WO2020196664A1 - 樹脂組成物、膜、及び硬化物 - Google Patents

樹脂組成物、膜、及び硬化物 Download PDF

Info

Publication number
WO2020196664A1
WO2020196664A1 PCT/JP2020/013448 JP2020013448W WO2020196664A1 WO 2020196664 A1 WO2020196664 A1 WO 2020196664A1 JP 2020013448 W JP2020013448 W JP 2020013448W WO 2020196664 A1 WO2020196664 A1 WO 2020196664A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
mass
group
film
Prior art date
Application number
PCT/JP2020/013448
Other languages
English (en)
French (fr)
Inventor
貴耶 山本
沙織 水之江
将太 梅崎
雅記 竹内
恭久 石田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US17/442,010 priority Critical patent/US20220177670A1/en
Priority to JP2021509538A priority patent/JP7459869B2/ja
Priority to CN202080023478.XA priority patent/CN113614180A/zh
Publication of WO2020196664A1 publication Critical patent/WO2020196664A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof

Definitions

  • the present disclosure relates to resin compositions, membranes, and cured products.
  • Ultrasonic reflectors are used in medical ultrasonic diagnostic equipment, vehicle-to-vehicle distance detection systems, obstacle detection, buried pipe corrosion checkers, concrete crack detection, earphones, speaker and other acoustic materials, and noise reduction. Higher definition, simplification of the system, etc. are desired (for example, Patent Document 1).
  • Ultrasonic signals may be reflected at the interface of different materials and interact with the transmitted signal.
  • the interaction between the transmitted signal and the reflected signal makes it possible to amplify the ultrasonic signal.
  • the reflection of this ultrasonic signal is due to the difference in acoustic impedance, which is the product of density and speed of sound, between different materials. Therefore, for example, it is considered that a material having a high specific gravity (that is, high density) can be used as an ultrasonic reflector for amplifying an ultrasonic signal. It is also desired that such a material having a high specific gravity has an insulating property in order to prevent conduction and has an adhesive property with a base material.
  • Means for solving the above problems include the following aspects.
  • the resin composition according to ⁇ 1>, wherein the resin having a polar group contains a resin having a weight average molecular weight of 10,000 or more.
  • ⁇ 3> The resin composition according to ⁇ 1> or ⁇ 2>, wherein the polar group contains at least one heteroatom selected from the group consisting of a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the resin having a polar group contains at least one selected from the group consisting of a polyamide-imide resin, an epoxy resin, an acrylic resin, a polyester resin, and a polyether resin.
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the volume average particle diameter of the insulating filler having a specific gravity of 6.0 or more is 2.0 ⁇ m or less.
  • ⁇ 6> Any of ⁇ 1> to ⁇ 5>, wherein the insulating filler having a specific gravity of 6.0 or more contains at least one selected from the group consisting of bismuth oxide, cerium oxide, barium titanate, and tungsten oxide.
  • the resin composition according to item 1. ⁇ 7> The resin composition according to any one of ⁇ 1> to ⁇ 6>, which further contains a coupling agent.
  • ⁇ 9> The resin composition according to any one of ⁇ 1> to ⁇ 8>, which further contains a solvent.
  • ⁇ 11> The film according to ⁇ 10>, wherein the maximum height Rz is 10.0 ⁇ m or less.
  • ⁇ 12> The film according to ⁇ 10> or ⁇ 11>, wherein the arithmetic mean roughness Ra is 1.5 ⁇ m or less.
  • ⁇ 13> The film according to any one of ⁇ 10> to ⁇ 12>, which is used as an ultrasonic reflector.
  • ⁇ 14> A cured product obtained by curing the resin composition according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 15> The cured product according to ⁇ 14>, wherein the maximum height Rz is 10.0 ⁇ m or less.
  • ⁇ 16> The cured product according to ⁇ 14> or ⁇ 15>, wherein the arithmetic average roughness Ra is 1.5 ⁇ m or less.
  • ⁇ 17> The cured product according to any one of ⁇ 14> to ⁇ 16>, which is used as an ultrasonic reflector.
  • a resin composition capable of forming an insulating layer having a high specific gravity excellent in adhesion to a substrate, a film using the resin composition, and a cured product are provided.
  • the term "process” includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • each component may contain a plurality of applicable substances.
  • the content rate or content of each component is the total content rate or content of the plurality of substances present in the composition unless otherwise specified.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term "layer” or “membrane” refers to only a part of the region in addition to the case where the layer or the membrane is formed in the entire region when the region where the layer or the membrane exists is observed. The case where it is formed is also included.
  • the resin composition of the present disclosure contains an insulating filler having a specific gravity of 6.0 or more and a resin having a polar group, and the content of the insulating filler having a specific gravity of 6.0 or more is the resin composition. It is 50% by volume or more with respect to the total solid content.
  • the viscosity of the resin composition is preferably 10 Pa ⁇ s to 300 Pa ⁇ s, more preferably 20 Pa ⁇ s to 250 Pa ⁇ s, and 30 Pa ⁇ s to 200 Pa ⁇ s at 25 ° C. Is more preferable.
  • the viscosity of the resin composition is according to JIS Z 3284-3: 2014, using an E-type rotational viscometer equipped with an SPP rotor, at 25 ° C. and 2.5 rotations / minute (rpm) for 144 seconds. It is a measured value when rotated, and is measured as an average value measured twice.
  • the resin composition of the present disclosure contains an insulating filler having a specific gravity of 6.0 or more.
  • the content of the insulating filler having a specific gravity of 6.0 or more is 50% by volume or more of the total solid content of the resin composition.
  • Examples of the insulating filler having a specific gravity of 6.0 or more include metal oxides such as bismuth oxide, cerium oxide, and tungsten oxide; barium titanate, sintered uranium oxide, tungsten carbide, tungsten, and zirconium. Among them, at least one selected from the group consisting of bismuth oxide, cerium oxide, barium titanate, and tungsten oxide is preferable.
  • One type of insulating filler may be used alone, or two or more types may be used in combination. Among them, bismuth oxide is preferable from the viewpoints of heat resistance, specific gravity, and thermogravimetric reduction when heated to 300 ° C. is less than 1% by mass.
  • the volume resistivity of the insulating filler at 25 ° C. is preferably 1 ⁇ 10 6 ⁇ ⁇ cm or more, more preferably 1 ⁇ 10 8 ⁇ ⁇ cm or more, and 1 ⁇ 10 10 ⁇ ⁇ cm or more. It is more preferable to have.
  • the specific gravity of the insulating filler may be 6.0 or more, and may be appropriately adjusted according to the use of the resin composition.
  • the specific gravity of the insulating filler may be 7.0 or more, or 8.0 or more.
  • the upper limit of the specific gravity of the insulating filler is not particularly limited.
  • the upper limit of the specific gravity of the insulating filler may be 10.0 or less.
  • the specific gravity of the filler is measured by the ratio of the mass of the measurement sample to the mass of pure water under the same volume of atmospheric pressure according to JIS K 0061: 2001 and JIS Z 8807: 2012. Represents the ratio of the true specific gravity of water to the true specific gravity of water.
  • the insulating filler preferably has a small mass reduction rate at high temperatures from the viewpoint of stably obtaining a material having a high specific gravity.
  • the mass reduction rate when the insulating filler is heated at 300 ° C. for 1 hour is preferably 1% by mass or less, more preferably 0.5% by mass or less, and 0.1% by mass or less. Is even more preferable.
  • the shape of the insulating filler is not particularly limited, and may be spherical, powdery, needle-like, fibrous, plate-like, square-shaped, polyhedral, scaly, or the like.
  • the particle size of the insulating filler is not particularly limited, and the volume average particle size is preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less, further preferably 3.0 ⁇ m or less, 2 It is particularly preferable that the thickness is 0.0 ⁇ m or less.
  • the lower limit of the volume average particle diameter is not particularly limited and may be 0.001 ⁇ m or more.
  • the volume average particle size can be measured by a laser diffraction particle size distribution measuring device, and is the particle size (D50) when the integration from the small diameter side is 50% in the volume-based particle size distribution.
  • D50 particle size
  • the volume average particle size of the insulating filler is 2.0 ⁇ m or less, the flatness of the film or cured product using the resin composition is improved, which is preferable.
  • the volume average particle size of the insulating filler is preferably 0.001 ⁇ m to 5.0 ⁇ m, more preferably 0.001 ⁇ m to 4.0 ⁇ m, and 0.001 ⁇ m to 3.0 ⁇ m. It is more preferably 0.001 ⁇ m to 2.0 ⁇ m.
  • the content of the insulating filler in the total solid content of the resin composition is 50% by volume or more, preferably 55% by volume or more, and more preferably 60% by volume or more.
  • the upper limit of the content of the insulating filler is not particularly limited, and the content of the insulating filler may be 80% by volume or less from the viewpoint of handleability of the resin composition. From the above viewpoint, the content of the insulating filler in the total solid content in the resin composition is preferably 50% by volume to 80% by volume, more preferably 55% by volume to 80% by volume, and 60% by volume. It is more preferably from% to 80% by volume.
  • the solid content of the resin composition means a component obtained by removing a volatile component from the resin composition.
  • the content of the insulating filler in the total solid content of the resin composition is preferably 88% by mass or more, more preferably 90% by mass or more, and further preferably 92% by mass or more.
  • the upper limit of the content of the insulating filler in the total solid content of the resin composition is not particularly limited and may be 99% by mass or less. From the above viewpoint, the content of the insulating filler in the total solid content of the resin composition is preferably 88% by mass to 99% by mass, more preferably 90% by mass to 99% by mass, and 92. It is more preferably mass% to 99% by mass.
  • the resin composition may or may not contain other fillers in addition to the insulating filler having a specific gravity of 6.0 or more.
  • the resin composition may contain an insulating filler having a specific gravity of less than 6.0.
  • the content of the insulating filler having a specific gravity of 6.0 or more with respect to the total mass of the filler is preferably 60% by mass or more, preferably 70. It is more preferably mass% or more, and further preferably 80 mass% or more.
  • the total content of the filler in the total solid content of the resin composition may exceed 50% by volume and 55% by volume or more. It is more preferably 60% by volume or more, and even more preferably 65% by volume or more. Further, the upper limit of the total content of the filler in the total solid content of the resin composition in this case is not particularly limited, and may be 90% by volume or less.
