WO2020195428A1 - 感放射線性樹脂組成物及びレジストパターンの形成方法 - Google Patents

感放射線性樹脂組成物及びレジストパターンの形成方法 Download PDF

Info

Publication number
WO2020195428A1
WO2020195428A1 PCT/JP2020/007073 JP2020007073W WO2020195428A1 WO 2020195428 A1 WO2020195428 A1 WO 2020195428A1 JP 2020007073 W JP2020007073 W JP 2020007073W WO 2020195428 A1 WO2020195428 A1 WO 2020195428A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radiation
resin composition
mass
structural unit
Prior art date
Application number
PCT/JP2020/007073
Other languages
English (en)
French (fr)
Inventor
克聡 錦織
秀斗 森
準也 鈴木
浩光 中島
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2021508819A priority Critical patent/JP7360633B2/ja
Priority to KR1020217022330A priority patent/KR20210149685A/ko
Publication of WO2020195428A1 publication Critical patent/WO2020195428A1/ja
Priority to US17/392,435 priority patent/US20210364918A1/en
Priority to JP2023110552A priority patent/JP2023145463A/ja
Priority to JP2023155487A priority patent/JP2023171821A/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/03Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
    • C07C65/05Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring o-Hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1805C5-(meth)acrylate, e.g. pentyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1809C9-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Definitions

