WO2020196150A1 - 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法 - Google Patents

触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法 Download PDF

Info

Publication number
WO2020196150A1
WO2020196150A1 PCT/JP2020/011961 JP2020011961W WO2020196150A1 WO 2020196150 A1 WO2020196150 A1 WO 2020196150A1 JP 2020011961 W JP2020011961 W JP 2020011961W WO 2020196150 A1 WO2020196150 A1 WO 2020196150A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molded product
catalyst molded
carboxylic acid
unsaturated carboxylic
Prior art date
Application number
PCT/JP2020/011961
Other languages
English (en)
French (fr)
Inventor
拓朗 渡邉
敏行 井口
充 菅野
近藤 正英
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021509252A priority Critical patent/JP7264235B2/ja
Priority to CN202080023586.7A priority patent/CN113613785B/zh
Priority to KR1020217034037A priority patent/KR102612173B1/ko
Priority to SG11202110059PA priority patent/SG11202110059PA/en
Publication of WO2020196150A1 publication Critical patent/WO2020196150A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters

Definitions

  • the present invention relates to a catalyst molded product and a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid using the catalyst molded product.
  • the catalyst is generally formed into a spherical shape having a diameter of about 2 to 20 mm, or a cylindrical or cylindrical molded body having a diameter of 2 to 10 mm and a length of about 2 to 20 mm for reaction. Used.
  • Patent Document 1 describes a catalyst component containing molybdenum and bismuth and an average particle size of 10 ⁇ m to 2 mm. Moreover, a method for producing a catalyst has been proposed in which a scaly inorganic substance having an average thickness of 0.005 to 0.3 times the average particle size is mixed and formed.
  • Patent Document 2 describes that an aqueous mixture containing at least molybdenum and phosphorus as catalyst components and containing a raw material compound of the catalyst components is dried to have an apparent density (X) of 1.00 to 1.80 kg / L.
  • the step of producing a product and the dried product or a mixture containing the dried product are molded so that the molded product density (Y) is 1.60 to 2.40 kg / L, and the apparent density (X) and the above.
  • a method for producing a catalyst for producing methacrylic acid which comprises a step of producing a catalyst molded product having a ratio (X / Y) to a molded product density (Y) of 0.50 to 0.80, has been proposed.
  • An object of the present invention is to provide a catalyst molded product capable of producing unsaturated aldehydes and unsaturated carboxylic acids in high yield.
  • Another object of the present invention is to provide a method for producing an unsaturated aldehyde, an unsaturated carboxylic acid, and an unsaturated carboxylic acid ester using this catalyst molded product.
  • the present inventors have found that the above problems can be solved by using a catalyst molded body having a specific molded body density and surface characteristics, and have completed the present invention. That is, the present invention is the following [1] to [10].
  • A) The molded product density of the catalyst molded product is 2.25 g / mL or less before being filled in the reactor.
  • (B-1) The arithmetic mean roughness (Ra) defined by JIS B-0601-2001 on the surface of the catalyst molded product is 3.0 ⁇ m or less.
  • (B-2) The maximum height (Rz) defined by JIS B-0601-2001 on the surface of the catalyst molded product is 15 ⁇ m or less.
  • the catalyst molded product according to [1] which has a coating layer of an organic polymer compound on at least a part of the surface of the catalyst molded product.
  • E1 represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, thallium, tantalum and zinc
  • G1 Represents at least one element selected from the group consisting of phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium
  • J1 is from the group consisting of lithium, sodium, potassium, rubidium and cesium. Represents at least one selected element.
  • G2 represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese and barium.
  • J2 is selected from the group consisting of potassium, rubidium and cesium. It represents at least one kind of element.
  • a method for producing an unsaturated carboxylic acid ester which comprises a step of producing an unsaturated carboxylic acid by the method according to [7] or [8] and a step of esterifying the unsaturated carboxylic acid.
  • the uniform state of the catalyst molded product of the present invention is a catalyst molded product used when producing an unsaturated aldehyde and / or an unsaturated carboxylic acid by an oxidation reaction, and the catalyst is in a state before being filled in a reactor.
  • the molded body density of the molded body is 2.25 g / mL or less, and the arithmetic average roughness (Ra) of the surface of the catalyst molded body defined by JIS B-0601-2001 is 3.0 ⁇ m or less.
  • another uniform of the catalyst molded product of the present invention is a catalyst molded product used when producing unsaturated aldehyde and / or unsaturated carboxylic acid by an oxidation reaction, and is in a state before being filled in a reactor.
  • the molded body density of the catalyst molded body is 2.25 g / mL or less, and the maximum height (Rz) of the surface of the catalyst molded body defined by JIS B-0601-2001 is 15 ⁇ m or less.
  • yet another uniform of the catalyst compacts of the present invention is the catalyst compacts used in the production of unsaturated aldehydes and / or unsaturated carboxylic acids by oxidation reaction, prior to filling the reactor.
  • the molded body density of the catalyst molded body is 2.25 g / mL or less, and the arithmetic average roughness (Ra) of the surface of the catalyst molded body specified by JIS B-0601-2001 is 3.0 ⁇ m.
  • the maximum height (Rz) defined by JIS B-0601-2001 is 15 ⁇ m or less.
  • the molded product density of the catalyst molded product of the present invention is 2.25 g / mL or less in the state before being filled in the reactor. As a result, many pores are formed inside the catalyst molded product, and the selectivity of the target product is improved.
  • the molded product density is more preferably 2.20 g / mL or less, and further preferably 2.15 g / mL or less.
  • the density of the molded product is usually 1.0 g / mL or more.
  • the molded body density is a value calculated from the arithmetic mean obtained by dividing the mass (g) per catalyst molded body by the volume (mL) and performing this on 100 catalyst molded bodies. ..
  • the present inventors focused on the surface characteristics of the catalyst molded body, and in addition to the molded body density of the catalyst molded body being 2.25 g / mL or less, the state before filling in the reactor.
  • the arithmetic average roughness (Ra) of the surface of the catalyst molded body is 3.0 ⁇ m or less (requirement (B-1)), or when the maximum height (Rz) of the surface is 15 ⁇ m or less (requirement (B-1)).
  • -2) has found that the number of catalyst compacts that can be filled per unit volume can be increased, thereby solving the problem that the total amount of catalytically active components that can be filled in the reactor is small.
  • the molded body density of the catalyst molded body is higher than 2.25 g / mL
  • the catalyst molded body is filled in the reactor, it is densely filled by its own weight, whereas the molded body of the catalyst molded body is filled.
  • the density was 2.25 g / mL or less
  • the catalyst molded product was light and could not be packed densely due to its own weight.
  • the catalyst molded product has specific surface characteristics as described above, the catalyst molded product can be densely packed and the number of filled reactors increases. As a result, both the effects of improving the selectivity and the effect of improving the yield can be obtained, and the problem of reaction duration can be solved.
  • the arithmetic mean roughness (Ra) of the surface of the catalyst compact is 3.0 ⁇ m or less, and the maximum height (Rz) of the surface is 15 ⁇ m or less. Is preferable.
  • the upper limit of the arithmetic mean roughness (Ra) of the surface of the catalyst molded product is preferably 2.8 ⁇ m or less, and more preferably 2.6 ⁇ m or less.
  • the arithmetic mean roughness (Ra) of the surface is usually 0.5 ⁇ m or more.
  • the upper limit of the maximum surface height (Rz) is preferably 14 ⁇ m or less, and more preferably 13 ⁇ m or less.
  • the maximum height (Rz) of the surface is usually 3 ⁇ m or more.
  • the arithmetic mean roughness (Ra) represents the average of the absolute values at the reference length.
  • the maximum height (Rz) is the sum of the height of the highest mountain and the depth of the deepest valley in the contour curve at the reference length. Both can be measured according to the JISB-0601-2001 standard.
  • the molded body when the molded body has a shape having a plurality of surfaces, it comes into contact with another molded body. Of the surfaces to be obtained, the surface with the largest surface area is measured. For example, in the case of a columnar catalyst molded product, the surface areas of the circular portion and the side surface portion are compared, and the measurement is performed on the surface having a large surface area.
  • the surface areas of the ring-shaped portion and the side surface portion of the cylinder are compared as surfaces that can come into contact with other molded bodies, and the measurement is performed on the surface having a large surface area. This is done for 10 catalyst molded bodies and calculated from the arithmetic mean.
  • the catalyst molded product of the present invention may have a surface treated as necessary to adjust the arithmetic mean roughness (Ra) and the maximum height (Rz). From the viewpoint of the mechanical strength of the surface of the catalyst molded product, it is preferable to have a coating layer of an organic polymer compound on at least a part of the surface. Further, by forming the coating layer, the arithmetic mean roughness (Ra) of the catalyst molded product and the maximum height (Rz) of the surface can be adjusted to desired values.
  • organic polymer compound examples include saccharides and synthetic resins.
  • sugars include monosaccharides such as trehalose, arabinose, xylose, galactose, ribose, glucose, sorbose, lactose, and mannose, sucrose, lactose, maltose, trehalose, cellobiose, isomaltose, isotorehalose, neotrehalose, neolactose, and turanose.
  • Disaccharides such as palatinose
  • polysaccharides such as starch, glycogen, purulan, water-soluble cellulose, and water-insoluble cellulose.
  • Examples of the synthetic resin include polyvinyl alcohol, polyethylene, polypropylene, polystyrene, phenol resin, epoxy resin and the like. These may be used alone or in combination of two or more.
  • the molecular weight of the organic polymer compound is preferably 20,000 to 400,000, more preferably the lower limit of 30,000 or more and the upper limit of 300,000 or less.
  • a saccharide coating layer on at least a part of the surface of the catalyst molded body, further preferably to have a polysaccharide coating layer, from pullulan and water-soluble cellulose. It is particularly preferred to have at least one coating layer of choice.
  • the water-soluble cellulose include methyl cellulose, carboxymethyl cellulose, sodium carboxylmethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxybutyl methyl cellulose, ethyl hydroxyethyl cellulose and salts thereof. These may be used alone or in combination of two or more.
  • the catalyst molded product contains 0.001 to 2% by mass of the organic polymer compound.
  • the content of the organic polymer compound is 0.001% by mass or more, the mechanical strength of the catalyst molded product is increased. Further, when the content of the organic polymer compound is 2% by mass or less, the amount of the catalytically active component contained in the catalyst molded product becomes a sufficient amount.
  • the upper limit of the content of the organic polymer compound is more preferably 1.5% by mass or less, further preferably 1% by mass or less.
  • the type of the catalyst molded body is not particularly limited, and examples thereof include an extrusion molded body, a tableting molded body, a supported molded body, and a rolling granulated body. Above all, an extruded molded product is preferable because the density of the molded product can be easily adjusted.
  • the extruded body refers to a product molded into a constant shape by extruding the catalyst placed in a mold by applying pressure.
  • the shape of the catalyst molded product is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, a cylindrical shape (ring shape), and a star shape. Among them, a spherical shape, a cylindrical shape, and a cylindrical shape having high mechanical strength are preferable. ..
  • the catalyst molded product used in producing the unsaturated aldehyde and unsaturated carboxylic acid according to the present invention may contain a catalyst component having a composition represented by the following formula (I), that is, the unsaturated aldehyde and the unsaturated carboxylic acid. It is preferable from the viewpoint of carboxylic acid yield.
  • the molar ratio of each element is a value obtained by analyzing a component in which a catalyst component is dissolved in aqueous ammonia by ICP emission spectrometry.
  • the molar ratio of ammonium roots is a value obtained by analyzing the catalyst component by the Kjeldahl method.
  • Mo, Bi, Fe, Si, NH 4 and O represent molybdenum, bismuth, iron, silicon, ammonium root and oxygen, respectively, and A is at least selected from the group consisting of cobalt and nickel.
  • E1 represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, thallium, tantalum and zinc
  • G1 represents one element.
  • J1 is selected from the group consisting of lithium, sodium, potassium, rubidium and cesium.
  • ammonium ions in the present invention, ammonia (NH 3) can become an ammonium ion (NH 4 +), and is a generic name of ammonium contained in the ammonium-containing compounds such as ammonium salts.
  • the catalyst molded body used in producing the unsaturated carboxylic acid according to the present invention preferably contains a catalyst component having a composition represented by the following formula (II) from the viewpoint of the unsaturated carboxylic acid yield. ..
  • P, Mo, V, Cu, NH 4 and O represent phosphorus, molybdenum, vanadium, copper, ammonium root and oxygen, respectively.
  • E2 represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron.
  • G2 consists of the group consisting of iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, thallium, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum. Represents at least one element selected.
  • J2 represents at least one element selected from the group consisting of potassium, rubidium and cesium.
  • the catalyst molded product of the present invention has a molded product density of 2.25 g / mL or less and a surface arithmetic average roughness (Ra) of 3.0 ⁇ m or less, or molded in a state before being filled in a reactor. If the body density is 2.25 g / mL or less and the maximum surface height (Rz) is 15 ⁇ m or less, the product can be produced according to a known method for producing a catalyst molded product, but the following step (i) )-(Iii) is preferable.
  • step (i) the raw material compound of the catalyst component is mixed with the solvent to prepare a catalyst raw material liquid.
  • a catalyst raw material liquid For example, in the production of unsaturated aldehyde and unsaturated carboxylic acid production catalyst, the raw material compound of the catalyst component of the unsaturated aldehyde and unsaturated carboxylic acid production catalyst is mixed with an appropriately selected solvent to obtain at least molybdenum and bismuth. Prepare a catalyst raw material solution containing. Further, in the production of the catalyst for producing unsaturated carboxylic acid, the raw material compound of the catalyst component of the catalyst for producing unsaturated carboxylic acid is mixed with an appropriately selected solvent to prepare a catalyst raw material liquid containing at least molybdenum and phosphorus.
  • the raw material compound used for preparing the catalyst raw material liquid is not particularly limited, and organic acid salts such as oxides, sulfates, nitrates, carbonates, hydroxides and acetates of each constituent element of the catalyst, ammonium salts and halides. , Oxyacid, oxoacidate, alkali metal salt and the like can be used alone or in combination of two or more.
