WO2020194579A1 - 静止誘導機器 - Google Patents

静止誘導機器 Download PDF

Info

Publication number
WO2020194579A1
WO2020194579A1 PCT/JP2019/013201 JP2019013201W WO2020194579A1 WO 2020194579 A1 WO2020194579 A1 WO 2020194579A1 JP 2019013201 W JP2019013201 W JP 2019013201W WO 2020194579 A1 WO2020194579 A1 WO 2020194579A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
connection sleeve
slit
present
induction device
Prior art date
Application number
PCT/JP2019/013201
Other languages
English (en)
French (fr)
Inventor
一馬 村上
壮一朗 海永
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019547734A priority Critical patent/JP6692502B1/ja
Priority to US17/430,063 priority patent/US20220139612A1/en
Priority to CN201980094154.2A priority patent/CN113574617B/zh
Priority to PCT/JP2019/013201 priority patent/WO2020194579A1/ja
Publication of WO2020194579A1 publication Critical patent/WO2020194579A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • H01F27/2852Construction of conductive connections, of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/20Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Definitions

  • the present invention relates to a stationary induction device.
  • Patent Document 1 discloses the configuration of the stationary induction device.
  • the resin mold coil includes a winding portion and a resin mold layer.
  • the winding portion is formed by arranging a plurality of section coils around which a winding conductor is wound in the axial direction and connecting them in series.
  • the inner diameter side or the outer diameter side of two section coils adjacent to each other in the axial direction are conductively connected by a conductor so as to have the same potential.
  • crossing conductor for example, a foil conductor made of aluminum foil similar to the winding conductor can be used, and the winding conductor and the crossing conductor are joined by, for example, soldering, brazing, pressure welding or crimping. Can be done.
  • the wire end portions of the flat lead wires constituting each of the two disc-shaped windings adjacent to each other among the plurality of disc-shaped windings may be connected by using a connection sleeve. ..
  • the leakage flux generated during the operation of the stationary induction device is incident on the end face of the connection sleeve, so that an eddy current is generated on the end face. This causes a problem that eddy current loss occurs.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a stationary induction device capable of reducing eddy current loss due to eddy current generated in a connection sleeve.
  • the static induction device based on the present invention includes an iron core, a plurality of disc-shaped windings, and a connection sleeve.
  • Each of the plurality of disc-shaped windings is wound around an iron core as a central axis.
  • the plurality of disc-shaped windings are configured by stacking each of the plurality of disc-shaped windings in the axial direction of the central axis.
  • the connection sleeve connects two lead end portions of the flat lead wire forming each of the plurality of disc-shaped windings, which are adjacent to each other in the axial direction of the central axis, to each other.
  • the connecting sleeve includes a through hole, a pair of pressed portions, and a pair of end portions.
  • the through hole allows a flat lead wire to be inserted from both sides.
  • the pair of pressed portions sandwich the flat lead wires inserted into the through holes between each other.
  • the pair of end portions are arranged in a direction orthogonal to each of the penetrating direction of the through hole and the line-up direction of the pair of pressed portions.
  • Each of the pair of ends has an end face located on the side opposite to the through hole side. At least one of the pair of ends is provided with slits so as to divide the end faces when viewed from the direction in which the pair of ends are arranged.
  • the eddy current loss can be reduced by shortening the path of the eddy current generated at the end face of the connection sleeve.
  • FIG. 1 It is a perspective view which shows the appearance of the stationary induction apparatus which concerns on Embodiment 1 of this invention. It is a partial cross-sectional view of the stationary guidance device shown in FIG. 1 as viewed from the direction of the arrow on line II-II. It is a partially enlarged view which shows the structure of the connection sleeve which looked at the stationary induction device shown in FIG. 2 from the direction of arrow III. It is a figure which shows the structure of the connection sleeve which looked at the stationary guidance apparatus shown in FIG. It is a figure which looked at the connection sleeve shown in FIG. 4 from the direction of the arrow of VV line. It is a figure which looked at the connection sleeve in the stationary induction device shown in FIG.
  • FIG. 7 is a view of the connection sleeve shown in FIG. 7 as viewed from the direction of arrow VIII. It is a figure which shows the state which the eddy current is generated in the connection sleeve in the stationary induction device which concerns on Embodiment 1 of this invention.
  • FIG. 9 is a view of the connection sleeve shown in FIG. 9 as viewed from the direction of arrow X. It is a figure which shows the connection sleeve in the stationary induction apparatus which concerns on 1st modification of Embodiment 1 of this invention.
  • FIG. 9 is a view of the connection sleeve shown in FIG. 9 as viewed from the direction of arrow X. It is a figure which shows the connection sleeve in the stationary induction apparatus which concerns on 1st modification of Embodiment 1 of this invention.
  • FIG. 11 is a view of the connection sleeve shown in FIG. 11 as viewed from the direction of arrow XII. It is a figure which shows the connection sleeve in the stationary induction device which concerns on the 2nd modification of Embodiment 1 of this invention. It is a figure which shows the connection sleeve in the stationary induction device which concerns on 3rd modification of Embodiment 1 of this invention. It is a figure which shows the structure of the connection sleeve in the stationary induction device which concerns on Embodiment 2 of this invention. It is a perspective view which shows the appearance of the stationary induction apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 16 is a partial cross-sectional view of the stationary guidance device shown in FIG. 16 as viewed from the direction of the arrow along the line XVII-XVII.
  • FIG. 1 is a perspective view showing the appearance of the stationary guidance device according to the first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of the stationary guidance device shown in FIG. 1 as viewed from the direction of the arrow along line II-II.
  • the stationary induction device 100 is an inner iron type transformer.
  • the static induction device 100 includes an iron core 110, a high-pressure winding 120A, a low-pressure winding 120B, and a connection sleeve 130.
  • Each of the high-pressure winding 120A and the low-pressure winding 120B is wound concentrically around the main landing gear of the iron core 110.
  • the stationary guidance device 100 further includes a tank (not shown).
  • the tank is filled with insulating oil or insulating gas which is an insulating medium and a cooling medium.
  • insulating oil for example, mineral oil, ester oil or silicone oil is used.
  • insulating gas for example, SF 6 gas or dry air is used.
  • the iron core 110, the high pressure winding 120A and the low pressure winding 120B are housed in the tank.
  • the high pressure winding 120A is located radially outside the central axis with respect to the low pressure winding 120B.
  • the high-pressure winding 120A is composed of a plurality of disc-shaped windings 120.
  • the low pressure winding 120B is also composed of a plurality of disc-shaped windings 120.
  • the stationary induction device 100 includes a plurality of disc-shaped windings 120.
  • the plurality of disc-shaped windings 120 are configured by stacking each of the plurality of disc-shaped windings 120 in the axial direction of the central axis. Each of the plurality of disc-shaped windings 120 is wound around the iron core 110 as a central axis.
  • Each of the plurality of disc-shaped windings 120 is composed of a flat lead wire 121. That is, the disk-shaped winding 120 is configured by winding a plurality of flat-angle conducting wires 121 in a disk shape.
  • the flat wire 121 is composed of an electric wire portion having a substantially rectangular cross section and an electric wire insulating coating that covers the electric wire portion.
  • a plurality of disc-shaped windings 120 adjacent to each other in the axial direction of the central axis are electrically connected to each other by a connecting sleeve 130 at the outer peripheral end or the inner peripheral end.
  • the plurality of disc-shaped windings 120 are mechanically connected by a connecting sleeve 130 at the outer peripheral end or the inner peripheral end.
  • FIG. 3 is a partially enlarged view showing the configuration of the connection sleeve when the stationary guidance device shown in FIG. 2 is viewed from the direction of arrow III.
  • FIG. 4 is a diagram showing a configuration of a connecting sleeve when the stationary guidance device shown in FIG. 3 is viewed from the direction of arrow IV.
  • FIG. 5 is a view of the connection sleeve shown in FIG. 4 as viewed from the direction of the arrow along the VV line.
  • FIG. 6 is a view of the connection sleeve in the stationary induction device shown in FIG. 5 as viewed from the direction of arrow VI.
