WO2020194996A1 - 樹脂組成物及び成形体 - Google Patents

樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2020194996A1
WO2020194996A1 PCT/JP2020/000410 JP2020000410W WO2020194996A1 WO 2020194996 A1 WO2020194996 A1 WO 2020194996A1 JP 2020000410 W JP2020000410 W JP 2020000410W WO 2020194996 A1 WO2020194996 A1 WO 2020194996A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin
content
parts
resin composition
Prior art date
Application number
PCT/JP2020/000410
Other languages
English (en)
French (fr)
Inventor
弘貴 大関
大貴 ▲高▼野
拓人 小齊
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202080016612.3A priority Critical patent/CN113474410A/zh
Priority to EP20776507.4A priority patent/EP3950808A4/en
Priority to JP2020536901A priority patent/JP6816331B1/ja
Priority to US17/433,853 priority patent/US20220145071A1/en
Publication of WO2020194996A1 publication Critical patent/WO2020194996A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a resin composition containing an aromatic polycarbonate resin.
  • the present invention also relates to a molded product containing an aromatic polycarbonate resin.
  • thermoplastic resin such as polycarbonate resin is excellent in durability, light weight, molding processability, etc. For this reason, thermoplastic resins are used in various fields such as construction, home appliances, and transportation.
  • thermoplastic resins include interior materials for transport aircraft such as railroad vehicles, aircraft, ships and automobiles.
  • interior material include ceilings, window frames, armrests, backrests, tables and the like.
  • thermoplastic resin has excellent flame retardancy and impact resistance.
  • thermoplastic resins are generally flammable and vulnerable to impact, studies have been widely conducted to improve the flame retardancy and impact resistance of molded articles using thermoplastic resins.
  • Patent Document 1 discloses a thermoplastic resin composition containing (a) a polyetherimide resin, (b) an aromatic polycarbonate resin, and (c) a functionalized polysiloxane polymer.
  • Patent Document 2 discloses a sulfone polymer composition containing a high glass transition temperature sulfone polymer (A) having a specific structure, a miscible polymer (B), and an immiscible polymer (C). There is.
  • a molded body having a predetermined shape may be manufactured by vacuum forming.
  • vacuum forming a molded product is generally manufactured through the following steps (1), (2), and (3).
  • the resin composition is molded to obtain a sheet-shaped molded product.
  • the obtained sheet-shaped molded product is heated and softened.
  • the softened sheet-shaped molded product is vacuum-sucked according to the mold to deform the sheet-shaped molded product to obtain a molded product having a predetermined shape.
  • the resin compositions described in Patent Documents 1 and 2 may be inferior in formability.
  • a molded product is produced by vacuum forming using the resin composition, it is necessary to heat it at a high temperature (for example, 220 ° C. or higher), or the sheet-shaped molded product is difficult to be deformed.
  • the impact resistance may decrease when trying to increase the flame retardancy of the molded product, and the flame retardancy decreases when trying to increase the impact resistance of the molded product. I have something to do.
  • the molded product obtained from the resin compositions described in Patent Documents 1 and 2 can improve flame retardancy and impact resistance to some extent, but is not sufficient, and further improvement in flame retardancy and impact resistance is required. ing.
  • the present invention contains an aromatic polycarbonate resin, a salphon resin having a structure represented by the following formula (1), an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound or silicon-containing particles.
  • Resin compositions are provided.
  • the salphon resin is a polyphenyl salphon resin having a structure represented by the following formula (11).
  • the content of the salphon resin is 5% by weight or more and 35% by weight in a total of 100% by weight of the content of the aromatic polycarbonate resin and the content of the salphon resin. % Or less.
  • the weight ratio of the content of the salphon resin to the content of the phosphorus-containing compound is 0.6 or more and 3.5 or less.
  • the content of the phosphorus-containing compound is 5 parts by weight with respect to a total of 100 parts by weight of the content of the aromatic polycarbonate resin and the content of the salphon resin. It is 16 parts by weight or less.
  • the content of the inorganic filler is 10 parts by weight or more with respect to a total of 100 parts by weight of the content of the aromatic polycarbonate resin and the content of the salphon resin. It is 40 parts by weight or less.
  • the inorganic filler is talc.
  • the silicon-containing compound and the silicon-containing particles are added to a total of 100 parts by weight of the content of the aromatic polycarbonate resin and the content of the salphon resin.
  • the total content is 2 parts by weight or more and 20 parts by weight or less.
  • the resin composition comprises the silicon-containing particles, the silicon-containing particles comprising a core and a shell disposed on the surface of the core. Is.
  • the resin composition contains a fluororesin, with respect to a total of 100 parts by weight of the content of the aromatic polycarbonate resin and the content of the salphon resin.
  • the content of the fluororesin is 0.5 parts by weight or more and 2 parts by weight or less.
  • a molded body in which the above-mentioned resin composition is molded.
  • the molded body is in the form of a sheet.
  • the average maximum heat generation rate measured under conditions of heater radiant heat of 50 kW / m 2 and ignition is 130 kW / m 2 or less in accordance with ISO5660-1.
  • the molded body is an interior material of a transport aircraft.
  • the molded body is an interior material of a railway vehicle.
  • the resin composition according to the present invention contains an aromatic polycarbonate resin, a salphon resin having a structure represented by the above formula (1), an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound or silicon-containing particles. .. Since the resin composition according to the present invention has the above-mentioned structure, it is excellent in shapeability and flame retardancy and impact resistance of the obtained molded product.
  • the resin composition according to the present invention contains an aromatic polycarbonate resin, a salphon resin having a structure represented by the following formula (1), an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound or silicon-containing particles. ..
  • the resin composition according to the present invention Since the resin composition according to the present invention has the above-mentioned structure, it is excellent in shapeability and flame retardancy and impact resistance of the obtained molded product. In the resin composition according to the present invention, all of formability, flame retardancy and impact resistance can be enhanced. Since the resin composition according to the present invention is excellent in formability, for example, a molded product having a predetermined shape can be obtained without heating at a high temperature.
  • a silicon-containing compound and a silicon-containing particle may be collectively referred to as a silicon-containing substance.
  • the resin composition according to the present invention contains an aromatic polycarbonate resin. Only one type of the aromatic polycarbonate resin may be used, or two or more types may be used in combination.
  • the aromatic polycarbonate resin is preferably an aromatic polycarbonate resin having a structural unit represented by the following formula (2).
  • R1 and R2 represent a hydrogen atom, an alkyl group having 1 or more and 20 or less carbon atoms, a group in which a substituent is bonded to an alkyl group having 1 or more and 20 or less carbon atoms, or an aryl group, respectively.
  • R3 and R4 each represent a hydrogen atom or an alkyl group.
  • R3 or R4 in the above formula (2) is an alkyl group
  • the number of carbon atoms of the alkyl group is preferably 1 or more, preferably 6 or less, more preferably 3 or less, and further preferably 2 or less.
  • Preferred alkyl groups include methyl group, ethyl group, propyl group, butyl group, tert-butyl group, pentyl group, heptyl group and the like.
  • the aromatic polycarbonate resin may have only one type of structural unit represented by the above formula (2), or may have two or more types.
  • Examples of the compound for introducing the structural unit represented by the above formula (2) in obtaining the aromatic polycarbonate resin include 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and 2,2-. Bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) -4-Methylpentane, 2,2-bis (4-hydroxy-3-methylphenyl) propane (bisphenol C), 2,2-bis (4-hydroxy-3- (1-methylethyl) phenyl) propane, 2 , 2-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3- (1-methylpropyl) phenyl) propane, 2,2-bis (4-hydroxy- 3-Cyclohexylphenyl) propane, 2,2-bis (4-hydroxy-3-phenylphenyl) propane, 1,1-bis (4-hydroxyphenyl) decane, 1,1-bis (4
  • the compound for introducing the structural unit represented by the above formula (2) is 2,2-bis (2,2-bis ().
  • 4-hydroxyphenyl) propane bisphenol A
  • 2,2-bis (4-hydroxy-3-methylphenyl) propane bisphenol C
  • 1,1-bis (4-hydroxyphenyl) cyclohexane bisphenol Z
  • the aromatic polycarbonate resin preferably has a structural unit derived from such a preferred compound.
  • Examples of commercially available aromatic polycarbonate resins having a structural unit derived from a bisphenol A type compound include "Iupiron E series” manufactured by Mitsubishi Gas Chemical Company.
  • aromatic polycarbonate resins having structural units derived from bisphenol Z-type compounds examples include "Panlite series” manufactured by Teijin Chemicals Ltd. and "Iupilon Z series” manufactured by Mitsubishi Gas Chemicals Ltd.
  • the viscosity average molecular weight (Mv) of the aromatic polycarbonate resin is preferably 10,000 or more, more preferably 15,000 or more, preferably 50,000 or less, and more preferably 40,000 or less.
  • Mv The viscosity average molecular weight
  • the aromatic polycarbonate resin may or may not have a branched structure.
  • the aromatic polycarbonate resin can be produced by a conventionally known method.
  • Examples of the method for producing the aromatic polycarbonate resin include a melt polymerization method and a phase interface method.
  • Examples of the method for producing an aromatic polycarbonate resin by the above-mentioned melt polymerization method include a method in which a diphenol compound and a diphenyl carbonate compound are reacted in a molten state by using a transesterification reaction.
  • a diphenol compound and a diphenyl carbonate compound are placed in a reactor equipped with a stirrer and a distillate concentrator, and the reactor is heated to a predetermined temperature under a nitrogen gas atmosphere to melt the compound. Can be in a state.
  • a branching agent, a chain terminator, or the like may be used in the method for producing an aromatic polycarbonate resin by the above melt polymerization method.
  • a diphenol compound As a method for producing an aromatic polycarbonate resin by the above-mentioned phase interface method, a diphenol compound, a carbonate halide or an aromatic dicarboxylic acid dihalide, a branching agent if necessary, and a chain terminator if necessary.
  • a method of reacting with There is a method of reacting with.
  • a carbonate halide may be used, an aromatic dicarboxylic acid dihalide may be used, or a carbonate halide and an aromatic dicarboxylic acid dihalide may be used.
  • the above diphenol compound is not particularly limited.
  • a conventionally known diphenol compound can be used. Only one kind of the above diphenol compound may be used, or two or more kinds may be used in combination.
  • the above diphenyl carbonate compound is not particularly limited.
  • a conventionally known diphenyl carbonate compound can be used. Only one kind of the above diphenyl carbonate compound may be used, or two or more kinds may be used in combination.
  • the above-mentioned carbonate halide is not particularly limited. Conventionally known carbonate halides can be used as the above-mentioned carbonate halides. Only one kind of the above-mentioned halide halide may be used, or two or more kinds thereof may be used in combination.
  • the above-mentioned carbonate halide is preferably phosgene.
  • the aromatic dicarboxylic acid dihalide is not particularly limited.
  • a conventionally known aromatic dicarboxylic acid dihalide can be used.
  • the aromatic dicarboxylic acid dihalide only one kind may be used, or two or more kinds may be used in combination.
  • the aromatic dicarboxylic acid dihalide is preferably a benzenedicarboxylic acid dihalide.
  • the above branching agent is not particularly limited.
  • a conventionally known branching agent can be used.
  • As the branching agent only one kind may be used, or two or more kinds may be used in combination.
  • the branching agent is preferably a trifunctional phenol compound or a tetrafunctional phenol compound, and more preferably triphenol, tetraphenol, or a phenol compound having at least three functional groups having low reactivity. , 1,1,1-Tris- (p-hydroxyphenyl) ethane is more preferred.
  • the branching agent may be a phenol compound having an amine functional group.
  • the branching agent is a phenol compound having an amine functional group
  • the amine functional group acts as an active functional group, and branching of the aromatic polycarbonate resin occurs through an amide bond.
  • the above chain terminator is not particularly limited.
  • a conventionally known chain terminator can be used. Only one type of the chain terminator may be used, or two or more types may be used in combination.
  • Long-chain alkylphenols such as 4- (1,3-tetramethylbutyl) -phenols and monoalkylphenols with 8 to 20 carbon atoms in the alkyl substituents; or 3,5-di-tert-butylphenol, p- Alkylphenols such as isooctylphenol, p-tert-octylphenol, p-dodecylphenol, 2- (3,5-dimethylheptyl) -phenol, and 4- (3,5-dimethylheptyl) -phenol are preferable.
  • the content of the chain terminator is preferably 0.5 mol or more, preferably 10 mol or less, with respect to 100 mol of the diphenol compound.
  • the content of the aromatic polycarbonate resin in 100% by weight of the resin composition is preferably 50% by weight or more, more preferably 55% by weight or more, preferably 85% by weight or less, and more preferably 80% by weight or less. ..
  • the content of the aromatic polycarbonate resin is at least the above lower limit and at least the above upper limit, flame retardancy and impact resistance can be further enhanced.
  • the resin composition according to the present invention contains a salphon resin having a structure represented by the following formula (1).
  • the salphon resin is a thermoplastic resin.
  • carbides (chars) are satisfactorily formed on the surface of the molded product even when the molded product burns. , The amount of oxygen supply can be suppressed. As a result, the flame retardancy of the molded product can be improved.
  • the resin composition does not contain the salphon resin, it is difficult to improve the flame retardancy.
  • the resin composition contains both a salphon resin having a structure represented by the following formula (1) and the phosphorus-containing compound, formability and flame retardancy can be enhanced. Only one kind of the salphon resin may be used, or two or more kinds may be used in combination.
  • the salphon resin has a structural unit represented by the above formula (1).
  • sulfone resin examples include polysulfone resin (PSU), polyethersulfone resin (PESU), polyphenylsulfone resin (PPSU) and the like.
  • the salfone resin is preferably a polyether salfone resin or a polyphenylsalfone resin, and more preferably a polyphenylsalfon resin.
  • the salfone resin is preferably a polyphenyl salfone resin having a structure represented by the following formula (11).
  • the salphon resin is preferably a polyphenyl sulfone resin having a structural unit represented by the following formula (11).
  • the content of the salphon resin is preferably 5% by weight or more, more preferably 8% by weight or more, still more preferably 10. By weight or more, preferably 40% by weight or less, more preferably 35% by weight or less, still more preferably 30% by weight or less, and particularly preferably 25% by weight or less.
  • the content of the salphon resin is at least the above lower limit and at least the above upper limit, the formability and flame retardancy can be further enhanced.
  • the weight ratio of the content of the salphon resin to the content of the phosphorus-containing compound is preferably 0.6 or more, more preferably 0.7 or more. It is preferably 6.0 or less, more preferably 4.0 or less, still more preferably 3.5 or less, and particularly preferably 3.0 or less.
  • the weight ratio (content of the salphon resin / content of the phosphorus-containing compound) is not less than the above lower limit and not more than the above upper limit, formability, flame retardancy and impact resistance can be further enhanced.
  • the weight ratio (content of the salphon resin / content of the phosphorus-containing compound) is not less than the above lower limit and not more than the above upper limit, the formability and flame retardancy can be further enhanced.
  • the resin composition according to the present invention contains an inorganic filler.