  • the total content of the fillers in the total solid content of the resin composition is preferably 90% by mass or more, preferably 92% by mass or more. Is more preferable, and 94% by mass or more is further preferable. Further, the upper limit of the total content of the filler in the total solid content of the resin composition in this case is not particularly limited, and may be 99% by mass or less.
  • the resin composition of the present disclosure contains a resin having a polar group.
  • the resin composition of the present disclosure contains 50% by volume or more of an insulating filler in order to obtain a composition having a high specific gravity.
  • the base material is a film or a cured product. It is difficult to obtain sufficient adhesiveness to. Therefore, in the resin composition of the present disclosure, it is possible to achieve both adhesiveness and high specific gravity by improving the interaction with the base material by using a resin having a polar group.
  • a polar group represents an atomic group having polarity due to a bond between atoms having different electronegativity.
  • the polar group include a group having a hetero atom other than a carbon atom and a hydrogen atom, and more specifically, from a group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, a boron atom, a phosphorus atom, and a silicon atom.
  • Examples include groups containing at least one heteroatom selected. Among them, as the polar group, a group containing at least one hetero atom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom is preferable.
  • polar group amino group, amide group, imide group, cyano group, nitro group, hydroxy group, carboxy group, carbonyl group, thiol group, sulfo group, thionyl group, ester bond, ether bond
  • examples thereof include a sulfide bond, a urethane bond, and a urea bond, and at least one selected from the group consisting of an amide group, an imide group, a hydroxy group, an amino group, a carboxy group, a carbonyl group, and a urea bond is preferable.
  • the polar group may be present in the main chain or the side chain of the resin.
  • the type of resin having a polar group is not particularly limited as long as it has a polar group, and may be a thermosetting resin, a thermoplastic resin, or a combination thereof.
  • a thermoplastic resin is preferable from the viewpoint of small curing shrinkage during curing, and a combination of a thermoplastic resin and a thermosetting resin is used from the viewpoint of improving the strength of the film after film formation and suppressing the curing shrinkage during curing. Is more preferable.
  • the resin component may be in the state of a monomer having a functional group capable of causing a polymerization reaction by heating or in the state of a polymer already polymerized.
  • the resin having a polar group examples include vinyl polymerization resin having a polar group, acrylic resin, polyamide resin, polyimide resin, polyamideimide resin, polyurethane resin, polyester resin, polyether resin, epoxy resin, and oxazine resin. , Bismaleimide resin, phenol resin, unsaturated polyester resin, silicone resin and the like. Among them, at least one selected from the group consisting of polyamide-imide resin, epoxy resin, acrylic resin, polyester resin, and polyether resin is preferable. One type of resin may be used alone, or two or more types may be used in combination.
  • a polyamide-imide resin is preferable from the viewpoint of adhesiveness
  • an epoxy resin is preferable from the viewpoint of heat resistance.
  • the polyamide-imide resin and the epoxy resin may be used in combination.
  • the mass ratio of the polyamide-imide resin to the epoxy resin is not particularly limited and may be 20/80 to 80/20, or 30/70 to 70 /. It may be 30 or 40/60 to 60/40.
  • the resin having a polar group may be polymerized in combination with a curing agent.
  • a curing agent for example, an acid anhydride-based curing agent, an amine-based curing agent, a phenol-based curing agent, a mercaptan-based curing agent or other heavy-addition curing agent, or a latent curing agent such as imidazole is used in combination with an epoxy resin for polymerization. It may be the one that has been used.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and naphthalene type epoxy resin. , Biphenol type epoxy resin, biphenyl novolac type epoxy resin, ring type aliphatic epoxy resin and the like.
  • the epoxy resin include those having a substituent such as an ether group and an alicyclic epoxy group in the above-mentioned epoxy resin.
  • an epoxy resin having a hetero atom other than the oxygen atom derived from the epoxy group or the glycidyloxy group of the epoxy resin is preferable.
  • a preferable epoxy resin is, for example, an epoxy resin containing a nitrogen atom and a hydrogen atom bonded to the nitrogen atom.
  • the epoxy resin may have a heterocyclic structure containing a nitrogen atom and a hydrogen atom bonded to the nitrogen atom. Examples of such a heterocyclic structure include a glycoluril structure.
  • the content of the epoxy resin with respect to the total amount of the resin may be 100% by mass, 10% by mass to 90% by mass, or 20% by mass to 80% by mass. It may be 30% by mass to 70% by mass, or 40% by mass to 60% by mass.
  • the content of the epoxy resin with respect to the solid content of the resin composition may be 0.01% by mass to 10% by mass, or 0.1% by mass to 9% by mass. It may be 1% by mass to 8% by mass.
  • polyamide-imide resin a polyamide-imide resin having an amide bond and an imide bond in the main chain is preferable.
  • Preferred specific examples of the polyamide-imide resin include a polyamide-imide resin having at least one of a polyalkylene oxide structure and a polysiloxane structure. These polyamide-imide resins are preferable from the viewpoint of relaxing stress due to deformation of the polyamide-imide resin.
  • These polyamide-imide resins may be, for example, a polyamide-imide resin synthesized by using a polyalkylene oxide-modified diamine and a polysiloxane-modified diamine, respectively.
  • an alkylene oxide structure having 1 to 10 carbon atoms is preferable, an alkylene oxide structure having 1 to 8 carbon atoms is more preferable, and an alkylene oxide structure having 1 to 4 carbon atoms is more preferable.
  • An alkylene oxide structure is more preferred.
  • a polypropylene oxide structure is preferable as the polyalkylene oxide structure.
  • the alkylene group in the alkylene oxide structure may be linear or branched.
  • the unit structure in the polyalkylene oxide structure may be one type or two or more types.
  • an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms is bonded as a substituent to a part or all of the silicon atoms of the polysiloxane structure.
  • Examples include the polysiloxane structure.
  • Alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-octyl group, 2-ethylhexyl group, n-dodecyl group and the like. Can be mentioned.
  • the aryl group having 6 to 18 carbon atoms may be unsubstituted or substituted with a substituent.
  • substituent when the aryl group has a substituent include a halogen atom, an alkoxy group, and a hydroxy group.
  • the aryl group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group, a benzyl group and the like. Among these, a phenyl group is preferable.
  • the alkyl group having 1 to 20 carbon atoms or the aryl group having 6 to 18 carbon atoms may be used alone or in combination of two or more.
  • a preferred embodiment of the polyamide-imide resin is a polyamide-imide resin having a structural unit derived from diimide carboxylic acid or a derivative thereof and a structural unit derived from aromatic diisocyanate or aromatic diamine.
  • the method for producing a polyamide-imide resin having a structural unit derived from diimide carboxylic acid or a derivative thereof and a structural unit derived from aromatic diisocyanate or aromatic diamine is not particularly limited, and examples thereof include the isocyanate method and the acid chloride method. Be done.
  • the isocyanate method a polyamide-imide resin is synthesized using a diimide carboxylic acid and an aromatic diisocyanate.
  • a polyamide-imide resin is synthesized using a diimide carboxylic acid chloride and an aromatic diamine.
  • the isocyanate method synthesized from diimide carboxylic acid and aromatic diisocyanate is more preferable because it is easy to optimize the structure of the polyamide-imide resin.
  • the content of the polyamide-imide resin with respect to the total amount of the resin may be 80% by mass or more, 90% by mass or more, or 100% by mass. ..
  • the content of the polyamide resin with respect to the total amount of the resin may be 10% by mass to 90% by mass, 20% by mass to 80% by mass, or 30% by mass to 70% by mass. It may be 40% by mass to 60% by mass.
  • the content of the polyamide-imide resin with respect to the solid content of the resin composition may be 0.01% by mass to 10% by mass, or 0.1% by mass to 9% by mass. It may be 1% by mass to 8% by mass.
  • the weight average molecular weight of the resin having a polar group is not particularly limited, and is preferably 10,000 or more, and may be 20,000 or more, or 50,000 or more. When the weight average molecular weight of the resin is 10,000 or more, dusting on the surface tends to be suppressed when the resin composition is dried to prepare a film.
  • the upper limit of the weight average molecular weight is not particularly limited, and may be 1,000,000 or less, or 900,000 or less.
  • the weight average molecular weight of the polymerized resin is preferably in the above range.
  • each resin independently has a weight average molecular weight in the above range.
  • the weight average molecular weight of the resin is measured using gel permeation chromatography with polystyrene as the standard material.
  • the content of the resin having a polar group in the resin composition is not particularly limited, and may be 2% by mass to 12% by mass with respect to the solid content of the resin composition from the viewpoint of adjusting the adhesiveness and the specific gravity. It is preferably 3% by mass to 10% by mass, more preferably 4% by mass to 9% by mass.
  • the resin composition may contain a resin having no polar group in addition to the resin having a polar group.
  • the content of the resin having a polar group with respect to the total amount of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass or more. Is particularly preferable.
  • the total content of the resin in the resin composition (that is, the total content of the resin having a polar group and the resin having no polar group present in some cases) may be 0.01% by mass to 10% by mass. , 0.1% by mass to 9% by mass, or 1% by mass to 8% by mass.
  • the weight average molecular weight of the resin having no polar group is not particularly limited, and is preferably 10,000 or more, preferably 20,000 or more. It may be 50,000 or more. When the weight average molecular weight of the resin is 10,000 or more, dusting on the surface tends to be suppressed when the resin composition is dried to prepare a film.
  • the upper limit of the weight average molecular weight is not particularly limited, and may be 1,000,000 or less, or 900,000 or less.
  • the weight average molecular weight of the polymerized resin is preferably in the above range. When a plurality of types of resins are contained in the resin composition, it is preferable that each resin independently has a weight average molecular weight in the above range.
  • the resin composition contains both a resin having a weight average molecular weight of 10,000 or more and a resin having a weight average molecular weight of less than 10,000, the latter ratio shall be 30% by mass or less with respect to the entire resin. Is more preferable, and it is more preferably 20% by mass or less, and further preferably 10% by mass or less.