  • connection sleeve 130 connects two wire end 122s of the flat wire 121, which are adjacent to each other in the axial direction of the central axis, to each other.
  • each of the plurality of disc-shaped windings 120 is composed of a plurality of flat-angle conducting wires 121. That is, the disk-shaped winding 120 is a flat-wound multiple coil of the flat-angle conducting wire 121. Therefore, the disk-shaped winding 120 includes a plurality of lead wire end portions 122, which are end portions of the flat lead wire 121, on each of the outer peripheral end side and the inner peripheral end side. In the present embodiment, a plurality of wire end portions 122 included in each of the disk-shaped windings 120 adjacent to each other are connected to each other by one connection sleeve 130.
  • each of the plurality of disk-shaped windings 120 cannot be connected to each other by one connection sleeve 130 due to the large number of lead wire end portions 122, they are adjacent to each other in the axial direction.
  • a plurality of lead wire end portions 122 included in each of the disk-shaped windings 120 may be connected to each other by a plurality of connecting sleeves 130.
  • connection sleeve 130 includes a through hole 131, a pair of pressed portions 132, and a pair of end portions 133.
  • the through hole 131 can be inserted with a flat lead wire 121 from both sides.
  • the pair of pressed portions 132 sandwich the flat conducting wires 121 inserted into the through holes 131 between each other.
  • the lead wire end 122 of the flat lead wire 121 constituting one of the disc-shaped windings 120 adjacent to each other in the axial direction is inserted.
  • the lead wire end portion 122 of the flat lead wire 121 constituting the other disc-shaped winding 120 of the disc-shaped windings 120 adjacent to each other in the axial direction is inserted.
  • the lead wire ends 122 of the three flat lead wires 121 constituting the one disk-shaped winding 120 and the lead wires of the three flat lead wires 121 constituting the other disc-shaped winding 120 are the lead wire ends 122 of the three flat lead wires 121 constituting the one disk-shaped winding 120 and the lead wires of the three flat lead wires 121 constituting the other disc-shaped winding 120.
  • the pair of pressed portions 132 are pressed and deformed from the outside in the direction in which the pair of pressed portions 132 are arranged.
  • the wire end 122 of the three flat wire 121 forming the one disk-shaped winding 120 and the wire end 122 of the three flat wire 121 forming the other disc winding 120 Are crimped to each other and electrically and mechanically connected to each other.
  • the wire end 122 of the three flat wire 121 forming the one disk-shaped winding 120 and the wire end 122 of the three flat wire 121 forming the other disc winding 120 are By pressing the pair of pressed portions 132 from the outside and deforming them in a state where the tip surfaces of the pair of pressed portions are in contact with each other without overlapping in the direction in which the pair of pressed portions are lined up, they are electrically fixed to each other and electrically You may connect.
  • the pair of pressed portions 132 are inside the both ends of the end portions 133 in the direction in which the pair of pressed portions are lined up when viewed from the through direction of the through hole 131. Is located in. As a result, it is possible to prevent the leakage flux described later from being incident on the pressed portion 132.
  • the pair of end portions 133 are arranged in directions orthogonal to each of the penetrating direction of the through hole 131 and the line-up direction of the pair of pressed portions 132.
  • Each of the pair of end portions 133 has an end surface 134 located on the side opposite to the through hole 131 side.
  • the end face 134 is composed of a substantially arcuate curved surface when viewed from the through direction of the through hole 131.
  • the end face 134 may be formed of a flat surface.
  • the end face 134 may be formed in a polygonal shape when viewed from the through direction of the through hole 131.
  • At least one of the pair of end portions 133 is provided with slits 135 so as to divide the end face 134 when viewed from the direction in which the pair of end portions 133 are arranged. That is, as shown in FIG. 6, the end face 134 is divided into a plurality of regions by the slit 135 when viewed from the direction in which the pair of end portions 133 are arranged.
  • the slits 135 are provided at each of the pair of end portions 133.
  • the connection sleeve 130 is arranged so that the end surface 134 provided with the slit 135 intersects the axial direction of the central axis. That is, the end face 134 is not located parallel to the axial direction of the central axis.
  • the slit 135 is formed in a concave shape.
  • the slit 135 may be formed in a V shape when viewed from the through direction of the through hole 131.
  • the depth direction of the slit 135 is substantially the same as the direction in which the pair of end portions 133 are arranged. As shown in FIG. 5, in the embodiment of the present invention, the depth of the slit 135 is deeper than the skin depth d of the material constituting at least one of the pair of end portions 133 during operation of the stationary guidance device 100.
  • the skin depth d is the distance required for the incident magnetic flux to be attenuated 1 / e times, that is, approximately 1 / 2.718 times.
  • the material constituting the connection sleeve 130 is, for example, oxygen-free copper having a magnetic permeability ⁇ of 4 ⁇ ⁇ 10 -7 H / m and a dielectric constant ⁇ of 5.82 ⁇ 10 7 S / m. Is.
  • the skin depth d is 6.6 mm
  • the operating frequency f of the stationary induction device 100 is f.
  • the skin depth d is 0.66 mm.
  • connection sleeve 130 is made of a metal such as oxygen-free copper.
  • the connection sleeve 130 may be made of a metal coated with an insulating layer.
  • a main magnetic flux B 0 is generated in the iron core 110. Further, the leakage flux B leaking from the iron core 110 is generated.
  • the magnetic flux lines of the leakage flux B are located on the outer peripheral side and the inner peripheral side of the high pressure winding 120A, respectively.
  • the magnetic flux lines of the leakage flux B are located at least on the outer peripheral side of the low pressure winding 120B.
  • the magnetic flux lines of the leakage flux B located on the outer peripheral side and the inner peripheral side of the plurality of disc-shaped windings 120 are oriented in a direction parallel to the axial direction of the central axis.
  • FIG. 7 is a diagram showing a connection sleeve according to a comparative example.
  • FIG. 8 is a view of the connection sleeve shown in FIG. 7 as viewed from the direction of arrow VIII.
  • FIGS. 7 and 8 when viewed from the direction in which the pair of end portions 933 are arranged, at least one end portion 933 of the connection sleeve 930 according to the comparative example has a substantially circular circle along the outer circumference of the end surface 934.
  • An eddy current I 9 with a shaped path is generated.
  • the path of the eddy current I 9 has a circular shape having a diameter substantially the same as the length of the end face 934 in the lateral direction when viewed from the direction in which the pair of end portions 933 are arranged.
  • FIGS. 7 and 8 show a case where the magnetic flux lines of the leakage flux B incident on the end surface 934 are oriented in the direction in which the pair of end portions 933 are aligned.
  • FIG. 7 schematically shows the path of the eddy current I 9 .
  • FIG. 9 is a diagram showing a state in which an eddy current is generated in the connection sleeve in the stationary induction device according to the first embodiment of the present invention.
  • FIG. 10 is a view of the connection sleeve shown in FIG. 9 as viewed from the direction of arrow X. Note that FIGS. 9 and 10 show a case where the magnetic flux lines of the leakage flux B incident on the end face 134 are oriented in the direction in which the pair of end portions 133 are aligned. In FIG. 9, the path of the eddy current I 1 is schematically shown.
  • connection sleeve 130 in the connection sleeve 130 according to the first embodiment of the present invention, at least one of the pair of end portions 133 has an end surface 134 when viewed from the direction in which the pair of end portions 133 are arranged. Since the slit 135 is provided so as to divide the vortex current I 1 , an eddy current I 1 is generated in each of the two divided regions on the end face 134.
  • each path of the two eddy currents I 1 has a circular shape having a diameter approximately half the length of the end face 134 in the lateral direction. It has become.
  • the path of the eddy current I 1 is compared with the length of the path of the eddy current I 9 in the comparative example. The length becomes shorter.
  • the connection sleeve 130 includes a through hole 131, a pair of pressed portions 132, and a pair of end portions 133.
  • the through hole 131 can be inserted with a flat lead wire 121 from both sides.
  • the pair of pressed portions 132 sandwich the flat conducting wires 121 inserted into the through holes 131 between each other.
  • the pair of end portions 133 are arranged in a direction orthogonal to each of the penetrating direction of the through hole 131 and the line-up direction of the pair of pressed portions 132.
  • Each of the pair of end portions 133 has an end surface 134 located on the side opposite to the through hole 131 side. At least one of the pair of end portions 133 is provided with slits 135 so as to divide the end face 134 when viewed from the direction in which the pair of end portions 133 are arranged.