  • the present invention relates to a radiation-sensitive resin composition and a method for forming a resist pattern.
  • Photolithography technology that uses a resist composition is used to form fine circuits in semiconductor devices.
  • an acid is generated by exposure to a film of a resist composition by irradiation through a mask pattern, and an alkali-based resin is used in an exposed portion and an unexposed portion by a reaction using the acid as a catalyst.
  • a resist pattern is formed on the substrate by causing a difference in solubility in an organic developer.
  • Patent Document 1 a technique has been proposed in which a photosensitive quencher is added to the resist composition, and the acid diffused to the unexposed area is captured by an ion exchange reaction to improve the lithography performance by ArF exposure.
  • next-generation exposure technology lithography using shorter wavelength radiation such as electron beam, X-ray and EUV (extreme ultraviolet) is also being studied. Even with these next-generation exposure technologies, resist performance equal to or better than conventional ones is required in terms of sensitivity, depth of focus, etc., and a process margin that facilitates control of conditions for pattern miniaturization is desired, but the existing feeling is felt. In the radioactive resin composition, those properties are not obtained at a sufficient level.
  • An object of the present invention is to provide a method for forming a radiation-sensitive resin composition and a resist pattern capable of exhibiting sensitivity, depth of focus, and process margin at a sufficient level when a next-generation exposure technique is applied.
  • the present invention relates to, in one embodiment, a radiation-sensitive resin composition containing a resin containing a structural unit having a phenolic hydroxyl group and a compound represented by the following formula (1).
  • Ar is a substituted or unsubstituted aromatic ring having 6 to 20 carbon atoms.
  • N is an integer of 2 to 4.
  • Z + is a monovalent onium cation.
  • a plurality of Ys. are independently polar groups, however, at least one of the plurality of Ys is a -OH group or -SH group bonded to a carbon atom adjacent to the carbon atom to which the COO - group is bonded.
  • a compound represented by the above formula (1) having a specific structure (hereinafter, also referred to as “compound (B)”) is blended as a quencher to provide excellent sensitivity and focus. Depth of focus and process margin can be demonstrated. The reason for this is not bound by any theory, but it is speculated as follows. When the exposure amount is less than the required amount (in the case of underdose), the deprotection of the acid dissociative group of the resin becomes insufficient, so that the solubility of the exposed part in the developer tends to decrease, and bridge defects and scum occur. May cause.
  • the solubility in the alkaline developer in the insufficient exposure amount portion is increased, and the above-mentioned problems can be suppressed.
  • the pattern cross-sectional shape of the exposed portion becomes a T-shape or an inverted wedge-shaped state (a state in which the bottom portion is thin with respect to the upper portion) at the time of defocusing, the pattern collapse is likely to occur. Since the thick part at the top of the pattern is considered to be a part with insufficient deprotection, increasing the polarity of compound (B) increases the solubility of the top of the pattern and suppresses the above-mentioned problems, as in the case of underexposure. To.
  • the radiation-sensitive resin composition has sufficient levels of sensitivity, depth of focus and process margin. It is presumed that it can be demonstrated.
  • the polar group bonded to the carbon atom adjacent to the carbon atom to which the COO - group is bonded is preferably an -OH group.
  • the polarity of the compound (B) can be further increased, so that the sensitivity, the depth of focus and the process margin can be exhibited at a higher level.
  • the compound represented by the above formula (1) is preferably a compound represented by the following formula (1-1).
  • R p1 is an alkoxy group, an alkoxycarbonyl group, a halogen atom or an amino group.
  • M is an integer of 0 to 3.
  • m is 2 or 3
  • p1 is the same or different from each other.
  • N and Z + are synonymous with the above equation (1).
  • Q is an integer of 0 to 2. When q is 0, m + n is 5 or less, but at least 1.
  • One OH group is attached to a carbon atom adjacent to the carbon atom to which the COO - group is attached.
  • the polarity of the compound (B) can be efficiently increased. , Sensitivity, depth of focus and process margin can be improved efficiently.
  • q in the above formula (1-1) is 0 or 1.
  • n in the above formula (1-1) is preferably 2 or 3. Thereby, the polarity, stability, etc. of the compound (b) can be enhanced.
  • the content of the compound represented by the above formula (1) is preferably 3 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the resin.
  • the onium cation in the above formula (1) is preferably a sulfonium cation or an iodonium cation.
  • the radiation-sensitive resin composition preferably further contains a radiation-sensitive acid generator that generates an acid having a pKa smaller than that generated from the compound represented by the above formula (1).
  • a radiation-sensitive acid generator that generates an acid having a pKa smaller than that generated from the compound represented by the above formula (1).
  • the content of the radiation-sensitive acid generator is preferably 10 parts by mass or more with respect to 100 parts by mass of the resin. Further, the content of the radiation-sensitive acid generator is preferably 10 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the resin. As a result, the sensitivity, depth of focus and process margin can be further improved.
  • the structural unit having a phenolic hydroxyl group is a structural unit derived from hydroxystyrene.
  • EUV or the like exposure by EUV or the like, light absorption by the base resin, which has been a problem in conventional exposure by ArF excimer laser light, is not a problem, so a structural unit derived from hydroxystyrene having high etching resistance is not a problem. Can be introduced efficiently.
  • the content ratio of the structural unit having a phenolic hydroxyl group in the resin is preferably 5 mol% or more and 70 mol% or less. Thereby, the etching resistance of the obtained pattern can be further improved.
  • the present invention is a step of forming a resist film with the radiation-sensitive resin composition.
  • the present invention relates to a method for forming a resist pattern, which comprises a step of exposing the resist film and a step of developing the exposed resist film.
  • the above-mentioned radiation-sensitive resin composition having excellent sensitivity, depth of focus and process margin is used in the resist pattern forming method, a high-quality resist pattern can be efficiently formed.
  • the exposure can be suitably performed using extreme ultraviolet rays or electron beams, and a desired fine pattern can be obtained. Can be formed efficiently.
  • the present invention comprises a structural unit having an acid dissociative group and not containing a structural unit having a phenolic hydroxyl group. It contains a compound represented by the following formula (1) and a radiation-sensitive acid generator that generates an acid having a pKa smaller than that of the acid generated from the above compound.
  • the present invention relates to a radiation-sensitive resin composition in which the content of the radiation-sensitive acid generator is 10 parts by mass or more with respect to 100 parts by mass of the resin.
  • Ar is a substituted or unsubstituted aromatic ring having 6 to 20 carbon atoms.
  • N is an integer of 2 to 4.
  • Z + is a monovalent onium cation.
  • a plurality of Ys. Are independently polar groups, however, at least one of the plurality of Ys is a -OH group or -SH group bonded to a carbon atom adjacent to the carbon atom to which the COO - group is bonded.
  • the radiation-sensitive resin composition (hereinafter, also simply referred to as “composition”) according to the present embodiment contains the resin (A) and the compound (B). Further, if necessary, a radiation-sensitive acid generator (C) and a solvent (D) are contained. The composition may contain other optional components as long as the effects of the present invention are not impaired.
  • the resin (A) is an aggregate of polymers having a structural unit (a1) having a phenolic hydroxyl group (hereinafter, this resin is also referred to as a "base resin").
  • the resin (A) as the base resin may have a structural unit (a2) having an acid dissociative group and other structural units in addition to the structural unit (a1).
  • each structural unit will be described.
  • the structural unit (a1) is a structural unit containing a phenolic hydroxyl group.
  • the resin (A) can more appropriately adjust the solubility in the developing solution, and as a result, the radiation-sensitive resin composition described above. The sensitivity and the like can be further improved. Further, when KrF excimer laser light, EUV, electron beam or the like is used as the radiation to be irradiated in the exposure step in the resist pattern forming method, the resin (A) has the structural unit (a1), so that the structural unit (a1) is used.
  • the structural unit (a1) can be a structural unit derived from hydroxystyrene.
  • structural unit (a1) for example, a structural unit represented by the following formula (af) can be mentioned.
  • R AF1 is a hydrogen atom or a methyl group.
  • the LAF is single bond, -COO-, -O- or -CONH-.
  • R AF2 is a monovalent organic group having 1 to 20 carbon atoms.
  • n f1 is an integer of 0 to 3.
  • n f2 is an integer of 1 to 3.
  • n f1 + n f2 is 5 or less.
  • n af is an integer of 0 to 2.
  • the R AF1 is preferably a hydrogen atom from the viewpoint of copolymerizability of the monomer giving the structural unit (a1).
  • the L AF it is preferable a single bond and is -COO-.
  • the organic group in the resin (A) means a group containing at least one carbon atom.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R AF2 include a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the carbon-carbon group or the bond hand side of the hydrocarbon group. Examples thereof include a group containing a divalent heteroatom-containing group at the terminal, a group in which a part or all of the hydrogen atom of the group and the hydrocarbon group is substituted with a monovalent heteroatom-containing group, and the like.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R AF2 include, for example. Alkyl groups such as methyl group, ethyl group, propyl group and butyl group; Alkenyl groups such as ethenyl group, propenyl group, butenyl group; Chain hydrocarbon groups such as alkynyl groups such as ethynyl group, propynyl group and butynyl group; Cycloalkyl groups such as cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, norbornyl group, adamantyl group; Alicyclic hydrocarbon groups such as cycloalkenyl groups such as cyclopropenyl group, cyclopentenyl group, cyclohexenyl group, norbornenyl group; Aryl groups such as phenyl group, tolyl group, xsilyl group, naphthy
  • a chain hydrocarbon group and a cycloalkyl group are preferable, an alkyl group and a cycloalkyl group are more preferable, and a methyl group, an ethyl group, a propyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and an adamantyl group are preferable. More preferred.
  • R' is a hydrogen atom or a monovalent hydrocarbon group.
  • Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group (-SH). be able to.
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group (-SH).
  • a monovalent chain hydrocarbon group is preferable, an alkyl group is more preferable, and a methyl group is further preferable.
  • n f1 is preferably an integer of 0 to 2, more preferably 0 and 1, and even more preferably 0.
  • n f2 , 1 and 2 are preferable, and 1 is more preferable.
  • naf 0 and 1 are preferable, and 0 is more preferable.
  • the structural unit (a1) is preferably a structural unit represented by the following formulas (a1-1) to (a1-6).
  • R AF1 is the same as the above formula (af).
  • structural units (a1-1) and (a1-2) are preferable, and (a1-1) is more preferable.
  • the lower limit of the content ratio of the structural unit (a1) in the resin (A) is preferably 5 mol%, more preferably 10 mol%, and 15 mol% with respect to all the structural units constituting the resin (A). More preferably, 20 mol% is particularly preferable.
  • As the upper limit of the content ratio 70 mol% is preferable, 60 mol% is more preferable, 55 mol% is further preferable, and 50 mol% is particularly preferable.
  • the polymerization may be inhibited by the influence of the phenolic hydroxyl group.
  • the structural unit that gives the structural unit (a1) by hydrolysis is preferably represented by the following formula (4).
  • R 11 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 12 is a monovalent hydrocarbon group or an alkoxy group having 1 to 20 carbon atoms. Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms of R 12 include a monovalent hydrocarbon group having 1 to 20 carbon atoms. Examples of the alkoxy group include a methoxy group, an ethoxy group, a tert-butoxy group and the like.
  • R 12 is preferably an alkyl group and alkoxy group, and among them methyl group, tert- butoxy group is more preferable.
  • the structural unit (a2) is a structural unit containing an acid dissociative group.
  • the acid dissociative group in the structural unit (a2) preferably contains a cyclic structure.
  • the acid dissociable group containing a cyclic structure include a structural unit having a tertiary alkyl ester moiety, a structural unit having a structure in which a hydrogen atom of a phenolic hydroxyl group is substituted with a tertiary alkyl group, and an acetal bond.
  • Structural units and the like can be mentioned, but from the viewpoint of improving the pattern forming property of the above-mentioned radiation-sensitive resin composition, the structural unit represented by the following formula (5) (hereinafter, “structural unit (a2-1)””. Also referred to as) is preferable.
  • the "acid dissociative group” is a group that replaces a hydrogen atom of a carboxy group, a phenolic hydroxyl group, an alcoholic hydroxyl group, a sulfo group, or the like, and is a group that dissociates by the action of an acid. ..
  • the radiation-sensitive resin composition is excellent in pattern forming property because the resin has a structural unit (a2).
  • R 7 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 8 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 and R 10 are independently monovalent chain hydrocarbon groups having 1 to 10 carbon atoms or monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms, or groups thereof. Represents a divalent alicyclic group having 3 to 20 carbon atoms, which is composed of carbon atoms to which they are bonded together. It is assumed that R 8 to R 10 alone or a plurality of them have a ring structure of at least one or more.
  • L 1 represents a single bond or a divalent linking group.
  • a hydrogen atom preferably a methyl group, more preferably a methyl group.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 8 include a chain hydrocarbon group having 1 to 10 carbon atoms and a monovalent alicyclic hydrocarbon having 3 to 20 carbon atoms. Groups, monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms and the like can be mentioned.
  • the chain hydrocarbon group having 1 to 10 carbon atoms represented by R 8 to R 10 is a linear hydrocarbon group having 1 to 10 carbon atoms or a branched saturated hydrocarbon group, or a linear hydrocarbon group having 1 to 10 carbon atoms. Branched chain unsaturated hydrocarbon groups can be mentioned.
  • Examples of the alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 8 to R 10 include a monocyclic or polycyclic saturated hydrocarbon group or a monocyclic or polycyclic unsaturated hydrocarbon group. be able to.
  • a saturated hydrocarbon group of the monocycle a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group are preferable.
  • As the monocyclic unsaturated hydrocarbon group a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and a cyclooctenyl group are preferable.
  • an alicyclic hydrocarbon group having a bridge such as a norbornyl group, an adamantyl group, a tricyclodecyl group and a tetracyclododecyl group is preferable.
  • the alicyclic hydrocarbon group is a polycyclic fat in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic are bonded by a bond chain containing one or more carbon atoms. It refers to a cyclic hydrocarbon group.
  • Examples of the monovalent aromatic hydrocarbon group in which the R 8 having 6-20 carbon atoms represented by, for example, a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an aryl group such as an anthryl group; a benzyl group, a phenethyl group , Aralkyl groups such as naphthylmethyl group can be mentioned.
  • R 8 preferably a linear or branched chain saturated hydrocarbon group, an alicyclic hydrocarbon group having 3 to 20 carbon atoms having 1 to 10 carbon atoms.
  • a chain hydrocarbon group or an alicyclic hydrocarbon group is combined with each other and composed together with a carbon atom to which they are bonded.
  • the divalent alicyclic group having 3 to 20 carbon atoms is obtained by removing two hydrogen atoms from the same carbon atom constituting the carbon ring of the monocyclic or polycyclic alicyclic hydrocarbon having the above carbon number. If it is a group, it is not particularly limited.
  • the condensed alicyclic hydrocarbon group refers to a polycyclic alicyclic hydrocarbon group in which a plurality of alicyclics share a side (bond between two adjacent carbon atoms).
  • the saturated hydrocarbon group is preferably a cyclopentandyl group, a cyclohexanediyl group, a cycloheptandyl group, a cyclooctanediyl group or the like, and the unsaturated hydrocarbon group is a cyclopentendyl group.
  • Cyclohexendyl group, cycloheptendyl group, cyclooctendyl group, cyclodecendyl group and the like are preferable.
  • polycyclic alicyclic hydrocarbon group an alicyclic saturated hydrocarbon group with a bridge is preferable, and for example, a bicyclo [2.2.1] heptane-2,2-diyl group (norbornan-2,2-diyl) is preferable.
  • Group) bicyclo [2.2.2] octane-2,2-diyl group, tricyclo [3.3.1.1 3,7 ] decan-2,2-diyl group (adamantan-2,2-diyl group) ) Etc. are preferable.
  • Examples of the divalent linking group represented by L 1 include an alkanediyl group, a cycloalkanediyl group, an arcendyl group, * -R LA O-, * -R LB COO-, and the like (*). Represents the bond on the oxygen side.) A part or all of the hydrogen atoms contained in these groups may be substituted with halogen atoms such as fluorine atoms and chlorine atoms, cyano groups and the like.
  • alkanediyl group an alkanediyl group having 1 to 8 carbon atoms is preferable.
  • cycloalkanediyl group examples include a monocyclic cycloalkanediyl group such as a cyclopentanediyl group and a cyclohexanediyl group; a polycyclic cycloalkanediyl group such as a norbornanediyl group and an adamantandiyl group. ..
  • a cycloalkanediyl group having 5 to 12 carbon atoms is preferable.
  • alkendiyl group examples include an etendyl group, a propendyl group, and a butendiyl group.
  • arcendyl group an arcendyl group having 2 to 6 carbon atoms is preferable.
  • the * The -R LA O-a R LA mention may be made of the alkanediyl group, the cycloalkanediyl group, said alkenediyl group.
  • the * The -R LB COO- R LB it is possible to increase the alkanediyl group, the cycloalkanediyl group, said alkenediyl group, an arenediyl group.
  • Examples of the arrangedyl group include a phenylene group, a trilene group, a naphthylene group and the like.
  • As the arenediyl group an arenediyl group having 6 to 15 carbon atoms is preferable.
  • R 8 is preferably a hydrogen atom.
  • structural unit (a2-1) for example, a structural unit represented by the following formulas (5-1) to (5-4) (hereinafter, "structural unit (a2-1-1) to (a2)”. -1-4) ”) and the like can be mentioned.
  • R 7 and R 8 are the same as the above formula (5).
  • i is an integer from 1 to 4.
  • R 7 is the same as the above formula (5).
  • R 8 is a hydrogen atom.
  • R 2T is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • i is an integer from 1 to 4.
  • R 7 , R 9 and R 10 are the same as those in the above formula (5).
  • R 2T is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • i is an integer from 1 to 4.
  • the structural unit (a2-1) the structural unit (a2-1-1) and the structural unit (a2-1-2) are preferable, and the structural unit having a cyclopentane structure and the structure having a cyclohexane structure are preferable.
  • Units, structural units having a cyclopentane structure and structural units having a cyclohexene structure are more preferred.
  • the resin (A) may contain one type or a combination of two or more types of structural units (a2).
  • the lower limit of the content ratio of the structural unit (a2) is preferably 15 mol%, more preferably 20 mol%, still more preferably 25 mol%, based on all the structural units constituting the base resin resin (A). 30 mol% is particularly preferred.
  • As the upper limit of the content ratio 90 mol% is preferable, 80 mol% is more preferable, 75 mol% is further preferable, and 70 mol% is particularly preferable.
  • the structural unit (a3) is a structural unit containing at least one selected from the group consisting of a lactone structure, a cyclic carbonate structure, and a sultone structure.
  • the base resin can adjust the solubility in the developing solution, and as a result, the radiation-sensitive resin composition improves the lithography performance such as resolution. be able to.
  • the adhesion between the resist pattern formed from the base resin and the substrate can be improved.
  • Examples of the structural unit (a3) include structural units represented by the following formulas (T-1) to (T-10).
  • RL1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • RL2 to RL5 are independently composed of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cyano group, a trifluoromethyl group, a methoxy group, a methoxycarbonyl group, a hydroxy group, a hydroxymethyl group, and a dimethylamino group. is there.
  • RL4 and RL5 may be divalent alicyclic groups having 3 to 8 carbon atoms which are combined with each other and composed of carbon atoms to which they are bonded.
  • L 2 is a single bond or divalent linking group.
  • X is an oxygen atom or a methylene group.
  • k is an integer from 0 to 3.
  • m is an integer of 1 to 3.
  • the divalent alicyclic group having 3 to 8 carbon atoms in which the above RL4 and RL5 are combined with each other and formed together with the carbon atom to which they are bonded is represented by R 9 and R 10 in the above formula (5).
  • the chain hydrocarbon groups or alicyclic hydrocarbon groups to be formed are combined with each other and composed of carbon atoms to which they are bonded, and the number of carbon atoms is 3 to 8. The group is mentioned.
  • One or more hydrogen atoms on this alicyclic group may be substituted with a hydroxy group.
  • Examples of the divalent linking group represented by L 2 include a divalent linear or branched hydrocarbon group having 1 to 10 carbon atoms and a divalent alicyclic hydrocarbon having 4 to 12 carbon atoms. Examples thereof include a hydrogen group, or a group composed of one or more of these hydrocarbon groups and at least one group of -CO-, -O-, -NH- and -S-.
  • a structural unit containing a lactone structure is preferable, a structural unit containing a norbornane lactone structure is more preferable, and a structural unit derived from norbornane lactone-yl (meth) acrylate is further preferable.