  • the proportion of the resin having a weight average molecular weight of less than 10,000 in the resin composition after the resin is polymerized is in the above range. Is preferable.
  • the resin composition may further contain a curing agent.
  • the curing agent includes an acid anhydride-based curing agent, an amine-based curing agent, a phenol-based curing agent, a mercaptan-based curing agent and other heavy-addition curing agents, and imidazole and the like. Examples include latent curing agents.
  • the content of the curing agent may be 0.1% by mass to 50% by mass, 1% by mass to 30% by mass, or 1% by mass to 20% by mass with respect to the total solid content of the resin composition. It may be%, and it may be 1% by mass to 10% by mass.
  • the ratio of the equivalent number of functional groups of the thermosetting resin to the equivalent number of functional groups of the curing agent having reactivity with the functional group of the thermosetting resin may be 1: 1 to 1: 3, or 1: 1 to 1: 2.
  • the resin composition may contain a coupling agent.
  • the adhesiveness to the substrate when formed into a film or a cured product tends to be further improved.
  • the type of coupling agent is not particularly limited, and examples of the coupling agent include silane compounds, titanium compounds, aluminum chelate compounds, and aluminum / zirconium compounds. Of these, a silane coupling agent is preferable from the viewpoint of adhesiveness to a base material such as glass.
  • One type of coupling agent may be used alone, or two or more types may be used in combination.
  • silane coupling agent examples include a silane coupling agent having a vinyl group, an epoxy group, a methacryl group, an acrylic group, an amino group, an isocyanurate group, a ureido group, a mercapto group, an isocyanate group, an acid anhydride group and the like.
  • a silane coupling agent having an epoxy group or an amino group is preferable, and a silane coupling agent having an epoxy group or an anirino group is more preferable.
  • a silane cup having an epoxy group or an amino group is used from the viewpoint of good compatibility with the polyamideimide resin and the epoxy resin. It is preferable to use a ring agent, and it is more preferable to use a silane coupling agent having an epoxy group or an anirino group.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethyldimethoxy.
  • Silane 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-ureidopropyltri Examples thereof include ethoxysilane.
  • the content of the coupling agent in the resin composition is not particularly limited, and is 0.05% by mass to 5% by mass with respect to the solid content of the resin composition. Is preferable, and more preferably 0.1% by mass to 2.5% by mass.
  • the resin composition may contain a solvent from the viewpoint of adjusting the viscosity.
  • the solvent is preferably a solvent having a boiling point of 100 ° C. or higher from the viewpoint of preventing the composition from drying in the step of applying the composition, and a boiling point of 300 ° C. or lower in order to suppress the generation of voids. It is more preferable that the solvent has.
  • the type of solvent is not particularly limited, and examples thereof include alcohol-based solvents, ether-based solvents, ketone-based solvents, amide-based solvents, aromatic hydrocarbon-based solvents, ester-based solvents, and nitrile-based solvents. More specifically, methylisobutylketone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, sulfolane, cyclohexanone, methylethylketone, dimethylpropaneamide, 2- (2-hexyloxyethoxy).
  • One type of solvent may be used alone, or two or more types may be used in combination.
  • the solvent is preferably 0.1% by mass to 10% by mass, and 0.5% by mass to 9% by mass, based on the total amount of the resin composition, from the viewpoints of viscosity, shortening of the heating process, and the like. It is more preferably 1% by mass to 8% by mass.
  • the resin composition may contain other additives if necessary.
  • the additive include thixotropy, dispersant and the like.
  • the thixo agent examples include 12-hydroxystearic acid, 12-hydroxystearic acid triglyceride, ethylenebisstearic acid amide, hexamethylenebisoleic acid amide, N, N'-distearyl adipic acid amide, fumed silica and the like.
  • the thixotropy may be used alone or in combination of two or more.
  • the content of the thixotropy is not particularly limited, and may be 0.01% by mass to 5% by mass or 0.05% by mass to 3% by mass with respect to the total solid content of the resin composition. , 0.1% by mass to 1% by mass.
  • examples of the dispersant include dispersants compatible with the resin.
  • the filler can be suitably dispersed and the adhesiveness to the substrate tends to be improved.
  • examples of the dispersant include phosphates, carboxylates, and carboxylic acid amine salts.
  • the content of the dispersant may be 0.01% by mass to 5% by mass or 0.05% by mass to 3% by mass with respect to the total solid content of the resin composition.
  • the resin composition of the present disclosure may be dried and used as a film.
  • the film can be produced, for example, by the following method. First, the above-mentioned resin composition is applied to at least a part of the surface of the base material to form a resin composition layer. Then, the resin composition layer is dried to obtain a film.
  • the method of applying the resin composition to the substrate is not particularly limited, and examples thereof include a spray method, a screen printing method, a rotary coating method, a spin coating method, and a bar coating method. Among them, the resin composition of the present disclosure is suitable for applications using screen printing.
  • the base material to which the resin composition is applied is not particularly limited, and glass, metal, resin material, metal vapor deposition film, metal oxide, ceramic, non-woven fabric, glass fiber, aramid fiber, carbon fiber, glass fiber prepreg, aramid fiber prepreg, Examples include carbon fiber prepreg.
  • the resin composition of the present disclosure is excellent in adhesiveness to a substrate having a polarity on the surface, such as glass, metal, metal oxide, glass fiber, aramid fiber, and glass fiber prepreg.
  • the method for drying the resin composition is not particularly limited, and examples thereof include a method of heat-treating using a device such as a hot plate and an oven, and a method of naturally drying.
  • the conditions for drying by heat treatment are not particularly limited as long as the solvent in the resin composition is sufficiently volatilized, and may be about 5 minutes to 120 minutes at 80 ° C. to 150 ° C. ..
  • the resin composition of the present disclosure may be used as a cured product.
  • the method for curing the resin composition is not particularly limited, and the resin composition can be cured by heat treatment or the like. Curing by heat treatment uses a box dryer, hot air conveyor dryer, quartz tube furnace, hot plate, rapid thermal annealing, vertical diffusion furnace, infrared curing furnace, electron beam curing furnace, microwave curing furnace, etc. Can be done.
  • the maximum height Rz of the film or cured product is preferably 10.0 ⁇ m or less, more preferably 8.0 ⁇ m or less, and further preferably 6.0 ⁇ m or less. preferable.
  • the arithmetic mean roughness Ra of the film or cured product is preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, further preferably 0.8 ⁇ m or less, and 0.6 ⁇ m or less. Is particularly preferable.
  • the arithmetic mean roughness Ra and the maximum height Rz of the film or the cured product shall be the values obtained based on JIS B 0601: 2013. Specifically, it is a value measured using a 3D microscope (for example, VR-3200 manufactured by KEYENCE, magnification 12 times).
  • the thickness of the film or the cured product is not particularly limited, and in one embodiment, it may be 10 ⁇ m to 100 ⁇ m or 10 ⁇ m to 50 ⁇ m.
  • the specific gravity of the film or cured product is preferably 4.0 or more, more preferably 4.5 or more, and even more preferably 5.0 or more.
  • the upper limit of the specific gravity of the film or the cured product is not particularly limited, and may be, for example, 9.0 or less. From the above viewpoint, the specific gravity of the film or the cured product may be 4.0 to 9.0, 4.5 to 9.0, or 5.0 to 9.0. ..
  • the volume resistivity of the film or cured product is preferably 1.0 ⁇ 10 6 ⁇ ⁇ cm or more, more preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or more, and 1.0 ⁇ 10 8 ⁇ . -It is more preferably cm or more.
  • the volume resistivity is measured according to JIS C 2139-3-1: 2018 with an insulation resistance tester (for example, Advantest, 8340A), and the volume resistivity is calculated from the area and thickness of the electrode contact surface. Can be calculated.
  • the breakdown voltage of the membrane or cured product measured by the method described in Examples is preferably 5 MV / m or more, preferably 10 MV / m or more, and further preferably 15 MV / m or more. preferable.
  • the resin composition of the present disclosure can be suitably used for applications in which it is particularly desirable to form an insulating layer having a high specific gravity by screen printing. Further, the resin composition of the present disclosure can be suitably used as an ultrasonic reflector.
  • -Resin 1 Polyamide-imide resin (KS-9900F (trade name), Hitachi Chemical Co., Ltd.)
  • -Resin 2 Epoxy resin (YX8034 (trade name), Mitsubishi Chemical Corporation)
  • -Resin 3 Epoxy resin (TG-G (trade name), Shikoku Chemicals Corporation)
  • Hardener Imidazole -Thixo agent 1: 12-hydroxystearic acid-Thixo agent 2: Fumed silica (Aerosil R972, Nippon Aerosil Co., Ltd.)
  • Dispersant Phosphate (BYK-106 (trade name), Big Chemie Japan Co., Ltd.)
  • -Coupling agent 1 N-phenyl-3-aminopropyltrimethoxysilane (KBM-573 (trade name), Shin-Etsu Chemical Co., Ltd.)
  • -Coupling agent 2 3-glycidoxypropyltrimethoxysilane (KBM-403 (trade name), Shin-Ets
  • ⁇ Surface roughness ⁇ The arithmetic mean roughness Ra and the maximum height Rz of the film after film formation were determined based on JIS B 0601: 2013 using a 3D microscope (for example, VR-3200 manufactured by KEYENCE, magnification 12 times).
  • the film after film formation is 100 mm square using a cross-cutter test multi-blade cutter (All Good Co., Ltd.) equipped with cutter blades at 1 mm intervals. After making a grid-like cut in the central portion of the film after forming the film with a width of 8 mm and a length of 8 mm, the tape was adhered and the tape was peeled off at an angle of 45 °.
  • the area of the film-forming part that was peeled from the film-forming part that was cut in a grid pattern after the tape was peeled off was photographed with a microscope, and the areas of the peeled part and the unpeeled part were image-processed by binarization to obtain the peeled part. The area was calculated. When the peeled area was less than 40% with respect to the total area of the film-forming portion, it was judged to have good adhesion.
  • An electrode is connected to the copper foil surface, an electrode of ⁇ 20 mm is installed on the film-forming surface side, a dielectric breakdown test is conducted at a boosting speed of 500 V / s in the atmosphere, and the dielectric breakdown strength is determined from the dielectric breakdown voltage and the film-forming thickness. Calculated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂組成物は、比重6.0以上の絶縁性フィラーと、極性基を有する樹脂と、を含有し、前記比重6.0以上の絶縁性フィラーの含有率が、前記樹脂組成物の全固形分に対して50体積%以上である。

