WO2020194384A1 - 酸液調製装置及び酸液供給装置並びに酸洗設備 - Google Patents

酸液調製装置及び酸液供給装置並びに酸洗設備 Download PDF

Info

Publication number
WO2020194384A1
WO2020194384A1 PCT/JP2019/012129 JP2019012129W WO2020194384A1 WO 2020194384 A1 WO2020194384 A1 WO 2020194384A1 JP 2019012129 W JP2019012129 W JP 2019012129W WO 2020194384 A1 WO2020194384 A1 WO 2020194384A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid solution
gas
closed tank
oxygen
preparation device
Prior art date
Application number
PCT/JP2019/012129
Other languages
English (en)
French (fr)
Inventor
辻 孝誠
龍輔 中司
崇弘 八木
吉川 雅司
高谷 英明
安井 豊明
琢也 平田
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to EP19921211.9A priority Critical patent/EP3926074B1/en
Priority to US17/439,720 priority patent/US20220154351A1/en
Priority to PCT/JP2019/012129 priority patent/WO2020194384A1/ja
Priority to JP2021508367A priority patent/JP7155401B2/ja
Priority to CN201980089801.0A priority patent/CN113330144A/zh
Publication of WO2020194384A1 publication Critical patent/WO2020194384A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/021Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously by dipping
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/025Details of the apparatus, e.g. linings or sealing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Definitions

  • the present disclosure relates to an acid solution preparation device, an acid solution supply device, and a pickling facility.
  • At least one embodiment of the present invention provides an acid solution preparation device, an acid solution supply device, and a pickling facility capable of easily adjusting the Fe 3+ concentration in the acid solution used for pickling a steel sheet.
  • the purpose is to do.
  • the acid solution preparation device An acid solution preparation device used for pickling steel sheets.
  • an acid solution preparing device an acid solution supply device, and a pickling facility capable of easily adjusting the Fe 3+ concentration in the acid solution used for pickling a steel sheet are provided.
  • 1 and 2 are schematic views of the pickling facility according to the embodiment, respectively.
  • the pickling facility 1 supplies the pickling device 10 for pickling the steel plate 2 with the acid solution 3 and the acid solution 3 to the pickling device 10.
  • the acid solution supply device 20 configured as described above is provided.
  • the pickling device 10 includes a pickling tank 12 for storing the acid solution 3 and a transfer roll 16 for continuously transporting the strip-shaped steel plate 2 immersed in the acid solution 3.
  • the acid solution 3 is a pickling solution for dissolving and removing the scale (oxide film) formed on the surface of the steel sheet 2, and is a liquid containing an acid such as hydrochloric acid, sulfuric acid, nitric acid, or hydrofluoric acid, for example.
  • the transport roll 16 is configured to apply tension to the steel plate 2 to immerse the steel plate 2 in the acid solution of the pickling tank and transport the steel plate 2.
  • the acid solution supply device 20 includes an acid solution preparation device 22 for preparing the acid solution to be supplied to the pickle washing device 10, and an acid solution supply device 20 for supplying the acid solution from the acid solution preparation device 22 to the pickling device 10. It includes a line 24 and an acid solution return line 26 for returning the acid solution from the pickling device 10 to the acid solution preparing device 22.
  • FIG. 12 is a graph showing an example of the relationship between the concentration ratio of iron ions (Fe 2+ , Fe 3+ ) in the acid solution and the pickling time.
  • the pickling rate is increased (that is, the pickling time is shortened). Therefore, the pickling of the steel sheet can be efficiently performed by appropriately adjusting the Fe 3+ concentration in the acid solution with the acid solution preparing device 22.
  • the configuration of the acid solution preparation device 22 will be described later.
  • the pickling facility 1 shown in FIG. 2 is a continuous pickling facility including a pickling device 10 having a plurality of pickling tanks 12 (12A to 12C) arranged in series in the transport direction of the steel plate 2.
  • the plurality of pickling tanks 12 (12A to 12C) are separated by a partition wall.
  • a transport roll 16 is provided in each of the plurality of pickling tanks 12 (12A to 12C), and the steel plate 2 is immersed in the acid liquids 3 in the plurality of pickling tanks 12 by these transport rolls 16. It is designed to be transported.
  • the acid solution 3 for pickling the steel plate 2 is supplied to the most downstream pickling tank 12C via the acid solution supply unit 18. Further, the acid solution 3 overflowing from the pickling tanks 12 (12A to 12C) is transferred to the pickling tank on the upstream side beyond the partition wall between the pickling tanks 12.
  • the pickling tank 12A on the most upstream side is provided with an acid solution discharge unit 19 for discharging the acid solution 3.
  • an acid solution supply line 24 and an acid solution return line 26 are provided between the acid solution preparation device 22 and the pickling tank 12C on the most downstream side. That is, the acid solution prepared by the acid solution preparing device 22 is supplied to the pickling tank 12C on the most downstream side.
  • a treatment for melting the surface of the base material of the steel sheet 2 may be performed.
  • the base material of the steel sheet 2 is dissolved in the acid solution in this way, Fe 3+ in the acid solution is consumed. Therefore, it is effective to supply the acid solution 3 prepared by the acid solution preparation device 22 to the pickling tank on the downstream side (for example, the most downstream pickling tank 12C) among the plurality of pickling tanks 12.
  • the steel plate can be pickled.
  • 3 to 10 are schematic views of an acid solution supply device including the acid solution preparation device according to the embodiment, respectively.
  • the acid solution preparation device 22 includes a closed tank 30 for storing the acid solution 3, a gas supply unit 31, and a purge unit 33. ing.
  • Oxygen-containing gas from the outside is supplied to the closed tank 30 via the gas supply unit 31. Further, the gas in the closed tank 30 can be discharged to the outside from the closed tank 30 via the purge portion 33.
  • the closed tank 30 stores the acid solution 3 for pickling the steel sheet.
  • a liquid phase portion 101 containing the stored acid solution 3 and a gas phase portion 102 are formed in the closed tank 30.
  • the acid solution from the pickling tank 12 of the pickling apparatus 10 may flow in and be stored via the acid solution return line 26. ..
  • the oxygen-containing gas supplied to the closed tank 30 may be, for example, an oxygen-containing gas whose partial pressure of oxygen is larger than the partial pressure of oxygen in the atmosphere at 1 atm (about 0.021 MPa), for example, the partial pressure of oxygen. May be an oxygen-containing gas having a value greater than 0.022 MPa.
  • the oxygen-containing gas may have an oxygen concentration higher than the oxygen concentration in the atmosphere (about 20.95%), and may have an oxygen concentration of 20.1% or more, for example.
  • the oxygen-containing gas may be one in which a gas such as air is pressurized to increase the oxygen partial pressure.
  • the acid solution preparation device 22 may have a function of generating an oxygen-containing gas to be supplied to the closed tank 30.
  • the acid solution preparation device 22 includes an oxygen gas generator 38 and a pressurizing unit 40. Then, the gas generated by the oxygen gas generator 38 is boosted by the pressurizing unit 40 and then supplied to the closed tank 30 via the gas supply unit 31 including the oxygen gas supply line 36. ..
  • the pressurizing unit 40 may be a compressor.
  • the oxygen gas generator 38 is configured to use air as a raw material to generate a gas having a higher oxygen concentration than air.
  • the oxygen gas generator 38 may be configured to generate a gas having an oxygen concentration of 90% by volume or more.
  • gas from an oxygen-containing gas source outside the acid solution preparation device 22 may be supplied to the gas supply unit 31.
  • an oxygen gas cylinder in which high-pressure oxygen is stored may be used.
  • a gas whose air is pressurized may be used.
  • the acid solution preparation device 22 may include a compressor (pressurizing unit) for boosting air.
  • the gas supply unit 31 includes a gas supply pipe 32.
  • the gas supply pipe 32 is connected to the closed tank 30, and oxygen is contained in the closed tank 30 from a supply port formed by one end of the gas supply pipe 32. Gas is coming in.
  • the supply port of the gas supply pipe 32 is provided in the acid solution 3 (that is, the liquid phase portion 101) stored in the closed tank 30, and is provided in the acid solution 3. It is designed to blow in oxygen-containing gas.