  • Examples of the raw material compound for molybdenum include molybdenum oxides such as molybdenum trioxide, ammonium molybdates such as ammonium paramolybdate and ammonium dimolybdate, molybdic acid, and molybdenum chloride.
  • Examples of the raw material compound of bismuth include bismuth nitrate, bismuth oxide, bismuth acetate, and bismuth hydroxide.
  • Examples of the raw material compound of phosphorus include phosphates such as phosphoric acid, phosphorus pentoxide, and ammonium phosphate.
  • Examples of the raw material compound of vanadium include ammonium vanadate, ammonium metavanadate, vanadium pentoxide, vanadium chloride, vanadyl oxalate and the like.
  • As the raw material compound only one type may be used for each element constituting the catalyst component, or two or more types may be used in combination.
  • Examples of the solvent include water, ethyl alcohol, acetone and the like, but it is preferable to use water from an industrial point of view.
  • the catalyst raw material solution contains at least a kegin-type heteropolyacid containing molybdenum and phosphorus from the viewpoint of unsaturated carboxylic acid selectivity.
  • the pH of the catalyst raw material solution is adjusted to 4 or less, preferably 3 or less by appropriately selecting the addition amount of the raw material compound and appropriately adding nitric acid, oxalic acid, etc.
  • the acid can be formed stably.
  • the structure of the obtained heteropolyacid can be determined by infrared absorption analysis using NICOLET6700FT-IR (product name, manufactured by Thermo Electron).
  • NICOLET6700FT-IR product name, manufactured by Thermo Electron
  • the catalyst raw material liquid obtained in the step (i) is dried to obtain a catalyst dried product.
  • the method for drying the catalyst raw material liquid is not particularly limited, and examples thereof include a method of drying using a spray dryer, a method of drying using a slurry dryer, a method of drying using a drum dryer, a method of evaporating and drying. Applicable. Among these, a method of drying using a spray dryer is preferable because particles can be obtained at the same time as drying and the obtained particles have a regular spherical shape.
  • the drying conditions differ depending on the drying method, but when a spray dryer is used, the dryer inlet temperature is preferably 100 to 500 ° C, the lower limit is more preferably 200 ° C or higher, and even more preferably 220 ° C or higher.
  • the upper limit is more preferably 400 ° C. or lower, further preferably 370 ° C. or lower.
  • the lower limit of the dryer outlet temperature is preferably 100 ° C. or higher, more preferably 105 ° C. or higher.
  • the upper limit is preferably 200 ° C. or lower.
  • the drying is preferably carried out so that the water content of the obtained catalyst dried product is 0.1 to 4.5% by mass. These conditions can be appropriately selected according to the desired shape and size of the catalyst.
  • the average particle size of the obtained catalyst dried product is 1 to 250 ⁇ m.
  • the average particle size is 1 ⁇ m or more, pores having a diameter preferable for producing the target product are formed in the step (iii) described later, and the target product can be obtained in a high yield.
  • the average particle diameter is 250 ⁇ m or less, the number of contact points between the catalyst dried body particles per unit volume can be maintained, and the mechanical strength of the catalyst molded product obtained in the step (iii) described later is improved.
  • the lower limit of the average particle size of the dried catalyst is 5 ⁇ m or more, and the upper limit is 150 ⁇ m or less.
  • the average particle size means the volume average particle size, and is a value measured by a laser particle size distribution measuring device.
  • the contact method between the sprayed droplets and the hot air may be parallel flow, countercurrent flow, or parallel flow (mixed flow), and in any case, drying can be suitably performed.
  • Step (iii) In the step (iii), the catalyst dried product obtained in the step (iii) is molded to obtain a catalyst molded product.
  • the catalyst molded product may be surface-treated if necessary.
  • ⁇ Molding of dried catalyst> It is preferable to mold the dried catalyst after mixing it with a solvent from the viewpoint that the density of the molded product of the catalyst molded product can be adjusted.
  • the amount of the solvent used is appropriately selected depending on the type of the dried catalyst, the shape of the particles, and the type of the solvent. However, by reducing the amount of the solvent used with respect to the dried catalyst, the density of the obtained catalyst compact can be increased. By increasing and increasing the amount of the solvent used with respect to the dried catalyst, the density of the obtained catalyst molded body decreases.
  • the amount of the solvent used is preferably adjusted in the range of 10 to 70 parts by mass with respect to 100 parts by mass of the dried catalyst.
  • the amount of the solvent used is 10 parts by mass or more with respect to 100 parts by mass of the dried catalyst, the moldability is improved and the pores effective for producing methacrylic acid tend to increase in the obtained catalyst molded product.
  • the amount of the solvent used is 70 parts by mass or less, the adhesiveness at the time of molding is reduced and the handleability is improved. It is more preferable to adjust the lower limit of the amount of the solvent used with respect to 100 parts by mass of the dried catalyst in the range of 15 parts or more and the upper limit in the range of 60 parts by mass or less.
  • the type of solvent is not particularly limited, but water or an organic solvent is preferable.
  • the organic solvent examples include lower alcohols such as methyl alcohol, ethanol, propyl alcohol, butyl alcohol and isopropanol, acetone, dimethyl ether, diethyl ether, methyl ethyl ketone and ethyl acetate.
  • One type of these solvents may be used, or two or more types of solvents may be used in combination.
  • the solvent preferably contains at least an organic solvent.
  • polyvinyl alcohol, ⁇ -glucan derivative, ⁇ -glucan derivative, stearic acid, ammonium nitrate, graphite, water, alcohol and the like, which are generally used as molding aids, can be used as needed. ..
  • the method for molding the catalyst-dried product is not particularly limited.
  • extrusion molding is preferable from the viewpoint that the density of the molded body of the catalyst molded body can be easily adjusted.
  • the extrusion molding machine for example, an auger type extrusion molding machine, a plunger type extrusion molding machine, or the like can be used, and a plunger type extrusion molding machine can be preferably used.
  • the extrusion pressure is preferably adjusted in the range of 0.1 to 30 MPa (G).
  • (G) means that it is a gauge pressure.
  • the lower limit of the extrusion pressure is more preferably 0.5 MPa (G) or more, further preferably 1 MPa (G) or more, and particularly preferably 2 MPa (G) or more.
  • the upper limit of the extrusion pressure is more preferably 20 MPa (G) or less, further preferably 15 MPa (G) or less, and particularly preferably 10 MPa (G) or less.
  • the surface of the catalyst molded product of the present invention may be treated as necessary to adjust the arithmetic mean roughness (Ra) and the maximum height (Rz).
  • Examples of the surface treatment method for the catalyst molded product include a method of coating the surface with an organic polymer compound and a method of spraying a solvent on the surface and drying the surface. From the viewpoint of imparting mechanical strength and adjusting the arithmetic mean roughness (Ra) and maximum height (Rz) of the surface of the catalyst molded product, it is possible to use a method of coating the surface of the catalyst molded product with an organic polymer compound. It is more preferable to use a method of coating with an organic polymer compound and then spraying a solvent on the surface to dry the surface.
  • a coating liquid in which the above-mentioned organic polymer compound is dissolved in a solvent is sprayed in a mist form to adhere to the catalyst molded body body, and at the same time, the solvent.
  • a method of vaporizing and evaporating According to this method, coating can be easily and uniformly applied.
  • the solvent used for the coating liquid and the solvent to be further sprayed after coating include water, alcohol, alkaline solution and the like, and water is preferable.
  • the concentration of the organic polymer compound in the coating liquid is preferably 10% by mass or less. As a result, the adhesion between the catalyst compacts is reduced, which is advantageous in terms of operation.
  • the concentration of the organic polymer compound in the coating liquid is usually 0.1% by mass or more.
  • the amount of the solvent to be further sprayed after spraying the coating liquid is preferably 0.1 to 3% by mass, more preferably 0.2% by mass or more at the lower limit and 2% by mass or less at the upper limit with respect to the catalyst molded product.
  • the coating device it is preferable to simply add a rotation mechanism to a container called a pan such as a coating pan.
  • a rotation mechanism By using such an apparatus, it is possible to spray the coating liquid in the form of a mist to adhere to the catalyst molded product while rolling the catalyst molded product, and at the same time blow hot air to remove the solvent.
  • a tablet sugar coating machine, a coating machine, or the like used in the pharmaceutical industry or the food industry may be used.
  • the firing may be performed on the dried catalyst obtained in the step (ii).
  • the firing temperature is usually 200 to 600 ° C., preferably the lower limit is 300 ° C. or higher and the upper limit is 500 ° C. or lower.
  • the calcination conditions are not particularly limited, but the calcination is usually carried out under oxygen, air or nitrogen flow.
  • the firing time is appropriately set depending on the target catalyst, but is preferably 0.5 to 40 hours, the lower limit is 1 hour or more, and the upper limit is 40 hours or less.
  • the method for producing an unsaturated aldehyde and an unsaturated carboxylic acid according to the present invention includes propylene, isobutylene, and the first in the presence of a catalyst molded product used for producing the unsaturated aldehyde and the unsaturated carboxylic acid according to the present invention.
  • the unsaturated aldehydes and unsaturated carboxylic acids produced correspond to propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether, respectively.
  • the unsaturated aldehyde corresponding to propylene is acrolein
  • the unsaturated carboxylic acid corresponding to propylene is acrylic acid.
  • the unsaturated aldehyde corresponding to isobutylene, primary butyl alcohol, tertiary butyl alcohol and methyl tertiary butyl ether is methacrolein
  • the unsaturated carboxylic acid corresponding to is methacrolein.
  • the unsaturated aldehyde and unsaturated carboxylic acid are preferably methacrolein and methacrylic acid, respectively.
  • methacrolein and methacrylic acid are produced by contacting a raw material gas containing isobutylene and molecular oxygen with a catalyst molded product according to the present invention.
  • a fixed bed reactor can be used for this reaction.
  • the reaction can be carried out by filling the reactor with a catalyst molded product and supplying the raw material gas to the reactor.
  • the catalyst molded product layer may be one layer, or a plurality of catalyst molded products having different activities may be divided into a plurality of layers and filled. Further, the catalyst molded product may be diluted with an inert carrier and filled in order to control the activity.
  • the concentration of isobutylene in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, more preferably 3% by volume or more at the lower limit and 10% by volume or less at the upper limit.
  • the concentration of molecular oxygen in the raw material gas is preferably 0.1 to 5 mol with respect to 1 mol of isobutylene, the lower limit is 0.5 mol or more, and the upper limit is more preferably 3 mol or less.
  • the molecular oxygen source air is preferable from the viewpoint of economy. If necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used.
  • the raw material gas may be isobutylene and molecular oxygen diluted with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the raw material gas.
  • the contact time between the raw material gas and the catalyst molded product is preferably 0.5 to 10 seconds, the lower limit is 1 second or more, and the upper limit is 6 seconds or less.
  • the reaction pressure is preferably 0.1 to 1 MPa (G). However, (G) means that it is a gauge pressure.
  • the reaction temperature is preferably 200 to 420 ° C., the lower limit is 250 ° C. or higher, and the upper limit is 400 ° C. or lower.
  • (meth) acrolein is vapor-phase catalytically oxidized with molecular oxygen in the presence of a catalyst molded product used for producing the unsaturated carboxylic acid according to the present invention. .. According to these methods, unsaturated carboxylic acids can be produced in high yield.
  • the unsaturated carboxylic acid produced is an unsaturated carboxylic acid in which the aldehyde group of (meth) acrolein is changed to a carboxyl group, and specifically, (meth) acrylic acid can be obtained.
  • (meth) acrolein indicates acrolein and methacrolein
  • (meth) acrylic acid indicates acrylic acid and methacrylic acid.
  • the (meth) acrolein and (meth) acrylic acid are preferably methacrolein and methacrylic acid, respectively.
  • methacrylic acid is produced by contacting a raw material gas containing methacrolein and molecular oxygen with a catalyst molded product according to the present invention.
  • a fixed bed reactor can be used for this reaction.
  • the reaction can be carried out by filling the reactor with a catalyst molded product and supplying the raw material gas to the reactor.
  • the catalyst molded product layer may be one layer, or a plurality of catalyst molded products having different activities may be divided into a plurality of layers and filled. Further, the catalyst molded product may be diluted with an inert carrier and filled in order to control the activity.
  • the concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, more preferably 3% by volume or more at the lower limit and 10% by volume or less at the upper limit.
  • the raw material, methacrolein may contain a small amount of impurities such as lower saturated aldehyde that do not substantially affect the reaction.
  • the concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 mol, more preferably 0.5 mol or more, and an upper limit of 3 mol or less with respect to 1 mol of methacrolein.
  • the molecular oxygen source air is preferable from the viewpoint of economy. If necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used.
  • the raw material gas may be obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the raw material gas. By carrying out the reaction in the presence of water vapor, methacrylic acid can be obtained in a higher yield.
  • concentration of water vapor in the raw material gas is preferably 0.1 to 50% by volume, more preferably 1% by volume or more at the lower limit and 40% by volume at the upper limit.
  • the contact time between the raw material gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15 seconds, the lower limit is 2 seconds or more, and the upper limit is 10 seconds or less.
  • the reaction pressure is preferably 0.1 to 1 MPa (G). However, (G) means that it is a gauge pressure.
  • the reaction temperature is preferably 200 to 450 ° C., the lower limit is 250 ° C. or higher, and the upper limit is 400 ° C. or lower.
  • the method for producing an unsaturated carboxylic acid ester according to the present invention esterifies an unsaturated carboxylic acid produced by the method according to the present invention. That is, the method for producing an unsaturated carboxylic acid ester according to the present invention includes a step of producing an unsaturated carboxylic acid by the method according to the present invention and a step of esterifying the unsaturated carboxylic acid.
  • unsaturated carboxylic acids obtained by vapor-phase catalytic oxidation of propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether, or vapor-phase catalytic oxidation of (meth) achlorine.
