted to the step portion (26).
  • the rotor 30 (rotor yoke 31) and the rotor mounting member 20 can be easily positioned by in-row coupling (coupling by stepped fitting) using the step portion, and at the time of assembly. It becomes possible to reduce the error of the axial center in. Further, since the contact area between the rotor yoke 31 and the outer end portion 24 and the base end portion 22 of the rotor mounting member 20 can be increased by using the in-row coupling, the outer end portion is provided with the rotor 30 mounted. The load acting on the 24 can be dispersed to the base end portion 22 side.
  • the cylindrical rotor yoke (31) is A coupling portion (for example, 32 in FIG. 1) formed so as to overlap the outer end portion along a vertical direction intersecting the axial direction of the motor shaft.
  • a tubular portion (for example, 34 in FIG. 1) formed so that the magnet can be arranged along the inner peripheral surface, and
  • a plurality of curved portions (for example, 33 and 36 in FIG. 1) are formed between the joint portion (32) and the tubular portion (34), and the said via the plurality of curved portions (33, 36). It has a joint portion (for example, 38 in FIG. 1) that joins the joint portion (32) and the tubular portion (34).
  • the curved angle at each curved portion can be smoothly formed at an blunt angle between the coupling portion 32 and the tubular portion 34.
  • the stress concentration inside the rotor yoke 31 can be further relaxed as compared with the case where the joint portion 32 and the tubular portion 34 are bent at a right angle.
  • the outer rotor type motor of the above embodiment further includes a fan (for example, 40 in FIG. 1) formed concentrically with the rotor yoke (31).
  • the fan (40) is attached to the outer end portion (24) with the rotor yoke (31) attached between the fan (40) and the outer end portion (24).
  • the outer end portion (24) has a first engaging portion (for example, 37) that can be engaged with a yoke mounting member (for example, 37 in FIGS. 7 and 8) for mounting the rotor yoke. , 29B in FIG. 8) and a second engaging portion (for example, 29A in FIG. 8) that can engage with the fan mounting member (44) for mounting the fan (40) are formed concentrically.
  • a first engaging portion for example, 37
  • a yoke mounting member for example, 37 in FIGS. 7 and 8
  • a second engaging portion for example, 29A in FIG. 8
  • the rotor yoke 31 and the fan 40 are concentrically mounted on the outer end portion 24 of the rotor mounting member 20, so that the fan mounting portion is provided as a structure for mounting the fan 40. It is not necessary to separately provide the outer end portion 24, and the outer end portion 24 (diametrical dimension of the outer end portion 24) can be miniaturized.
  • the rotor yoke (31) has a through hole (for example, 39B in FIG. 7) through which the rotor mounting member (37) is inserted and a through hole through which the fan mounting member (44) is inserted.
  • the holes (eg, 39A in FIG. 5) are formed concentrically.
  • the outer rotor type motor of the configuration 7 it is not necessary to consider the arrangement of the engaging portion for mounting the fan 40 to the rotor yoke 31 and the restrictions on the cross-sectional shape in the shape design of the rotor yoke 31.
  • shape design such that a bottom portion in which the coupling portion 32 of the rotor yoke 31 is linearly extended must be formed in consideration of engagement with the fastening member. Can be received.
  • the fan 40 is attached to the outer end portion 24 of the rotor attachment member 20
  • a plurality of curved portions 33 and 36 can be formed between the coupling portion 32 and the tubular portion 34. This makes it possible to make the shape of the rotor yoke 31 a shape capable of relaxing stress concentration.
  • the cylindrical rotor yoke (31) is A coupling portion (for example, 32 in FIG. 1) formed so as to overlap the outer end portion along a vertical direction intersecting the axial direction of the motor shaft.
  • a tubular portion (for example, 34 in FIG. 1) formed so that the magnet can be arranged along the inner peripheral surface, and
  • a plurality of curved portions (for example, 33 and 36 in FIG. 1) are formed between the joint portion (32) and the tubular portion (34), and the said via the plurality of curved portions (33, 36). It has a joint portion (for example, 38 in FIG. 1) that joins the joint portion (32) and the tubular portion (34).
  • the blade portion (for example, 42 in FIG. 1) of the fan (40) is formed between the joint portion (38) curved by the plurality of curved portions (33, 36) and the fan (40). Placed in space.
  • the joint portion (38) is formed as the plurality of curved portions.
  • a first curved portion (for example, 36 in FIG. 1) formed so that the portion (38) is curved toward the tubular portion side at a first angle.
  • a second curved portion formed so as to be curved at a second angle so as to join the joint portion (38) curved at the first angle by the first curved portion (36) to the tubular portion (34). (For example, 33 in FIG. 1) and.
  • the blade portions 42 are arranged in the space formed by the curved joint portion 38, so that the outer rotor type motor with a cooling mechanism (fan) utilizing the rotational driving force of the motor is used.
  • the motor can be made smaller.
  • the joint portion 38 is curved by the plurality of curved portions 33 and 36, the space in which the blade portion 42 can be arranged can be expanded, and the area of the blade portion 42 can be further reduced while being made smaller. It is possible to cool the outer rotor type motor 100 by using the fan 40 having a large area and improved cooling performance.
  • the fan (40) is formed so as to avoid contact with the yoke mounting member (37) that mounts the rotor yoke (31) to the outer end portion (24).
  • a notch eg, 47 in FIG. 6) is formed.
  • the outer rotor type motor of the configuration 10 only the fan 40 is removed from the outer end portion 24 of the rotor mounting member 20 while maintaining the state in which the rotor yoke 31 (rotor 30) is attached to the outer end portion 24 of the rotor mounting member 20. This makes it possible to improve maintainability in the outer rotor type motor.
  • the outer end portion is When the distance from the center of the motor shaft to the radial center of the outer end is the first distance, and the distance from the center of the motor shaft to the outer peripheral surface of the yoke is the second distance. It is installed at a position that satisfies the relationship of the first distance> 0.5 ⁇ the second distance.
  • the position where the outer end portion 24 to which the rotor 30 is attached is closer to the inner peripheral surface of the cylindrical rotor yoke 31 than the outer peripheral surface of the motor shaft 10 (first distance> 0.
  • first distance> 0. By forming the motor at 5 ⁇ 2nd distance), it is possible to reduce the influence of centrifugal force (load) that may occur due to the rotation of the rotor 30 and to provide an outer rotor type motor having excellent strength reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