  • one end of the gas supply pipe 32 is connected to the closed tank 30, and the oxygen-containing gas from the gas supply pipe 32 is the gas phase portion 102 in the closed tank 30. It is supposed to be supplied to.
  • the gas supply pipe 32 is connected to the gas circulation path 50 described later, and the oxygen-containing gas from the gas supply pipe 32 is a part of the gas circulation path 50. It is designed to be supplied into the closed tank 30 via the like.
  • the purge unit 33 includes the purge pipe 34.
  • the purge pipe 34 is connected to a portion of the gas phase portion 102 of the closed tank 30, and the gas from the gas phase portion 102 is external to the outside via the purge pipe 34. It is designed to be discharged to.
  • the purge pipe 34 is connected to the gas circulation passage 50 described later, and the gas in the gas phase portion 102 in the closed tank 30 is one of the gas circulation passages 50. It is designed to be discharged to the outside through the portion and the purge pipe 34.
  • the oxygen-containing gas can be supplied to the closed tank 30 via the gas supply unit 31, and when the oxygen-containing gas in the closed tank 30 is consumed and the oxygen concentration decreases, the gas in the closed tank 30 Can be discharged to the outside via the purge unit 33, so that the partial pressure of oxygen gas in the closed tank 30 can be easily adjusted. That is, since the concentration of dissolved oxygen in the acid solution 3 in the closed tank 30 can be adjusted, the ferric ion (Fe 2+ ) in the acid solution 3 in the closed tank 30 is changed to the ferric ion (Fe 3+ ). The oxidation reaction rate of iron can be adjusted. Therefore, the Fe 3+ concentration in the acid solution 3 in the closed tank 30 can be appropriately adjusted, whereby the steel plate 2 (see FIG. 1) can be efficiently pickled.
  • the gas supply pipe 32 is provided with a first valve 35 for adjusting the pressure of the gas supply pipe 32 (see, for example, FIGS. 5 and 7 to 10).
  • the oxygen-containing gas can be supplied to the closed tank 30 while appropriately adjusting the pressure in the closed tank 30.
  • the purge pipe 34 is provided with a second valve 37 for allowing the flow rate of gas discharged from the closed tank 30 through the purge pipe 34 (eg, FIGS. 5 and 7). -See FIG. 10).
  • a second valve 37 for allowing the flow rate of gas discharged from the closed tank 30 through the purge pipe 34 (eg, FIGS. 5 and 7). -See FIG. 10).
  • gas can be discharged from the closed tank while appropriately adjusting the pressure in the closed tank 30 and the oxygen concentration in the gas phase.
  • the purge pipe 34 may be configured to continuously discharge a constant flow rate of gas.
  • the purge pipe 34 may be provided with an orifice for discharging a specified flow rate of gas.
  • the acid solution preparation device 22 is provided with a pressure sensor 92 for measuring the pressure in the closed tank 30.
  • the pressure sensor 92 is configured to measure the pressure of the gas phase portion in the closed tank 30.
  • the acid solution preparation device 22 is provided with a concentration sensor 94 for measuring the oxygen concentration in the gas phase portion 102 in the closed tank 30.
  • the concentration sensor 94 is configured to measure the concentration of the gas phase portion 102 in the closed tank 30.
  • the oxygen concentration in the gas in the purge pipe 34 (purge portion 33) through which the gas discharged from the closed tank 30 passes is substantially the same as the oxygen concentration in the gas in the closed tank 30. Therefore, in some embodiments, the concentration sensor 94 may be configured to measure the oxygen concentration in the gas in the purge section 33.
  • the first valve 35 provided in the gas supply pipe 32 may be configured to adjust the opening degree based on the measurement result by the pressure sensor 92. In this way, by adjusting the opening degree of the first valve 35 based on the measurement result of the pressure in the closed tank 30, the pressure in the closed tank 30 can be adjusted more appropriately.
  • the first valve 35 may be configured to adjust the opening degree based on the measurement results of the pressure sensor 92 and the concentration sensor 94. In this case, since the oxygen partial pressure in the closed tank 30 can be calculated from the measurement results of the pressure sensor 92 and the concentration sensor 94, the pressure (total pressure) and the oxygen partial pressure in the closed tank 30 are appropriately adjusted. be able to.
  • the second valve 37 provided in the purge pipe 34 may be configured to adjust the opening degree based on the measurement result by the concentration sensor 94. In this way, by adjusting the opening degree of the second valve 37 based on the measurement result of the oxygen concentration in the closed tank 30, the oxygen gas concentration in the closed tank 30 can be adjusted more appropriately from the closed tank 30. Can emit gas.
  • the second valve 37 may be configured to adjust the opening degree based on the measurement results of the pressure sensor 92 and the concentration sensor 94.
  • the pressure (total pressure) and the oxygen partial pressure in the closed tank 30 are appropriately adjusted.
  • the gas can be discharged from the closed tank 30.
  • the acid solution preparation device 22 may include a controller 90 for adjusting the opening degree of the first valve 35 and / or the second valve 37.
  • the controller 90 may be configured to adjust the opening degree of the first valve 35 and / or the second valve 37 based on the measurement result of the pressure sensor 92 or the concentration sensor 94. Further, the controller 90 may be configured to adjust the opening degree of the first valve 35 and / or the second valve 37 based on the measurement results of the pressure sensor 92 and the concentration sensor 94.
  • the acid solution preparation device 22 further includes a temperature control unit 43 for adjusting the temperature of the acid solution 3 stored in the closed tank 30.
  • a temperature control unit 43 for adjusting the temperature of the acid solution 3 stored in the closed tank 30.
  • the temperature control unit 43 may be a heater provided in the closed tank 30 or the acid liquid circulation path 42 (described later).
  • the acid solution preparation device 22 comprises an acid solution circulation path 42 and a circulation pump 44 provided in the acid solution circulation path 42. And have.
  • the acid solution circulation path 42 is configured to take out the acid solution 3 stored in the closed tank 30 to the outside of the closed tank 30, circulate the acid solution 3 and return it to the closed tank 30.
  • the solution in the closed tank 30 can be agitated.
  • the dissolution of the oxygen gas in the acid solution 3 in the closed tank 30 can be promoted, and the dissolved oxygen concentration in the acid solution 3 can be increased. Therefore, it becomes easy to adjust the redox reaction rate of iron ions and the Fe 3+ concentration in the acid solution 3 in the closed tank 30.
  • the acid solution preparation device 22 extracts the gas of the gas phase portion 102 in the closed tank 30 to the outside of the closed tank 30, and the gas is taken out. Is provided with a gas circulation path 50 for circulating the gas and returning it to the closed tank 30.
  • the gas in the gas phase portion 102 in the closed tank 30 is supplied to the gas mixing portion 46 (described later) or the gas blowing portion 52 (described later) while being circulated through the gas circulation path 50.
  • the gas can be continuously mixed or blown into the acid solution 3. Therefore, the dissolved oxygen concentration in the acid solution 3 can be efficiently increased.
  • the acid solution preparation device 22 includes a gas mixing unit 46 for mixing gas into the acid solution 3.
  • the gas mixing unit 46 is configured to supply the acid liquid 3 extracted from the closed tank 30 via the acid liquid circulation path 42 and to mix the oxygen-containing gas into the acid liquid 3 supplied in this way. Has been done. Then, the acid solution 3 in which the oxygen-containing gas is mixed in the gas mixing unit 46 is discharged from the gas mixing unit 46 into the closed tank 30 and stored.
  • the gas mixing portion 46 is an ejector nozzle having a gas intake portion 46a for capturing the gas (oxygen-containing gas) of the gas phase portion 102 in the closed tank 30. ..
  • the gas in the gas phase section 102 is sucked into the flow of the acid solution 3 formed inside the ejector nozzle via the gas intake section 46a, so that the acid solution A mixed flow containing 3 and gas bubbles is formed. Then, the acid solution 3 containing the bubbles of the oxygen-containing gas is discharged from the gas mixing unit 46 into the closed tank 30.
  • the acid solution 3 from the acid solution circulation path 42 and the oxygen-containing gas from the gas circulation path 50 are guided to the gas mixing portion 46. .. Then, the acid solution 3 and the oxygen-containing gas are mixed in the gas mixing section 46 to form a mixed flow containing the acid solution 3 and the gas bubbles. Then, the acid solution 3 containing the bubbles of the oxygen-containing gas is discharged from the gas mixing unit 46 into the closed tank 30.