  • the lower limit of the content ratio is preferably 5 mol%, more preferably 10 mol%, and 15 mol% with respect to all the structural units constituting the base resin. More preferred.
  • the upper limit of the content ratio is preferably 40 mol%, more preferably 30 mol%, still more preferably 20 mol%.
  • the resin (A) may appropriately have other structural units (also referred to as structural units (a4)) other than the structural units (a1) to (a3).
  • the structural unit (a4) include structural units having a fluorine atom, an alcoholic hydroxyl group, a carboxy group, a cyano group, a nitro group, a sulfonamide group and the like.
  • a structural unit having a fluorine atom, a structural unit having an alcoholic hydroxyl group and a structural unit having a carboxy group are preferable, and a structural unit having a fluorine atom and a structural unit having an alcoholic hydroxyl group are more preferable.
  • Examples of the structural unit (a4) include a structural unit represented by the following formula.
  • RA is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the lower limit of the content ratio of the structural unit (a4) to all the structural units constituting the resin (A) is preferably 1 mol%, more preferably 3 mol%. 5 mol% is more preferred.
  • the upper limit of the content ratio 50 mol% is preferable, 40 mol% is more preferable, and 30 mol% is further more preferable.
  • the content of the resin (A) is preferably 70% by mass or more, more preferably 75% by mass or more, still more preferably 80% by mass or more, based on the total solid content of the radiation-sensitive resin composition.
  • the "solid content” refers to all the components contained in the radiation-sensitive resin composition except the solvent.
  • the base resin resin (A) can be synthesized, for example, by subjecting a monomer giving each structural unit to a polymerization reaction in an appropriate solvent using a radical polymerization initiator or the like.
  • radical polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis (2-cyclopropylpro). Pionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutyrate and other azo radical initiators; Examples thereof include peroxide-based radical initiators such as benzoyl peroxide, t-butyl hydroperoxide, and cumene hydroperoxide. Among these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferable, and AIBN is more preferable. These radical initiators can be used alone or in admixture of two or more.
  • Examples of the solvent used in the polymerization reaction include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; cyclohexane, cycloheptane, cyclooctane, and decalin.
  • Cycloalkanes such as norbornan
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene
  • halogenated hydrocarbons such as chlorobutane, bromohexane, dichloroethane, hexamethylenedibromid, chlorobenzene
  • acetic acid Saturated carboxylic acid esters such as ethyl, n-butyl acetate, i-butyl acetate, methyl propionate
  • ketones such as acetone, methyl ethyl ketone, 4-methyl-2-pentanone, 2-heptanone
  • tetrahydrofuran dimethoxyethanes, di Ethers such as ethoxyethanes
  • alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 4-methyl-2-pentanol and the like can be mentioned.
  • the reaction temperature in the above polymerization reaction is usually 40 ° C. to 150 ° C., preferably 50 ° C. to 120 ° C.
  • the reaction time is usually 1 hour to 48 hours, preferably 1 hour to 24 hours.
  • the molecular weight of the base resin resin (A) is not particularly limited, but the polystyrene-equivalent weight average molecular weight (Mw) by gel permeation chromatography (GPC) is preferably 1,000 or more and 50,000 or less, preferably 2,000 or more and 30, It is more preferably 000 or less, further preferably 3,000 or more and 15,000 or less, and particularly preferably 4,000 or more and 12,000 or less. If the Mw of the resin (A) is less than the above lower limit, the heat resistance of the obtained resist film may decrease. If the Mw of the resin (A) exceeds the above upper limit, the developability of the resist film may decrease.
  • Mw polystyrene-equivalent weight average molecular weight
  • the ratio (Mw / Mn) of Mw to the polystyrene-equivalent number average molecular weight (Mn) of the base resin resin (A) by GPC is usually 1 or more and 5 or less, preferably 1 or more and 3 or less, and 1 or more and 2 or less. More preferred.
  • the Mw and Mn of the resin in the present specification are values measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC columns 2 G2000HXL, 1 G3000HXL, 1 G4000HXL (all manufactured by Tosoh) Column temperature: 40 ° C
  • Elution solvent tetrahydrofuran Flow velocity: 1.0 mL / min
  • Sample concentration 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the content of the resin (A) is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 85% by mass or more, based on the total solid content of the radiation-sensitive resin composition.
  • the radiation-sensitive resin composition of the present embodiment may contain, as another resin, a resin having a larger mass content of fluorine atoms than the above-mentioned base resin (hereinafter, also referred to as “high fluorine content resin”). Good.
  • the radiation-sensitive resin composition contains a high fluorine content resin, it can be unevenly distributed on the surface layer of the resist film with respect to the base resin, and as a result, the state of the surface of the resist film and the components in the resist film can be distributed. The distribution can be controlled to the desired state.
  • the high fluorine content resin has, for example, the structural unit (a1) and the structural unit (a2) in the base resin, and the structural unit represented by the following formula (6) (hereinafter, “structural unit (a5)””. Also referred to as).
  • R 13 is a hydrogen atom, a methyl group or a trifluoromethyl group.
  • G is a single bond, an oxygen atom, a sulfur atom, -COO-, -SO 2 ONH-, -CONH- or -OCONH-.
  • R 14 is a monovalent fluorinated chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • R 13 a hydrogen atom and a methyl group are preferable, and a methyl group is more preferable, from the viewpoint of copolymerizability of the monomer giving the structural unit (a5).
  • a single bond and -COO- are preferable, and -COO- is more preferable, from the viewpoint of copolymerizability of the monomer giving the structural unit (a5).
  • the monovalent fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 14 is a part of hydrogen atoms contained in a monocyclic or polycyclic hydrocarbon group having 3 to 20 carbon atoms.
  • the ones that are all substituted with fluorine atoms can be mentioned.
  • R 14 preferably a fluorinated chain hydrocarbon group, more preferably a fluorinated alkyl group, a 2,2,2-trifluoroethyl group, 1,1,1,3,3,3-hexafluoro-propyl Groups and 5,5,5-trifluoro-1,1-diethylpentyl groups are more preferred.
  • the lower limit of the content ratio of the structural unit (a5) is preferably 10 mol% with respect to all the structural units constituting the high fluorine content resin, and 15 More preferably, 20 mol%, more preferably 25 mol%.
  • the upper limit of the content ratio is preferably 60 mol%, more preferably 50 mol%, still more preferably 40 mol%.
  • the high fluorine content resin may have a fluorine atom-containing structural unit (hereinafter, also referred to as structural unit (a6)) represented by the following formula (f-1) in addition to the structural unit (a5). .. Since the high fluorine content resin has a structural unit (f-1), its solubility in an alkaline developer can be improved and the occurrence of development defects can be suppressed.
  • structural unit (a6) fluorine atom-containing structural unit represented by the following formula (f-1) in addition to the structural unit (a5). .. Since the high fluorine content resin has a structural unit (f-1), its solubility in an alkaline developer can be improved and the occurrence of development defects can be suppressed.
  • the structural unit (a6) may be a group having (x) an alkali-soluble group or a group (y) that dissociates due to the action of an alkali to increase its solubility in an alkaline developer (hereinafter, simply referred to as an "alkali dissociative group"). It is roughly divided into two cases of having (say). Common to both (x) and (y), in the above formula (f-2), RC is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R D is a single bond, having from 1 to 20 carbon atoms (s + 1) -valent hydrocarbon group, an oxygen atom at the terminal of R E side of the hydrocarbon group, a sulfur atom, -NR dd -, carbonyl group, -COO- or It is a structure in which -CONH- is bonded, or a structure in which a part of the hydrogen atom of this hydrocarbon group is replaced by an organic group having a heteroatom.
  • R dd is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • s is an integer of 1 to 3.
  • R F is a hydrogen atom
  • a 1 is an oxygen atom
  • -COO- * or -SO 2 O-* is. * Indicates a site which binds to R F.
  • W 1 is a single bond, a hydrocarbon group having 1 to 20 carbon atoms, or a divalent fluorinated hydrocarbon group.
  • a 1 is an oxygen atom
  • W 1 is a fluorinated hydrocarbon group having a fluorine atom or a fluoroalkyl group at the carbon atom to which A 1 is bonded.
  • RE is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • a plurality of R E, W 1, A 1 and R F is may be respectively the same or different.
  • the structural unit (a6) has the (x) alkali-soluble group, the affinity for the alkaline developer can be enhanced and development defects can be suppressed.
  • (X) As the structural unit (a6) having an alkali-soluble group, when A 1 is an oxygen atom and W 1 is a 1,1,1,3,3,3-hexafluoro-2,2-methanediyl group. Is particularly preferable.
  • R F is a monovalent organic group having 1 to 30 carbon atoms
  • a 1 is an oxygen atom, -NR aa -, - COO- *, or -SO 2 O- *.
  • Raa is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. * Indicates a site which binds to R F.
  • W 1 is a single bond or a divalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • RE is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • W 1 or R F is a fluorine atom on the carbon atom adjacent to the carbon atoms or which binds to A 1.
  • a 1 is an oxygen atom
  • W 1, R E is a single bond
  • R D is a structure bonded carbonyl group at the terminal of R E side of the hydrocarbon group having 1 to 20 carbon atoms
  • R F is an organic group having a fluorine atom. If s is 2 or 3, a plurality of R E, W 1, A 1 and R F is may be respectively the same or different.
  • the structural unit (a6) has the (y) alkali dissociative group, the surface of the resist film changes from hydrophobic to hydrophilic in the alkaline development step. As a result, the affinity for the developing solution can be significantly increased, and development defects can be suppressed more efficiently.
  • the structural unit (a6) having (y) alkali dissociative group, A 1 is -COO- *, which both R F or W 1 or they have a fluorine atom is particularly preferred.
  • a hydrogen atom and a methyl group are preferable, and a methyl group is more preferable, from the viewpoint of copolymerizability of the monomer giving the structural unit (a6).
  • RE is a divalent organic group
  • a group having a lactone structure is preferable, a group having a polycyclic lactone structure is more preferable, and a group having a norbornane lactone structure is more preferable.
  • the lower limit of the content ratio of the structural unit (a6) is preferably 10 mol%, preferably 20 mol%, based on all the structural units constituting the high fluorine content resin. Mol% is more preferred, 30 mol% is even more preferred, and 35 mol% is particularly preferred.
  • the upper limit of the content ratio is preferably 90 mol%, more preferably 75 mol%, and even more preferably 60 mol%.
  • Mw of the high fluorine content resin 1,000 is preferable, 2,000 is more preferable, 3,000 is further preferable, and 5,000 is particularly preferable.
  • Mw 50,000 is preferable, 30,000 is more preferable, 20,000 is further preferable, and 15,000 is particularly preferable.
  • the lower limit of Mw / Mn of the high fluorine content resin is usually 1, and 1.1 is more preferable.
  • the upper limit of Mw / Mn is usually 5, preferably 3, more preferably 2, and even more preferably 1.7.
  • the lower limit of the content of the high fluorine content resin is preferably 0.1% by mass, more preferably 0.5% by mass, and 1% by mass with respect to the total solid content in the radiation-sensitive resin composition. More preferably, 1.5% by mass is further preferable.
  • the upper limit of the content is preferably 20% by mass, more preferably 15% by mass, further preferably 10% by mass, and particularly preferably 7% by mass.
  • the lower limit of the content of the high fluorine content resin 0.1 part by mass is preferable, 0.5 part by mass is more preferable, and 1 part by mass is further preferable, 1.5 parts by mass with respect to 100 parts by mass of the base resin. Parts by mass are particularly preferred.
  • the upper limit of the content is preferably 15 parts by mass, more preferably 10 parts by mass, further preferably 8 parts by mass, and particularly preferably 5 parts by mass.
  • the radiation-sensitive resin composition may contain one or more high-fluorine content resins.
  • the high fluorine content resin can be synthesized by the same method as the above-mentioned method for synthesizing the base resin.
  • Compound (B) can function as a quencher (photodisintegrating base) that captures an acid before or in an unexposed area.
  • Compound (B) is represented by the following formula (1).
  • Ar is a substituted or unsubstituted aromatic ring having 6 to 20 carbon atoms.
  • N is an integer of 2 to 4.
  • Z + is a monovalent onium cation.
  • a plurality of Ys. Are independently polar groups, however, at least one of the plurality of Ys is a -OH group or -SH group bonded to a carbon atom adjacent to the carbon atom to which the COO - group is bonded.
  • the substituted or unsubstituted aromatic ring having 6 to 20 carbon atoms is not particularly limited, and the carbon atom forming the skeleton is substituted with a hetero atom regardless of whether it is a monocyclic ring or a polycyclic ring. It may have an aromatic heterocyclic structure, and the hydrogen atom on the carbon atom may be substituted with a substituent other than the above polar group.
  • aromatic ring examples include groups having a benzene ring structure, a naphthalene ring structure, a phenanthrene ring structure, an anthracene ring structure, and the like.
  • hetero atom in the aromatic heterocyclic structure examples include an oxygen atom, a nitrogen atom, a sulfur atom and the like.
  • aromatic heterocyclic structure include oxygen atom-containing heterocyclic structures such as a furan ring structure, a pyran ring structure, a benzofuran ring structure, and a benzopyran ring structure; Nitrogen atom-containing heterocyclic structures such as pyridine ring structure, pyrimidine ring structure, and indole ring structure; Examples thereof include a sulfur atom-containing heterocyclic structure such as a thiophene ring structure. I can get rid of it.
  • Examples of the polar group include a hydroxy group, a sulfanyl group, a carboxy group, a cyano group, a nitro group, an amino group, a group having an ester bond, a halogen atom and the like.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkyl group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, acyloxy group and the like.
  • Examples of the monovalent onium cation include radiolytic onium cations containing elements such as S, I, O, N, P, Cl, Br, F, As, Se, Sn, Sb, Te and Bi. Examples thereof include sulfonium cations, tetrahydrothiophenium cations, iodonium cations, phosphonium cations, diazonium cations, pyridinium cations and the like. Of these, sulfonium cations or iodonium cations are preferable.
  • the sulfonium cation or the iodonium cation is preferably represented by the following formulas (X-1) to (X-5).
  • R a1 , R a2 and R a3 are independently substituted or unsubstituted linear or branched alkyl groups having 1 to 12 carbon atoms, alkoxy groups or alkoxycarbonyls.
  • RP , RQ, and RT are independently substituted or unsubstituted linear or branched alkyl groups having 1 to 12 carbon atoms, and substituted or unsubstituted alicyclic groups having 5 to 25 carbon atoms. It is a hydrocarbon group or an substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • k1, k2, and k3 are independently integers of 0 to 5.
  • R b1 is a substituted or unsubstituted linear or branched alkyl group or alkoxy group having 1 to 20 carbon atoms, or an substituted or unsubstituted acyl group having 2 to 8 carbon atoms. , Or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 8 carbon atoms, or a hydroxy group.
  • nk is 0 or 1. When n k is 0, k4 is an integer of 0 to 4, and when n k is 1, k4 is an integer of 0 to 7.
  • R b1 is plural, the plurality of R b1 may be the same or different, and plural R b1 may represent a constructed ring aligned with each other.
  • R b2 is a substituted or unsubstituted linear or branched alkyl group having 1 to 7 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon group having 6 or 7 carbon atoms.
  • k5 is an integer from 0 to 4. If R b2 is plural, the plurality of R b2 may be the same or different, and plural R b2 may represent a keyed configured ring structure.
  • q is an integer of 0 to 3.
  • R c1 , R c2, and R c3 are independently substituted or unsubstituted linear or branched alkyl groups having 1 to 12 carbon atoms, or substituted or unsubstituted. It is an aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • R d1 and R d2 are independently substituted or unsubstituted linear or branched alkyl groups having 1 to 12 carbon atoms, alkoxy groups or alkoxycarbonyl groups, and substituted. Alternatively, it is an unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, a halogen atom, an alkyl halide group having 1 to 4 carbon atoms, a nitro group, or two or more of these groups are combined with each other. Represents the ring structure to be composed.
  • k6 and k7 are independently integers of 0 to 5. When there are a plurality of R d1 and R d2 , respectively, a plurality of R d1 and R d2 May be the same or different.
  • R e1 and R e2 are independently halogen atoms, substituted or unsubstituted linear or branched alkyl groups having 1 to 12 carbon atoms, or substituted or unsubstituted. It is an aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • k8 and k9 are independently integers of 0 to 4.
  • the compound (B) is preferably a compound represented by the following formula (1-1) (that is, compound (b)).
  • R p1 is an alkoxy group, an alkoxycarbonyl group, a halogen atom or an amino group.
  • M is an integer of 0 to 3.
  • m is 2 or 3
  • p1 is the same or different from each other.
  • N and Z + are synonymous with the above equation (1).
  • Q is an integer of 0 to 2. When q is 0, m + n is 5 or less, but at least 1.
  • One OH group is attached to a carbon atom adjacent to the carbon atom to which the COO - group is attached.
  • the polarity can be increased, and the sensitivity, depth of focus and process margin can be efficiently improved.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like.
  • examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group and the like.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • M in the above formula (1-1) is preferably 0 to 2, more preferably 0 or 1.
  • q is preferably 0 or 1.
  • n is preferably 2 or 3.
  • Specific examples of the compound represented by the above formula (1-1) preferably include the following formulas (1-1a) to (1-1i).
  • the content of the compound (B) is preferably 0.5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the resin.
  • the upper limit of the content is more preferably 50 parts by mass, further preferably 25 parts by mass.
  • the lower limit of the content is more preferably 1 part by mass and further preferably 2 parts by mass.
  • the content of the compound (B) is appropriately selected according to the type of the resin (A) used, the exposure conditions and required sensitivity, and the type and content of the radiation-sensitive acid generator (C) described later. As a result, the solubility of the resin (A) can be obtained at a sufficient level, and the sensitivity, depth of focus and process margin can be exhibited at a higher level.
  • the upper limit of the molar ratio of the content of compound (B) to the content of the radiation-sensitive acid generator is 250. Mol% is preferred, 200 mol% is more preferred, 100 mol% is even more preferred, and 50 mol% is particularly preferred.
  • the lower limit of the molar ratio is preferably 3 mol%, more preferably 5 mol%, further preferably 10 mol%, and particularly preferably 15 mol%.
  • the compound (B) can be typically synthesized by reacting a benzoic acid derivative corresponding to the anion moiety with a sulfonium chloride corresponding to the cation moiety under basic conditions to promote salt exchange.
  • the compound (B) having another structure can be synthesized by appropriately selecting a precursor corresponding to the anion portion and the cation portion.
  • the radiation-sensitive acid generator (C) is a component that generates an acid upon exposure.
  • the resin contains a structural unit (a2) having an acid dissociative group
  • the acid generated by exposure can dissociate the acid dissociative group of the structural unit (a2) to generate a carboxy group or the like.
  • This function does not substantially dissociate the acid dissociative group of the structural unit (a2) of the resin or the like under the pattern forming conditions using the radiation-sensitive resin composition, and the radiation-sensitive portion in the unexposed portion. This is different from the function of the compound (B) of suppressing the diffusion of the acid generated from the acid generator (C).
  • the acid generated from the radiation-sensitive acid generator (C) is an acid (acid having a small pKa) that is relatively stronger than the acid generated from the compound (B).
  • the functions of the compound (B) and the radiation-sensitive acid generator (C) are different from the energy required for the acid dissociative group of the structural unit (a2) of the resin to dissociate, and the radiation-sensitive resin composition. It is determined by the thermal energy conditions given when forming a pattern using an object.
  • the radiation-sensitive acid generator contained in the radiation-sensitive resin composition may be in the form of being present as a compound by itself (liberated from the polymer) or incorporated as a part of the polymer. Although both forms may be used, the form that exists alone as a compound is preferable.
  • the radiation-sensitive resin composition contains the radiation-sensitive acid generator (C)
  • the polarity of the resin in the exposed portion is increased, and the resin in the exposed portion is relative to the developing solution in the case of developing with an alkaline aqueous solution. It becomes soluble, while it becomes sparingly soluble in the developer in the case of organic solvent development.
  • Examples of the radiation-sensitive acid generator (C) include onium salt compounds, sulfonimide compounds, halogen-containing compounds, diazoketone compounds and the like.
  • Examples of the onium salt compound include sulfonium salt, tetrahydrothiophenium salt, iodonium salt, phosphonium salt, diazonium salt, pyridinium salt and the like. Of these, sulfonium salts and iodonium salts are preferable.
  • an acid that produces sulfonic acid by exposure can be mentioned.
  • examples of such an acid include compounds in which one or more fluorine atoms or fluorinated hydrocarbon groups are substituted for carbon atoms adjacent to sulfo groups.
  • the radiation-sensitive acid generator (C) having a cyclic structure is particularly preferable.