  • connection sleeve 130 As a result, the path of the eddy current I 1 generated on the end surface 134 of the connection sleeve 130 can be shortened, so that the eddy current loss can be reduced. In addition, it is possible to suppress heat generation of the connection sleeve 130 due to the generation of eddy current.
  • the depth of the slit 135 is deeper than the skin depth d of the material constituting at least one of the pair of end portions 133 during operation of the static guidance device 100. ..
  • the eddy current I 1 generated in the connection sleeve 130 can be suppressed from flowing on the end face 134 through the portion below the bottom surface of the slit 135, so that the path of the eddy current I 1 can be shortened more reliably. ..
  • connection sleeve 130 is arranged so that the end surface 134 provided with the slit 135 intersects the axial direction of the central axis.
  • FIG. 11 is a diagram showing a connection sleeve in the stationary induction device according to the first modification of the first embodiment of the present invention.
  • FIG. 12 is a view of the connection sleeve shown in FIG. 11 as viewed from the direction of arrow XII.
  • two slits 135a are formed in the end faces 134a of each of the pair of end portions 133a of the connection sleeve 130a. Is formed.
  • the two slits 135a extend so as to be parallel to each other when viewed from the direction in which the pair of end portions 133a are arranged.
  • the path per eddy current I 1a can be further shortened by providing the plurality of slits 135a. As a result, the eddy current loss in the connection sleeve 130a can be further reduced.
  • FIG. 13 is a diagram showing a connection sleeve in the stationary induction device according to the second modification of the first embodiment of the present invention.
  • the connection sleeve 130b viewed from the direction in which the pair of end portions 133 are lined up is shown.
  • the slit 135b is in the longitudinal direction and the lateral direction of the end face 134b when viewed from the direction in which the pair of end portions 133 are arranged. It extends in the direction of intersection with each.
  • FIG. 14 is a diagram showing a connection sleeve in the stationary induction device according to the third modification of the first embodiment of the present invention.
  • the slit 135c is provided at one end 133 of the pair of end 133s until it reaches the through hole 131c.
  • connection sleeve 130c is provided with only one slit 135c that reaches the through hole 131c.
  • Embodiment 2 the stationary induction device according to the second embodiment of the present invention will be described. Since the static guidance device according to the second embodiment of the present invention differs from the static guidance device 100 according to the first embodiment of the present invention only in the configuration of the connection sleeve, it is different from the static guidance device according to the first embodiment of the present invention. The description will not be repeated for similar configurations.
  • FIG. 15 is a diagram showing a configuration of a connection sleeve in the stationary induction device according to the second embodiment of the present invention.
  • the connection sleeve shown in FIG. 15 corresponds to the connection sleeve in the stationary induction device 100 according to the first embodiment of the present invention shown in FIG.
  • the insulating member 240 is arranged in the slit 135 formed at the end 133 of the connection sleeve 230.
  • the insulating member 240 is arranged so as to fill the inside of the slit 135 over the entire length in the depth direction of the slit 135.
  • a gap may be partially provided between the insulating member 240 and the inner wall of the slit 135.
  • the material constituting the insulating member 240 for example, a press board can be used.
  • the coefficient of thermal expansion of the material constituting the insulating member 240 is preferably close to the value of the coefficient of thermal expansion of the material constituting each of the end portion 133 and the pressed portion 132.
  • the slit 135 extends in a direction parallel to the longitudinal direction of the end face 134 when viewed from the direction in which the pair of end portions 133 are arranged. Exists.
  • the configuration of the slit 135 in the second embodiment of the present invention is not limited to the above shape.
  • the same slits as in each modification of the first embodiment of the present invention may be provided.
  • the insulating member 240 is arranged in the slit 135, it is compared with the connection sleeve 130 of the stationary induction device 100 according to the first embodiment of the present invention. Therefore, the mechanical strength of the connection sleeve 230 can be improved. Also in the stationary induction device according to the second embodiment of the present invention, the path of the eddy current generated on the end face 134 can be shortened, so that the eddy current loss can be reduced.
  • the stationary induction device according to the third embodiment of the present invention is different from the first embodiment of the present invention in that it is an outer iron type transformer, and therefore has the same configuration as the static induction device according to the first embodiment of the present invention. The explanation is not repeated for.
  • FIG. 16 is a perspective view showing the appearance of the stationary guidance device according to the third embodiment of the present invention.
  • FIG. 17 is a partial cross-sectional view of the stationary guidance device shown in FIG. 16 as viewed from the direction of the arrow along the line XVII-XVII.
  • the stationary induction device 300 is an outer iron type transformer.
  • the static induction device 300 includes an iron core 310, a high-pressure winding 320A, a low-pressure winding 320B, and a connection sleeve 330.
  • the high-pressure winding 320A and the low-pressure winding 320B are coaxially arranged with the main landing gear of the iron core 310 as the central axis.
  • the static guidance device 300 further includes a tank 350.
  • the tank 350 is filled with insulating oil or insulating gas which is an insulating medium and a cooling medium.
  • the insulating oil is, for example, mineral oil, ester oil or silicone oil
  • the insulating gas is, for example, SF 6 gas or dry air.
  • the iron core 310, the high pressure winding 320A and the low pressure winding 320B are housed in the tank 350.
  • the high-pressure winding 320A is arranged so as to be sandwiched between the low-pressure windings 320B in the direction along the central axis.
  • the high-pressure winding 320A is configured by laminating a plurality of disk-shaped windings formed by winding a flat-angle lead wire 321 in a disk shape in the axial direction of the central axis.
  • the flat wire 321 includes a wire portion having a substantially rectangular shape in cross section and an insulating coating portion that covers the wire portion.
  • the low pressure winding 320B also has the same configuration as the high pressure winding 320A.
  • the stationary induction device 300 includes a plurality of disc-shaped windings 320.
  • the high-pressure winding 320A includes two disc-shaped windings 320 whose inner peripheral ends are continuous with each other.
  • Other continuous disc-shaped winding pairs are connected to each other side by side in the axial direction.
  • the outer peripheral ends of the disk-shaped winding 320 are electrically and mechanically connected to each other by a connecting sleeve 330.
  • a main magnetic flux B 0 is generated in the iron core 310. Further, the leakage flux B leaking from the iron core 310 is generated.
  • the magnetic flux lines of the leakage flux B pass between a plurality of disc-shaped windings 320 adjacent to each other in the axial direction of the central axis. Specifically, it passes between two disc-shaped windings 320 connected by a connection sleeve 330.
  • the magnetic flux lines of the leakage flux B are oriented in a direction parallel to the radial direction of the central axis.
  • connection sleeve 330 is arranged so that the end surface 334 provided with the slit intersects the radial direction of the central axis.
  • the end face 334 is arranged so as to be orthogonal to the radial direction of the central axis.
  • the first embodiment of the present invention Similarly, the slit can shorten the path of the eddy current generated on the end face 334. As a result, the eddy current loss can be reduced. Further, it is possible to prevent the connection sleeve 330 from generating heat due to the generation of eddy current.
  • the slit in the third embodiment of the present invention is provided in the same manner as in each modification of the first embodiment of the present invention or the first embodiment of the present invention. Further, as in the second embodiment of the present invention, the insulating member may be arranged in the slit.
  • the static induction device may be another static induction device such as a reactor.
  • 100,300 static induction device 110,310 iron core, 120,320 disc-shaped winding, 120A, 320A high-pressure winding, 120B, 320B low-pressure winding, 121,321 flat wire, 122 wire end, 130,130a, 130b , 130c, 230, 330, 930 connection sleeve, 131, 131c through hole, 132 pressed part, 133, 133a, 933 end, 134, 134a, 134b, 334, 934 end face, 135, 135a, 135b, 135c slit, 240 insulation member, 350 tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