Description

樹脂組成物、膜、及び硬化物
 本開示は、樹脂組成物、膜、及び硬化物に関する。
 超音波反射材は医療用超音波診断装置、自動車の車間距離検知システム、障害物検知、埋設管の腐食チェッカー、コンクリート亀裂探知、イヤホン、スピーカー等の音響材などに使用されており、ノイズ低減、高精細化、システムの簡素化等が望まれている(例えば特許文献1)。
特開2019-017501号公報
 超音波信号は、異なる材料の界面で反射されて、送信されてくる信号と相互作用することがある。送信された信号と反射した信号との相互作用によって超音波信号を増幅することが可能となる。この超音波信号の反射は、異なる材料間の、密度と音速の積で表される音響インピーダンスの差によるものである。したがって、例えば高比重(すなわち高密度)の材料を、超音波信号を増幅するための超音波反射材として利用できると考えられる。またこのような高比重の材料は、導通を防ぐために絶縁性を有すること、及び基材との接着性を有することも望まれる。
 上記事情に鑑み、本開示は、基材との接着性に優れる高比重の絶縁層を形成可能な樹脂組成物、並びにこれを用いた膜、及び硬化物を提供することを課題とする。
 上記課題を解決するための手段は、以下の態様を含む。
<1> 比重6.0以上の絶縁性フィラーと、極性基を有する樹脂と、を含有する樹脂組成物であって、前記比重6.0以上の絶縁性フィラーの含有率が、前記樹脂組成物の全固形分に対して50体積%以上である、樹脂組成物。
<2> 前記極性基を有する樹脂が、重量平均分子量10,000以上の樹脂を含む、<1>に記載の樹脂組成物。
<3> 前記極性基が、窒素原子、酸素原子、及び硫黄原子からなる群より選択される少なくとも1つのヘテロ原子を含む、<1>又は<2>に記載の樹脂組成物。
<4> 前記極性基を有する樹脂が、ポリアミドイミド樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、及びポリエーテル樹脂からなる群より選択される少なくとも1つを含む、<1>~<3>のいずれか1項に記載の樹脂組成物。
<5> 前記比重6.0以上の絶縁性フィラーの体積平均粒子径が2.0μm以下である、<1>~<4>のいずれか1項に記載の樹脂組成物。
<6> 前記比重6.0以上の絶縁性フィラーが酸化ビスマス、酸化セリウム、チタン酸バリウム、及び酸化タングステンからなる群より選択される少なくとも1つを含む、<1>~<5>のいずれか1項に記載の樹脂組成物。
<7> さらにカップリング剤を含有する、<1>~<6>のいずれか1項に記載の樹脂組成物。
<8> 前記カップリング剤がシランカップリング剤を含む、<7>に記載の樹脂組成物。
<9> さらに溶剤を含有する、<1>~<8>のいずれか1項に記載の樹脂組成物。
<10> <1>~<9>のいずれか1項に記載の樹脂組成物を乾燥させてなる膜。
<11> 最大高さRzが10.0μm以下である、<10>に記載の膜。
<12> 算術平均粗さRaが1.5μm以下である、<10>又は<11>に記載の膜。
<13> 超音波反射材として用いられる、<10>~<12>のいずれか1項に記載の膜。
<14> <1>~<9>のいずれか1項に記載の樹脂組成物を硬化してなる硬化物。
<15> 最大高さRzが10.0μm以下である、<14>に記載の硬化物。
<16> 算術平均粗さRaが1.5μm以下である、<14>又は<15>に記載の硬化物。
<17> 超音波反射材として用いられる、<14>~<16>のいずれか1項に記載の硬化物。
 本開示によれば、基材との接着性に優れる高比重の絶縁層を形成可能な樹脂組成物、並びにこれを用いた膜、及び硬化物が提供される。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
≪樹脂組成物≫
 本開示の樹脂組成物は、比重6.0以上の絶縁性フィラーと、極性基を有する樹脂と、を含有し、前記比重6.0以上の絶縁性フィラーの含有率は、前記樹脂組成物の全固形分に対して50体積%以上である。
 樹脂組成物の粘度は、ハンドリング性の観点から、25℃において10Pa・s~300Pa・sであることが好ましく、20Pa・s~250Pa・sであることがより好ましく、30Pa・s~200Pa・sであることがさらに好ましい。樹脂組成物の粘度は、JIS Z 3284-3:2014に準じて、SPPロータを備え付けたE型回転粘度計を用いて、25℃、2.5回転/分(rpm)の回転数で144秒間回転させた時の測定値で、2回測定した平均値として測定される。
 以下、樹脂組成物に含まれる各成分について説明する。
<絶縁性フィラー>
 本開示の樹脂組成物は比重6.0以上の絶縁性フィラーを含有する。当該比重6.0以上の絶縁性フィラーの含有率は、樹脂組成物の全固形分の50体積%以上である。
 比重6.0以上の絶縁性フィラーとしては、例えば、酸化ビスマス、酸化セリウム、酸化タングステン等の金属酸化物;チタン酸バリウム、焼結酸化ウラン、タングステンカーバイド、タングステン、ジルコニウム、などが挙げられる。なかでも、酸化ビスマス、酸化セリウム、チタン酸バリウム、及び酸化タングステンからなる群より選択される少なくとも1つが好ましい。絶縁性フィラーは1種を単独で用いても2種以上を併用してもよい。なかでも、耐熱性、比重、300℃まで加熱したときの熱重量減少が1質量%未満であること等の観点から、酸化ビスマスが好ましい。
 絶縁性フィラーの25℃における体積抵抗率は、1×10Ω・cm以上であることが好ましく、1×10Ω・cm以上であることがより好ましく、1×1010Ω・cm以上であることがさらに好ましい。
 絶縁性フィラーの比重は6.0以上であればよく、樹脂組成物の用途に応じて適宜調節してよい。例えば、絶縁性フィラーの比重は7.0以上であってもよく、8.0以上であってもよい。絶縁性フィラーの比重の上限は特に制限されない。例えば、絶縁性フィラーの比重の上限は10.0以下であってもよい。 本開示において、フィラーの比重は、JIS K 0061:2001、JIS Z 8807:2012に準じて、測定試料の質量とそれと同体積の大気圧下における純水の質量との比で測定される測定試料の真比重と水の真比重の比を表す。
 絶縁性フィラーは、安定的に高比重の材料を得る観点から、高温における質量減少率が少ないことが好ましい。例えば、絶縁性フィラーを300℃で1時間加熱したときの質量減少率が1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
 絶縁性フィラーの形状は特に制限されず、球状、粉状、針状、繊維状、板状、角状、多面体、鱗片状等であってもよい。絶縁性フィラーの粒子径は特に制限されず、体積平均粒子径は5.0μm以下であることが好ましく、4.0μm以下であることがより好ましく、3.0μm以下であることがさらに好ましく、2.0μm以下であることが特に好ましい。体積平均粒子径の下限値は特に制限されず、0.001μm以上であってもよい。体積平均粒子径はレーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒子径(D50)である。特に、絶縁性フィラーの体積平均粒子径が2.0μm以下であると、樹脂組成物を用いた膜又は硬化物の平坦性が向上するため好ましい。
 以上の観点から、絶縁性フィラーの体積平均粒子径は、0.001μm~5.0μmであることが好ましく、0.001μm~4.0μmであることがより好ましく、0.001μm~3.0μmであることがさらに好ましく、0.001μm~2.0μmであることが特に好ましい。
 樹脂組成物の全固形分中の絶縁性フィラーの含有率は50体積%以上であり、55体積%以上であることが好ましく、60体積%以上であることがさらに好ましい。樹脂組成物の全固形分中の絶縁性フィラーの含有率は50体積%以上であると、膜又は硬化物としたときに十分な比重を得られる傾向にある。絶縁性フィラーの含有率の上限は特に制限されず、樹脂組成物のハンドリング性の観点から、絶縁性フィラーの含有率は80体積%以下であってもよい。
 以上の観点から、樹脂組成物中の全固形分中の絶縁性フィラーの含有率は50体積%~80体積%であることが好ましく、55体積%~80体積%であることがより好ましく、60体積%~80体積%であることがさらに好ましい。
 樹脂組成物の固形分とは、樹脂組成物から揮発成分を除いた成分を意味する。
 樹脂組成物の全固形分中の絶縁性フィラーの含有率は、88質量%以上であることが好ましく、90質量%以上であることがより好ましく、92質量%以上であることがさらに好ましい。樹脂組成物の全固形分中の絶縁性フィラーの含有率の上限は特に制限されず、99質量%以下であってもよい。
 以上の観点から、樹脂組成物の全固形分中の絶縁性フィラーの含有率は、88質量%~99質量%であることが好ましく、90質量%~99質量%であることがより好ましく、92質量%~99質量%であることがさらに好ましい。
 樹脂組成物は、比重6.0以上の絶縁性フィラーに加えて、その他のフィラーを含有していても含有していなくてもよい。例えば、樹脂組成物は比重6.0未満の絶縁性フィラーを含有していてもよい。樹脂組成物が比重6.0以上の絶縁性フィラー以外のフィラーを含有する場合、フィラーの全質量に対する比重6.0以上の絶縁性フィラーの含有率は60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
 樹脂組成物が比重6.0以上の絶縁性フィラー以外のフィラーを含有する場合、樹脂組成物の全固形分中のフィラーの合計含有率は50体積%を超え、55体積%以上であることが好ましく、60体積%以上であることがより好ましく、65体積%以上であることがさらに好ましい。また、この場合の樹脂組成物の全固形分中のフィラーの合計含有率の上限は特に制限されず、90体積%以下であってもよい。
 樹脂組成物が比重6.0以上の絶縁性フィラー以外のフィラーを含有する場合、樹脂組成物の全固形分中のフィラーの合計含有率は90質量%以上であることが好ましく、92質量%以上であることがより好ましく、94質量%以上であることがさらに好ましい。また、この場合の樹脂組成物の全固形分中のフィラーの合計含有率の上限は特に制限されず、99質量%以下であってもよい。
<樹脂>
 本開示の樹脂組成物は極性基を有する樹脂を含有する。本開示の樹脂組成物は、高比重の組成物とするために絶縁性フィラーを50体積%以上含有しているが、絶縁性フィラーを高充填とすると、膜又は硬化物としたときの基材への接着性が十分に得られにくい。そこで本開示の樹脂組成物では極性基を有する樹脂を用いて基材との相互作用を向上させることで、接着性と高比重の両立を可能としている。
 極性基とは電気陰性度の異なる原子どうしの結合により極性を有する原子団を表す。極性基としては、例えば、炭素原子及び水素原子以外のヘテロ原子を有する基が挙げられ、より具体的には、窒素原子、酸素原子、硫黄原子、ホウ素原子、リン原子、ケイ素原子からなる群より選択される少なくとも1つのヘテロ原子を含む基が挙げられる。なかでも極性基としては窒素原子、酸素原子、及び硫黄原子からなる群より選択される少なくとも1つのヘテロ原子を含む基が好ましい。より具体的には、極性基としては、アミノ基、アミド基、イミド基、シアノ基、ニトロ基、ヒドロキシ基、カルボキシ基、カルボニル基、チオール基、スルホ基、チオニル基、エステル結合、エーテル結合、スルフィド結合、ウレタン結合、ウレア結合等が挙げられ、アミド基、イミド基、ヒドロキシ基、アミノ基、カルボキシ基、カルボニル基、及びウレア結合からなる群より選択される少なくとも1つが好ましい。極性基は樹脂の主鎖に存在していても側鎖に存在していてもよい。