  • Unsaturated carboxylic acid esters can be obtained using acids.
  • the alcohol to be reacted with the unsaturated carboxylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol, and isobutanol.
  • examples of the obtained unsaturated carboxylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate.
  • the reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin.
  • the reaction temperature is preferably 50 to 200 ° C.
  • composition ratio of catalyst components The molar ratio of each element was determined by analyzing the component in which the catalyst component was dissolved in aqueous ammonia by ICP emission spectrometry. The molar ratio of ammonium ions was determined by analyzing the catalyst components by the Kjeldahl method.
  • Content rate of organic polymer compound The content of the organic polymer compound in the coated catalyst molded product was calculated by the following formula from the mass M2 of the coated catalyst molded product and the mass M3 of the organic polymer compound used in the coating liquid.
  • the amount of the catalyst molded product charged for the coating is such that the liquid is removed by a known drying method such as natural drying or hot air drying, and the liquid content of the catalyst molded product is 1% by mass or less. did.
  • M3 was used as the amount of the organic polymer compound used in the coating liquid.
  • the molded product density of the catalyst molded product is an average value calculated for 100 catalyst molded products manufactured under the same conditions.
  • the surface roughness of the catalyst molded product was measured using "SURFCOM 1900SD" (trade name) manufactured by Tokyo Seimitsu Co., Ltd.
  • the measurement position was a side surface when the molded body was cylindrical, and a cylindrical side surface when the molded body was cylindrical, and the measurement was performed in the axial direction under the conditions of a measurement distance of 4.0 mm, a cutoff of 0.8 mm, and 4 ⁇ . This was done for 10 catalyst compacts and calculated from their arithmetic mean.
  • the falling pulverization rate of the catalyst molded product was used as an index of the mechanical strength of the catalyst molded product.
  • the falling pulverization rate of the catalyst molded product was measured by the following method. 100 g of the catalyst molded body is dropped from the upper opening of a stainless steel cylinder having an inner diameter of 27.5 mm and a length of 6 m, which is installed so as to be vertical in the longitudinal direction and whose lower opening is closed by a stainless steel plate. It was filled in a cylinder. Of the catalyst molded products recovered by opening the lower opening, the mass of the catalyst molded product that did not pass through the sieve having a mesh opening of 1 mm was M4 g, and the falling pulverization rate was calculated by the following formula.
  • the falling pulverization rate in the examples is an average value of the falling pulverization rates measured for each catalyst molded product obtained by manufacturing the catalyst molded product 10 times under the same conditions.
  • Fall powder rate (%) ⁇ (100-M4) / 100 ⁇ x 100 (Number of catalyst compacts filled in the reactor)
  • the number of catalyst compacts filled in the reactor is the mass M1 (g) per catalyst compact, the mass M5 (g) of the catalyst compact filled in the reactor, and the filling volume V2 (mL) of the reactor. ), Calculated by the following formula.
  • Number of catalyst compacts filled in the reactor [pieces / mL] M5 / M1 / V2
  • N1 is the number of moles of isobutylene supplied
  • N2 is the number of moles of methacrolein produced
  • N3 is the number of moles of methacrylic acid produced.
  • N4 is the number of moles of methacrolein supplied
  • N5 is the number of moles of methacrylic acid produced.
  • Example 1 To 1000 parts of pure water, 500 parts of ammonium paramolybdate, 12.4 parts of ammonium paratungstate, 2.3 parts of potassium nitrate, 27.5 parts of antimony trioxide and 66.0 parts of bismuth trioxide were added and heated and stirred (Liquid A). ). Separately, 114.4 parts of ferric nitrate, 274.7 parts of cobalt nitrate and 35.1 parts of zinc nitrate were sequentially added and dissolved in 1000 parts of pure water (Liquid B). The catalyst raw material solution obtained by adding the solution B to the solution A is dried using a parallel flow spray dryer under the conditions of a dryer inlet temperature of 250 ° C.
  • a dried catalyst having a diameter of 42 ⁇ m was obtained.
  • the composition of the catalyst excluding oxygen from the dried catalyst is Mo 12 W 0.2 Bi 1.2 Fe 1.2 Sb 0.8 Co 4.0 Zn 0.5 K 0.1 (NH 4 ) 12. It was 3.3 .
  • the obtained mixture was extruded using a plunger type extruder, formed into a cylinder having an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5.5 mm, and then dried at 90 ° C. for 14 hours in a hot air dryer.
  • a catalyst molded product was obtained.
  • the obtained catalyst molded product was filled in a coating pan, the catalyst molded product was rolled by rotating the coating pan, and 0.5 part of methyl cellulose was added to 100 parts of the catalyst molded product while applying hot air at 95 ° C.
  • the coating liquid prepared in a mass% aqueous solution was subsequently sprayed with 1 part of pure water on 100 parts of the catalyst molded product.
  • Table 1 shows the measurement results of the molded body density of the coated catalyst molded body, the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface, and the falling pulverization rate.
  • the coated catalyst molded product was filled so that the filling volume in the reactor was 2500 mL, and calcined at 450 ° C. for 5 hours under air flow.
  • a gas phase contact oxidation reaction of isobutylene was carried out through a reaction temperature of 320 ° C. and a contact time of 2.9 seconds. It was.
  • the product was collected and analyzed by gas chromatography to determine the total yield of methacrolein and methacrylic acid. Table 1 shows the number of the coated catalyst compacts filled in the reactor and the reaction results.
  • Example 1 A catalyst molded product was produced in the same manner as in Example 1. The step of spraying the coating liquid and pure water on the catalyst molded product with a coating pan was not performed. Table 1 shows the measurement results of the molded body density of the catalyst molded body, the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface, and the falling pulverization rate.
  • the catalyst molded product was filled in a reactor in the same manner as in Example 1, and calcined and a gas phase catalytic oxidation reaction of isobutylene was carried out.
  • Table 1 shows the number of the catalyst compacts filled in the reactor and the reaction results.
  • Example 2 1000 parts of molybdenum trioxide, 34 parts of ammonium metavanadate, 80 parts of 85 mass% phosphoric acid aqueous solution and 7 parts of copper nitrate are dissolved in 4000 parts of pure water, and the temperature is raised to 95 ° C. with stirring to raise the liquid temperature to 95. The mixture was stirred for 3 hours while maintaining the temperature at ° C. After cooling to 90 ° C., a solution of 124 parts of cesium bicarbonate dissolved in 200 parts of pure water was added and stirred for 15 minutes while stirring using a rotary blade stirrer.
  • a solution prepared by dissolving 92 parts of ammonium carbonate in 200 parts of pure water was added, and the mixture was further stirred for 20 minutes to obtain a catalyst raw material solution containing a kegin-type heteropolyacid containing molybdenum and phosphorus.
  • the catalyst raw material liquid was dried using a parallel flow type spray dryer under the conditions of a dryer inlet temperature of 300 ° C. and a rotary disk for spraying slurry at 18,000 rpm to obtain a catalyst dried product having an average particle diameter of 25 ⁇ m.
  • the composition of the catalyst of the dried catalyst excluding oxygen is P 1.2 Mo 12 V 0.5 Cu 0.05 Cs 1.1 (NH 4 ) 3.8 .
  • the obtained mixture was extruded using a plunger type extruder, formed into a columnar shape having an outer diameter of 5.5 mm and a length of 5.5 mm, and then dried at 90 ° C. for 8 hours in a hot air dryer. A catalyst compact was obtained.
  • the obtained catalyst molded product was filled in a coating pan, the catalyst molded product was rolled by rotating the coating pan, and 0.5 part of methyl cellulose was added to 100 parts of the catalyst molded product while applying hot air at 95 ° C.
  • the coating liquid prepared in a mass% aqueous solution was subsequently sprayed with 2 parts of pure water on 100 parts of the catalyst molded product.
  • Table 2 shows the measurement results of the molded body density, the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface of the coated catalyst molded body, and the falling pulverization rate.
  • the coated catalyst molded product was filled so that the filling volume in the reactor was 2500 mL, and calcined at 380 ° C. for 11 hours under air flow.
  • the vapor phase contact oxidation reaction of methacrolein was carried out through a reaction temperature of 290 ° C. and a contact time of 2.9 seconds. went.
  • the product was collected and analyzed by gas chromatography to determine the yield of methacrylic acid. Table 2 shows the number of the coated catalyst compacts filled in the reactor and the reaction results.
  • Example 3 In Example 2, a coated catalyst molded product was produced in the same manner as in Example 2 except that the amount of methyl cellulose used in the coating liquid was changed to 0.3 part with respect to 100 parts of the catalyst molded product. Table 2 shows the measurement results of the molded body density, the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface of the coated catalyst molded body, and the falling pulverization rate.
  • the coated catalyst molded product was filled in a reactor in the same manner as in Example 2, and calcined and a vapor phase catalytic oxidation reaction of methacrolein was carried out.
  • Table 2 shows the number of the coated catalyst compacts filled in the reactor and the reaction results.
  • Example 4 In Example 2, a coated catalyst molded product was produced in the same manner as in Example 2 except that the amount of methyl cellulose used in the coating liquid was changed to 0.2 part with respect to 100 parts of the catalyst molded product. Table 2 shows the measurement results of the molded body density, the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface of the coated catalyst molded body, and the falling pulverization rate.
  • the coated catalyst molded product was filled in a reactor in the same manner as in Example 2, and calcined and a vapor phase catalytic oxidation reaction of methacrolein was carried out.
  • Table 2 shows the number of the coated catalyst compacts filled in the reactor and the reaction results.
  • Example 5 The catalyst molded product obtained in the same manner as in Example 2 was filled in a coating pan, the catalyst molded product was rolled by the rotation of the coating pan, and a pull run was applied to 100 parts of the catalyst molded product while applying hot air at 95 ° C. A coating liquid prepared by preparing 0.3 parts into a 4 mass% aqueous solution was subsequently sprayed with 1 part of pure water on 100 parts of the catalyst molded product. Table 2 shows the measurement results of the molded body density, the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface of the coated catalyst molded body, and the falling pulverization rate.
  • Ra arithmetic mean roughness
  • Rz maximum height
  • the coated catalyst molded product was filled in a reactor in the same manner as in Example 2, and calcined and a vapor phase catalytic oxidation reaction of methacrolein was carried out.
  • Table 2 shows the number of the coated catalyst compacts filled in the reactor and the reaction results.
  • Example 2 A catalyst molded product was produced in the same manner as in Example 2. The step of spraying the coating liquid and pure water on the catalyst molded product with a coating pan was not performed. Table 2 shows the measurement results of the molded body density of the catalyst molded body, the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface, and the falling pulverization rate. Subsequently, the catalyst molded product was filled in a reactor in the same manner as in Example 2, and firing and a vapor phase catalytic oxidation reaction of methacrolein were carried out. Table 2 shows the number of the catalyst compacts filled in the reactor and the reaction results.
  • Example 3 A catalyst dried product was produced in the same manner as in Example 2. Three parts of graphite were mixed with 100 parts of the dried catalyst and molded into a columnar shape having an outer diameter of 5.5 mm and a length of 5.5 mm by a tableting molding machine to obtain a catalyst molded body. Next, the obtained catalyst molded product was filled in a coating pan, the catalyst molded product was rolled by rotating the coating pan, and 0.5 part of methyl cellulose was added to 100 parts of the catalyst molded product while applying hot air at 95 ° C. The coating liquid prepared in a mass% aqueous solution was subsequently sprayed with 2 parts of pure water on 100 parts of the catalyst molded product.
  • Table 2 shows the measurement results of the molded body density, the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface of the coated catalyst molded body, and the falling pulverization rate. Subsequently, the coated catalyst molded product was filled in a reactor in the same manner as in Example 2, and calcined and a vapor phase catalytic oxidation reaction of methacrolein was carried out. Table 2 shows the number of the coated catalyst compacts filled in the reactor and the reaction results.
  • Example 4 A catalyst molded product was produced in the same manner as in Comparative Example 3. The step of spraying the coating liquid and pure water on the catalyst molded product with a coating pan was not performed. Table 2 shows the measurement results of the molded body density of the catalyst molded body, the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface, and the falling pulverization rate. Subsequently, the catalyst molded product was filled in a reactor in the same manner as in Example 2, and firing and a vapor phase catalytic oxidation reaction of methacrolein were carried out. Table 2 shows the number of the catalyst compacts filled in the reactor and the reaction results.
  • Example 1 in which the molded body density of the catalyst molded body and the arithmetic average roughness (Ra) and the maximum height (Rz) of the surface are values within the specified range is the case of the catalyst molded body.
  • Comparative Example 1 in which the arithmetic average roughness (Ra) and the maximum height (Rz) of the surface exceed the specified range, the number of catalyst compacts filled in the reactor is increased, and the metachlorine is high. And the total yield of methacrylic acid are shown. Further, it can be said that the increase in the number of catalyst compacts filled in the reactor is advantageous from the viewpoint of continuous reaction time.
  • the catalyst contains a catalyst component having a composition ratio of P 1.2 Mo 12 V 0.5 Cu 0.05 Cs 1.1 (NH 4 ) 3.81.
  • the molded body density of the molded body and the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface are values within the specified range
  • the arithmetic mean roughness (Ra) of the surface of the catalyst molded body Compared with Comparative Example 2 in which Ra) and the maximum height (Rz) exceeded the specified range, the number of filled catalyst compacts in the reactor was increased, and a high methacrylic acid yield was exhibited.
  • the increase in the number of catalyst compacts filled in the reactor is advantageous from the viewpoint of continuous reaction time.
  • the arithmetic mean roughness (Ra) and the maximum height (Rz) of the surface of the catalyst molded product were within the specified range, but the molded product density exceeded the specified range. It was.
  • the number of catalyst compacts filled in the reactor was about the same as in Examples 2 to 5, but the methacrylic acid yield was lower than in Examples 2 to 5. It is considered that this is because the pores in the catalyst molded product, which are advantageous for producing methacrylic acid, are reduced.
  • a methacrylic acid ester can be obtained by esterifying the methacrylic acid obtained in this example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