接続スリーブ(130)は、複数の円盤状巻線(120)の各々を構成する平角導線(121)の導線端部(122)のうち、中心軸(C1)の軸方向において互いに隣接する2つの導線端部(122)を互いに接続している。貫通孔(131)は、両側から平角導線(121)を挿入可能である。一対の被押圧部(132)は、貫通孔(131)に挿入された平角導線(121)を互いの間に挟み込んでいる。一対の端部(133)の少なくとも一方は、一対の端部(133)の並ぶ方向から見たときに端面(134)を分割するようにスリット(135)が設けられている。

Description

静止誘導機器
 本発明は、静止誘導機器に関する。
 静止誘導機器の構成を開示した文献として、特開2012-195412号公報(特許文献1)がある。特許文献1に記載の静止誘導機器においては、樹脂モールドコイルが、巻線部と、樹脂モールド層とを備えている。巻線部は、巻線導体を巻回したセクションコイルが軸方向に複数個配列され、かつ、直列接続されることで構成されている。軸方向に隣接する2つのセクションコイルの内径側同士または外径側同士が、互いに同電位となるように渡り導体で導電接続されている。渡り導体としては、たとえば、巻線導体と同様なアルミニウム箔などからなる箔導体を用いることができ、巻線導体と渡り導体との接合は、たとえば、半田付け、ロウ付け、圧接または圧着などにより行なうことができる。
特開2012-195412号公報
 従来の静止誘導機器においては、複数の円盤状巻線のうち互いに隣接する2つの円盤状巻線の各々を構成する平角導線の導線端部同士が、接続スリーブを用いて接続される場合がある。この場合、静止誘導機器の稼働中に発生する漏れ磁束が接続スリーブの端面に入射することにより、上記端面に渦電流が発生する。これにより、渦電流損が生ずるという問題があった。
 本発明は上記問題点に鑑みてなされたものであり、接続スリーブに発生する渦電流による渦電流損を低減することができる、静止誘導機器を提供することを目的とする。
 本発明に基づく静止誘導機器は、鉄心と、複数の円盤状巻線と、接続スリーブとを備えている。複数の円盤状巻線の各々は、鉄心を中心軸として巻き回されている。複数の円盤状巻線は、複数の円盤状巻線の各々が上記中心軸の軸方向に積層されることにより構成されている。接続スリーブは、複数の円盤状巻線の各々を構成する平角導線の導線端部のうち、上記中心軸の軸方向において互いに隣接する2つの導線端部を互いに接続している。接続スリーブは、貫通孔と、一対の被押圧部と、一対の端部とを含んでいる。貫通孔は、平角導線を両側から挿入可能である。一対の被押圧部は、貫通孔に挿入された平角導線を互いの間に挟み込んでいる。一対の端部は、貫通孔の貫通方向および一対の被押圧部の並ぶ方向の各々に直交する方向に配置されている。一対の端部の各々は、貫通孔側とは反対側に位置する端面を有している。一対の端部の少なくとも一方は、一対の端部の並ぶ方向から見たときに上記端面を分割するようにスリットが設けられている。
 本発明によれば、接続スリーブの端面に発生する渦電流の経路を短くすることにより、渦電流損を低減することができる。
本発明の実施の形態1に係る静止誘導機器の外観を示す斜視図である。 図1に示した静止誘導機器をII-II線矢印方向から見た一部断面図である。 図2に示した静止誘導機器を矢印III方向から見た、接続スリーブの構成を示す部分拡大図である。 図3に示した静止誘導機器を矢印IV方向から見た、接続スリーブの構成を示す図である。 図4に示した接続スリーブをV-V線矢印方向から見た図である。 図5に示した静止誘導機器における接続スリーブを矢印VI方向から見た図である。 比較例に係る接続スリーブを示す図である。 図7に示す接続スリーブを矢印VIII方向から見た図である。 本発明の実施の形態1に係る静止誘導機器において、接続スリーブに渦電流が発生している状態を示す図である。 図9に示した接続スリーブを矢印X方向から見た図である。 本発明の実施の形態1の第1変形例に係る静止誘導機器における、接続スリーブを示す図である。 図11に示した接続スリーブを矢印XII方向から見た図である。 本発明の実施の形態1の第2変形例に係る静止誘導機器における、接続スリーブを示す図である。 本発明の実施の形態1の第3変形例に係る静止誘導機器における、接続スリーブを示す図である。 本発明の実施の形態2に係る静止誘導機器における接続スリーブの構成を示す図である。 本発明の実施の形態3に係る静止誘導機器の外観を示す斜視図である。 図16に示した静止誘導機器をXVII-XVII線矢印方向から見た一部断面図である。
 以下、本発明の各実施の形態に係る静止誘導機器について図面を参照して説明する。以下の各実施の形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 実施の形態1.
 図1は、本発明の実施の形態1に係る静止誘導機器の外観を示す斜視図である。図2は、図1に示した静止誘導機器をII-II線矢印方向から見た一部断面図である。
 図1および図2に示すように、本発明の実施の形態1に係る静止誘導機器100は、内鉄形変圧器である。静止誘導機器100は、鉄心110と、高圧巻線120Aと、低圧巻線120Bと、接続スリーブ130とを備えている。高圧巻線120Aおよび低圧巻線120Bの各々は、鉄心110の主脚部を中心軸として同心円状に巻き回されている。
 静止誘導機器100は、図示しないタンクをさらに備えている。タンク内には絶縁媒体および冷却媒体である絶縁油または絶縁ガスが充填されている。絶縁油として、たとえば、鉱油、エステル油またはシリコーン油が用いられる。絶縁ガスとして、たとえばSF6ガスまたはドライエアが用いられる。鉄心110、高圧巻線120Aおよび低圧巻線120Bはタンク内に収容されている。
 図1および図2に示すように、高圧巻線120Aは、低圧巻線120Bに対して、中心軸の径方向外側に位置している。図2に示すように、高圧巻線120Aは、複数の円盤状巻線120で構成されている。低圧巻線120Bも、複数の円盤状巻線120で構成されている。このように、本発明の実施の形態1に係る静止誘導機器100は、複数の円盤状巻線120を備えている。
 複数の円盤状巻線120は、複数の円盤状巻線120の各々が上記中心軸の軸方向に積層されることにより構成されている。複数の円盤状巻線120の各々は、鉄心110を中心軸として巻き回されている。
 複数の円盤状巻線120の各々は、平角導線121で構成されている。すなわち、円盤状巻線120は、複数本の平角導線121を円盤状に巻き回すことで構成されている。平角導線121は、断面が略矩形状の電線部および電線部を被覆する電線絶縁被覆から構成されている。
 上記中心軸の軸方向において互いに隣接する複数の円盤状巻線120は、外周端または内周端において、接続スリーブ130により電気的に互いに接続されている。本実施の形態において、複数の円盤状巻線120は、外周端または内周端において接続スリーブ130により機械的に接続されている。