 極性基を有する樹脂の種類は極性基を有する限り特に制限されず、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよく、これらの組合せであってもよい。硬化時の硬化収縮が小さい観点からは熱可塑性樹脂が好ましく、さらに製膜後の膜の強度を向上させ、かつ硬化時の硬化収縮を抑制する観点から熱可塑性樹脂と熱硬化性樹脂を組み合わせることがより好ましい。
 また、樹脂成分は加熱により重合反応を生じうる官能基を有するモノマーの状態であってもすでに重合したポリマーの状態であってもよい。極性基を有する樹脂としては、具体的には、極性基を有するビニル重合系樹脂、アクリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、オキサジン樹脂、ビスマレイミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。なかでも、ポリアミドイミド樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、及びポリエーテル樹脂からなる群より選択される少なくとも1つが好ましい。樹脂は1種を単独で用いても2種以上を併用してもよい。
 なかでも、接着性の観点からはポリアミドイミド樹脂が好ましく、耐熱性の観点からはエポキシ樹脂が好ましい。耐熱性及び接着性の両立の観点から、ポリアミドイミド樹脂とエポキシ樹脂とを併用してもよい。樹脂組成物においてポリアミドイミド樹脂とエポキシ樹脂を併用する場合、ポリアミドイミド樹脂とエポキシ樹脂との質量比は特に制限されず、20/80~80/20であってもよく、30/70~70/30であってもよく、40/60~60/40であってもよい。
 極性基を有する樹脂は、硬化剤を併用して重合されたものであってもよい。例えば、エポキシ樹脂に対して、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤等の重付加型硬化剤、イミダゾール等の潜在性硬化剤などを併用して重合したものであってもよい。
 エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、環式脂肪族エポキシ樹脂等が挙げられる。
 エポキシ樹脂の好ましい具体例としては、上述のエポキシ樹脂において、エーテル基、脂環式エポキシ基等の置換基を有するものが挙げられる。エポキシ樹脂としては、エポキシ樹脂のエポキシ基又はグリシジルオキシ基に由来する酸素原子以外のヘテロ原子を有するエポキシ樹脂が好ましい。
 好ましいエポキシ樹脂としては、例えば、窒素原子と当該窒素原子に結合する水素原子とを含むエポキシ樹脂が挙げられる。好ましい一態様において、エポキシ樹脂は窒素原子と当該窒素原子に結合する水素原子とを含むヘテロ環構造を有してもよい。このようなヘテロ環構造としては、例えばグリコールウリル構造が挙げられる。
 樹脂組成物がエポキシ樹脂を含む場合、樹脂の全量に対するエポキシ樹脂の含有率は、100質量%であってもよく、10質量%~90質量%であってもよく、20質量%~80質量%であってもよく、30質量%~70質量%であってもよく、40質量%~60質量%であってもよい。
 樹脂組成物がエポキシ樹脂を含む場合、樹脂組成物の固形分に対するエポキシ樹脂の含有率は0.01質量%~10質量%であってもよく、0.1質量%~9質量%であってもよく、1質量%~8質量%であってもよい。
 ポリアミドイミド樹脂としては、主鎖中にアミド結合とイミド結合とを有するポリアミドイミド樹脂が好ましい。ポリアミドイミド樹脂の好ましい具体例としては、ポリアルキレンオキサイド構造及びポリシロキサン構造の少なくとも一方を有するポリアミドイミド樹脂が挙げられる。これらのポリアミドイミド樹脂は、ポリアミドイミド樹脂の変形による応力の緩和の観点から好ましい。これらのポリアミドイミド樹脂はそれぞれ例えばポリアルキレンオキサイド変性ジアミン及びポリシロキサン変性ジアミンを用いて合成されるポリアミドイミド樹脂であってもよい。
 ポリアミドイミド樹脂に含まれてもよいポリアルキレンオキサイド構造の単位構造としては、炭素数1~10のアルキレンオキサイド構造が好ましく、炭素数1~8のアルキレンオキサイド構造がより好ましく、炭素数1~4のアルキレンオキサイド構造がさらに好ましい。なかでも、ポリアルキレンオキサイド構造としてはポリプロピレンオキサイド構造が好ましい。アルキレンオキサイド構造中のアルキレン基は直鎖状であっても分岐状であってもよい。ポリアルキレンオキサイド構造中の単位構造は1種類でもよく、2種類以上であってもよい。
 ポリアミドイミド樹脂に含まれてもよいポリシロキサン構造としては、ポリシロキサン構造のケイ素原子の一部又は全部に、炭素数1~20のアルキル基又は炭素数6~18のアリール基が置換基として結合しているポリシロキサン構造が挙げられる。
 炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、n-ドデシル基等が挙げられる。これらの中でも、メチル基が好ましい。
 炭素数6~18のアリール基は、無置換でも置換基で置換されていてもよい。アリール基が置換基を有する場合の置換基としては、ハロゲン原子、アルコキシ基、ヒドロキシ基等が挙げられる。炭素数6~18のアリール基としては、フェニル基、ナフチル基、ベンジル基等が挙げられる。これらの中でも、フェニル基が好ましい。
 炭素数1~20のアルキル基又は炭素数6~18のアリール基は、1種を単独で用いても2種以上を併用してもよい。
 また、ポリアミドイミド樹脂の好ましい一態様として、ジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するポリアミドイミド樹脂が挙げられる。
 ジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するポリアミドイミド樹脂の製造方法は特に限定されるものではなく、例えば、イソシアネート法及び酸クロライド法が挙げられる。
 イソシアネート法では、ジイミドカルボン酸と芳香族ジイソシアネートとを用いてポリアミドイミド樹脂を合成する。酸クロライド法では、ジイミドカルボン酸塩化物と芳香族ジアミンとを用いてポリアミドイミド樹脂を合成する。ジイミドカルボン酸と芳香族ジイソシアネートから合成するイソシアネート法が、ポリアミドイミド樹脂の構造の最適化を図りやすく、より好ましい。
 樹脂組成物がポリアミドイミド樹脂を含む場合、樹脂の全量に対するポリアミドイミド樹脂の含有率は80質量%以上であってもよく、90質量%以上であってもよく、100質量%であってもよい。また、樹脂の全量に対するポリアミド樹脂の含有率は、10質量%~90質量%であってもよく、20質量%~80質量%であってもよく、30質量%~70質量%であってもよく、40質量%~60質量%であってもよい。
 樹脂組成物がポリアミドイミド樹脂を含む場合、樹脂組成物の固形分に対するポリアミドイミド樹脂の含有率は0.01質量%~10質量%であってもよく、0.1質量%~9質量%であってもよく、1質量%~8質量%であってもよい。
 極性基を有する樹脂の重量平均分子量は特に制限されず、10,000以上であることが好ましく、20, 000以上であってもよく、50, 000以上であってもよい。樹脂の重量平均分子量が10,000以上であると、樹脂組成物を乾燥させて膜を作製したときに、表面の粉付きを抑制できる傾向にある。重量平均分子量の上限は特に制限されず、1,000, 000以下であってもよく、900, 000以下であってもよい。樹脂組成物に含まれる極性基を有する樹脂が膜又は硬化物の形成において重合されるものである場合には、重合された樹脂の重量平均分子量が上記範囲であることが好ましい。
 樹脂組成物に複数種の樹脂が含まれる場合には、それぞれの樹脂が独立に上記範囲の重量平均分子量を有することが好ましい。
 樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーを使用し、ポリスチレンを標準物質として測定される。
 樹脂組成物中の、極性基を有する樹脂の含有率は特に制限されず、接着性及び比重の調整の観点から、樹脂組成物の固形分に対して2質量%~12質量%であることが好ましく、3質量%~10質量%であることがより好ましく、4質量%~9質量%であることがさらに好ましい。
 樹脂組成物は、極性基を有する樹脂に加えて、極性基を有しない樹脂を含有してもよい。樹脂の全量に対する極性基を有する樹脂の含有率は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。
 樹脂組成物中の樹脂の合計含有率(すなわち、極性基を有する樹脂及び場合により存在する極性基を有しない樹脂の合計含有率)は、0.01質量%~10質量%であってもよく、0.1質量%~9質量%であってもよく、1質量%~8質量%であってもよい。
 樹脂組成物が、極性基を有しない樹脂を含有する場合、当該極性基を有しない樹脂の重量平均分子量は特に制限されず、10,000以上であることが好ましく、20, 000以上であってもよく、50, 000以上であってもよい。樹脂の重量平均分子量が10,000以上であると、樹脂組成物を乾燥させて膜を作製したときに、表面の粉付きを抑制できる傾向にある。重量平均分子量の上限は特に制限されず、1,000, 000以下であってもよく、900, 000以下であってもよい。樹脂組成物に含まれる極性基を有しない樹脂が膜又は硬化物の形成において重合されるものである場合には、重合された樹脂の重量平均分子量が上記範囲であることが好ましい。
 樹脂組成物に複数種の樹脂が含まれる場合には、それぞれの樹脂が独立に上記範囲の重量平均分子量を有することが好ましい。
 樹脂組成物が、重量平均分子量が10,000以上の樹脂と重量平均分子量が10,000未満の樹脂とをいずれも含有する場合、後者の割合は樹脂全体に対して30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。樹脂組成物中の樹脂が膜又は硬化物において重合されるものである場合には、樹脂が重合された後の樹脂組成物における重量平均分子量が10,000未満の樹脂の割合が上記範囲であることが好ましい。
 樹脂組成物が熱硬化性樹脂を含有する場合、樹脂組成物はさらに硬化剤を含有していてもよい。例えば熱硬化性樹脂としてエポキシ樹脂を使用する場合、硬化剤としては、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤等の重付加型硬化剤、イミダゾール等の潜在性硬化剤などが挙げられる。
 硬化剤の含有量は樹脂組成物の全固形分に対して0.1質量%~50質量%であってもよく、1質量%~30質量%であってもよく、1質量%~20質量%であってもよく、1質量%~10質量%であってもよい。
 硬化剤が付加重合型の硬化剤である場合、熱硬化性樹脂の官能基の当量数と、当該熱硬化性樹脂の官能基と反応性を有する硬化剤の官能基の当量数の比率(熱硬化性樹脂の官能基の当量数:硬化剤の官能基の当量数)は、1:1~1:3であってもよく、1:1~1:2であってもよい。
<カップリング剤>
 樹脂組成物はカップリング剤を含有していてもよい。樹脂組成物がカップリング剤を含有すると、膜又は硬化物としたときの基材への接着性がより向上する傾向にある。
 カップリング剤の種類は特に限定されず、カップリング剤としては、シラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物等が挙げられる。なかでも、ガラス等の基材との接着性の観点からは、シランカップリング剤が好ましい。カップリング剤は1種を単独で用いても2種以上を併用してもよい。
