WO2020195733A1 - エポキシ樹脂及びその製造方法 - Google Patents

エポキシ樹脂及びその製造方法 Download PDF

Info

Publication number
WO2020195733A1
WO2020195733A1 PCT/JP2020/009918 JP2020009918W WO2020195733A1 WO 2020195733 A1 WO2020195733 A1 WO 2020195733A1 JP 2020009918 W JP2020009918 W JP 2020009918W WO 2020195733 A1 WO2020195733 A1 WO 2020195733A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
epoxy resin
producing
reaction
Prior art date
Application number
PCT/JP2020/009918
Other languages
English (en)
French (fr)
Inventor
夕紀 阿須間
航 浦野
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021508953A priority Critical patent/JPWO2020195733A1/ja
Priority to CN202080022416.7A priority patent/CN113710719B/zh
Priority to KR1020217026638A priority patent/KR20210151777A/ko
Publication of WO2020195733A1 publication Critical patent/WO2020195733A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/30Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reactions not involving the formation of esterified sulfo groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • C07D303/30Ethers of oxirane-containing polyhydroxy compounds in which all hydroxyl radicals are etherified with oxirane-containing hydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/025Polycondensates containing more than one epoxy group per molecule characterised by the purification methods used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols

Definitions

  • the present invention relates to an epoxy resin and a method for producing the same.
  • Epoxy resin is a thermosetting synthetic resin having a reactive epoxy group at the end. Epoxy resin becomes an insoluble and insoluble three-dimensional cured product when reacted with a curing agent, while it meets various performance requirements by blending various modifiers such as fillers, flexibility-imparting agents, and diluents. Since it can be used in combination, it is used in a wide range of applications as a high-performance, multifunctional resin.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2015-166335
  • 3,3'-diglycidyl biphenyl-4,4'-diglycidyl ether (formula (1) below) 3,3'-diallylbiphenyl-4,4'-diglycidyl in chloroform is used.
  • Ether (formula (4) below) and sodium acetate are introduced into a sulfonated flask, and peracetic acid is added dropwise at room temperature over about 2 hours. After completion of the addition, the reaction mixture is stirred, and then chloroform is added to make it organic.
  • the 3,3'-diglycidyl biphenyl-4,4'-diglycidyl ether (formula (1)) disclosed in Patent Document 2 has four epoxy groups in one molecule and has excellent heat resistance. Not only that, despite being polyfunctional, it has the characteristics of low viscosity and excellent moldability. However, since the epoxy resin obtained by the production method disclosed in Patent Document 2 is liquid at room temperature, it is industrially difficult to handle and has a problem that the industrial load is too large.
  • an object of the present invention is to treat an epoxy resin containing 3,3'-diglycidyl biphenyl-4,4'-diglycidyl ether (formula (1)) as a solid, and further to provide elastic modulus and shear adhesion.
  • An object of the present invention is to provide a new epoxy resin having excellent strength and a method for producing the same.
  • the present invention is an epoxy resin containing 3,3'-diglycidyl biphenyl-4,4'-diglycidyl ether (also referred to as “compound (1)”) represented by the following formula (1), and is a gel.
  • compound (1) 3,3'-diglycidyl biphenyl-4,4'-diglycidyl ether
  • GPC permeation chromatography
  • a component having a standard polystyrene-equivalent molecular weight of 60.8 or more is contained in an area of 9 area% or more and 25 area% or less when measured using an RI detector.
  • Propose epoxy resin Propose epoxy resin.
  • the present invention is also an epoxy resin containing a compound represented by the following formula (5).
  • GPC gel permeation chromatography
  • a component having a standard polystyrene-equivalent molecular weight of 60.8 or more is contained in an area of 9 area% or more and 25 area% or less when measured using an RI detector. Propose an epoxy resin.
  • the present invention further proposes the epoxy resin in which the component having a standard polystyrene-equivalent molecular weight of 60.8 or more in GPC is a compound having two or more biphenyl skeletons.
  • the present invention also proposes an epoxy resin composition containing the epoxy resin and containing an epoxy curing agent at a ratio of 0.80 equivalent or more and 1.03 equivalent or less with respect to the functional group equivalent of the epoxy resin.
  • the present invention further proposes a cured product obtained by curing the epoxy resin composition.
  • the present invention also transforms a compound represented by the following formula (2) (also referred to as “formula (2) compound”) into a compound represented by the following formula (3) (also referred to as “formula (3) compound”).
  • the conversion reaction is carried out, and then the reaction of converting the compound of the formula (3) into a compound represented by the following formula (4) (also referred to as “formula (4) compound”) is carried out, and then the above formula is carried out.
  • the standard polystyrene-equivalent molecular weight is determined in GPC.
  • a method for producing an epoxy resin, wherein the content ratio of a component of 60.8 or more in the epoxy resin is 9 area% or more and 25 area% or less when measured using an RI detector. To propose.
  • the present invention is further characterized in that, in the method for producing an epoxy resin, the compound of the formula (2) is subjected to a Claisen rearrangement reaction in the presence of a basic compound to be converted into the compound of the formula (3).
  • a method for producing an epoxy resin The present invention further relates to an epoxy resin in which the basic compound is added at a ratio of 1.0 mol or more and 100 mol or less to 1.0 mol of the compound of the formula (2) in the method for producing an epoxy resin. Propose a manufacturing method.
  • the present invention further proposes a method for producing an epoxy resin in which the basic compound is an aniline compound in the method for producing an epoxy resin.
  • the present invention further describes, in the method for producing the epoxy resin, after the reaction of converting the compound of the formula (2) to the compound of the formula (3), and converting the compound of the formula (3) into the formula (3). 4)
  • a method for producing an epoxy resin which comprises purifying by separating and removing components other than the compound of the formula (3) before the reaction of conversion into a compound.
  • the present invention further relates the compound of the formula (3) to the compound of the formula (4) after the reaction of converting the compound of the formula (3) into the compound of the formula (4) in the method for producing the epoxy resin.
  • a method for producing an epoxy resin which comprises purifying by separating and removing components other than the compound of the formula (4) before the reaction of conversion into a compound.
  • the present invention further purifies the reaction of converting the compound of the formula (4) into the compound of the formula (1) and then separating and removing components other than the compound of the formula (1).
  • the present invention further proposes a method for producing an epoxy resin, which comprises performing the purification by crystallization in the method for producing an epoxy resin.
  • the present invention also transforms a compound represented by the following formula (6) (also referred to as “formula (6) compound”) into a compound represented by the following formula (7) (also referred to as “formula (7) compound”).
  • the conversion reaction is carried out, and then the reaction for converting the compound of the formula (7) into a compound represented by the following formula (8) (also referred to as “formula (8) compound”) is carried out, and then the above formula is carried out.
  • (8) In a method for producing an epoxy resin, which comprises a step of converting a compound into a compound of the formula (5) represented by the following formula (5) to obtain an epoxy resin.
  • a feature of GPC is that the content ratio of a component having a standard polystyrene-equivalent molecular weight of 60.8 or more in the epoxy resin is 9 area% or more and 25 area% or less when measured using an RI detector.
  • X in the formula (5) is selected from -SO 2- , -O-, -CO-, -C (CF 3 ) 2- , -S-, or a hydrocarbon group having 1 to 20 carbon atoms. It is a linking group of values.
  • X in the formula (6) is selected from -SO 2- , -O-, -CO-, -C (CF 3 ) 2- , -S-, or a hydrocarbon group having 1 to 20 carbon atoms. It is a linking group of values.
  • X in the formula (7) is selected from -SO 2- , -O-, -CO-, -C (CF 3 ) 2- , -S-, or a hydrocarbon group having 1 to 20 carbon atoms. It is a linking group of values.
  • X in the formula (8) is selected from -SO 2- , -O-, -CO-, -C (CF 3 ) 2- , -S-, or a hydrocarbon group having 1 to 20 carbon atoms. It is a linking group of values.
  • the present invention is further characterized in that, in the method for producing an epoxy resin, the compound of the formula (6) is subjected to a Claisen rearrangement reaction in the presence of a basic compound to be converted into the compound of the formula (7).
  • the present invention further relates to an epoxy resin in which the basic compound is added at a ratio of 1.0 mol or more and 100 mol or less to 1.0 mol of the compound of the formula (6) in the method for producing an epoxy resin. Propose a manufacturing method.
  • the present invention further proposes a method for producing an epoxy resin in which the basic compound is an aniline compound in the method for producing an epoxy resin.
  • the present invention further relates the compound of the formula (6) to the compound of the formula (7) after the reaction of converting the compound of the formula (6) into the compound of the formula (7) in the method for producing the epoxy resin.
  • a method for producing an epoxy resin which comprises purifying by separating and removing components other than the compound of the formula (7) before the reaction of conversion into a compound.
  • the present invention further relates the compound of the formula (7) to the compound of the formula (8) after the reaction of converting the compound of the formula (7) into the compound of the formula (8) in the method for producing the epoxy resin.
  • a method for producing an epoxy resin which comprises purifying by separating and removing components other than the compound of the formula (8) before the reaction of conversion into a compound.
  • the present invention further purifies, in the method for producing an epoxy resin, a reaction for converting the compound of the formula (8) into the compound of the formula (5), followed by separation and removal of components other than the compound of the formula (5).
  • a method for producing an epoxy resin which is characterized by this.
  • the present invention further proposes a method for producing an epoxy resin, which comprises performing the purification by crystallization in the method for producing an epoxy resin.
  • the epoxy resin proposed by the present invention and the epoxy resin obtained by the production method proposed by the present invention are 3,3'-diglycidyl biphenyl-4,4'-diglycidyl ether represented by the above formula (1), that is, Since it is an epoxy resin containing the compound of formula (1), it retains the characteristics of being excellent in heat resistance and moldability. Further, since the epoxy resin proposed by the present invention and the epoxy resin obtained by the production method proposed by the present invention are epoxy resins containing the compound of the formula (5), they are characterized by being excellent in heat resistance and moldability. Holds.
  • the epoxy resin proposed by the present invention and the epoxy resin obtained by the manufacturing method proposed by the present invention can be further treated as a solid, and have excellent elastic modulus and shear adhesive strength, so that they are industrially easy to handle and industrial. It can be preferably used.
  • the epoxy resin according to an example of the embodiment of the present invention (referred to as “the present epoxy resin”) is an epoxy resin containing a compound represented by the following formula (1) and has a predetermined molecular weight (“oligomer component”). It is an epoxy resin containing (referred to as "X") in a predetermined ratio.
  • the present epoxy resin is an epoxy resin containing a compound having a molar molecular weight of 410, and is an uncured epoxy resin that is not substantially crosslinked, that is, is not intentionally crosslinked.
  • the epoxy resin preferably contains a component having a standard polystyrene-equivalent molecular weight of 60.8 or more (“oligomer component X”) in GPC in an area% of 9 area% or more when measured using an RI detector. It is more preferably contained in an area% or more, particularly 15 area% or more, while it is more preferably contained in an area of 25 area% or less, and more preferably 20 area% or less, particularly preferably 18 area% or less. If the area ratio of the oligomer component X in the epoxy resin is 9 area% or more, the energy required for melting can be reduced, and if it is 25 area% or less, the epoxy resin is solidified at room temperature. Further, it can be made excellent in elastic modulus and shear adhesive strength.
  • the oligomer component X is a compound having two or more biphenyl skeletons, and may be composed of two or more compounds having two or more biphenyl skeletons.
  • the oligomer component X is not particularly limited as long as it is a compound having two or more biphenyl skeletons, but is a component composed of at least one compound having a molar molecular weight of 819, 805, or 765, and has a molar molecular weight of 833 or 847. It is more preferably composed of the above compounds.
  • the compound having a molar molecular weight of 847 is produced when N, N-diethylaniline is used in the Claisen rearrangement step, and the compound having a molar molecular weight of 833 is produced when N, N-dimethylaniline is used. It is presumed to be.
  • Examples of the compound contained in the oligomer component X include a compound having a chemical structure included in FIG.
  • a part or all double bonds in the structural formula shown in FIG. 2 may be oxidized and converted into an epoxy group, and it is preferable that all of them are converted into an epoxy group.
  • the melting point obtained from the DSC curve of the epoxy resin is preferably 50 ° C. or higher, and more preferably 60 ° C. or higher.
  • the upper limit is about 100 ° C.
  • the melting point obtained from the DSC curve of the epoxy resin is 50 ° C. or higher, it is in a solid state at room temperature, so that it is excellent in industrial handling and is preferable. Further, when the temperature is 100 ° C. or lower, melting is possible without requiring a large amount of energy, and it is easy to keep the liquid state in the step of preparing the epoxy resin composition before curing, which is preferable.
  • the area ratio of the oligomer component X in the epoxy resin may be 9 area% or more and 25 area% or less as described above.
  • the present manufacturing method a manufacturing method (referred to as “the present manufacturing method”) according to an example preferable as the manufacturing method of the present epoxy resin will be described.
  • the manufacturing method of the epoxy resin is not limited to the following manufacturing method.
  • step A a reaction for converting a compound of formula (2) into a compound of formula (3) is carried out
  • step B the step of this reaction
  • step C a reaction for converting the compound of the formula (4) to a compound of the formula (1) is carried out to obtain an epoxy resin (this reaction).
  • step C the content ratio of the oligomer component X in the epoxy resin, for example, the present epoxy resin is measured using an RI detector. This is a method for producing an epoxy resin, which comprises 9 area% or more and 25 area% or less when the epoxy resin is used.
  • the step A, the step B, and the step C may be carried out in a series by devices connected to each other by a conveying means, or may be carried out in different devices at intervals. .. Further, if the present manufacturing method includes the step A, the step B, and the step C, it is possible to insert another step or insert another process as appropriate.