  • the content of the radiation-sensitive acid generator may be 5 parts by mass or more with respect to 100 parts by mass of the resin from the viewpoint of ensuring sensitivity and developability as a resist, but the sensitivity, depth of focus and process. From the viewpoint of margin, 10 parts by mass or more is preferable.
  • the lower limit of the content is more preferably 12 parts by mass, further preferably 15 parts by mass.
  • the upper limit of the content is preferably 60 parts by mass, more preferably 50 parts by mass, and even more preferably 40 parts by mass.
  • the radiation-sensitive resin composition according to this embodiment contains a solvent (D).
  • the solvent (D) is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least the resin (A), the compound (B), and the radiation-sensitive acid generator (C) contained if desired.
  • Examples of the solvent (D) include alcohol-based solvents, ether-based solvents, ketone-based solvents, amide-based solvents, ester-based solvents, hydrocarbon-based solvents, and the like.
  • an alcohol solvent for example Carbons such as iso-propanol, 4-methyl-2-pentanol, 3-methoxybutanol, n-hexanol, 2-ethylhexanol, furfuryl alcohol, cyclohexanol, 3,3,5-trimethylcyclohexanol, diacetone alcohol, etc. Numbers 1 to 18 of monoalcoholic solvents; Ethylene glycol, 1,2-propylene glycol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, etc., which have 2 to 18 carbon atoms. Hydrate alcohol solvent; Examples thereof include a polyhydric alcohol partial ether solvent obtained by etherifying a part of the hydroxy groups of the polyhydric alcohol solvent.
  • ether solvent for example, Dialkyl ether solvents such as diethyl ether, dipropyl ether and dibutyl ether; Cyclic ether solvent such as tetrahydrofuran and tetrahydropyran; Aromatic ring-containing ether solvents such as diphenyl ether and anisole (methylphenyl ether); Examples thereof include a polyhydric alcohol ether solvent obtained by etherifying the hydroxy group of the polyhydric alcohol solvent.
  • ketone solvent examples include chain ketone solvents such as acetone, butanone, and methyl-iso-butyl ketone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, and methylcyclohexanone: Examples thereof include 2,4-pentanedione, acetonylacetone and acetophenone.
  • amide solvent examples include cyclic amide solvents such as N, N'-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide and N-methylpropionamide.
  • ester solvent examples include Monocarboxylic acid ester solvent such as n-butyl acetate and ethyl lactate; Polyhydric alcohol partial ether acetate solvent such as diethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate; Lactone-based solvents such as ⁇ -butyrolactone and Valerolactone; Carbonate-based solvents such as diethyl carbonate, ethylene carbonate, and propylene carbonate; Examples thereof include polyvalent carboxylic acid diester solvents such as propylene glycol diacetate, methoxytriglycolacetate, diethyl oxalate, ethyl acetoacetate, ethyl lactate, and diethyl phthalate.
  • Monocarboxylic acid ester solvent such as n-butyl acetate and ethyl lactate
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents such as n-hexane, cyclohexane, and methylcyclohexane; Examples thereof include aromatic hydrocarbon solvents such as benzene, toluene, di-iso-propylbenzene and n-amylnaphthalene.
  • ester solvents and ketone solvents are preferable, polyhydric alcohol partial ether acetate solvents, cyclic ketone solvents and lactone solvents are more preferable, and propylene glycol monomethyl ether acetate, cyclohexanone and ⁇ -butyrolactone are even more preferable. ..
  • the radiation-sensitive resin composition may contain one or more solvents.
  • the radiation-sensitive resin composition may contain other optional components in addition to the above components.
  • the other optional components include a cross-linking agent, an uneven distribution accelerator, a surfactant, an alicyclic skeleton-containing compound, and a sensitizer. These other optional components may be used alone or in combination of two or more.
  • the cross-linking agent is a compound having two or more functional groups, and in the baking step after the batch exposure step, an acid-catalyzed reaction causes (1) a cross-linking reaction in the polymer component and (1) increases the molecular weight of the polymer component. By doing so, the solubility of the pattern exposed portion in the developing solution is lowered.
  • the functional group include (meth) acryloyl group, hydroxymethyl group, alkoxymethyl group, epoxy group, vinyl ether group and the like.
  • the uneven distribution accelerator has the effect of more efficiently unevenly distributing the high fluorine content resin on the surface of the resist film.
  • this uneven distribution accelerator in the radiation-sensitive resin composition, the amount of the high-fluorine-containing resin added can be reduced as compared with the conventional case. Therefore, while maintaining the lithography performance of the radiation-sensitive resin composition, it is possible to further suppress the elution of components from the resist film into the immersion medium, and to perform immersion exposure at a higher speed by high-speed scanning. As a result, the hydrophobicity of the resist film surface that suppresses immersion-derived defects such as water mark defects can be improved.
  • Examples of those that can be used as such an uneven distribution accelerator include low molecular weight compounds having a relative permittivity of 30 or more and 200 or less and a boiling point of 100 ° C. or more at 1 atm. Specific examples of such compounds include lactone compounds, carbonate compounds, nitrile compounds, and polyhydric alcohols.
  • lactone compound examples include ⁇ -butyrolactone, valerolactone, mevalonic lactone, norbornane lactone and the like.
  • Examples of the carbonate compound include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate and the like.
  • nitrile compound examples include succinonitrile.
  • Examples of the above-mentioned polyhydric alcohol include glycerin and the like.
  • the lower limit of the content of the uneven distribution accelerator 10 parts by mass is preferable, 15 parts by mass is more preferable, and 20 parts by mass is further preferable with respect to 100 parts by mass of the total amount of the resin in the radiation-sensitive resin composition. 25 parts by mass is more preferable.
  • the upper limit of the content is preferably 300 parts by mass, more preferably 200 parts by mass, further preferably 100 parts by mass, and particularly preferably 80 parts by mass.
  • the radiation-sensitive resin composition may contain one or more of the uneven distribution accelerators.
  • Surfactant Surfactants have the effect of improving coatability, striation, developability and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, and polyethylene glycol.
  • Nonionic surfactants such as distearate; commercially available products include KP341 (manufactured by Shinetsu Chemical Industry Co., Ltd.), Polyflow No. 75, No.
  • the content of the surfactant in the radiation-sensitive resin composition is usually 2 parts by mass or less with respect to 100 parts by mass of the resin.
  • the alicyclic skeleton-containing compound has the effect of improving dry etching resistance, pattern shape, adhesiveness to a substrate, and the like.
  • Examples of the alicyclic skeleton-containing compound include Adamantane derivatives such as 1-adamantane carboxylic acid, 2-adamantanone, 1-adamantane carboxylate t-butyl; Deoxycholic acid esters such as t-butyl deoxycholic acid, t-butoxycarbonylmethyl deoxycholic acid, and 2-ethoxyethyl deoxycholic acid; Lithocholic acid esters such as t-butyl lithocholic acid, t-butoxycarbonylmethyl lithocholic acid, 2-ethoxyethyl lithocholic acid; 3- [2-Hydroxy-2,2-bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 (2,5).
  • the content of the alicyclic skeleton-containing compound in the radiation-sensitive resin composition is usually 5 parts by mass or less with respect to 100 parts by mass of the resin.
  • the sensitizer has an action of increasing the amount of acid produced from a radiation-sensitive acid generator or the like, and has an effect of improving the "apparent sensitivity" of the radiation-sensitive resin composition.
  • sensitizer examples include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyls, eosin, rose bengal, pyrenes, anthracenes, phenothiazines and the like. These sensitizers may be used alone or in combination of two or more.
  • the content of the sensitizer in the radiation-sensitive resin composition is usually 2 parts by mass or less with respect to 100 parts by mass of the resin.
  • the radiation-sensitive resin composition comprises, for example, a resin (A), a compound (B), a radiation-sensitive acid generator (C), a high-fluorine-containing resin or the like, and a solvent (D), if necessary. It can be prepared by mixing in proportions. After mixing, the radiation-sensitive resin composition is preferably filtered with, for example, a filter having a pore size of about 0.05 ⁇ m.
  • the solid content concentration of the radiation-sensitive resin composition is usually 0.1% by mass to 50% by mass, preferably 0.5% by mass to 30% by mass, and more preferably 1% by mass to 20% by mass.
  • the resist pattern forming method in the present invention is A step (1) of directly or indirectly applying the radiation-sensitive resin composition on a substrate to form a resist film (hereinafter, also referred to as a “resist film forming step”).
  • the step of exposing the resist film (2) hereinafter, also referred to as “exposure step”
  • the step (3) hereinafter, also referred to as “development step” of developing the exposed resist film is included.
  • the resist pattern forming method since the radiation-sensitive resin composition having excellent sensitivity, depth of focus, and process margin in the exposure process is used, a high-quality resist pattern can be formed.
  • each step will be described.
  • a resist film is formed from the radiation-sensitive resin composition.
  • the substrate on which the resist film is formed include conventionally known substrates such as silicon wafers, silicon dioxide, and wafers coated with aluminum.
  • an organic or inorganic antireflection film disclosed in Japanese Patent Application Laid-Open No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate.
  • the coating method include rotary coating (spin coating), cast coating, roll coating and the like.
  • prebaking (PB) may be performed to volatilize the solvent in the coating film.
  • the PB temperature is usually 60 ° C.
  • the PB time is usually 5 seconds to 600 seconds, preferably 10 seconds to 300 seconds.
  • the film thickness of the resist film to be formed is preferably 10 nm to 1,000 nm, more preferably 10 nm to 500 nm.
  • the immersion liquid and the resist film are formed on the formed resist film regardless of the presence or absence of the water-repellent polymer additive such as the high fluorine content resin in the radiation-sensitive resin composition.
  • An insoluble protective film for immersion may be provided in the immersion liquid for the purpose of avoiding direct contact with the liquid.
  • the protective film for immersion include a solvent-removing protective film that is peeled off by a solvent before the developing process (see, for example, Japanese Patent Application Laid-Open No. 2006-227632), and a developer-removing protective film that is peeled off at the same time as the development in the developing process (see, for example, Japanese Patent Application Laid-Open No. 2006-227632).
  • any of WO2005-069076 and WO2006-305790 may be used.
  • it is preferable to use a developer release type protective film for immersion it is preferable to use a developer release type protective film for immersion.
  • the exposure step which is the next step, is performed with radiation having a wavelength of 50 nm or less
  • the resist film formed in the resist film forming step of the step (1) is passed through a photomask (in some cases, via an immersion medium such as water). , Irradiate and expose.
  • the radiation used for exposure is, for example, electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, EUV (extreme ultraviolet rays), X-rays, and ⁇ -rays; electron beams, ⁇ -rays, etc., depending on the line width of the target pattern. Charged particle beams can be mentioned.
  • far ultraviolet rays, electron beams, and EUV are preferable, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), electron beams, and EUV are more preferable, and a wavelength of 50 nm, which is positioned as a next-generation exposure technology.
  • the following electron beams and EUV are more preferable.
  • the immersion liquid to be used include water and a fluorine-based inert liquid.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient as small as possible so as to minimize distortion of the optical image projected on the film.
  • the exposure light source is ArF.
  • excimer laser light wavelength 193 nm
  • water it is preferable to use water from the viewpoints of easy availability and handling in addition to the above viewpoints.
  • an additive that reduces the surface tension of water and increases the surface activity may be added in a small proportion. It is preferable that this additive does not dissolve the resist film on the wafer and the influence on the optical coating on the lower surface of the lens can be ignored. Distilled water is preferable as the water to be used.
  • PEB post-exposure baking
  • the PEB temperature is usually 50 ° C. to 180 ° C., preferably 80 ° C. to 130 ° C.
  • the PEB time is usually 5 seconds to 600 seconds, preferably 10 seconds to 300 seconds.
  • the resist film exposed in the exposure step which is the step (2) is developed.
  • a predetermined resist pattern can be formed.
  • it is generally washed with a rinse solution such as water or alcohol and dried.
  • the developing solution used for the above development is, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-.
  • TMAH tetramethylammonium hydroxide
  • pyrrole pyrrole
  • piperidine choline
  • 1,8-diazabicyclo- [5.4.0] -7-undecene 1,5-Diazabicyclo- [4.3.0] -5-None and other alkaline compounds dissolved in at least one alkaline aqueous solution and the like
  • TMAH aqueous solution is preferable, and the 2.38 mass% TMAH aqueous solution is more preferable.
  • organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, etc., or solvents containing organic solvents can be mentioned.
  • organic solvent include one or more of the solvents listed as the solvents of the above-mentioned radiation-sensitive resin composition.
  • ester-based solvents and ketone-based solvents are preferable.
  • the ester solvent an acetic acid ester solvent is preferable, and n-butyl acetate and amyl acetate are more preferable.
  • ketone solvent a chain ketone is preferable, and 2-heptanone is more preferable.
  • the content of the organic solvent in the developing solution is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and particularly preferably 99% by mass or more.
  • the components other than the organic solvent in the developing solution include water, silicone oil and the like.
  • Examples of the developing method include a method of immersing the substrate in a tank filled with a developing solution for a certain period of time (dip method), and a method of developing by raising the developing solution on the surface of the substrate by surface tension and allowing it to stand still for a certain period of time (paddle).
  • dip method a method of immersing the substrate in a tank filled with a developing solution for a certain period of time
  • paddle a method of developing by raising the developing solution on the surface of the substrate by surface tension and allowing it to stand still for a certain period of time
  • Method a method of spraying the developer on the surface of the substrate
  • spray method a method of continuing to apply the developer on the substrate rotating at a constant speed while scanning the developer application nozzle at a constant speed
  • a resin, compound (B) and a radiation-sensitive acid generator (C) containing a structural unit (a2) and not containing a structural unit having a phenolic hydroxyl group are included, and a radiation-sensitive acid generator ( Examples thereof include a radiation-sensitive resin composition having a C) content of 10 parts by mass or more with respect to 100 parts by mass of the resin, and a resist pattern forming method using the radiation-sensitive resin composition and ArF excimer laser light.
  • the resin is preferably a resin containing a structural unit (a2) and at least one structural unit selected from the group consisting of the structural unit (a3) and the structural unit (a4).
  • the content ratio of these structural units may be proportionally distributed to each structural unit based on the content ratio in the resin (A), with the portion obtained by removing the structural unit (a1) from the resin (A) as 100 mol%.
  • Suitable lower and upper limits of the content are the same as those in the first embodiment, except that the content of the radiation-sensitive acid generator (C) is 10 parts by mass or more with respect to 100 parts by mass of the resin. ..
  • the preferred embodiment of the type and content of the compound (B), the solvent (D) and other optional components is the same as in the first embodiment.
  • the preferred embodiments of steps (1) to (3) are the same as those of the first embodiment except that ArF excimer laser light is used in step (2). is there.
  • a cooled polymerization solution was put into hexane (500 parts by mass with respect to the polymerization solution), and the precipitated white powder was filtered off.
  • the filtered white powder was washed twice with 100 parts by mass of hexane based on the polymerization solution, filtered, and dissolved in 1-methoxy-2-propanol (300 parts by mass).
  • methanol 500 parts by mass
  • triethylamine 50 parts by mass
  • ultrapure water 10 parts by mass
  • the resin (A-1) in the form of a white powder was synthesized by drying at 50 ° C. for 12 hours.
  • the start of dropping was set as the start time of the polymerization reaction, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was water-cooled and cooled to 30 ° C. or lower.
  • the cooled polymerization solution was put into methanol (2,000 parts by mass), and the precipitated white powder was filtered off.
  • the filtered white powder was washed twice with methanol, filtered, and dried at 50 ° C. for 24 hours to obtain a white powdery polymer (A-10) (yield: 80%).
  • the Mw of the polymer (A-10) was 7,800, and the Mw / Mn was 1.51.
  • the content ratio of each structural unit derived from (M-3) and (M-12) was 58.9 mol% and 41.1 mol%, respectively.
  • a compound represented by the following formula (CB-1) was used as the acid diffusion control agent in the comparative example.
  • Example 1 100 parts by mass of resin (A-1), 20 parts by mass of (C-1) as a radiation-sensitive acid generator, and 20 mol of compound (B-1) as an acid diffusion control agent with respect to (C-1). %, 4,800 parts by mass of (D-1) as the solvent (D), and 2,000 parts by mass of (D-2) were blended to prepare a radiation-sensitive resin composition (R-1).
  • Examples 2 to 21 and Comparative Example 1 The radiation-sensitive resin compositions (R-2) to (R-21) and (CR-) were operated in the same manner as in Example 1 except that the components of the types and blending amounts shown in Table 3 below were used. 1) was prepared.
  • ⁇ Formation of resist pattern (1)> EUV exposure, alkaline development
  • the composition was applied, PB was performed at 130 ° C. for 60 seconds, and then the mixture was cooled at 23 ° C. for 30 seconds to form a resist film having a film thickness of 50 nm.
  • the resist film was subjected to PEB at 130 ° C. for 60 seconds.
  • PEB was subjected to PEB at 130 ° C. for 60 seconds.
  • PEB was developed at 23 ° C. for 30 seconds to form a positive 32 nm line-and-space pattern.
  • the exposure amount for forming the 32 nm line-and-space pattern was defined as the optimum exposure amount, and this optimum exposure amount was defined as the sensitivity (mJ / cm 2 ).
  • the sensitivity can be evaluated as "good” when it is 30 mJ / cm 2 or less, and as “poor” when it exceeds 30 mJ / cm 2 .
  • Patterns from low to high exposures were formed using masks forming 32 nm line and space (1L / 1S). Generally, on the low exposure side, there are connections between patterns, and on the high exposure side, defects such as pattern collapse are seen. The difference between the upper limit value and the lower limit value of the resist size in which these defects are not observed was defined as "CD margin", and it was determined that the CD margin was good when it was 30 nm or more and defective when it was less than 30 nm. It is considered that the larger the value of the CD margin, the wider the process window.
  • ⁇ Formation of resist pattern (2)> (ArF exposure, alkaline development)
  • a composition for forming an underlayer antireflection film (“ARC66” by Brewer Science) was applied to the surface of a 12-inch silicon wafer using a spin coater (“CLEAN TRACK ACT12” by Tokyo Electron Limited), and then the temperature was 205 ° C.
  • a lower antireflection film having a film thickness of 105 nm was formed by heating for 60 seconds.
  • Each radiation-sensitive resin composition was applied onto the lower antireflection film using the spin coater, and PB was performed at 100 ° C. for 50 seconds. Then, it was cooled at 23 ° C. for 30 seconds to form a resist film having a film thickness of 90 nm.
  • WE a mask pattern for forming a resist pattern of 38 nm line and space (1 L / 1S).
  • PEB was performed at 90 ° C. for 50 seconds.
  • paddle development is performed at 23 ° C. for 30 seconds using a 2.38 mass% TMAH aqueous solution, then rinsed with ultrapure water for 7 seconds, and then spin-dried at 2,000 rpm for 15 seconds.
  • a 40 nm line-and-space (1 L / 1S) resist pattern was formed.
  • the exposure amount for forming a line having a line width of 40 nm formed through the mask pattern for pattern formation having a target size of 40 nm was defined as the optimum exposure amount (Eop).
  • CDU performance The hole pattern formed by irradiating the same exposure amount as the Eop obtained above was observed from the upper part of the pattern using the scanning electron microscope. Measure the hole diameter at 16 points in the range of 400 nm square on each side to obtain the average value, measure the average value at any point for a total of 500 points, obtain the 3 sigma value from the distribution of the measured values, and calculate this as the CDU performance It was set to (nm). The smaller the value of the CDU performance, the smaller the variation in the hole diameter in the long cycle and the better. The CDU performance was evaluated as "good” when it was 6.0 nm or less, and as “poor” when it exceeded 6.0 nm.
  • LWR performance The line-and-space pattern formed by irradiating the same exposure amount as Eop obtained in the formation of the resist pattern was observed from the upper part of the pattern using the scanning electron microscope. A total of 500 points of variation in line width were measured, and a 3-sigma value was obtained from the distribution of the measured values, which was defined as LWR performance (nm). The smaller the value of the LWR performance, the smaller the rattling of the line and the better. The LWR performance was evaluated as "good” when it was 4.0 nm or less and "bad" when it exceeded 4.0 nm.
  • the radiation-sensitive resin compositions of Reference Examples 1 to 3 had good sensitivity, CDU performance, and LWR performance.
  • the sensitivity, depth of focus and process margin can be improved as compared with the conventional case. Therefore, these can be suitably used for forming a fine resist pattern in the lithography process of various electronic devices such as semiconductor devices and liquid crystal devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