 シランカップリング剤としては、ビニル基、エポキシ基、メタクリル基、アクリル基、アミノ基、イソシアヌレート基、ウレイド基、メルカプト基、イソシアネート基、酸無水物基等を有するシランカップリング剤が挙げられる。なかでも、エポキシ基又はアミノ基を有するシランカップリング剤が好ましく、エポキシ基又はアニリノ基を有するシランカップリング剤がより好ましい。特に、樹脂としてポリアミドイミド樹脂及びエポキシ樹脂からなる群より選択される少なくとも1つを用いる場合、ポリアミドイミド樹脂及びエポキシ樹脂への相溶性が良好である観点から、エポキシ基又はアミノ基を有するシランカップリング剤を用いることが好ましく、エポキシ基又はアニリノ基を有するシランカップリング剤を用いることがより好ましい。
 シランカップリング剤として、具体的には、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン等が挙げられる。
 樹脂組成物がカップリング剤を含有する場合、樹脂組成物中のカップリング剤の含有率は特に制限されず、樹脂組成物の固形分に対して0.05質量%~5質量%であることが好ましく、0.1質量%~2.5質量%であることがより好ましい。
<溶剤>
 樹脂組成物は粘度を調整する観点から溶剤を含有していてもよい。溶剤は、組成物を付与する工程での組成物の乾燥を防ぐ観点から、100℃以上の沸点を有している溶剤であることが好ましく、ボイドの発生を抑制するために300℃以下の沸点を有している溶剤であることがより好ましい。
 溶剤の種類は特に制限されず、例えば、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、芳香族炭化水素系溶剤、エステル系溶剤、ニトリル系溶剤を挙げることができる。より具体的には、メチルイソブチルケトン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、γ-ブチロラクトン、スルホラン、シクロヘキサノン、メチルエチルケトン、ジメチルプロパンアミド、2-(2-ヘキシルオキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール、ジエチレングリコールモノエチルエーテル、テルピネオール、ステアリルアルコール、トリプロピレングリコールメチルエーテル、ジエチレングリコール、プロピレングリコール-n-プロピルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコール-n-ブチルエーテル、1,3-ブタンジオール、1,4-ブタンジオール、p-フェニルフェノール、プロピレングリコールフェニルエーテル、クエン酸トリブチル、4-メチル-1,3-ジオキソラン-2-オン、γ-ブチロラクトン、スルホラン、パラフィン等が挙げられる。溶剤は1種を単独で用いても2種以上を併用してもよい。
 溶剤は、粘度、加熱時の工程の短縮化等の観点から、樹脂組成物の全量に対して0.1質量%~10質量%であることが好ましく、0.5質量%~9質量%であることがより好ましく、1質量%~8質量%であることがさらに好ましい。
<その他の添加剤>
 樹脂組成物は必要に応じてその他の添加剤を含有していてもよい。添加剤としては、チキソ剤、分散剤等が挙げられる。
 チキソ剤としては、12-ヒドロキシステアリン酸、12-ヒドロキシステアリン酸トリグリセリド、エチレンビスステアリン酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジステアリルアジピン酸アマイド、ヒュームドシリカ等が挙げられる。チキソ剤は1種を単独で用いても2種以上を併用してもよい。チキソ剤の含有率は特に限定されず、樹脂組成物の全固形分に対して0.01質量%~5質量%であってもよく、0.05質量%~3質量%であってもよく、0.1質量%~1質量%であってもよい。
 分散剤としては、樹脂に相溶性の分散剤が挙げられる。樹脂に相溶性の分散剤を用いることで、フィラーを好適に分散させ、基材への接着性を高めることができる傾向にある。具体的には、分散剤としては、リン酸塩、カルボン酸塩、カルボン酸アミン塩等が挙げられる。分散剤の含有率は、樹脂組成物の全固形分に対して0.01質量%~5質量%であってもよく、0.05質量%~3質量%であってもよい。
〔樹脂組成物の用途〕
 本開示の樹脂組成物は、乾燥させて膜として用いてもよい。膜は例えば以下の方法で作製することができる。まず、上述の樹脂組成物を基材の表面の少なくとも一部に付与して樹脂組成物層を形成する。その後、樹脂組成物層を乾燥させ、膜を得る。樹脂組成物を基材に付与する方法は特に制限されず、スプレー法、スクリーン印刷法、回転塗布法、スピンコート法、バーコート法等が挙げられる。なかでも本開示の樹脂組成物はスクリーン印刷を用いる用途に好適である。
 樹脂組成物を付与する基材は特に制限されず、ガラス、金属、樹脂材料、金属蒸着膜、金属酸化物、セラミック、不織布、ガラス繊維、アラミド繊維、炭素繊維、ガラス繊維プリプレグ、アラミド繊維プリプレグ、炭素繊維プリプレグ等が挙げられる。なかでも、本開示の樹脂組成物はガラス、金属、金属酸化物、ガラス繊維、アラミド繊維、ガラス繊維プリプレグ等の、表面に極性を有する基材への接着性に優れる。
 樹脂組成物を乾燥する方法は特に制限されず、ホットプレート、オーブン等の装置を用いて熱処理する方法、自然乾燥する方法などが挙げられる。熱処理することで乾燥を行う場合の条件は、樹脂組成物中の溶剤が十分に揮散する条件であれば特に制限はなく、80℃~150℃で、5分間~120分間程度であってもよい。
 本開示の樹脂組成物は硬化物として用いてもよい。樹脂組成物を硬化させる方法は特に制限されず、熱処理等により硬化することができる。熱処理による硬化は、箱型乾燥機、熱風式コンベアー型乾燥機、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉等を用いて行なうことができる。
 防汚性、防油性の観点から、膜又は硬化物の最大高さRzは10.0μm以下であることが好ましく、8.0μm以下であることがより好ましく、6.0μm以下であることがさらに好ましい。
 また、膜又は硬化物の算術平均粗さRaは、1.5μm以下であることが好ましく、1.0μm以下であることがより好ましく、0.8μm以下であることがさらに好ましく、0.6μm以下であることが特に好ましい。
 膜又は硬化物の算術平均粗さRa及び最大高さRzは、JIS B 0601:2013に基づいて求めた値とする。具体的には、3D顕微鏡(例えば、キーエンス製VR-3200、倍率12倍)を用いて測定される値とする。
 膜又は硬化物の厚みは特に制限されず、一態様において、10μm~100μmであってもよく、10μm~50μmであってもよい。
 膜又は硬化物の比重は、4.0以上であることが好ましく、4.5以上であることがより好ましく、5.0以上であることがさらに好ましい。膜又は硬化物の比重の上限は特に制限されず、例えば9.0以下であってもよい。
 以上の観点から、膜又は硬化物の比重は4.0~9.0であってもよく、4.5~9.0であってもよく、5.0~9.0であってもよい。
 膜又は硬化物の体積抵抗率は、1.0×10Ω・cm以上であることが好ましく、1.0×10Ω・cm以上であることがより好ましく、1.0×10Ω・cm以上であることがさらに好ましい。体積抵抗率はJIS C 2139-3-1:2018に準じて、絶縁抵抗計(例えば、アドバンテスト製、8340A)にて絶縁抵抗値を計測し、電極接触面の面積と厚さから体積抵抗率を算出することができる。
 膜又は硬化物の、実施例に記載の方法により測定される絶縁破壊電圧は、5MV/m以上であることが好ましく、10MV/m以上であることが好ましく、15MV/m以上であることがさらに好ましい。
 本開示の樹脂組成物は、特に高比重の絶縁層をスクリーン印刷にて形成することが望ましい用途に好適に用いることができる。また、本開示の樹脂組成物は超音波反射材として好適に用いることができる。
 次に本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
〔組成物の調製〕
 以下の成分を表1に示される配合(質量%)で混合し、樹脂組成物を得た。
・樹脂1:ポリアミドイミド樹脂 (KS-9900F(商品名)、日立化成株式会社)
・樹脂2:エポキシ樹脂 (YX8034(商品名)、三菱ケミカル株式会社)
・樹脂3:エポキシ樹脂 (TG-G(商品名)、四国化成工業株式会社)
・硬化剤:イミダゾール 
・チキソ剤1:12-ヒドロキシステアリン酸
・チキソ剤2:ヒュームドシリカ(アエロジルR972、日本アエロジル社)
・分散剤:リン酸塩 (BYK-106(商品名)、ビックケミージャパン株式会社)
・カップリング剤1:N-フェニル-3-アミノプロピルトリメトキシシラン(KBM-573(商品名)、信越化学工業株式会社)
・カップリング剤2:3-グリシドキシプロピルトリメトキシシラン(KBM-403(商品名)、信越化学工業株式会社)
・フィラー:酸化ビスマス(Bi)(体積平均粒子径2.0μmの球状フィラー、比重8.9)
〔膜の形成〕
 スクリーン印刷機(LS-150、ニューロング精密工業株式会社)及びスクリーンメッシュ版(WT360-16、ソノコム株式会社)を使用し、スキージ速度10mm/sec、クリアランス1.0mmにて、厚さ1.0mmのソーダガラス板に100mm角の塗膜を作製した。ソーダガラス板に作製した膜はオーブンにて120℃、1時間乾燥し製膜した。
〔表面粗さ〕
 前記製膜後の膜の算術平均粗さRa及び最大高さRzを、3D顕微鏡(例えば、キーエンス製VR-3200、倍率12倍)を用いてJIS B 0601:2013に基づいて求めた。
〔接着性評価〕
 前記製膜後の膜をJIS K 5600-5-6:1999に準じて、1mmの間隔でカッターの刃が備え付けられたクロスカッター試験多重刃カッター(オールグッド株式会社)を使用して100mm角の製膜後の膜中央部に幅8mm、長さ8mmで碁盤目状に切り込みを入れた後、テープを接着させ45°の角度でテープを引き剥がした。テープ剥離後の碁盤目状に切り込みを入れた製膜部から剥離した製膜部の面積を顕微鏡で撮影し、剥離部と未剥離部の面積を2値化により画像処理することで剥離部の面積を算出した。剥離面積が製膜部全体の面積に対して40%未満である場合に良好な密着性を有すると判断した。
〔絶縁性試験〕
 厚さ30μmの銅箔にスクリーン印刷機(LS-150、ニューロング精密工業株式会社)及びスクリーンメッシュ版(WT360-16、ソノコム株式会社)を使用し、スキージ速度10mm/sec、クリアランス1.0mmにて、100mm角の塗膜を作製した。作製した塗膜をオーブンにて120℃、1時間乾燥し製膜した。銅箔面に電極を接続し、製膜面側にΦ20mmの電極を設置し、昇圧速度500V/s、大気下で絶縁破壊試験を行い、絶縁破壊電圧と製膜の厚さから絶縁破壊強度を算出した。
〔膜の密度の測定〕
 厚さ1.0mmのソーダガラス板にスクリーン印刷機(LS-150、ニューロング精密工業株式会社)及びスクリーンメッシュ版(WT360-16、ソノコム株式会社)を使用し、スキージ速度10mm/sec、クリアランス1.0mmにて、100mm角の塗膜を作製した。作製した塗膜をオーブンにて120℃、1時間乾燥し製膜した。製膜後の膜厚はマイクロメータを使用し、ガラス板の厚さをゼロに合わせた後、5点測定した平均値とした。製膜後の膜厚T(mm)、製膜前のガラス板の質量W(g)、製膜後のガラス板の質量W(g)から式(1)より膜の密度を計算した。
〔式(1)〕  
密度(g/cm)={(W-W)/(100×100×T×10-3)}
Figure JPOXMLDOC01-appb-T000001
 日本国特許出願第2019-061202号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (17)