  • the step A that is, the reaction method for converting the compound of the formula (2) into the compound of the formula (3) can be carried out by a Claisen rearrangement reaction.
  • This Claisen rearrangement reaction is affected by the solvent and additives used, but in general, the reaction can proceed by heating to a temperature of 100 to 300 ° C. From the viewpoint of shortening the reaction time, it is preferable to heat to a temperature of 150 ° C. or higher, and in order to suppress side reactions under high temperature conditions, it is preferable to heat to a temperature of 250 ° C. or lower. Among them, it is particularly preferable to heat to a temperature of 170 ° C. or higher or 220 ° C. or lower.
  • This step does not necessarily require a solvent, but a solvent can also be used. From the viewpoint of process safety, it is preferable to use a solvent because it has an advantage that the increase in internal temperature can be suppressed by absorbing the reaction heat of the Claisen rearrangement reaction by the latent heat of vaporization of the solvent.
  • the solvent used in this step is particularly limited as long as it has a boiling point higher than the reaction temperature, is stable at the reaction temperature, and is inactive with respect to the compound of the formula (2) and the compound of the formula (3).
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, and anisole
  • aliphatic chain hydrocarbons such as octane, nonane, decane, undecane, and dodecane
  • cyclooctane ethylcyclohexane, decalin, etc.
  • Aliphatic cyclic hydrocarbons; amides such as N, N-dimethylformamide, N, N-dimethylacetamide; dimethylsulfoxide; and mixtures of these solvents can be mentioned.
  • the compound of the formula (2) may be obtained in any way.
  • a commercially available product may be obtained, and in the case of synthesis, biphenol can be synthesized by reacting with allyl halide such as allyl chloride and allyl bromide in the presence of a base.
  • Step B The step B, that is, the reaction step of converting the compound of the formula (3) to the compound of the formula (4), can be carried out using a method currently known as a method of glycidylation. For example, it can be carried out by reacting epihalohydrin in the presence of a base. It can also be carried out by adding epihalohydrin in the presence of an acid catalyst, followed by dehalogenation hydrogenation with a base.
  • epichlorohydrin examples include epichlorohydrin and epibromohydrin.
  • Epichlorohydrin is preferred because it is easily available on an industrial scale.
  • the amount of epihalohydrin used is preferably 1 to 100 equivalents with respect to the compound of the formula (3). Among them, 5 equivalents or more is preferable from the viewpoint of improving reaction selectivity, and 50 equivalents or less is preferable from the viewpoint of improving productivity per batch. Among them, 10 equivalents or more or 40 equivalents or less is more preferable, and 20 equivalents or more or 35 equivalents or less is particularly preferable.
  • the reaction can generally proceed by heating to a temperature of -50 to 200 ° C. From the viewpoint of shortening the reaction time, 0 ° C. or higher is preferable, and in order to suppress side reactions under high temperature conditions, 150 ° C. or lower is preferable. Among them, it is particularly preferable to heat to a temperature of 40 ° C. or higher or 100 ° C. or lower.
  • the base examples include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, and alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide and barium hydroxide. .. Of these, potassium hydroxide and sodium hydroxide are preferable from the viewpoint of reaction efficiency.
  • the amount of the base used is preferably 1 to 20 equivalents with respect to the compound of the formula (3). Above all, from the viewpoint of improving the yield, 1.5 equivalents or more is preferable, and 5 equivalents or less is preferable in order to avoid complicated removal. Among them, 1.8 equivalents or more or 2.5 equivalents or less is particularly preferable.
  • the base may be used as a solid, but it is preferably used in a solution state from the viewpoint of improving reactivity.
  • the catalyst examples include quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide; tertiary amines such as benzyldimethylamine and 2,4,6- (trisdimethylaminomethyl) phenol; 2-ethyl-4. -Imidazoles such as methyl imidazole and 2-phenyl imidazole; phosphonium salts such as ethyltriphenylphosphonium iodide; phosphines such as triphenylphosphine can also be used.
  • quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide
  • tertiary amines such as benzyldimethylamine and 2,4,6- (trisdimethylaminomethyl) phenol
  • 2-ethyl-4. -Imidazoles such as methyl imidazo
  • epihalohydrin can be used as a solvent, and alcohols such as methanol, ethanol, propanol, isopropanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, 2-pentanone; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol mono Glycol ethers such as ethyl ether; aromatics such as benzene, xylene and toluene; aromatic alcohols such as benzyl alcohol; glycol ether acetates such as
  • Step C The step C, that is, the reaction step of converting the compound of the formula (4) into the compound of the formula (1) may be carried out by any method.
  • At least one of phosphoric acids or phosphonic acids, onium salts as a correlated transfer catalyst, and tungsten compounds and molybdenum compounds is allowed to coexist as a catalyst composition, and hydrogen peroxide is used as an oxidizing agent.
  • Examples of the method of oxidation can be mentioned.
  • a method of oxidizing using a peracid such as peracetic acid or m-chloroperbenzoic acid can be mentioned.
  • a method of reacting hydrogen peroxide with an organic nitrile compound in the presence of an alkali metal carbonate, a hydrogen carbonate or the like can be mentioned.
  • At least one of phosphoric acids or phosphonic acids, onium salts as a correlation transfer catalyst, and tungsten compounds and molybdenum compounds is used as a catalyst composition.
  • a method of coexisting with the compound and using hydrogen peroxide as an oxidizing agent to oxidize is preferable.
  • Examples of the phosphoric acids include inorganic phosphoric acids such as phosphoric acid, polyphosphoric acid, and pimouth phosphoric acid; sodium phosphate, potassium phosphate, ammonium phosphate, sodium hydrogen phosphate, potassium hydrogen phosphate, ammonium hydrogen phosphate, and phosphorus.
  • Inorganic phosphates such as sodium dihydrogen acid, potassium dihydrogen phosphate, calcium dihydrogen phosphate; phosphoric acid esters such as monomethylphosphoric acid, dimethylphosphoric acid, dimethylphosphoric acid diethyl phosphoric acid, diphenylphosphoric acid, etc.
  • Examples of phosphonic acids include aminomethylphosphonic acid and phenylphosphonic acid. Phosphoric acids are preferable because they are inexpensive, and inorganic phosphoric acid is particularly preferable, and phosphoric acid is particularly preferable from the viewpoint of reaction activity.
  • the onium salts that are the phase transfer catalysts are salts of onium ions and anions, and the onium ions include tetraalkylammonium ions, trialkylphenylammonium ions, trialkylbenzylammonium ions, pyridinium ions, and phosphonium. Ions can be mentioned. Further, the onium salt disclosed in WO2013147092 and JP2015-166335 can also be used. Above all, from the viewpoint of reaction efficiency, it is preferable to use onium ions having 20 or more carbon atoms.
  • the onium salt disclosed in WO2013147092 and JP2015-166335 can be converted into a water-soluble substance by a simple post-treatment such as hydrolysis after the reaction is completed, and the catalyst composition can be made more efficient. It is preferable because it can be removed well.
  • the anion species is not particularly limited.
  • monovalent anions such as hydrogen sulfate ion, monomethyl sulfate ion, halide ion, nitrate ion, acetate ion, hydrogen carbonate ion, dihydrogen phosphate ion, sulfonic acid ion, carboxylate ion, hydroxide ion, and phosphoric acid.
  • Divalent anions such as hydrogen ion and sulfate ion can be mentioned, and monovalent anions are preferable because they are easily available or adjusted.
  • Monomethylsulfate ion, hydrogensulfate ion, acetate ion, dihydrogen phosphate ion or hydroxide ion is preferable in that side reactions can be suppressed.
  • the onium ion and the anion species may be used alone or in combination of two or more.
  • Examples of the tungsten compound and molybdate compounds include tungstate; tungstates such as sodium tungstate, potassium tungstate, calcium tungstate, and ammonium tungstate; hydrates of the tungstate; 12-tangstronic acid. , 18-Tungstenic acids such as phosphotungstates; 12-Tungsten silicic acid and other silicate tungsten acids; 12-Tungsten boric acid and other borotungsten acids; Metallic tungsten; Molybdates such as ammonium molybdate; hydrates of the molybdates, or hydrates thereof. Tungstic acid and tungstic acid salt are preferable from the viewpoint of improving the activity of the catalyst, and tungstic acid, sodium tungstate, calcium tungstate or hydrates thereof are preferable from the viewpoint of availability.
  • the hydrogen peroxide As the hydrogen peroxide, a generally available 35% by mass aqueous solution, 45% by mass aqueous solution, or 60% by mass aqueous solution may be used. A 35% by mass aqueous solution is preferable because of easy availability.
  • the concentration of hydrogen peroxide in the reaction solution is not particularly limited, but is usually in the range of 0.1% by mass to 30% by mass, preferably maintained at 1% by mass or more from the viewpoint of reaction efficiency, and 20% by mass for safety. It is preferable to keep% or less. Among them, it is more preferable to keep 2% by mass or more or 15% by mass or less.
  • a solvent can be appropriately used.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane, heptane, octane and dodecane
  • alcohols such as methanol, ethanol, isopropanol, butanol, hexanol and cyclohexanol.
  • Halogen solvents such as chloroform, dichloromethane and dichloroethane; ethers such as tetrahydrofuran and dioxane; ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone; nitriles such as acetonitrile and butyronitrile, ethyl acetate, butyl acetate, etc. Ester compounds such as methyl formate; amides such as N, N-dimethylformamide, N, N-dimethylacetamide; ureas such as N, N'-dimethylimidazolidinone; and mixtures of these solvents can be mentioned.
  • Aromatic hydrocarbons and aliphatic hydrocarbons are preferably used because it is preferable to use a solvent that is immiscible with water and forms a two-phase system from the viewpoint of reaction efficiency and ease of separation of the target compound and the catalyst component. Hydrogens, halogen-based solvents, water-insoluble ketones, and ester compounds are preferable, and aromatic hydrocarbons that are stable to the oxidation reaction and have high solubility of the above formula (4) as a reaction raw material are preferable. ..
  • the method for making the content ratio of the oligomer component X in the present epoxy resin to be 9 area% or more and 25 area% or less when measured using an RI detector is a specific means thereof. It is not particularly limited. For example, it can be carried out by the following production method examples 1 to 4. However, it is not limited to these.
  • the content ratio of the oligomer component X in the epoxy resin can be set within the predetermined range.
  • the basic compound may be any compound which does not have a polymerizable functional group in the molecule and does not volatilize at the reaction temperature.
  • Alibo chain amines such as diethylenetriamine, triethylenetetramine; benzylamine, m-xylylenediamine, p-xylylenediamine, N-methylbenzylamine, N-ethylbenzylamine, N-isopropylbenzylamine, 1- Aliphatic amines having a benzene ring such as phenylethylamine, dibenzylamine, N, N-dimethylbenzylamine; aniline, N-methylaniline, N-ethylaniline, N-isopropylaniline, N, N-dimethylaniline, N , N-diethylaniline, N, N-dipropylaniline and other anilins; alicyclic amines such as piperidines and morpholins; complex such as pyridine
  • Cyclic amines can be mentioned. Of these, anilines that are inexpensive and easy to separate from the product are preferable, and among them, the reactivity with the compound of the formula (2) and the allyl group contained in the compound of the formula (3) to be used is low, causing a side reaction. Hard N, N-dimethylaniline, N, N-diethylaniline, N, N-dipropylaniline are particularly preferred.
  • the basic compound is preferably added at a ratio of 0.5 mol or more and 100 mol or less with respect to 1.0 mol of the compound of the formula (2), particularly 0.8 mol or more, and 1.0 mol or more among them.
  • it is particularly preferably 20 mol or less, and 5 mol or less among them.
  • Manufacturing method example 2 As another example of a method for adjusting the content ratio of the oligomer component X in the epoxy resin to 9 area% or more and 25 area% or less when measured using an RI detector, the compound of the formula (2) is used. , After the reaction for converting the compound of the formula (3), and before the reaction for converting the compound of the formula (3) to the compound of the formula (4). Examples thereof include a method in which the content ratio of the oligomer component X in the epoxy resin is within a predetermined numerical range by performing purification for separating and removing components other than the compound of the formula (3).
  • a known purification method can be appropriately used as a specific purification method for separating and removing each component.
  • a crystallization method, a suspension washing method, a liquid separation method, an adsorption method, a column chromatography, a distillation method and the like can be mentioned. These purification methods may be combined as appropriate.
  • the crystallization method, the suspension washing method, the fractional crystallization method, and the distillation method are preferable because the load in the manufacturing process is small, but the crystallization method is particularly preferable because of the good purification efficiency.
  • Crystallization is an example of a chemical separation operation method, which is a method of selectively separating a target component from a solution by cooling or heating by utilizing the temperature dependence of solubility.
  • a purification method by crystallization a method of precipitating while distilling off the solvent under reduced pressure, a method of precipitating while cooling by utilizing the difference in solubility without distilling off, or a method of dissolving in a good solvent and then adding a poor solvent. Any method such as a method of precipitating may be used.
  • the desired product can be obtained by filtering and collecting the precipitated solid material and drying it.
  • the solvent used for crystallization it is preferable to select an appropriate solvent depending on the solubility of the compound, and a plurality of solvents may be used in combination.
  • the solvent for example, aliphatic hydrocarbons such as hexane, heptane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate and isopropyl acetate; nitriles such as acetonitrile Chain or cyclic ethers such as diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran, dioxane; alcohols such as methanol, ethanol, 2-propanol, n-butanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl; Glycol ethers such as ethylene glycol monomethyl
  • a poor solvent As a purification method by suspension washing, it is preferable to use a poor solvent.
  • Preferred poor solvents include highly polar solvents such as methanol, ethylene glycol and water, and conversely, low polar aliphatic hydrocarbons such as hexane, heptane and cyclohexane. After the completion of the suspension, the solid substance is collected by filtration and dried to obtain the desired product.
  • Purification by liquid separation may be a combination of water and an organic solvent that is insoluble or sparingly soluble in water, or a combination of multiple organic solvents that do not mix with each other.
  • Examples of the combination of water and an organic solvent insoluble or sparingly soluble in water include a combination of organic solvent such as ethyl acetate and toluene and water.
  • Examples of the adsorbent used in the adsorption method include activated carbon, activated clay, molecular sieves, activated alumina, zeolite, ion exchange resin and the like.
  • the adsorbent may be added to a solution containing the compound and then removed by filtration, or may be packed in a column for use.