酸化反応により不飽和アルデヒド及び/又は不飽和カルボン酸を製造する際に用いられる触媒成形体であって、以下の要件(A)及び(B)を同時に満足する触媒成形体を用いる。 (A)反応器に充填する前の状態で、前記触媒成形体の成形体密度が2.25g/mL以下である。 (B)下記要件(B-1)及び(B-2)の少なくとも一方を満たす: (B-1)前記触媒成形体の表面のJIS B-0601-2001で規定される算術平均粗さ(Ra)が3.0μm以下である。 (B-2)前記触媒成形体の表面のJIS B-0601-2001で規定される最大高さ(Rz)が15μm以下である。

Description

触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法
 本発明は、触媒成形体、並びにこれを用いた不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法に関する。
 不飽和アルデヒドや不飽和カルボン酸の製造プロセスにおいて、触媒は一般に直径2~20mm程度の球状、もしくは直径2~10mm、長さ2~20mm程度の円柱状又は円筒状の成形体に成形され反応に利用される。
 触媒成形体の製造方法を改良し、不飽和アルデヒドや不飽和カルボン酸の収率を向上させる方法として、例えば特許文献1には、モリブデン及びビスマスを含む触媒成分と、平均粒径が10μm~2mmかつ平均厚さが平均粒径の0.005~0.3倍の鱗片状無機物とを混合して成形する触媒の製造方法が提案されている。
 また特許文献2には、少なくともモリブデン及びリンを触媒成分として含み、触媒成分の原料化合物を含む水性混合液を乾燥して、見掛け密度(X)が1.00~1.80kg/Lである乾燥物を製造する工程と、前記乾燥物又は前記乾燥物を含む混合物を成形して、成形品密度(Y)が1.60~2.40kg/Lであり、かつ前記見掛け密度(X)と前記成形品密度(Y)との比(X/Y)が0.50~0.80である触媒成形体を製造する工程と、を含むメタクリル酸製造用触媒の製造方法が提案されている。
特開2007-000803号公報 国際公開第2012/141076号
 しかしながら、不飽和アルデヒドや不飽和カルボン酸の収率向上の点では、上記方法により改良された触媒成形体を用いた場合であっても、未だ十分であるとは言えない。そのため、さらなる収率向上が望まれている。
 本発明は不飽和アルデヒドや不飽和カルボン酸を高収率で製造できる触媒成形体を提供することを目的とする。また本発明は、この触媒成形体を用いた不飽和アルデヒド、不飽和カルボン酸、及び不飽和カルボン酸エステルの製造方法を提供することを目的とする。
 本発明者らは、上記課題に鑑み鋭意検討を行った結果、特定の成形体密度及び表面特性を有する触媒成形体を用いることにより、上記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]から[10]である。
 [1]酸化反応により不飽和アルデヒド及び/又は不飽和カルボン酸を製造する際に用いられる触媒成形体であって、以下の要件(A)及び(B)を同時に満足する触媒成形体:
 (A)反応器に充填する前の状態で、前記触媒成形体の成形体密度が2.25g/mL以下である。
 (B)下記要件(B-1)及び(B-2)の少なくとも一方を満たす:
  (B-1)前記触媒成形体の表面のJIS B-0601-2001で規定される算術平均粗さ(Ra)が3.0μm以下である。
  (B-2)前記触媒成形体の表面のJIS B-0601-2001で規定される最大高さ(Rz)が15μm以下である。
 [2]前記触媒成形体の表面の少なくとも一部に有機高分子化合物のコーティング層を有する、[1]に記載の触媒成形体。
 [3]前記有機高分子化合物を0.001~2質量%含有する、[2]に記載の触媒成形体。
 [4][1]~[3]のいずれかに記載の触媒成形体であって、前記成形体は押出成形体である触媒成形体。
 [5]下記式(I)で表される組成を有する触媒成分を含有する、[1]~[4]のいずれかに記載の触媒成形体。
  Moa1Bib1Fec1Ad1E1e1G1f1J1g1Sih1(NH4)i1Oj1   (I)
(式(I)中、Mo、Bi、Fe、Si、NH及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素、アンモニウム根及び酸素を表し、Aは、コバルト及びニッケルからなる群より選ばれた少なくとも1種の元素を表し、E1は、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タリウム、タンタル及び亜鉛からなる群より選ばれた少なくとも1種の元素を表し、G1は、リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれた少なくとも1種の元素を表し、J1は、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれた少なくとも1種の元素を表す。a1、b1、c1、d1、e1、f1、g1、h1、i1及びj1は各成分のモル比率を表し、a1=12のときb1=0.01~3、c1=0.01~5、d1=0.01~12、e1=0~8、f1=0~5、g1=0.001~2、h1=0~20、i1=0~30であり、j1は前記各成分の価数を満足するのに必要な酸素のモル比率である。)
 [6]下記式(II)で表される組成を有する触媒成分を含有する、[1]~[4]のいずれかに記載の触媒成形体。
  Pa2Mob2Vc2Cud2E2e2G2f2J2g2(NH4)h2Oi2   (II)
(前記式(II)中、P、Mo、V、Cu、NH及びOは、それぞれリン、モリブデン、バナジウム、銅、アンモニウム根及び酸素を表す。E2は、アンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種類の元素を表す。G2は、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、タリウム、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種類の元素を表す。J2は、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種類の元素を表す。a2、b2、c2、d2、e2、f2、g2、h2及びi2は各成分のモル比率を表し、b2=12のとき、a2=0.1~3、c2=0.01~3、d2=0.01~2、e2は0~3、f2=0~3、g2=0.01~3、h2=0~30であり、i2は前記各成分の価数を満足するのに必要な酸素のモル比率である。)
 [7][5]に記載の触媒成形体の存在下でプロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化する、不飽和アルデヒド及び不飽和カルボン酸の製造方法。
 [8][6]に記載の触媒成形体の存在下で(メタ)アクロレインを分子状酸素により気相接触酸化する、不飽和カルボン酸の製造方法。
 [9][7]又は[8]に記載の方法により製造された不飽和カルボン酸をエステル化する不飽和カルボン酸エステルの製造方法。
 [10][7]又は[8]に記載の方法により不飽和カルボン酸を製造する工程と、該不飽和カルボン酸をエステル化する工程を含む不飽和カルボン酸エステルの製造方法。
 本発明によれば、不飽和アルデヒド及び/又は不飽和カルボン酸を高収率で製造できる触媒成形体を提供することができる。
 [触媒成形体]
 本発明の触媒成形体の一様態は、酸化反応により不飽和アルデヒド及び/又は不飽和カルボン酸を製造する際に用いられる触媒成形体であって、反応器に充填する前の状態で、前記触媒成形体の成形体密度が2.25g/mL以下であり、前記触媒成形体の表面のJIS B-0601-2001で規定される算術平均粗さ(Ra)が3.0μm以下である。
 また、本発明の触媒成形体の別の一様態は、酸化反応により不飽和アルデヒド及び/又は不飽和カルボン酸を製造する際に用いられる触媒成形体であって、反応器に充填する前の状態で、前記触媒成形体の成形体密度が2.25g/mL以下であり、前記触媒成形体の表面のJIS B-0601-2001で規定される最大高さ(Rz)が15μm以下である。
 加えて、本発明の触媒成形体のさらに別の一様態は、酸化反応により不飽和アルデヒド及び/又は不飽和カルボン酸を製造する際に用いられる触媒成形体であって、反応器に充填する前の状態で、前記触媒成形体の成形体密度が2.25g/mL以下であり、前記触媒成形体の表面のJIS B-0601-2001で規定される算術平均粗さ(Ra)が3.0μm以下であり、JIS B-0601-2001で規定される最大高さ(Rz)が15μm以下である。
 このような触媒成形体を反応器に充填すると、単位体積当たりに充填できる触媒成形体の個数が増加するため、反応器における単位体積当たりの触媒活性成分の量が増加する。この結果、不飽和アルデヒド及び/又は不飽和カルボン酸製造における反応活性が向上し、得られる目的生成物の収率が向上する。また単位体積当たりの触媒活性成分の量の増加により、連続反応時間が増加するという効果も得られる。
 (要件A:触媒成形体の成形体密度)
 本発明の触媒成形体の成形体密度は、反応器に充填する前の状態で2.25g/mL以下である。これにより、触媒成形体内部に細孔が多く形成され、目的生成物の選択率が向上する。前記成形体密度は、2.20g/mL以下であることがより好ましく、2.15g/mL以下であることが更に好ましい。また成形体密度は通常、1.0g/mL以上である。
 ここで成形体密度とは、触媒成形体1個あたりの質量(g)を体積(mL)で除し、これを100個の触媒成形体に対して行い、その算術平均から算出した値である。
 (要件(B):触媒成形体の表面の算術平均粗さ(Ra)及び最大高さ(Rz))
 上述の通り、触媒成形体の成形体密度が2.25g/mL以下であることにより、目的生成物の選択率が向上するが、触媒成形体内部により多く細孔が形成された分、触媒成形体1個当たりの触媒活性成分の量は減少し、反応活性が低くなる。つまり、同じ形状及び寸法の触媒成形体を同じ個数用いた場合、成形体密度が2.25g/mL以下である触媒成形体を充填し反応を実施した場合と、成形体密度が2.25g/mLを超える触媒成形体を充填し反応を実施した場合とでは、前者は目的生成物の選択率は向上するものの、反応活性が低いため原料の反応率は低下する。更に、触媒活性成分の総量が少なくなるので、従来の触媒成形体よりも連続反応時間が短いという課題もある。
 上記課題に対して、本発明者らは触媒成形体の表面特性に着目し、触媒成形体の成形体密度が2.25g/mL以下であることに加えて、反応器に充填する前の状態で触媒成形体の表面の算術平均粗さ(Ra)が3.0μm以下である場合(要件(B-1))、又は表面の最大高さ(Rz)が15μm以下である場合(要件(B-2))は、単位体積当たりに充填できる触媒成形体の個数を増加させることができ、それにより反応器に充填できる触媒活性成分の総量が少ないという課題が解決できることを見出した。より詳細には、触媒成形体の成形体密度が2.25g/mLより大きい場合、反応器に触媒成形体を充填する際、自重により密に充填されるのに対し、触媒成形体の成形体密度が2.25g/mL以下の場合は、触媒成形体が軽く、自重により密に充填できないことを発見した。しかし、上記のごとく特定の表面特性を有している場合、前記触媒成形体を密に充填することができ、反応器への充填個数が増加することを見出した。これにより、選択率の向上と収率向上の両方の効果を奏し、さらには反応持続時間についての課題も解決可能となる。
 単位体積当たりに充填できる触媒成形体の個数の観点から、触媒成形体の表面の算術平均粗さ(Ra)が3.0μm以下であり、かつ表面の最大高さ(Rz)が15μm以下であることが好ましい。また触媒成形体の表面の算術平均粗さ(Ra)の上限は2.8μm以下が好ましく、2.6μm以下がより好ましい。ただし表面の算術平均粗さ(Ra)は通常、0.5μm以上である。また表面の最大高さ(Rz)の上限は14μm以下であることが好ましく、13μm以下であることがより好ましい。ただし面の最大高さ(Rz)は通常、3μm以上である。
 ここで算術平均粗さ(Ra)は、基準長さにおける絶対値の平均を表したものある。また最大高さ(Rz)は、基準長さにおける輪郭曲線の中で、もっとも高い山の高さともっとも深い谷の深さの和を求め、表したものである。どちらもJISB-0601-2001の規格で測定することができる。
 本発明に係る触媒成形体の表面の算術平均粗さ(Ra)、最大高さ(Rz)の測定位置については、成形体が複数の面を有する形状の場合は、他の成形体と接触し得る面の内、最も表面積の大きな面で測定する。例えば円柱状の触媒成形体であれば、円形の部分と側面の部分の表面積を比較し、表面積の大きい面で測定を行う。また円筒状の触媒成形体であれば、他の成形体と接触し得る面として、リング形の部分と円筒側面の部分の表面積を比較し、表面積の大きい面で測定を行う。これを10個の触媒成形体に対して行い、その算術平均から算出する。
 (触媒成形体表面)