 図3は、図2に示した静止誘導機器を矢印III方向から見た、接続スリーブの構成を示す部分拡大図である。図4は、図3に示した静止誘導機器を矢印IV方向から見た、接続スリーブの構成を示す図である。図5は、図4に示した接続スリーブをV-V線矢印方向から見た図である。図6は、図5に示した静止誘導機器における接続スリーブを矢印VI方向から見た図である。
 図2から図4に示すように、接続スリーブ130は、平角導線121の導線端部122のうち、中心軸の軸方向において互いに隣接する2つの導線端部122を互いに接続している。
 図5に示すように、本実施の形態においては、複数の円盤状巻線120の各々は、複数の平角導線121で構成されている。すなわち、円盤状巻線120は、平角導線121の平巻多重コイルである。そのため、円盤状巻線120は、外周端側および内周端側の各々において、平角導線121の端部である導線端部122を複数含んでいる。本実施の形態においては、互いに隣接する円盤状巻線120の各々に含まれる複数の導線端部122同士が、1つの接続スリーブ130によって接続されている。
 なお、複数の円盤状巻線120の各々の導線端部122の数が多いために、1つの接続スリーブ130によって導線端部122同士を接続することができない場合には、上記軸方向で互いに隣接する円盤状巻線120の各々に含まれる複数の導線端部122同士が、複数の接続スリーブ130によって接続されていてもよい。
 図5に示すように、接続スリーブ130は、貫通孔131と、一対の被押圧部132と、一対の端部133とを含んでいる。図3から図6に示すように、貫通孔131は、両側から平角導線121を挿入可能である。一対の被押圧部132は、貫通孔131に挿入された平角導線121を互いの間に挟み込んでいる。
 具体的には、まず、貫通孔131の一方端から、上記軸方向で互いに隣接する円盤状巻線120のうちの一方の円盤状巻線120を構成する平角導線121の導線端部122を挿入するとともに、貫通孔131の他方端から、上記軸方向で互いに隣接する円盤状巻線120のうちの他方の円盤状巻線120を構成する平角導線121の導線端部122を挿入する。本実施の形態においては、上記一方の円盤状巻線120を構成する3本の平角導線121の導線端部122と、上記他方の円盤状巻線120を構成する3本の平角導線121の導線端部122とを、一対の被押圧部132が並ぶ方向に重ね合わせて配置したのちに、一対の被押圧部132を、一対の被押圧部132が並ぶ方向において外側から押圧し変形させる。これにより、上記一方の円盤状巻線120を構成する3本の平角導線121の導線端部122と、上記他方の円盤状巻線120を構成する3本の平角導線121の導線端部122とが、互いに圧着され、電気的かつ機械的に互いに接続される。
 なお、上記一方の円盤状巻線120を構成する3本の平角導線121の導線端部122と、上記他方の円盤状巻線120を構成する3本の平角導線121の導線端部122とは、一対の被押圧部の並ぶ方向に重ね合わせることなく、互いの先端面同士を接触させた状態で、一対の被押圧部132を外側から押圧し変形させることにより、互いに固定しつつ電気的に接続してもよい。
 図5に示すように、本実施の形態において、一対の被押圧部132は、貫通孔131の貫通方向から見たときに、一対の被押圧部が並ぶ方向において、端部133の両端より内側に位置している。これにより、後述する漏れ磁束が被押圧部132に入射することを抑制できる。
 図4から図6に示すように、一対の端部133は、貫通孔131の貫通方向および一対の被押圧部132の並ぶ方向の各々に直交する方向に配置されている。一対の端部133の各々は、貫通孔131側とは反対側に位置する端面134を有している。
 図5に示すように、端面134は、貫通孔131の貫通方向から見たときに略円弧状の曲面で構成されている。なお、端面134は、平面で構成されていてもよい。端面134は、貫通孔131の貫通方向から見たときに、多角形状に形成されていてもよい。
 図5および図6に示すように、一対の端部133の少なくとも一方には、一対の端部133の並ぶ方向から見たときに端面134を分割するようにスリット135が設けられている。すなわち、図6に示すように、一対の端部133の並ぶ方向から見たときに、端面134は、スリット135によって、複数の領域に分割されている。本実施の形態においては、スリット135は、一対の端部133の各々に設けられている。なお、図2および図3に示すように、接続スリーブ130は、スリット135が設けられた端面134が上記中心軸の軸方向と交差するように、配置されている。すなわち、端面134は、上記中心軸の軸方向に対して、平行に位置していない。
 図5に示すように、スリット135は、凹条に形成されている。なお、スリット135は、貫通孔131の貫通方向から見たときに、V字状に形成されていてもよい。
 図5および図6に示すように、本実施の形態において、スリット135の深さ方向は、一対の端部133の並ぶ方向と略同一である。図5に示すように、本発明の実施の形態において、スリット135の深さは、静止誘導機器100の運転時における一対の端部133の少なくとも一方を構成する材料の表皮深さdより深い。表皮深さdは、入射した磁束が1/e倍、すなわち、およそ1/2.718倍に減衰するために必要な距離である。
 表皮深さdは、静止誘導機器100の運転周波数f、接続スリーブ130を構成する材料の透磁率μおよび誘電率σを用いて、d=1/(πfμσ)1/2と表すことができる。本実施の形態において、接続スリーブ130を構成する材料は、たとえば、透磁率μが4π×10-7H/m、かつ、誘電率σが5.82×107S/mである無酸素銅である。このため、接続スリーブ130を構成する材料が無酸素銅であり、かつ、静止誘導機器100の運転周波数fが100Hzの場合、表皮深さdは6.6mmとなり、静止誘導機器100の運転周波数fが10Hzの場合、表皮深さdは0.66mmとなる。
 接続スリーブ130は、たとえば、無酸素銅などの金属で構成されている。接続スリーブ130は、絶縁層が被覆された金属で構成されていてもよい。
 以下、本発明の実施の形態1に係る静止誘導機器100において発生する、漏れ磁束について説明する。図2に示すように、鉄心110内には、主磁束B0が発生する。また、鉄心110から漏れ出た漏れ磁束Bが発生する。
 漏れ磁束Bの磁力線は、高圧巻線120Aの外周側および内周側の各々に位置している。漏れ磁束Bの磁力線は、低圧巻線120Bの少なくとも外周側に位置している。このように複数の円盤状巻線120の外周側および内周側の各々に位置している漏れ磁束Bの磁力線は、上記中心軸の軸方向に平行な方向を向いている。
 図3に示すように、漏れ磁束Bの磁力線が、接続スリーブ130の端面134と交差している場合、端面134には、漏れ磁束Bによる渦電流が発生する。
 ここで、接続スリーブの端面にスリットが設けられていない比較例に係る接続スリーブに発生する渦電流の経路を説明する。図7は、比較例に係る接続スリーブを示す図である。図8は、図7に示す接続スリーブを矢印VIII方向から見た図である。