  • the above-mentioned manufacturing method examples 1 to 4 may be carried out individually, or two or more of the manufacturing method examples 1 to 4 may be combined and carried out. Above all, it is particularly preferable to use only Production Method Example 1 because an epoxy resin containing the compound of the formula (1) can be obtained in high yield while avoiding loss due to the crystallization operation.
  • crystallization in Production Method Example 2 it is preferable that the crystals are dissolved by heating in a good solvent such as toluene or ethyl acetate, and the crystals precipitated in the cooling process are recovered by filtration.
  • a good solvent such as toluene or ethyl acetate
  • alcohols such as methanol, ethanol, 2-propanol, and n-butanol were added and heated, and then allowed to stand, and the lower layer separated from the alcohol solution was separated and removed. After that, it is preferable to cool the remaining upper layer and recover the crystals precipitated in the cooling process by filtration.
  • the present epoxy resin composition an epoxy resin composition containing the present epoxy resin and an epoxy cured product (referred to as “the present epoxy resin composition”) will be described.
  • the epoxy resin composition is a composition containing the epoxy resin, an epoxy curing agent and other components, and is an uncured epoxy resin composition that is not substantially crosslinked, that is, is not intentionally crosslinked. Is.
  • the epoxy resin composition preferably contains an epoxy curing agent at a ratio of 0.80 equivalent or more and 1.03 equivalent or less with respect to the functional group equivalent of the epoxy resin.
  • an epoxy curing agent having a functional group equivalent of 1: 1 with respect to the functional group equivalent of the epoxy resin.
  • the present epoxy resin composition by containing the epoxy curing agent at a ratio of 1.03 equivalents or less, particularly 1.00 equivalents or less, with respect to the functional group equivalent of the epoxy resin, the electricity of the extracted water is increased. The conductivity can be lowered and the pH can be in the neutral range.
  • This epoxy resin contains the compound of the formula (1) as a main component, but since the formula (1) has an epoxy group at a high density in one molecule, it is cured as compared with a general epoxy resin. The rate is low, and unreacted functional groups tend to remain in the cured product. Therefore, it is considered that by reducing the equivalent of the curing agent, the unreacted functional groups that are the source of the ionic components are reduced, the electric conductivity of the extracted water is lowered, and the pH approaches the neutral range. As a result, it is possible to make the corrosion suppressing effect excellent in applications such as semiconductor encapsulants.
  • the curing agent when it is blended with the epoxy resin, it is preferably contained in a ratio of 0.80 equivalent or more and 1.03 equivalent or less with respect to the functional group equivalent of the epoxy resin, particularly 0.85 or more or It is more preferably contained in a proportion of 1.00 or less, of which 0.87 or more or 0.98 or less, and of which 0.90 or more or 0.96 or less.
  • a known curing agent can be used. Specifically, for example, phenol-based curing agents, ester-based curing agents, benzoxazine-based curing agents, acid anhydride-based curing agents, primary and secondary amine-based curing agents, mercaptan-based curing agents, amide-based curing agents, blocks. Examples thereof include an isocyanate-based curing agent, a tertiary amine-based curing agent, an imidazole-based curing agent, and a curing agent such as an amine Lewis acid complex. It is also possible to use a phenoxy resin as a curing agent.
  • the epoxy resin composition may contain other epoxy resins, curing accelerators, fillers, mold release materials, other additives, solvents and the like, if necessary.
  • the content ratio of the present epoxy resin to the total solid content contained in the present epoxy resin composition is usually 0.1% by mass or more, preferably 1% by mass or more, and particularly preferably 10% by mass or more. Further, it is usually 95% by mass or less, preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 70% by mass or less.
  • the “other epoxy resin” examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol aralkyl type epoxy resin, and biphenyl type epoxy resin. , Triphenylmethane type epoxy resin, various epoxy resins such as dicyclopentadiene type epoxy resin and the like can be mentioned.
  • curing accelerator examples include an imidazole-based curing accelerator, a tertiary amine-based curing accelerator, an organic phosphine-based curing accelerator, a phosphonium salt-based curing accelerator, a tetraphenylboron salt-based curing accelerator, and a metal-based curing agent. Accelerators, organic acid dihydrazides, boron halide amine complexes and the like can be mentioned.
  • fillers examples include insulating fillers such as alumina, aluminum nitride, boron nitride, silicon nitride, and silica when it is desired to obtain an insulating composition at low cost.
  • release agent examples include stearic acid, palmitic acid, zinc stearate, calcium stearate and the like.
  • the epoxy resin composition may contain a solvent for the purpose of adjusting the viscosity during processing and improving the handleability during curing.
  • a solvent for the purpose of adjusting the viscosity during processing and improving the handleability during curing.
  • this type of solvent include ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate; ethers such as ethylene glycol monomethyl ether; N, N-dimethylformamide, N, Amides such as N-dimethylacetamide; alcohols such as methanol, ethanol and isopropanol; alcans such as hexane and cyclohexane; aromatics such as toluene and xylene can be mentioned.
  • ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone and cyclohexan
  • the epoxy resin composition also contains coupling agents, UV antioxidants, antioxidants, light stabilizers, plasticizers, fluxes, flame retardants, colorants, dispersants, emulsifiers, low elasticity agents, and diluents. , Antifoaming agent, on-trap agent and the like can be appropriately contained.
  • the cured product By curing the epoxy resin composition, a cured product (referred to as "the cured product") can be obtained.
  • thermosetting is preferable because it is easy to mold.
  • the glass transition temperature (Tg) of this cured product is usually 150 ° C. or higher, and more preferably 180 ° C. or higher when used as a sealing material for a semiconductor driven under high temperature conditions such as a power device. It is particularly preferable that the temperature is above ° C.
  • the storage elastic modulus (E') of the cured product at 250 ° C. is usually 10 MPa to 10 GPa, although it depends on the type of curing agent used.
  • this cured product is used as a semiconductor encapsulant, for example, cracks occur in the semiconductor package from the viewpoint of improving reliability, and peeling at the interface between the element mounting surface of the substrate and the cured product of the epoxy resin composition is prevented. It is necessary, and for that purpose, it is required to reduce the elastic modulus of the cured product.
  • the storage elastic modulus of the cured product at 250 ° C. is preferably 1 GPa or less, more preferably 500 MPa or less, still more preferably 300 MPa or less.
  • the storage elastic modulus of the cured product at 250 ° C. is preferably 50 MPa or more. , More preferably 70 MPa or more, still more preferably 100 MPa or more.
  • the epoxy resin containing the oligomer component X in a predetermined ratio is used.
  • the prepared epoxy resin composition may be cured.
  • the curing conditions for curing for example, it is preferable to use a phenolic curing agent and set the curing temperature to 100 to 200 ° C. and the curing time to 1 to 20 hours.
  • the epoxy resin composition and the cured product can be applied as materials in various fields such as adhesives, paints, materials for civil engineering and construction, and insulating materials in the fields of electricity and electronics.
  • it is useful as an insulating casting, a laminated material, a sealing material, etc. in the electrical and electronic fields.
  • it is used as a multilayer printed wiring board, build-up wiring board, solder resist, adhesive, semiconductor encapsulation material, underfill material, interchip fill for 3D-LSI, insulating sheet, prepreg, heat dissipation board, etc. be able to.
  • X in the formula (5) is selected from -SO 2- , -O-, -CO-, -C (CF 3 ) 2- , -S-, or a hydrocarbon group having 1 to 20 carbon atoms. It is a linking group of values.
  • X in the formula (6) is selected from -SO 2- , -O-, -CO-, -C (CF 3 ) 2- , -S-, or a hydrocarbon group having 1 to 20 carbon atoms. It is a linking group of values.
  • X in the formula (7) is selected from -SO 2- , -O-, -CO-, -C (CF 3 ) 2- , -S-, or a hydrocarbon group having 1 to 20 carbon atoms. It is a linking group of values.
  • X in the formula (8) is selected from -SO 2- , -O-, -CO-, -C (CF 3 ) 2- , -S-, or a hydrocarbon group having 1 to 20 carbon atoms. It is a linking group of values.
  • the divalent coupler selected from the hydrocarbon groups having 1 to 20 carbon atoms for example, a methylene group, an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group and a phenyl
  • a methylene group, a phenylethylidene group, a diphenylmethylene group, a cyclohexylidene group, a 3,3,5-trimethylcyclohexylidene group and the like for example, a methylene group, an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group and a phenyl
  • examples thereof include a methylene group, a phenylethylidene group, a diphenylmethylene group, a cyclohexylidene group, a 3,3,5-trimethylcyclohexylid
  • Example 1 To a 10 L autoclave, 840 mL of N, N-dimethylformamide, 575 g (7.51 mol) of allyl chloride, 1245 g (9.01 mol) of potassium carbonate, and 280 g (1.50 mol) of biphenol were added, sealed, and heated to 40 ° C. The temperature was raised to 65 ° C. over 1 hour. After aging at 65 ° C. for 5 hours, the mixture was cooled to room temperature and the autoclave was opened. To this, 1678 g of water and 1600 g of methyl isobutyl ketone were added to dissolve the inorganic salt and crystals, and the aqueous layer was removed by a liquid separation operation.
  • Step A the obtained compound of formula (2) was heated at 180 ° C. for 3 hours to obtain 317 g (1.19 mol, 2-step yield 79.3%) of the compound of formula (3).
  • Step B Next, 105 g (394 mmol) of the compound of formula (3) synthesized as described above, 1028 g (11.1 mol) of epichlorohydrin, 400 g of isopropanol and 143 g of water were placed in a 3 L four-necked flask, and the temperature was raised to 40 ° C. to make them uniform. After dissolution, 76 g (912 mmol) of an aqueous sodium hydroxide solution having a concentration of 48% by mass was added dropwise over 90 minutes to raise the temperature to 65 ° C. After completion of the dropping, the mixture was aged at 65 ° C. for 30 minutes, and then 66 g of water was added and washed with water to remove inorganic salts.
  • Step C Subsequently, 40.0 g (106 mmol) of a purified product of the compound of formula (4) synthesized by the same method as described above, 1.74 g (5.30 mmol) of sodium tungstate dihydrate, and 20% (mass / volume) phosphorus.
  • Aqueous acid solution 3.63 mL (7.42 mmol), N-butyl-N, N-di [2- (4-t-butylbenzoyloxy) ethyl] -N-methylammonium monomethylsulfate 1.69 g (2.65 mmol) , 80 mL of toluene, and 1.10 mL of water were prepared. This mixed solution was heated to 60 ° C.
  • Example 2> (Method for adding basic compound in step A) 165 g (620 mmol) of the compound of formula (2) and 825 mL of N, N-diethylaniline obtained by the same method as in Example 1 were placed in a 2 L four-necked flask, heated at 200 ° C. for 6 hours, and then cooled to room temperature. did. Subsequently, 495 ml of water and 149 mL (1.86 mol) of a 50 mass% sodium hydroxide aqueous solution were placed in a 2 L separable flask and cooled to 10 ° C., and the above N, N-diethylaniline solution was added dropwise over 15 minutes.
  • Step B Step C, Crystallization and purification of compound of formula (1)
  • a pale yellow powder was obtained as an epoxy resin containing the compound of formula (1) by the same method as in Example 1 except that the compound of formula (4) was not crystallized and purified.
  • the epoxy equivalent of this epoxy resin was 107, and the melting point was 69 ° C.
  • Example 3> (Method for adding basic compound in step A, step B, step C)
  • a yellow oil containing 9% by mass of toluene (compound of formula (4)) obtained by the same method as in Example 2 was further concentrated and toluene was completely distilled off, the compound of formula (1) was contained.
  • a yellow solid was obtained as the epoxy resin to be used.
  • the epoxy equivalent of this epoxy resin was 113 and the melting point was 65 ° C.
  • Step C 50.0 g (132 mmol) of the compound of this formula (4) was dissolved in 250 mL of chloroform and heated to 50 ° C. 97.6 g (396 mmol) of m-chloroperbenzoic acid (30% by mass water-containing product) was added thereto over an hour and a half, and the mixture was further stirred at 50 ° C. for 30 minutes. After cooling to room temperature, 100 mL of a 5 mass% sodium thiosulfate aqueous solution was added and stirred for 1 hour, then the aqueous layer was removed, and the remaining organic layer was washed with 400 mL of a 1 mol / L sodium hydroxide aqueous solution.
  • the epoxy resin containing the epoxy compound represented by the formula (1) can have both moldability and heat resistance of the cured product from the beginning, it is suitable as a material for devices used in a high temperature environment. Although it can be used, it has a high high-temperature elastic modulus and strong shear adhesion strength to copper, so it is a composite material matrix resin that requires particularly high mechanical strength, and a semiconductor seal that requires adhesion to copper wire. It can be suitably used for a stop material application.
  • This cured product was pulverized with a wonder blender (manufactured by Osaka Chemical Co., Ltd.), and 8 g of the obtained 20 mesh pass powder was weighed in a polyethylene bottle. 80 mL of ultrapure water was added thereto, the lid was closed, and the mixture was kept in a dryer at 95 ° C. for 20 hours. After that, it is cooled to room temperature, and the supernatant is filtered through the filter paper No. Extracted water was obtained by filtering at 5A. The pH and electrical conductivity of the obtained extracted water are as shown in the table below.
  • the cured products of Examples 7 to 8 had a higher pH of the extracted water and lower electrical conductivity than those of Comparative Example 5, suggesting that the cured products contained less ionic components.
  • the cured product made of the epoxy resin composition of the present invention can be expected to have an effect of suppressing corrosion of the metal in contact with it, and thus can be suitably used in applications such as a semiconductor encapsulant.
  • the component is purified by crystallization so that the content ratio of the component having a standard polystyrene-equivalent molecular weight of 60.8 or more is within a predetermined range, or the Claisen rearrangement reaction is carried out in the presence of a basic compound.
  • the content ratio of the components having a standard polystyrene-equivalent molecular weight of 60.8 or more is adjusted to be within a predetermined range.
  • a predetermined effect can be obtained if the content ratio of the component having a standard polystyrene-equivalent molecular weight of 60.8 or more is within a predetermined range. Therefore, it can be considered that the same effect can be obtained even if the content ratio of the component having a standard polystyrene-equivalent molecular weight of 60.8 or more is within a predetermined range by adopting another method.
  • the compound represented by the formula (1) has a structure in which two phenyl groups are covalently bonded by a single bond (direct bond).
  • the two phenyl groups are various bonds, eg -SO 2 -, - O -, - CO -, - C (CF 3) 2 -, - S-, or selected from a hydrocarbon group having 1 to 20 carbon atoms It is considered that even if they are bonded via a divalent linking group or the like, the properties of the epoxy resin are not significantly affected. Moreover, it can be manufactured in the same manner as in the case of a single bond (direct bond). Therefore, the compound represented by the formula (5) can be produced in the same manner as the compound represented by the formula (1), and is expected to exhibit the same actions and effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)