円筒状のロータヨークの内周面に磁石が配置されたロータを有するアウタロータ型モータは、ロータを回転可能に支持するモータ軸と、モータ軸の外周から径方向の外方へ向かって延設された基端部と、基端部の外周から径方向の外方へ向かって形成された外端部と、を有するロータ取付部材と、を備える。外端部は、モータ軸の外周面に比べて、ロータヨークの内周面に近い位置に形成され、ロータは外端部に取付けられる。

Description

アウタロータ型モータ
 本発明は、アウタロータ型モータに関する。
 特許文献1には、モータ軸40の近傍に一体形成されたフランジ部43にロータ本体31を取付けると共に、ロータ本体31の底部33の上面にインナーファン70を一体的に取付ける構造のアウタロータ型モータが開示されている。
特許第5931460号明細書
 しかしながら、特許文献1の構造では、ロータ本体31の外端側(筒部の内側)に設けられたマグネット35による遠心力(荷重)がモータ軸の近傍に形成されたフランジ部43に作用するため、フランジ部43における強度上の信頼性が低下し得るという課題を有していた。
 本発明は強度信頼性に優れたアウタロータ型モータを提供することを目的とする。
 本発明の一つの態様のアウタロータ型モータは、円筒状のロータヨークの内周面に磁石が配置されたロータを有するアウタロータ型モータであって、
 前記ロータを回転可能に支持するモータ軸と、
 前記モータ軸の外周から径方向の外方へ向かって延設された基端部と、前記基端部の外周から径方向の外方へ向かって形成された外端部と、を有するロータ取付部材と、を備え、
 前記外端部は、前記モータ軸の外周面に比べて、前記ロータヨークの内周面に近い位置に形成され、前記ロータは前記外端部に取付けられていることを特徴とする。
 本発明によれば、ロータが取付けられる外端部を、モータ軸の外周面に比べて、ロータヨークの内周面に近い位置に形成することにより、ロータの回転により生じ得る遠心力(荷重)の影響を低減し、強度信頼性に優れたアウタロータ型モータを提供することが可能になる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
第1実施形態に係るアウタロータ型モータの構成を示す断面図。 ロータ取付部材の構造を示す拡大図。 第2実施形態に係るアウタロータ型モータの構成を示す断面図。 第3実施形態に係るアウタロータ型モータの構成を示す断面図。 外端部にファンを取付ける状態を模式的に示す図。 ファンの取付けを説明する図。 外端部にロータヨークを取付ける状態を模式的に示す図。 ロータヨークの取付けを説明する図。
 以下、図面を参照しながら本発明の実施形態について説明する。この実施形態に記載されている構成要素はあくまで例示であり、以下の実施形態によって限定されるわけではない。
 [第1実施形態]
 (アウタロータ型モータの構成)
 図1は第1実施形態に係るアウタロータ型モータの構成を示す断面図である。図1に示すように、アウタロータ型モータ100は、円筒状のロータヨーク31の内周面に複数の磁石35が配置されたロータ30を有するアウタロータ型モータである。モータ軸10は、モータハウジング60内に設けられた軸受け82及び84により回転自在の支持されている。ロータヨーク31の内周面に配置される複数の磁石35は、周方向に交互に異なる磁極を形成するように配置されている。
 本実施形態において、ロータ取付部材20はモータ軸10と一体に形成されている。ロータ取付部材20は、モータ軸10の外周から径方向の外方へ向かって延設された基端部22と、基端部の外周から径方向の外方へ向かって形成された外端部24と、を有する。
 ここで、モータ軸10の中心から外端部24部の径方向の中央部(後述のヨーク取付部材37)までの距離を第1距離(=D1/2=R1)、モータ軸10の中心からロータヨーク31の外周面までの距離を第2距離(=D2/2=R2)とした場合、外端部24は、第1距離(R1)>0.5×第2距離(R2)の関係を満たす位置に形成されている。
 すなわち、ロータ取付部材20の外端部24(ヨーク取付部材37)は、モータ軸10の外周面(筒体34)に比べて、ロータヨーク31の内周面に近い位置(第1距離(R1)>0.5×第2距離(R2))に形成されおり、ロータ30は外端部24に取付けられる。モータ軸10はロータ30を回転可能に支持しており、外端部24に取付けられているロータ30はモータ軸10の回転により回転する。
 ロータ30が取付けられる外端部24を、モータ軸10の外周面に比べて、円筒状のロータヨーク31の内周面(筒体34)に近い位置に形成することにより、ロータの回転により生じ得る遠心力(荷重)の影響を低減し、強度信頼性に優れたアウタロータ型モータを提供することが可能になる。
 (ロータ取付部材20の詳細構造)
 図2は、図1のA部に示すロータ取付部材20の構造の拡大図であり、モータ軸10側における基端部22の部材厚さ(肉厚)はTH1であり、径方向の外方に延びる外端部24側における基端部22の部材厚さ(肉厚)はTH2である。基端部22は、モータ軸10の外周から径方向の外方の外端部24へ向かって、モータ軸10の軸方向(以下、単に軸方向ともいう)の肉厚が漸減するように形成されている。ロータが取付けられる外端部24の基礎となる部分の剛性を確保しつつ、ロータ30の回転により基端部22の固定端側の部位(モータ軸10側の部位)に局所的に生じ得る応力集中を分散させることが可能になる。
 剛性が確保され、かつ、応力集中が生じないように形成された基端部22の外周から径方向の外方へ向かって外端部24を形成することにより、外端部24を、モータ軸10の外周面に比べて、円筒状のロータヨーク31の内周面(筒体34)に近い位置に形成することが可能になり、これにより、ロータ30の回転により生じ得る遠心力(荷重)の影響を低減し、強度信頼性に優れたアウタロータ型モータを提供することが可能になる。