次世代露光技術を適用した場合に感度や焦点深度、プロセスマージンを十分なレベルで発揮可能な感放射線性樹脂組成物及びレジストパターンの形成方法を提供する。フェノール性水酸基を有する構造単位を含む樹脂、及び下記式(1)で表される化合物を含む感放射線性樹脂組成物。 (式(1)中、Arは置換又は非置換の炭素数6~20の芳香族環である。nは2~4の整数である。Zは1価のオニウムカチオンである。複数のYはそれぞれ独立して極性基である。ただし、複数のYのうち少なくとも1つはCOO基が結合する炭素原子に隣接する炭素原子に結合する-OH基又は-SH基である。)

Description

感放射線性樹脂組成物及びレジストパターンの形成方法
 本発明は、感放射線性樹脂組成物及びレジストパターンの形成方法に関する。
 半導体素子における微細な回路形成にレジスト組成物を用いるフォトリソグラフィー技術が利用されている。代表的な手順として、例えば、レジスト組成物の被膜に対するマスクパターンを介した放射線照射による露光で酸を発生させ、その酸を触媒とする反応により露光部と未露光部とにおいて樹脂のアルカリ系や有機系の現像液に対する溶解度の差を生じさせることで、基板上にレジストパターンを形成する。
 上記フォトリソグラフィー技術ではArFエキシマレーザー等の短波長の放射線を利用したり、さらに露光装置のレンズとレジスト膜との間の空間を液状媒体で満たした状態で露光を行う液浸露光法(リキッドイマージョンリソグラフィー)を用いたりしてパターン微細化を推進している。
 さらなる技術進展に向けた取り組みが進む中、レジスト組成物に感光性クエンチャーを配合し、未露光部まで拡散した酸をイオン交換反応により捕捉してArF露光によるリソグラフィー性能を向上させる技術が提案されている(特許文献1)。
特開2013-200560号公報
 次世代露光技術として、電子線、X線及びEUV(極端紫外線)等のより短波長の放射線を用いたリソグラフィーも検討されつつある。こうした次世代露光技術でも感度や焦点深度等の点で従来と同等以上のレジスト諸性能が要求され、またパターン微細化のための条件の制御を容易にするプロセスマージンが望まれるものの、既存の感放射線性樹脂組成物ではそれらの特性は十分なレベルで得られていない。
 本発明は、次世代露光技術を適用した場合に感度や焦点深度、プロセスマージンを十分なレベルで発揮可能な感放射線性樹脂組成物及びレジストパターンの形成方法を提供することを目的とする。
 本発明者らは、本課題を解決すべく鋭意検討を重ねた結果、下記構成を採用することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、一実施形態において、フェノール性水酸基を有する構造単位を含む樹脂、及び
 下記式(1)で表される化合物
 を含む感放射線性樹脂組成物に関する。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Arは置換又は非置換の炭素数6~20の芳香族環である。nは2~4の整数である。Zは1価のオニウムカチオンである。複数のYはそれぞれ独立して極性基である。ただし、複数のYのうち少なくとも1つはCOO基が結合する炭素原子に隣接する炭素原子に結合する-OH基又は-SH基である。)
 当該感放射線性樹脂組成物では、特定構造を有する上記式(1)で表される化合物(以下、「化合物(B)」ともいう。)をクエンチャーとして配合することで、優れた感度、焦点深度及びプロセスマージンを発揮することができる。この理由はいかなる理論にも束縛されないものの、以下のように推測される。露光量が必要量を下回る場合(underdoseの場合)、樹脂の酸解離性基の脱保護が不十分となるため、露光部の現像液への溶解性が低下する傾向となり、ブリッジ欠陥やスカム発生の原因となることがある。化合物(B)に複数の極性基を導入して極性を高めることで、露光量不足部分でのアルカリ現像液に対する溶解性が高まり、上記不具合を抑制することができる。また、デフォーカス時に露光部のパターン断面形状がT字状又は逆楔形の状態(上部に対して底部が細い状態)となった場合、パターン倒れが起きやすくなる。パターンの上部の分厚い部分は脱保護が不十分な部分と考えられるため、過少露光量の場合と同様、化合物(B)の極性を高めることでパターン上部の溶解性が高まり、上記不具合が抑制される。このように、化合物(B)の配合により低露光量ないしデフォーカス時の露光部における溶解性不足を補うことにより、当該感放射線性樹脂組成物は感度、焦点深度及びプロセスマージンを十分なレベルで発揮することができると推察される。
 一実施形態において、上記COO基が結合する炭素原子に隣接する炭素原子に結合する極性基が-OH基であることが好ましい。極性基として-OH基を採用することで化合物(B)の極性をより高めることができるので、感度、焦点深度及びプロセスマージンをより高いレベルで発揮することができる。
 一実施形態において、上記式(1)で表される化合物が、下記式(1-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式(1-1)中、Rp1は、アルコキシ基、アルコキシカルボニル基、ハロゲン原子又はアミノ基である。mは0~3の整数である。mが2又は3である場合、複数のRp1は互いに同一又は異なる。n及びZは上記式(1)と同義である。qは0~2の整数である。qが0である場合、m+nは5以下である。ただし、少なくとも1つのOH基は、COO基が結合する炭素原子に隣接する炭素原子に結合する。)
 化合物(B)として上記式(1-1)で表される化合物(以下、「化合物(b)」ともいう。)を採用することで、化合物(B)の極性を効率的に高めることができ、感度、焦点深度及びプロセスマージンを効率的に向上させることができる。
 一実施形態において、上記式(1-1)におけるqが0又は1であることが好ましい。これにより樹脂(A)との親和性を維持しつつ、化合物(b)のアルカリ現像液に対する溶解性を高めることができる。
 一実施形態において、上記式(1-1)におけるnが2又は3であることが好ましい。これにより化合物(b)の極性や安定性等を高めることができる。
 一実施形態において、上記式(1)で表される化合物の含有量が、上記樹脂100質量部に対し3質量部以上30質量部以下であることが好ましい。これにより化合物(B)の溶解性向上作用を十分なレベルで得ることができ、感度、焦点深度及びプロセスマージンをより高いレベルで発揮することができる。
 一実施形態において、上記式(1)におけるオニウムカチオンが、スルホニウムカチオン又はヨードニウムカチオンであることが好ましい。
 一実施形態において、当該感放射線性樹脂組成物は、上記式(1)で表される化合物から発生する酸よりpKaが小さい酸を発生する感放射線性酸発生剤をさらに含むことが好ましい。当該感放射線性樹脂組成物が具体的に感放射線性酸発生剤を含むことで、樹脂(A)中の保護基の脱保護が可能となり、リソグラフィープロセスを好適に進行させることができる。
 一実施形態において、上記感放射線性酸発生剤の含有量が、上記樹脂100質量部に対し10質量部以上であることが好ましい。また、上記感放射線性酸発生剤の含有量が、上記樹脂100質量部に対し10質量部以上60質量部以下であることが好ましい。これにより感度、焦点深度及びプロセスマージンのさらなる向上を図ることができる。
 一実施形態において、上記フェノール性水酸基を有する構造単位が、ヒドロキシスチレンに由来する構造単位であることが好ましい。EUV等による露光を採用する場合には、これまでのArFエキシマレーザー光による露光等で問題となっていたベース樹脂による光吸収は問題とならないので、耐エッチング性の高いヒドロキシスチレンに由来する構造単位を効率的に導入することができる。
 一実施形態において、上記樹脂中の上記フェノール性水酸基を有する構造単位の含有割合が、5モル%以上70モル%以下であることが好ましい。これにより、得られるパターンの耐エッチング性をより向上させることができる。
 本発明は、別の実施形態において、当該感放射線性樹脂組成物によりレジスト膜を形成する工程、
 上記レジスト膜を露光する工程、及び
 上記露光されたレジスト膜を現像する工程を含むレジストパターンの形成方法に関する。
 当該レジストパターンの形成方法では、感度、焦点深度及びプロセスマージンに優れる上記感放射線性樹脂組成物を用いているので、高品位のレジストパターンを効率的に形成することができる。
 別の実施形態において、優れた感度、焦点深度及びプロセスマージンを有する上記感放射線性樹脂組成物の採用により、上記露光を極端紫外線又は電子線を用いて好適に行うことができ、所望の微細パターンを効率的に形成することができる。
 本発明は、さらに別の実施形態において、酸解離性基を有する構造単位を含み、かつフェノール性水酸基を有する構造単位を含まない樹脂、
 下記式(1)で表される化合物、及び
 上記化合物から発生する酸よりpKaが小さい酸を発生する感放射線性酸発生剤
 を含み、
 上記感放射線性酸発生剤の含有量が、上記樹脂100質量部に対して10質量部以上である感放射線性樹脂組成物に関する。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Arは置換又は非置換の炭素数6~20の芳香族環である。nは2~4の整数である。Zは1価のオニウムカチオンである。複数のYはそれぞれ独立して極性基である。ただし、複数のYのうち少なくとも1つはCOO基が結合する炭素原子に隣接する炭素原子に結合する-OH基又は-SH基である。)
 以下、本発明の実施形態について、詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。
《第1実施形態》
 <感放射線性樹脂組成物>
 本実施形態に係る感放射線性樹脂組成物(以下、単に「組成物」ともいう。)は、樹脂(A)及び化合物(B)を含む。さらに必要に応じて、感放射線性酸発生剤(C)及び溶剤(D)を含む。上記組成物は、本発明の効果を損なわない限り、他の任意成分を含んでいてもよい。
 (樹脂(A))
 樹脂(A)は、フェノール性水酸基を有する構造単位(a1)を有する重合体の集合体である(以下、この樹脂を「ベース樹脂」ともいう。)。ベース樹脂たる樹脂(A)は、構造単位(a1)以外に、酸解離性基を有する構造単位(a2)やその他の構造単位を有していてもよい。以下、各構造単位について説明する。
 [構造単位(a1)]
 構造単位(a1)は、フェノール性水酸基を含む構造単位である。樹脂(A)は、構造単位(a1)及び必要に応じその他の構造単位を有することで、現像液への溶解性をより適度に調整することができ、その結果、上記感放射線性樹脂組成物の感度等をより向上させることができる。また、レジストパターン形成方法における露光工程で照射する放射線として、KrFエキシマレーザー光、EUV、電子線等を用いる場合には、樹脂(A)が構造単位(a1)を有することで、構造単位(a1)はエッチング耐性の向上と、露光部と未露光部との間の現像液溶解性の差(溶解コントラスト)の向上に寄与する。特に、電子線やEUVといった波長50nm以下の放射線による露光を用いるパターン形成に好適に適用することができる。
 また、本実施形態の感放射線性樹脂組成物においては、上記構造単位(a1)が、ヒドロキシスチレン由来の構造単位とすることができる。
 上記構造単位(a1)としては、例えば、下記式(af)で表される構造単位等をあげることができる。
Figure JPOXMLDOC01-appb-C000007
 上記式(af)中、RAF1は、水素原子又はメチル基である。LAFは、単結合、-COO-、-O-又は-CONH-である。RAF2は、炭素数1~20の1価の有機基である。nf1は、0~3の整数である。nf1が2又は3の場合、複数のRAF2は同一でも異なっていてもよい。nf2は、1~3の整数である。ただし、nf1+nf2は、5以下である。nafは、0~2の整数である。
 上記RAF1としては、構造単位(a1)を与える単量体の共重合性の観点から、水素原子であることが好ましい。
 LAFとしては、単結合及び-COO-であることが好ましい。
 なお、樹脂(A)における有機基とは、少なくとも1個の炭素原子を含む基をいう。
 上記RAF2で表される炭素数1~20の1価の有機基としては、例えば、炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間又は結合手側の末端に2価のヘテロ原子含有基を含む基、当該基及び上記炭化水素基が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等をあげることができる。
 上記RAF2で表される炭素数1~20の1価の炭化水素基としては、例えば、
 メチル基、エチル基、プロピル基、ブチル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などの鎖状炭化水素基;
 シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ノルボルニル基、アダマンチル基等のシクロアルキル基;
 シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基、ノルボルネニル基等のシクロアルケニル基などの脂環式炭化水素基;
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基等のアラルキル基などの芳香族炭化水素基等をあげることができる。
 上記RAF2としては、鎖状炭化水素基、シクロアルキル基が好ましく、アルキル基及びシクロアルキル基がより好ましく、メチル基、エチル基、プロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基及びアダマンチル基がさらに好ましい。
 上記2価のヘテロ原子含有基としては、例えば、-O-、-CO-、-CO-O-、-S-、-CS-、-SO-、-NR’-、これらのうちの2つ以上を組み合わせた基等をあげることができる。R’は、水素原子又は1価の炭化水素基である。
 上記1価のヘテロ原子含有基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基(-SH)等をあげることができる。
 これらの中で、1価の鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。
 上記nf1としては、0~2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。
 上記nf2としては、1及び2が好ましく、1がより好ましい。
 上記nafとしては、0及び1が好ましく、0がより好ましい。
 上記構造単位(a1)としては、下記式(a1-1)~(a1-6)で表される構造単位等であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記式(a1-1)~(a1-6)中、RAF1は、上記式(af)と同様である。
 これらの中で、構造単位(a1-1)及び(a1-2)が好ましく、(a1-1)がより好ましい。
 樹脂(A)中、構造単位(a1)の含有割合の下限としては、樹脂(A)を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましく、20モル%が特に好ましい。上記含有割合の上限としては、70モル%が好ましく、60モル%がより好ましく、55モル%がさらに好ましく、50モル%が特に好ましい。構造単位(a1)の含有割合を上記範囲とすることで、上記感放射線性樹脂組成物は、感度、焦点深度及びプロセスマージンのさらなる向上を図ることができる。
 ヒドロキシスチレン等のフェノール性水酸基を有するモノマーを直接ラジカル重合させようとすると、フェノール性水酸基の影響により重合が阻害される場合がある。この場合、アルカリ解離性基等の保護基によりフェノール性水酸基を保護した状態で重合させておき、その後加水分解を行って脱保護することにより構造単位(a1)を得るようにすることが好ましい。加水分解により構造単位(a1)を与える構造単位としては、下記式(4)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式(4)中、R11は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R12は、炭素数1~20の1価の炭化水素基又はアルコキシ基である。R12の炭素数1~20の1価の炭化水素基としては、炭素数1~20の1価の炭化水素基をあげることができる。アルコキシ基としては、例えば、メトキシ基、エトキシ基及びtert-ブトキシ基等をあげることができる。
 上記R12としては、アルキル基及びアルコキシ基が好ましく、中でもメチル基、tert-ブトキシ基がより好ましい。
 [構造単位(a2)]
 構造単位(a2)は、酸解離性基を含む構造単位である。中でも構造単位(a2)における酸解離性基は環状構造を含むことが好ましい。環状構造を含む酸解離性基としては、例えば、第三級アルキルエステル部分を有する構造単位、フェノール性水酸基の水素原子が第三級アルキル基で置換された構造を有する構造単位、アセタール結合を有する構造単位等をあげることができるが、上記感放射線性樹脂組成物のパターン形成性の向上の観点から、下記式(5)で表される構造単位(以下、「構造単位(a2-1)」ともいう)が好ましい。
 なお、本発明において、「酸解離性基」とは、カルボキシ基、フェノール性水酸基、アルコール性水酸基、スルホ基等が有する水素原子を置換する基であって、酸の作用により解離する基をいう。上記感放射線性樹脂組成物は、樹脂が構造単位(a2)を有することで、パターン形成性に優れる。
Figure JPOXMLDOC01-appb-C000010
 上記式(5)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、水素原子、又は炭素数1~20の1価の炭化水素基である。R及びR10は、それぞれ独立して、炭素数1~10の1価の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基を表す。なお、R~R10のうち、単独または複数が互いに組み合わさり、少なくとも1つ以上の環状構造を有するものとする。Lは、単結合又は2価の連結基を表す。
 上記Rとしては、構造単位(a2-1)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
 上記Rで表される炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~10の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等をあげることができる。
 上記R~R10で表される炭素数1~10の鎖状炭化水素基としては、炭素数1~10の直鎖若しくは分岐鎖飽和炭化水素基、又は炭素数1~10の直鎖若しくは分岐鎖不飽和炭化水素基をあげることができる。
 上記R~R10で表される炭素数3~20の脂環式炭化水素基としては、単環若しくは多環の飽和炭化水素基、又は単環若しくは多環の不飽和炭化水素基をあげることができる。単環の飽和炭化水素基としてはシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が好ましい。単環の不飽和炭化水素基としてはシクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基が好ましい。多環のシクロアルキル基としてはノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の有橋脂環式炭化水素基が好ましい。なお、有橋脂環式炭化水素基とは、脂環を構成する炭素原子のうち互いに隣接しない2つの炭素原子間が1つ以上の炭素原子を含む結合連鎖で結合された多環性の脂環式炭化水素基をいう。
 上記Rで表される炭素数6~20の1価の芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;ベンジル基、フェネチル基、ナフチルメチル基等のアラルキル基などをあげることができる。
 上記Rとしては、炭素数1~10の直鎖又は分岐鎖飽和炭化水素基、炭素数3~20の脂環式炭化水素基が好ましい。
 上記R~R10のいずれか複数が互いに組み合わさり、少なくとも1つ以上の環状構造を有する場合、鎖状炭化水素基又は脂環式炭化水素基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基は、上記炭素数の単環又は多環の脂環式炭化水素の炭素環を構成する同一炭素原子から2個の水素原子を除いた基であれば特に限定されない。単環式炭化水素基及び多環式炭化水素基のいずれでもよく、多環式炭化水素基としては、有橋脂環式炭化水素基及び縮合脂環式炭化水素基のいずれでもよく、飽和炭化水素基及び不飽和炭化水素基のいずれでもよい。なお、縮合脂環式炭化水素基とは、複数の脂環が辺(隣接する2つの炭素原子間の結合)を共有する形で構成された多環性の脂環式炭化水素基をいう。
 単環の脂環式炭化水素基のうち飽和炭化水素基としては、シクロペンタンジイル基、シクロヘキサンジイル基、シクロヘプタンジイル基、シクロオクタンジイル基等が好ましく、不飽和炭化水素基としてはシクロペンテンジイル基、シクロヘキセンジイル基、シクロヘプテンジイル基、シクロオクテンジイル基、シクロデセンジイル基等が好ましい。多環の脂環式炭化水素基としては、有橋脂環式飽和炭化水素基が好ましく、例えば、ビシクロ[2.2.1]ヘプタン-2,2-ジイル基(ノルボルナン-2,2-ジイル基)、ビシクロ[2.2.2]オクタン-2,2-ジイル基、トリシクロ[3.3.1.13,7]デカン-2,2-ジイル基(アダマンタン-2,2-ジイル基)等が好ましい。
 上記Lで表される2価の連結基としては、例えば、アルカンジイル基、シクロアルカンジイル基、アルケンジイル基、-RLAO-、-RLBCOO-等をあげることができる(*は酸素側の結合手を表す。)。これらの基が有する水素原子の一部又は全部は、フッ素原子や塩素原子等のハロゲン原子、シアノ基等で置換されていてもよい。
 上記アルカンジイル基としては、炭素数1~8のアルカンジイル基が好ましい。
 上記シクロアルカンジイル基としては、例えば、シクロペンタンジイル基、シクロヘキサンジイル基等の単環のシクロアルカンジイル基;ノルボルナンジイル基、アダマンタンジイル基等の多環のシクロアルカンジイル基等をあげることができる。上記シクロアルカンジイル基としては、炭素数5~12のシクロアルカンジイル基が好ましい。
 上記アルケンジイル基としては、例えば、エテンジイル基、プロペンジイル基、ブテンジイル基等をあげることができる。上記アルケンジイル基としては、炭素数2~6のアルケンジイル基が好ましい。
 上記-RLAO-のRLAとしては、上記アルカンジイル基、上記シクロアルカンジイル基、上記アルケンジイル基等をあげることができる。上記-RLBCOO-のRLBとしては、上記アルカンジイル基、上記シクロアルカンジイル基、上記アルケンジイル基、アレーンジイル基等をあげることができる。アレーンジイル基としては、例えば、フェニレン基、トリレン基、ナフチレン基等をあげることができる。上記アレーンジイル基としては、炭素数6~15のアレーンジイル基が好ましい。
 R及びR10と共に構成される上記脂環式基が不飽和結合を含み、かつLが単結合である場合、Rは水素原子であることが好ましい。
 また、上記構造単位(a2-1)としては、例えば、下記式(5-1)~(5-4)で表される構造単位(以下、「構造単位(a2-1-1)~(a2-1-4)」ともいう)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000011
 上記式(5-1)中、R及びRは、上記式(5)と同様である。iは1~4の整数である。
 上記式(5-2)中、Rは、上記式(5)と同様である。Rは水素原子である。R2Tは、水素原子、又は炭素数1~20の1価の炭化水素基である。iは1~4の整数である。
 上記式(5-3)、(5-4)中、R、R及びR10は、上記式(5)と同様である。R2Tは、水素原子、又は炭素数1~20の1価の炭化水素基である。iは1~4の整数である。
 構造単位(a2-1)としては、これらの中で、構造単位(a2-1-1)、構造単位(a2-1-2)が好ましく、シクロペンタン構造を有する構造単位、シクロヘキサン構造を有する構造単位、シクロペンテン構造を有する構造単位及びシクロヘキセン構造を有する構造単位がより好ましい。
 樹脂(A)は、構造単位(a2)を1種又は2種以上組み合わせて含んでいてもよい。
 構造単位(a2)の含有割合の下限としては、ベース樹脂たる樹脂(A)を構成する全構造単位に対して、15モル%が好ましく、20モル%がより好ましく、25モル%がさらに好ましく、30モル%が特に好ましい。上記含有割合の上限としては、90モル%が好ましく、80モル%がより好ましく、75モル%がさらに好ましく、70モル%が特に好ましい。構造単位(a2)の含有割合を上記範囲とすることで、上記感放射線性樹脂組成物のパターン形成性をより向上させることができる。
[構造単位(a3)]
 構造単位(a3)は、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位である。ベース樹脂は、構造単位(a3)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物は、解像性等のリソグラフィー性能を向上させることができる。また、ベース樹脂から形成されるレジストパターンと基板との密着性を向上させることができる。
 構造単位(a3)としては、例えば、下記式(T-1)~(T-10)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。RL2~RL5は、それぞれ独立して、水素原子、炭素数1~4のアルキル基、シアノ基、トリフルオロメチル基、メトキシ基、メトキシカルボニル基、ヒドロキシ基、ヒドロキシメチル基、ジメチルアミノ基である。RL4及びRL5は、互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~8の2価の脂環式基であってもよい。Lは、単結合又は2価の連結基である。Xは、酸素原子又はメチレン基である。kは0~3の整数である。mは1~3の整数である。
 上記RL4及びRL5が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~8の2価の脂環式基としては、上記式(5)中のR及びR10で表される鎖状炭化水素基又は脂環式炭化水素基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基のうち炭素数が3~8の基が挙げられる。この脂環式基上の1つ以上の水素原子は、ヒドロキシ基で置換されていてもよい。
 上記Lで表される2価の連結基としては、例えば、炭素数1~10の2価の直鎖状若しくは分岐状の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、又はこれらの炭化水素基の1個以上と-CO-、-O-、-NH-及び-S-のうちの少なくとも1種の基とから構成される基等が挙げられる。
 構造単位(a2)としては、これらの中で、ラクトン構造を含む構造単位が好ましく、ノルボルナンラクトン構造を含む構造単位がより好ましく、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位がさらに好ましい。