 図7および図8に示すように、一対の端部933の並ぶ方向から見たときに、比較例に係る接続スリーブ930の少なくとも一方の端部933において、端面934の外周に沿うように略円形状の経路を有する渦電流I9が発生する。渦電流I9の経路は、一対の端部933の並ぶ方向から見たときに、端面934の短手方向の長さと略同一の長さの直径を有する円形状となっている。なお、図7および図8においては、端面934に入射する漏れ磁束Bの磁力線が、一対の端部933の並ぶ方向を向いている場合を示している。図7においては、渦電流I9の経路を模式的に示している。
 図9は、本発明の実施の形態1に係る静止誘導機器において、接続スリーブに渦電流が発生している状態を示す図である。図10は、図9に示した接続スリーブを矢印X方向から見た図である。なお、図9および図10においては、端面134に入射する漏れ磁束Bの磁力線が、一対の端部133の並ぶ方向を向いている場合を示している。図9においては、渦電流I1の経路を模式的に示している。
 図9および図10に示すように、本発明の実施の形態1に係る接続スリーブ130において、一対の端部133の少なくとも一方には、一対の端部133の並ぶ方向から見たときに端面134を分割するようにスリット135が設けられているため、端面134において分割された2つ領域の各々に渦電流I1が発生する。
 本実施の形態において、一対の端部133の並ぶ方向から見たときに、スリット135は、端面134の長手方向に平行な方向に延在しており、かつ、端面134を略二等分している。このため、一対の端部133の並ぶ方向から見たときに、2つの渦電流I1の各々の経路は、端面134の短手方向の長さの略半分の長さの直径を有する円形状となっている。
 上記のように、本実施の形態に係る静止誘導機器100においては、スリット135が設けられていることにより、比較例における渦電流I9の経路の長さと比較して渦電流I1の経路の長さが短くなる。
 渦電流によって発生する熱量すなわち渦電流損は、渦電流の経路を構成する円形の直径の二乗に比例する。したがって、比較例における接続スリーブ930で発生する渦電流I9による渦電流損を1とすると、本発明の実施の形態における接続スリーブ130で発生する渦電流I1の1つあたりの渦電流損は、(1/2)2=1/4となる。したがって、本実施の形態における接続スリーブ130で発生する渦電流損の合計は、比較例における接続スリーブ930で発生する渦電流損と比較して、(1/4)×2=1/2となる。このように、本発明の実施の形態における接続スリーブ130における渦電流損は、比較例における接続スリーブ930の渦電流損の略半分となる。
 上記のように、本発明の実施の形態1に係る静止誘導機器100においては、接続スリーブ130が、貫通孔131と、一対の被押圧部132と、一対の端部133とを含んでいる。貫通孔131は、両側から平角導線121を挿入可能である。一対の被押圧部132は、貫通孔131に挿入された平角導線121を互いの間に挟み込んでいる。一対の端部133は、貫通孔131の貫通方向および一対の被押圧部132の並ぶ方向の各々に直交する方向に配置されている。一対の端部133の各々は、貫通孔131側とは反対側に位置する端面134を有している。一対の端部133の少なくとも一方は、一対の端部133の並ぶ方向から見たときに端面134を分割するようにスリット135が設けられている。
 これにより、接続スリーブ130の端面134に発生する渦電流I1の経路を短くできるため、渦電流損を低減することができる。また、渦電流の発生によって接続スリーブ130が発熱することを抑制することができる。
 本発明の実施の形態1に係る静止誘導機器100においては、スリット135の深さが、静止誘導機器100の運転時における一対の端部133の少なくとも一方を構成する材料の表皮深さdより深い。
 これにより、接続スリーブ130に発生する渦電流I1が、スリット135の底面より下側の部分を通って端面134上を流れることを抑制できるため、渦電流I1の経路をより確実に短くできる。
 本発明の実施の形態1に係る静止誘導機器100においては、接続スリーブ130は、スリット135が設けられた端面134が中心軸の軸方向と交差するように配置されている。
 これにより、漏れ磁束Bの磁力線が上記中心軸の軸方向に沿って発生する場合において、漏れ磁束Bによって端面134上に発生する渦電流I1の経路を短くできる。これにより、接続スリーブ130における渦電流損を低減することができる。
 なお、本発明の実施の形態1においては、端面134に複数のスリットが設けられていてもよい。図11は、本発明の実施の形態1の第1変形例に係る静止誘導機器における、接続スリーブを示す図である。図12は、図11に示した接続スリーブを矢印XII方向から見た図である。
 図11および図12に示すように、本発明の実施の形態1の第1変形例に係る静止誘導機器においては、接続スリーブ130aの一対の端部133aの各々における端面134aにおいて、2つのスリット135aが形成されている。2つのスリット135aは、一対の端部133aが並ぶ方向から見たときに、互いに平行となるように延在している。
 図11および図12に示すように、複数のスリット135aを設けることにより、1つの渦電流I1aあたりの経路をさらに短くすることができる。ひいては、接続スリーブ130aにおける渦電流損をさらに低減することができる。
 また、本発明の実施の形態1においては、一対の端部133が並ぶ方向から見たときに、スリットが、端面134の長手方向に平行な方向に延在していてなくてもよい。図13は、本発明の実施の形態1の第2変形例に係る静止誘導機器における、接続スリーブを示す図である。なお、図13においては、一対の端部133が並ぶ方向から見た接続スリーブ130bを図示している。
 図13に示すように、本発明の実施の形態1の第2変形例においては、一対の端部133が並ぶ方向から見たときに、スリット135bが、端面134bの長手方向および短手方向の各々と交差する方向に延在している。
 また、本発明の実施の形態1においては、スリットが貫通孔に到達するまで設けられてもよい。図14は、本発明の実施の形態1の第3変形例に係る静止誘導機器における、接続スリーブを示す図である。本発明の実施の形態1の第3変形例に係る静止誘導機器においては、一対の端部133のうち一方の端部133において、スリット135cが、貫通孔131cに到達するまで設けられている。
 スリット135cが貫通孔131cに到達している場合であっても、端面134上に発生する渦電流の経路を、図9および図10に示した本発明の実施の形態1と同様に短くできるため、渦電流損を低減することができる。
 なお、一対の被押圧部132が一体の部材で構成されている必要があるため、接続スリーブ130cにおいて、貫通孔131cに到達するスリット135cは1つだけ設けられている。
 実施の形態2.