 図2に示すように、基端部22と外端部24との間には、モータ軸10の軸方向に沿って、肉厚の異なる段部26が形成されており、ロータヨーク31の開口部が段部26に嵌合した状態で、ロータ30は外端部24にヨーク取付部材37(例えば、ボルト)によって取付けられる。段部26を用いたインロー結合することで、ロータ30(ロータヨーク31)とロータ取付部材20との位置決めが容易になり、組み立て時における軸心の誤差を低減することが可能になる。また、インロー結合とすることにより、ロータヨーク31と、ロータ取付部材20の外端部24及び基端部22と、の接触面積を増やすことができるため、ロータ30が取付けられた状態で外端部24に作用する荷重を基端部22側に分散することが可能になる。
 (ロータヨーク31の構造)
 説明を図1に戻し、ロータヨーク31の断面構造を説明する。円筒状のロータヨーク31は、外端部24と重なり合うように形成された結合部32と、内周面に沿って磁石35を配置可能に形成された筒部34と、結合部32と筒部34との間に複数の湾曲部が形成され、複数の湾曲部を介して、結合部32と筒部34とを接合する接合部38と、を有する。
 ロータ取付部材20の外端部24は、モータ軸10の軸方向に対して交差する方向(以下、鉛直方向ともいう)において、結合部32と接触する部分が平面状に形成されており、ロータヨーク31の結合部32は、鉛直方向に沿って、外端部24と重なり合うように平面状に形成されている。また、ロータヨーク31の筒部34は円筒状に形成されており、筒部34の内周面には、周方向に交互に異なる磁極が形成された複数の磁石35が配置可能に構成されている。
 図1に示す例では、結合部32と筒部34との間に複数の湾曲部33、36が形成されており、接合部38は、複数の湾曲部33、36を介して、結合部32と筒部34とを接合するように形成されている。接合部38は、複数の湾曲部として、2つの湾曲部33、36を有する例を示しているが、湾曲部の構成例は、この例に限られず、2以上の湾曲部を形成することも可能である。
 湾曲部36(以下、「第1湾曲部」ともいう)は、モータ軸10の軸方向に対して鉛直方向に形成されている結合部32と、モータ軸10の軸方向に沿って形成(モータ軸10の軸方向に対して略平行に形成)されている筒部34との間で、接合部38を筒部34側に向かって所定の第1角度(鈍角)で湾曲するように形成されている。
 また、湾曲部33(以下、「第2湾曲部」ともいう)は、湾曲部36(第1湾曲部)により第1角度(鈍角)で湾曲した接合部38を筒部34に接合するように所定の第2角度(鈍角)で湾曲するように形成されている。
 湾曲部36、33において、第1角度及び第2角度は、いずれも鈍角であり、ロータヨーク31の形状設計(結合部32、筒部34等の構造)に基づいて設定することが可能である。すなわち、結合部32、筒部34等の構造に基づいて、接合部38における第1角度及び第2角度を同じ角度に設定したり、第1角度を第2角度より大きくなるように設定したり、あるいは、第1角度を第2角度より小さくなるように設定することが可能である。接合部38により結合部32と筒部34との間を接続することにより、ロータヨーク31は、筒部34の一方の開口が部分的に塞がれた円筒状として形成される。
 図1において、ステータ90は、略円環形状のコア本体を有するステータコアと、ステータコアに巻装された複数のコイルとを有しており、ステータ90は、ステータ締結部材92により、モータハウジング60の内部に固定される。ステータ90がモータハウジング60の内部に固定された状態で、ステータ90と筒部34の内周面に配置された磁石35とが対向した状態になる。
 ステータ90のコイルには、ケーブル93、電気接続部95を介して、外部のモータ制御装置(不図示)から駆動電流が供給され、駆動電流により生じる磁界によりロータ30が回転する。また、回転検出素子(不図示)で検出されるモータ軸10の回転情報は外部の制御装置に送信可能に構成されている。
 (ロータヨーク31の取付け構造)
 図7はロータ取付部材20の外端部24にロータヨーク31を取付ける状態を模式的に示す図であり、ロータヨーク31には、ヨーク取付部材37(例えば、ボルト)を挿通する貫通穴39Bが形成されている。貫通穴39Bは、ヨーク取付部材37の直径(螺子径)よりも穴径が大きく形成されている。ヨーク取付部材37と、外端部24に形成されている第1係合部29B(螺子穴)とが係合して、ロータヨーク31が外端部24に取付けられる。
 図8のST81は、モータ軸10に形成されたロータ取付部材20(基端部22、外端部24)を、図7の矢印71の方向から見た状態を示す図である。外端部24には、ロータヨーク31(ロータ30)を取付けるためのヨーク取付部材37と係合可能な第1係合部29B(螺子穴)と、ファン40を取付けるためのファン取付部材44と係合可能な第2係合部29A(螺子穴)と、が同心円状に形成されている。
 ロータヨーク31とファン40とを、ロータ取付部材20の外端部24に同心円状に取付ける、つまり平面状かつ円環状に形成された外端部24を用いてロータヨーク37とファン40とを取り付けることで、ファン40を取付けるための構造としてファン取付部を外端部24に別途設ける必要がなく、外端部24(外端部24の径方向の寸法)を小型化することが可能になる。