Abstract

【課題】3,3'-ジグリシジルビフェニル-4,4'-ジグリシジルエーテル(式(1))を含有するエポキシ樹脂に関し、常態で固体として取り扱うことができ、弾性率及びせん断接着強度の点でも優れている新たなエポキシ樹脂を提供する。 【解決手段】下記式(1)で表される3,3'-ジグリシジルビフェニル-4,4'-ジグリシジルエーテルを含有するエポキシ樹脂であり、GPCにおいて、標準ポリスチレン換算分子量が60.8以上の成分を、RI検出器を用いて測定したときに9面積%以上25面積%以下含むことを特徴とする、エポキシ樹脂である。 [式(1)]

Description

エポキシ樹脂及びその製造方法
 本発明は、エポキシ樹脂およびその製造方法に関する。
 エポキシ樹脂は、末端に反応性のエポキシ基をもつ熱硬化型の合成樹脂である。エポキシ樹脂は、硬化剤と反応させると不融不溶の三次元硬化物となる一方、充填材、可撓性付与剤、希釈剤などの各種変性剤を配合することにより、様々な性能要求に適合させて用いることができるため、高性能、多機能樹脂として広汎な用途に利用されている。
 この種のエポキシ樹脂の製造方法は様々であり、例えば特許文献1(特開2015-166335号公報)には、タングステン化合物及びモリブデン化合物の少なくとも一方と、オニウム塩との存在下、炭素-炭素二重結合を有する化合物の炭素-炭素二重結合に過酸化水素を反応させてエポキシ化するエポキシ化合物の製造方法であって、前記オニウム塩が、炭素数1~4のアシルオキシ基を4つ以上又はベンジルオキシ基を1つ以上有し、かつ前記オニウム塩の有する全炭素数が20以上であることを特徴とするエポキシ化合物の製造方法が開示されている。
 ところで、エポキシ樹脂として、3,3’-ジアリルビフェニル-4,4’-ジグリシジルエーテル(下記式(4))をエポキシド化して得られる多官能価エポキシド樹脂が知られている。例えば特許文献2(特許第2539648号公報)には、ジアリルジグリシジルエーテル中間体をエポキシド化して得られる多官能価エポキシド樹脂として、3,3’-ジグリシジルビフェニル-4,4’-ジグリシジルエーテル(下記式(1))が開示されている。詳しくは、3,3’-ジグリシジルビフェニル-4,4’-ジグリシジルエーテル(下記式(1))の製造方法として、クロロホルム中の3,3’-ジアリルビフェニル-4,4’-ジグリシジルエーテル(下記式(4))及び酢酸ナトリウムをスルホン化フラスコに導入し、過酢酸を室温で約2時間かけて滴下し、滴下終了後、反応混合物を撹拌し、その後クロロホルムを添加して、有機相が中性になるまで水で数回洗浄して乾燥させてろ過し、そして真空にして濃縮することにより、3,3’-ジグリシジルビフェニル-4,4’-ジグリシジルエーテル(下記式(1))を得る方法が開示されている。
式(1)
Figure JPOXMLDOC01-appb-I000011
式(4)
Figure JPOXMLDOC01-appb-I000012
特開2015-166335号公報 特許第2539648号公報
 特許文献2で開示されている3,3’-ジグリシジルビフェニル-4,4’-ジグリシジルエーテル(前記式(1))は、1分子中に4つのエポキシ基を有し、耐熱性に優れているばかりか、多官能化されているにもかかわらず、粘度が低く成形性に優れているという特徴を有している。ところが、特許文献2で開示されている製造方法によって得られるエポキシ樹脂は、常温で液状であるため、工業的に取り扱いが困難であり、工業的負荷が大き過ぎるという課題を抱えていた。
 そこで本発明の目的は、3,3’-ジグリシジルビフェニル-4,4’-ジグリシジルエーテル(式(1))を含有するエポキシ樹脂に関し、固体として取り扱うことができ、さらに弾性率及びせん断接着強度に優れている新たなエポキシ樹脂、並びに、その製造方法を提供することにある。
 本発明は、下記式(1)で表される3,3’-ジグリシジルビフェニル-4,4’-ジグリシジルエーテル(「式(1)化合物」とも称する)を含有するエポキシ樹脂であり、ゲルパーミエーションクロマトグラフィー(「GPC」と称する)において、標準ポリスチレン換算分子量が60.8以上の成分を、RI検出器を用いて測定したときに9面積%以上25面積%以下含むことを特徴とする、エポキシ樹脂を提案する。
 本発明はまた、下記式(5)で表される化合物を含有するエポキシ樹脂であり、
 ゲルパーミエーションクロマトグラフィー(「GPC」と称する)において、標準ポリスチレン換算分子量が60.8以上の成分を、RI検出器を用いて測定したときに9面積%以上25面積%以下含むことを特徴とする、エポキシ樹脂を提案する。
 本発明はさらに、前記エポキシ樹脂において、GPCにおける標準ポリスチレン換算分子量が60.8以上の前記成分は、ビフェニル骨格を2個以上有する化合物であるものを提案する。
 本発明はまた、前記エポキシ樹脂を含み、且つ、前記エポキシ樹脂の官能基当量に対して0.80当量以上1.03当量以下の割合でエポキシ硬化剤を含有するエポキシ樹脂組成物を提案する。
 本発明はさらに、前記エポキシ樹脂組成物が硬化してなる硬化物を提案する。
 本発明はまた、下記式(2)で表される化合物(「式(2)化合物」とも称する)を、下記式(3)で表される化合物(「式(3)化合物」とも称する)に変換する反応をさせ、次に、前記式(3)化合物を、下記式(4)で表される化合物(「式(4)化合物」とも称する)に変換する反応をさせ、次に、前記式(4)化合物を、下記式(1)で表される式(1)化合物に変換する反応をさせてエポキシ樹脂を得る工程を備えたエポキシ樹脂の製造方法において、GPCにおいて、標準ポリスチレン換算分子量が60.8以上の成分の当該エポキシ樹脂中の含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにすることを特徴とする、エポキシ樹脂の製造方法を提案する。
式(1)
Figure JPOXMLDOC01-appb-I000013
式(2)
Figure JPOXMLDOC01-appb-I000014
式(3)
Figure JPOXMLDOC01-appb-I000015
式(4)
Figure JPOXMLDOC01-appb-I000016
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(2)化合物を、塩基性化合物の存在下、クライゼン転位反応させて、前記式(3)化合物に変換する反応をさせることを特徴とするエポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(2)化合物1.0モルに対して、前記塩基性化合物を1.0モル以上100モル以下の割合で加えて反応させるエポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記塩基性化合物がアニリン化合物である、エポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(2)化合物を前記式(3)化合物に変換する反応をさせた後であって、且つ、前記式(3)化合物を前記式(4)化合物に変換する反応をさせる前に、前記式(3)化合物以外の成分を分離除去する精製を行うことを特徴とする、エポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(3)化合物を前記式(4)化合物に変換する反応をさせた後であって、且つ、前記式(4)化合物を前記式(1)化合物に変換する反応をさせる前に、前記式(4)化合物以外の成分を分離除去する精製を行うことを特徴とする、エポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(4)化合物を前記式(1)化合物に変換する反応をさせた後、前記式(1)化合物以外の成分を分離除去する精製を行うことを特徴とする、エポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、晶析により前記精製を行うことを特徴とする、エポキシ樹脂の製造方法を提案する。
 本発明はまた、下記式(6)で表される化合物(「式(6)化合物」とも称する)を、下記式(7)で表される化合物(「式(7)化合物」とも称する)に変換する反応をさせ、次に、前記式(7)化合物を、下記式(8)で表される化合物(「式(8)化合物」とも称する)に変換する反応をさせ、次に、前記式(8)化合物を、下記式(5)で表される式(5)化合物に変換する反応をさせてエポキシ樹脂を得る工程を備えたエポキシ樹脂の製造方法において、
 GPCにおいて、標準ポリスチレン換算分子量が60.8以上の成分の当該エポキシ樹脂中の含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにすることを特徴とする、エポキシ樹脂の製造方法を提案する。
[式(5)]
Figure JPOXMLDOC01-appb-I000017
 式(5)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基である。
[式(6)]
Figure JPOXMLDOC01-appb-I000018
 式(6)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基である。
[式(7)]
Figure JPOXMLDOC01-appb-I000019
 式(7)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基である。
[式(8)]
Figure JPOXMLDOC01-appb-I000020
 式(8)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基である。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(6)化合物を、塩基性化合物の存在下、クライゼン転位反応させて、前記式(7)化合物に変換する反応をさせることを特徴とするエポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(6)化合物1.0モルに対して、前記塩基性化合物を1.0モル以上100モル以下の割合で加えて反応させるエポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記塩基性化合物がアニリン化合物であるエポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(6)化合物を前記式(7)化合物に変換する反応をさせた後であって、且つ、前記式(7)化合物を前記式(8)化合物に変換する反応をさせる前に、前記式(7)化合物以外の成分を分離除去する精製を行うことを特徴とするエポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(7)化合物を前記式(8)化合物に変換する反応をさせた後であって、且つ、前記式(8)化合物を前記式(5)化合物に変換する反応をさせる前に、前記式(8)化合物以外の成分を分離除去する精製を行うことを特徴とするエポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、前記式(8)化合物を前記式(5)化合物に変換する反応をさせた後、前記式(5)化合物以外の成分を分離除去する精製を行うことを特徴とするエポキシ樹脂の製造方法を提案する。
 本発明はさらに、前記エポキシ樹脂の製造方法において、晶析により前記精製を行うことを特徴とする、エポキシ樹脂の製造方法を提案する。
 本発明が提案するエポキシ樹脂及び本発明が提案する製造方法によって得られるエポキシ樹脂は、前記式(1)で表される3,3’-ジグリシジルビフェニル-4,4’-ジグリシジルエーテル、すなわち式(1)化合物を含有するエポキシ樹脂であるため、耐熱性及び成形性に優れているという特徴を保持している。
 また、本発明が提案するエポキシ樹脂及び本発明が提案する製造方法によって得られるエポキシ樹脂は、前記式(5)化合物を含有するエポキシ樹脂であるため、耐熱性及び成形性に優れているという特徴を保持している。
 本発明が提案するエポキシ樹脂及び本発明が提案する製造方法によって得られるエポキシ樹脂はさらに、固体として取り扱うことができ、しかも弾性率及びせん断接着強度が優れているため、工業的に取り扱い易く、工業的に好適に利用することができる。
本発明の実施例の一例に係るエポキシ樹脂の製造方法の一例を示す工程図である。 後述するオリゴマー成分Xに含まれる化合物の構造式を列挙した図である。
<本エポキシ樹脂>
 本発明の実施形態の一例に係るエポキシ樹脂(「本エポキシ樹脂」と称する)は、下記式(1)で表される化合物を含有するエポキシ樹脂であり、所定の分子量を有する成分(「オリゴマー成分X」と称する)を所定割合で含むエポキシ樹脂である。
 本エポキシ樹脂は、モル分子量が410である化合物を含有するエポキシ樹脂であり、実質的に架橋していない、すなわち意図的には架橋させていない未硬化状態のエポキシ樹脂である。
式(1)
Figure JPOXMLDOC01-appb-I000021
(オリゴマー成分X)
 本エポキシ樹脂は、GPCにおいて、標準ポリスチレン換算分子量が60.8以上の成分(「オリゴマー成分X」)を、RI検出器を用いて測定したときに9面積%以上含むものであるのが好ましく、中でも10面積%以上、その中でも15面積%以上含むことがさらに好ましい一方、25面積%以下含むものであるのが好ましく、中でも20面積%以下、その中でも18面積%以下含むものであるのがさらに好ましい。
 本エポキシ樹脂におけるオリゴマー成分Xの前記面積割合が9面積%以上であれば、溶融時に必要なエネルギーを少なくすることができ、25面積%以下であれば、本エポキシ樹脂を常温で固体とすることができ、さらには弾性率及びせん断接着強度に優れたものとすることができる。
 オリゴマー成分Xは、ビフェニル骨格を2個以上有する化合物であり、該ビフェニル骨格を2個以上有する化合物2種以上から構成されていてもよい。
 また、オリゴマー成分Xは、ビフェニル骨格を2個以上有する化合物であれば特に制限はないが、モル分子量819、805、765の化合物を少なくとも一つから構成される成分であり、モル分子量833もしくは847の化合物から構成されるのがさらに好ましい。
 なお、モル分子量847の化合物は、クライゼン転位工程でN,N-ジエチルアニリンを使用した場合に生成するものと推測され、モル分子量833の化合物はN,N-ジメチルアニリンを使用した場合に生成するものと推測される。
 オリゴマー成分Xに含まれる化合物としては、図2に含まれる化学構造を持った化合物などを挙げることができる。なお、図2にされる構造式中の一部、または全ての二重結合は、酸化されてエポキシ基に変換されていてもよく、全てエポキシ基に変換されているのが好ましい。
(融点)
 本エポキシ樹脂のDSC曲線から得られる融点は、50℃以上であるのが好ましく、中でも60℃以上であるのがさらに好ましい。なお、上限値は100℃程度である。
 本エポキシ樹脂のDSC曲線から得られる融点が50℃以上であれば、常温で固体状態となるから、工業的な取り扱い性に優れたものとなり、好ましい。また100℃以下であれば、多大なエネルギーを必要とすることなく融解が可能であり、また硬化前のエポキシ樹脂組成物を調製する工程で液状を保つことが容易となることから好ましい。