  1.  比重6.0以上の絶縁性フィラーと、極性基を有する樹脂と、を含有する樹脂組成物であって、前記比重6.0以上の絶縁性フィラーの含有率が、前記樹脂組成物の全固形分に対して50体積%以上である、樹脂組成物。
  2.  前記極性基を有する樹脂が、重量平均分子量10,000以上の樹脂を含む、請求項1に記載の樹脂組成物。
  3.  前記極性基が、窒素原子、酸素原子、及び硫黄原子からなる群より選択される少なくとも1つのヘテロ原子を含む、請求項1又は請求項2に記載の樹脂組成物。
  4.  前記極性基を有する樹脂が、ポリアミドイミド樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、及びポリエーテル樹脂からなる群より選択される少なくとも1つを含む、請求項1~請求項3のいずれか1項に記載の樹脂組成物。
  5.  前記比重6.0以上の絶縁性フィラーの体積平均粒子径が5.0μm以下である、請求項1~請求項4のいずれか1項に記載の樹脂組成物。
  6.  前記比重6.0以上の絶縁性フィラーが酸化ビスマス、酸化セリウム、チタン酸バリウム、及び酸化タングステンからなる群より選択される少なくとも1つを含む、請求項1~請求項5のいずれか1項に記載の樹脂組成物。
  7.  さらにカップリング剤を含有する、請求項1~請求項6のいずれか1項に記載の樹脂組成物。
  8.  前記カップリング剤がシランカップリング剤を含む、請求項7に記載の樹脂組成物。
  9.  さらに溶剤を含有する、請求項1~請求項8のいずれか1項に記載の樹脂組成物。
  10.  請求項1~請求項9のいずれか1項に記載の樹脂組成物を乾燥させてなる膜。
  11.  最大高さRzが10.0μm以下である、請求項10に記載の膜。
  12.  算術平均粗さRaが1.5μm以下である、請求項10又は請求項11に記載の膜。
  13.  超音波反射材として用いられる、請求項10~請求項12のいずれか1項に記載の膜。
  14.  請求項1~請求項9のいずれか1項に記載の樹脂組成物を硬化してなる硬化物。
  15.  最大高さRzが10.0μm以下である、請求項14に記載の硬化物。
  16.  算術平均粗さRaが1.5μm以下である、請求項14又は請求項15に記載の硬化物。
  17.  超音波反射材として用いられる、請求項14~請求項16のいずれか1項に記載の硬化物。
PCT/JP2020/013448 2019-03-27 2020-03-25 樹脂組成物、膜、及び硬化物 WO2020196664A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/442,010 US20220177670A1 (en) 2019-03-27 2020-03-25 Resin composition, film and cured prduct
JP2021509538A JP7459869B2 (ja) 2019-03-27 2020-03-25 樹脂組成物、膜、及び硬化物
CN202080023478.XA CN113614180A (zh) 2019-03-27 2020-03-25 树脂组合物、膜及硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061202 2019-03-27
JP2019061202 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196664A1 true WO2020196664A1 (ja) 2020-10-01