  • the gas mixing portion 46 is provided outside the closed tank 30, and a connecting portion 47 connecting the gas mixing portion 46 and the closed tank 30 is provided. .. Then, the acid solution 3 containing bubbles of oxygen-containing gas from the gas mixing portion 46 is discharged into the closed tank 30 via the connecting portion 47.
  • the gas mixing unit 46 for example, the above-mentioned ejector nozzle or a microbubble generating nozzle configured to generate microbubbles of oxygen-containing gas in the acid solution 3 in the closed tank 30 may be used.
  • the place where the microbubbles are generated in the nozzle is the gas circulation path 50 in the microbubble generating nozzle (gas mixing unit 46). It is located downstream of both inflow portions of the acid liquid circulation path 42.
  • the acid solution preparation device 22 jets the acid solution 3 from the acid solution circulation path 42 onto the gas phase portion 102 in the closed tank 30 to form the liquid drop 106. It includes an injection unit 48.
  • the acid solution circulation path 42 is configured to circulate the acid solution 3 and return it to the gas phase portion 102 of the closed tank 30.
  • the injection unit 48 may be configured to inject the acid solution 3 in the state of droplets. Alternatively, the injection unit 48 may be configured to inject the acid solution 3 so that the acid solution 3 after injection is split into liquid drops. A spray may be used as the injection unit 48.
  • the droplet 106 of the acid solution 3 is injected in the gas phase portion 102. Can be formed.
  • the contact area between the acid solution 3 and the oxygen-containing gas in the gas phase portion 102 can be increased, and the dissolution of the oxygen gas in the acid solution 3 can be promoted. Therefore, since the dissolved oxygen concentration in the acid solution 3 can be increased, the redox reaction rate of iron ions in the acid solution 3 in the closed tank 30 and the Fe 3+ concentration can be easily adjusted.
  • the acid solution preparation device 22 includes the gas mixing unit 46 and the injection unit 48 described above, and these may be used in combination.
  • the acid solution circulation path 42 branches in the middle, supplies the acid solution 3 to the gas mixing section 46 via one of the branch paths, and supplies the acid solution 3 to the injection section 48 via the other branch path. It may be configured to do so.
  • the acid solution preparation device 22 has a gas blowing unit 52 for blowing the oxygen-containing gas into the acid solution 3 stored in the closed tank 30. Further prepared.
  • the oxygen-containing gas is blown into the acid solution 3 in the closed tank 30 by the gas blowing portion 52, the oxygen-containing gas bubbles 104 can be formed in the acid solution 3.
  • the contact area between the acid solution 3 and the oxygen-containing gas can be increased, and the dissolution of the oxygen gas in the acid solution 3 can be promoted. Therefore, since the dissolved oxygen concentration in the acid solution 3 can be increased, the redox reaction rate of iron ions in the acid solution 3 in the closed tank 30 and the Fe 3+ concentration can be easily adjusted.
  • the gas blowing unit 52 may be a microbubble generating nozzle configured to generate microbubbles of oxygen-containing gas in the acid solution 3 in the closed tank 30.
  • the place where the micro-bubbles are generated in the nozzle may be either inside or outside of the closed tank 30, but at that place. Contains the acid solution 3 in the closed tank 30.
  • the gas blowing section 52 has an acid solution taking-in section 52a for taking in the acid solution 3 from the liquid phase section 101 in the closed tank 30. Then, using the gas jet generated when the gas is blown into the acid solution 3 in the closed tank 30, the surrounding acid solution 3 is taken in through the acid solution intake unit 52a and involved in the nozzle to generate microbubbles. It has become.
  • the oxygen-containing gas from the gas supply unit 31 is supplied to either the gas mixing unit 46 or the gas blowing unit 52 without passing through the gas phase unit 102 in the closed tank 30. Will be done.
  • the gas supply pipe 32 gas supply unit 31
  • the oxygen-containing gas from the gas supply pipe 32 is the gas circulation path. It is supplied to the gas mixing section 46 (in the case of FIGS. 9 and 10) or the gas blowing section 52 (in the case of FIGS. 7 and 8) through a part of the 50.
  • the gas phase section 102 in the closed tank 30 oxygen is consumed by the redox reaction of iron ions in the acid solution 3. Therefore, unless the oxygen-containing gas is replenished through the gas supply section 31, the gas phase section 102 in the closed tank 30 The oxygen concentration in the gas decreases.
  • the relatively high-concentration oxygen-containing gas from the gas supply unit 31 does not pass through the gas phase unit 102 in the relatively low-concentration closed tank 30, but the gas mixing unit 46 or the gas. It can be supplied to the blowing portion 52. Therefore, the gas mixing section 46 or the gas blowing section 52 can further promote the dissolution of the oxygen gas in the acid solution 3. As a result, the dissolved oxygen concentration in the acid solution 3 can be increased, so that the redox reaction rate of iron ions in the acid solution 3 in the closed tank 30 and the Fe 3+ concentration can be easily adjusted.
  • the gas supply unit 31 includes a gas supply pipe 32 connected to the gas circulation path 50. Then, the oxygen-containing gas is supplied to the closed tank 30 via the gas circulation path 50 and the gas mixing section 46 (in the case of FIGS. 9 and 10) or the gas blowing section 52 (in the case of FIGS. 7 and 8). It has become.
  • the oxygen-containing gas from the gas supply pipe 32 is supplied to the gas mixing section 46 or the gas blowing section 52 via the gas circulation path 50, the oxygen-containing gas from the gas supply pipe 32 is supplied.
  • the device structure can be simplified as compared with the case where the gas is supplied to the gas mixing section 46 or the gas blowing section 52 by a route different from the gas circulation path 50.
  • the purge section 33 includes a purge pipe 34 connected to the gas circulation path 50 and is contained in the closed tank 30 via the gas circulation path 50. It is configured to discharge the gas to the outside of the closed tank 30.
  • the purge pipe 34 is connected to the gas circulation passage 50, the number of connection points between the closed tank 30 and the external pipe can be reduced as compared with the case where the purge pipe 34 is connected to the closed tank 30. Therefore, the sealing property of the closed tank 30 is further improved, and the oxygen partial pressure in the closed tank 30 can be adjusted more reliably.
  • FIG. 11 is a schematic view of the acid solution supply device according to the embodiment.
  • the configuration of the acid solution supply device 20 shown in FIG. 11 is basically the same as that of the acid solution supply device 20 included in the pickling facility 1 shown in FIG. 1, but further has the features described below.
  • the acid solution supply device 20 shown in FIG. 11 supplies the acid solution preparation device 22 described above and the acid solution 3 stored in the closed tank 30 of the acid solution preparation device 22 to the pickling device 10 (see FIG. 1).
  • the acid solution supply line 24 for the purpose is provided, and a gas recovery container 27 and a pressure reducing valve 23 provided in the acid solution supply line 24 are provided.
  • the pressure reducing valve 23 is provided on the acid solution supply line 24 on the upstream side of the gas recovery container 27.
  • the gas recovery container 27 and the pressure reducing valve 23 are provided in the acid solution supply line 24 for supplying the acid solution 3 from the closed tank 30 to the pickling apparatus 10, the acid solution is provided by the pressure reducing valve 23.
  • the oxygen gas separated from the acid solution 3 of the gas recovery container 27 and could not be dissolved in the acid solution 3 is shown in FIG. 11, for example. As described above, it can be recovered in the gas recovery container 27.
  • the oxygen gas 108 that cannot be dissolved in the acid solution 3 due to the reduced pressure is separated from the acid solution 3 (liquid phase portion 107) and stored in the gas recovery container 27. In this way, the residual oxygen contained in the acid solution 3 of the acid solution supply line 24 can be recovered and effectively used.
  • the acid solution supply device 20 may be provided with a return line 28 and a return pump 29 for sending the oxygen gas 108 in the gas recovery container 27 to the closed tank 30.
  • the oxygen gas 108 stored in the gas recovery container 27 may be returned to the closed tank 30 and used as an oxidant for the redox reaction of iron ions in the acid solution 3 in the closed tank 30.