  • the resin composition contains the inorganic filler, flame retardancy can be enhanced.
  • the resin composition does not contain the inorganic filler, it is difficult to improve the flame retardancy. Only one kind of the above-mentioned inorganic filler may be used, or two or more kinds may be used in combination.
  • inorganic filler examples include talc, mica, montmorillonite, diatomaceous earth, alumina, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, and base.
  • Sex Magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, potassium salt, clay mineral, glass fiber, glass beads, aluminum hydroxide, boron nitride, carbon Black, graphite, carbon fiber, carbon balun, charcoal powder, metal powder, potassium titanate, magnesium sulfate, lead zirconate titanate, aluminum volate, molybdenum sulfide, stainless steel fiber, zinc borate, magnetic powder, slag fiber, fly ash , Silica-alumina fiber, alumina fiber, silica fiber, zirconia fiber and the like.
  • the inorganic filler is preferably talc, mica, or montmorillonite, and more preferably talc.
  • the above talc may be compressed talc.
  • the resin composition can be easily processed.
  • the above-mentioned inorganic filler may be surface-treated such as silaneization treatment, plasma treatment, and ashing treatment.
  • silaneization treatment a surface-treated inorganic filler such as a silaneization treatment
  • the compatibility with the aromatic polycarbonate resin becomes even better.
  • the silanized inorganic filler is not included in the silicon-containing particles.
  • the volume average particle diameter (D50) of the inorganic filler is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, preferably 6 ⁇ m or less, more preferably. Is 5 ⁇ m or less.
  • the volume average particle diameter (D50) of the inorganic filler is not more than the above upper limit, a molded product having a small center of gravity distance between adjacent inorganic fillers and a large number of particles of the inorganic filler can be obtained.
  • a molded product having a small distance of the center of gravity between adjacent inorganic fillers and a large number of particles of the inorganic filler is more excellent in flame retardancy and gas barrier property.
  • the distance of the center of gravity between adjacent inorganic fillers is small and the number of particles of the inorganic filler is large, even if the molded product burns, the amount of oxygen flowing into the gaps between the inorganic fillers can be suppressed, and the flammability generated during combustion can be suppressed. It is possible to suppress the release of sex gas. Further, a molded product having a small distance of the center of gravity between adjacent inorganic fillers and a large number of particles of the inorganic filler tends to have excellent impact resistance.
  • the volume average particle diameter of the inorganic filler is the average diameter measured on a volume basis, and is the value of the median diameter (D50) which is 50%.
  • the volume average particle diameter (D50) can be measured by a laser diffraction / scattering method, an image analysis method, a Coulter method, a centrifugal sedimentation method, or the like.
  • the volume average particle diameter (D50) of the inorganic filler is preferably determined by measurement by a laser diffraction / scattering method.
  • the content of the inorganic filler in 100% by weight of the resin composition is preferably 8% by weight or more, more preferably 12% by weight or more, preferably 25% by weight or less, and more preferably 20% by weight or less.
  • the flame retardancy can be further improved.
  • the impact resistance can be further improved.
  • the content of the inorganic filler is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, preferably 40 parts by weight or less, and more preferably 30 parts by weight or less with respect to 100 parts by weight of the aromatic polycarbonate resin. is there.
  • the content of the inorganic filler is at least the above lower limit, the flame retardancy can be further enhanced.
  • the content of the inorganic filler is not more than the above upper limit, the impact resistance can be further improved.
  • the content of the inorganic filler is preferably 10 parts by weight or more, more preferably 13 parts by weight or more, preferably 13 parts by weight or more, based on 100 parts by weight in total of the content of the aromatic polycarbonate resin and the content of the salphon resin. It is 40 parts by weight or less, more preferably 30 parts by weight or less.
  • the content of the inorganic filler is at least the above lower limit, the flame retardancy can be further enhanced.
  • the content of the inorganic filler is not more than the above upper limit, the impact resistance can be further improved.
  • the resin composition according to the present invention contains a phosphorus-containing compound.
  • the phosphorus-containing compound is a compound having a phosphorus atom.
  • formability and flame retardancy can be enhanced.
  • the resin composition does not contain the phosphorus-containing compound, the formability is lowered and the flame retardancy is lowered. Only one kind of the phosphorus-containing compound may be used, or two or more kinds thereof may be used in combination.
  • the phosphorus-containing compound is preferably a phosphorus-based flame retardant.
  • the phosphorus-containing compound may be a phosphorus-containing compound having a halogen atom, a phosphorus-containing compound having no halogen atom, a phosphorus-containing compound having no halogen atom, and a phosphorus-containing compound having a halogen atom. It may be a mixture with a compound.
  • the phosphorus-containing compound may be any compound containing a phosphorus atom, and may be a compound derived from resorcinol, hydroquinone, bisphenol A, diphenylphenol, or the like.
  • Examples of the phosphorus-containing compound include phosphoric acid monomer, phosphoric acid oligomer, phosphonic acid ester, organophosphite, phosphonate, phosphonate amine, phosphate, phosphazene, and phosphoric acid ester.
  • the phosphorus-containing compound is preferably a phosphoric acid ester.
  • the phosphoric acid ester is a compound having a phosphoric acid ester structure.
  • the phosphoric acid ester may be a phosphoric acid monoester, a phosphoric acid diester, or a phosphoric acid triester.
  • phosphate ester examples include tributyl phosphate, triphenyl phosphate, tricresyl phosphate, diphenyl cresyl phosphate, diphenyl octyl phosphate, diphenyl-2-ethyl cresyl phosphate, tri- (isopropylphenyl) phosphate, and resorcinol cross-linked diphosphate.
  • the phosphoric acid ester is preferably an oligomeric phosphate ester derived from bisphenol A.
  • the content of the phosphorus-containing compound in 100% by weight of the resin composition is preferably 2% by weight or more, more preferably 4% by weight or more, preferably 18% by weight or less, and more preferably 15% by weight or less.
  • the content of the phosphorus-containing compound is at least the above lower limit, the formability and flame retardancy can be further improved.
  • the content of the phosphorus-containing compound is not more than the above upper limit, the impact resistance can be further improved.
  • the content of the phosphorus-containing compound is preferably 3 parts by weight or more, more preferably 5 parts by weight or more, still more preferably 7 parts by weight or more, and preferably 25 parts by weight or less with respect to 100 parts by weight of the aromatic polycarbonate resin. , More preferably 20 parts by weight or less.
  • the content of the phosphorus-containing compound is at least the above lower limit, the formability and flame retardancy can be further enhanced.
  • the content of the phosphorus-containing compound is not more than the above upper limit, the impact resistance can be further enhanced.
  • the content of the phosphorus-containing compound is preferably 5 parts by weight or more, more preferably 7 parts by weight or more, preferably 7 parts by weight or more, based on 100 parts by weight in total of the content of the aromatic polycarbonate resin and the content of the salphon resin. Is 16 parts by weight or less, more preferably 15 parts by weight or less.
  • the content of the phosphorus-containing compound is at least the above lower limit, the formability and flame retardancy can be further enhanced.
  • the content of the phosphorus-containing compound is not more than the above upper limit, the impact resistance can be further enhanced.
  • the resin composition according to the present invention contains a silicon-containing compound or silicon-containing particles.
  • the resin composition according to the present invention contains a silicon-containing substance.
  • the silicon-containing substance is a silicon-containing compound or silicon-containing particles.
  • flame retardancy can be enhanced.
  • the resin composition does not contain the silicon-containing substance, the flame retardancy may be inferior. Only one kind of the silicon-containing compound may be used, or two or more kinds thereof may be used in combination.
  • the silicon-containing compound is a compound having a silicon atom.
  • the silicon-containing particles are particles having a silicon atom.
  • the resin composition according to the present invention may contain the above-mentioned silicon-containing compound, may contain the above-mentioned silicon-containing particles, or may contain both the above-mentioned silicon-containing compound and the above-mentioned silicon-containing particles.
  • Examples of the silicon-containing substance include silica, calcium silicate, silica-based balun, silicon nitride, silicon carbide, silicone-based flame retardant, and core-shell particles containing a silicon atom.
  • Silicon-containing compounds From the viewpoint of further enhancing the flame retardancy, the silicon-containing compound is preferably a silicone-based flame retardant, and preferably a polyorganosiloxane.
  • the polyorganosiloxane preferably has an aromatic skeleton.
  • the polyorganosiloxane having the aromatic skeleton include polydiphenylsiloxane, polymethylphenylsiloxane, polydimethyldiphenylsiloxane, and cyclic siloxane having a phenyl group.
  • the polyorganosiloxane may have a functional group such as a silanol group, an epoxy group, an alkoxy group, a hydrosilyl group, and a vinyl group.
  • a functional group such as a silanol group, an epoxy group, an alkoxy group, a hydrosilyl group, and a vinyl group.
  • the content of the silanol group in 100% by weight of the polyorganosiloxane is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 3% by weight. % Or more, particularly preferably 5% by weight or more.
  • the content of the silanol group in 100% by weight of the polyorganosiloxane is preferably 10% by weight or less, more preferably 9% by weight or less, still more preferably 8% by weight. % Or less, particularly preferably 7.5% by weight or less.
  • the flame retardancy can be further enhanced. If the content of the silanol group exceeds 10% by weight, the thermal stability and moist heat stability of the resin composition may be lower than those in the case where the content of the silanol group is 10% by weight or less.
  • the content of the alkoxy group in 100% by weight of the polyorganosiloxane is preferably 10% by weight or less.
  • the content of the alkoxy group is not more than the above upper limit, the flame retardancy can be further enhanced.
  • the content of the alkoxy group exceeds 10% by weight, the resin composition may be more easily gelled as compared with the case where the content is 10% by weight or less.
  • the molecular weights of the silicon-containing compound and the polyorganosiloxane are preferably 450 or more, more preferably 1000 or more, still more preferably 1500 or more, particularly preferably 1700 or more, preferably 300,000 or less, more preferably 100,000 or less. It is more preferably 20000 or less, and particularly preferably 15000 or less.
  • the molecular weights of the silicon-containing compound and the polyorganosiloxane are at least the above lower limit, the heat resistance of the silicon-containing compound and the polyorganosiloxane can be enhanced.
  • the stability of the resin composition can be enhanced, and the silicon-containing compound and the polyorganosiloxane in the resin composition can be improved. Dispersibility can be enhanced and flame retardancy can be enhanced.
  • the molecular weight of the silicon-containing compound and the polyorganosiloxane is such that the silicon-containing compound and the polyorganosiloxane are not polymers, and the structural formulas of the silicon-containing compound and the polyorganosiloxane can be specified. , Means the molecular weight that can be calculated from the structural formula.
  • the molecular weights of the silicon-containing compound and the polyorganosiloxane are in terms of polystyrene measured by gel permeation chromatography (GPC) when the silicon-containing compound and the polyorganosiloxane are polymers. The weight average molecular weight is shown.
  • the content of the silicon-containing compound in 100% by weight of the resin composition is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 15% by weight or less, and more preferably 12% by weight or less.
  • the content of the silicon-containing compound is at least the above lower limit, the flame retardancy can be further improved.
  • the content of the silicon-containing compound is not more than the above upper limit, the impact resistance can be further improved.
  • the content of the silicon-containing compound is preferably 2 parts by weight or more, more preferably 4 parts by weight or more, preferably 20 parts by weight or less, and more preferably 15 parts by weight or less with respect to 100 parts by weight of the aromatic polycarbonate resin. Is.
  • the content of the silicon-containing compound is at least the above lower limit, the flame retardancy can be further enhanced.
  • the content of the silicon-containing compound is not more than the above upper limit, the impact resistance can be further enhanced.
  • the content of the silicon-containing compound is preferably 2 parts by weight or more, more preferably 3 parts by weight or more, preferably 3 parts by weight or more, based on 100 parts by weight in total of the content of the aromatic polycarbonate resin and the content of the salphon resin. Is 20 parts by weight or less, more preferably 16 parts by weight or less.
  • the content of the silicon-containing compound is at least the above lower limit, the flame retardancy can be further enhanced.
  • the content of the silicon-containing compound is not more than the above upper limit, the impact resistance can be further enhanced.
  • the silicon-containing particles are preferably core-shell particles having a core and a shell arranged on the surface of the core. That is, the resin composition preferably contains core-shell particles comprising a core and a shell arranged on the surface of the core. It is also preferable that the silicon-containing compound is contained as the core-shell particles in the resin composition.
  • the core-shell particles may have a silicon atom in the core, or may have a silicon atom in the shell.
  • the organic compound constituting the core and the organic compound constituting the shell are chemically bonded in the core-shell particles.
  • the chemical bond is preferably a graft bond.
  • core-shell particles examples include silicone-based core-shell type rubbery polymers such as silicone-acrylate-methylmethacrylate copolymer and silicone-acrylate-acrylonitrile-styrene copolymer.
  • the core-shell particles preferably have a core-shell rubber structure.
  • the volume average particle diameter (D50) of the silicon-containing particles or the core-shell particles is preferably 100 nm or more, more preferably 250 nm or more. It is preferably 800 nm or less. Core-shell particles having a volume average particle diameter (D50) equal to or greater than the above lower limit and equal to or less than the above upper limit can be produced by an emulsion polymerization method.
  • the volume average particle diameter of the silicon-containing particles or the core-shell particles is an average diameter measured on a volume basis, and is a value of a median diameter (D50) of 50%.
  • the volume average particle diameter (D50) can be measured by a laser diffraction / scattering method, an image analysis method, a Coulter method, a centrifugal sedimentation method, or the like.
  • the volume average particle diameter (D50) of the silicon-containing particles or the core-shell particles is preferably determined by measurement by a laser diffraction / scattering method.
  • the content of the silicon-containing particles in 100% by weight of the resin composition is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 15% by weight or less, and more preferably 12% by weight or less.
  • the flame retardancy can be further enhanced.
  • the content of the silicon-containing particles is not more than the above upper limit, the impact resistance can be further enhanced.
  • the content of the silicon-containing particles is preferably 2 parts by weight or more, more preferably 4 parts by weight or more, preferably 20 parts by weight or less, and more preferably 15 parts by weight or less with respect to 100 parts by weight of the aromatic polycarbonate resin. Is.
  • the content of the silicon-containing particles is at least the above lower limit, the flame retardancy can be further enhanced.