 また本発明の触媒成形体は、必要に応じて表面を処理し、算術平均粗さ(Ra)及び最大高さ(Rz)を調整したものであってもよい。触媒成形体表面の機械的強度の観点から、表面の少なくとも一部に有機高分子化合物のコーティング層を有することが好ましい。また、コーティング層を形成することにより、触媒成形体の算術平均粗さ(Ra)や表面の最大高さ(Rz)を所望の値に調整することもできる。
 有機高分子化合物としては、具体的には糖類及び合成樹脂が挙げられる。糖類としては、例えばトレオース、アラビノース、キシロース、ガラクトース、リボース、グルコース、ソルボース、フルクトース、マンノース等の単糖類、スクロース、ラクトース、マルトース、トレハロース、セロビオース、イソマルトース、イソトレハロース、ネオトレハロース、ネオラクトース、ツラノース、パラチノース等の二糖類、及びデンプン、グリコーゲン、プルラン、水溶性セルロース、水不溶性セルロース等の多糖類が挙げられる。また合成樹脂としては、例えばポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリスチレン、フェノール樹脂、エポキシ樹脂等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。有機高分子化合物の分子量は、2万~40万が好ましく、下限は3万以上、上限は30万以下がより好ましい。
 触媒成形体の機械的強度の観点から、触媒成形体の表面の少なくとも一部に糖類のコーティング層を有することがより好ましく、多糖類のコーティング層を有することが更に好ましく、プルラン及び水溶性セルロースから選択される少なくとも1つのコーティング層を有することが特に好ましい。
 水溶性セルロースとしては、具体的には、メチルセルロース、カルボキシメチルセルロース、カルボキシルメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース及びその塩類等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 また、触媒成形体が有機高分子化合物を0.001~2質量%含有していることが好ましい。有機高分子化合物の含有量が0.001質量%以上であることで、触媒成形体の機械的強度が増加する。また有機高分子化合物の含有量が2質量%以下であることで、触媒成形体中に含まれる触媒活性成分が十分な量となる。有機高分子化合物の含有量の上限は1.5質量%以下がより好ましく、1質量%以下が更に好ましい。
 (触媒成形体の種類及び形状)
 触媒成形体の種類は特に限定されず、例えば、押出成形体、打錠成形体、担持成形体、転動造粒体等が挙げられる。中でも成形体密度が容易に調整できる点で、押出成形体であることが好ましい。ここで押出成形体とは、型枠に入れた触媒に圧力を加えて押し出すことで、一定の形状に成形したものを示す。触媒成形体の形状は特に限定されず、例えば、球状、円柱状、円筒状(リング状)、星型状等の形状が挙げられ、中でも機械的強度の高い球状、円柱状、円筒状が好ましい。
 (不飽和アルデヒド及び不飽和カルボン酸製造用触媒成形体における触媒成分)
 本発明に係る不飽和アルデヒド及び不飽和カルボン酸を製造する際に用いられる触媒成形体は、下記式(I)で表される組成を有する触媒成分を含有することが、不飽和アルデヒド及び不飽和カルボン酸収率の観点から好ましい。なお、各元素のモル比率は、触媒成分をアンモニア水に溶解した成分をICP発光分析法で分析することによって求めた値とする。またアンモニウム根のモル比率は、触媒成分をケルダール法で分析することによって求めた値とする。
  Moa1Bib1Fec1Ad1E1e1G1f1J1g1Sih1(NH4)i1Oj1   (I)
 式(I)中、Mo、Bi、Fe、Si、NH及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素、アンモニウム根及び酸素を表し、Aは、コバルト及びニッケルからなる群より選ばれた少なくとも1種の元素を表し、E1は、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タリウム、タンタル及び亜鉛からなる群より選ばれた少なくとも1種の元素を表し、G1は、リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれた少なくとも1種の元素を表し、J1は、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれた少なくとも1種の元素を表す。a1、b1、c1、d1、e1、f1、g1、h1、i1及びj1は各成分のモル比率を表し、a1=12のときb1=0.01~3、c1=0.01~5、d1=0.01~12、e1=0~8、f1=0~5、g1=0.001~2、h1=0~20、i1=0~30であり、j1は前記各成分の価数を満足するのに必要な酸素のモル比率である。
 なお、本発明において「アンモニウム根」とは、アンモニウムイオン(NH )になり得るアンモニア(NH)、及びアンモニウム塩などのアンモニウム含有化合物に含まれるアンモニウムの総称である。
 (不飽和カルボン酸製造用触媒成形体における触媒成分)
 本発明に係る不飽和カルボン酸を製造する際に用いられる触媒成形体は、下記式(II)で表される組成を有する触媒成分を含有することが、不飽和カルボン酸収率の観点から好ましい。
  Pa2Mob2Vc2Cud2E2e2G2f2J2g2(NH4)h2Oi2   (II)
 前記式(II)中、P、Mo、V、Cu、NH及びOは、それぞれリン、モリブデン、バナジウム、銅、アンモニウム根及び酸素を表す。E2は、アンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種類の元素を表す。G2は、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、タリウム、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種類の元素を表す。J2は、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種類の元素を表す。a2、b2、c2、d2、e2、f2、g2、h2及びi2は各成分のモル比率を表し、b2=12のとき、a2=0.1~3、c2=0.01~3、d2=0.01~2、e2は0~3、好ましくは0.01~3、f2=0~3、g2=0.01~3、h2=0~30であり、i2は前記各成分の価数を満足するのに必要な酸素のモル比率である。
 [触媒成形体の製造方法]
 本発明の触媒成形体は、反応器に充填する前の状態で、成形体密度が2.25g/mL以下であり、表面の算術平均粗さ(Ra)が3.0μm以下である、又は成形体密度が2.25g/mL以下であり、表面の最大高さ(Rz)が15μm以下であれば、公知の触媒成形体の製造方法に準じて製造することができるが、下記の工程(i)~(iii)を含む方法により製造されることが好ましい。
(i)触媒成分の原料化合物を溶媒と混合し、触媒原料液を調製する工程。
(ii)前記触媒原料液を乾燥し、触媒乾燥体を得る工程。
(iii)前記触媒乾燥体を成形し、必要に応じて触媒成形体を表面処理し、触媒成形体を得る工程。
 (工程(i))
 工程(i)では、触媒成分の原料化合物を溶媒と混合し、触媒原料液を調製する。例えば、不飽和アルデヒド及び不飽和カルボン酸製造用触媒の製造においては、不飽和アルデヒド及び不飽和カルボン酸製造用触媒の触媒成分の原料化合物を、適宜選択した溶媒と混合し、少なくともモリブデン及びビスマスを含む触媒原料液とを調製する。また、不飽和カルボン酸製造用触媒の製造においては、不飽和カルボン酸製造用触媒の触媒成分の原料化合物を、適宜選択した溶媒と混合し、少なくともモリブデン及びリンを含む触媒原料液を調製する。
 触媒原料液の調製に用いられる原料化合物は特に限定されず、触媒の各構成元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、酢酸塩等の有機酸塩、アンモニウム塩、ハロゲン化物、オキソ酸、オキソ酸塩、アルカリ金属塩等を単独で又は二種以上を組み合わせて使用することができる。モリブデンの原料化合物としては、例えば、三酸化モリブデン等の酸化モリブデン類、パラモリブデン酸アンモニウムやジモリブデン酸アンモニウム等のモリブデン酸アンモニウム類、モリブデン酸、塩化モリブデン等が挙げられる。ビスマスの原料化合物としては、硝酸ビスマス、酸化ビスマス、酢酸ビスマス、水酸化ビスマス等が挙げられる。リンの原料化合物としては、例えば、リン酸、五酸化リン、リン酸アンモニウム等のリン酸塩等が挙げられる。バナジウムの原料化合物としては、例えば、バナジン酸アンモニウム、メタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム、蓚酸バナジル等が挙げられる。原料化合物は、触媒成分を構成する各元素に対して1種のみを用いても2種以上を組み合わせて用いてもよい。
 前記溶媒としては、例えば、水、エチルアルコール、アセトン等が挙げられるが、工業的な観点から水を用いることが好ましい。
 不飽和カルボン酸製造用触媒の製造において、前記触媒原料液は、少なくともモリブデン及びリンを含有するケギン型ヘテロポリ酸を含むことが、不飽和カルボン酸選択率の観点から好ましい。例えば、原料化合物の添加量等を適宜選択し、硝酸、シュウ酸等を適宜添加する等の方法により、前記触媒原料液のpHを4以下、好ましくは3以下に調整することにより、ケギン型ヘテロポリ酸を安定に形成することができる。なお、得られるヘテロポリ酸の構造は、NICOLET6700FT-IR(製品名、Thermo electron社製)を用いた赤外吸収分析より判断することができる。該ヘテロポリ酸塩がケギン型構造を有する場合、得られる赤外吸収スペクトルは、1060、960、870、780cm-1付近に特徴的なピークを有する。
 (工程(ii))
 工程(ii)では、前記工程(i)で得られた触媒原料液を乾燥し、触媒乾燥体を得る。触媒原料液を乾燥する方法は特に限定されず、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固する方法等が適用できる。これらの中では、乾燥と同時に粒子が得られること、得られる粒子の形状が整った球形であることから、スプレー乾燥機を用いて乾燥する方法が好ましい。乾燥条件は乾燥方法により異なるが、スプレー乾燥機を用いる場合、乾燥機入口温度は100~500℃が好ましく、下限は200℃以上がより好ましく、220℃以上が更に好ましい。また上限は400℃以下がより好ましく、370℃以下が更に好ましい。乾燥機出口温度の下限は100℃以上が好ましく、105℃以上がより好ましい。また上限は200℃以下が好ましい。乾燥は、得られる触媒乾燥体の水分含有率が0.1~4.5質量%となるように行うことが好ましい。なおこれらの条件は、所望する触媒の形状や大きさにより適宣選択することができる。
 スプレー乾燥機を用いる場合、得られる触媒乾燥体の平均粒子径が1~250μmであることが好ましい。平均粒子径が1μm以上であることにより、後述する工程(iii)において、目的生成物の生成に好ましい径の細孔が形成され、高い収率で目的生成物が得られる。また、平均粒子径250μm以下であることにより、単位体積当たりの触媒乾燥体粒子間の接触点の数が維持でき、後述する工程(iii)において得られる触媒成形体の機械的強度が向上する。触媒乾燥体の平均粒子径の下限は5μm以上、上限は150μm以下がより好ましい。なお、平均粒子径は体積平均粒子径を意味し、レーザー式粒度分布測定装置により測定した値とする。
 また、噴霧された液滴と熱風との接触方式は、並流、向流、並向流(混合流)のいずれでもよく、いずれの場合でも好適に乾燥することができる。
 (工程(iii))
 工程(iii)では、前記工程(ii)で得られた触媒乾燥体を成形し、触媒成形体を得る。触媒成形体は、必要に応じて表面処理を行ってもよい。
 <触媒乾燥体の成形>
 触媒乾燥体は、溶媒と混合してから成形することが、触媒成形体の成形体密度を調整できる観点から好ましい。溶媒の使用量は、触媒乾燥体の種類や粒子の形状、溶媒の種類により適宜選択されるが、触媒乾燥体に対する溶媒の使用量を少なくすることで、得られる触媒成形体の成形体密度は増加し、触媒乾燥体に対する溶媒の使用量を多くすることで、得られる触媒成形体の成形体密度は減少する。溶媒の使用量は、触媒乾燥体100質量部に対して10~70質量部の範囲で調整することが好ましい。触媒乾燥体100質量部に対する溶媒の使用量が10質量部以上であることにより、成形性が向上し、得られる触媒成形体においてメタクリル酸の製造に有効な細孔が増加する傾向がある。また溶媒の使用量が70質量部以下であることにより、成形時の付着性が低減して取り扱い性が向上する。触媒乾燥体100質量部に対する溶媒の使用量の下限は15部以上、上限は60質量部以下の範囲で調整することがより好ましい。
 溶媒の種類としては、特に限定されないが、水や有機溶媒が好ましい。有機溶媒としては、メチルアルコール、エタノール、プロピルアルコール、ブチルアルコール、イソプロパノールなどの低級アルコールやアセトン、ジメチルエーテル、ジエチルエーテル、メチルエチルケトン、酢酸エチルなどが挙げられる。これらの溶媒は1種類を用いてもよいし、2種類以上の溶媒を組み合わせて用いてもよい。溶媒は、少なくとも有機溶媒を含むことが好ましい。