 図8のST82は、ロータヨーク31を外端部24に取付けた状態を図7の矢印71の方向から見た状態を示す図である。ロータヨーク31の中央には開口部32Bが形成されており、開口部32Bに段部26(図2)が嵌合した状態で、ロータヨーク31(ロータ30)が外端部24に取付けられる。図8のST82において、貫通穴39Aは、ファン40を外端部24に取付けるためのファン取付部材44がロータヨーク31を挿通するために形成されており、ロータヨーク31には、ヨーク取付部材37を挿通する貫通穴39B(図7)と、ファン取付部材44を挿通する貫通穴39Aと、が同心円状に形成されている。貫通穴39Aは、貫通穴39Bと同様に、ファン取付部材44の直径(螺子径)よりも穴径が大きく形成されている。
 (冷却用のファンの構造)
 アウタロータ型モータ100は、モータの回転駆動力を利用した冷却機構として、ファン70(外部ファン)と、ファン40(内部ファン)とを有する。
 ファン70(外部ファン)は、キーなどの締結部材によってモータ軸10に対して取付けられている。また、ファン40(内部ファン)は、ロータヨーク31と同心円状に形成されており、ファン40と外端部24との間にロータヨーク31が取付けられた状態で、ファン40は外端部24に取付けられる。ファン40は、ボルトなどのファン取付部材44によって外端部24に取付けられる。
 アウタロータ型モータ100の側方は、モータカバー65が、カバー締結部材66(例えば、ボルトなど)によりモータハウジング60に取付けられており、モータカバー65によって、ファン70(外部ファン)は覆われている。
 モータ軸10の回転によりファン40(内部ファン)及びファン70(外部ファン)が旋回すると、ファン40(内部ファン)は、アウタロータ型モータ100内部の空気を循環させて、ロータ30およびステータ90等を冷却する。
 また、ファン70(外部ファン)は、モータカバー65に設けられた吸気開口部(不図示)から取り込まれた空気をアウタロータ型モータ100の外壁(モータハウジング60)側に送り、アウタロータ型モータ100の外壁を冷却する。ファン70(外部ファン)により送られた空気(外部冷却空気)は、モータ100の外壁を冷却すると共に、ファン40(内部ファン)によって内部を循環する内部循環空気と外壁との間で行われる熱交換を促進させる。
 (冷却用のファンの取付け構造)
 図5はロータ取付部材20の外端部24にファン40を取付ける状態を模式的に示す図であり、外端部24とファン40との間に配置されるロータヨーク31には、ファン取付部材44(例えば、ボルト)を挿通する貫通穴39Aが形成されている。ファン取付部材44と、外端部24に形成されている第2係合部29A(螺子穴:図8)とが係合して、ファン40が外端部24に取付けられる。
 図6のST61は、外端部24に取付けられたファン40を、図5の矢印51の方向から見た状態を示す図である。また、図6のST62は、ファン40単体を図5の矢印51の方向から見た状態を示す図である。ファン40には、ファン取付部材44を挿通する貫通穴46が形成されている。貫通穴46は、貫通穴39Aと同様に、ファン取付部材44の直径(螺子径)よりも穴径が大きく形成されている。また、ファン40には、ロータヨーク31を外端部24に取付けるヨーク取付部材37との当接を回避するように、ヨーク取付部材37の外径よりも大きく形成された切り欠き部47が形成されている。
 図6のST61に示すように、外端部24にロータヨーク31がヨーク取付部材37により取付けられた状態で、更に、ファン取付部材44によりファン40が外端部24に取付けられる。ファン40が外端部24に取付けられた状態で、切り欠き部47によりヨーク取付部材37とファン40との当接は回避されている。
 ヨーク取付部材37とファン40とが当接していないので、ロータヨーク31を取付けた状態で、ファン取付部材44を取り外せば、ファン40のみを外端部24から取り外すことができる。すなわち、ロータヨーク31(ロータ30)をロータ取付部材20の外端部24に取付けた状態を維持しつつ、ファン40のみをロータ取付部材20の外端部24から取り外すことが可能になり、これにより、アウタロータ型モータにおける保守性を向上させることが可能になる。
 図5に示すように、ファン40は、ファン本体41と、円周方向に配置された複数の羽根部42とを有している。ファン40を外端部24に取付けられた状態で、ファン40の羽根部42は、複数の湾曲部33、36により湾曲した接合部38とファン本体41との間に形成された空間に配置される。
 例えば、接合部38において、湾曲部を設けずに、結合部32を鉛直方向に直線的に延ばした構造にした場合、接合部とファン本体41との間の空間は狭小なものとなり、ファンの羽根部のサイズは制限される。羽根部のサイズを図1の羽根部42と同様に構成すると、ファン40の取付け位置は、モータ軸10の軸方向に沿って、図1の紙面右側方向にシフトし、冷却機構は大型化する。
 複数の湾曲部33、36によって接合部38が湾曲して形成された空間に羽根部42を配置することで、モータの回転駆動力を利用した冷却機構付きアウタロータ型モータ100を、より小型化することができる。また、複数の湾曲部33、36により接合部38が湾曲することにより、図1に示すように、羽根部42を配置することが可能な空間を拡大することができ、より小型化しつつ、かつ、より羽根部42の面積の大きい、冷却性能が向上したファン40を用いてアウタロータ型モータ100を冷却することが可能になる。
 [第2実施形態]
 図3は第2実施形態に係るアウタロータ型モータ100の構成を示す断面図である。第1実施形態では、アウタロータ型モータ100の冷却機構として、ファン70(外部ファン)と、ファン40(内部ファン)とを、モータ軸10の一端側に配置した例を説明したが、この例に限られず、図3のように、ファン70(外部ファン)をモータ軸10の一端側に配置して、ファン40(内部ファン)をモータ軸10の他端側に配置することも可能である。この場合、ロータ取付部材20及びロータ30の配置方向は図1の配置方向に対して逆向きになるが、本実施形態においても第1実施形態におけるアウタロータ型モータ100と同様の作用効果を得ることができる。