  • the content of the silicon-containing particles is not more than the above upper limit, the impact resistance can be further enhanced.
  • the content of the silicon-containing particles is preferably 2 parts by weight or more, more preferably 3 parts by weight or more, preferably 3 parts by weight or more, based on 100 parts by weight in total of the content of the aromatic polycarbonate resin and the content of the salphon resin. Is 20 parts by weight or less, more preferably 16 parts by weight or less.
  • the content of the silicon-containing particles is at least the above lower limit, the flame retardancy can be further enhanced.
  • the content of the silicon-containing particles is not more than the above upper limit, the impact resistance can be further enhanced.
  • the total content (content of the silicon-containing substance) of the silicon-containing compound and the silicon-containing particles in 100% by weight of the resin composition is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 2% by weight or more. Is 15% by weight or less, more preferably 12% by weight or less.
  • the total content is at least the above lower limit, the flame retardancy can be further enhanced.
  • the total content is not more than the above upper limit, the impact resistance can be further improved.
  • the total content (content of the silicon-containing substance) of the silicon-containing compound and the silicon-containing particles is preferably 2 parts by weight or more, more preferably 4 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin. As mentioned above, it is preferably 20 parts by weight or less, and more preferably 15 parts by weight or less. When the total content is at least the above lower limit, the flame retardancy can be further enhanced. When the total content is not more than the above upper limit, the impact resistance can be further improved.
  • the total content of the silicon-containing compound and the silicon-containing particles is 100 parts by weight in total of the content of the aromatic polycarbonate resin and the content of the salphon resin. It is preferably 2 parts by weight or more, more preferably 3 parts by weight or more, preferably 20 parts by weight or less, and more preferably 16 parts by weight or less.
  • the total content is at least the above lower limit, the flame retardancy can be further enhanced.
  • the total content is not more than the above upper limit, the impact resistance can be further improved.
  • the resin composition according to the present invention preferably contains a fluororesin.
  • the flame retardancy can be further enhanced. Only one type of the above-mentioned fluorine-based resin may be used, or two or more types may be used in combination.
  • fluororesin examples include a homopolymer having a fluorinated alpha-olefin monomer as a structural unit, a copolymer containing a fluorinated alpha-olefin monomer as a structural unit, and the like.
  • the fluorinated alpha-olefin monomer is an alpha-olefin monomer containing a substituent having at least one fluorine atom.
  • CCl 2 CF 2
  • CClF CClF
  • CHF CCl 2
  • CH 2 CClF
  • CCl 2 CClF
  • CF 3 CF CHF
  • CF 3 CH CF 2
  • CF 3 CH CH 2
  • CF 3 CF CHF
  • CHF 2 CH CHF
  • CF 3 CH CH 2
  • fluororesin examples include poly (tetrafluoroethylene) homopolymer (PTFE), poly (hexafluoroethylene), poly (tetrafluoroethylene-hexafluoroethylene), poly (tetrafluoroethylene-ethylene-propylene) and the like. Can be mentioned.
  • the poly (tetrafluoroethylene) homopolymer (PTFE) may be fibrogenic or non-fibrous.
  • the content of the fluorine-based resin in 100% by weight of the resin composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 1.5% by weight or less, and more preferably 1. It is less than% by weight.
  • the content of the fluorine-based resin is at least the above lower limit, the flame retardancy can be further enhanced.
  • the content of the fluorine-based resin is not more than the above upper limit, the impact resistance can be further improved.
  • the content of the fluororesin is preferably 0.3 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 2 parts by weight or less, more preferably. It is 1.5 parts by weight or less.
  • the content of the fluorine-based resin is at least the above lower limit, the flame retardancy can be further enhanced.
  • the content of the fluorine-based resin is not more than the above upper limit, the impact resistance can be further improved.
  • the content of the fluororesin is preferably 0.5 parts by weight or more, more preferably 0.6 parts by weight, based on 100 parts by weight in total of the content of the aromatic polycarbonate resin and the content of the salphon resin. More than parts, preferably 2 parts by weight or less, more preferably 1.5 parts by weight or less.
  • the content of the fluorine-based resin is at least the above lower limit, the flame retardancy can be further enhanced.
  • the content of the fluorine-based resin is not more than the above upper limit, the impact resistance can be further improved.
  • the resin composition may contain other components as long as the object of the present invention is not impaired.
  • Examples of the other components include drip inhibitors, antioxidants, heat stabilizers, light stabilizers, UV absorbers, colorants, plasticizers, lubricants, mold release agents, reinforcing agents and the like.
  • drip inhibitors antioxidants, heat stabilizers, light stabilizers, UV absorbers, colorants, plasticizers, lubricants, mold release agents, reinforcing agents and the like.
  • antioxidants heat stabilizers, light stabilizers, UV absorbers, colorants, plasticizers, lubricants, mold release agents, reinforcing agents and the like.
  • the content of the other component is not particularly limited, but for example, the content of the other component is preferable with respect to 100 parts by weight of the aromatic polycarbonate resin. Is 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, still more preferably 0.5 parts by weight or more, preferably 10 parts by weight or less, and more preferably 5 parts by weight or less.
  • antioxidants examples include alkylated monophenols; alkylated polyphenols; tetrakis [methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamete)] methane and other polyphenols and diene alkylation reaction products.
  • the content of the antioxidant is preferably 0.01 parts by weight or more, preferably 0.1 part by weight, based on 100 parts by weight of the aromatic polycarbonate resin. It is as follows.
  • photostabilizer examples include benzotriazoles such as 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-octylphenyl) -benzotriazole; and 2-hydroxy-. Examples thereof include 4-n-octoxybenzophenone.
  • the content of the light stabilizer is preferably 0.01 part by weight or more, preferably 5 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin. It is as follows.
  • UV absorber examples include hydroxybenzophenone; hydroxybenzotriazole; hydroxybenzotriazine; cyanoacrylate; oxanilide; benzoxazineone; 2- (2H-benzotriazole-2-yl) -4- (1,1,3,3).
  • the content of the UV absorber is preferably 0.01 parts by weight or more, preferably 5 parts by weight or less, based on 100 parts by weight of the aromatic polycarbonate resin. is there.
  • Examples of the colorant include titanium dioxide, carbon black, and organic dyes.
  • the plasticizer As the plasticizer, the lubricant, or the mold release agent, only one type may be used, or two or more types may be used in combination. Many of the compounds used as plasticizers also have the properties of lubricants and template agents, and many of the compounds used as lubricants also have the properties of template agents and plasticizers, and are used as template agents. Many of these compounds also have the properties of plasticizers and lubricants.
  • plasticizer examples include phthalates such as dioctyl-4,5-epoxy-hexahydrophthalate; tris- (octoxycarbonylethyl) isocyanurate; tristea; poly-alpha-olefin.
  • Epoxidized soybean oil Epoxidized soybean oil; Esters; Fatty acid esters such as alkyl stearyl esters; Steerates such as methyl stearate, stearyl steerate, pentaerythritol tetrasteerate; polyethylene glycol polymers, polypropylene glycol polymers, poly (ethylene glycol-co-propylene) A mixture of a hydrophilic and hydrophobic nonionic surfactant such as a glycol) copolymer and methyl ester; a mixture of a methyl ester and a polyethylene-polypropylene glycol copolymer; and a wax such as beeswax, montan wax, paraffin wax, etc. And so on.
  • each of the plasticizer, the lubricant, and the release agent is contained in 100 parts by weight of the aromatic polycarbonate resin.
  • the amount is preferably 0.1 parts by weight or more, preferably 1 part by weight or less.
  • the reinforcing agent examples include fibrous reinforcing agents such as glass fiber.
  • the content of the reinforcing agent is preferably 1 part by weight or more, more preferably 10 parts by weight or more, preferably 25 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin. It is less than a part by weight, more preferably 20 parts by weight or less.
  • the relative amount of each component in the above other components has an important effect on the mechanical properties such as low smoke concentration, low smoke toxicity, and ductility of the molded product. Even if a large amount of a certain component is blended in order to improve a certain property of the molded product, other properties may be deteriorated.
  • the molded product according to the present invention is a molded product on which the above-mentioned resin composition is molded.
  • a molded product can be obtained by molding the resin composition according to the present invention.
  • This molded product is excellent in flame retardancy and impact resistance. Further, since the resin composition according to the present invention has excellent formability, the obtained molded product is less likely to be cracked or cracked. As a result, the resulting molded product has a good appearance.
  • the molded product according to the present invention can be molded by a known method using the above-mentioned resin composition.
  • a molded product can be obtained by heating the resin composition at 230 ° C. to 300 ° C. for molding and curing. Further, by vacuum forming the obtained molded product, a molded product having a predetermined shape can be obtained.
  • the resin composition according to the present invention is excellent in formability, molded articles having various shapes can be obtained.
  • the molded product according to the present invention may have a rectangular shape, a curved surface shape, an uneven shape, or a sheet shape.
  • the resin composition according to the present invention is preferably used for vacuum forming.
  • the resin composition according to the present invention may not be used for vacuum forming.
  • the molded body is preferably in the form of a sheet.
  • the sheet-shaped molded body is a resin sheet.
  • the resin sheet can be produced, for example, by extruding a resin composition into a sheet.
  • the resin sheet may be further deformed by vacuum forming or the like.
  • a resin sheet having a desired shape can be obtained. Since the resin composition according to the present invention is excellent in formability, a molded product having a desired shape can be satisfactorily produced.
  • the resin sheet may be a resin sheet having a curved surface or a resin sheet having irregularities.
  • the molded body according to the present invention may be a vacuum-formed molded body, a molded body before vacuum forming, or a molded body that is not vacuum-formed.
  • the average maximum heat generation rate measured under the conditions of heater radiant heat of 50 kW / m 2 and ignition is preferably 130 kW / m 2 or less, preferably 125 kW / m 2 or less, in accordance with ISO5660-1. Is more preferable, and 120 kW / m 2 or less is further preferable.
  • the average maximum heat generation rate is not more than the upper limit, the flame retardancy can be further improved. In order to further enhance the flame retardancy, the lower the average maximum heat generation rate is, the better.
  • the above average maximum heat generation rate is measured as follows.
  • the molded body is cut or the like to obtain a sample for measuring the heat generation rate having a length of 100 mm, a width of 100 mm, and a thickness of 3 mm.
  • the heat generation rate measurement sample obtained is measured in accordance with ISO5660-1 using a cone calorimeter test device under the conditions of heater radiant heat of 50 kW / m 2 and ignition, and the heat generation rate is measured.
  • the thickness of the molded product is less than 3 mm, the material (resin composition) of the molded product may be used to prepare a sample for measuring the heat generation rate having a thickness of 3 mm.
  • the average maximum heat generation rate is a value calculated in accordance with EN455452-2 using the heat generation rate measured in accordance with ISO5660-1.
  • the average heat generation rate is calculated by the following formula.
  • N means the number of measurement plots every 2 seconds.
  • n is preferably an integer of 3 or more.
  • the average heat generation rate is calculated for each of the plurality of heat generation rate measurement samples, and the maximum value of the obtained average heat generation rate is defined as the average maximum heat generation rate.
  • the average maximum heat generation rate is preferably a value calculated using three or more heat generation rate measurement samples.
  • the molded product is excellent in flame retardancy and impact resistance, it is preferably an interior material for a transport aircraft.
  • the transport aircraft include railroad vehicles, aircraft, ships, automobiles, and the like.
  • the interior material include ceilings, window frames, armrests, backrests, tables and the like.
  • the molded body is preferably an interior material for a railroad vehicle, preferably an interior material for an aircraft, preferably an interior material for a ship, and preferably an interior material for an automobile. Since the resin composition according to the present invention has excellent shapeability, it can be easily molded into a shape required as an interior material of a transport aircraft.
  • Aromatic polycarbonate resin aromatic polycarbonate resin having a structural unit derived from a bisphenol A type compound, "Iupilon E series” manufactured by Mitsubishi Gas Chemical Company, viscosity average molecular weight 20000
  • the volume average particle size (D50) of talc was determined by measuring the particle size distribution using a laser diffraction type particle size distribution measuring device (“SALD-3100” manufactured by Shimadzu Corporation). Specifically, in the obtained particle size distribution, the particle size at which the cumulative volume calculated from the small diameter side is 50% was defined as the volume average particle size (D50) of talc.
  • Example 1 Preparation of resin composition: Using a twin-screw extruder (“TEX30a” manufactured by Japan Steel Works, Ltd.), the mixture blended in the blending amount (part by weight) shown in Table 1 was mixed with a cylinder temperature of 280 ° C, a mold temperature of 260 ° C, and a pressure of 0.7. After melt-kneading under the conditions of bur (vacuum), screw diameter 30 mm, rotation speed 400 rpm, and extrusion rate 15 kg / hour, melt extrusion was performed. The resin composition obtained by melt extrusion was cooled by a water-cooled method, cut into pellets using a pelletizer, and then dried at about 120 ° C. for about 5 hours to obtain a pellet-shaped resin composition.
  • TEX30a manufactured by Japan Steel Works, Ltd.
  • Preparation of molded product After melting the pelletized resin composition using a single-screw extruder (“GT50” manufactured by Plastic Engineering Laboratory) under the conditions of a cylinder temperature of 270 ° C., a mold temperature of 290 ° C., and an extrusion rate of 20 kg / hour, It was molded into a sheet. Next, the ratio of the pick-up speed to the roll speed in the pick-up machine (pick-up speed / roll speed) was set to 1.05 and pick-up was performed to obtain a resin sheet (molded product) having a thickness of 3 mm.
  • GT50 single-screw extruder
  • Examples 2 to 15 and Comparative Examples 1 to 4 A resin composition and a molded product were obtained in the same manner as in Example 1 except that the blending amount (part by weight) of each component was changed as shown in Tables 1 to 4 below.
  • Elongation rate at break is 200% or more
  • Elongation rate at break is 100% or more and less than 200%
  • Elongation rate at break is 80% or more and less than 100%
  • Elongation rate at break is 80% Less than
  • the obtained resin sheet was cut into a length of 100 mm, a width of 100 mm, and a thickness of 3 mm to obtain a sample for measuring the heat generation rate.
  • the obtained heat generation rate measurement sample was measured in accordance with ISO5660-1 using a cone calorimeter test device under the conditions of heater radiant heat of 50 kW / m 2 , measurement time of 20 minutes, and ignition. The speed was measured.
  • n in the above-mentioned average heat generation rate formula was set to 600.
  • the resin sheet (molded product) obtained in the examples has good elongation even at a relatively low temperature and is excellent in formability. Therefore, for example, the resin sheet (molded body) obtained in the examples can be satisfactorily shaped into various shapes. Further, it can be understood that the molded product obtained in the examples is also excellent in flame retardancy and impact resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