 以下、本発明の実施の形態2に係る静止誘導機器について説明する。本発明の実施の形態2に係る静止誘導機器は、本発明の実施の形態1に係る静止誘導機器100と接続スリーブの構成のみが異なるため、本発明の実施の形態1に係る静止誘導機器と同様である構成についてはその説明を繰り返さない。
 図15は、本発明の実施の形態2に係る静止誘導機器における接続スリーブの構成を示す図である。図15に示した接続スリーブは、図5に示した本発明の実施の形態1に係る静止誘導機器100における接続スリーブと対応している。
 本発明の実施の形態2に係る静止誘導機器においては、接続スリーブ230の端部133に形成されたスリット135内に、絶縁部材240が配置されている。本実施の形態において、絶縁部材240は、スリット135の深さ方向の全長にわたってスリット135の内部を埋めるように配置されている。なお、本実施の形態においては、絶縁部材240とスリット135の内壁との間に、部分的に隙間が設けられていてもよい。
 絶縁部材240を構成する材料としては、たとえば、プレスボードを用いることができる。絶縁部材240を構成する材料の熱膨張係数は、端部133および被押圧部132の各々を構成する材料の熱膨張係数の値に近いことが好ましい。
 本発明の実施の形態2においては、本発明の実施の形態1と同様に、一対の端部133の並ぶ方向から見たときに、スリット135は、端面134の長手方向に平行な方向に延在している。
 なお、本発明の実施の形態2におけるスリット135の構成は、上記の形状に限定されない。本発明の実施の形態2においては、本発明の実施の形態1の各変形例と同様のスリットが設けられてもよい。
 上記のように、本発明の実施の形態2においては、スリット135内に絶縁部材240が配置されていることにより、本発明の実施の形態1に係る静止誘導機器100の接続スリーブ130と比較して、接続スリーブ230の機械的強度を向上させることができる。本発明の実施の形態2に係る静止誘導機器においても、端面134上に発生する渦電流の経路を短くできるため、渦電流損を低減することができる。
 実施の形態3.
 以下、本発明の実施の形態3に係る静止誘導機器について説明する。本発明の実施の形態3に係る静止誘導機器は、外鉄形変圧器である点が本発明の実施の形態1と異なるため、本発明の実施の形態1に係る静止誘導機器と同様の構成についてはその説明を繰り返さない。
 図16は、本発明の実施の形態3に係る静止誘導機器の外観を示す斜視図である。図17は、図16に示した静止誘導機器をXVII-XVII線矢印方向から見た一部断面図である。
 図16および図17に示すように、本発明の実施の形態3に係る静止誘導機器300は、外鉄形変圧器である。静止誘導機器300は、鉄心310と、高圧巻線320Aと、低圧巻線320Bと、接続スリーブ330とを備えている。高圧巻線320Aおよび低圧巻線320Bは、鉄心310の主脚部を中心軸として同軸配置されている。
 静止誘導機器300は、タンク350をさらに備えている。タンク350内には、絶縁媒体および冷却媒体である絶縁油または絶縁ガスが充填されている。絶縁油は、たとえば鉱油、エステル油またはシリコーン油であり、絶縁ガスは、たとえばSF6ガスまたはドライエアである。鉄心310、高圧巻線320Aおよび低圧巻線320Bは、タンク350内に収容されている。
 図16に示すように、上記中心軸に沿う方向において、高圧巻線320Aは、低圧巻線320B同士に挟まれるように配置されている。図17に示すように、高圧巻線320Aは、平角導線321を円盤状に巻き回して構成した複数の円盤状巻線が、上記中心軸の軸方向に積層されることにより構成されている。平角導線321は、横断面にて略矩形状の電線部および電線部を被覆する絶縁被覆部を含む。低圧巻線320Bも、高圧巻線320Aと同様の構成を有している。このように、本発明の実施の形態3に係る静止誘導機器300は、複数の円盤状巻線320を備えている。
 本実施の形態においては、高圧巻線320Aは、内周端同士が連続している2つの円盤状巻線320を含んでいる。本実施の形態においては、高圧巻線320Aにおいて、2つ円盤状巻線320が内周端で連続している一の円盤状巻線対と、2つ円盤状巻線320が内周端で連続している他の円盤状巻線対とが、上記軸方向に並んで互いに接続されている。一の円盤状巻線対のうち他の円盤状巻線対に隣接している円盤状巻線320の外周端と、他の円盤状巻線対のうち一の円盤状巻線対に隣接している円盤状巻線320の外周端とが、接続スリーブ330によって互いに電気的かつ機械的に接続されている。
 図17に示すように、鉄心310内には、主磁束B0が発生する。また、鉄心310から漏れ出た漏れ磁束Bが発生する。
 漏れ磁束Bの磁力線は、上記中心軸の軸方向において互いに隣接する複数の円盤状巻線320の間を通っている。具体的には、接続スリーブ330にて接続される2つの円盤状巻線320の間を通っている。漏れ磁束Bの磁力線は、中心軸の径方向に平行な方向を向いている。
 図17に示すように、本発明の実施の形態3に係る静止誘導機器300においては、接続スリーブ330は、スリットが設けられた端面334が、中心軸の径方向と交差するように配置されている。より具体的には、端面334は、中心軸の径方向と直交するように配置されている。
 端面334が中心軸の径方向と交差するように配置されていることにより、漏れ磁束Bの磁力線が中心軸の径方向と平行な方向を向いている場合において、本発明の実施の形態1と同様に、上記スリットによって端面334上に発生する渦電流の経路を短くできる。これにより、渦電流損を低減することができる。また、渦電流の発生によって接続スリーブ330が発熱することを抑制することができる。
 なお、本発明の実施の形態3におけるスリットは、本発明の実施の形態1または本発明の実施の形態1の各変形例と同様に設けられる。また、本発明の実施の形態2と同様に、スリット内に絶縁部材が配置されていてもよい。
 上記の実施の形態の説明においては、静止誘導機器として、内鉄形変圧器および外鉄形変圧器について説明したが、静止誘導機器は、リアクトルなど他の静止誘導機器であってもよい。
 上記の実施の形態において、互いに組み合わせ可能な構成を適宜組み合わせてもよい。
 なお、今回開示した上記実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるものではない。また、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 100,300 静止誘導機器、110,310 鉄心、120,320 円盤状巻線、120A,320A 高圧巻線、120B,320B 低圧巻線、121,321 平角導線、122 導線端部、130,130a,130b,130c,230,330,930 接続スリーブ、131,131c 貫通孔、132 被押圧部、133,133a,933 端部、134,134a,134b,334,934 端面、135,135a,135b,135c スリット、240 絶縁部材、350 タンク。