 [第3実施形態]
 図4は第3実施形態に係るアウタロータ型モータ100の構成を示す断面図である。第1実施形態及び第2実施形態では、例えば、鋳造や削り出しなどにより、ロータ取付部材20をモータ軸10に一体形成したアウタロータ型モータ100の構成例を説明したが、ロータ取付部材20と、モータ軸10とは別部品として構成することも可能である。
 この場合、例えば、図4に示すように、モータ軸10にテーパ部11Aを設けておき、ロータ取付部材20側にテーパ部11Aと係合する係合穴11Bを設けておき、テーパ部11Aと係合穴11Bとにより、モータ軸10上の所定の位置にロータ取付部材20を位置決めすればよい。
 図4の例では、ファン70(外部ファン)をモータ軸10の一端側に配置して、ファン40(内部ファン)をモータ軸10の他端側に配置する例を示しているが、図1のように、ファン70(外部ファン)と、ファン40(内部ファン)とを、モータ軸10の一端側に配置してもよく、本実施形態においても第1実施形態におけるアウタロータ型モータ100と同様の作用効果を得ることができる。
 [実施形態のまとめ]
 構成1.上記実施形態のアウタロータ型モータは、円筒状のロータヨーク(例えば、図1の31)の内周面に磁石(例えば、図1の35)が配置されたロータ(例えば、図1の30)を有するアウタロータ型モータ(例えば、図1の100)であって、
 前記ロータ(30)を回転可能に支持するモータ軸(例えば、図1の10)と、
 前記モータ軸(10)の外周から径方向の外方へ向かって延設された基端部(例えば、図1の22)と、前記基端部(22)の外周から径方向の外方へ向かって形成された外端部(例えば、図1の24)と、を有するロータ取付部材(例えば、図1の20)と、を備え、
 前記外端部(24)は、前記モータ軸(10)の外周面に比べて、前記ロータヨーク(31)の内周面に近い位置に形成され、
 前記ロータ(10)は前記外端部(24)に取付けられる。
 構成1のアウタロータ型モータによれば、ロータ30が取付けられる外端部24を、モータ軸10の外周面に比べて、円筒状のロータヨーク31の内周面に近い位置に形成することにより、ロータ30の回転により生じ得る遠心力(荷重)の影響を低減し、強度信頼性に優れたアウタロータ型モータを提供することが可能になる。
 構成2.上記実施形態のアウタロータ型モータでは、前記基端部(22)は、前記モータ軸(10)の外周から径方向の外方の前記外端部(24)へ向かって、前記モータ軸(10)の軸方向の肉厚が漸減するように形成されている。
 構成2のアウタロータ型モータによれば、ロータ取付部材20は、径方向の外方の外端部へ向かって、モータ軸の軸方向の肉厚が漸減するように形成されている基端部22を有することで、ロータ30が取付けられる外端部24の基礎となる部分の剛性を確保しつつ、ロータ30の回転により基端部22の固定端側の部位(モータ軸10側の部位)に局所的に生じ得る荷重(応力集中)を分散させることが可能になる。
 剛性が確保され、かつ、応力集中が生じないように形成された基端部の外周から径方向の外方へ向かって外端部を形成することにより、外端部を、モータ軸の外周面に比べて、円筒状のロータヨークの内周面に近い位置に形成することが可能になり、これにより、ロータの回転により生じ得る遠心力(荷重)の影響を低減し、強度信頼性に優れたアウタロータ型モータを提供することが可能になる。
 構成3.上記実施形態のアウタロータ型モータでは、前記基端部と前記外端部との間には、前記モータ軸の軸方向に沿って段部(例えば、図2の26)が形成され、
 前記ロータヨーク(31)の開口部が前記段部(26)に嵌合した状態で、前記ロータ(30)は前記外端部(24)に取付けられる。
 構成3のアウタロータ型モータによれば、段部を用いたインロー結合(段付き嵌めあいにより結合)することで、ロータ30(ロータヨーク31)とロータ取付部材20との位置決めが容易になり、組み立て時における軸心の誤差を低減することが可能になる。また、インロー結合とすることにより、ロータヨーク31と、ロータ取付部材20の外端部24及び基端部22と、の接触面積を増やすことができるため、ロータ30が取付けられた状態で外端部24に作用する荷重を基端部22側に分散することが可能になる。
 構成4.上記実施形態のアウタロータ型モータでは、前記円筒状のロータヨーク(31)は、
 前記モータ軸の軸方向に対して交差する鉛直方向に沿って、前記外端部と重なり合うように形成された結合部(例えば、図1の32)と、
 内周面に沿って前記磁石を配置可能に形成された筒部(例えば、図1の34)と、
 前記結合部(32)と前記筒部(34)との間に複数の湾曲部(例えば、図1の33、36)が形成され、前記複数の湾曲部(33、36)を介して、前記結合部(32)と前記筒部(34)とを接合する接合部(例えば、図1の38)と、を有する。
 構成4のアウタロータ型モータによれば、複数の湾曲部を設けることで、結合部32と筒部34との間を、各湾曲部における湾曲角度を滑らかに鈍角で形成することができる。これにより、結合部32と筒部34との間を直角に折り曲げる場合に比べて、ロータヨーク31内部における応力集中を一層緩和することができる。
 構成5.上記実施形態のアウタロータ型モータでは、前記ロータヨーク(31)と同心円状に形成されたファン(例えば、図1の40)を更に備え、
 前記ファン(40)と前記外端部(24)との間に前記ロータヨーク(31)が取付けられた状態で、前記ファン(40)は前記外端部(24)に取付けられる。