賦形性に優れ、かつ得られる成形体の難燃性及び耐衝撃性に優れる樹脂組成物を提供する。 本発明に係る樹脂組成物は、芳香族ポリカーボネート樹脂と、下記式(1)で表される構造を有するサルホン樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物又はケイ素含有粒子とを含む。

Description

樹脂組成物及び成形体
 本発明は、芳香族ポリカーボネート樹脂を含む樹脂組成物に関する。また、本発明は芳香族ポリカーボネート樹脂を含む成形体に関する。
 ポリカーボネート樹脂などの熱可塑性樹脂は、耐久性、軽量性及び成形加工性等に優れる。このため、熱可塑性樹脂は、建築分野、家電分野及び輸送分野等の様々な分野で用いられている。
 熱可塑性樹脂の具体的な用途として、鉄道車両、航空機、船舶及び自動車等の輸送機の内装材が挙げられる。上記内装材としては、天井、窓枠、肘掛け、背もたれ及びテーブル等が挙げられる。
 上記の用途においては、熱可塑性樹脂を用いた成形体の難燃性及び耐衝撃性に優れることが求められる。しかしながら、熱可塑性樹脂は、一般的に燃えやすく、また、衝撃に弱いため、熱可塑性樹脂を用いた成形体の難燃性及び耐衝撃性を良好にするための検討が広く行われている。
 下記の特許文献1には、(a)ポリエーテルイミド樹脂、(b)芳香族ポリカーボネート樹脂、及び(c)官能化ポリシロキサン重合体を含む熱可塑性樹脂組成物が開示されている。
 下記の特許文献2には、特定の構造を有する高ガラス転移温度スルホンポリマー(A)と、混和性ポリマー(B)と、不混和性ポリマー(C)とを含むスルホンポリマー組成物が開示されている。
特開平11-256035号公報 特表2008-516028号公報
 樹脂組成物を成形する場合に、真空成形により所定の形状を有する成形体を製造することがある。真空成形では、一般に、以下の(1),(2),(3)の工程を経て成形体が製造される。(1)樹脂組成物を成形してシート状の成形体を得る。(2)得られたシート状の成形体を加熱して軟化させる。(3)軟化させたシート状の成形体を型に合わせて真空吸引して該シート状の成形体を変形させ、所定の形状を有する成形体を得る。
 特許文献1,2に記載の樹脂組成物では、賦形性に劣ることがある。例えば、該樹脂組成物を用いて真空成形により成形体を製造する際に、高温(例えば220℃以上)で加熱する必要があったり、シート状の成形体が変形しにくかったりする。
 また、樹脂を含む従来の成形体では、該成形体の難燃性を高めようとすると耐衝撃性が低下することがあり、該成形体の耐衝撃性を高めようとすると難燃性が低下することがある。
 特許文献1,2に記載の樹脂組成物により得られる成形体では、難燃性及び耐衝撃性をある程度高めることができるものの十分ではなく、難燃性及び耐衝撃性の更なる向上が求められている。
 本発明の目的は、賦形性に優れ、かつ得られる成形体の難燃性及び耐衝撃性に優れる樹脂組成物を提供することである。また、本発明は、上記樹脂組成物を用いた成形体を提供することも目的とする。
 本発明の広い局面によれば、芳香族ポリカーボネート樹脂と、下記式(1)で表される構造を有するサルホン樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物又はケイ素含有粒子とを含む、樹脂組成物が提供される。
Figure JPOXMLDOC01-appb-C000003
 本発明に係る樹脂組成物のある特定の局面では、前記サルホン樹脂が、下記式(11)で表される構造を有するポリフェニルサルホン樹脂である。
Figure JPOXMLDOC01-appb-C000004
 本発明に係る樹脂組成物のある特定の局面では、前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量%中、前記サルホン樹脂の含有量が5重量%以上35重量%以下である。
 本発明に係る樹脂組成物のある特定の局面では、前記サルホン樹脂の含有量の、前記リン含有化合物の含有量に対する重量比が0.6以上3.5以下である。
 本発明に係る樹脂組成物のある特定の局面では、前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量部に対して、前記リン含有化合物の含有量が5重量部以上16重量部以下である。
 本発明に係る樹脂組成物のある特定の局面では、前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量部に対して、前記無機フィラーの含有量が10重量部以上40重量部以下である。
 本発明に係る樹脂組成物のある特定の局面では、前記無機フィラーが、タルクである。
 本発明に係る樹脂組成物のある特定の局面では、前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量部に対して、前記ケイ素含有化合物と前記ケイ素含有粒子との合計の含有量が2重量部以上20重量部以下である。
 本発明に係る樹脂組成物のある特定の局面では、前記樹脂組成物は、前記ケイ素含有粒子を含み、前記ケイ素含有粒子が、コアと、前記コアの表面に配置されたシェルとを備えるコアシェル粒子である。
 本発明に係る樹脂組成物のある特定の局面では、前記樹脂組成物は、フッ素系樹脂を含み、前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量部に対して、前記フッ素系樹脂の含有量が0.5重量部以上2重量部以下である。
 本発明の広い局面によれば、上述した樹脂組成物が成形された、成形体が提供される。
 本発明に係る成形体のある特定の局面では、前記成形体は、シート状である。
 本発明に係る成形体のある特定の局面では、ISO5660-1に準拠して、ヒーター輻射熱50kW/m及びイグニッション有りの条件で測定された平均最大発熱速度が130kW/m以下である。
 本発明に係る成形体のある特定の局面では、前記成形体は、輸送機の内装材である。
 本発明に係る成形体のある特定の局面では、前記成形体は、鉄道車両の内装材である。
 本発明に係る樹脂組成物は、芳香族ポリカーボネート樹脂と、上記式(1)で表される構造を有するサルホン樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物又はケイ素含有粒子とを含む。本発明に係る樹脂組成物では、上記の構成が備えられているので、賦形性に優れ、かつ得られる成形体の難燃性及び耐衝撃性に優れる。
 以下、本発明を詳細に説明する。
 本発明に係る樹脂組成物は、芳香族ポリカーボネート樹脂と、下記式(1)で表される構造を有するサルホン樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物又はケイ素含有粒子とを含む。
Figure JPOXMLDOC01-appb-C000005
 本発明に係る樹脂組成物では、上記の構成が備えられているので、賦形性に優れ、かつ得られる成形体の難燃性及び耐衝撃性に優れる。本発明に係る樹脂組成物では、賦形性、難燃性及び耐衝撃性の全てを高めることができる。本発明に係る樹脂組成物では、賦形性に優れるので、例えば、高温で加熱することなく、所定の形状を有する成形体を得ることができる。
 なお、本明細書において、ケイ素含有化合物とケイ素含有粒子とをまとめて、ケイ素含有物質と記載することがある。
 以下、本発明に係る樹脂組成物に含まれる成分の詳細などを説明する。
 [芳香族ポリカーボネート樹脂]
 本発明に係る樹脂組成物は、芳香族ポリカーボネート樹脂を含む。上記芳香族ポリカーボネート樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記芳香族ポリカーボネート樹脂は、下記式(2)で表される構造単位を有する芳香族ポリカーボネート樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記式(2)中、R1及びR2はそれぞれ、水素原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルキル基に置換基が結合した基、又はアリール基を表す。上記式(2)中、R3及びR4はそれぞれ、水素原子、又はアルキル基を表す。
 上記式(2)中のR3又はR4がアルキル基である場合に、該アルキル基の炭素数は、好ましくは1以上、好ましくは6以下、より好ましくは3以下、更に好ましくは2以下である。好ましいアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、tert-ブチル基、ペンチル基、及びヘプチル基等が挙げられる。
 上記芳香族ポリカーボネート樹脂は、上記式(2)で表される構造単位を、1種のみ有していてもよく、2種以上有していてもよい。
 芳香族ポリカーボネート樹脂を得る際に、上記式(2)で表される構造単位を導入するための化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(ビスフェノールC)、2,2-ビス(4-ヒドロキシ-3-(1-メチルエチル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-(1-メチルプロピル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-フェニルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-(1-メチルエチル)フェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-(1-メチルプロピル)フェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-(1-メチルエチル)フェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-(1-メチルプロピル)フェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロオクタン、4,4’-(1,3-フェニレンジイソプロピリデン)ビスフェノール、4,4’-(1,4-フェニレンジイソプロピリデン)ビスフェノール、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシビフェニル、1,1-ビス(4-ヒドロキシフェニル)-3,3-5-トリメチルシクロヘキサン、及び1,1-ビス(4-ヒドロキシ-6-メチル-3-tert-ブチルフェニル)ブタン等が挙げられる。
 難燃性及び耐衝撃性をより一層高める観点からは、上記芳香族ポリカーボネート樹脂を得る際に、上記式(2)で表される構造単位を導入するための化合物は、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(ビスフェノールC)、又は1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)であることが好ましく、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)であることがより好ましい。上記芳香族ポリカーボネート樹脂は、このような好ましい化合物に由来する構造単位を有することが好ましい。
 ビスフェノールA型化合物に由来する構造単位を有する芳香族ポリカーボネート樹脂の市販品としては、三菱ガス化学社製「ユーピロンEシリーズ」等が挙げられる。
 ビスフェノールZ型化合物に由来する構造単位を有する芳香族ポリカーボネート樹脂の市販品としては、帝人化成社製「パンライトシリーズ」、及び三菱ガス化学社製「ユーピロンZシリーズ」等が挙げられる。
 上記芳香族ポリカーボネート樹脂の粘度平均分子量(Mv)は、好ましくは10000以上、より好ましくは15000以上、好ましくは50000以下、より好ましくは40000以下である。上記粘度平均分子量が上記下限以上及び上記上限以下であると、難燃性及び耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂は、分岐構造を有していてもよく、分岐構造を有していなくてもよい。
 上記芳香族ポリカーボネート樹脂は、従来公知の方法で作製することができる。上記芳香族ポリカーボネート樹脂の作製方法としては、溶融重合法、及び相界面法等が挙げられる。
 上記溶融重合法により、芳香族ポリカーボネート樹脂を作製する方法としては、ジフェノール化合物とジフェニルカーボネート化合物とを、溶融状態下でエステル交換反応を利用して反応させる方法が挙げられる。この方法では、例えば、ジフェノール化合物とジフェニルカーボネート化合物とを、撹拌機及び留出濃縮装置付きの反応器に入れ、該反応器を窒素ガス雰囲気下で所定の温度まで昇温することで、溶融状態とすることができる。なお、上記溶融重合法により、芳香族ポリカーボネート樹脂を作製する方法において、分岐剤、及び連鎖停止剤等を用いてもよい。
 上記相界面法により、芳香族ポリカーボネート樹脂を作製する方法としては、ジフェノール化合物と、炭酸ハロゲン化物又は芳香族ジカルボン酸二ハロゲン化物と、必要に応じて分岐剤と、必要に応じて連鎖停止剤とを反応させる方法が挙げられる。この方法では、炭酸ハロゲン化物を用いてもよく、芳香族ジカルボン酸二ハロゲン化物を用いてもよく、炭酸ハロゲン化物と芳香族ジカルボン酸二ハロゲン化物とを用いてもよい。
 上記ジフェノール化合物は、特に限定されない。上記ジフェノール化合物として、従来公知のジフェノール化合物を用いることができる。上記ジフェノール化合物は、1種のみが用いられてもよく、2種以上が併用されていてもよい。
 上記ジフェニルカーボネート化合物は、特に限定されない。上記ジフェニルカーボネート化合物として、従来公知のジフェニルカーボネート化合物を用いることができる。上記ジフェニルカーボネート化合物は、1種のみが用いられてもよく、2種以上が併用されていてもよい。
 上記炭酸ハロゲン化物は、特に限定されない。上記炭酸ハロゲン化物として、従来公知の炭酸ハロゲン化物を用いることができる。上記炭酸ハロゲン化物は、1種のみが用いられてもよく、2種以上が併用されていてもよい。
 上記炭酸ハロゲン化物は、ホスゲンであることが好ましい。
 上記芳香族ジカルボン酸二ハロゲン化物は、特に限定されない。上記芳香族ジカルボン酸二ハロゲン化物として、従来公知の芳香族ジカルボン酸二ハロゲン化物を用いることができる。上記芳香族ジカルボン酸二ハロゲン化物は、1種のみが用いられてもよく、2種以上が併用されていてもよい。
 上記芳香族ジカルボン酸二ハロゲン化物は、ベンゼンジカルボン酸二ハロゲン化物であることが好ましい。
 上記分岐剤は、特に限定されない。上記分岐剤として、従来公知の分岐剤を用いることができる。上記分岐剤は、1種のみが用いられてもよく、2種以上が併用されていてもよい。