 本エポキシ樹脂のDSC曲線から得られる融点を50℃以上に調整するには、前述のように、本エポキシ樹脂におけるオリゴマー成分Xの前記面積割合を9面積%以上25面積%以下とすればよい。
<本製造方法>
 次に、本エポキシ樹脂の製造方法として好ましい一例に係る製造方法(「本製造方法」と称する)について説明する。但し、本エポキシ樹脂の製造方法が以下の本製造方法に限定されるものではない。
 本製造方法は、式(2)化合物を式(3)化合物に変換する反応をさせ(この反応の工程を「工程A」と称する)、次に、前記式(3)化合物を式(4)化合物に変換する反応をさせ(この反応の工程を「工程B」と称する)、次に、前記式(4)化合物を式(1)化合物に変換する反応をさせてエポキシ樹脂を得る(この反応の工程を「工程C」と称する)、という一連の工程を備えたエポキシ樹脂の製造方法において、当該エポキシ樹脂、例えば本エポキシ樹脂中のオリゴマー成分Xの含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにすることを特徴とする、エポキシ樹脂の製造方法である。
式(2)
Figure JPOXMLDOC01-appb-I000022
式(3)
Figure JPOXMLDOC01-appb-I000023
式(4)
Figure JPOXMLDOC01-appb-I000024
式(1)
Figure JPOXMLDOC01-appb-I000025
 本製造方法において、前記工程A、前記工程B及び前記工程Cは、搬送手段により互いに連結された装置によって一連に実施されてもよいし、また、異なる装置において時間をおいて実施されてもよい。
 また、本製造方法は、前記工程A、前記工程B及び前記工程Cを備えていれば、他の工程を挿入したり、他の処理を挿入したりすることは適宜可能である。
(工程A)
 前記工程A、すなわち前記式(2)化合物を前記式(3)化合物に変換する反応方法は、クライゼン転位反応により行うことができる。
 このクライゼン転位反応は、使用する溶媒や添加剤にも影響を受けるが、一般的には100~300℃の温度に加熱することで反応を進めることができる。反応時間を短縮する観点からは150℃以上の温度に加熱することが好ましく、また高温条件下での副反応を抑制するためには250℃以下の温度に加熱することが好ましい。その中でも170℃以上或いは220℃以下の温度に加熱することが特に好ましい。
 本工程は溶媒を必ずしも必要としないが、溶媒を用いることもできる。プロセス安全性の観点からは、クライゼン転位反応の反応熱を溶媒の蒸発潜熱で吸収することで内温上昇を抑制できるメリットがあることから、溶媒を使用するのが好ましい。
 本工程において用いられる溶媒は、沸点が反応温度よりも高く、反応温度において安定であって、加えて前記式(2)化合物や前記式(3)化合物に対して不活性であれば特に限定はされないが、具体的にはトルエン、キシレン、メシチレン、アニソール等の芳香族炭化水素類;オクタン、ノナン、デカン、ウンデカン、ドデカン等の脂肪族鎖状炭化水素類;シクロオクタン、エチルシクロヘキサン、デカリン等の脂肪族環状炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;ジメチルスルホキシド;及びこれら溶媒の混合物を挙げることができる。
 なお、前記式(2)化合物は、どのように入手してもよい。市販品を入手してもよく、合成する場合であれば、塩基の存在下、ビフェノールを塩化アリル、臭化アリル等のハロゲン化アリルと反応させるなどして合成することができる。
(工程B)
 前記工程B、すなわち前記式(3)化合物を前記式(4)化合物に変換する反応工程は、グリシジル化の手法として現在知られている方法を使用して実施することができる。
 例えば、塩基の存在下、エピハロヒドリンを反応させることにより実施することができる。また、酸触媒の存在下、エピハロヒドリンを付加させ、続いて塩基を用いて脱ハロゲン化水素化することによっても実施することができる。
 前記エピハロヒドリンとしては、エピクロロヒドリンやエピブロモヒドリンを挙げることができる。工業スケールでの入手が容易である点からエピクロロヒドリンが好ましい。
 前記エピハロヒドリンの使用量としては前記式(3)化合物に対して1~100当量用いるのが好ましい。中でも、反応選択性向上の観点からは5当量以上が好ましく、1バッチあたりの生産性向上の観点からは50当量以下が好ましい。その中でも10当量以上或いは40当量以下がさらに好ましく、20当量以上或いは35当量以下が特に好ましい。
 反応温度としては、一般的には-50~200℃の温度に加熱することで反応を進めることができる。反応時間を短縮する観点からは0℃以上が好ましく、また高温条件下での副反応を抑制するためには150℃以下が好ましい。その中でも40℃以上或いは100℃以下の温度に加熱することが特に好ましい。
 前記塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等のアルカリ土類金属水酸化物を挙げることができる。中でも、反応効率の観点から水酸化カリウム、水酸化ナトリウムが好ましい。
 前記塩基の使用量としては、前記式(3)化合物に対して1~20当量用いるのが好ましい。中でも、収率向上の観点からは1.5当量以上が好ましく、除去が煩雑になることを避けるためには5当量以下が好ましい。その中でも1.8当量以上或いは2.5当量以下が特に好ましい。
 なお、塩基は固形のまま使用してもよいが、反応性向上の観点からは溶液の状態で使用するのが好ましい。
 前記触媒としては、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムブロミドなどの第四級アンモニウム塩;ベンジルジメチルアミン、2,4,6-(トリスジメチルアミノメチル)フェノールなどの第三級アミン;2-エチル-4-メチルイミダゾール、2-フェニルイミダゾールなどのイミダゾール類;エチルトリフェニルホスホニウムイオダイドなどのホスホニウム塩;トリフェニルホスフィンなどのホスフィン類等を用いることもできる。
 溶媒としては、エピハロヒドリンを溶媒として使用することもできるし、メタノール、エタノール、プロパノール、イソプロパノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノールなどのアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、2-ペンタノンなどのケトン類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;ベンゼン、キシレン、トルエンなどの芳香族類;ベンジルアルコールなどの芳香族アルコール類;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテートなどのグリコールエーテルアセテート類;1,3-ジオキサン、1,4-ジオキサン、ジエチルエーテル、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;ジメチルスルホキシド、水などを使用してもよい。これらは単品で使用してもよく、複数種を混合して用いてもよい。上述の通り反応効率の観点からは塩基が溶けやすい溶媒を使用することが好ましいことから、アルコール類、ケトン類、グリコールエーテル類、グリコールエーテルアセテート類、エーテル類、アミド類、水が好ましく、中でもアルコール類、水が好ましい。
(工程C)
 前記工程C、すなわち前記式(4)化合物を前記式(1)化合物に変換する反応工程は、任意の手法により実施すればよい。
 当該任意の手法の一例としては、例えば、リン酸類またはホスホン酸類と、相関移動触媒としてオニウム塩類、およびタングステン化合物及びモリブデン化合物類のうち少なくとも一方を触媒組成物として共存させ、過酸化水素を酸化剤として用いて酸化する方法を挙げることができる。
 また、過酢酸やm-クロロ過安息香酸といった過酸を用いて酸化する方法を挙げることができる。
 さらにはアルカリ金属の炭酸塩、炭酸水素塩等の存在下に、過酸化水素と有機ニトリル化合物を反応させる方法を挙げることができる。
 中でも、酸化剤を過剰に使用する必要が無く安全性に優れていることから、リン酸類またはホスホン酸類と、相関移動触媒としてオニウム塩類、およびタングステン化合物及びモリブデン化合物類のうち少なくとも一方を触媒組成物として共存させ、過酸化水素を酸化剤として用いて酸化する方法が好ましい。
 前記リン酸類としては、リン酸、ポリリン酸、ピ口リン酸等の無機リン酸;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、リン酸水素ナトリウム、リン酸水素カリウム、リン酸水素アンモニウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸二水素カルシウム等の無機リン酸塩;モノメチルリン酸、ジメチルリン酸、卜リメチルリン酸卜リエチルリン酸、卜リフェニルリン酸等のリン酸エステル類;等が挙げられる。ホスホン酸類としては、アミノメチルホスホン酸、フエニルホスホン酸などを挙げることができる。安価であることからリン酸類が好ましく、中でも反応活性の観点からは無機リン酸が好ましく、リン酸が特に好ましい。
 前記相関移動触媒であるオニウム塩類は、オニウムイオンとアニオンとの塩であり、オニウムイオンとしてはテトラアルキルアンモニウムイオン類や、トリアルキルフェニルアンモニウムイオン類、トリアルキルベンジルアンモニウムイオン類、ピリジニウムイオン類、ホスホニウムイオン類を挙げることができる。また、WO2013147092や特開2015-166335にて開示されているオニウム塩を使用することもできる。中でも、反応効率の観点から炭素原子を20以上有するオニウムイオンを使用することが好ましい。さらに、WO2013147092や特開2015-166335にて開示されているオニウム塩は、反応終了後に加水分解等の簡単な後処理をすることで水溶性物質に変換することができ、触媒組成物をより効率良く除去できる点で好ましい。
 前記アニオン種としては、特に限定はされない。例えば硫酸水素イオン、モノメチル硫酸イオン、ハロゲン化物イオン、硝酸イオン、酢酸イオン、炭酸水素イオン、リン酸二水素イオン、スルホン酸イオン、カルボン酸イオン、水酸化物イオン等の1価のアニオン、リン酸水素イオン、硫酸イオン等の2価のアニオンを挙げることができ、入手、もしくは調整が容易である点から、1価のアニオンが好ましい。副反応を抑制できる点で、モノメチル硫酸イオン、硫酸水素イオン、酢酸イオン、リン酸二水素イオン又は水酸化物イオンが好ましい。
 なお、オニウムイオンとアニオン種はそれぞれ単独でも2種以上適宜組み合わせて使用してもよい。
 前記タングステン化合物及びモリブデン化合物類としては、例えばタングステン酸;タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸カルシウム、タングステン酸アンモニウム等のタングステン酸塩類;前記タングステン酸塩の水和物類;12-タングストリン酸、18-タングストリン酸等のリンタングステン酸類;12-タングストケイ酸等のケイタングステン酸類;12-タングストホウ酸等のホウタングステン酸類;金属タングステン;モリブデン酸等のモリブデン酸類;モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸アンモニウム等のモリブデン酸塩;前記モリブデン酸塩の水和物、またはこれらの水和物を挙げることができる。触媒の活性向上の点で、タングステン酸、タングステン酸塩が好ましく、入手しやすさの点から、タングステン酸、タングステン酸ナトリウム、タングステン酸カルシウムまたはこれらの水和物が好ましい。
 前記過酸化水素は、一般に入手可能な35質量%水溶液、45質量%水溶液、60質量%水溶液を使用すればよい。入手の容易さから35質量%水溶液が好ましい。
 反応液中の過酸化水素濃度は特に限定されないが、通常0.1質量%~30質量%の範囲であり、反応効率の観点からは1質量%以上を保つのが好ましく、安全上は20質量%以下を保つのが好ましい。その中でも2質量%以上或いは15質量%以下を保つのがさらに好ましい。
 溶媒としては、使用する前記式(4)化合物や前記式(1)化合物、前記活性触媒、過酸化水素に対して不活性であれば、適宜溶媒を使用することができる。具体的には、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、ヘプタン、オクタン、ドデカン等の脂肪族炭化水素類;メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン系溶媒;テトラヒドロフラン、ジオキサン等のエーテル類;メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;アセトニトリル、ブチロニトリル等のニトリル類、酢酸エチル、酢酸ブチル、ギ酸メチルなどのエステル化合物;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;N,N’-ジメチルイミダゾリジノン等のウレア類;及びこれら溶媒の混合物を挙げることができる。反応の効率の観点や、目的物と触媒成分の分離の容易さの面で、水と混和せず二相系を形成する溶媒を用いることが好ましいことから、芳香族炭化水素類、脂肪族炭化水素類、ハロゲン系溶媒、非水溶性のケトン類、エステル化合物が好ましく、さらに酸化反応に対して安定であり、かつ反応原料である前記式(4)の溶解度が高い芳香族炭化水素類が好ましい。
(本製造方法)
 本製造方法において、本エポキシ樹脂中のオリゴマー成分Xの含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにする方法は、その具体的に手段を特に限定するものではない。例えば、次に説明する製造方法例1~4によって実施することができる。但し、これらに限定するものではない。
(製造方法例1)
 前記エポキシ樹脂中のオリゴマー成分Xの含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにする方法の一例として、前記工程Aにおいて、前記式(2)化合物を、塩基性化合物の存在下、クライゼン転位反応させて、下記式(3)化合物に変換する方法を挙げることができる。
 前記クライゼン転位は、加熱するだけで反応が進行するため、塩基化合物を加えなくても前記反応は進行する。しかし、塩基性化合物の存在下で、クライゼン転位反応を進めて、前記式(3)化合物を生成することにより、前記式(3)化合物以外の生成を抑制することができ、最終的には、前記エポキシ樹脂中のオリゴマー成分Xの含有割合を前記所定範囲とすることができる。
 前記塩基性化合物としては、分子内に重合可能な官能基を有さず、かつ反応温度で揮発しないものであればよい。例えばジエチレントリアミン、トリエチレンテトラミン等の脂肪族鎖状アミン類;ベンジルアミン、m-キシリレンジアミン、p-キシリレンジアミン、N-メチルベンジルアミン、N-エチルベンジルアミン、N-イソプロピルベンジルアミン、1-フェニルエチルアミン、ジベンジルアミン、N,N-ジメチルベンジルアミン等のベンゼン環を有する脂肪族アミン類;アニリン、N-メチルアニリン、N-エチルアニリン、N-イソプロピルアニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジプロピルアニリン等のアニリン類;ピペリジン類、モルホリン類といった脂環式アミン類;ピリジン類、ピロール類、インドール類、キノリン類、イミダゾール類、カルバゾール類等の複素環式アミン類を挙げることができる。