 構成6.上記実施形態のアウタロータ型モータでは、前記外端部(24)には、前記ロータヨークを取付けるためのヨーク取付部材(例えば、図7、8の37)と係合可能な第1係合部(例えば、図8の29B)と、前記ファン(40)を取付けるためのファン取付部材(44)と係合可能な第2係合部(例えば、図8の29A)と、が同心円状に形成されている。
 構成5及び構成6のアウタロータ型モータによれば、ロータヨーク31とファン40とを、ロータ取付部材20の外端部24に同心円状に取付けることで、ファン40を取付けるための構造としてファン取付部を外端部24に別途設ける必要がなく、外端部24(外端部24の径方向の寸法)を小型化することが可能になる。
 構成7.上記実施形態のアウタロータ型モータでは、前記ロータヨーク(31)には、前記ロータ取付部材(37)を挿通する貫通穴(例えば、図7の39B)と、前記ファン取付部材(44)を挿通する貫通穴(例えば、図5の39A)と、が同心円状に形成されている。
 構成7のアウタロータ型モータによれば、ロータヨーク31の形状設計において、ファン40をロータヨーク31に取付けるための係合部の配置や断面形状の制約を考慮する必要がなくなる。例えば、ファン40をロータヨーク31に取付ける場合には、締結部材との係合を考慮して、ロータヨーク31の結合部32を直線的に延ばした底部を形成しなければならない等の形状設計上の制限を受けることになり得る。
 ファン40を、ロータ取付部材20の外端部24に取付ける構造としたことにより、ロータヨーク31の形状設計における自由度を向上させることが可能になる。例えば、図1に示したようなロータヨーク31の断面形状のように、結合部32と筒部34との間に複数の湾曲部33、36を形成することが可能になる。これにより、ロータヨーク31の形状を応力集中の緩和が可能な形状とすることが可能になる。
 構成8.上記実施形態のアウタロータ型モータでは、前記円筒状のロータヨーク(31)は、
 前記モータ軸の軸方向に対して交差する鉛直方向に沿って、前記外端部と重なり合うように形成された結合部(例えば、図1の32)と、
 内周面に沿って前記磁石を配置可能に形成された筒部(例えば、図1の34)と、
 前記結合部(32)と前記筒部(34)との間に複数の湾曲部(例えば、図1の33、36)が形成され、前記複数の湾曲部(33、36)を介して、前記結合部(32)と前記筒部(34)とを接合する接合部(例えば、図1の38)と、を有し、
 前記ファン(40)の羽根部(例えば、図1の42)は、前記複数の湾曲部(33、36)により湾曲した前記接合部(38)と前記ファン(40)との間に形成された空間に配置される。
 構成9.上記実施形態のアウタロータ型モータでは、前記接合部(38)は、前記複数の湾曲部として、
 前記モータ軸(10)の軸方向に対して鉛直方向に形成されている前記結合部(32)と、前記軸方向に沿って形成されている前記筒部(34)との間で、前記接合部(38)を前記筒部側に向かって第1角度で湾曲するように形成されている第1湾曲部(例えば、図1の36)と、
 前記第1湾曲部(36)により前記第1角度で湾曲した前記接合部(38)を前記筒部(34)に接合するように第2角度で湾曲するように形成されている第2湾曲部(例えば、図1の33)と、を有する。
 構成8及び構成9のアウタロータ型モータによれば、接合部38が湾曲して形成された空間に羽根部42を配置することで、モータの回転駆動力を利用した冷却機構(ファン)付きアウタロータ型モータを、より小型化することができる。
 また、複数の湾曲部33、36により接合部38が湾曲することにより、羽根部42を配置することが可能な空間を拡大することができ、より小型化しつつ、かつ、より羽根部42の面積の大きい、冷却性能が向上したファン40を用いてアウタロータ型モータ100を冷却することが可能になる。
 構成10.上記実施形態のアウタロータ型モータでは、前記ファン(40)には、前記ロータヨーク(31)を前記外端部(24)に取付けるヨーク取付部材(37)との当接を回避するように形成された切り欠き部(例えば、図6の47)が形成されている。
 構成10のアウタロータ型モータによれば、ロータヨーク31(ロータ30)をロータ取付部材20の外端部24に取付けた状態を維持しつつ、ファン40のみをロータ取付部材20の外端部24から取り外すことが可能になり、これにより、アウタロータ型モータにおける保守性を向上させることが可能になる。
 構成11.上記実施形態のアウタロータ型モータでは、前記外端部は、
 前記モータ軸の中心から前記外端部の径方向の中央部までの距離を第1距離、前記モータ軸の中心から前記ヨークの外周面までの距離を第2距離とした場合、
 前記第1距離>0.5×前記第2距離の関係を満たす位置に取付けられている。
 構成11のアウタロータ型モータによれば、ロータ30が取付けられる外端部24を、モータ軸10の外周面に比べて、円筒状のロータヨーク31の内周面に近い位置(第1距離>0.5×第2距離)に形成することにより、ロータ30の回転により生じ得る遠心力(荷重)の影響を低減し、強度信頼性に優れたアウタロータ型モータを提供することが可能になる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 10:モータ軸、11A:テーパ部、11B:係合穴、20:ロータ取付部材、22:基端部、24:外端部、30:ロータ、31:ロータヨーク、32:結合部、33:湾曲部(第2湾曲部)、34:筒部、35:、36:湾曲部(第1湾曲部)、37:ロータ取付部材、38:接合部、39A:貫通穴、39B: 貫通穴、40:ファン、41:ファン本体、42:羽根部、44:ファン取付部材、47:切り欠き部、100:アウタロータ型モータ