 上記分岐剤は、三官能性フェノール化合物、又は四官能性フェノール化合物であることが好ましく、トリフェノール、テトラフェノール、又は反応性が小さい少なくとも3個の官能基を有するフェノール化合物であることがより好ましく、1,1,1-トリス-(p-ヒドロキシフェニル)エタンであることが更に好ましい。これらの好ましい分岐剤を用いることにより、分岐構造を有する芳香族ポリカーボネート樹脂を良好に得ることができる。
 上記分岐剤は、アミン官能基を有するフェノール化合物であってもよい。上記分岐剤がアミン官能基を有するフェノール化合物である場合、該アミン官能基が活性官能基として作用し、アミド結合を通じて、芳香族ポリカーボネート樹脂の分岐が生じる。
 上記連鎖停止剤は、特に限定されない。上記連鎖停止剤として、従来公知の連鎖停止剤を用いることができる。上記連鎖停止剤は、1種のみが用いられてもよく、2種以上が併用されていてもよい。
 芳香族ポリカーボネート樹脂を良好に得る観点からは、上記連鎖停止剤は、フェノール;p-クロロフェノール;p-tert-ブチルフェノール;2,4,6-トリブロモフェノール;DE-A 2 842 005に記載の4-(1,3-テトラメチルブチル)-フェノール、及びアルキル置換基中に8以上20以下の炭素原子を有するモノアルキルフェノール等の長鎖アルキルフェノール;又は3,5-ジ-tert-ブチルフェノール、p-イソオクチルフェノール、p-tert-オクチルフェノール、p-ドデシルフェノール、2-(3,5-ジメチルヘプチル)-フェノール、及び4-(3,5-ジメチルヘプチル)-フェノール等のアルキルフェノール等であることが好ましい。
 芳香族ポリカーボネート樹脂を良好に得る観点からは、上記ジフェノール化合物100molに対して、上記連鎖停止剤の含有量は、好ましくは0.5mol以上、好ましくは10mol以下である。
 上記樹脂組成物100重量%中、上記芳香族ポリカーボネート樹脂の含有量は、好ましくは50重量%以上、より好ましくは55重量%以上、好ましくは85重量%以下、より好ましくは80重量%以下である。上記芳香族ポリカーボネート樹脂の含有量が上記下限以上及び上記上限以下であると、難燃性及び耐衝撃性をより一層高めることができる。
 [サルホン樹脂]
 本発明に係る樹脂組成物は、下記式(1)で表される構造を有するサルホン樹脂を含む。上記サルホン樹脂は熱可塑性樹脂である。上記樹脂組成物が下記式(1)で表される構造を有するサルホン樹脂を含むことにより、成形体が燃えた場合であっても、該成形体の表面において炭化物(チャー)が良好に形成され、酸素の供給量を抑えることができる。その結果、成形体の難燃性を高めることができる。上記樹脂組成物が上記サルホン樹脂を含まない場合、難燃性を高めることは困難である。さらに、上記樹脂組成物が下記式(1)で表される構造を有するサルホン樹脂と、上記リン含有化合物との双方を含むことにより、賦形性と難燃性とを高めることができる。上記サルホン樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Figure JPOXMLDOC01-appb-C000007
 上記サルホン樹脂は、上記式(1)で表される構造単位を有する。
 上記サルホン樹脂としては、ポリサルホン樹脂(PSU)、ポリエーテルサルホン樹脂(PESU)、及びポリフェニルサルホン樹脂(PPSU)等が挙げられる。
 難燃性及び耐衝撃性をより一層高める観点からは、上記サルホン樹脂は、ポリエーテルサルホン樹脂又はポリフェニルサルホン樹脂であることが好ましく、ポリフェニルサルホン樹脂であることがより好ましい。
 難燃性及び耐衝撃性をより一層高める観点からは、上記サルホン樹脂は、下記式(11)で表される構造を有するポリフェニルサルホン樹脂であることが好ましい。上記サルホン樹脂は、下記式(11)で表される構造単位を有するポリフェニルサルホン樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記芳香族ポリカーボネート樹脂の含有量と上記サルホン樹脂の含有量との合計100重量%中、上記サルホン樹脂の含有量は、好ましくは5重量%以上、より好ましくは8重量%以上、更に好ましくは10重量%以上、好ましくは40重量%以下、より好ましくは35重量%以下、更に好ましくは30重量%以下、特に好ましくは25重量%以下である。上記サルホン樹脂の含有量が上記下限以上及び上記上限以下であると、賦形性及び難燃性をより一層高めることができる。
 上記サルホン樹脂の含有量の、上記リン含有化合物の含有量に対する重量比(上記サルホン樹脂の含有量/上記リン含有化合物の含有量)は、好ましくは0.6以上、より好ましくは0.7以上、好ましくは6.0以下、より好ましくは4.0以下、更に好ましくは3.5以下、特に好ましくは3.0以下である。上記重量比(上記サルホン樹脂の含有量/上記リン含有化合物の含有量)が上記下限以上及び上記上限以下であると、賦形性、難燃性及び耐衝撃性をより一層高めることができる。上記重量比(上記サルホン樹脂の含有量/上記リン含有化合物の含有量)が上記下限以上及び上記上限以下であると、特に、賦形性及び難燃性をより一層高めることができる。
 [無機フィラー]
 本発明に係る樹脂組成物は、無機フィラーを含む。上記樹脂組成物が上記無機フィラーを含むことにより、難燃性を高めることができる。上記樹脂組成物が上記無機フィラーを含まない場合、難燃性を高めることは困難である。上記無機フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記無機フィラーとしては、タルク、マイカ、モンモリロナイト、珪藻土、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、カリウム塩、粘土鉱物、ガラス繊維、ガラスビーズ、窒化アルミニウム、窒化ホウ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、ステンレス繊維、ホウ酸亜鉛、磁性粉、スラグ繊維、フライアッシュ、シリカアルミナ繊維、アルミナ繊維、シリカ繊維、及びジルコニア繊維等が挙げられる。
 難燃性及び耐衝撃性をより一層高める観点からは、上記無機フィラーは、タルク、マイカ、又はモンモリロナイトであることが好ましく、タルクであることがより好ましい。
 上記タルクは圧縮タルクであってもよい。上記タルクが圧縮タルクであると、樹脂組成物の加工が容易である。
 上記無機フィラーは、シラン化処理、プラズマ処理、アッシング処理等の表面処理がされていてもよい。上記無機フィラーがシラン化処理等の表面処理された無機フィラーである場合、上記芳香族ポリカーボネート樹脂との相溶性がより一層良好になる。なお、シラン化処理された無機フィラーは、上記ケイ素含有粒子には含まれない。
 難燃性及び耐衝撃性をより一層良好にする観点からは、上記無機フィラーの体積平均粒子径(D50)は、好ましくは1μm以上、より好ましくは1.5μm以上、好ましくは6μm以下、より好ましくは5μm以下である。上記無機フィラーの体積平均粒子径(D50)が、上記上限以下であると、隣接する無機フィラー間の重心距離が小さく、無機フィラーの粒子数が多い成形体を得ることができる。隣接する無機フィラー間の重心距離が小さく、無機フィラーの粒子数が多い成形体は、難燃性及びガスバリア性により一層優れる。隣接する無機フィラー間の重心距離が小さく、無機フィラーの粒子数が多いと、成形体が燃えたとしても、無機フィラーの間隙に流入する酸素量を抑えることができ、また、燃焼時に発生する可燃性ガスの放出を抑えることができる。また、隣接する無機フィラー間の重心距離が小さく、無機フィラーの粒子数が多い成形体は、優れた耐衝撃性を有しやすい。
 上記無機フィラーの体積平均粒子径は、体積基準で測定される平均径であり、50%となるメディアン径(D50)の値である。上記体積平均粒子径(D50)は、レーザー回折・散乱法、画像解析法、コールター法、及び遠心沈降法等により測定可能である。上記無機フィラーの体積平均粒子径(D50)は、レーザー回折・散乱法による測定により求めることが好ましい。
 上記樹脂組成物100重量%中、上記無機フィラーの含有量は、好ましくは8重量%以上、より好ましくは12重量%以上、好ましくは25重量%以下、より好ましくは20重量%以下である。上記無機フィラーの含有量が上記下限以上であると、難燃性をより一層良好にすることができる。上記無機フィラーの含有量が上記上限以下であると、耐衝撃性をより一層良好にすることができる。
 上記芳香族ポリカーボネート樹脂100重量部に対して、上記無機フィラーの含有量は、好ましくは10重量部以上、より好ましくは15重量部以上、好ましくは40重量部以下、より好ましくは30重量部以下である。上記無機フィラーの含有量が上記下限以上であると、難燃性をより一層高めることができる。上記無機フィラーの含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂の含有量と上記サルホン樹脂の含有量との合計100重量部に対して、上記無機フィラーの含有量は、好ましくは10重量部以上、より好ましくは13重量部以上、好ましくは40重量部以下、より好ましくは30重量部以下である。上記無機フィラーの含有量が上記下限以上であると、難燃性をより一層高めることができる。上記無機フィラーの含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 [リン含有化合物]
 本発明に係る樹脂組成物は、リン含有化合物を含む。上記リン含有化合物は、リン原子を有する化合物である。上記樹脂組成物が上記リン含有化合物を含むことにより、賦形性及び難燃性を高めることができる。上記樹脂組成物が上記リン含有化合物を含まない場合、賦形性が低下したり、難燃性が低下したりする。上記リン含有化合物は1種のみが用いられてもよく、2種以上が併用されていてもよい。
 難燃性をより一層高める観点からは、上記リン含有化合物は、リン系難燃剤であることが好ましい。
 上記リン含有化合物は、ハロゲン原子を有するリン含有化合物であってもよく、ハロゲン原子を有さないリン含有化合物であってもよく、ハロゲン原子を有さないリン含有化合物とハロゲン原子を有するリン含有化合物との混合物であってもよい。
 上記リン含有化合物は、リン原子を含む化合物であればよく、レゾルシノール、ヒドロキノン、ビスフェノールA、及びジフェニルフェノール等から誘導される化合物であってもよい。
 上記リン含有化合物としては、リン酸モノマー、リン酸オリゴマー、ホスホン酸エステル、オルガノホスファイト、ホスホネート、ホスホネートアミン、ホスフェート、ホスファゼン、及びリン酸エステル等が挙げられる。
 難燃性をより一層高める観点からは、上記リン含有化合物は、リン酸エステルであることが好ましい。上記リン酸エステルは、リン酸エステル構造を有する化合物である。
 上記リン酸エステルは、リン酸モノエステルであってもよく、リン酸ジエステルであってもよく、リン酸トリエステルであってもよい。
 上記リン酸エステルとしては、トリブチルホスフェート、トリフェニルホスフェート、トリクレシルホスフェート、ジフェニルクレシルホスフェート、ジフェニルオクチルホスフェート、ジフェニル-2-エチルクレシルホスフェート、トリ-(イソプロピルフェニル)ホスフェート、レソルシノール架橋ジホスフェート、及びビスフェノールA架橋ジホスフェート等が挙げられる。上記リン酸エステルは、ビスフェノールAから誘導されるオリゴマーリン酸エステルであることが好ましい。
 上記樹脂組成物100重量%中、上記リン含有化合物の含有量は、好ましくは2重量%以上、より好ましくは4重量%以上、好ましくは18重量%以下、より好ましくは15重量%以下である。上記リン含有化合物の含有量が上記下限以上であると、賦形性及び難燃性をより一層良好にすることができる。上記リン含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層良好にすることができる。
 上記芳香族ポリカーボネート樹脂100重量部に対して、上記リン含有化合物の含有量は、好ましくは3重量部以上、より好ましくは5重量部以上、更に好ましくは7重量部以上、好ましくは25重量部以下、より好ましくは20重量部以下である。上記リン含有化合物の含有量が上記下限以上であると、賦形性及び難燃性をより一層高めることができる。上記リン含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂の含有量と上記サルホン樹脂の含有量との合計100重量部に対して、上記リン含有化合物の含有量は、好ましくは5重量部以上、より好ましくは7重量部以上、好ましくは16重量部以下、より好ましくは15重量部以下である。上記リン含有化合物の含有量が上記下限以上であると、賦形性及び難燃性をより一層高めることができる。上記リン含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 [ケイ素含有物質]
 本発明に係る樹脂組成物は、ケイ素含有化合物又はケイ素含有粒子を含む。本発明に係る樹脂組成物は、ケイ素含有物質を含む。上記ケイ素含有物質は、ケイ素含有化合物又はケイ素含有粒子である。上記樹脂組成物が上記ケイ素含有物質を含むことにより、難燃性を高めることができる。上記樹脂組成物が上記ケイ素含有物質を含まない場合、難燃性が劣ることがある。上記ケイ素含有化合物は1種のみが用いられてもよく、2種以上が併用されていてもよい。
 上記ケイ素含有化合物は、ケイ素原子を有する化合物である。上記ケイ素含有粒子は、ケイ素原子を有する粒子である。本発明に係る樹脂組成物は、上記ケイ素含有化合物を含んでいてもよく、上記ケイ素含有粒子を含んでいてもよく、上記ケイ素含有化合物と上記ケイ素含有粒子との双方を含んでいてもよい。上記ケイ素含有物質としては、シリカ、ケイ酸カルシウム、シリカ系バルン、窒化ケイ素、炭化ケイ素、シリコーン系難燃剤、及びケイ素原子を含むコアシェル粒子等が挙げられる。
 ケイ素含有化合物:
 難燃性をより一層高める観点からは、上記ケイ素含有化合物は、シリコーン系難燃剤であることが好ましく、ポリオルガノシロキサンであることが好ましい。
 難燃性を更により一層高める観点からは、上記ポリオルガノシロキサンは、芳香族骨格を有することが好ましい。上記芳香族骨格を有するポリオルガノシロキサンとしては、ポリジフェニルシロキサン、ポリメチルフェニルシロキサン、ポリジメチルジフェニルシロキサン、フェニル基を有する環状シロキサン等が挙げられる。
 上記ポリオルガノシロキサンは、シラノール基、エポキシ基、アルコキシ基、ヒドロシリル基、及びビニル基等の官能基を有していてもよい。上記ポリオルガノシロキサンがこれらの官能基を有する場合には、該ポリオルガノシロキサンと芳香族ポリカーボネート樹脂との相溶性を向上させたり、燃焼時の反応性を向上させたりでき、その結果、難燃性を高めることができる。