 中でも安価かつ生成物との分離が容易なアニリン類が好ましく、その中でも、使用する前記式(2)化合物や前記式(3)化合物に含まれるアリル基との反応性が低く、副反応を起こしにくいN,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジプロピルアニリンが特に好ましい。
 前記塩基性化合物は、前記式(2)化合物1.0モルに対して、0.5モル以上100モル以下の割合で加えるのが好ましく、中でも0.8モル以上、その中でも1.0モル以上であるのが特に好ましい一方、コストの点からは20モル以下、その中でも5モル以下であるのが特に好ましい。
(製造方法例2)
 前記エポキシ樹脂中のオリゴマー成分Xの含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにする方法の別の一例として、前記式(2)化合物を、前記式(3)化合物に変換する反応をさせた後であって、且つ、前記式(3)化合物を、前記式(4)化合物に変換する反応をさせる前の段階で、
 前記式(3)化合物以外の成分を分離除去する精製を行うことにより、前記エポキシ樹脂中のオリゴマー成分Xの含有割合が所定数値範囲となるようにする方法を挙げることができる。
(製造方法例3)
 前記エポキシ樹脂中のオリゴマー成分Xの含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにする方法のさらなる別の一例として、前記式(3)化合物を、前記式(4)化合物に変換する反応をさせた後であって、且つ、前記式(4)化合物を、前記式(1)化合物に変換する反応をさせる前の段階で、前記式(4)化合物以外の成分を分離除去する精製を行うことにより、前記エポキシ樹脂中のオリゴマー成分Xの含有割合が所定数値範囲となるようにする方法を挙げることができる。
(製造方法例4)
 さらにまた、前記エポキシ樹脂中のオリゴマー成分Xの含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにする方法のさらなる別の一例として、前記式(4)化合物を、前記式(1)化合物に変換する反応をさせた後、前記式(1)化合物以外の成分を分離除去する精製を行うことにより、前記エポキシ樹脂中のオリゴマー成分Xの含有割合が所定数値範囲となるようにする方法を挙げることができる。
(精製の具体的方法)
 前記製造方法例2~4において、各成分を分離除去する精製の具体的方法としては、公知の精製方法を適宜使用することができる。例えば晶析法、懸洗法、分液法、吸着法、カラムクロマトグラフィー、蒸留法等を挙げることができる。これらの精製方法は適宜組み合わせて行ってもよい。製造プロセスにおける負荷が小さいことから晶析法、懸洗法、分液法、蒸留法が好ましいが、精製効率の良さから晶析法が特に好ましい。
 晶析とは、化学的分離操作法の一例であり、溶解度の温度依存性を利用して、冷却又は加熱により溶液から目的成分を結晶化させ、選択的に分離する方法である。
 晶析による精製法としては、溶媒を減圧留去しながら析出させる方法、または留去することなしに溶解度差を利用して冷却しながら析出させる方法、良溶媒に溶解させた後に貧溶媒を加え析出させる方法等のいずれでもよい。析出した固形物をろ過回収し、乾燥することによって目的物を得ることができる。
 晶析に用いる溶媒としては、化合物の溶解度により適切なものを選択するのが好ましく、複数の溶媒を組み合わせて使用してもよい。
 中でも溶媒としては、例えばヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル類;アセトニトリル等のニトリル類;ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等の鎖状または環状エーテル類;メタノール、エタノール、2-プロパノール、n-ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチル等のケトン類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;N,N’-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒;水を挙げることができる。
 懸洗による精製法としては、貧溶媒を用いるのが好ましい。好ましい貧溶媒としては、メタノールやエチレングリコール、水等の高極性溶媒や、逆にヘキサン、ヘプタン、シクロヘキサンなど極性の低い脂肪族炭化水素を挙げることができる。
 懸洗終了後、固形物をろ過回収し、乾燥することによって目的物を得ることができる。
 分液による精製は、水と水に不溶または難溶な有機溶媒を組み合わせる場合と、お互いに混合しない複数の有機溶媒同士を組み合わせる場合がある。水と水に不溶または難溶な有機溶媒の組み合わせとしては、例えば酢酸エチル、トルエン等の有機溶媒と水の組み合わせを挙げることができる。
 吸着法に用いる吸着剤としては、活性炭、活性白土、モレキュラーシーブス、活性アルミナ、ゼオライト、イオン交換樹脂等を挙げることができる。吸着剤は化合物を含む溶液に加えた後ろ過によって除去してもよく、また、カラムに充填して使用してもよい。
 なお、上記製造方法例1~4はそれ単独で実施してもよいし、製造方法例1~4のうちの2つ以上を組合せて実施することもできる。中でも、晶析操作によるロスを回避し高収率で前記式(1)化合物を含有するエポキシ樹脂が得られることから、製造方法例1のみを用いて製造するのが特に好ましい。
 製造方法例2における晶析は、例えばトルエンや酢酸エチル等の良溶媒に加熱溶解し、冷却の過程で析出した結晶をろ過にて回収するのが好ましい。
 製造方法例3や製造方法例4における晶析は、メタノール、エタノール、2-プロパノール、n-ブタノール等のアルコール類を加えて加熱した後静置し、アルコール溶液から分離した下層を分液除去した後、残った上層を冷却し、冷却の過程で析出した結晶をろ過にて回収するのが好ましい。
<本エポキシ樹脂組成物>
 次に、本エポキシ樹脂及びエポキシ硬化物を含有するエポキシ樹脂組成物(「本エポキシ樹脂組成物」と称する)について説明する。
 本エポキシ樹脂組成物は、本エポキシ樹脂、エポキシ硬化剤及びその他の成分を含有する組成物であり、実質的に架橋していない、すなわち意図的に架橋させていない未硬化状態のエポキシ樹脂組成物である。
 本エポキシ樹脂組成物は、本エポキシ樹脂の官能基当量に対して0.80当量以上1.03当量以下の割合でエポキシ硬化剤を含有するのが好ましい。
 一般的には、エポキシ樹脂に硬化剤を配合する際、エポキシ樹脂の官能基当量に対して1:1の官能基当量のエポキシ硬化剤を配合させるのが通常である。
 これに対し、本エポキシ樹脂組成物においては、本エポキシ樹脂の官能基当量に対して1.03当量以下、中でも1.00当量以下の割合でエポキシ硬化剤を含有することで、抽出水の電気伝導度を下げ、pHを中性域とすることができる。本エポキシ樹脂は前記式(1)化合物を主成分として含有するが、前記式(1)は1分子中に高密度にエポキシ基を有していることから、一般的なエポキシ樹脂と比べて硬化率が低く、未反応の官能基が硬化物中に残留しやすい。故に硬化剤の当量を減らすことによって、イオン成分の元となる未反応の官能基が減り、抽出水の電気伝導度が下がり、また、pHが中性域に近づくものと考えられる。これにより、半導体の封止材などの用途において、腐食抑制効果に優れたものとすることができる。
 他方、本エポキシ樹脂の官能基当量に対して0.80当量以上のエポキシ硬化剤を含有することで、硬化不良を生じることを防止し、それによる種々の物性低下を抑えることができる。
 かかる観点から、本エポキシ樹脂に硬化剤を配合する際、本エポキシ樹脂の官能基当量に対して0.80当量以上1.03当量以下の割合で含有するのが好ましく、中でも0.85以上或いは1.00以下、その中でも0.87以上或いは0.98以下、その中でも0.90以上或いは0.96以下の割合で含有するのがさらに好ましい。
 前記エポキシ硬化剤としては、公知の硬化剤を用いることができる。具体的には、例えばフェノール系硬化剤、エステル系硬化剤、ベンゾオキサジン系硬化剤、酸無水物系硬化剤、1級及び2級アミン系硬化剤、メルカプタン系硬化剤、アミド系硬化剤、ブロックイソシアネート系硬化剤、3級アミン系硬化剤、イミダゾール系硬化剤、ルイス酸アミン錯体等の硬化剤を挙げることができる。また、フェノキシ樹脂を硬化剤として用いることも可能である。
(その他の成分)
 本エポキシ樹脂組成物は、本エポキシ樹脂及び硬化剤以外に、必要に応じて、他のエポキシ樹脂、硬化促進剤、充填剤、離型材、その他の添加剤及び溶媒などを含んでいてもよい。
 本エポキシ樹脂組成物に含まれる全固形分に対する、本エポキシ樹脂の含有割合は、通常0.1質量%以上であり、1質量%以上が好ましく、10質量%以上が特に好ましい。また、通常95質量%以下であり、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下が特に好ましい。
 前記「他のエポキシ樹脂」としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等の各種エポキシ樹脂などを挙げることができる。
 前記「硬化促進剤」としては、例えばイミダゾール系硬化促進剤、3級アミン系硬化促進剤、有機ホスフィン系硬化促進剤、ホスホニウム塩系硬化促進剤、テトラフェニルボロン塩系硬化促進剤、金属系硬化促進剤、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体などを挙げることができる。
 前記「充填剤」としては、例えば安価に絶縁性の組成物を得たい場合は、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、シリカなどの絶縁性充填剤を挙げることができる。
 前記「離型剤」としては、例えばステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等を挙げることができる。
 本エポキシ樹脂組成物は、加工時の粘度調整及び硬化させるときの取り扱い性を向上させるなどの目的で溶媒を含有してもよい。
 この種の溶媒としては、例えばアセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル等のエステル類;エチレングリコールモノメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;メタノール、エタノール、イソプロパノール等のアルコール類;ヘキサン、シクロヘキサン等のアルカン類;トルエン、キシレン等の芳香族類などを挙げることができる。
 本エポキシ樹脂組成物は、その他にも、カップリング剤、紫外線防止剤、酸化防止剤、光安定剤、可塑剤、フラックス、難燃剤、着色剤、分散剤、乳化剤、低弾性化剤、希釈剤、消泡剤、オントラップ剤等を適宜含有することができる。
<本硬化物>
 本エポキシ樹脂組成物を硬化させることにより、硬化物(「本硬化物」と称する)を得ることができる。
 硬化方法や条件については、特に規定するものではない。但し、成型が容易であることから熱硬化が好ましい。 
(ガラス転移温度)
 本硬化物のガラス転移温度(Tg)は、通常150℃以上であり、パワーデバイス等の高温条件下で駆動する半導体の封止材として用いる場合は、180℃以上であるのがさらに好ましく、200℃以上であるのが特に好ましい。
(貯蔵弾性率(E’))
 本硬化物の250℃での貯蔵弾性率(E’)は、使用する硬化剤の種類にもよるが、通常10MPa~10GPaである。
 本硬化物を例えば半導体封止材として用いる場合、信頼性向上の観点から半導体パッケージ内でのクラックの発生や、基板の素子搭載面とエポキシ樹脂組成物の硬化物との界面での剥離を防ぐ必要があり、そのためには硬化物の弾性率を下げることが求められる。このような観点からすると、本硬化物の250℃での貯蔵弾性率は、好ましくは1GPa以下、より好ましくは500MPa以下、更に好ましくは300MPa以下である。また、高温条件下での機械的耐久性を求められる場合には、硬化物の弾性率が高いことが有効であることから、本硬化物の250℃での貯蔵弾性率は、好ましくは50MPa以上、より好ましくは70MPa以上、さらに好ましくは100MPa以上である。
 本硬化物の250℃での貯蔵弾性率(E’)と、本硬化物の銅に対するせん断接着強度を上記範囲内に調整するには、オリゴマー成分Xを所定割合で含む本エポキシ樹脂を用いて調製した本エポキシ樹脂組成物を硬化するようにすればよい。硬化する際の硬化条件としては、例えば、フェノール系硬化剤を用いて、硬化温度を100~200℃、硬化時間を1~20時間とすることが好ましい。
<用途>
 本エポキシ樹脂組成物及び本硬化物は、接着剤、塗料、土木建築用材料、電気・電子分野における絶縁材料などの様々な分野の材料として適用可能である。特に、電気・電子分野における絶縁注型、積層材料、封止材料等として有用である。用途の一例としては、多層プリント配線基板、ビルドアップ配線板、ソルダーレジスト、接着剤、半導体封止材料、アンダーフィル材料、3D-LSI用インターチップフィル、絶縁シート、プリプレグ、放熱基板などとして利用することができる。
<他の実施形態例>
 上記式(1)化合物を、下記式(5)で表される化合物(「式(5)化合物」と称する)に置き換えたエポキシ樹脂についても、本エポキシ樹脂についての上記説明と同様のことが言える。
 また、そのエポキシ樹脂は、上記本製造方法において、式(2)化合物を、下記式(6)で表される化合物(「式(6)化合物」と称する)に置き換え、式(3)化合物を、式(7)で表される化合物(「式(7)化合物」と称する)に置き換え、式(4)化合物を、前記式(8)で表される化合物(「式(8)化合物」と称する)に置き換えることで、同様に製造することができる。
[式(5)]
Figure JPOXMLDOC01-appb-I000026
 式(5)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基である。
[式(6)]
Figure JPOXMLDOC01-appb-I000027
 式(6)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基である。
[式(7)]
Figure JPOXMLDOC01-appb-I000028
 式(7)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基である。
[式(8)]
Figure JPOXMLDOC01-appb-I000029
 式(8)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基である。