Claims (11)

  1.  円筒状のロータヨークの内周面に磁石が配置されたロータを有するアウタロータ型モータであって、
     前記ロータを回転可能に支持するモータ軸と、
     前記モータ軸の外周から径方向の外方へ向かって延設された基端部と、前記基端部の外周から径方向の外方へ向かって形成された外端部と、を有するロータ取付部材と、を備え、
     前記外端部は、前記モータ軸の外周面に比べて、前記ロータヨークの内周面に近い位置に形成され、
     前記ロータは前記外端部に取付けられる
     ことを特徴とするアウタロータ型モータ。
  2.  前記基端部は、前記モータ軸の外周から径方向の外方の前記外端部へ向かって、前記モータ軸の軸方向の肉厚が漸減するように形成されていることを特徴とする請求項1に記載のアウタロータ型モータ。
  3.  前記基端部と前記外端部との間には、前記モータ軸の軸方向に沿って段部が形成されており、
     前記ロータヨークの開口部が前記段部に嵌合した状態で、前記ロータは前記外端部に取付けられることを特徴とする請求項1または2に記載のアウタロータ型モータ。
  4.  前記円筒状のロータヨークは、
     前記モータ軸の軸方向に対して交差する鉛直方向に沿って、前記外端部と重なり合うように形成された結合部と、
     内周面に沿って前記磁石を配置可能に形成された筒部と、
     前記結合部と前記筒部との間に複数の湾曲部が形成され、前記複数の湾曲部を介して、前記結合部と前記筒部とを接合する接合部と、を有する
     ことを特徴とする請求項1乃至3のいずれか1項に記載のアウタロータ型モータ。
  5.  前記ロータヨークと同心円状に形成されたファンを更に備え、
     前記ファンと前記外端部との間に前記ロータヨークが取付けられた状態で、前記ファンは前記外端部に取付けられることを特徴とする請求項1乃至4のいずれか1項に記載のアウタロータ型モータ。
  6.  前記外端部には、前記ロータヨークを取付けるためのヨーク取付部材と係合可能な第1係合部と、前記ファンを取付けるためのファン取付部材と係合可能な第2係合部と、が同心円状に形成されていることを特徴とする請求項5に記載のアウタロータ型モータ。
  7.  前記ロータヨークには、前記ロータ取付部材を挿通する貫通穴と、前記ファン取付部材を挿通する貫通穴と、が同心円状に形成されていることを特徴とする請求項6に記載のアウタロータ型モータ。
  8.  前記円筒状のロータヨークは、
     前記モータ軸の軸方向に対して交差する鉛直方向に沿って、前記外端部と重なり合うように形成された結合部と、
     内周面に沿って前記磁石を配置可能に形成された筒部と、
     前記結合部と前記筒部との間に複数の湾曲部が形成され、前記複数の湾曲部を介して、前記結合部と前記筒部とを接合する接合部と、を有し、
     前記ファンの羽根部は、前記複数の湾曲部により湾曲した前記接合部と前記ファンとの間に形成された空間に配置されることを特徴とする請求項5乃至7のいずれか1項に記載のアウタロータ型モータ。
  9.  前記接合部は、前記複数の湾曲部として、
     前記モータ軸の軸方向に対して鉛直方向に形成されている前記結合部と、前記軸方向に沿って形成されている前記筒部との間で、前記接合部を前記筒部側に向かって所定の第1角度で湾曲するように形成されている第1湾曲部と、
     前記第1湾曲部により前記第1角度で湾曲した前記接合部を前記筒部に接合するように所定の第2角度で湾曲するように形成されている第2湾曲部と、
     を有することを特徴とする請求項8に記載のアウタロータ型モータ。
  10.  前記ファンには、前記ロータヨークを前記外端部に取付けるヨーク取付部材との当接を回避するように形成された切り欠き部が形成されていることを特徴とする請求項5乃至9のいずれか1項に記載のアウタロータ型モータ。
  11.  前記モータ軸の中心から前記外端部の径方向の中央部までの距離を第1距離、前記モータ軸の中心から前記ロータヨークの外周面までの距離を第2距離とした場合、
     前記外端部は、前記第1距離 >0.5×前記第2距離の関係を満たす位置に形成されていることを特徴とする請求項1乃至10のいずれか1項に記載のアウタロータ型モータ。
PCT/JP2019/014323 2019-03-29 2019-03-29 アウタロータ型モータ WO2020202390A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/014323 WO2020202390A1 (ja) 2019-03-29 2019-03-29 アウタロータ型モータ
CN201980094499.8A CN113615054A (zh) 2019-03-29 2019-03-29 外转子型马达
EP19922672.1A EP3952070A4 (en) 2019-03-29 2019-03-29 EXTERNAL ROTOR TYPE MOTOR
JP2021511764A JPWO2020202390A1 (ja) 2019-03-29 2019-03-29
US17/485,954 US20220014061A1 (en) 2019-03-29 2021-09-27 Outer rotor type motor
JP2023181125A JP2024003017A (ja) 2019-03-29 2023-10-20 アウタロータ型モータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014323 WO2020202390A1 (ja) 2019-03-29 2019-03-29 アウタロータ型モータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/485,954 Continuation US20220014061A1 (en) 2019-03-29 2021-09-27 Outer rotor type motor