  • the outline of the acid solution preparation device, the acid solution supply device, and the pickling facility according to some embodiments will be described below.
  • the acid solution preparation device is An acid solution preparation device used for pickling steel sheets.
  • a closed tank for storing the acid solution and
  • a gas supply unit for supplying oxygen-containing gas from the outside of the closed tank to the closed tank,
  • a purge unit for discharging the gas in the closed tank to the outside, To be equipped.
  • the oxygen-containing gas can be supplied to the closed tank, and the gas in the closed tank can be discharged to the outside when the oxygen-containing gas in the closed tank is consumed and the oxygen concentration decreases. Because of this, it is easy to adjust the partial pressure of oxygen gas in the closed tank. That is, since the concentration of dissolved oxygen in the acid solution in the closed tank can be adjusted, the oxidation reaction rate from ferrous ion (Fe 2+ ) to ferric ion (Fe 3+ ) in the acid solution in the closed tank. Can be adjusted. Therefore, the Fe 3+ concentration in the acid solution in the closed tank can be appropriately adjusted, and thus the pickling of the steel sheet can be efficiently performed.
  • the gas supply unit is configured to supply the oxygen-containing gas having an oxygen partial pressure greater than 0.022 MPa to the closed tank.
  • the oxygen partial pressure in the closed tank can be made higher than the oxygen partial pressure in the atmosphere (1 atm), so that the acid solution is treated under atmospheric pressure as compared with the case where the acid solution is treated. , The dissolved oxygen concentration in the acid solution can be increased. Therefore, since the oxidation reaction rate of iron ions in the acid solution in the closed tank can be increased, the Fe 3+ concentration in the acid solution can be efficiently adjusted.
  • the gas supply unit A gas supply pipe through which the oxygen-containing gas supplied to the closed tank flows, and A first valve provided on the gas supply pipe for adjusting the pressure of the gas supply pipe is included.
  • the first valve since the first valve is provided in the gas supply pipe for supplying the oxygen-containing gas to the closed tank, the pressure in the closed tank can be reduced by properly operating the first valve. Oxygen-containing gas can be supplied to the closed tank with proper adjustment.
  • the acid solution preparation device Further equipped with a pressure sensor for measuring the pressure in the closed tank, The first valve is configured to adjust the opening degree based on the measurement result of the pressure sensor.
  • the opening degree of the first valve is adjusted based on the measurement result of the pressure in the closed tank, the pressure in the closed tank can be adjusted more appropriately.
  • the purge section A purge pipe through which the gas discharged from the closed tank flows, and A second valve provided in the purge pipe and for adjusting the flow rate of gas discharged from the closed tank through the purge pipe is included.
  • the second valve is provided in the purge pipe for discharging the gas in the closed tank, the pressure and the gas phase in the closed tank can be adjusted by properly operating the second valve. Gas can be discharged from the closed tank while appropriately adjusting the gas concentration inside.
  • the acid solution preparation device Further equipped with a concentration sensor for measuring the oxygen concentration in the gas phase in the closed tank, The second valve is configured to adjust the opening degree based on the measurement result of the concentration sensor.
  • the opening degree of the second valve is adjusted based on the measurement result of the oxygen concentration in the closed tank, so that the oxygen gas concentration in the closed tank can be adjusted more appropriately. Gas can be discharged from a closed tank.
  • the acid solution preparation device Further equipped with an oxygen gas generator to generate a gas having a higher oxygen concentration than air, The gas supply unit is configured to supply the gas generated by the oxygen gas generator as the oxygen-containing gas to the closed tank.
  • the oxygen gas generator is used to generate an oxygen-containing gas having a higher oxygen concentration than air, and the oxygen-containing gas is supplied to the closed tank.
  • the oxygen partial pressure can be easily increased. Therefore, it becomes easy to adjust the dissolved oxygen concentration in the acid solution in the closed tank.
  • the acid solution preparation device A pressurizing unit for boosting the oxygen-containing gas supplied to the closed tank is further provided.
  • the oxygen-containing gas supplied to the closed tank can be boosted by the pressurizing unit, so that the partial pressure of oxygen in the closed tank can be easily increased. Therefore, it becomes easy to adjust the dissolved oxygen concentration in the acid solution in the closed tank.
  • the acid solution preparation device A temperature control unit for adjusting the temperature of the acid solution stored in the closed tank is further provided.
  • the temperature of the acid solution in the closed tank can be adjusted by the temperature control unit, so that the redox reaction of iron ions in the closed tank can be promoted. Therefore, the Fe 3+ concentration in the acid solution in the closed tank can be adjusted more efficiently.
  • the acid solution preparation device An acid solution circulation path for extracting the acid solution stored in the closed tank, circulating the acid solution, and returning the acid solution to the closed tank.
  • a circulation pump provided in the acid solution circulation path and Further prepare.
  • the acid solution circulation path is configured to circulate the acid solution and return it to the gas phase portion of the closed tank. Further provided is an injection section configured to inject the acid solution returned to the gas phase section via the acid solution circulation path in the gas phase section.
  • the acid solution returned from the acid solution circulation path to the closed tank is sprayed into the gas phase portion of the closed tank to form droplets of the acid solution in the gas phase portion.
  • the contact area between the acid solution and the oxygen-containing gas in the gas phase portion can be increased, and the dissolution of the oxygen gas in the acid solution can be promoted. Therefore, since the dissolved oxygen concentration in the acid solution can be increased, the redox reaction rate of iron ions and the Fe 3+ concentration in the acid solution in the closed tank can be easily adjusted.
  • the acid solution preparation device The acid solution extracted from the closed tank is supplied through the acid solution circulation path, and further includes a gas mixing portion for mixing the oxygen-containing gas into the supplied acid solution.
  • the acid solution from the gas mixing portion is configured to be stored in the closed tank.
  • the oxygen-containing gas is mixed into the acid solution from the acid solution circulation path at the gas mixing section, so that the acid solution and the oxygen-containing gas are mixed at the gas mixing section.
  • Contact is promoted and the dissolution of oxygen gas in the acid solution is promoted.
  • the acid solution in the gas mixing portion is returned to the closed tank, the dissolved oxygen concentration in the acid solution in the closed tank can be increased more effectively. Therefore, it becomes easy to adjust the redox reaction rate of iron ions and the Fe 3+ concentration in the acid solution in the closed tank.
  • the gas mixing portion is provided outside the closed tank.
  • the gas mixing portion is provided outside the closed tank, the maintenance of the gas mixing portion becomes easy. For example, it is possible to easily remove the parts of the gas mixing portion without modifying the closed tank.
  • the acid solution preparation device A gas blowing portion for blowing the oxygen-containing gas into the acid solution stored in the closed tank is further provided.
  • the acid solution preparation device A gas mixing portion for mixing the oxygen-containing gas into the acid solution in the acid solution circulation path for circulating the acid solution in the closed tank, or the oxygen-containing gas is stored in the closed tank.
  • a gas blowing portion for blowing into the acid solution is provided. At least one of the gas mixing portion and the gas blowing portion is configured to generate microbubbles of the oxygen-containing gas in the acid solution.
  • the acid solution of the oxygen gas is obtained by mixing the oxygen-containing gas into the acid solution at the gas mixing portion or by blowing the oxygen-containing gas into the acid solution at the gas blowing portion. It can promote dissolution in. Further, since the gas mixing portion or the gas blowing portion is used to generate microbubbles of the oxygen-containing gas in the acid solution, the dissolution of the oxygen gas in the acid solution can be further promoted. Therefore, since the dissolved oxygen concentration in the acid solution can be increased, the redox reaction rate of iron ions and the Fe 3+ concentration in the acid solution in the closed tank can be easily adjusted.
  • the acid solution preparation device A gas mixing portion for mixing the oxygen-containing gas into the acid solution in the acid solution circulation path for circulating the acid solution in the closed tank, or the oxygen-containing gas is stored in the closed tank.
  • a gas blowing portion for blowing into the acid solution is provided.
  • the oxygen-containing gas from the gas supply unit is configured to be supplied to at least one of the gas mixing unit and the gas blowing unit without passing through the gas phase unit in the closed tank.