 なお、式(5)~(8)において、炭素数1~20の炭化水素基から選ばれる2価の連結器として、例えば、メチレン基、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、フェニルメチレン基、フェニルエチリデン基、ジフェニルメチレン基、シクロへキシリデン基、3、3、5-トリメチルシクロへキシリデン基などを挙げることができる。
<語句の説明>
 本明細書において「Y~Z」(Y、Zは任意の数字)と表現する場合、特にことわらない限り「Y以上Z以下」の意と共に、「好ましくはYより大きい」或いは「好ましくはZより小さい」の意も包含する。
 また、「Y以上」(Yは任意の数字)或いは「Z以下」(Zは任意の数字)と表現した場合、「Yより大きいことが好ましい」或いは「Z未満であることが好ましい」旨の意図も包含する。
 以下に実施例及び比較例を挙げて本発明をより具体的に説明する。但し、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。
 以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味を持つものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
 なお、実施例中の資材は断りのない限り通常入手可能な市販試薬を用いた。また、実施例及び比較例における各種分析方法は以下の通りである。
(GPC分析)
 分析装置:東ソーHLC-8120GPC
 解析ソフトウェア:東ソーGPC-8020 Model II
 カラムは、TSKgel SuperHM-L(東ソー、6.0×150mm、3μm)→TSKgel SuperH1000(東ソー、6.0×150mm、3μm)→TSKgel SuperH1000(東ソー、6.0×150mm、3μm)の順に接続して使用した。
 カラム温度:40℃
 溶離液:特級テトラヒドロフラン
 流速:0.4mL/分
 検出器:RI(示差屈折率)検出器、設定40℃
 試料量:0.3w/w%溶離液溶液を30μL使用
 較正資料:単分散ポリスチレン
 較正法:ポリスチレン換算(3次式)
(HPLC分析)
 分析装置:アジレントテクノロジー社製HPLC1100
 カラム温度:35℃
 カラム:ジーエルサイエンス ODS-3V  3μm 4.5×100 mm
 検出器:UV254nm
 溶離液:
  A:0.1体積% トリフルオロ酢酸水溶液
  B:アセトニトリル
 組成:0分から6分までB60%を保持し、6分から11分の間でB60%から90%までグラジエントをかけ、11分から18分までB90%を保持した。
 流量:1.0ml/分
(エポキシ当量)
 JIS K7236:2001に準じて測定した。
(融点測定)
 分析装置:SIIナノテクノロジー社製 DSC7020
 測定温度範囲:20℃から250℃
 昇温速度:10℃/min
(貯蔵弾性率E’(250℃))
 硬化物を縦5cm、横1cm、厚さ4mmに切削して得られた試験片を用いて、以下の条件で動的粘弾性測定(DMA:Dynamic MechanicalAnalysis)を行い、250℃での貯蔵弾性率(E’)を測定した。
 分析装置:セイコーインスツルメント社製 EXSTAR6100
 測定モード:3点曲げモード
 測定温度範囲:30℃から280℃
 昇温速度:5℃/min、降温速度:5℃/min
(銅に対するせん断接着強度)
 JIS-K6850に準拠して実施した。すなわち、幅25mm×長さ100mm×厚み1.6mmのSPCC(冷間圧延鋼板)2枚の間に、実施例・比較例で作製した前記組成物を幅25mm×長さ12.5mmとなるように塗布した。塗布後、恒温槽に投入して120℃で2時間、175℃で6時間硬化させて剥離試験片を作製した。
 作製した剥離試験片を、引張試験機「Instron5582」(インストロン社製)を用いて5mm/分の速度により試験数n=3で引張せん断試験を実施し、引張せん断強度を測定した。
<実施例1>
 10LのオートクレーブにN,N-ジメチルホルムアミド840mL、アリルクロライド575g(7.51mol)、炭酸カリウム1245g(9.01mol)、ビフェノール280g(1.50mol)を加えて密閉し、40℃まで加熱した後、1時間かけて65℃まで昇温した。65℃で5時間熟成した後、室温まで冷却してオートクレーブを開放した。ここに、水1678gとメチルイソブチルケトン1600gを加えて無機塩と結晶を溶解させ、分液操作にて水層を除去した。残ったメチルイソブチルケトン層に水1678gを加えて60℃で水洗する操作を3回繰り返した後、メチルイソブチルケトンを留去し、式(2)化合物を得た。
(工程A)
 その後、得られた式(2)化合物を180℃で3時間加熱し、式(3)化合物を317g(1.19mol、2段階収率79.3%)得た。
(工程B)
 次に、3Lの四口フラスコに、前記の通り合成した式(3)化合物105g(394mmol)、エピクロルヒドリン1028g(11.1mol)、イソプロパノール400g及び水143gを仕込み、40℃に昇温して均一に溶解した後、濃度48質量%の水酸化ナトリウム水溶液76g(912mmol)を90分かけて滴下しながら65℃まで昇温した。滴下終了後、65℃で30分間熟成した後、66gの水を加えて水洗し、無機塩を除去した。次いで、減圧下でエピクロルヒドリンとイソプロパノールを留去し、茶色油状物質を得た。ここにメチルイソブチルケトン191gを加えて均一にした後、濃度48質量%の水酸化ナトリウム水溶液5.8g(69.6mmol)を加え、75℃で2時間反応させた。得られた反応液にメチルイソブチルケトン223gを加えた後、水525gを用いて70℃で4回水洗した。続いてメチルイソブチルケトンを留去して、黄色油状物として式(4)化合物を142g得た。
(式(4)化合物の晶析精製)
 得られた式(4)化合物のうち56.1gを1Lのナスフラスコに入れ、メタノール224mLと2-メトキシエタノール101mLを加えて50℃に加熱した。この溶液を徐々に冷却し、4℃で1時間撹拌したところで析出した白色結晶をろ過にて回収した。白色結晶をメタノールで洗浄した後、50℃で減圧乾燥し、式(4)化合物の精製品を29.8g(収率57%)得た。
(工程C)
 続いて、前記と同様の方法で合成した式(4)化合物の精製品40.0g(106mmol)、タングステン酸ナトリウム二水和物1.74g(5.30mmol)、20%(質量/体積)リン酸水溶液3.63mL(7.42mmol)、N-ブチル-N,N-ジ[2-(4-t-ブチルベンゾイルオキシ)エチル]-N-メチルアンモニウムモノメチル硫酸塩1.69g(2.65mmol)、トルエン80mL、及び水1.10mLの混合溶液を調製した。この混合溶液を、窒素気流下、60℃に加熱した後、35質量%過酸化水素水26.8mL(318mmol)を5時間かけて滴下した後、2時間熟成した。反応終了後、トルエン34mLを加えて、分離した水層を抜出した。残った有機層を水、5質量%チオ硫酸ナトリウム水溶液各40Lで洗浄した後、有機層にメタノール40mL、炭酸カリウム7.30g(530mmol)を加え、40℃で1時間撹拌した。ここに水40mLを加えて無機塩を溶解し、水相を排出した後、有機層を1mol/Lの水酸化ナトリウム水溶液40mLで1回、55℃の温水200mLで3回洗浄した。得られた有機層を濃縮したところ、トルエンを10質量%含む式(1)化合物が得られた。
(式(1)の晶析精製)
 次に、前記のようにして得たトルエンを10質量%含む式(1)化合物に、メチルイソブチルケトン24mLとメタノール12mLを加え、50℃で加熱して均一な溶液にした後、徐々に冷却すると17℃で析出が始まった。ここにメタノールを24mL加えて氷冷し、析出した薄黄色結晶をろ過にて回収した。この結晶をメタノール20mLで洗浄して50℃で減圧乾燥したところ、式(1)化合物を含有するエポキシ樹脂が薄黄色結晶として41.6g(収率78%)得られた。この式(1)化合物の精製品であるエポキシ樹脂のエポキシ当量は105、融点は79℃だった。
 なお、式(1)化合物、式(2)化合物、式(3)化合物及び式(4)化合物の同定は、NMRにより行った(後述する実施例及び比較例でも同様である)。
<実施例2>
(工程Aの塩基性化合物添加法)
 実施例1と同様の方法で得られた式(2)化合物165g(620mmol)とN,N-ジエチルアニリン825mLを2Lの四つ口フラスコに入れ、200℃で6時間加熱した後、室温まで冷却した。続いて2Lのセパラブルフラスコに水495mlと50質量%水酸化ナトリウム水溶液149mL(1.86mol)を入れ10℃に冷却したところに、先のN,N-ジエチルアニリン溶液を15分かけて滴下し、30分撹拌した後静置し、上層と下層をそれぞれ抜出した。次に2Lのセパラブルフラスコに水495mLと濃硫酸93.1g(1.86mol)を入れ10℃に冷却した後、前の操作で抜き出した下層を滴下し、1時間撹拌した。析出した固体をろ過によって回収し、水洗した後減圧乾燥したところ、灰色固体として式(3)化合物を148g(1.19mol、2段階収率80.4%)得た。
(工程B、工程C、式(1)化合物の晶析精製)
 式(4)化合物の晶析精製を行わなかった以外は、実施例1と同様の方法で行い、式(1)化合物を含有するエポキシ樹脂として薄黄色粉末が得られた。このエポキシ樹脂のエポキシ当量は107、融点は69℃だった。
<実施例3>
(工程Aの塩基性化合物添加法、工程B、工程C)
 実施例2と同様の方法で得られた、トルエンを9質量%含む黄色油状物(式(4)化合物)を、さらに濃縮してトルエンを完全に留去したところ、式(1)化合物を含有するエポキシ樹脂として黄色固形物が得られた。このエポキシ樹脂のエポキシ当量は113、融点は65℃だった。
<比較例1>
(工程Aの塩基性化合物添加法、工程B)
 式(2)化合物から式(3)化合物への変換を実施例2と同様の方法で行い、式(3)化合物から式(4)化合物への変換を実施例1と同様の方法で行い、薄黄色固体状の式(4)化合物を得た。
(式(4)化合物のカラム精製、工程C)
 この式(4)化合物をシリカゲルカラムで精製したところ、式(4)化合物の精製品がHPLC純度99.7面積%の白色結晶として得られた。この式(4)化合物の精製品を用いて工程Cを実施例1と同様の方法で行ったところ、式(1)化合物を含有するエポキシ樹脂として薄黄色粉末が得られた。このエポキシ樹脂のエポキシ当量は109、融点は79℃だった。
<比較例2>
(工程A、工程B)
 特許2539648号の方法に準じて式(4)化合物を合成した。
(工程C)
 この式(4)化合物50.0g(132mmol)をクロロホルム250mLに溶解し、50℃に加熱した。ここにm-クロロ過安息香酸(30質量%水含有品)97.6g(396mmol)を1時間半かけて添加し、50℃でさらに30分撹拌した。室温まで冷却した後、5質量%チオ硫酸ナトリウム水溶液を100mL加えて1時間撹拌した後水層を除去し、残った有機層を1mol/Lの水酸化ナトリウム水溶液400mLで洗浄した。さらに75℃の温水250mLを用いて3回洗浄した後、濃縮した。その結果、式(1)化合物を含有するエポキシ樹脂が茶色油状物として38.2g得られた。このエポキシ樹脂のエポキシ当量は121だった。
 実施例1~3、比較例1~2で得られた式(1)化合物を含有するエポキシ樹脂を前記の条件でGPC分析したところ、標準ポリスチレン換算分子量が60.8以上の成分が、面積%で以下の表1の通り含まれることが分かった。
Figure JPOXMLDOC01-appb-T000030
<実施例4~6、比較例3~4>
(エポキシ樹脂の硬化)
 実施例1~3、比較例1~2で製造したエポキシ樹脂に対し、それぞれ表2の配合比で硬化剤PSM4261(群栄化学工業社製)を加えて100℃で均一になるまで混合した。続いて、硬化促進剤としてトリフェニルフォスフェート(北興化学工業社製)を添加して均一になるまで撹拌し、液状のエポキシ樹脂組成物を得た。
 内側に離型PETフィルムを引いたガラス板2枚を用いて厚さ2mmに調整した注型板を作成し、注型板に前記エポキシ樹脂組成物(液状)を注型して120℃で2時間、175℃で6時間加温して硬化物を得た。
Figure JPOXMLDOC01-appb-T000031
 実施例4~6の硬化物は、比較例3および4に比べて250℃での貯蔵弾性率(E’)が高いことが分かった。加えて実施例4および5の硬化物は、比較例3および4に比べて銅に対するせん断接着強度が高いことが分かった。式(1)で表されるエポキシ化合物を含有するエポキシ樹脂は、元より成型性と硬化物の耐熱性を両立できるものであることから、高温環境下で使用されるデバイス向けの材料において好適に利用することができるが、高温弾性率が高く、また銅に対するせん断接着強度が強いため、特に高い機械強度が要求される複合材料のマトリックス樹脂や、銅ワイヤーへの密着性を必要とする半導体封止材用途に対して好適に利用することができる。
<比較例5、実施例7~8>
(抽出水試験)
 実施例2と同様の方法で製造した式(1)で表されるエポキシ化合物を含有するエポキシ樹脂(エポキシ当量105)に対し、それぞれ表3の配合比で硬化剤PSM4261(群栄化学工業社製、水酸基当量103)と硬化促進剤トリフェニルフォスフェート(北興化学工業社製)を添加してエポキシ樹脂組成物を得、実施例4~6と同様の方法で硬化物を作製した。
 この硬化物をワンダーブレンダー(大阪ケミカル社製)で粉砕し、得られた20mesh passの粉体8gをポリエチレン製の瓶に計量した。ここに超純水を80mL加えて蓋をし、95℃の乾燥機内で20時間保持した。その後室温まで冷却し、上澄みをろ紙No.5Aでろ過して抽出水を得た。得られた抽出水のpHと電気伝導度は下表の通りだった。
Figure JPOXMLDOC01-appb-T000032
 実施例7~8の硬化物は、比較例5に比べて抽出水のpHが高く、電気伝導度が低いことから、硬化物に含まれるイオン成分が少ないと示唆される。これにより、本発明のエポキシ樹脂組成物からなる硬化物は、接触する金属の腐食抑制効果が期待できることから、半導体の封止材などの用途において好適に用いることが出来る。
 なお、前記実施例では、晶析によって、標準ポリスチレン換算分子量60.8以上の成分の含有割合が所定範囲になるように精製するか、若しくは、塩基性化合物の存在下でクライゼン転位反応させて、標準ポリスチレン換算分子量60.8以上の成分の含有割合が所定範囲になるように調製している。しかし、前記実施例及びこれまで本発明者が行ってきた試験結果から、標準ポリスチレン換算分子量60.8以上の成分の含有割合が所定範囲であれば、所定の効果を得ることができることが確認されているから、他の方法を採用して、標準ポリスチレン換算分子量60.8以上の成分の含有割合が所定範囲になるようにしても、同様の効果を得ることができるものと考えることができる。
 式(1)で表される化合物は、2つのフェニル基が単結合(直接結合)で共有結合した構造を有している。この2つのフェニル基が各種結合、例えば-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基などを介して結合していても、エポキシ樹脂の性質には大きな影響を及ぼさないと考えられる。また、単結合(直接結合)の場合と同様に製造することができる。よって、式(5)で表される化合物についても、式(1)で表される化合物と同様に製造することができ、同様の作用及び効果を奏することが期待される。
 