Claims (6)

  1.  鉄心と、
     前記鉄心を中心軸として巻き回され、該中心軸の軸方向に積層されることにより構成された複数の円盤状巻線と、
     前記複数の円盤状巻線の各々を構成する平角導線の導線端部のうち、前記中心軸の軸方向において互いに隣接する2つの前記導線端部を互いに接続する、接続スリーブとを備え、
     前記接続スリーブは、
     前記平角導線を両側から挿入可能な貫通孔と、
     前記貫通孔に挿入された前記平角導線を互いの間に挟み込む一対の被押圧部と、
     前記貫通孔の貫通方向および前記一対の被押圧部の並ぶ方向の各々に直交する方向に配置された一対の端部とを含み、
     前記一対の端部の各々は、貫通孔側とは反対側に位置する端面を有しており、
     前記一対の端部の少なくとも一方は、前記一対の端部の並ぶ方向から見たときに前記端面を分割するようにスリットが設けられている、静止誘導機器。
  2.  前記スリットの深さが、前記静止誘導機器の運転時における前記一対の端部の少なくとも一方を構成する材料の表皮深さより深い、請求項1に記載の静止誘導機器。
  3.  前記スリットは、前記貫通孔に到達するまで設けられている、請求項1または請求項2に記載の静止誘導機器。
  4.  前記スリット内に絶縁部材が配置されている、請求項1から請求項3のいずれか1項に記載の静止誘導機器。
  5.  前記接続スリーブは、前記スリットが設けられた前記端面が前記中心軸の軸方向と交差するように配置されている、請求項1から請求項4のいずれか1項に記載の静止誘導機器。
  6.  前記接続スリーブは、前記スリットが設けられた前記端面が、前記中心軸の径方向と交差するように配置されている、請求項1から請求項4のいずれか1項に記載の静止誘導機器。
PCT/JP2019/013201 2019-03-27 2019-03-27 静止誘導機器 WO2020194579A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019547734A JP6692502B1 (ja) 2019-03-27 2019-03-27 静止誘導機器
US17/430,063 US20220139612A1 (en) 2019-03-27 2019-03-27 Stationary Induction Apparatus
CN201980094154.2A CN113574617B (zh) 2019-03-27 2019-03-27 静止感应器
PCT/JP2019/013201 WO2020194579A1 (ja) 2019-03-27 2019-03-27 静止誘導機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013201 WO2020194579A1 (ja) 2019-03-27 2019-03-27 静止誘導機器

Publications (1)

Publication Number Publication Date
WO2020194579A1 true WO2020194579A1 (ja) 2020-10-01

Family

ID=70549741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013201 WO2020194579A1 (ja) 2019-03-27 2019-03-27 静止誘導機器

Country Status (4)

Country Link
US (1) US20220139612A1 (ja)
JP (1) JP6692502B1 (ja)
CN (1) CN113574617B (ja)
WO (1) WO2020194579A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343258U (ja) * 1989-09-05 1991-04-23
JP2008171634A (ja) * 2007-01-10 2008-07-24 Asahi Electric Works Ltd 電線圧縮接続方法および電線圧縮接続用スリーブ
JP2016167528A (ja) * 2015-03-10 2016-09-15 株式会社日立製作所 静止誘導電器及びその製造方法
JP2019021741A (ja) * 2017-07-14 2019-02-07 株式会社タムラ製作所 被覆部材及びコイル装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW273055B (ja) * 1994-06-27 1996-03-21 Seiko Epson Corp
US6261137B1 (en) * 1999-05-05 2001-07-17 Mcgraw-Edison Company Conductor connection system
WO2007130811A2 (en) * 2006-05-05 2007-11-15 3M Innovative Properties Company Tubular terminal for a cable
US7695331B2 (en) * 2007-05-01 2010-04-13 Tri-Star Technology Electrical contact assembly including a sleeve member
WO2009060639A1 (ja) * 2007-11-08 2009-05-14 Sumitomo Wiring Systems, Ltd. 電線の止水方法及び該止水方法で形成された止水部を有する電線
JP4724889B2 (ja) * 2008-02-21 2011-07-13 住友電工ファインポリマー株式会社 熱収縮チューブ付き圧着端子、該圧着端子の製造用治具および製造方法
DE102009005481B3 (de) * 2009-01-21 2010-04-08 Bleckmann Gmbh & Co. Kg Verbindungselement für Heizwendel für Rohrheizkörper sowie Herstellungsverfahren hierfür
JP2011071043A (ja) * 2009-09-28 2011-04-07 Furukawa Denko Sangyo Densen Kk 電線接続用具
DE202015000751U1 (de) * 2015-01-30 2015-03-06 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Steckverbinderanordnung mit Kompensationscrimp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343258U (ja) * 1989-09-05 1991-04-23
JP2008171634A (ja) * 2007-01-10 2008-07-24 Asahi Electric Works Ltd 電線圧縮接続方法および電線圧縮接続用スリーブ
JP2016167528A (ja) * 2015-03-10 2016-09-15 株式会社日立製作所 静止誘導電器及びその製造方法
JP2019021741A (ja) * 2017-07-14 2019-02-07 株式会社タムラ製作所 被覆部材及びコイル装置

Also Published As

Publication number Publication date
CN113574617B (zh) 2023-09-12
US20220139612A1 (en) 2022-05-05
CN113574617A (zh) 2021-10-29
JPWO2020194579A1 (ja) 2021-04-08
JP6692502B1 (ja) 2020-05-13

Similar Documents

Publication Publication Date Title
US7808359B2 (en) Quad-gapped toroidal inductor
JP4794999B2 (ja) 耐雷強化型低圧用絶縁変圧器
JPH03502512A (ja) 内鉄形変圧器用の高圧巻線
US9716414B2 (en) Stator of rotating electric machine
WO2013187501A1 (ja) コイル状部材及びコイル装置
WO2020194579A1 (ja) 静止誘導機器
JP2020141035A (ja) インダクタ
JP2016167528A (ja) 静止誘導電器及びその製造方法
KR102618677B1 (ko) 권선을 포함하는 변압기
JP6656187B2 (ja) 静止誘導器
US3543205A (en) Electrical windings
WO1999028919A1 (en) Magnetic core assemblies
JP2016039322A (ja) コイル、及びコイル部品
JP4824508B2 (ja) リッツ線コイル
EP0450448A1 (en) Flat-type transformer
JP5885898B1 (ja) 静止誘導機器
JP2015119095A (ja) 静止誘導機器
US3643196A (en) Electrical inductive apparatus
US20170117088A1 (en) Impulse voltage-resistant disc-wound transformer
KR20190029762A (ko) 권선을 위한 고전압 케이블 및 그것을 포함하는 전자기 유도 디바이스
JP5944242B2 (ja) 変換器用変圧器及びその製造方法
JP3925705B2 (ja) 誘導電器巻線
JP2021190585A (ja) 静止誘導機器
WO2017126078A1 (ja) リアクトル
JPS6136690B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547734

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920748

Country of ref document: EP

Kind code of ref document: A1