  • the relatively high-concentration oxygen-containing gas from the gas supply section is blown into the gas mixing section or the gas blowing section without passing through the gas phase section in the relatively low-concentration closed tank. It can be supplied to the inclusion part. Therefore, the dissolution of oxygen gas in the acid solution can be further promoted in the gas mixing portion or the gas blowing portion. As a result, the dissolved oxygen concentration in the acid solution can be increased, so that the redox reaction rate of iron ions in the acid solution in the closed tank and the Fe 3+ concentration can be easily adjusted.
  • the gas in the gas phase portion in the closed tank is supplied to the gas mixing portion or the gas blowing portion while being circulated through the gas circulation path, so that the gas in the closed tank is supplied.
  • the gas can be continuously mixed or blown into the acid solution. Therefore, the dissolved oxygen concentration in the acid solution can be efficiently increased.
  • the gas supply unit includes a gas supply pipe connected to the gas circulation path, and the closed tank contains the oxygen in the closed tank via the gas circulation path and the gas mixing section or at least one of the gas blowing sections. It is configured to supply gas.
  • the oxygen-containing gas from the gas supply pipe is supplied to the gas mixing part or the gas blowing part via the gas circulation path, the oxygen-containing gas from the gas supply pipe is contained.
  • the device structure can be simplified as compared with the case where the gas is supplied to the gas mixing portion or the gas blowing portion by a route different from the gas circulation path.
  • the purge unit includes a purge pipe connected to the gas circulation path, and is configured to discharge the gas in the closed tank to the outside through the gas circulation path.
  • the purge pipe since the purge pipe is connected to the gas circulation path, the number of connection points between the closed tank and the external pipe can be reduced as compared with the case where the purge pipe is connected to the closed tank. Therefore, the sealing property of the closed tank is further improved, and the oxygen partial pressure in the closed tank can be adjusted more reliably.
  • the acid solution supply device is The acid solution preparation device according to any one of (1) to (16) above, An acid solution supply line for supplying the acid solution stored in the closed tank to the pickling device, and A gas recovery container provided in the acid solution supply line and A pressure reducing valve provided on the upstream side of the gas recovery container in the acid solution supply line, To be equipped.
  • the gas recovery container and the pressure reducing valve are provided in the acid solution supply line for supplying the acid solution from the closed tank to the pickling apparatus, the pressure of the acid solution supply line is adjusted by the pressure reducing valve. It can be lowered to lower the dissolved oxygen concentration in the acid solution. Further, this makes it possible to store the oxygen gas that cannot be dissolved in the acid solution in the gas recovery container. In this way, the residual oxygen contained in the acid solution of the acid solution supply line can be recovered and effectively used.
  • the pickling equipment according to at least one embodiment of the present invention is A pickling device for pickling steel sheets with an acid solution,
  • the acid solution supply device according to (17) above which is configured to supply the acid solution to the pickling device. To be equipped.
  • the oxygen-containing gas can be supplied to the closed tank, and the gas in the closed tank can be discharged to the outside when the oxygen-containing gas in the closed tank is consumed and the oxygen concentration decreases. Because of this, it is easy to adjust the partial pressure of oxygen gas in the closed tank. That is, since the concentration of dissolved oxygen in the acid solution in the closed tank can be adjusted, the oxidation reaction rate from ferrous ion (Fe 2+ ) to ferric ion (Fe 3+ ) in the acid solution in the closed tank. Can be adjusted. Therefore, the Fe 3+ concentration in the acid solution in the closed tank can be appropriately adjusted, and thus the pickling of the steel sheet can be efficiently performed.