 上記ポリオルガノシロキサンが上記シラノール基を有する場合に、上記ポリオルガノシロキサン100重量%中、上記シラノール基の含有率は、好ましくは1重量%以上、より好ましくは2重量%以上、更に好ましくは3重量%以上、特に好ましくは5重量%以上である。上記ポリオルガノシロキサンが上記シラノール基を有する場合に、上記ポリオルガノシロキサン100重量%中、上記シラノール基の含有率は、好ましくは10重量%以下、より好ましくは9重量%以下、更に好ましくは8重量%以下、特に好ましくは7.5重量%以下である。上記シラノール基の含有率が上記下限以上及び上記上限以下であると、難燃性をより一層高めることができる。なお、上記シラノール基の含有率が10重量%を超えると、10重量%以下である場合と比べて、樹脂組成物の熱安定性及び湿熱安定性が低下することがある。
 上記ポリオルガノシロキサンが上記アルコキシ基を有する場合に、上記ポリオルガノシロキサン100重量%中、上記アルコキシ基の含有率は、好ましくは10重量%以下である。上記アルコキシ基の含有率が上記上限以下であると、難燃性をより一層高めることができる。なお、上記アルコキシ基の含有率が10重量%を超えると、10重量%以下である場合と比べて、樹脂組成物がゲル化しやすくなることがある。
 上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量は、好ましくは450以上、より好ましくは1000以上、更に好ましくは1500以上、特に好ましくは1700以上であり、好ましくは300000以下、より好ましくは100000以下、更に好ましくは20000以下、特に好ましくは15000以下である。上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量が上記下限以上であると、上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの耐熱性を高めることができる。上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量が上記上限以下であると、樹脂組成物の安定性を高めることができ、また、樹脂組成物中における上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分散性を高めることができ、難燃性を高めることができる。
 上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量は、上記ケイ素含有化合物、及び上記ポリオルガノシロキサンが重合体ではない場合、及び上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量は、上記ケイ素含有化合物、及び上記ポリオルガノシロキサンが重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。
 上記樹脂組成物100重量%中、上記ケイ素含有化合物の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは15重量%以下、より好ましくは12重量%以下である。上記ケイ素含有化合物の含有量が上記下限以上であると、難燃性をより一層良好にすることができる。上記ケイ素含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層良好にすることができる。
 上記芳香族ポリカーボネート樹脂100重量部に対して、上記ケイ素含有化合物の含有量は、好ましくは2重量部以上、より好ましくは4重量部以上、好ましくは20重量部以下、より好ましくは15重量部以下である。上記ケイ素含有化合物の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記ケイ素含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂の含有量と上記サルホン樹脂の含有量との合計100重量部に対して、上記ケイ素含有化合物の含有量は、好ましくは2重量部以上、より好ましくは3重量部以上、好ましくは20重量部以下、より好ましくは16重量部以下である。上記ケイ素含有化合物の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記ケイ素含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 ケイ素含有粒子:
 上記ケイ素含有粒子は、コアと、上記コアの表面に配置されたシェルとを備えるコアシェル粒子であることが好ましい。すなわち、上記樹脂組成物は、コアと、上記コアの表面に配置されたシェルとを備えるコアシェル粒子を含むことが好ましい。上記樹脂組成物中に、上記ケイ素含有化合物は、上記コアシェル粒子として含まれることも好ましい。上記コアシェル粒子は、上記コアにおいてケイ素原子を有していてもよく、上記シェルにおいてケイ素原子を有していてもよい。上記樹脂組成物がケイ素含有粒子としてコアシェル粒子を含む場合には、難燃性を高めることができることに加えて、耐衝撃性も高めることができる。
 難燃性をより一層高める観点から、上記コアシェル粒子において、上記コアを構成する有機化合物と、上記シェルを構成する有機化合物とが、化学結合していることが好ましい。上記化学結合は、グラフト結合であることが好ましい。
 上記コアシェル粒子としては、シリコーン-アクリレート-メチルメタクリレート共重合体、シリコーン-アクリレート-アクリロニトリル-スチレン共重合体等のシリコーン系コアシェル型ゴム質重合体等が挙げられる。上記コアシェル粒子は、コアシェルゴム構造を有することが好ましい。
 成形体の外観を良好にする観点、耐衝撃性をより一層高める観点からは、上記ケイ素含有粒子又は上記コアシェル粒子の体積平均粒子径(D50)は、好ましくは100nm以上、より好ましくは250nm以上、好ましくは800nm以下である。上記下限以上及び上記上限以下の体積平均粒子径(D50)を有するコアシェル粒子は、乳化重合法により作製することができる。
 上記ケイ素含有粒子又は上記コアシェル粒子の体積平均粒子径は、体積基準で測定される平均径であり、50%となるメディアン径(D50)の値である。上記体積平均粒子径(D50)は、レーザー回折・散乱法、画像解析法、コールター法、及び遠心沈降法等により測定可能である。上記ケイ素含有粒子又は上記コアシェル粒子の体積平均粒子径(D50)は、レーザー回折・散乱法による測定により求めることが好ましい。
 上記コアシェル粒子として、市販品を用いることもできる。上記コアシェル粒子の市販品としては、メタブレンS-2001、S-2006、S-2501、S-2030、S-2100、S-2200、SRK200A、SX-005、及びSX-006等(以上、いずれも三菱レイヨン社製)が挙げられる。
 上記樹脂組成物100重量%中、上記ケイ素含有粒子の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは15重量%以下、より好ましくは12重量%以下である。上記ケイ素含有粒子の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記ケイ素含有粒子の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂100重量部に対して、上記ケイ素含有粒子の含有量は、好ましくは2重量部以上、より好ましくは4重量部以上、好ましくは20重量部以下、より好ましくは15重量部以下である。上記ケイ素含有粒子の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記ケイ素含有粒子の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂の含有量と上記サルホン樹脂の含有量との合計100重量部に対して、上記ケイ素含有粒子の含有量は、好ましくは2重量部以上、より好ましくは3重量部以上、好ましくは20重量部以下、より好ましくは16重量部以下である。上記ケイ素含有粒子の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記ケイ素含有粒子の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記樹脂組成物100重量%中、上記ケイ素含有化合物と上記ケイ素含有粒子との合計の含有量(ケイ素含有物質の含有量)は、好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは15重量%以下、より好ましくは12重量%以下である。上記合計の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記合計の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂100重量部に対して、上記ケイ素含有化合物と上記ケイ素含有粒子との合計の含有量(ケイ素含有物質の含有量)は、好ましくは2重量部以上、より好ましくは4重量部以上、好ましくは20重量部以下、より好ましくは15重量部以下である。上記合計の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記合計の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂の含有量と上記サルホン樹脂の含有量との合計100重量部に対して、上記ケイ素含有化合物と上記ケイ素含有粒子との合計の含有量(ケイ素含有物質の含有量)は、好ましくは2重量部以上、より好ましくは3重量部以上、好ましくは20重量部以下、より好ましくは16重量部以下である。上記合計の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記合計の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 [フッ素系樹脂]
 本発明に係る樹脂組成物は、フッ素系樹脂を含むことが好ましい。上記樹脂組成物が上記フッ素系樹脂を含むことにより、難燃性をより一層高めることができる。上記フッ素系樹脂は1種のみが用いられてもよく、2種以上が併用されていてもよい。
 上記フッ素系樹脂としては、フッ素化アルファ-オレフィンモノマーを構造単位とするホモポリマー、及びフッ素化アルファ-オレフィンモノマーを構造単位に含むコポリマー等が挙げられる。
 上記フッ素化アルファ-オレフィンモノマーとは、少なくとも1つのフッ素原子を有する置換基を含むアルファ-オレフィンモノマーである。
 上記フッ素化アルファ-オレフィンモノマーとしては、テトラフルオロエチレン(CF=CF)、CHF=CF、フッ化ビニリデン(CH=CF)、CH=CHF、クロロトリフルオロエチレン(CClF=CF)、CCl=CF、CClF=CClF、CHF=CCl、CH=CClF、CCl=CClF、ヘキサフルオロプロピレン(CF=CFCF)、CFCF=CHF、CFCH=CF、CFCH=CH、CFCF=CHF、CHFCH=CHF、及びCFCH=CH等が挙げられる。
 上記フッ素系樹脂としては、ポリ(テトラフルオロエチレン)ホモポリマー(PTFE)、ポリ(ヘキサフルオロエチレン)、ポリ(テトラフルオロエチレン-ヘキサフルオロエチレン)、及びポリ(テトラフルオロエチレン-エチレン-プロピレン)等が挙げられる。上記ポリ(テトラフルオロエチレン)ホモポリマー(PTFE)は、繊維形成性であってもよく、非繊維形成性であってもよい。
 上記樹脂組成物100重量%中、上記フッ素系樹脂の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは1.5重量%以下、より好ましくは1重量%以下である。上記フッ素系樹脂の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記フッ素系樹脂の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂100重量部に対して、上記フッ素系樹脂の含有量は、好ましくは0.3重量部以上、より好ましくは0.5重量部以上、好ましくは2重量部以下、より好ましくは1.5重量部以下である。上記フッ素系樹脂の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記フッ素系樹脂の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 上記芳香族ポリカーボネート樹脂の含有量と上記サルホン樹脂の含有量との合計100重量部に対して、上記フッ素系樹脂の含有量は、好ましくは0.5重量部以上、より好ましくは0.6重量部以上、好ましくは2重量部以下、より好ましくは1.5重量部以下である。上記フッ素系樹脂の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記フッ素系樹脂の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。
 [他の成分]
 上記樹脂組成物は、本発明の目的を阻害しない範囲で、他の成分を含んでいてもよい。
 上記他の成分としては、ドリップ防止剤、抗酸化剤、熱安定化剤、光安定化剤、UV吸収剤、着色剤、可塑剤、潤滑剤、離型剤、及び補強剤等が挙げられる。上記他の成分はそれぞれ、1種のみが用いられてもよく、2種以上が併用されていてもよい。
 上記樹脂組成物が上記他の成分を含む場合、該他の成分の含有量は特に限定されないが、例えば、上記芳香族ポリカーボネート樹脂100重量部に対して、上記他の成分の含有量は、好ましくは0.01重量部以上、より好ましくは0.1重量部以上、更に好ましくは0.5重量部以上、好ましくは10重量部以下、より好ましくは5重量部以下である。
 上記抗酸化剤としては、アルキル化モノフェノール;アルキル化ポリフェノール;テトラキス[メチレン(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナメート)]メタン等のポリフェノールとジエンのアルキル化反応生成物;パラ-クレゾール又はジシクロペンタジエンのブチル化反応生成物;アルキル化ヒドロキノン;ヒドロキシル化チオジフェニルエーテル;アルキリデン-ビスフェノール;ベンジル化合物;ベータ-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸と一価又は多価アルコールのエステル;ベータ-(5-tert-ブチル-4-ヒドロキシ-3-メチルフェニル)プロピオン酸と一価又は多価アルコールとのエステル;ジステアリルチオプロピオネート、ジラウリルチオプロピオネート、ジトリデシルチオジプロピオネート、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリトリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等のチオアルキル化合物又はチオアリール化合物のエステル;及びベータ-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸のアミド化合物等が挙げられる。