Publications (1)

Publication Number Publication Date
WO2020202390A1 true WO2020202390A1 (ja) 2020-10-08

Family

ID=72666176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014323 WO2020202390A1 (ja) 2019-03-29 2019-03-29 アウタロータ型モータ

Country Status (5)

Country Link
US (1) US20220014061A1 (ja)
EP (1) EP3952070A4 (ja)
JP (2) JPWO2020202390A1 (ja)
CN (1) CN113615054A (ja)
WO (1) WO2020202390A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645847A (zh) * 2022-05-19 2022-06-21 浙大城市学院 一种二维电机活塞泵
EP4160883A1 (en) * 2021-09-29 2023-04-05 LG Electronics Inc. Outer rotor motor with integrated cooling ventilator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931460B2 (ja) 1976-09-14 1984-08-02 凸版印刷株式会社 多層容器
JPH1198795A (ja) * 1997-09-25 1999-04-09 Kokusan Denki Co Ltd フライホイール磁石回転子及びその製造方法
JP2001112226A (ja) * 1999-10-08 2001-04-20 Moriyama Manufacturing Co Ltd 3相磁石発電機
JP2002263576A (ja) * 2001-03-13 2002-09-17 Victor Co Of Japan Ltd 振動型ブラシレスモータ
JP2012244704A (ja) * 2011-05-17 2012-12-10 Honda Motor Co Ltd 外転型の電動機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3866427B2 (ja) * 1998-12-08 2007-01-10 澤藤電機株式会社 アウタロータ型多極発電機用ステータ
JP3494056B2 (ja) * 1999-01-25 2004-02-03 国産電機株式会社 アウターロータ型磁石発電機
IT1308475B1 (it) * 1999-05-07 2001-12-17 Gate Spa Motoventilatore, particolarmente per uno scambiatore di calore di unautoveicolo
AU782017B2 (en) * 1999-10-18 2005-06-30 Lg Electronics Inc. A driving unit for a drum type washing machine
JP2002084728A (ja) * 2000-09-08 2002-03-22 Kokusan Denki Co Ltd アウターロータ式磁石回転機
JP2004120848A (ja) * 2002-09-25 2004-04-15 Sawafuji Electric Co Ltd アウタロータ型多極発電機
JP5931460B2 (ja) * 2012-01-19 2016-06-08 株式会社ミツバ アウターロータ型ブラシレスモータ
JP6206970B2 (ja) * 2014-09-18 2017-10-04 東洋電装株式会社 動力作業機用回転電機
DE102016203892A1 (de) * 2016-03-09 2017-09-14 Mahle International Gmbh Gebläseanordnung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931460B2 (ja) 1976-09-14 1984-08-02 凸版印刷株式会社 多層容器
JPH1198795A (ja) * 1997-09-25 1999-04-09 Kokusan Denki Co Ltd フライホイール磁石回転子及びその製造方法
JP2001112226A (ja) * 1999-10-08 2001-04-20 Moriyama Manufacturing Co Ltd 3相磁石発電機
JP2002263576A (ja) * 2001-03-13 2002-09-17 Victor Co Of Japan Ltd 振動型ブラシレスモータ
JP2012244704A (ja) * 2011-05-17 2012-12-10 Honda Motor Co Ltd 外転型の電動機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952070A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4160883A1 (en) * 2021-09-29 2023-04-05 LG Electronics Inc. Outer rotor motor with integrated cooling ventilator
CN114645847A (zh) * 2022-05-19 2022-06-21 浙大城市学院 一种二维电机活塞泵
US11891997B2 (en) 2022-05-19 2024-02-06 Zhejiang University Two-dimensional motor piston pump

Also Published As

Publication number Publication date
JPWO2020202390A1 (ja) 2020-10-08
EP3952070A4 (en) 2022-04-06
EP3952070A1 (en) 2022-02-09
US20220014061A1 (en) 2022-01-13
JP2024003017A (ja) 2024-01-11
CN113615054A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
JP4904894B2 (ja) 軸流ファン
US9062567B2 (en) Fan
JP5217619B2 (ja) アウターロータ型永久磁石式電動機
JP2024003017A (ja) アウタロータ型モータ
JP2007282331A (ja) ダブルステータ型モータ
JP4730664B2 (ja) インホイールモータ
JP6316035B2 (ja) モータ構造
JP7080621B2 (ja) アウターロータモータ及びこれを備える掃除機
US20140125166A1 (en) Rotating electrical machine
CN112117855B (zh) 马达
JP2010178469A (ja) モータ
JP2007288903A (ja) 電動機
JP5824019B2 (ja) 回転電機
JP4532964B2 (ja) 二重回転子電動機
JP2014062482A (ja) 電動ポンプ
JP4101607B2 (ja) 発電機能付き軸受
EP3364527B1 (en) Electric motor and blower
US20180309342A1 (en) Motor
EP4160872A1 (en) Motor
JP7400596B2 (ja) 永久磁石電動機
JP7359068B2 (ja) 電動機
WO2022209762A1 (ja) 電動機
JP2023053771A (ja) モータ
JP5093299B2 (ja) ブラシレスオルタネータ
JP2021184674A (ja) 外転型回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019922672

Country of ref document: EP

Effective date: 20211029