 樹脂(A)が構造単位(a2)を有する場合の含有割合の下限としては、ベース樹脂を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましい。上記含有割合の上限としては、40モル%が好ましく、30モル%がより好ましく、20モル%がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物は解像性等のリソグラフィー性能及び形成されるレジストパターンの基板との密着性をより向上させることができる。
 [構造単位(a4)]
 樹脂(A)は、上記構造単位(a1)~(a3)以外のその他の構造単位(構造単位(a4)ともいう。)を適宜有してもよい。構造単位(a4)としては、例えば、フッ素原子、アルコール性水酸基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等を有する構造単位などをあげることができる。これらの中で、フッ素原子を有する構造単位、アルコール性水酸基を有する構造単位及びカルボキシ基を有する構造単位が好ましく、フッ素原子を有する構造単位及びアルコール性水酸基を有する構造単位がより好ましい。
 構造単位(a4)としては、例えば、下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 樹脂(A)が構造単位(a4)を有する場合、樹脂(A)を構成する全構造単位に対する構造単位(a4)の含有割合の下限としては、1モル%が好ましく、3モル%がより好ましく、5モル%がさらに好ましい。一方、上記含有割合の上限としては、50モル%が好ましく、40モル%がより好ましく、30モル%がさらに好ましい。その他の構造単位の含有割合を上記範囲とすることで、樹脂(A)の現像液への溶解性をより適度にすることができる。その他の構造単位の含有割合が上記上限を超えると、パターン形成性が低下する場合がある。
 なお、上記構造単位(a2)~(a4)及びその他の構造単については、それらの構造単位から上記構造単位(a1)に該当するものを除く。
 樹脂(A)の含有量としては、上記感放射線性樹脂組成物の全固形分中、70質量%以上が好ましく、75質量%以上がより好ましく、80質量%以上がさらに好ましい。ここで「固形分」とは、上記感放射線性樹脂組成物中に含まれる成分のうち溶媒を除いた全ての成分をいう。
 (樹脂(A)の合成方法)
 ベース樹脂たる樹脂(A)は、例えば、各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶剤中で重合反応を行うことにより合成できる。
 上記ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル開始剤;
ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等をあげることができる。これらの中で、AIBN、ジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル開始剤は1種単独で又は2種以上を混合して用いることができる。
 上記重合反応に使用される溶剤としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;アセトン、メチルエチルケトン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等をあげることができる。これらの重合反応に使用される溶剤は、1種単独で又は2種以上を併用してもよい。
 上記重合反応における反応温度としては、通常40℃~150℃であり、50℃~120℃が好ましい。反応時間としては、通常1時間~48時間であり、1時間~24時間が好ましい。
 ベース樹脂たる樹脂(A)の分子量は特に限定されないが、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)が1,000以上50,000以下が好ましく、2,000以上30,000以下がより好ましく、3,000以上15,000以下がさらに好ましく、4,000以上12,000以下が特に好ましい。樹脂(A)のMwが上記下限未満だと、得られるレジスト膜の耐熱性が低下する場合がある。樹脂(A)のMwが上記上限を超えると、レジスト膜の現像性が低下する場合がある。
 ベース樹脂たる樹脂(A)のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)は、通常、1以上5以下であり、1以上3以下が好ましく、1以上2以下がさらに好ましい。
 本明細書における樹脂のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:G2000HXL 2本、G3000HXL 1本、G4000HXL 1本(以上、東ソー製)
 カラム温度:40℃
 溶出溶剤:テトラヒドロフラン
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
 樹脂(A)の含有量としては、上記感放射線性樹脂組成物の全固形分に対して、70質量%以上が好ましく、80質量%以上がより好ましく、85質量%以上がさらに好ましい。
 (他の樹脂)
 本実施形態の感放射線性樹脂組成物は、他の樹脂として、上記ベース樹脂よりもフッ素原子の質量含有率が大きい樹脂(以下、「高フッ素含有量樹脂」ともいう。)を含んでいてもよい。上記感放射線性樹脂組成物が高フッ素含有量樹脂を含有する場合、上記ベース樹脂に対してレジスト膜の表層に偏在化させることができ、その結果、レジスト膜表面の状態やレジスト膜中の成分分布を所望の状態に制御することができる。
 高フッ素含有量樹脂としては、例えば、上記ベース樹脂における構造単位(a1)及び構造単位(a2)を有するとともに、下記式(6)で表される構造単位(以下、「構造単位(a5)」ともいう。)を有することが好ましい。
Figure JPOXMLDOC01-appb-C000014
 上記式(6)中、R13は、水素原子、メチル基又はトリフルオロメチル基である。Gは、単結合、酸素原子、硫黄原子、-COO-、-SOONH-、-CONH-又は-OCONH-である。R14は、炭素数1~20の1価のフッ素化鎖状炭化水素基又は炭素数3~20の1価のフッ素化脂環式炭化水素基である。
 上記R13としては、構造単位(a5)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
 上記Gとしては、構造単位(a5)を与える単量体の共重合性の観点から、単結合及び-COO-が好ましく、-COO-がより好ましい。
 上記R14で表される炭素数1~20の1価のフッ素化鎖状炭化水素基としては、炭素数1~20の直鎖又は分岐鎖アルキル基が有する水素原子の一部又は全部がフッ素原子により置換されたものをあげることができる。
 上記R14で表される炭素数3~20の1価のフッ素化脂環式炭化水素基としては、炭素数3~20の単環又は多環式炭化水素基が有する水素原子の一部又は全部がフッ素原子により置換されたものをあげることができる。
 上記R14としては、フッ素化鎖状炭化水素基が好ましく、フッ素化アルキル基がより好ましく、2,2,2-トリフルオロエチル基、1,1,1,3,3,3-ヘキサフルオロプロピル基及び5,5,5-トリフルオロ-1,1-ジエチルペンチル基がさらに好ましい。
 高フッ素含有量樹脂が構造単位(a5)を有する場合、構造単位(a5)の含有割合の下限としては、高フッ素含有量樹脂を構成する全構造単位に対して、10モル%が好ましく、15モル%がより好ましく、20モル%がさらに好ましく、25モル%が特に好ましい。上記含有割合の上限としては、60モル%が好ましく、50モル%がより好ましく、40モル%がさらに好ましい。構造単位(a5)の含有割合を上記範囲とすることで、高フッ素含有量樹脂のフッ素原子の質量含有率をより適度に調整してレジスト膜の表層への偏在化をさらに促進することができる。
 高フッ素含有量樹脂は、構造単位(a5)以外に、下記式(f-1)で表されるフッ素原子含有構造単位(以下、構造単位(a6)ともいう。)を有していてもよい。高フッ素含有量樹脂は構造単位(f-1)を有することで、アルカリ現像液への溶解性が向上し、現像欠陥の発生を抑制することができる。
Figure JPOXMLDOC01-appb-C000015
 構造単位(a6)は、(x)アルカリ可溶性基を有する場合と、(y)アルカリの作用により解離してアルカリ現像液への溶解性が増大する基(以下、単に「アルカリ解離性基」とも言う。)を有する場合の2つに大別される。(x)、(y)双方に共通して、上記式(f-2)中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは単結合、炭素数1~20の(s+1)価の炭化水素基、この炭化水素基のR側の末端に酸素原子、硫黄原子、-NRdd-、カルボニル基、-COO-若しくは-CONH-が結合された構造、又はこの炭化水素基が有する水素原子の一部がヘテロ原子を有する有機基により置換された構造である。Rddは、水素原子又は炭素数1~10の1価の炭化水素基である。sは、1~3の整数である。
 構造単位(a6)が(x)アルカリ可溶性基を有する場合、Rは水素原子であり、Aは酸素原子、-COO-*又は-SOO-*である。*はRに結合する部位を示す。Wは単結合、炭素数1~20の炭化水素基又は2価のフッ素化炭化水素基である。Aが酸素原子である場合、WはAが結合する炭素原子にフッ素原子又はフルオロアルキル基を有するフッ素化炭化水素基である。Rは単結合又は炭素数1~20の2価の有機基である。sが2又は3の場合、複数のR、W、A及びRはそれぞれ同一でも異なっていてもよい。構造単位(a6)が(x)アルカリ可溶性基を有することで、アルカリ現像液に対する親和性を高め、現像欠陥を抑制することができる。(x)アルカリ可溶性基を有する構造単位(a6)としては、Aが酸素原子でありWが1,1,1,3,3,3-ヘキサフルオロ-2,2-メタンジイル基である場合が特に好ましい。
 構造単位(a6)が(y)アルカリ解離性基を有する場合、Rは炭素数1~30の1価の有機基であり、Aは酸素原子、-NRaa-、-COO-*又は-SOO-*である。Raaは水素原子又は炭素数1~10の1価の炭化水素基である。*はRに結合する部位を示す。Wは単結合又は炭素数1~20の2価のフッ素化炭化水素基である。Rは、単結合又は炭素数1~20の2価の有機基である。Aが-COO-*又は-SOO-*である場合、W又はRはAと結合する炭素原子又はこれに隣接する炭素原子上にフッ素原子を有する。Aが酸素原子である場合、W、Rは単結合であり、Rは炭素数1~20の炭化水素基のR側の末端にカルボニル基が結合された構造であり、Rはフッ素原子を有する有機基である。sが2又は3の場合、複数のR、W、A及びRはそれぞれ同一でも異なっていてもよい。構造単位(a6)が(y)アルカリ解離性基を有することにより、アルカリ現像工程においてレジスト膜表面が疎水性から親水性へと変化する。この結果、現像液に対する親和性を大幅に高め、より効率的に現像欠陥を抑制することができる。(y)アルカリ解離性基を有する構造単位(a6)としては、Aが-COO-*であり、R若しくはW又はこれら両方がフッ素原子を有する
ものが特に好ましい。
 Rとしては、構造単位(a6)を与える単量体の共重合性等の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
 Rが2価の有機基である場合、ラクトン構造を有する基が好ましく、多環のラクトン構造を有する基がより好ましく、ノルボルナンラクトン構造を有する基がより好ましい。
 高フッ素含有量樹脂が構造単位(a6)を有する場合、構造単位(a6)の含有割合の下限としては、高フッ素含有量樹脂を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましく、30モル%がさらに好ましく、35モル%が特に好ましい。上記含有割合の上限としては、90モル%が好ましく、75モル%がより好ましく、60モル%がさらに好ましい。構造単位(a6)の含有割合を上記範囲とすることで、液浸露光時のレジスト膜の撥水性をより向上させることができる。
 高フッ素含有量樹脂のMwの下限としては、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、15,000が特に好ましい。
 高フッ素含有量樹脂のMw/Mnの下限としては、通常1であり、1.1がより好ましい。上記Mw/Mnの上限としては、通常5であり、3が好ましく、2がより好ましく、1.7がさらに好ましい。
 高フッ素含有量樹脂の含有量の下限としては、上記感放射線性樹脂組成物中の全固形分に対して、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、1.5質量%がさらに好ましい。上記含有量の上限としては、20質量%が好ましく、15質量%がより好ましく、10質量%がさらに好ましく、7質量%が特に好ましい。
 高フッ素含有量樹脂の含有量の下限としては、上記ベース樹脂100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、1.5質量部が特に好ましい。上記含有量の上限としては、15質量部が好ましく、10質量部がより好ましく、8質量部がさらに好ましく、5質量部が特に好ましい。
 高フッ素含有量樹脂の含有量を上記範囲とすることで、高フッ素含有量樹脂をレジスト膜の表層へより効果的に偏在化させることができ、その結果、液浸露光時におけるレジスト膜の表面の撥水性をより高めることができる。上記感放射線性樹脂組成物は、高フッ素含有量樹脂を1種又は2種以上含有していてもよい。
 (高フッ素含有量樹脂の合成方法)
 高フッ素含有量樹脂は、上述のベース樹脂の合成方法と同様の方法により合成することができる。
 (化合物(B))
 化合物(B)は、露光前又は未露光部における酸を捕捉するクエンチャー(光崩壊性塩基)として機能し得る。化合物(B)は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000016
(式(1)中、Arは置換又は非置換の炭素数6~20の芳香族環である。nは2~4の整数である。Zは1価のオニウムカチオンである。複数のYはそれぞれ独立して極性基である。ただし、複数のYのうち少なくとも1つはCOO基が結合する炭素原子に隣接する炭素原子に結合する-OH基又は-SH基である。)
 化合物(B)を含むことにより、アルカリ現像液への樹脂溶解性の向上による露光量又はフォーカス位置の変動による不具合の抑制を通じて、感放射線性樹脂組成物に高いレベルでの感度、焦点深度及びプロセスマージンを付与することができる
 上記式(1)中、置換又は非置換の炭素数6~20の芳香族環としては特に限定されず、単環又は多環を問わず、骨格を形成する炭素原子がヘテロ原子で置換された芳香族複素環構造を有していてもよく、炭素原子上の水素原子が上記極性基以外の他の置換基で置換されていてもよい。
 上記芳香族環としては、例えばベンゼン環構造、ナフタレン環構造、フェナントレン環構造、アントラセン環構造等を有する基が挙げられる。
 上記芳香族複素環構造におけるヘテロ原子としては、酸素原子、窒素原子、硫黄原子等が挙げられる。
 上記芳香族複素環構造としては、例えば、フラン環構造、ピラン環構造、ベンゾフラン環構造、ベンゾピラン環構造等の酸素原子含有複素環構造;
 ピリジン環構造、ピリミジン環構造、インドール環構造等の窒素原子含有複素環構造;
 チオフェン環構造等の硫黄原子含有複素環構造等が挙げられる。
げられる。
 上記極性基としては、例えばヒドロキシ基、スルファニル基、カルボキシ基、シアノ基、ニトロ基、アミノ基、エステル結合を有する基、ハロゲン原子等が挙げられる。
 上記置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。
 上記1価のオニウムカチオンとしては、例えば、S、I、O、N、P、Cl、Br、F、As、Se、Sn、Sb、Te、Bi等の元素を含む放射線分解性オニウムカチオンが挙げられ、例えばスルホニウムカチオン、テトラヒドロチオフェニウムカチオン、ヨードニウムカチオン、ホスホニウムカチオン、ジアゾニウムカチオン、ピリジニウムカチオン等が挙げられる。中でも、スルホニウムカチオン又はヨードニウムカチオンが好ましい。スルホニウムカチオン又はヨードニウムカチオンは、好ましくは下記式(X-1)~(X-5)で表される。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 上記式(X-1)中、Ra1、Ra2及びRa3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、アルコキシ基若しくはアルコキシカルボニルオキシ基、置換若しくは非置換の炭素数3~12の単環若しくは多環のシクロアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、ヒドロキシ基、-OSO-R、-SO-R若しくは-S-Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。R、R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k1、k2及びk3は、それぞれ独立して0~5の整数である。Ra1~Ra3並びにR、R及びRがそれぞれ複数の場合、複数のRa1~Ra3並びにR、R及びRはそれぞれ同一でも異なっていてもよい。
 上記式(X-2)中、Rb1は、置換若しくは非置換の炭素数1~20の直鎖状若しくは分岐状のアルキル基若しくはアルコキシ基、置換若しくは非置換の炭素数2~8のアシル基、又は置換若しくは非置換の炭素数6~8の芳香族炭化水素基、又はヒドロキシ基である。nは0又は1である。nが0のとき、k4は0~4の整数であり、nが1のとき、k4は0~7の整数である。Rb1が複数の場合、複数のRb1は同一でも異なっていてもよく、また、複数のRb1は、互いに合わせられ構成される環構造を表してもよい。Rb2は、置換若しくは非置換の炭素数1~7の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6若しくは7の芳香族炭化水素基である。k5は、0~4の整数である。Rb2が複数の場合、複数のRb2は同一でも異なっていてもよく、また、複数のRb2は互いに合わせられ構成される環構造を表してもよい。qは、0~3の整数である。
 上記式(X-3)中、Rc1、Rc2及びRc3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。
 上記式(X-4)中、Rd1及びRd2は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、アルコキシ基若しくはアルコキシカルボニル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、ハロゲン原子、炭素数1~4のハロゲン化アルキル基、ニトロ基であるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。k6及びk7は、それぞれ独立して0~5の整数である。Rd1及びRd2がそれぞれ複数の場合、複数のRd1及びRd2
はそれぞれ同一でも異なっていてもよい。
 上記式(X-5)中、Re1及びRe2は、それぞれ独立して、ハロゲン原子、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k8及びk9は、それぞれ独立して0~4の整数である。
 上記化合物(B)は、下記式(1-1)で表される化合物(すなわち、化合物(b))であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
(式(1-1)中、Rp1は、アルコキシ基、アルコキシカルボニル基、ハロゲン原子又はアミノ基である。mは0~3の整数である。mが2又は3である場合、複数のRp1は互いに同一又は異なる。n及びZは上記式(1)と同義である。qは0~2の整数である。qが0である場合、m+nは5以下である。ただし、少なくとも1つのOH基は、COO基が結合する炭素原子に隣接する炭素原子に結合する。)
 化合物(B)として上記式(1-1)で表される化合物(b)を採用することで、極性を高めることができ、感度、焦点深度及びプロセスマージンを効率的に向上させることができる。
 上記式(1-1)中、アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。
 上記アルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基等が挙げられる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記式(1-1)におけるmは0~2であることが好ましく、0又は1であることがより好ましい。qは0又は1であることが好ましい。さらに、nは2又は3であることが好ましい。
 上記式(1-1)で表される化合物の具体例としては、下記式(1-1a)~(1-1i)が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000023
 化合物(B)の含有量は、上記樹脂100質量部に対し0.5質量部以上100質量部以下であることが好ましい。上記含有量の上限は50質量部がより好ましく、25質量部がさらに好ましい。上記含有量の下限は、1質量部がより好ましく、2質量部がさらに好ましい。化合物(B)の含有量は、使用する樹脂(A)の種類、露光条件や求められる感度、後述する感放射線性酸発生剤(C)の種類や含有量に応じて適宜選択される。これにより樹脂(A)の溶解性を十分なレベルで得ることができ、感度、焦点深度及びプロセスマージンをより高いレベルで発揮することができる。
 本実施形態に係る感放射線性樹脂組成物が後述の感放射線性酸発生剤を含む場合、化合物(B)の含有量の感放射線性酸発生剤の含有量に対するモル比の上限としては、250モル%が好ましく、200モル%がより好ましく、100モル%がさらに好ましく、50モル%が特に好ましい。一方、上記モル比の下限は、3モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましく、15モル%が特に好ましい。
 (化合物(B)の合成方法)
 化合物(B)は、代表的には、アニオン部に対応する安息香酸誘導体を塩基性条件下、カチオン部に対応するスルホニウムクロライドと反応させて塩交換を進行させることにより合成することができる。他の構造を有する化合物(B)についても同様にアニオン部及びカチオン部に対応する前駆体を適宜選択することで合成することができる。
 (感放射線性酸発生剤(C))
 感放射線性酸発生剤(C)は、露光により酸を発生する成分である。樹脂が酸解離性基を有する構造単位(a2)を含む場合、露光により発生した酸は該構造単位(a2)の有する酸解離性基を解離させ、カルボキシ基等を発生させることができる。この機能は、上記感放射線性樹脂組成物を用いたパターン形成条件において、樹脂の構造単位(a2)等が有する酸解離性基などを実質的に解離させず、未露光部において上記感放射線性酸発生剤(C)から発生した酸の拡散を抑制するという化合物(B)の機能とは異なる。感放射線性酸発生剤(C)から発生する酸は、化合物(B)から発生する酸より相対的に強い酸(pKaが小さい酸)であるということができる。化合物(B)及び感放射線性酸発生剤(C)の機能の別は、樹脂の構造単位(a2)等が有する酸解離性基が解離するのに必要とするエネルギー、および感放射線性樹脂組成物を用いてパターンを形成する際に与えられる熱エネルギー条件等によって決まる。感放射線性樹脂組成物における感放射線性酸発生剤の含有形態としては、それ単独で化合物として存在する(重合体から遊離した)形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよいものの、単独で化合物として存在する形態が好ましい。
 感放射線性樹脂組成物が上記感放射線性酸発生剤(C)を含有することにより、露光部の樹脂の極性が増大し、露光部における樹脂が、アルカリ水溶液現像の場合は現像液に対して溶解性となり、一方、有機溶媒現像の場合は現像液に対して難溶性となる。
 感放射線性酸発生剤(C)としては、例えばオニウム塩化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。これらのうち、スルホニウム塩、ヨードニウム塩が好ましい。
 露光により発生する酸としては、露光によりスルホン酸を生じるものをあげることができる。このような酸として、スルホ基に隣接する炭素原子に1以上のフッ素原子またはフッ素化炭化水素基が置換した化合物を挙げることができる。中でも、感放射線性酸発生剤(C)としては、環状構造を有するものが特に好ましい。
 これらの感放射線性酸発生剤は、単独で使用してもよく2種以上を併用してもよい。感放射線性酸発生剤の含有量としては、レジストとしての感度及び現像性を確保する観点から、樹脂100質量部に対して、5質量部以上であってもよいものの、感度、焦点深度及びプロセスマージンの点から10質量部以上が好ましい。上記含有量の下限は、12質量部がより好ましく、15質量部がさらに好ましい。上記含有量の上限は60質量部が好ましく、50質量部がより好ましく、40質量部がさらに好ましい。
 (溶剤(D))
 本実施形態に係る感放射線性樹脂組成物は、溶剤(D)を含有する。溶剤(D)は、少なくとも樹脂(A)及び化合物(B)、並びに所望により含有される感放射線性酸発生剤(C)等を溶解又は分散可能な溶剤であれば特に限定されない。
 溶剤(D)としては、例えば、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、エステル系溶剤、炭化水素系溶剤等が挙げられる。
 アルコール系溶剤としては、例えば、
 iso-プロパノール、4-メチル-2-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-エチルヘキサノール、フルフリルアルコール、シクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ジアセトンアルコール等の炭素数1~18のモノアルコール系溶剤;
 エチレングリコール、1,2-プロピレングリコール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の炭素数2~18の多価アルコール系溶剤;
 上記多価アルコール系溶剤が有するヒドロキシ基の一部をエーテル化した多価アルコール部分エーテル系溶剤等が挙げられる。
 エーテル系溶剤としては、例えば、
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶剤;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶剤;
 ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶剤;
 上記多価アルコール系溶剤が有するヒドロキシ基をエーテル化した多価アルコールエーテル系溶剤等が挙げられる。
 ケトン系溶剤としては、例えばアセトン、ブタノン、メチル-iso-ブチルケトン等の鎖状ケトン系溶剤:
 シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等の環状ケトン系溶剤:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶剤としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶剤;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶剤等が挙げられる。