 また成形の際には、成形助剤として一般的に用いられているポリビニルアルコール、αグルカン誘導体、βグルカン誘導体、ステアリン酸、硝酸アンモニウム、グラファイト、水、アルコール等を必要に応じて使用することができる。
 触媒乾燥体の成形方法は特に限定されない。例えば、公知の押出成形、打錠成形、担持成形、転動造粒等の方法が挙げられる。中でも触媒成形体の成形体密度を容易に調整できる観点から、押出成形が好ましい。押出成形機としては、例えばオーガー式押出成形機、プランジャー式押出成形機等を使用することができ、好ましくはプランジャー式押出成形機を使用することができる。
 押出成形において、押出圧力を高くすることで得られる触媒成形体の成形体密度は増加し、押出圧力を低くすることで得られる触媒成形体の成形体密度は減少する。押出圧力は、0.1~30MPa(G)の範囲で調整することが好ましい。ただし、(G)はゲージ圧であることを意味する。押出圧力が0.1MPa(G)以上であることにより、触媒成形体が安定して製造できる。また押出圧力が30MPa以下であることにより、得られる触媒成形体においてメタクリル酸の製造に有効な細孔が増加する傾向がある。押出圧力の下限は0.5MPa(G)以上がより好ましく、1MPa(G)以上であることが更に好ましく、2MPa(G)以上であることが特に好ましい。また押出圧力の上限は20MPa(G)以下であることがより好ましく、15MPa(G)以下であることが更に好ましく、10MPa(G)以下であることが特に好ましい。
 <触媒成形体の表面処理>
 本発明の触媒成形体は、必要に応じて表面を処理し、算術平均粗さ(Ra)及び最大高さ(Rz)を調整してもよい。触媒成形体の表面処理方法としては、例えば表面を有機高分子化合物でコーティングする方法や、表面に溶媒を噴霧して乾燥する方法が挙げられる。機械的強度の付与や触媒成形体の表面の算術平均粗さ(Ra)、最大高さ(Rz)の調整の観点から、触媒成形体の表面を有機高分子化合物でコーティングする方法を用いることが好ましく、有機高分子化合物でコーティングした後、更に表面に溶媒を噴霧して乾燥する方法を用いることがより好ましい。
 触媒成形体の表面を有機高分子化合物でコーティングする方法としては、例えば、上述の有機高分子化合物を溶媒に溶解したコーティング液を霧状に噴霧して、触媒成形体本体に付着させ、同時に溶媒を気化、蒸発させる方法が挙げられる。この方法によれば、容易にかつ均一にコーティングすることができる。
 コーティング液に用いる溶媒、及びコーティングした後に更に噴霧する溶媒としては、水、アルコール、アルカリ性溶液等が挙げられ、水が好ましい。コーティング液中の有機高分子化合物の濃度は、10質量%以下とすることが好ましい。これにより触媒成形体同士の粘着が低減され、操作上有利である。ただしコーティング液中の有機高分子化合物の濃度は、通常0.1質量%以上である。またコーティング液の噴霧後に更に噴霧する溶媒の量は、触媒成形体に対して0.1~3質量%が好ましく、下限は0.2質量%以上、上限は2質量%以下がより好ましい。
 コーティング装置としては、簡易的にはコーティングパン等のパンと呼ばれる容器に回転機構を付加したものが好ましい。このような装置を用いることにより、触媒成形体を転動させながら、コーティング液を霧状に噴霧して触媒成形体に付着させ、同時に熱風を吹きかけて溶媒を除去することができる。コーティング装置として、医薬業界、食品業界で用いられている錠剤の糖衣加工機、コーティング機等を用いてもよい。
 [不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法]
 不飽和アルデヒド及び/又は不飽和カルボン酸の製造において、前記工程(iii)で得られた触媒成形体を焼成して用いることが、目的生成物の収率の観点から好ましい。なお、焼成は前記工程(ii)で得られた触媒乾燥体に対して行ってもよい。焼成温度は通常200~600℃であり、下限は300℃以上、上限は500℃以下が好ましい。焼成条件は特に限定されないが、焼成は通常、酸素、空気又は窒素流通下で行われる。焼成時間は目的とする触媒によって適宜設定されるが、0.5~40時間が好ましく、下限は1時間以上、上限は40時間以下がより好ましい。
 (不飽和アルデヒド及び不飽和カルボン酸の製造方法)
 本発明に係る不飽和アルデヒド及び不飽和カルボン酸の製造方法は、本発明に係る不飽和アルデヒド及び不飽和カルボン酸を製造する際に用いられる触媒成形体の存在下で、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化する。これらの方法によれば、高い収率で不飽和アルデヒド及び不飽和カルボン酸を製造することができる。
 製造される不飽和アルデヒド及び不飽和カルボン酸は、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール又はメチル第三級ブチルエーテルにそれぞれ対応したものである。たとえばプロピレンに対応する不飽和アルデヒドはアクロレインであり、プロピレンに対応する不飽和カルボン酸はアクリル酸である。イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール及びメチル第三級ブチルエーテルに対応する不飽和アルデヒドはメタクロレインであり、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール及びメチル第三級ブチルエーテルに対応する不飽和カルボン酸はメタクリル酸である。
 目的生成物の収率の観点から、不飽和アルデヒド及び不飽和カルボン酸は、それぞれメタクロレイン及びメタクリル酸であることが好ましい。
 以下、代表例として本発明に係る方法により製造された触媒成形体の存在下、イソブチレンを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を製造する方法について説明する。
 前記方法では、イソブチレン及び分子状酸素を含む原料ガスと、本発明に係る触媒成形体とを接触させることでメタクロレイン及びメタクリル酸を製造する。この反応では固定床型反応器を使用することができる。反応器内に触媒成形体を充填し、該反応器へ原料ガスを供給することにより反応を行うことができる。触媒成形体層は1層でもよく、活性の異なる複数の触媒成形体をそれぞれ複数の層に分けて充填してもよい。また、活性を制御するために触媒成形体を不活性担体により希釈し充填してもよい。
 原料ガス中のイソブチレンの濃度は特に限定されないが、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。
 原料ガス中の分子状酸素の濃度は、イソブチレン1モルに対して0.1~5モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体を用いてもよい。
 原料ガスは、イソブチレン及び分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。
 原料ガスと触媒成形体との接触時間は、0.5~10秒が好ましく、下限は1秒以上、上限は6秒以下がより好ましい。反応圧力は、0.1~1MPa(G)が好ましい。ただし、(G)はゲージ圧であることを意味する。反応温度は200~420℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。
 (不飽和カルボン酸の製造方法)
 本発明に係る不飽和カルボン酸の製造方法は、本発明に係る不飽和カルボン酸を製造する際に用いられる触媒成形体の存在下で、(メタ)アクロレインを分子状酸素により気相接触酸化する。これらの方法によれば、高い収率で不飽和カルボン酸を製造することができる。
 製造される不飽和カルボン酸は、(メタ)アクロレインのアルデヒド基がカルボキシル基に変化した不飽和カルボン酸であり、具体的には(メタ)アクリル酸が得られる。
 なお、「(メタ)アクロレイン」はアクロレイン及びメタクロレインを示し、「(メタ)アクリル酸」はアクリル酸及びメタクリル酸を示す。目的生成物の収率の観点から、(メタ)アクロレイン及び(メタ)アクリル酸は、それぞれメタクロレイン及びメタクリル酸であることが好ましい。
 以下、代表例として、本発明に係る方法により製造された触媒成形体の存在下、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法について説明する。
 前記方法では、メタクロレイン及び分子状酸素を含む原料ガスと、本発明に係る触媒成形体とを接触させることでメタクリル酸を製造する。この反応では固定床型反応器を使用することができる。反応器内に触媒成形体を充填し、該反応器へ原料ガスを供給することにより反応を行うことができる。触媒成形体層は1層でもよく、活性の異なる複数の触媒成形体をそれぞれ複数の層に分けて充填してもよい。また、活性を制御するために触媒成形体を不活性担体により希釈し充填してもよい。
 原料ガス中のメタクロレインの濃度は特に限定されないが、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。原料であるメタクロレインは、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいてもよい。
 原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4~4モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体を用いてもよい。
 原料ガスは、メタクロレイン及び分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1~50容量%が好ましく、下限は1容量%以上、上限は40容量%がより好ましい。
 原料ガスとメタクリル酸製造用触媒との接触時間は、1.5~15秒が好ましく、下限は2秒以上、上限は10秒以下がより好ましい。反応圧力は、0.1~1MPa(G)が好ましい。ただし、(G)はゲージ圧であることを意味する。反応温度は200~450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。
 [不飽和カルボン酸エステルの製造方法]
 本発明に係る不飽和カルボン酸エステルの製造方法は、本発明に係る方法により製造された不飽和カルボン酸をエステル化する。すなわち、本発明に係る不飽和カルボン酸エステルの製造方法は、本発明に係る方法により不飽和カルボン酸を製造する工程と、該不飽和カルボン酸をエステル化する工程とを含む。これらの方法によれば、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール又はメチル第三級ブチルエーテルの気相接触酸化、もしくは(メタ)アクロレインの気相接触酸化により得られる不飽和カルボン酸を用いて、不飽和カルボン酸エステルを得ることができる。
 不飽和カルボン酸と反応させるアルコールとしては特に限定されず、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られる不飽和カルボン酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50~200℃が好ましい。
 以下、本発明を実施例及び比較例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、「部」は「質量部」を示す。
 (触媒成分の組成比)
 各元素のモル比率は、触媒成分をアンモニア水に溶解した成分をICP発光分析法で分析することによって求めた。またアンモニウムイオンのモル比率は、触媒成分をケルダール法で分析することによって求めた。
 (有機高分子化合物の含有率)
 コーティングされた触媒成形体における有機高分子化合物の含有率は、コーティングされた触媒成形体の質量M2及びコーティング液に用いた有機高分子化合物の質量M3から、下記式により算出した。
  有機高分子化合物の含有率[質量%]=(M3/M2)×100
 なおM2は、コーティングに用いた触媒成形体の仕込み量、及びコーティング液に用いた有機高分子化合物の仕込み量の合計とした。ここで、コーティングに用いた触媒成形体の仕込み量は、自然乾燥や熱風乾燥といった公知の乾燥方法によって液体を除去し、触媒成形体の含液率が1質量%以下となった状態におけるものとした。またM3は、コーティング液に用いた有機高分子化合物の仕込み量とした。
 (触媒成形体の成形体密度)
 触媒成形体の成形体密度は、触媒成形体1個あたりの質量M1(g)及び触媒成形体1個あたりの体積V1(mL)から、下記式により算出した。
  触媒成形体の成形体密度(g/mL)=M1/V1
 なお、触媒成形体の成形体密度は、同一条件で製造された触媒成形体100個に対して算出された平均値である。
 (算術平均粗さ(Ra)及び最大高さ(Rz))
 触媒成形体の表面粗さは、(株)東京精密製「SURFCOM1900SD」(商品名)を使用して測定した。測定位置は、成形体が円柱状の場合は側面、円筒状の場合は円筒側面とし、測定距離4.0mm、カットオフ0.8mm、4λの条件で、軸方向に測定した。これを10個の触媒成形体に対して行い、その算術平均から算出した。
 (触媒成形体の落下粉化率)