 上記樹脂組成物が上記抗酸化剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対して、上記抗酸化剤の含有量は、好ましくは0.01重量部以上、好ましくは0.1重量部以下である。
 上記光安定化剤としては、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)-ベンゾトリアゾール等のベンゾトリアゾール;及び2-ヒドロキシ-4-n-オクトキシベンゾフェノン等が挙げられる。
 上記樹脂組成物が上記光安定化剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対して、上記光安定化剤の含有量は、好ましくは0.01重量部以上、好ましくは5重量部以下である。
 上記UV吸収剤としては、ヒドロキシベンゾフェノン;ヒドロキシベンゾトリアゾール;ヒドロキシベンゾトリアジン;シアノアクリレート;オキサニリド;ベンゾオキサジノン;2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)-フェノール;2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン;2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)-フェノール;2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン);1,3-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]-2,2-ビス[[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル]プロパン;2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン);1,3-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]-2,2-ビス[[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル]プロパン;並びに酸化セリウム及び酸化亜鉛等の平均粒子径が100nm以下の無機物質等が挙げられる。
 上記樹脂組成物が上記UV吸収剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対して、上記UV吸収剤の含有量は、好ましくは0.01重量部以上、好ましくは5重量部以下である。
 上記着色剤としては、二酸化チタン、カーボンブラック、及び有機染料等が挙げられる。
 上記可塑剤、上記潤滑剤、又は上記離型剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。可塑剤として用いられる化合物には、潤滑剤や雛形剤の性質をも有する化合物が多く、潤滑剤として用いられる化合物には、雛形剤や可塑剤の性質をも有する化合物が多く、雛形剤として用いられる化合物には、可塑剤や潤滑剤の性質をも有する化合物が多い。
 上記可塑剤、潤滑剤、又は離型剤としては、ジオクチル-4,5-エポキシ-ヘキサヒドロフタレート等のフタル酸エステル;トリス-(オクトキシカルボニルエチル)イソシアヌレート;トリステアリン;ポリ-アルファ-オレフィン;エポキシ化大豆油;エステル;アルキルステアリルエステル等の脂肪酸エステル;メチルステアレート、ステアリルステアレート、ペンタエリトリトールテトラステアレート等のステアレート;ポリエチレングリコールポリマー、ポリプロピレングリコールポリマー、ポリ(エチレングリコール-co-プロピレングリコール)コポリマー等の親水性および疎水性の非イオン性界面活性剤とメチルステアレートとの混合物;メチルステアレートとポリエチレン-ポリプロピレングリコールコポリマーとの混合物;及び蜜ろう、モンタンワックス、パラフィンワックス等のワックス等が挙げられる。
 上記樹脂組成物が上記可塑剤、上記潤滑剤、又は上記離型剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対して、上記可塑剤、上記潤滑剤、及び上記離型剤の各含有量は、好ましくは0.1重量部以上、好ましくは1重量部以下である。
 上記補強剤としては、ガラスファイバー等の繊維状の補強剤等が挙げられる。
 上記樹脂組成物が上記補強剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対して、上記補強剤の含有量は、好ましくは1重量部以上、より好ましくは10重量部以上、好ましくは25重量部以下、より好ましくは20重量部以下である。
 上記他の成分における各成分の相対量は、成形体の低煙濃度性、低煙毒性、及び延性等の機械的特性等に重要な影響を与える。成形体のある特性を向上させるために、ある成分を多く配合しても、他の特性が低下する可能性がある。
 (樹脂組成物の他の詳細及び成形体)
 本発明に係る成形体は、上述した樹脂組成物が成形された成形体である。本発明に係る樹脂組成物を成形することにより、成形体を得ることができる。この成形体は、難燃性及び耐衝撃性に優れる。また、本発明に係る樹脂組成物は、賦形性に優れるので、得られる成形体にひび又は割れが生じにくい。その結果、得られる成形体は、良好な外観を有する。
 本発明に係る成形体は、上述した樹脂組成物を用いて、公知の方法により成形することができる。例えば、上記樹脂組成物を230℃~300℃で加熱して、成形及び硬化させることにより、成形体を得ることができる。また、得られた成形体を真空成形することにより、所定の形状を有する成形体を得ることができる。
 本発明に係る樹脂組成物は、賦形性に優れるので、様々な形状を有する成形体を得ることができる。例えば、本発明に係る成形体は、矩形状であってもよく、曲面を有する形状であってもよく、凹凸を有する形状であってもよく、シート状であってもよい。
 本発明に係る樹脂組成物は、真空成形するために用いられることが好ましい。なお、本発明に係る樹脂組成物は、真空成形するために用いられなくてもよい。
 上記成形体は、シート状であること好ましい。シート状の成形体は、樹脂シートである。上記樹脂シートは、例えば、樹脂組成物をシート状に押出成形することにより製造することができる。
 上記樹脂シートは、更に、真空成形等により変形されてもよい。押出成形された樹脂シートを真空成形することにより、所望の形状を有する樹脂シートを得ることができる。本発明に係る樹脂組成物は、賦形性に優れるので、所望の形状を有する成形体を良好に作製することができる。例えば、上記樹脂シートは、曲面を有する樹脂シートであってもよく、凹凸を有する樹脂シートであってもよい。
 本発明に係る成形体は、真空成形された成形体であってよく、真空成形される前の成形体であってもよく、真空成形されていない成形体であってもよい。
 上記成形体では、ISO5660-1に準拠して、ヒーター輻射熱50kW/m及びイグニッション有りの条件で測定された平均最大発熱速度が、130kW/m以下であることが好ましく、125kW/m以下であることがより好ましく、120kW/m以下であることが更に好ましい。上記平均最大発熱速度が上記上限以下であると、難燃性をより一層高めることができる。難燃性をより一層高めるために、上記平均最大発熱速度は低いほどよい。
 上記平均最大発熱速度は、具体的には、以下のように測定される。
 上記成形体を切削等し、縦100mm×横100mm×厚み3mmの発熱速度測定用サンプルを得る。得られた発熱速度測定用サンプルについて、ISO5660-1に準拠して、コーンカロリーメータ試験装置を用いて、ヒーター輻射熱50kW/m及びイグニッション有りの条件で測定を行い、発熱速度を測定する。なお、成形体の厚みが3mm未満である場合には、上記成形体の材料(樹脂組成物)を用いて、厚み3mmの発熱速度測定用サンプルを作製してもよい。
 上記平均最大発熱速度は、ISO5660-1に準拠して測定される発熱速度を用いて、EN45545-2に準拠して算出される値である。
 ISO5660-1に準拠して測定される発熱速度(q)と、発熱速度を測定する際の測定時間(T)とから、下記式により平均発熱速度を求める。
Figure JPOXMLDOC01-appb-M000009
 nは、2秒毎の測定プロット数を意味する。nは、3以上の整数であることが好ましい。
 複数の発熱速度測定用サンプルについて、上記平均発熱速度をそれぞれ算出し、得られた平均発熱速度の最大値を、平均最大発熱速度とする。なお、平均最大発熱速度は、3個以上の発熱速度測定用サンプルを用いて算出された値であることが好ましい。
 上記成形体は、難燃性及び耐衝撃性に優れるので、輸送機の内装材であることが好ましい。上記輸送機としては、鉄道車両、航空機、船舶及び自動車等が挙げられる。上記内装材としては、天井、窓枠、肘掛け、背もたれ及びテーブル等が挙げられる。上記成形体は、鉄道車両の内装材であることが好ましく、航空機の内装材であることが好ましく、船舶の内装材であることが好ましく、自動車の内装材であることが好ましい。本発明に係る樹脂組成物は賦形性に優れるので、輸送機の内装材として求められる形状に容易に成形することができる。
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。
 以下の材料を用意した。
 (芳香族ポリカーボネート樹脂)
 芳香族ポリカーボネート樹脂(ビスフェノールA型化合物に由来する構造単位を有する芳香族ポリカーボネート樹脂、三菱ガス化学社製「ユーピロンEシリーズ」、粘度平均分子量20000)
 (サルホン樹脂)
 ポリフェニルサルホン樹脂(Solvay社製「Radel 5000」)
 (リン含有化合物)
 リン酸エステル(ICLジャパン社製「Fyrol Flex Sol DP」)
 (ケイ素含有物質)
 シリコーン・アクリルコアシェルゴム(三菱レイヨン社製「メタブレン SX-005」)
 (無機フィラー)
 タルク(イメリススペシャリティーズ社製「Jet Fine 3CA」、体積平均粒子径4.8μm)
 タルクの体積平均粒子径(D50)は、レーザー回折式粒子径分布測定装置(島津製作所社製「SALD-3100」)を用いて粒子径分布を測定することにより求めた。具体的には、得られた粒子径分布において、小径側から計算した累積体積が50%となる粒子径を、タルクの体積平均粒子径(D50)とした。
 (フッ素系樹脂)
 ポリテトラフルオロエチレン(Dupon社製「Teflon CFP6000」)
 (実施例1)
 樹脂組成物の調製:
 二軸押出機(日本製鋼所社製「TEX30a」)を用いて、表1に示す配合量(重量部)で配合された混合物を、シリンダー温度280℃、金型温度260℃、圧力0.7バール(真空)、スクリュー径30mm、回転速度400rpm、押出量15kg/時間の条件下で、溶融混練した後、溶融押出を行った。溶融押出によって得られた樹脂組成物を、水冷式で冷却し、ペレタイザーを用いてペレット状に切断した後、約120℃で約5時間乾燥して、ペレット状の樹脂組成物を得た。
 成形体の作製:
 単軸押出機(プラスチック工学研究所製「GT50」)を用いて、ペレット状の上記樹脂組成物をシリンダー温度270℃、金型温度290℃、押出量20kg/時間の条件下で溶融した後、シート状に成形した。次いで、引取機における引取り速度のロール速度に対する比(引取り速度/ロール速度)を1.05に設定して引取り、厚み3mmの樹脂シート(成形体)を得た。
 (実施例2~15及び比較例1~4)
 各成分の配合量(重量部)を下記の表1~4に示すように変更したこと以外は実施例1と同様にして、樹脂組成物及び成形体を得た。
 (評価)
 (1)賦形性
 得られた樹脂シートを長さ300mm×幅300mm×厚み3mmに切り出し、試験片を得た。得られた試験片を190℃に加温した状態で、JIS K7161-2:2014に準拠して引張試験を行い、試験片の破断時の伸び率を評価した。
 [賦形性の判定基準]
 〇:破断時の伸び率が200%以上
 △:破断時の伸び率が100%以上200%未満
 △△:破断時の伸び率が80%以上100%未満
 ×:破断時の伸び率が80%未満
 (2)難燃性(平均最大発熱速度)
 得られた樹脂シートを縦100mm×横100mm×厚み3mmに切り出し、発熱速度測定用サンプルを得た。得られた発熱速度測定用サンプルについて、ISO5660-1に準拠して、コーンカロリーメータ試験装置を用いて、ヒーター輻射熱50kW/m、測定時間20分、及びイグニッション有りの条件で測定を行い、発熱速度を測定した。
 測定した発熱速度から、EN45545-2に準拠して平均最大発熱速度を求めた。この評価では、上述した平均発熱速度の式におけるnは、600とした。
 [平均最大発熱速度の判定基準]
 〇:120kW/m未満
 △:120kW/m以上130kW/m以下
 ×:130kW/m超える
 (3)耐衝撃性(ダート衝撃強さ)
 得られた樹脂シートを長さ45mm×幅45mm×厚み3mmに切り出し、衝撃強さ測定用サンプルを得た。得られた衝撃強さ測定用サンプルについて、ASTM D 5420(GE法)に準拠して測定を行い、衝撃エネルギーを測定した。具体的には、ガードナー衝撃試験機(BYK社製)を用いて、重量16lb及びピン先端形状GE型の物体を用いて、上記衝撃強さ測定用サンプルに衝撃を与え、該衝撃強さ測定用サンプルに亀裂が発生しない衝撃エネルギーを測定した。
 [ダート衝撃強さの判定基準]
 〇:衝撃エネルギーが300in-lb以上
 △:衝撃エネルギーが190in-lb以上300in-lb未満
 ×:衝撃エネルギーが190in-lb未満
 (4)総合判定
 (1)賦形性の評価結果と、(2)難燃性(平均最大発熱速度)の評価結果と、(3)耐衝撃性(ダート衝撃強さ)の評価結果とから、得られた成形体を評価した。
 [総合判定の評価基準]
 〇:上記の(1),(2),(3)の評価結果が全て〇
 △:上記の(1),(2),(3)の評価結果に△△及び×がなく、かつ△がある
 △△:上記の(1),(2),(3)の評価結果に×がなく、かつ△△がある
 ×:上記の(1),(2),(3)の評価結果に×がある
 組成及び結果を下記の表1~4に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 実施例で得られた樹脂シート(成形体)では、比較的低い温度であっても伸びがよく、賦形性に優れることが理解できる。このため、例えば、実施例で得られた樹脂シート(成形体)を様々な形状に良好に賦形させることができる。また、実施例で得られた成形体では、難燃性及び耐衝撃性にも優れることが理解できる。
 これに対して、比較例で得られた樹脂シート(成形体)では、賦形性、難燃性及び耐衝撃性の全てを高めることは困難であった。