Claims (20)

  1.  下記式(1)で表される3,3’-ジグリシジルビフェニル-4,4’-ジグリシジルエーテル(「式(1)化合物」とも称する)を含有するエポキシ樹脂であり、
     ゲルパーミエーションクロマトグラフィー(「GPC」と称する)において、標準ポリスチレン換算分子量が60.8以上の成分を、RI検出器を用いて測定したときに9面積%以上25面積%以下含むことを特徴とする、エポキシ樹脂。
    [式(1)]
    Figure JPOXMLDOC01-appb-I000001
  2.  下記式(5)で表される化合物を含有するエポキシ樹脂であり、
     ゲルパーミエーションクロマトグラフィー(「GPC」と称する)において、標準ポリスチレン換算分子量が60.8以上の成分を、RI検出器を用いて測定したときに9面積%以上25面積%以下含むことを特徴とする、エポキシ樹脂。
    [式(5)]
    Figure JPOXMLDOC01-appb-I000002
    (式(5)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基)
  3.  GPCにおける標準ポリスチレン換算分子量が60.8以上の前記成分は、ビフェニル骨格を2個以上有する化合物である、請求項1又は2に記載のエポキシ樹脂。
  4.  下記式(2)で表される化合物(「式(2)化合物」とも称する)を、下記式(3)で表される化合物(「式(3)化合物」とも称する)に変換する反応をさせ、次に、前記式(3)化合物を、下記式(4)で表される化合物(「式(4)化合物」とも称する)に変換する反応をさせ、次に、前記式(4)化合物を、下記式(1)で表される式(1)化合物に変換する反応をさせてエポキシ樹脂を得る工程を備えたエポキシ樹脂の製造方法において、
     GPCにおいて、標準ポリスチレン換算分子量が60.8以上の成分の当該エポキシ樹脂中の含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにすることを特徴とする、エポキシ樹脂の製造方法。
    [式(1)]
    Figure JPOXMLDOC01-appb-I000003
    [式(2)]
    Figure JPOXMLDOC01-appb-I000004
    [式(3)]
    Figure JPOXMLDOC01-appb-I000005
    [式(4)]
    Figure JPOXMLDOC01-appb-I000006
  5.  前記式(2)化合物を、塩基性化合物の存在下、クライゼン転位反応させて、前記式(3)化合物に変換する反応をさせることを特徴とする、請求項4に記載のエポキシ樹脂の製造方法。
  6.  前記式(2)化合物1.0モルに対して、前記塩基性化合物を1.0モル以上100モル以下の割合で加えて反応させる、請求項5に記載のエポキシ樹脂の製造方法。
  7.  前記塩基性化合物がアニリン化合物である請求項5又は6に記載のエポキシ樹脂の製造方法。
  8.  前記式(2)化合物を前記式(3)化合物に変換する反応をさせた後であって、且つ、前記式(3)化合物を前記式(4)化合物に変換する反応をさせる前に、
     前記式(3)化合物以外の成分を分離除去する精製を行うことを特徴とする、請求項4に記載のエポキシ樹脂の製造方法。
  9.  前記式(3)化合物を前記式(4)化合物に変換する反応をさせた後であって、且つ、前記式(4)化合物を前記式(1)化合物に変換する反応をさせる前に、
     前記式(4)化合物以外の成分を分離除去する精製を行うことを特徴とする、請求項4又は8に記載のエポキシ樹脂の製造方法。
  10.  前記式(4)化合物を前記式(1)化合物に変換する反応をさせた後、
     前記式(1)化合物以外の成分を分離除去する精製を行うことを特徴とする、請求項4、8又は9に記載のエポキシ樹脂の製造方法。
  11.  下記式(6)で表される化合物(「式(6)化合物」とも称する)を、下記式(7)で表される化合物(「式(7)化合物」とも称する)に変換する反応をさせ、次に、前記式(7)化合物を、下記式(8)で表される化合物(「式(8)化合物」とも称する)に変換する反応をさせ、次に、前記式(8)化合物を、下記式(5)で表される式(5)化合物に変換する反応をさせてエポキシ樹脂を得る工程を備えたエポキシ樹脂の製造方法において、
     GPCにおいて、標準ポリスチレン換算分子量が60.8以上の成分の当該エポキシ樹脂中の含有割合が、RI検出器を用いて測定したときに9面積%以上25面積%以下となるようにすることを特徴とする、エポキシ樹脂の製造方法。
    [式(5)]
    Figure JPOXMLDOC01-appb-I000007
    (式(5)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基)
    [式(6)]
    Figure JPOXMLDOC01-appb-I000008
    (式(6)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基)
    [式(7)]
    Figure JPOXMLDOC01-appb-I000009
    (式(7)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基)
    [式(8)]
    Figure JPOXMLDOC01-appb-I000010
    (式(8)中のXは、-SO-、-O-、-CO-、-C(CF-、-S-、或いは、炭素数1~20の炭化水素基から選ばれる2価の連結基)
  12.  前記式(6)化合物を、塩基性化合物の存在下、クライゼン転位反応させて、前記式(7)化合物に変換する反応をさせることを特徴とする、請求項11に記載のエポキシ樹脂の製造方法。
  13.  前記式(6)化合物1.0モルに対して、前記塩基性化合物を1.0モル以上100モル以下の割合で加えて反応させる、請求項12に記載のエポキシ樹脂の製造方法。
  14.  前記塩基性化合物がアニリン化合物である請求項12又は13に記載のエポキシ樹脂の製造方法。
  15.  前記式(6)化合物を前記式(7)化合物に変換する反応をさせた後であって、且つ、前記式(7)化合物を前記式(8)化合物に変換する反応をさせる前に、
     前記式(7)化合物以外の成分を分離除去する精製を行うことを特徴とする、請求項11に記載のエポキシ樹脂の製造方法。
  16.  前記式(7)化合物を前記式(8)化合物に変換する反応をさせた後であって、且つ、前記式(8)化合物を前記式(5)化合物に変換する反応をさせる前に、
     前記式(8)化合物以外の成分を分離除去する精製を行うことを特徴とする、請求項11又は15に記載のエポキシ樹脂の製造方法。
  17.  前記式(8)化合物を前記式(5)化合物に変換する反応をさせた後、
     前記式(5)化合物以外の成分を分離除去する精製を行うことを特徴とする、請求項11、15又は16に記載のエポキシ樹脂の製造方法。
  18.  晶析により前記精製を行うことを特徴とする、請求項8、9、10、15、16又は17に記載のエポキシ樹脂の製造方法。
  19.  請求項1~3の何れかに記載のエポキシ樹脂を含み、且つ、当該エポキシ樹脂の官能基当量に対して0.80当量以上1.03当量以下の割合でエポキシ硬化剤を含有するエポキシ樹脂組成物。
  20.  請求項19に記載のエポキシ樹脂組成物が硬化してなる硬化物。
PCT/JP2020/009918 2019-03-25 2020-03-09 エポキシ樹脂及びその製造方法 WO2020195733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021508953A JPWO2020195733A1 (ja) 2019-03-25 2020-03-09
CN202080022416.7A CN113710719B (zh) 2019-03-25 2020-03-09 环氧树脂及其制造方法
KR1020217026638A KR20210151777A (ko) 2019-03-25 2020-03-09 에폭시 수지 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-056074 2019-03-25
JP2019056074 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020195733A1 true WO2020195733A1 (ja) 2020-10-01

Family

ID=72611449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009918 WO2020195733A1 (ja) 2019-03-25 2020-03-09 エポキシ樹脂及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2020195733A1 (ja)
KR (1) KR20210151777A (ja)
CN (1) CN113710719B (ja)
TW (1) TW202100603A (ja)
WO (1) WO2020195733A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149210A1 (ja) * 2022-02-01 2023-08-10 味の素株式会社 アンダーフィル材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340809B (zh) * 2022-08-30 2023-08-15 宁波恒翔涂料有限公司 一种防静电环氧基地坪涂料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142019A (ja) * 1986-12-02 1988-06-14 チバーガイギー アクチエンゲゼルシヤフト 多官能価エポキシド樹脂
JP2015127397A (ja) * 2013-11-27 2015-07-09 昭和電工株式会社 硬化性樹脂組成物
JP2015166335A (ja) * 2013-10-02 2015-09-24 三菱化学株式会社 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
JP2016094353A (ja) * 2014-11-12 2016-05-26 昭和電工株式会社 多価グリシジル化合物の製造方法
JP2016204647A (ja) * 2015-04-15 2016-12-08 三菱化学株式会社 多官能エポキシ樹脂及び中間体、エポキシ樹脂組成物、硬化物
JP2017149878A (ja) * 2016-02-25 2017-08-31 国立大学法人横浜国立大学 硬化性樹脂組成物、及び硬化性成形材料
JP2018141151A (ja) * 2017-02-28 2018-09-13 三菱ケミカル株式会社 多官能エポキシ樹脂組成物、および該多官能エポキシ樹脂組成物を硬化させてなる硬化物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364050B2 (ja) * 2010-07-08 2013-12-11 日東電工株式会社 熱硬化性樹脂組成物硬化体の製法およびそれにより得られた硬化物
WO2017057140A1 (ja) * 2015-09-29 2017-04-06 日本化薬株式会社 置換アリルエーテル樹脂、メタリルエーテル樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142019A (ja) * 1986-12-02 1988-06-14 チバーガイギー アクチエンゲゼルシヤフト 多官能価エポキシド樹脂
JP2015166335A (ja) * 2013-10-02 2015-09-24 三菱化学株式会社 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
JP2015127397A (ja) * 2013-11-27 2015-07-09 昭和電工株式会社 硬化性樹脂組成物
JP2016094353A (ja) * 2014-11-12 2016-05-26 昭和電工株式会社 多価グリシジル化合物の製造方法
JP2016204647A (ja) * 2015-04-15 2016-12-08 三菱化学株式会社 多官能エポキシ樹脂及び中間体、エポキシ樹脂組成物、硬化物
JP2017149878A (ja) * 2016-02-25 2017-08-31 国立大学法人横浜国立大学 硬化性樹脂組成物、及び硬化性成形材料
JP2018141151A (ja) * 2017-02-28 2018-09-13 三菱ケミカル株式会社 多官能エポキシ樹脂組成物、および該多官能エポキシ樹脂組成物を硬化させてなる硬化物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149210A1 (ja) * 2022-02-01 2023-08-10 味の素株式会社 アンダーフィル材

Also Published As

Publication number Publication date
TW202100603A (zh) 2021-01-01
JPWO2020195733A1 (ja) 2020-10-01
CN113710719B (zh) 2024-03-01
CN113710719A (zh) 2021-11-26
KR20210151777A (ko) 2021-12-14

Similar Documents

Publication Publication Date Title
KR101229854B1 (ko) 에폭시 수지, 이를 함유하는 경화성 수지 조성물 및 그용도
WO2020054601A1 (ja) マレイミド樹脂、硬化性樹脂組成物およびその硬化物
TWI757557B (zh) 硬化性樹脂組成物、清漆、預浸體、硬化物、及積層板或覆銅積層板
WO2020195733A1 (ja) エポキシ樹脂及びその製造方法
WO2017170844A1 (ja) 熱硬化性樹脂組成物、プリプレグ及びその硬化物
KR20050030863A (ko) 에폭시 화합물, 이것의 제조 방법, 및 이것의 용도
KR101408535B1 (ko) 변성 액상 에폭시 수지, 및 그것을 이용한 에폭시 수지 조성물 및 그 경화물
WO2011118368A1 (ja) ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
KR20080077963A (ko) 페놀 수지 및 그 제조법과 에폭시 수지 및 그 용도
JP6963565B2 (ja) アルケニル基含有樹脂、硬化性樹脂組成物およびその硬化物
KR20100100923A (ko) 에폭시화 촉매, 에폭시화 촉매의 제조방법, 에폭시 화합물의 제조방법, 경화성 수지 조성물 및 그 경화물
WO2008047613A1 (fr) Résine époxyde, procédé servant à produire la résine époxyde, composition de résine époxyde utilisant la résine époxyde et produit durci de la composition de résine époxyde
WO2012086840A1 (ja) ジエポキシ化合物およびその製造方法
TWI623566B (zh) 多羥基聚醚樹脂之製造方法,多羥基聚醚樹脂,其樹脂組成物及其硬化物
JPWO2018199157A1 (ja) マレイミド樹脂組成物、プリプレグ及びその硬化物
JPWO2020017141A1 (ja) 反応性希釈剤、組成物、封止材、硬化物、基板、電子部品、エポキシ化合物、及び化合物の製造方法
JP2004010877A (ja) 結晶性エポキシ樹脂、及びその製法
JP3100234B2 (ja) フェノール樹脂、その製造法、エポキシ樹脂組成物及び半導体封止用エポキシ樹脂組成物
JP7128598B1 (ja) エポキシ樹脂混合物、エポキシ樹脂組成物およびその硬化物
JP4674884B2 (ja) エポキシ樹脂の製造方法
WO2011135925A1 (ja) ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
WO2015052925A1 (ja) エポキシ樹脂の製造方法、エポキシ樹脂、硬化性樹脂組成物、及び、硬化物
JP6043602B2 (ja) 樹脂組成物
JPWO2017026396A1 (ja) エポキシ樹脂、変性エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP2014162854A (ja) 樹脂組成物及び硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778913

Country of ref document: EP

Kind code of ref document: A1