 触媒成形体の機械的強度の指標として、触媒成形体の落下粉化率を用いた。落下粉化率が小さいほど機械的強度が高く、落下粉化率が大きいほど機械的強度が低いことを示す。触媒成形体の落下粉化率は以下の方法により測定した。長手方向が鉛直になるように設置され、下側開口部がステンレス製の板で閉止された内径27.5mm、長さ6mのステンレス製円筒の上側開口部から、触媒成形体100gを落下させて円筒内に充填した。下側開口部を開いて回収した触媒成形体のうち、目開き1mmのふるいを通過しないものの質量をM4gとして、落下粉化率を下記式にて算出した。なお、実施例における落下粉化率は、同一条件で触媒成形体を10回製造し、各触媒成形体に対して測定された落下粉化率の平均値である。
  落下粉化率(%)={(100-M4)/100}×100
 (反応器へ充填された触媒成形体の個数)
 反応器へ充填された触媒成形体の個数は、触媒成形体1個あたりの質量M1(g)、反応器へ充填された触媒成形体の質量M5(g)及び反応器の充填体積V2(mL)から、下記式により算出した。
  反応器へ充填された触媒成形体の個数[個/mL]=M5/M1/V2
 (原料ガス及び生成物の分析)
 原料ガス及び生成物の分析は、ガスクロマトグラフィー(装置:島津製作所製GC-2014、カラム:J&W社製DB-FFAP、30m×0.32mm、膜厚1.0μm)を用いて行った。実施例1及び比較例1において、生成したメタクロレイン及びメタクリル酸の合計収率は次式により算出した。
 メタクロレイン及びメタクリル酸の合計収率(%)=(N2+N3)/N1×100
 ここで、N1は供給したイソブチレンのモル数、N2は生成したメタクロレインのモル数、N3は生成したメタクリル酸のモル数である。
 なお、実施例1及び比較例1では原料がイソブチレンの場合のみ示しているが、第三級ブチルアルコールを原料として用いた場合においても、反応器の入口部分で速やかにイソブチレンに脱水され、イソブチレンを原料として用いた場合と同様の結果が得られる。
 また、実施例2~5及び比較例2において、生成したメタクリル酸の収率は次式により算出した。
  メタクリル酸の収率(%)=(N5/N4)×100
 ここで、N4は供給したメタクロレインのモル数、N5は生成したメタクリル酸のモル数である。
 [実施例1]
 純水1000部にパラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム12.4部、硝酸カリウム2.3部、三酸化アンチモン27.5部及び三酸化ビスマス66.0部を加え加熱攪拌した(A液)。別に純水1000部に硝酸第二鉄114.4部、硝酸コバルト274.7部及び硝酸亜鉛35.1部を順次加え溶解した(B液)。A液にB液を加えて得られた触媒原料液を、並流式スプレー乾燥機を用いて、乾燥機入口温度250℃、スラリー噴霧用回転円盤15,000rpmの条件で乾燥して、平均粒子径42μmの触媒乾燥体を得た。なお、該触媒乾燥体の酸素を除く触媒の組成は、Mo120.2Bi1.2Fe1.2Sb0.8Co4.0Zn0.50.1(NH12.3であった。
 前記触媒乾燥体100部に対して、ヒドロキシプロピルメチルセルロース4部と、純水45部とを、双腕型のシグマブレードを備えたバッチ式の混練機で粘土状になるまで混練し、混合物を得た。
 得られた混合物を、プランジャー式押出機を用いて押出成形し、外径6mm、内径2mm、長さ5.5mmの円筒状に成形し、次いで、熱風乾燥機で、90℃で14時間乾燥し触媒成形体を得た。
 次いで得られた触媒成形体をコーティングパンに充填し、コーティングパンの回転によって触媒成形体を転動させ、95℃の熱風をあてながら、触媒成形体100部に対してメチルセルロース0.5部を4質量%水溶液に調製したコーティング液を、続いて触媒成形体100部に対して純水1部を噴霧した。コーティングされた触媒成形体の成形体密度、表面の算術平均粗さ(Ra)及び最大高さ(Rz)、並びに落下粉化率の測定結果を表1に示す。
 続いて前記コーティングされた触媒成形体を、反応器内における充填体積が2500mLとなるように充填し、空気流通下に450℃で5時間焼成した。次いで、イソブチレン5容量%、酸素12容量%、水蒸気10容量%及び窒素73容量%の原料ガスを用い、反応温度320℃、接触時間2.9秒で通じてイソブチレンの気相接触酸化反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析することでメタクロレイン及びメタクリル酸の合計収率を求めた。反応器へ充填された前記コーティングされた触媒成形体の個数及び反応結果を表1に示す。
 [比較例1]
 実施例1と同様にして触媒成形体を製造した。なお、該触媒成形体に対して、コーティングパンにてコーティング液及び純水を噴霧する工程は実施しなかった。該触媒成形体の成形体密度、表面の算術平均粗さ(Ra)及び最大高さ(Rz)、並びに落下粉化率の測定結果を表1に示す。
 続いて前記触媒成形体を、実施例1と同様に反応器に充填し、焼成及びイソブチレンの気相接触酸化反応を行った。反応器へ充填された前記触媒成形体の個数及び反応結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 純水4000部に三酸化モリブデン1000部、メタバナジン酸アンモニウム34部、85質量%リン酸水溶液80部及び硝酸銅7部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。90℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、重炭酸セシウム124部を純水200部に溶解した溶液を添加して15分間攪拌した。次いで、炭酸アンモニウム92部を純水200部に溶解した溶液を添加し、更に20分間攪拌し、モリブデン及びリンを含有するケギン型ヘテロポリ酸を含む触媒原料液を得た。該触媒原料液を、並流式スプレー乾燥機を用いて、乾燥機入口温度300℃、スラリー噴霧用回転円盤18,000rpmの条件で乾燥して、平均粒子径25μmの触媒乾燥体を得た。なお、該触媒乾燥体の酸素を除く触媒の組成は、P1.2Mo120.5Cu0.05Cs1.1(NH3.8である。
 前記触媒乾燥体100部に対して、ヒドロキシプロピルセルメチルロース4部と、エチルアルコール18部とを、双腕型のシグマブレードを備えたバッチ式の混練機で粘土状になるまで混練し、混合物を得た。
 得られた混合物を、プランジャー式押出機を用いて押出成形し、外径5.5mm、長さ5.5mmの円柱状に成形し、次いで、熱風乾燥機で、90℃で8時間乾燥し触媒成形体を得た。
 次いで得られた触媒成形体をコーティングパンに充填し、コーティングパンの回転によって触媒成形体を転動させ、95℃の熱風をあてながら、触媒成形体100部に対してメチルセルロース0.5部を4質量%水溶液に調製したコーティング液を、続いて触媒成形体100部に対して純水2部を噴霧した。コーティングされた触媒成形体の成形体密度、表面の算術平均粗さ(Ra)及び最大高さ(Rz)、並びに落下粉化率の測定結果を表2に示す。
 続いて前記コーティングされた触媒成形体を、反応器内における充填体積が2500mLとなるように充填し、空気流通下に380℃で11時間焼成した。次いでメタクロレイン6容量%、酸素12容量%、水蒸気10容量%及び窒素72容量%の原料ガスを用い、反応温度290℃、接触時間2.9秒で通じてメタクロレインの気相接触酸化反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析することでメタクリル酸の収率を求めた。反応器へ充填された前記コーティングされた触媒成形体の個数及び反応結果を表2に示す。
 [実施例3]
 実施例2において、コーティング液に用いるメチルセルロースの量を、触媒成形体100部に対して0.3部に変更した以外は、実施例2と同様にしてコーティングされた触媒成形体を製造した。該コーティングされた触媒成形体の成形体密度、表面の算術平均粗さ(Ra)及び最大高さ(Rz)、並びに落下粉化率の測定結果を表2に示す。
 続いて前記コーティングされた触媒成形体を、実施例2と同様に反応器に充填し、焼成及びメタクロレインの気相接触酸化反応を行った。反応器へ充填された前記コーティングされた触媒成形体の個数及び反応結果を表2に示す。
 [実施例4]
 実施例2において、コーティング液に用いるメチルセルロースの量を、触媒成形体100部に対して0.2部に変更した以外は、実施例2と同様にしてコーティングされた触媒成形体を製造した。該コーティングされた触媒成形体の成形体密度、表面の算術平均粗さ(Ra)及び最大高さ(Rz)、並びに落下粉化率の測定結果を表2に示す。
 続いて前記コーティングされた触媒成形体を、実施例2と同様に反応器に充填し、焼成及びメタクロレインの気相接触酸化反応を行った。反応器へ充填された前記コーティングされた触媒成形体の個数及び反応結果を表2に示す。
 [実施例5]
 実施例2と同様にして得られた触媒成形体をコーティングパンに充填し、コーティングパンの回転によって触媒成形体を転動させ、95℃の熱風をあてながら、触媒成形体100部に対してプルラン0.3部を4質量%水溶液に調製したコーティング液を、続いて触媒成形体100部に対して純水1部を噴霧した。コーティングされた触媒成形体の成形体密度、表面の算術平均粗さ(Ra)及び最大高さ(Rz)、並びに落下粉化率の測定結果を表2に示す。
 続いて前記コーティングされた触媒成形体を、実施例2と同様に反応器に充填し、焼成及びメタクロレインの気相接触酸化反応を行った。反応器へ充填された前記コーティングされた触媒成形体の個数及び反応結果を表2に示す。
 [比較例2]
 実施例2と同様にして触媒成形体を製造した。なお、該触媒成形体に対して、コーティングパンにてコーティング液及び純水を噴霧する工程は実施しなかった。該触媒成形体の成形体密度、表面の算術平均粗さ(Ra)及び最大高さ(Rz)、並びに落下粉化率の測定結果を表2に示す。
 続いて前記触媒成形体を、実施例2と同様に反応器に充填し、焼成及びメタクロレインの気相接触酸化反応を行った。反応器へ充填された前記触媒成形体の個数及び反応結果を表2に示す。
 [比較例3]
 実施例2と同様に触媒乾燥体を製造した。
 前記触媒乾燥体100部に対してグラファイト3部を混合し、打錠成型機により、外径5.5mm、長さ5.5mmの円柱状に成形し、触媒成形体を得た。
 次いで得られた触媒成形体をコーティングパンに充填し、コーティングパンの回転によって触媒成形体を転動させ、95℃の熱風をあてながら、触媒成形体100部に対してメチルセルロース0.5部を4質量%水溶液に調製したコーティング液を、続いて触媒成形体100部に対して純水2部を噴霧した。コーティングされた触媒成形体の成形体密度、表面の算術平均粗さ(Ra)及び最大高さ(Rz)、並びに落下粉化率の測定結果を表2に示す。
 続いて前記コーティングされた触媒成形体を、実施例2と同様に反応器に充填し、焼成及びメタクロレインの気相接触酸化反応を行った。反応器へ充填された前記コーティングされた触媒成形体の個数及び反応結果を表2に示す。
 [比較例4]
 比較例3と同様にして触媒成形体を製造した。なお、該触媒成形体に対して、コーティングパンにてコーティング液及び純水を噴霧する工程は実施しなかった。該触媒成形体の成形体密度、表面の算術平均粗さ(Ra)及び最大高さ(Rz)、並びに落下粉化率の測定結果を表2に示す。
 続いて前記触媒成形体を、実施例2と同様に反応器に充填し、焼成及びメタクロレインの気相接触酸化反応を行った。反応器へ充填された前記触媒成形体の個数及び反応結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、Mo120.2Bi1.2Fe1.2Sb0.8Co4.0Zn0.50.1(NH12.3の組成比を有する触媒成分を含有する場合について、触媒成形体の成形体密度、並びに表面の算術平均粗さ(Ra)及び最大高さ(Rz)が規定範囲内の値である実施例1は、触媒成形体の表面の算術平均粗さ(Ra)及び最大高さ(Rz)が規定範囲を超えている比較例1と比較して、触媒成形体の反応器への充填個数が増加しており、高いメタクロレイン及びメタクリル酸の合計収率を示した。また、触媒成形体の反応器への充填個数の増加は、連続反応時間の観点からも有利であると言える。
 同様に、表2に示されるように、P1.2Mo120.5Cu0.05Cs1.1(NH3.81の組成比を有する触媒成分を含有する場合について、触媒成形体の成形体密度、並びに表面の算術平均粗さ(Ra)及び最大高さ(Rz)が規定範囲内の値である実施例2~5は、触媒成形体の表面の算術平均粗さ(Ra)及び最大高さ(Rz)が規定範囲を超えている比較例2と比較して、触媒成形体の反応器への充填個数が増加しており、高いメタクリル酸収率を示した。また、触媒成形体の反応器への充填個数の増加は、連続反応時間の観点からも有利であると言える。
 また、比較例3及び4は、触媒成形体の表面の算術平均粗さ(Ra)及び最大高さ(Rz)は規定範囲内の値となっていたが、成形体密度が規定範囲を超えていた。この場合、触媒成形体の反応器への充填個数は実施例2~5と同程度であったが、メタクリル酸収率は実施例2~5と比較して低い結果となった。これは触媒成形体の内部における、メタクリル酸の製造に有利な細孔が減少したためと考えられる。
 なお、本実施例で得られたメタクリル酸をエステル化することで、メタクリル酸エステルを得ることができる。