Family

ID=72611995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013448 WO2020196664A1 (ja) 2019-03-27 2020-03-25 樹脂組成物、膜、及び硬化物

Country Status (4)

Country Link
US (1) US20220177670A1 (ja)
JP (1) JP7459869B2 (ja)
CN (1) CN113614180A (ja)
WO (1) WO2020196664A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009887A1 (ja) * 2020-07-08 2022-01-13 昭和電工マテリアルズ株式会社 樹脂組成物、膜、及び硬化物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007451A (ja) * 2001-06-22 2003-01-10 Nec Kansai Ltd 電界発光灯
JP2006160934A (ja) * 2004-12-09 2006-06-22 Toray Ind Inc ペースト組成物及び誘電体組成物
JP2010040743A (ja) * 2008-08-05 2010-02-18 Ricoh Co Ltd トランジスタアクティブ基板およびその製造方法並びに電気泳動ディスプレイ
JP2011001400A (ja) * 2009-06-16 2011-01-06 Risho Kogyo Co Ltd 高誘電率樹脂組成物、それを用いた高誘電率樹脂シートおよび高誘電率樹脂付銅箔

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970960A (ja) * 1982-10-15 1984-04-21 Toshiba Corp 超音波探触子
JP3495970B2 (ja) * 2000-03-30 2004-02-09 松下電器産業株式会社 超音波探触子
JP2002038022A (ja) * 2000-07-21 2002-02-06 Toppan Printing Co Ltd 多層プリント配線板用絶縁性樹脂組成物、これを用いた多層プリント配線板、及びこれを用いた製造方法
AUPQ975100A0 (en) * 2000-08-29 2000-09-21 Siemensindustrial Services Ltd Re-locatable partial discharge transducer head
JP4004845B2 (ja) * 2002-04-24 2007-11-07 オリンパス株式会社 アレイ型超音波トランスデューサ
JP2007175330A (ja) * 2005-12-28 2007-07-12 Nippon Dempa Kogyo Co Ltd 超音波探触子
US7902294B2 (en) * 2008-03-28 2011-03-08 General Electric Company Silicone rubber compositions comprising bismuth oxide and articles made therefrom
KR101800061B1 (ko) * 2011-05-31 2017-11-21 도요보 가부시키가이샤 카르복실기 함유 폴리이미드, 열경화성 수지 조성물 및 플렉시블 금속 클래드 적층체
JP2013135592A (ja) * 2011-12-27 2013-07-08 Daicel Corp 超音波モータ用弾性体及び超音波モータ
JP6167560B2 (ja) * 2013-02-26 2017-07-26 住友大阪セメント株式会社 絶縁性の平板状磁性粉体とそれを含む複合磁性体及びそれを備えたアンテナ及び通信装置並びに複合磁性体の製造方法
JP5758472B2 (ja) 2013-11-05 2015-08-05 太陽インキ製造株式会社 プリント配線板用硬化型組成物、これを用いた硬化塗膜及びプリント配線板
JP6422792B2 (ja) * 2015-02-06 2018-11-14 株式会社ダイセル 超音波の送受信素子
WO2016125702A1 (ja) * 2015-02-06 2016-08-11 株式会社ダイセル 超音波の送受信素子
JP2018074529A (ja) * 2016-11-04 2018-05-10 コニカミノルタ株式会社 超音波探触子、超音波診断装置及び超音波探触子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007451A (ja) * 2001-06-22 2003-01-10 Nec Kansai Ltd 電界発光灯
JP2006160934A (ja) * 2004-12-09 2006-06-22 Toray Ind Inc ペースト組成物及び誘電体組成物
JP2010040743A (ja) * 2008-08-05 2010-02-18 Ricoh Co Ltd トランジスタアクティブ基板およびその製造方法並びに電気泳動ディスプレイ
JP2011001400A (ja) * 2009-06-16 2011-01-06 Risho Kogyo Co Ltd 高誘電率樹脂組成物、それを用いた高誘電率樹脂シートおよび高誘電率樹脂付銅箔

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009887A1 (ja) * 2020-07-08 2022-01-13 昭和電工マテリアルズ株式会社 樹脂組成物、膜、及び硬化物

Also Published As

Publication number Publication date
US20220177670A1 (en) 2022-06-09
JPWO2020196664A1 (ja) 2020-10-01
CN113614180A (zh) 2021-11-05
TW202041598A (zh) 2020-11-16
JP7459869B2 (ja) 2024-04-02

Similar Documents

Publication Publication Date Title
TWI716407B (zh) 樹脂組成物、樹脂薄片、預浸體、絕緣物、樹脂薄片硬化物及散熱構件
CN105026510B (zh) 粘合剂组合物、粘合剂片材以及使用它们的固化物及半导体器件
JP5040247B2 (ja) 半導体用接着組成物、それを用いた半導体装置および半導体装置の製造方法
KR101742863B1 (ko) 분산안정성이 개선된 열전도성 복합재료 코팅용액, 이의 제조방법 및 이를 이용한 열전도 및 방열 코팅막
JP6040935B2 (ja) 樹脂組成物、樹脂組成物シート、半導体装置およびその製造方法
WO2022009887A1 (ja) 樹脂組成物、膜、及び硬化物
JP2018090664A (ja) 樹脂組成物、それを用いた熱硬化性フィルム
JPWO2014199843A1 (ja) 樹脂組成物、樹脂シートおよび半導体装置の製造方法
WO2019031513A1 (ja) 半導体デバイス及びその製造方法
JP6428032B2 (ja) 樹脂組成物、それを用いた放熱塗料および電子部品
JP7459869B2 (ja) 樹脂組成物、膜、及び硬化物
JPWO2016158268A1 (ja) 接着組成物シートおよびその製造方法ならびに半導体装置
JP5040252B2 (ja) 半導体用接着組成物、それを用いた半導体装置および半導体装置の製造方法。
JP2011225675A (ja) 熱伝導性接着樹脂組成物、それを含む積層体および半導体装置
TWI836048B (zh) 樹脂組成物、膜及硬化物
US9617451B2 (en) Adhesive composition and adhesive film having same, substrate provided with adhesive composition, and semiconductor device and method for manufacturing same
JP2018026320A (ja) 絶縁膜
KR100860098B1 (ko) 반도체 패키지용 접착 필름
JP2020117619A (ja) 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
JP6765215B2 (ja) 回路基板用樹脂組成物とそれを用いた金属ベース回路基板
TW202317706A (zh) 樹脂組成物及其硬化物以及使用其的積層體、靜電吸盤及電漿處理裝置
JP2015193703A (ja) 高熱伝導セラミックス粉末含有樹脂組成物
JP5256921B2 (ja) 絶縁層形成用材料および電子部品。
WO2023089700A1 (ja) 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法
EP4299649A1 (en) Polyimide resin composition and metal-based substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509538

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20778476

Country of ref document: EP

Kind code of ref document: A1