 エステル系溶剤としては、例えば、
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
 ジエチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶剤;
 γ-ブチロラクトン、バレロラクトン等のラクトン系溶剤;
 ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶剤;
 ジ酢酸プロピレングリコール、酢酸メトキシトリグリコール、シュウ酸ジエチル、アセト酢酸エチル、乳酸エチル、フタル酸ジエチル等の多価カルボン酸ジエステル系溶媒が挙げられる。
 炭化水素系溶剤としては、例えば
 n-ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;
 ベンゼン、トルエン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶剤等が挙げられる。
 これらの中で、エステル系溶剤、ケトン系溶剤が好ましく、多価アルコール部分エーテルアセテート系溶剤、環状ケトン系溶剤、ラクトン系溶剤がより好ましく、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、γ-ブチロラクトンがさらに好ましい。当該感放射線性樹脂組成物は、溶剤を1種又は2種以上含有していてもよい。
 (その他の任意成分)
 上記感放射線性樹脂組成物は、上記成分以外にも、その他の任意成分を含有していてもよい。上記その他の任意成分としては、例えば、架橋剤、偏在化促進剤、界面活性剤、脂環式骨格含有化合物、増感剤等をあげることができる。これらのその他の任意成分は、それぞれ1種又は2種以上を併用してもよい。
 (架橋剤)
 架橋剤は2つ以上の官能基を有する化合物であり、一括露光工程後のベーク工程において、酸触媒反応により(1)重合体成分において架橋反応を引き起こし、(1)重合体成分の分子量を増加させることで、パターン露光部の現像液に対する溶解度を低下させるものである。上記官能基としては、例えば、(メタ)アクリロイル基、ヒドロキシメチル基、アルコキシメチル基、エポキシ基、ビニルエーテル基等をあげることができる。
 (偏在化促進剤)
 偏在化促進剤は、上記高フッ素含有量樹脂をより効率的にレジスト膜表面に偏在させる効果を有するものである。上記感放射線性樹脂組成物にこの偏在化促進剤を含有させることで、上記高フッ素含有量樹脂の添加量を従来よりも少なくすることができる。従って、上記感放射線性樹脂組成物のリソグラフィー性能を維持しつつ、レジスト膜から液浸媒体への成分の溶出をさらに抑制したり、高速スキャンにより液浸露光をより高速に行うことが可能になり、結果としてウォーターマーク欠陥等の液浸由来欠陥を抑制するレジスト膜表面の疎水性を向上させることができる。このような偏在化促進剤として用いることができるものとしては、例えば、比誘電率が30以上200以下で、1気圧における沸点が100℃以上の低分子化合物をあげることができる。このような化合物としては、具体的には、ラクトン化合物、カーボネート化合物、ニトリル化合物、多価アルコール等をあげることができる。
 上記ラクトン化合物としては、例えば、γ-ブチロラクトン、バレロラクトン、メバロニックラクトン、ノルボルナンラクトン等をあげることができる。
 上記カーボネート化合物としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等をあげることができる。
 上記ニトリル化合物としては、例えば、スクシノニトリル等をあげることができる。
 上記多価アルコールとしては、例えば、グリセリン等をあげることができる。
 偏在化促進剤の含有量の下限としては、上記感放射線性樹脂組成物における樹脂の総量100質量部に対して、10質量部が好ましく、15質量部がより好ましく、20質量部がさらに好ましく、25質量部がさらに好ましい。上記含有量の上限としては、300質量部が好ましく、200質量部がより好ましく、100質量部がさらに好ましく、80質量部が特に好ましい。上記感放射線性樹脂組成物は、偏在化促進剤を1種又は2種以上含有していてもよい。
 (界面活性剤)
 界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤;市販品としては、KP341(信越化学工業製)、ポリフローNo.75、同No.95(以上、共栄社化学製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ製)、メガファックF171、同F173(以上、DIC製)、フロラードFC430、同FC431(以上、住友スリーエム製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子工業製)等をあげることができる。上記感放射線性樹脂組成物における界面活性剤の含有量としては、樹脂100質量部に対して通常2質量部以下である。
 (脂環式骨格含有化合物)
 脂環式骨格含有化合物は、ドライエッチング耐性、パターン形状、基板との接着性等を改善する効果を奏する。
 脂環式骨格含有化合物としては、例えば、
 1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル等のアダマンタン誘導体類;
 デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル等のデオキシコール酸エステル類;
 リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル等のリトコール酸エステル類;
 3-〔2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.1(2,5).1(7,10)]ドデカン、2-ヒドロキシ-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.0(3,7)]ノナン等をあげることができる。上記感放射線性樹脂組成物における脂環式骨格含有化合物の含有量としては、樹脂100質量部に対して通常5質量部以下である。
 (増感剤)
 増感剤は、感放射線性酸発生剤等からの酸の生成量を増加する作用を示すものであり、上記感放射線性樹脂組成物の「みかけの感度」を向上させる効果を奏する。
 増感剤としては、例えば、カルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等をあげることができる。これらの増感剤は、単独で使用してもよく2種以上を併用してもよい。上記感放射線性樹脂組成物における増感剤の含有量としては、樹脂100質量部に対して通常2質量部以下である。
 <感放射線性樹脂組成物の調製方法>
 上記感放射線性樹脂組成物は、例えば、樹脂(A)、化合物(B)、感放射線性酸発生剤(C)、必要に応じて高フッ素含有量樹脂等、及び溶剤(D)を所定の割合で混合することにより調製できる。上記感放射線性樹脂組成物は、混合後に、例えば、孔径0.05μm程度のフィルター等でろ過することが好ましい。上記感放射線性樹脂組成物の固形分濃度としては、通常0.1質量%~50質量%であり、0.5質量%~30質量%が好ましく、1質量%~20質量%がより好ましい。
 <レジストパターン形成方法>
 本発明におけるレジストパターン形成方法は、
 基板上に直接又は間接に上記感放射線性樹脂組成物を塗布してレジスト膜を形成する工程(1)(以下、「レジスト膜形成工程」ともいう)、
 上記レジスト膜を露光する工程(2)(以下、「露光工程」ともいう)、及び、
 露光された上記レジスト膜を現像する工程(3)(以下、「現像工程」ともいう)を含む。
 上記レジストパターン形成方法によれば、露光工程における感度や焦点深度、プロセスマージンに優れた上記感放射線性樹脂組成物を用いているため、高品位のレジストパターンを形成することができる。以下、各工程について説明する。
 [レジスト膜形成工程]
 本工程(上記工程(1))では、上記感放射線性樹脂組成物でレジスト膜を形成する。このレジスト膜を形成する基板としては、例えば、シリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等をあげることができる。また、例えば、特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗布方法としては、例えば、回転塗布(スピンコーティング)、流延塗布、ロール塗布等をあげることができる。塗布した後に、必要に応じて、塗膜中の溶剤を揮発させるため、プレベーク(PB)を行ってもよい。PB温度としては、通常60℃~140℃であり、80℃~120℃が好ましい。PB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。形成されるレジスト膜の膜厚としては、10nm~1,000nmが好ましく、10nm~500nmがより好ましい。
 液浸露光を行う場合、上記感放射線性樹脂組成物における上記高フッ素含有量樹脂等の撥水性重合体添加剤の有無にかかわらず、上記形成したレジスト膜上に、液浸液とレジスト膜との直接の接触を避ける目的で、液浸液に不溶性の液浸用保護膜を設けてもよい。液浸用保護膜としては、現像工程の前に溶剤により剥離する溶剤剥離型保護膜(例えば、特開2006-227632号公報参照)、現像工程の現像と同時に剥離する現像液剥離型保護膜(例えば、WO2005-069076号公報、WO2006-035790号公報参照)のいずれを用いてもよい。ただし、スループットの観点からは、現像液剥離型液浸用保護膜を用いることが好ましい。
 また、次工程である露光工程を波長50nm以下の放射線にて行う場合、上記組成物中のベース樹脂として上記構造単位(a1)及び構造単位(a2)を有する樹脂を用いることが好ましい。
 [露光工程]
 本工程(上記工程(2))では、上記工程(1)であるレジスト膜形成工程で形成されたレジスト膜に、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)、放射線を照射し、露光する。露光に用いる放射線としては、目的とするパターンの線幅に応じて、例えば、可視光線、紫外線、遠紫外線、EUV(極端紫外線)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などをあげることができる。これらの中でも、遠紫外線、電子線、EUVが好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、電子線、EUVがより好ましく、次世代露光技術として位置付けされる波長50nm以下の電子線、EUVがさらに好ましい。
 露光を液浸露光により行う場合、用いる液浸液としては、例えば、水、フッ素系不活性液体等をあげることができる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー光(波長193nm)である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤をわずかな割合で添加しても良い。この添加剤は、ウェハ上のレジスト膜を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。
 上記露光の後、ポストエクスポージャーベーク(PEB)を行い、レジスト膜の露光された部分において、露光により感放射線性酸発生剤から発生した酸による樹脂等が有する酸解離性基の解離を促進させることが好ましい。このPEBによって、露光部と未露光部とで現像液に対する溶解性に差が生じる。PEB温度としては、通常50℃~180℃であり、80℃~130℃が好ましい。PEB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。
 [現像工程]
 本工程(上記工程(3))では、上記工程(2)である上記露光工程で露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。
 上記現像に用いる現像液としては、アルカリ現像の場合、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等をあげることができる。これらの中でも、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 また、有機溶剤現像の場合、炭化水素系溶剤、エーテル系溶剤、エステル系溶剤、ケトン系溶剤、アルコール系溶剤等の有機溶剤、又は有機溶剤を含有する溶剤をあげることができる。上記有機溶剤としては、例えば、上述の感放射線性樹脂組成物の溶剤として列挙した溶剤の1種又は2種以上等をあげることができる。これらの中でも、エステル系溶剤、ケトン系溶剤が好ましい。エステル系溶剤としては、酢酸エステル系溶剤が好ましく、酢酸n-ブチル、酢酸アミルがより好ましい。ケトン系溶剤としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。現像液中の有機溶剤の含有量としては、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99質量%以上が特に好ましい。現像液中の有機溶剤以外の成分としては、例えば、水、シリコンオイル等をあげることができる。
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等をあげることができる。
《別の実施形態》
 以下、別の実施形態について第1実施形態と異なる点を中心に説明する。別の実施形態として、構造単位(a2)を含みかつフェノール性水酸基を有する構造単位を含まない樹脂、化合物(B)及び感放射線性酸発生剤(C)を含み、感放射線性酸発生剤(C)の含有量が樹脂100質量部に対して10質量部以上である感放射線性樹脂組成物、並びに当該感放射線性樹脂組成物とArFエキシマレーザー光とを用いるレジストパターン形成方法が挙げられる。この実施形態において、樹脂としては構造単位(a2)と、構造単位(a3)及び構造単位(a4)からなる群より選ばれる少なくとも1つの構造単位とを含む樹脂が好ましい。これらの構造単位の含有割合は、樹脂(A)中の含有割合に基づき、樹脂(A)から構造単位(a1)を除いた分を100モル%として各構造単位に比例配分すればよい。感放射線性酸発生剤(C)の含有量は樹脂100質量部に対して10質量部以上である点を除き、上記含有量の好適な下限値及び上限値は第1実施形態と同様である。また化合物(B)、溶剤(D)及びその他の任意成分の種類や含有量の好ましい態様は、第1実施形態と同様である。当該感放射線性樹脂組成物を用いるレジストパターン形成方法について、工程(2)においてArFエキシマレーザー光を用いること以外は、工程(1)~工程(3)の好ましい態様は第1実施形態と同様である。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例における物性値は下記のようにして測定した。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 東ソー製GPCカラム(G2000HXL:2本、G3000HXL:1本、G4000HXL:1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、試料濃度:1.0質量%、試料注入量:100μL、カラム温度:40℃、検出器:示差屈折計の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
<樹脂(A)の合成>
 各実施例及び比較例並びに参考例における各樹脂(A)の合成で用いた単量体を以下に示す。
Figure JPOXMLDOC01-appb-C000024
[合成例1]樹脂(A-1)の合成
 化合物(M-1)及び化合物(M-3)をモル比率が40/60となるよう1-メトキシ-2-プロパノール(全モノマー量に対して200質量部)に溶解した。次に、開始剤としてアゾビスイソブチロニトリルを全モノマーに対して6モル%添加し、単量体溶液を調製した。一方、空の反応容器に1-メトキシ-2-プロパノール(全モノマー量に対して100質量部)を加え、攪拌しながら85℃に加熱した。次に、上記で調製した単量体溶液を3時間かけて滴下し、その後さらに3時間85℃で加熱し、重合反応を合計6時間実施した。重合反応終了後、重合溶液を室温に冷却した。
 ヘキサン(重合溶液に対して500質量部)中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を重合溶液に対して100質量部のヘキサンで2回洗浄した後、ろ別し、1-メトキシ-2-プロパノール(300質量部)に溶解した。次に、メタノール(500質量部)、トリエチルアミン(50質量部)及び超純水(10質量部)を加え、撹拌しながら70℃で6時間加水分解反応を実施した。
 反応終了後、残溶媒を留去し、得られた固体をアセトン(100質量部)に溶解させた。500質量部の水中に滴下して樹脂を凝固させ、得られた固体をろ別した。50℃、12時間乾燥させて白色粉末状の樹脂(A-1)を合成した。
[合成例2~9]
 樹脂(A-2)~(A-9)についてもモノマー種と比率を表1に示した組成に変更したこと以外は上記合成例1と同様に合成した。
Figure JPOXMLDOC01-appb-T000025
[合成例10]
 (樹脂(A-10)の合成)
 単量体(M-3)、単量体(M-12)を、モル比率が60/40となるよう2-ブタノン(全モノマー量に対して200質量部)に溶解し、開始剤としてAIBN(アゾビスイソブチロニトリル)(使用した全モノマーの合計100モル%に対して3モル%)を添加して単量体溶液を調製した。空の反応容器に2-ブタノン(全モノマー量に対して100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をメタノール(2,000質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をメタノールで2回洗浄した後、ろ別し、50℃で24時間乾燥させて白色粉末状の重合体(A-10)を得た(収率:80%)。重合体(A-10)のMwは7,800であり、Mw/Mnは1.51であった。また、13C-NMR分析の結果、(M-3)、(M-12)に由来する各構造単位の含有割合は、それぞれ58.9モル%、41.1モル%であった。
[合成例11~12]
 樹脂(A-11)、(A-12)についてもモノマー種と比率を表2に示した組成に変更した以外は上記合成例10と同様に合成した。
Figure JPOXMLDOC01-appb-T000026
<化合物(B)の合成>
 (化合物(B-1)の合成)
 下記反応スキームにしたがって、化合物(B-1)を合成した。
Figure JPOXMLDOC01-appb-C000027
 反応容器に炭酸水素ナトリウム97.4mmol、水200gを加えた。溶解を確認後、2,6-ジヒドロキシ安息香酸64.9mmolを加えた。室温で1時間撹拌後、ジクロロメタンを300g、トリフェニルスルホニウムクロライド64.9mmolを加えた。室温で2時間撹拌後、有機層を分離した。得られた有機層を水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、再結晶することで目的化合物(B-1)を得た。
 (化合物(B-2)~(B-9)の合成)
 前駆体を適宜選択し、実施例1と同様の処方を選択することで、下記式(B-2)~(B-6)で表されるオニウム塩化合物を合成した。
Figure JPOXMLDOC01-appb-C000028
 比較例における酸拡散制御剤として下記式(CB-1)で表される化合物を用いた。
Figure JPOXMLDOC01-appb-C000029
<感放射線性酸発生剤(C)>
 感放射線性酸発生剤(C)として、下記式(C-1)~(C-6)で表される化合物をそれぞれ用いた。
Figure JPOXMLDOC01-appb-C000030
<溶剤(D)>
 溶剤(D)として下記の溶剤を用いた。
 D-1:酢酸プロピレングリコールモノメチルエーテル
 D-2:プロピレングリコール1-モノメチルエーテル
 D-3:シクロヘキサノン
 D-4:γ-ブチロラクトン
[実施例1]
 樹脂(A-1)100質量部、感放射線性酸発生剤としての(C-1)20質量部、酸拡散制御剤としての化合物(B-1)を(C-1)に対して20モル%、溶剤(D)としての(D-1)4,800質量部、並びに(D-2)2,000質量部を配合して感放射線性樹脂組成物(R-1)を調製した。
[実施例2~21及び比較例1]
 下記表3に示す種類及び配合量の各成分を用いたこと以外は、実施例1と同様に操作して、感放射線性樹脂組成物(R-2)~(R-21)及び(CR-1)を調製した。
Figure JPOXMLDOC01-appb-T000031
<レジストパターンの形成(1)>(EUV露光、アルカリ現像)
 膜厚20nmの下層膜(AL412(Brewer Science社製))が形成された12インチのシリコンウェハ表面に、スピンコーター(CLEAN TRACK ACT12、東京エレクトロン製)を使用して、上記調製した感放射線性樹脂組成物を塗布し、130℃で60秒間PBを行った後、23℃で30秒間冷却し、膜厚50nmのレジスト膜を形成した。次に、このレジスト膜に、EUV露光機(型式「NXE3300」、ASML製、NA=0.33、照明条件:Conventional s=0.89、マスクimecDEFECT32FFR02)を用いてEUV光を照射した。上記レジスト膜に130℃で60秒間PEBを行った。次いで、2.38wt%のTMAH水溶液を用い、23℃で30秒間現像しポジ型の32nmラインアンドスペースパターンを形成した。
<評価>
 上記形成した各レジストパターンについて、下記方法に従って測定することにより、各感放射線性樹脂組成物の感度、焦点深度及びプロセスウィンドウを評価した。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4100」)を用いた。評価結果を下記表4に示す。
 [感度]
 上記レジストパターンの形成(1)において、32nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度は、30mJ/cm以下の場合は「良好」と、30mJ/cmを超える場合は「不良」と評価できる。
 [焦点深度]
 上記最適露光量において解像されるレジストパターンにおいて、深さ方向にフォーカスを変化させた際の寸法を観測し、ブリッジや残渣が無いままパターン寸法が基準の90%~110%に入る深さ方向の余裕度を測定し、この測定結果を焦点深度とした。焦点深度は、50nmを超える場合は良好と、50nm以下の場合は不良と評価できる。
 [プロセスウィンドウ]
 32nmラインアンドスペース(1L/1S)を形成するマスクを用いて、低露光量から高露光量までのパターンを形成した。一般的に低露光量側ではパターン間の繋がりが、高露光量側ではパターン倒れなどの欠陥が見られる。これら欠陥が見られないレジスト寸法の上限値と下限値の差を「CDマージン」とし、CDマージンが30nm以上の場合は良好、30nm未満の場合は不良と判定した。CDマージンの値が大きいほど、プロセスウィンドウも広いと考えられる。
Figure JPOXMLDOC01-appb-T000032
 表4の結果から明らかなように、実施例の感放射線性樹脂組成物ではいずれも、感度、焦点深度及びプロセスウインドウ(プロセスマージン)が比較例の感放射線性樹脂組成物に対して良好であった。
[参考例1]
 樹脂としての(A-10)100質量部、感放射線酸発生剤としての(C-1)12質量部、酸拡散抑制剤としての(B-1)を(C-1)に対して20モル%、溶媒として(D-1)2,240質量部、(D-3)960質量部及び(D-4)30質量部を混合し、0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(R‐22)を調製した。
[参考例2~6]
 下記表5に示す種類及び含有量の各成分を用いた以外は参考例1と同様にして、感放射線性樹脂組成物(R-23)~(R-24)及び(CR-1)~(CR-3)を調製した。
Figure JPOXMLDOC01-appb-T000033
<レジストパターンの形成(2)>(ArF露光、アルカリ現像)
 12インチのシリコンウェハ表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより膜厚105nmの下層反射防止膜を形成した。この下層反射防止膜上に、上記スピンコーターを使用して各感放射線性樹脂組成物を塗布し、100℃で50秒間PBを行った。その後23℃で30秒間冷却し、膜厚90nmのレジスト膜を形成した。次に、この塗膜を、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Dipole35X(σ=0.97/0.77)の光学条件にて、38nmラインアンドスペース(1L/1S)のレジストパターン形成用のマスクパターンを介して露光した。露光後、90℃で50秒間PEBを行った。その後、2.38質量%TMAH水溶液を用い、23℃で30秒間パドル現像を行い、次に、超純水を用いて7秒間リンスし、その後、2,000rpm、15秒間振り切りでスピンドライすることにより、40nmラインアンドスペース(1L/1S)のレジストパターンを形成した。
<評価>
 形成したレジストパターンについて下記方法に従って測定することにより、各感放射線性樹脂組成物の感度、CDU、LWR評価を行った。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG‐5000」)を用いた。評価結果を下記表6に示す。
[感度]
 上記レジストパターンの形成(2)において、ターゲット寸法が40nmラインアンドスペースのパターン形成用のマスクパターンを介して形成した線幅が40nmのラインを形成する露光量を最適露光量(Eop)とした。
[CDU性能]
 上記で求めたEopと同じ露光量を照射して形成したホールパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。一辺400nm四方の範囲でホール径を16点測定してその平均値を求め、その平均値を任意のポイントで計500点測定し、その測定値の分布から3シグマ値を求め、これをCDU性能(nm)とした。CDU性能は、その値が小さいほど、長周期でのホール径のばらつきが小さく良好である。CDU性能として、6.0nm以下の場合は「良好」と、6.0nmを超える場合は「不良」と評価した。
[LWR性能]
 レジストパターンの形成で求めたEopと同じ露光量を照射して形成したラインアンドスペースパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、これをLWR性能(nm)とした。LWR性能は、その値が小さいほど、ラインのがたつきが小さく良好である。LWR性能として、4.0nm以下の場合は「良好」と、4.0を超える場合は「不良」と評価した。
Figure JPOXMLDOC01-appb-T000034
 上記表6の結果から明らかなように、参考例1~3の感放射線性樹脂組成物では、感度、CDU性能、LWR性能が良好であった。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、従来よりも感度、焦点深度及びプロセスマージンを向上することができる。従って、これらは半導体デバイス、液晶デバイス等の各種電子デバイスのリソグラフィー工程における微細なレジストパターン形成に好適に用いることができる。