  • the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
  • the expression representing a shape such as a square shape or a cylindrical shape not only represents a shape such as a square shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained.
  • the shape including the uneven portion, the chamfered portion, etc. shall also be represented.
  • the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

酸液調製装置は、鋼板の酸洗に用いられる酸液の調製装置であって、前記酸液を貯留するための密閉タンクと、前記密閉タンクに該密閉タンクの外部から酸素含有ガスを供給するためのガス供給部と、前記密閉タンク内のガスを外部に排出するためのパージ部と、を備える。

Description

酸液調製装置及び酸液供給装置並びに酸洗設備
 本開示は、酸液調製装置及び酸液供給装置並びに酸洗設備に関する。
 鋼板の酸洗において、酸液に含まれる第二鉄イオン(Fe3+)の濃度を調節することで、酸洗速度が大きくなることが知られており、酸液中のFe3+濃度を調節するための方法が提案されている。
 例えば、特許文献1には、酸液中に含まれるFe3+の濃度を所定範囲内の値に維持するために、酸液のエアレーション(曝気)を行い、酸洗時に酸液中に生じる第一鉄イオン(Fe2+)を酸化して、酸液中のFe3+濃度を増加させることが記載されている。
特許第4186131号公報
 しかしながら、特許文献1に記載されるエアレーションでは、酸液中の溶存酸素濃度を高めることが難しく、鉄イオンの酸化反応の速度を十分に高めることが難しい。また、鉄イオンの酸化反応により十分な量のFe3+イオンを得るためには多量の酸液が必要となり、このため巨大な酸液タンクが必要となる。したがって、エアレーションによる酸液中の鉄イオンの酸化処理を実際に採用するのは難しい。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、鋼板の酸洗に用いる酸液中のFe3+濃度を容易に調節可能な酸液調製装置及び酸液供給装置並びに酸洗設備を提供することを目的とする。
 本発明の少なくとも一実施形態に係る酸液調製装置は、
  鋼板の酸洗に用いられる酸液の調製装置であって、
  前記酸液を貯留するための密閉タンクと、
  前記密閉タンクに該密閉タンクの外部から酸素含有ガスを供給するためのガス供給部と、
  前記密閉タンク内のガスを外部に排出するためのパージ部と、
を備える。
 本発明の少なくとも一実施形態によれば、鋼板の酸洗に用いる酸液中のFe3+濃度を容易に調節可能な酸液調製装置及び酸液供給装置並びに酸洗設備が提供される。
一実施形態に係る酸洗設備の概略図である。 一実施形態に係る酸洗設備の概略図である。 一実施形態に係る酸液調製装置を含む酸液供給装置の概略図である。 一実施形態に係る酸液調製装置を含む酸液供給装置の概略図である。 一実施形態に係る酸液調製装置を含む酸液供給装置の概略図である。 一実施形態に係る酸液調製装置を含む酸液供給装置の概略図である。 一実施形態に係る酸液調製装置を含む酸液供給装置の概略図である。 一実施形態に係る酸液調製装置を含む酸液供給装置の概略図である。 一実施形態に係る酸液調製装置を含む酸液供給装置の概略図である。 一実施形態に係る酸液調製装置を含む酸液供給装置の概略図である。 一実施形態に係る酸液供給装置の概略図である。 酸液中の鉄イオンの濃度比と酸洗時間との関係の一例を示すグラフである。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1及び図2は、それぞれ、一実施形態に係る酸洗設備の概略図である。
 まず、図1を参照して、幾つかの実施形態に係る酸洗設備の概要について説明する。図1に示すように、一実施形態に係る酸洗設備1は、酸液3を用いて鋼板2の酸洗をするための酸洗装置10と、酸洗装置10に酸液3を供給するように構成された酸液供給装置20と、を備える。
 酸洗装置10は、酸液3を貯留するための酸洗槽12と、酸液3に浸漬された帯状の鋼板2を連続的に搬送するための搬送ロール16と、を備えている。酸液3は、鋼板2の表面に生成したスケール(酸化被膜)を溶解して除去するための酸洗液であり、例えば、塩酸、硫酸、硝酸又はフッ酸等の酸を含む液体である。搬送ロール16は、鋼板2に張力を与えて該鋼板2を、酸洗槽の酸液中に鋼板を浸漬させて搬送するように構成されている。
 酸液供給装置20は、酸洗装置10に供給する酸液を調製するための酸液調製装置22と、酸液調製装置22からの酸液を酸洗装置10に供給するための酸液供給ライン24と、酸洗装置10からの酸液を酸液調製装置22に返送するための酸液返送ライン26と、を含む。
 鋼板の酸洗において、酸液に含まれる第二鉄イオン(Fe3+)の濃度を調節することで、酸洗速度が大きくなることが知られている。
 ここで、図12は、酸液中の鉄イオン(Fe2+、Fe3+)の濃度比と、酸洗時間との関係の一例を示すグラフである。図12に示すように、酸液中Fe3+濃度をある程度大きくすることで、酸洗速度が増大する(すなわち、酸洗時間が短くなる)。したがって、酸液調製装置22にて酸液中のFe3+濃度を適切に調節することで、鋼板の酸洗を効率的に行うことができる。なお、酸液調製装置22の構成については後述する。
 図2に示す酸洗設備1は、鋼板2の搬送方向において直列に配置された複数の酸洗槽12(12A~12C)を有する酸洗装置10を含む連続酸洗設備である。複数の酸洗槽12(12A~12C)は、隔壁によって隔てられている。
 複数の酸洗槽12(12A~12C)の各々に搬送ロール16が設けられており、これらの搬送ロール16によって、複数の酸洗槽12内の酸液3に浸漬された状態で鋼板2が搬送されるようになっている。
 図2に示す酸洗設備1では、鋼板2を酸洗するための酸液3が酸液供給部18を介して最下流側の酸洗槽12Cに供給されるようになっている。また、酸洗槽12(12A~12C)から溢れた酸液3が、酸洗槽12間の隔壁を超えて上流側の酸洗槽へと移送されるようになっている。最上流側の酸洗槽12Aには、酸液3を排出するための酸液排出部19が設けられている。
 また、図2に示す酸洗設備1では、酸液調製装置22と、最下流側の酸洗槽12Cとの間に酸液供給ライン24及び酸液返送ライン26が設けられている。即ち、酸液調製装置22で調製された酸液が、最下流側の酸洗槽12Cに供給されるようになっている。
 下流側の酸洗槽12では、鋼板2表面のスケールの溶解に加えて、鋼板2の母材表面を溶解させる処理を行うことがある。このように鋼板2の母材を酸液で溶解させる場合に、酸液中のFe3+が消費される。よって、複数の酸洗槽12のうちの下流側の酸洗槽(例えば最下流の酸洗槽12C)に対して、酸液調製装置22で調製された酸液3を供給することで、効果的に鋼板の酸洗を行うことができる。
 以下、幾つかの実施形態に係る酸液調製装置22についてより詳細に説明する。
 図3~図10は、それぞれ、一実施形態に係る酸液調製装置を含む酸液供給装置の概略図である。図3~図10に示すように、幾つかの実施形態に係る酸液調製装置22は、酸液3を貯留するための密閉タンク30と、ガス供給部31と、パージ部33と、を備えている。
 密閉タンク30には、ガス供給部31を介して、外部からの酸素含有ガスが供給されるようになっている。また、密閉タンク30から、パージ部33を介して密閉タンク30内のガスを外部に排出可能になっている。
 密閉タンク30は、鋼板を酸洗するための酸液3が貯留される。密閉タンク30内には、貯留した酸液3を含む液相部101と、気相部102とが形成されるようになっている。
 幾つかの実施形態では、酸洗装置10(図1、図2参照)の酸洗槽12からの酸液が酸液返送ライン26を介して流入して貯留されるようになっていてもよい。
 密閉タンク30に供給される酸素含有ガスは、例えば、酸素分圧が、1気圧の大気の酸素分圧(約0.021MPa)よりも大きい酸素含有ガスであってもよく、例えば、酸素分圧が0.022MPaよりも大きい酸素含有ガスであってもよい。
 あるいは、酸素含有ガスは、大気中の酸素濃度(約20.95%)よりも高い酸素濃度を有していてもよく、例えば、20.1%以上の酸素濃度であってもよい。あるいは、酸素含有ガスは、空気等のガスを加圧して、酸素分圧を高めたものであってもよい。
 幾つかの実施形態では、酸液調製装置22は、密閉タンク30に供給する酸素含有ガスを生成する機能を有していてもよい。例えば、図3に示す例示的な実施形態では、酸液調製装置22は、酸素ガス発生装置38と、加圧部40と、を備えている。そして、酸素ガス発生装置38で生成されたガスが、加圧部40で昇圧された後、酸素ガス供給ライン36を含むガス供給部31を介して密閉タンク30に供給されるようになっている。なお、加圧部40はコンプレッサであってもよい。
 酸素ガス発生装置38は、空気を原料として、空気よりも酸素濃度が高いガスを生成するように構成されている。酸素ガス発生装置38は、酸素濃度が90体積%以上のガスを生成するように構成されていてもよい。
 あるいは、幾つかの実施形態では、酸液調製装置22の外部の酸素含有ガス源からのガスがガス供給部31に供給されるようになっていてもよい。例えば、上述の酸素含有ガス源として、高圧の酸素が貯蔵された酸素ガスボンベを用いてもよい。また、例えば、酸素含有ガス源として、空気を昇圧したものを用いてもよい。この場合、酸液調製装置22は、空気を昇圧するためのコンプレッサ(加圧部)を含んでいてもよい。
 図3~図10に示す実施形態では、ガス供給部31はガス供給管32を含んでいる。
 図3~図6に示す例示的な実施形態では、ガス供給管32は密閉タンク30に接続されており、ガス供給管32の一端により形成される供給口から、密閉タンク30の中に酸素含有ガスが流入するようになっている。