Claims (10)

  1.  酸化反応により不飽和アルデヒド及び/又は不飽和カルボン酸を製造する際に用いられる触媒成形体であって、以下の要件(A)及び(B)を同時に満足する触媒成形体:
     (A)反応器に充填する前の状態で、前記触媒成形体の成形体密度が2.25g/mL以下である。
     (B)下記要件(B-1)及び(B-2)の少なくとも一方を満たす:
      (B-1)前記触媒成形体の表面のJIS B-0601-2001で規定される算術平均粗さ(Ra)が3.0μm以下である。
      (B-2)前記触媒成形体の表面のJIS B-0601-2001で規定される最大高さ(Rz)が15μm以下である。
  2.  前記触媒成形体の表面の少なくとも一部に有機高分子化合物のコーティング層を有する、請求項1に記載の触媒成形体。
  3.  前記有機高分子化合物を0.001~2質量%含有する、請求項2に記載の触媒成形体。
  4.  請求項1~3のいずれか1項に記載の触媒成形体であって、前記成形体は押出成形体である触媒成形体。
  5.  下記式(I)で表される組成を有する触媒成分を含有する、請求項1~4のいずれか1項に記載の触媒成形体。
       Moa1Bib1Fec1Ad1E1e1G1f1J1g1Sih1(NH4)i1Oj1   (I)
    (式(I)中、Mo、Bi、Fe、Si、NH及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素、アンモニウム根及び酸素を表し、Aは、コバルト及びニッケルからなる群より選ばれた少なくとも1種の元素を表し、E1は、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タリウム、タンタル及び亜鉛からなる群より選ばれた少なくとも1種の元素を表し、G1は、リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれた少なくとも1種の元素を表し、J1は、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれた少なくとも1種の元素を表す。a1、b1、c1、d1、e1、f1、g1、h1、i1及びj1は各成分のモル比率を表し、a1=12のときb1=0.01~3、c1=0.01~5、d1=0.01~12、e1=0~8、f1=0~5、g1=0.001~2、h1=0~20、i1=0~30であり、j1は前記各成分の価数を満足するのに必要な酸素のモル比率である。)
  6.  下記式(II)で表される組成を有する触媒成分を含有する、請求項1~4のいずれか1項に記載の触媒成形体。
      Pa2Mob2Vc2Cud2E2e2G2f2J2g2(NH4)h2Oi2   (II)
    (前記式(II)中、P、Mo、V、Cu、NH及びOは、それぞれリン、モリブデン、バナジウム、銅、アンモニウム根及び酸素を表す。E2は、アンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群より選ばれる少なくとも1種類の元素を表す。G2は、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、タリウム、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選ばれる少なくとも1種類の元素を表す。J2は、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種類の元素を表す。a2、b2、c2、d2、e2、f2、g2、h2及びi2は各成分のモル比率を表し、b2=12のとき、a2=0.1~3、c2=0.01~3、d2=0.01~2、e2は0~3、f2=0~3、g2=0.01~3、h2=0~30であり、i2は前記各成分の価数を満足するのに必要な酸素のモル比率である。)
  7.  請求項5に記載の触媒成形体の存在下でプロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化する、不飽和アルデヒド及び不飽和カルボン酸の製造方法。
  8.  請求項6に記載の触媒成形体の存在下で(メタ)アクロレインを分子状酸素により気相接触酸化する、不飽和カルボン酸の製造方法。
  9.  請求項7又は8に記載の方法により製造された不飽和カルボン酸をエステル化する不飽和カルボン酸エステルの製造方法。
  10.  請求項7又は8に記載の方法により不飽和カルボン酸を製造する工程と、該不飽和カルボン酸をエステル化する工程を含む不飽和カルボン酸エステルの製造方法。
PCT/JP2020/011961 2019-03-28 2020-03-18 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法 WO2020196150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021509252A JP7264235B2 (ja) 2019-03-28 2020-03-18 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法
CN202080023586.7A CN113613785B (zh) 2019-03-28 2020-03-18 催化剂成型体以及使用其的不饱和醛和不饱和羧酸的制造方法
KR1020217034037A KR102612173B1 (ko) 2019-03-28 2020-03-18 촉매 성형체, 및 이것을 이용한 불포화 알데하이드 및 불포화 카복실산의 제조 방법
SG11202110059PA SG11202110059PA (en) 2019-03-28 2020-03-18 Molded catalyst body, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019062619 2019-03-28
JP2019-062619 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196150A1 true WO2020196150A1 (ja) 2020-10-01

Family

ID=72610183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011961 WO2020196150A1 (ja) 2019-03-28 2020-03-18 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法

Country Status (5)

Country Link
JP (1) JP7264235B2 (ja)
KR (1) KR102612173B1 (ja)
CN (1) CN113613785B (ja)
SG (1) SG11202110059PA (ja)
WO (1) WO2020196150A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111581A (ja) * 2005-10-18 2007-05-10 Mitsubishi Rayon Co Ltd メタクリル酸合成用固体触媒、その製造方法、およびメタクリル酸の製造方法
JP2012005992A (ja) * 2010-06-28 2012-01-12 Mitsubishi Rayon Co Ltd コーティングされたメタクリル酸合成用固体触媒の製造方法
WO2012141076A1 (ja) * 2011-04-11 2012-10-18 三菱レイヨン株式会社 メタクリル酸製造用触媒の製造方法
WO2017145985A1 (ja) * 2016-02-24 2017-08-31 三菱ケミカル株式会社 多穴型押出ダイス、金属化合物押出成形体の製造方法、不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒押出成形体の製造方法、ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670686B1 (fr) * 1990-12-20 1994-08-12 Rhone Poulenc Chimie Composition catalytique pour la preparation d'aldehydes alpha,beta-insatures par oxydation d'olefines en phase gazeuse et procede d'oxydation.
JP4995373B2 (ja) * 2001-02-20 2012-08-08 三菱レイヨン株式会社 反応管、触媒の製造方法、不飽和アルデヒドおよび不飽和カルボン酸の製造方法
DE602004029140D1 (de) * 2003-02-28 2010-10-28 Ibiden Co Ltd Keramische wabenstruktur
JP4863436B2 (ja) 2005-06-24 2012-01-25 三菱レイヨン株式会社 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒
JP2007313705A (ja) * 2006-05-24 2007-12-06 Mitsubishi Chem Mkv Co 積層フィルム及び積層粘着フィルム
WO2008087116A1 (de) * 2007-01-19 2008-07-24 Basf Se Verfahren zur herstellung von katalysatorformkörpern, deren aktivmasse ein multielementoxid ist
JP2009263352A (ja) * 2008-03-31 2009-11-12 Mitsubishi Chemicals Corp モリブデンを含有する触媒を備えた固定床式反応器を用いた不飽和脂肪族アルデヒド、不飽和炭化水素及び不飽和脂肪酸からなる群から選ばれる少なくとも一種の反応物を製造する製造方法
JP5794862B2 (ja) * 2011-08-24 2015-10-14 旭化成ケミカルズ株式会社 モリブデン、ビスマス、鉄及びコバルトを含む酸化物
JP6078387B2 (ja) * 2013-03-19 2017-02-08 住友化学株式会社 メタクリル酸の製造方法
CN105899481A (zh) * 2013-11-11 2016-08-24 巴斯夫欧洲公司 制备不饱和醛和/或不饱和羧酸的方法
EP3068753A1 (de) * 2013-11-11 2016-09-21 Basf Se Mechanisch stabiler hohlzylindrischer katalysatorformkörper zur gasphasenoxidation eines alkens zu einem ungesättigten aldehyd und/oder einer ungesättigten carbonsäure
CN104707627B (zh) * 2013-12-12 2017-10-03 上海华谊丙烯酸有限公司 催化剂及其制备方法
DE102014203725A1 (de) * 2014-02-28 2015-09-03 Basf Se Oxidationskatalysator mit sattelförmigem Trägerformkörper
JP5892283B1 (ja) * 2014-11-28 2016-03-23 住友化学株式会社 熱可塑性樹脂組成物からなる成形体
JP6574654B2 (ja) * 2015-09-15 2019-09-11 旭化成株式会社 金属酸化物触媒、その製造方法、及びブタジエンの製造方法
KR102297983B1 (ko) * 2017-05-25 2021-09-02 주식회사 엘지화학 (메타)아크롤레인 및/또는 (메타)아크릴산 제조용 촉매 조성물과 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111581A (ja) * 2005-10-18 2007-05-10 Mitsubishi Rayon Co Ltd メタクリル酸合成用固体触媒、その製造方法、およびメタクリル酸の製造方法
JP2012005992A (ja) * 2010-06-28 2012-01-12 Mitsubishi Rayon Co Ltd コーティングされたメタクリル酸合成用固体触媒の製造方法
WO2012141076A1 (ja) * 2011-04-11 2012-10-18 三菱レイヨン株式会社 メタクリル酸製造用触媒の製造方法
WO2017145985A1 (ja) * 2016-02-24 2017-08-31 三菱ケミカル株式会社 多穴型押出ダイス、金属化合物押出成形体の製造方法、不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒押出成形体の製造方法、ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Also Published As

Publication number Publication date
JP7264235B2 (ja) 2023-04-25
SG11202110059PA (en) 2021-10-28
KR102612173B1 (ko) 2023-12-08
CN113613785A (zh) 2021-11-05
CN113613785B (zh) 2023-12-29
KR20210137210A (ko) 2021-11-17
JPWO2020196150A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP7418252B2 (ja) 触媒前駆体、それを用いた触媒、及びその製造方法
JP2018111720A (ja) 不飽和カルボン酸の製造方法、及び担持触媒
TWI394615B (zh) Production method of catalyst for manufacturing methacrylic acid
EP2781260A1 (en) Catalyst for production of methacrylic acid and method for producing methacrylic acid using same
WO2019163707A1 (ja) 触媒及びそれを用いた直結二段接触気相酸化方法
KR101860595B1 (ko) 메타크릴산 제조용 촉매의 제조방법
JP7264235B2 (ja) 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法
KR100845384B1 (ko) 불포화 알데히드 및 불포화 카르복실산 제조용 촉매, 및이를 이용한 불포화 알데히드 및 불포화 카르복실산의 제조방법
JP6680367B2 (ja) α,β−不飽和カルボン酸製造用触媒前駆体の製造方法、α,β−不飽和カルボン酸製造用触媒の製造方法、α,β−不飽和カルボン酸の製造方法およびα,β−不飽和カルボン酸エステルの製造方法
JP2019122960A (ja) メタクリル酸製造用触媒の製造方法、メタクリル酸の製造方法、およびメタクリル酸エステルの製造方法
WO2023162810A1 (ja) 不飽和カルボン酸を製造する際に用いられる触媒成形体の製造方法、並びにこれを用いた不飽和カルボン酸及び不飽和カルボン酸エステルの製造方法
JP6973618B2 (ja) 触媒成形体並びにこれを用いた不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP7001982B2 (ja) α,β-不飽和カルボン酸製造用触媒の製造方法、並びにα,β-不飽和カルボン酸及びα,β-不飽和カルボン酸エステルの製造方法
JP7383202B2 (ja) 触媒、及びそれを用いた化合物の製造方法
WO2022065116A1 (ja) 触媒前駆体、それを用いた触媒、化合物の製造方法及び触媒の製造方法
KR102318486B1 (ko) α,β-불포화 카복실산 제조용 촉매의 제조 방법, α,β-불포화 카복실산의 제조 방법 및 α,β-불포화 카복실산 에스터의 제조 방법
WO2023162794A1 (ja) α,β-不飽和カルボン酸を製造する際に用いられる触媒成形体の製造方法、並びにこれを用いたα,β-不飽和カルボン酸及びα,β-不飽和カルボン酸エステルの製造方法
US20220387976A1 (en) Catalyst
CN117943040A (zh) 氧化催化剂及其制备方法和应用和醛合成酸的方法
JP2022082836A (ja) 触媒の製造方法
JP2009183817A (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒、その製造方法、並びに不飽和アルデヒド及び不飽和カルボン酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217034037

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20777022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 521430178

Country of ref document: SA