Claims (15)

  1.  芳香族ポリカーボネート樹脂と、下記式(1)で表される構造を有するサルホン樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物又はケイ素含有粒子とを含む、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記サルホン樹脂が、下記式(11)で表される構造を有するポリフェニルサルホン樹脂である、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
  3.  前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量%中、前記サルホン樹脂の含有量が5重量%以上35重量%以下である、請求項1又は2に記載の樹脂組成物。
  4.  前記サルホン樹脂の含有量の、前記リン含有化合物の含有量に対する重量比が0.6以上3.5以下である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量部に対して、前記リン含有化合物の含有量が5重量部以上16重量部以下である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量部に対して、前記無機フィラーの含有量が10重量部以上40重量部以下である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記無機フィラーが、タルクである、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量部に対して、前記ケイ素含有化合物と前記ケイ素含有粒子との合計の含有量が2重量部以上20重量部以下である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  前記ケイ素含有粒子を含み、
     前記ケイ素含有粒子が、コアと、前記コアの表面に配置されたシェルとを備えるコアシェル粒子である、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  フッ素系樹脂を含み、
     前記芳香族ポリカーボネート樹脂の含有量と前記サルホン樹脂の含有量との合計100重量部に対して、前記フッ素系樹脂の含有量が0.5重量部以上2重量部以下である、請求項1~9のいずれか1項に記載の樹脂組成物。
  11.  請求項1~10のいずれか1項に記載の樹脂組成物が成形された、成形体。
  12.  シート状である、請求項11に記載の成形体。
  13.  ISO5660-1に準拠して、ヒーター輻射熱50kW/m及びイグニッション有りの条件で測定された平均最大発熱速度が130kW/m以下である、請求項11又は12に記載の成形体。
  14.  輸送機の内装材である、請求項11~13のいずれか1項に記載の成形体。
  15.  鉄道車両の内装材である、請求項11~14のいずれか1項に記載の成形体。
PCT/JP2020/000410 2019-03-27 2020-01-09 樹脂組成物及び成形体 WO2020194996A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080016612.3A CN113474410A (zh) 2019-03-27 2020-01-09 树脂组合物以及成型体
EP20776507.4A EP3950808A4 (en) 2019-03-27 2020-01-09 RESIN COMPOSITION AND MOLDING
JP2020536901A JP6816331B1 (ja) 2019-03-27 2020-01-09 成形体
US17/433,853 US20220145071A1 (en) 2019-03-27 2020-01-09 Resin composition and molded object

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019060446 2019-03-27
JP2019-060446 2019-03-27
JP2019-150373 2019-08-20
JP2019150373 2019-08-20

Publications (1)

Publication Number Publication Date
WO2020194996A1 true WO2020194996A1 (ja) 2020-10-01

Family

ID=72610870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000410 WO2020194996A1 (ja) 2019-03-27 2020-01-09 樹脂組成物及び成形体

Country Status (5)

Country Link
US (1) US20220145071A1 (ja)
EP (1) EP3950808A4 (ja)
JP (1) JP6816331B1 (ja)
CN (1) CN113474410A (ja)
WO (1) WO2020194996A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181409B (zh) * 2022-08-19 2023-09-26 苏州奥美材料科技有限公司 一种改性聚碳酸酯复合材料及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2842005A1 (de) 1978-09-27 1980-04-10 Bayer Ag Polycarbonate mit alkylphenyl-endgruppen, ihre herstellung und ihre verwendung
JPH05117514A (ja) * 1991-10-24 1993-05-14 Denki Kagaku Kogyo Kk 難燃性樹脂組成物
JPH0827367A (ja) * 1994-07-15 1996-01-30 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂組成物
JPH11256035A (ja) 1997-12-04 1999-09-21 General Electric Co <Ge> 難燃性ポリエーテルイミド樹脂組成物
JP2005194381A (ja) * 2004-01-07 2005-07-21 Idemitsu Kosan Co Ltd 難燃性ポリカーボネート樹脂組成物
JP2007314766A (ja) * 2006-04-24 2007-12-06 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物および樹脂成形品
JP2008516028A (ja) 2004-10-04 2008-05-15 ソルヴェイ アドバンスド ポリマーズ リミテッド ライアビリティ カンパニー スルホンポリマー組成物
JP2011095468A (ja) * 2009-10-29 2011-05-12 Shin Etsu Polymer Co Ltd ラベル用フィルム基材、粘着フィルムおよび積層フィルム
WO2018047693A1 (ja) * 2016-09-09 2018-03-15 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
WO2018066210A1 (ja) * 2016-10-06 2018-04-12 ソニー株式会社 難燃性樹脂組成物
JP2019038895A (ja) * 2017-08-23 2019-03-14 積水化学工業株式会社 樹脂組成物及び成形体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496992B (zh) * 2016-10-26 2018-08-14 宁国市大荣电器有限公司 一种耐温高强度电容器塑壳
CN107141799A (zh) * 2017-06-19 2017-09-08 合肥斯科尔智能科技有限公司 一种建筑工程用耐氧化高强度3d打印材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2842005A1 (de) 1978-09-27 1980-04-10 Bayer Ag Polycarbonate mit alkylphenyl-endgruppen, ihre herstellung und ihre verwendung
JPH05117514A (ja) * 1991-10-24 1993-05-14 Denki Kagaku Kogyo Kk 難燃性樹脂組成物
JPH0827367A (ja) * 1994-07-15 1996-01-30 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂組成物
JPH11256035A (ja) 1997-12-04 1999-09-21 General Electric Co <Ge> 難燃性ポリエーテルイミド樹脂組成物
JP2005194381A (ja) * 2004-01-07 2005-07-21 Idemitsu Kosan Co Ltd 難燃性ポリカーボネート樹脂組成物
JP2008516028A (ja) 2004-10-04 2008-05-15 ソルヴェイ アドバンスド ポリマーズ リミテッド ライアビリティ カンパニー スルホンポリマー組成物
JP2007314766A (ja) * 2006-04-24 2007-12-06 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物および樹脂成形品
JP2011095468A (ja) * 2009-10-29 2011-05-12 Shin Etsu Polymer Co Ltd ラベル用フィルム基材、粘着フィルムおよび積層フィルム
WO2018047693A1 (ja) * 2016-09-09 2018-03-15 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
WO2018066210A1 (ja) * 2016-10-06 2018-04-12 ソニー株式会社 難燃性樹脂組成物
JP2019038895A (ja) * 2017-08-23 2019-03-14 積水化学工業株式会社 樹脂組成物及び成形体

Also Published As

Publication number Publication date
EP3950808A4 (en) 2022-12-28
EP3950808A1 (en) 2022-02-09
CN113474410A (zh) 2021-10-01
US20220145071A1 (en) 2022-05-12
JP6816331B1 (ja) 2021-01-20
JPWO2020194996A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
JP5946256B2 (ja) ポリカーボネート樹脂組成物
JP6013525B2 (ja) ポリカーボネート樹脂組成物及びポリカーボネート樹脂成形体
US11603467B2 (en) Polycarbonate resin composition
CN109689784B (zh) 聚碳酸酯树脂组合物
JP5869268B2 (ja) ポリカーボネート樹脂組成物
KR102204271B1 (ko) 할로겐 무함유 난연성 폴리카르보네이트
TW201406858A (zh) 具有良好之熱與化學抗性之pc/abs組成物
JP2006291009A (ja) 芳香族ポリカーボネート樹脂組成物及びそれを用いた成形体
JP6816331B1 (ja) 成形体
JPWO2017038736A1 (ja) 難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法
JP2022056029A (ja) 樹脂組成物及び成形体
CN112867754B (zh) 树脂片
JP2020132841A (ja) ポリカーボネート樹脂組成物および成形品
JP2021155693A (ja) 樹脂組成物、成形体及び樹脂積層体
JP6352030B2 (ja) ポリカーボネート樹脂組成物および成形品
WO2020100350A1 (ja) 樹脂シート
JP7193278B2 (ja) 積層体
JP7305395B2 (ja) 積層体
JP2019038895A (ja) 樹脂組成物及び成形体
JP7188911B2 (ja) 積層体
JP6001322B2 (ja) ポリカーボネート樹脂組成物
JP6026129B2 (ja) ポリカーボネート樹脂組成物、それからなる成形体およびその製造方法
JP2010138264A (ja) ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020536901

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020776507

Country of ref document: EP

Effective date: 20211027