 図3に示す例示的な実施形態では、ガス供給管32の供給口は、密閉タンク30に貯留された酸液3(即ち液相部101)の中に設けられており、酸液3中に酸素含有ガスを吹き込むようになっている。図4~図6に示す例示的な実施形態では、ガス供給管32の一端が密閉タンク30に接続されており、ガス供給管32からの酸素含有ガスが、密閉タンク30内の気相部102に供給されるようになっている。
 図7~図10に示す例示的な実施形態では、ガス供給管32は、後述するガス循環路50に接続されており、ガス供給管32からの酸素含有ガスは、ガス循環路50の一部等を介して密閉タンク30内に供給されるようになっている。
 また、図3~図10に示す実施形態では、パージ部33はパージ管34を含んでいる。
 図3~図6に示す例示的な実施形態では、パージ管34は密閉タンク30の気相部102の部分に接続されており、該気相部102からのガスがパージ管34を介して外部に排出されるようになっている。
 図7~図10に示す例示的な実施形態では、パージ管34は、後述するガス循環路50に接続されており、密閉タンク30内の気相部102のガスが、ガス循環路50の一部及びパージ管34を介して外部に排出されるようになっている。
 上述した実施形態では、ガス供給部31を介して密閉タンク30に酸素含有ガスを供給可能であるとともに、密閉タンク30内の酸素含有ガスが消費されて酸素濃度が低下したら密閉タンク30内のガスをパージ部33を介して外部に排出可能であるので、密閉タンク30内の酸素ガス分圧を調節しやすい。すなわち、密閉タンク30内における酸液3中の溶存酸素濃度を調節できるので、密閉タンク30内での酸液3中での第一鉄イオン(Fe2+)から第二鉄イオン(Fe3+)への酸化反応速度を調整することができる。よって、密閉タンク30内の酸液3中のFe3+濃度を適切に調節することができ、これにより鋼板2(図1参照)の酸洗を効率的に行うことができる。
 幾つかの実施形態では、ガス供給管32には、該ガス供給管32の圧力を調節するための第1バルブ35が設けられている(例えば図5及び図7~図10参照)。この場合、第1バルブ35を適切に操作することにより、密閉タンク30内の圧力を適切に調節しながら、密閉タンク30に酸素含有ガスを供給することができる。
 幾つかの実施形態では、パージ管34には、該パージ管34を介して密閉タンク30から排出されるガスの流量をするための第2バルブ37が設けられている(例えば図5及び図7~図10参照)。この場合、第2バルブ37を適切に操作することにより、密閉タンク30内の圧力や気相中の酸素濃度を適切に調節しながら、密閉タンクからガスを排出することができる。
 幾つかの実施形態では、パージ管34は、一定流量のガスを連続的に排出するように構成されていてもよい。例えばパージ管34には、規定流量のガスを排出するためのオリフィスが設けられていてもよい。
 幾つかの実施形態では、酸液調製装置22には、密閉タンク30内の圧力を計測するための圧力センサ92が設けられている。例えば図4~図6に示す例示的な実施形態では、圧力センサ92は、密閉タンク30内の気相部の圧力を計測するように構成されている。
 また、幾つかの実施形態では、酸液調製装置22には、密閉タンク30内の気相部102中の酸素濃度を計測するための濃度センサ94が設けられている。例えば図4~図6に示す例示的な実施形態では、濃度センサ94は、密閉タンク30内の気相部102の濃度を計測するように構成されている。
 なお、密閉タンク30から排出されるガスが通るパージ管34(パージ部33)におけるガス中の酸素濃度は、密閉タンク30内におけるガス中の酸素濃度とほぼ同じである。そこで、幾つかの実施形態では、濃度センサ94は、パージ部33におけるガス中の酸素濃度を計測するように構成されていてもよい。
 ガス供給管32に設けられた第1バルブ35は、圧力センサ92による計測結果に基づいて開度調節されるように構成されていてもよい。このように、密閉タンク30内の圧力の計測結果に基づいて第1バルブ35の開度を調節することにより、密閉タンク30内の圧力をより適切に調節することができる。
 第1バルブ35は、圧力センサ92及び濃度センサ94による計測結果に基づいて開度調節されるように構成されていてもよい。この場合、圧力センサ92及び濃度センサ94の計測結果から、密閉タンク30内における酸素分圧を算出することができるので、密閉タンク30内の圧力(全圧)及び酸素分圧を適切に調節することができる。
 パージ管34に設けられた第2バルブ37は、濃度センサ94による計測結果に基づいて開度調節されるように構成されていてもよい。このように、密閉タンク30内の酸素濃度の計測結果に基づいて第2バルブ37の開度を調節することにより、密閉タンク30内の酸素ガス濃度をより適切に調節しながら、密閉タンク30からガスを排出することができる。
 第2バルブ37は、圧力センサ92及び濃度センサ94による計測結果に基づいて開度調節されるように構成されていてもよい。この場合、圧力センサ92及び濃度センサ94の計測結果から、密閉タンク30内における酸素分圧を算出することができるので、密閉タンク30内の圧力(全圧)及び酸素分圧を適切に調節しながら、密閉タンク30からガスを排出することができる。
 幾つかの実施形態では、例えば図5に示すように、酸液調製装置22は、第1バルブ35及び/又は第2バルブ37の開度調節を行うためのコントローラ90を備えていてもよい。コントローラ90は、圧力センサ92又は濃度センサ94の計測結果に基づいて、第1バルブ35及び/又は第2バルブ37の開度を調節するように構成されていてもよい。また、コントローラ90は、圧力センサ92及び濃度センサ94の計測結果に基づいて、第1バルブ35及び/又は第2バルブ37の開度を調節するように構成されていてもよい。
 幾つかの実施形態では、例えば図3に示すように、酸液調製装置22は、密閉タンク30に貯留された酸液3の温度を調節するための温度調節部43をさらに備える。この場合、温度調節部43により密閉タンク30内の酸液3の温度を調節することができるので、密閉タンク30内における鉄イオンの酸化還元反応を促進することができる。よって、密閉タンク30内の酸液3中のFe3+濃度をより効率的に調節することができる。
 温度調節部43は、密閉タンク30又は酸液循環路42(後述)に設けられたヒータであってもよい。
 幾つかの実施形態では、例えば図4~図6及び図9~図10に示すように、酸液調製装置22は、酸液循環路42と、酸液循環路42に設けられた循環ポンプ44と、を備えている。酸液循環路42は、密閉タンク30に貯留された酸液3を密閉タンク30の外に抜き出して、該酸液3を循環させて密閉タンク30に戻すように構成されている。
 この場合、酸液循環路42及び循環ポンプ44を介して、密閉タンク30内の酸液3を循環させるようにしたので、密閉タンク30内の溶液を撹拌することができる。これにより、密閉タンク30内での酸素ガスの酸液3への溶解を促進することができ、酸液3中の溶存酸素濃度を増大させることができる。よって、密閉タンク30内の酸液3中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
 また、幾つかの実施形態では、例えば図7~図10に示すように、酸液調製装置22は、密閉タンク30内の気相部102のガスを密閉タンク30の外に抜き出して、該ガスを循環させて密閉タンク30に戻すためのガス循環路50を備えている。
 この場合、密閉タンク30内の気相部102のガスを、ガス循環路50を介して循環させながらガス混入部46(後述)又はガス吹込み部52(後述)に供給するようにしたので、密閉タンク30の気相部102内に存在する酸素ガスを利用して、酸液3中へのガスの混入又は吹込みを連続的に行うことができる。よって、酸液3中の溶存酸素濃度を効率的に増大させることができる。
 図4、図5、図9及び図10に示す例示的な実施形態では、酸液調製装置22は、酸液3にガスを混入させるためのガス混入部46を含む。ガス混入部46は、酸液循環路42を介して密閉タンク30から抜き出された酸液3が供給されるとともに、このように供給された酸液3に酸素含有ガスを混入させるように構成されている。そして、ガス混入部46にて酸素含有ガスが混入された酸液3が、ガス混入部46から密閉タンク30内に放出されて貯留されるようになっている。
 図4及び図5に示す例示的な実施形態では、ガス混入部46は、密閉タンク30内の気相部102のガス(酸素含有ガス)を取り込むためのガス取り込み部46aを有するエジェクタノズルである。この場合、ガス混入部46(エジェクタノズル)では、エジェクタノズルの内部に形成される酸液3の流れに、気相部102のガスがガス取り込み部46aを介して吸引されることにより、酸液3とガスの気泡を含む混合流が形成される。そして、ガス混入部46から、酸素含有ガスの気泡を含む酸液3が密閉タンク30内に放出される。
 図9及び図10に示す例示的な実施形態では、ガス混入部46には、酸液循環路42からの酸液3と、ガス循環路50からの酸素含有ガスが導かれるようになっている。そして、ガス混入部46にて酸液3と酸素含有ガスとが混合されることにより、酸液3とガスの気泡を含む混合流が形成される。そして、ガス混入部46から、酸素含有ガスの気泡を含む酸液3が密閉タンク30内に放出される。
 なお、図10に示す例示的な実施形態では、ガス混入部46は密閉タンク30の外部に設けられているとともに、ガス混入部46と密閉タンク30とを接続する接続部47が設けられている。そして、ガス混入部46からの酸素含有ガスの気泡を含む酸液3は、接続部47を介して密閉タンク30内に放出される。
 ガス混入部46として、例えば上述したエジェクタノズルや、密閉タンク30内の酸液3中に酸素含有ガスのマイクロバブルを生成するように構成されたマイクロバブル発生ノズルを用いてもよい。
 図9又は図10に示す実施形態において、マイクロバブル発生ノズルを採用する場合には、ノズル内にてマイクロバブルが発生する場所は、マイクロバブル発生ノズル(ガス混入部46)におけるガス循環路50と酸液循環路42の両方の流入部よりも下流側の位置である。