Claims (15)

  1.  フェノール性水酸基を有する構造単位を含む樹脂、及び
     下記式(1)で表される化合物
     を含む感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Arは置換又は非置換の炭素数6~20の芳香族環である。nは2~4の整数である。Zは1価のオニウムカチオンである。複数のYはそれぞれ独立して極性基である。ただし、複数のYのうち少なくとも1つはCOO基が結合する炭素原子に隣接する炭素原子に結合する-OH基又は-SH基である。)
  2.  上記COO基が結合する炭素原子に隣接する炭素原子に結合する極性基が-OH基である請求項1に記載の感放射線性樹脂組成物。
  3.  上記式(1)で表される化合物が、下記式(1-1)で表される化合物である請求項1又は2に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1-1)中、Rp1は、アルコキシ基、アルコキシカルボニル基、ハロゲン原子又はアミノ基である。mは0~3の整数である。mが2又は3である場合、複数のRp1は互いに同一又は異なる。n及びZは上記式(1)と同義である。qは0~2の整数である。qが0である場合、m+nは5以下である。ただし、少なくとも1つのOH基は、COO基が結合する炭素原子に隣接する炭素原子に結合する。)
  4.  上記式(1-1)におけるqが0又は1である請求項3に記載の感放射線性樹脂組成物。
  5.  上記式(1-1)におけるnが2又は3である請求項3又は4に記載の感放射線性樹脂組成物。
  6.  上記式(1)におけるオニウムカチオンが、スルホニウムカチオン又はヨードニウムカチオンである請求項1~5のいずれか1項に記載の感放射線性樹脂組成物。
  7.  上記式(1)で表される化合物から発生する酸よりpKaが小さい酸を発生する感放射線性酸発生剤をさらに含む請求項1~6のいずれか1項に記載の感放射線性樹脂組成物。
  8.  上記感放射線性酸発生剤の含有量が、上記樹脂100質量部に対し10質量部以上である請求項7に記載の感放射線性樹脂組成物。
  9.  上記感放射線性酸発生剤の含有量が、上記樹脂100質量部に対し10質量部以上60質量部以下である請求項8に記載の感放射線性樹脂組成物。
  10.  上記式(1)で表される化合物の含有量の上記感放射線性酸発生剤の含有量に対するモル比が、3モル%以上250モル%以下である請求項8又は9に記載の感放射線性樹脂組成物。
  11.  上記フェノール性水酸基を有する構造単位が、ヒドロキシスチレンに由来する構造単位である請求項1~10のいずれか1項に記載の感放射線性樹脂組成物。
  12.  上記樹脂中の上記フェノール性水酸基を有する構造単位の含有割合が、5モル%以上70モル%以下である請求項1~11のいずれか1項に記載の感放射線性樹脂組成物。
  13.  請求項1~12のいずれか1項に記載の感放射線性樹脂組成物によりレジスト膜を形成する工程、
     上記レジスト膜を露光する工程、及び
     上記露光されたレジスト膜を現像する工程を含むレジストパターンの形成方法。
  14.  上記露光を極端紫外線又は電子線を用いて行う請求項13に記載のレジストパターンの形成方法。
  15.  酸解離性基を有する構造単位を含み、かつフェノール性水酸基を有する構造単位を含まない樹脂、
     下記式(1)で表される化合物、及び
     上記化合物から発生する酸よりpKaが小さい酸を発生する感放射線性酸発生剤
     を含み、
     上記感放射線性酸発生剤の含有量が、上記樹脂100質量部に対して10質量部以上である感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Arは置換又は非置換の炭素数6~20の芳香族環である。nは2~4の整数である。Zは1価のオニウムカチオンである。複数のYはそれぞれ独立して極性基である。ただし、複数のYのうち少なくとも1つはCOO基が結合する炭素原子に隣接する炭素原子に結合する-OH基又は-SH基である。)
     
PCT/JP2020/007073 2019-03-28 2020-02-21 感放射線性樹脂組成物及びレジストパターンの形成方法 WO2020195428A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021508819A JP7360633B2 (ja) 2019-03-28 2020-02-21 感放射線性樹脂組成物及びレジストパターンの形成方法
KR1020217022330A KR20210149685A (ko) 2019-03-28 2020-02-21 감방사선성 수지 조성물 및 레지스트 패턴의 형성 방법
US17/392,435 US20210364918A1 (en) 2019-03-28 2021-08-03 Radiation-sensitive resin composition and method for forming resist pattern
JP2023110552A JP2023145463A (ja) 2019-03-28 2023-07-05 感放射線性樹脂組成物及びレジストパターンの形成方法
JP2023155487A JP2023171821A (ja) 2019-03-28 2023-09-21 感放射線性樹脂組成物及びレジストパターンの形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-064059 2019-03-28
JP2019064059 2019-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/392,435 Continuation-In-Part US20210364918A1 (en) 2019-03-28 2021-08-03 Radiation-sensitive resin composition and method for forming resist pattern

Publications (1)

Publication Number Publication Date
WO2020195428A1 true WO2020195428A1 (ja) 2020-10-01

Family

ID=72609515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007073 WO2020195428A1 (ja) 2019-03-28 2020-02-21 感放射線性樹脂組成物及びレジストパターンの形成方法

Country Status (4)

Country Link
US (1) US20210364918A1 (ja)
JP (3) JP7360633B2 (ja)
KR (1) KR20210149685A (ja)
WO (1) WO2020195428A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210149302A1 (en) * 2019-11-14 2021-05-20 Tokyo Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
WO2021131538A1 (ja) * 2019-12-26 2021-07-01 東京応化工業株式会社 化学増幅型ポジ型感光性樹脂組成物、感光性ドライフィルム、感光性ドライフィルムの製造方法、パターン化されたレジスト膜の製造方法、鋳型付き基板の製造方法及びめっき造形物の製造方法
WO2024048464A1 (ja) * 2022-08-31 2024-03-07 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法
KR20240040785A (ko) 2021-08-31 2024-03-28 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 화합물
KR20240051834A (ko) 2022-10-12 2024-04-22 신에쓰 가가꾸 고교 가부시끼가이샤 오늄염, 레지스트 조성물, 및 패턴 형성 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091712A (ja) * 2003-09-17 2005-04-07 Fuji Photo Film Co Ltd ポジ型レジスト組成物及びそれを用いたパターン形成方法
JP2017187517A (ja) * 2016-03-31 2017-10-12 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
WO2018230334A1 (ja) * 2017-06-15 2018-12-20 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
JP2019003176A (ja) * 2017-06-14 2019-01-10 信越化学工業株式会社 レジスト材料及びパターン形成方法
WO2019123842A1 (ja) * 2017-12-22 2019-06-27 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、レジスト膜付きマスクブランクス、フォトマスクの製造方法、電子デバイスの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040053160A1 (en) * 2002-07-04 2004-03-18 Fuji Photo Film Co., Ltd. Resist composition
WO2010134477A1 (ja) * 2009-05-18 2010-11-25 Jsr株式会社 感放射線性樹脂組成物及び化合物
KR101907705B1 (ko) * 2010-10-22 2018-10-12 제이에스알 가부시끼가이샤 패턴 형성 방법 및 감방사선성 조성물
KR101819261B1 (ko) * 2010-11-26 2018-01-16 제이에스알 가부시끼가이샤 감방사선성 조성물 및 화합물
JP5978137B2 (ja) * 2012-02-23 2016-08-24 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法
JP6663677B2 (ja) * 2015-10-06 2020-03-13 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法、並びに、化合物及び酸拡散制御剤
US10018911B2 (en) * 2015-11-09 2018-07-10 Jsr Corporation Chemically amplified resist material and resist pattern-forming method
JP7010195B2 (ja) * 2017-11-29 2022-01-26 信越化学工業株式会社 パターン形成方法
WO2019187881A1 (ja) * 2018-03-30 2019-10-03 富士フイルム株式会社 Euv光用ネガ型感光性組成物、パターン形成方法、電子デバイスの製造方法
JP7300823B2 (ja) * 2018-12-03 2023-06-30 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
JP7206102B2 (ja) * 2018-12-05 2023-01-17 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法、及び化合物
JP7224161B2 (ja) * 2018-12-05 2023-02-17 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
JP7238743B2 (ja) * 2018-12-18 2023-03-14 信越化学工業株式会社 レジスト材料及びパターン形成方法
JP7268615B2 (ja) * 2019-02-27 2023-05-08 信越化学工業株式会社 レジスト材料及びパターン形成方法
WO2021131845A1 (ja) * 2019-12-27 2021-07-01 Jsr株式会社 感放射線性樹脂組成物及びパターン形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091712A (ja) * 2003-09-17 2005-04-07 Fuji Photo Film Co Ltd ポジ型レジスト組成物及びそれを用いたパターン形成方法
JP2017187517A (ja) * 2016-03-31 2017-10-12 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
JP2019003176A (ja) * 2017-06-14 2019-01-10 信越化学工業株式会社 レジスト材料及びパターン形成方法
WO2018230334A1 (ja) * 2017-06-15 2018-12-20 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
WO2019123842A1 (ja) * 2017-12-22 2019-06-27 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、レジスト膜付きマスクブランクス、フォトマスクの製造方法、電子デバイスの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210149302A1 (en) * 2019-11-14 2021-05-20 Tokyo Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
JP2021081476A (ja) * 2019-11-14 2021-05-27 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
US11693313B2 (en) * 2019-11-14 2023-07-04 Tokyo Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
JP7394591B2 (ja) 2019-11-14 2023-12-08 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
WO2021131538A1 (ja) * 2019-12-26 2021-07-01 東京応化工業株式会社 化学増幅型ポジ型感光性樹脂組成物、感光性ドライフィルム、感光性ドライフィルムの製造方法、パターン化されたレジスト膜の製造方法、鋳型付き基板の製造方法及びめっき造形物の製造方法
KR20240040785A (ko) 2021-08-31 2024-03-28 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 화합물
WO2024048464A1 (ja) * 2022-08-31 2024-03-07 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法
KR20240051834A (ko) 2022-10-12 2024-04-22 신에쓰 가가꾸 고교 가부시끼가이샤 오늄염, 레지스트 조성물, 및 패턴 형성 방법

Also Published As

Publication number Publication date
TW202041554A (zh) 2020-11-16
US20210364918A1 (en) 2021-11-25
JP7360633B2 (ja) 2023-10-13
KR20210149685A (ko) 2021-12-09
JP2023145463A (ja) 2023-10-11
JP2023171821A (ja) 2023-12-05
JPWO2020195428A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7360633B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2021039331A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JP2017181697A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2022113663A1 (ja) 感放射線性樹脂組成物、及びパターン形成方法
JP6561731B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
WO2021220648A1 (ja) 感放射線性樹脂組成物及びそれを用いたレジストパターンの形成方法、並びに、スルホン酸塩化合物及びそれを含む感放射線性酸発生剤
JP7323865B2 (ja) 感放射線性樹脂組成物及びパターン形成方法
JP2015184458A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6725849B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6794728B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP6743618B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、化合物及び化合物の製造方法
WO2021131845A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
JP2022095677A (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
KR20230074470A (ko) 감방사선성 수지 조성물, 패턴 형성 방법 및 오늄염 화합물
WO2021157354A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JP7091762B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JPWO2020008994A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
TWI837313B (zh) 感放射線性樹脂組成物及抗蝕劑圖案的形成方法
JP6730641B2 (ja) 重合体及び化合物の製造方法
JP7494846B2 (ja) 感放射線性樹脂組成物、レジストパターンの形成方法及び化合物
WO2021235283A1 (ja) 感放射線性樹脂組成物、パターン形成方法及びオニウム塩化合物
JP6926406B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
US20230103682A1 (en) Method for forming resist pattern and radiation-sensitive resin composition
WO2021140909A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2023203827A1 (ja) 感放射線性樹脂組成物及びパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779815

Country of ref document: EP

Kind code of ref document: A1