 このように、ガス混入部46にて、酸液循環路42からの酸液3に酸素含有ガスを混入させるようにしたので、酸液3と酸素含有ガスとの接触が促進されて、酸素ガスの酸液3への溶解が促進される。そして、ガス混入部46の酸液3を密閉タンク30に戻すようにしたので、密閉タンク30内の酸液3中の溶存酸素濃度をより効果的に増大させることができる。よって、密閉タンク30内の酸液3中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
 図6に示す例示的な実施形態では、酸液調製装置22は、酸液循環路42からの酸液3を密閉タンク30内の気相部102に噴射して液滴106を形成するための噴射部48を備えている。この実施形態では、酸液循環路42は、酸液3を循環させて密閉タンク30の気相部102に戻すように構成されている。
 噴射部48は、酸液3を液滴の状態で噴射するように構成されていてもよい。あるいは、噴射部48は、噴射後の酸液3が分裂して液滴となるように、酸液3を噴射するように構成されていてもよい。噴射部48としてスプレーを用いてもよい。
 このように、酸液循環路42から密閉タンク30に戻された酸液3を、密閉タンク30の気相部102内で噴射することにより、気相部102内で酸液3の液滴106を形成することができる。これにより、気相部102における酸液3と酸素含有ガスとの接触面積を増大させて、酸素ガスの酸液3への溶解を促進させることができる。よって、酸液3中の溶存酸素濃度を増大させることができるため、密閉タンク30内の酸液3中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
 なお、特に図示しないが、幾つかの実施形態では、酸液調製装置22は、上述のガス混入部46及び噴射部48を含んでおり、これらを併用するようになっていてもよい。この場合、酸液循環路42は途中で分岐し、分岐路の1つを介してガス混入部46に酸液3を供給し、他の分岐路を介して噴射部48に酸液3を供給するように構成されていてもよい。
 図3、図7及び図8に示す例示的な実施形態では、酸液調製装置22は、酸素含有ガスを密閉タンク30に貯留された酸液3の中に吹き込むためのガス吹込み部52をさらに備えている。
 この場合、ガス吹込み部52により酸素含有ガスを密閉タンク30内の酸液3中に吹き込むようにしたので、酸液3中に酸素含有ガスの気泡104を形成することができる。これにより、酸液3と酸素含有ガスとの接触面積を増大させて、酸素ガスの酸液3への溶解を促進させることができる。よって、酸液3中の溶存酸素濃度を増大させることができるため、密閉タンク30内の酸液3中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
 ガス吹込み部52は、密閉タンク30内の酸液3中に酸素含有ガスのマイクロバブルを生成するように構成されたマイクロバブル発生ノズルであってもよい。
 図7又は図8に示す実施形態において、マイクロバブル発生ノズルを採用する場合には、ノズル内にてマイクロバブルが発生する場所は、密閉タンク30の内側又は外側のどちらでもよいが、その場所には、密閉タンク30内の酸液3が入りこんでいる。
 図8に示す例示的な実施形態では、ガス吹込み部52は、密閉タンク30内の液相部101から酸液3を取り込むための酸液取り込み部52aを有している。そして、ガスを密閉タンク30内の酸液3に吹き込む際に生じるガスジェットを利用して周囲の酸液3を酸液取り込み部52aを介して取り込んでノズル内に巻き込み、マイクロバブルを発生するようになっている。
 幾つかの実施形態では、ガス供給部31からの酸素含有ガスが、密閉タンク30内の気相部102を経由せずにガス混入部46又はガス吹込み部52一方に供給されるように構成される。
 例えば図7~図10に示す例示的な実施形態では、ガス供給管32(ガス供給部31)がガス循環路50に接続されており、ガス供給管32からの酸素含有ガスは、ガス循環路50の一部を介して、ガス混入部46(図9、図10の場合)又はガス吹込み部52(図7、図8の場合)に供給されるようになっている。
 密閉タンク30内では、酸液3における鉄イオンの酸化還元反応により酸素が消費されるため、ガス供給部31を介して酸素含有ガスを補給しなければ、密閉タンク30内の気相部102のガス中の酸素濃度は減少する。
 この点、上述の実施形態では、ガス供給部31からの比較的高濃度の酸素含有ガスを、比較的低濃度の密閉タンク30内の気相部102を経由せずにガス混入部46又はガス吹込み部52に供給することができる。よって、ガス混入部46又はガス吹込み部52にて、酸素ガスの酸液3への溶解をより一層促進させることができる。これにより、酸液3中の溶存酸素濃度を増大させることができるため、密閉タンク30内の酸液3中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
 幾つかの実施形態では、例えば図7~図10に示すように、ガス供給部31は、ガス循環路50に接続されたガス供給管32を含む。そして、ガス循環路50とガス混入部46(図9、図10の場合)又はガス吹込み部52(図7、図8の場合)を介して密閉タンク30に酸素含有ガスが供給されるようになっている。
 この場合、ガス供給管32からの酸素含有ガスを、ガス循環路50を介してガス混入部46又はガス吹込み部52に供給するようにしたので、ガス供給管32からの酸素含有ガスを、ガス循環路50とは別の経路でガス混入部46又はガス吹込み部52に供給する場合に比べて、装置構造を簡素化することができる。
 幾つかの実施形態では、例えば図7~図10に示すように、パージ部33は、ガス循環路50に接続されたパージ管34を含み、ガス循環路50を介して、密閉タンク30内のガスを密閉タンク30の外部に排出するように構成される。
 この場合、パージ管34をガス循環路50に接続したので、パージ管34を密閉タンク30に接続する場合に比べて、密閉タンク30と外部配管の接続箇所を減らすことができる。よって、密閉タンク30のシール性が一層良好となり、密閉タンク30内の酸素分圧をより確実に調節することができる。
 図11は、一実施形態に係る酸液供給装置の概略図である。
 図11に示す酸液供給装置20の構成は、基本的には図1に示す酸洗設備1に含まれる酸液供給装置20と同様であるが、さらに、以下に説明する特徴を有する。
 図11に示す酸液供給装置20は、上述した酸液調製装置22と、該酸液調製装置22の密閉タンク30に貯留された酸液3を酸洗装置10(図1参照)に供給するための酸液供給ライン24と、酸液供給ライン24に設けられたガス回収容器27及び減圧弁23と、を備えている。減圧弁23は、酸液供給ライン24においてガス回収容器27よりも上流側に設けられている。
 上述の実施形態によれば、密閉タンク30から酸洗装置10に酸液3を供給するための酸液供給ライン24にガス回収容器27及び減圧弁23を設けたので、減圧弁23により酸液供給ライン24の圧力を低下させて酸液3中の気泡を膨張させることで、ガス回収容器27の酸液3から分離し、酸液3に溶解できなかった酸素ガスを、例えば図11に示すようにガス回収容器27内で回収することができる。なお、図11に示すように、ガス回収容器27内にて、減圧により酸液3に溶解できなくなった酸素ガス108は、酸液3(液相部107)から分離されて貯留される。このようにして、酸液供給ライン24の酸液3中に含まれる残存酸素を回収して、有効利用することができる。
 図11に示すように、酸液供給装置20には、ガス回収容器27内の酸素ガス108を密閉タンク30に送るための、返送ライン28及び返送ポンプ29を設けてもよい。これにより、ガス回収容器27に貯留された酸素ガス108を密閉タンク30に戻して、密閉タンク30内の酸液3中での鉄イオンの酸化還元反応の酸化剤として用いるようにしてもよい。
 以下、幾つかの実施形態に係る酸液調製装置及び酸液供給装置並びに酸洗設備について概要を記載する。
(1)本発明の少なくとも一実施形態に係る酸液調製装置は、
 鋼板の酸洗に用いられる酸液の調製装置であって、
 前記酸液を貯留するための密閉タンクと、
 前記密閉タンクに該密閉タンクの外部から酸素含有ガスを供給するためのガス供給部と、
 前記密閉タンク内のガスを外部に排出するためのパージ部と、
を備える。
 上記(1)の構成によれば、密閉タンクに酸素含有ガスを供給可能であるとともに、密閉タンク内の酸素含有ガスが消費されて酸素濃度が低下したら密閉タンク内のガスを外部に排出可能であるので、密閉タンク内の酸素ガス分圧を調節しやすい。すなわち、密閉タンク内における酸液中の溶存酸素濃度を調節できるので、密閉タンク内での酸液中での第一鉄イオン(Fe2+)から第二鉄イオン(Fe3+)への酸化反応速度を調整することができる。よって、密閉タンク内の酸液中のFe3+濃度を適切に調節することができ、これにより鋼板の酸洗を効率的に行うことができる。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記ガス供給部は、酸素分圧が0.022MPaよりも大きい前記酸素含有ガスを前記密閉タンクに供給するように構成される。
 上記(2)の構成によれば、密閉タンク内の酸素分圧を大気(1気圧)の酸素分圧よりも高くすることができるので、大気圧下で酸液の処理をする場合に比べて、酸液中の溶存酸素濃度を大きくすることができる。よって、密閉タンク内の酸液中での鉄イオンの酸化反応速度を増大させることができるので、酸液中のFe3+濃度の調節を効率的に行うことができる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記ガス供給部は、
  前記密閉タンクに供給される前記酸素含有ガスが流れるガス供給管と、
  前記ガス供給管に設けられ、該ガス供給管の圧力を調節するための第1バルブと、を含む。
 上記(3)の構成によれば、密閉タンクに酸素含有ガスを供給するためのガス供給管に第1バルブを設けたので、第1バルブを適切に操作することにより、密閉タンク内の圧力を適切に調節しながら、密閉タンクに酸素含有ガスを供給することができる。
(4)幾つかの実施形態では、上記(3)の構成において、
 前記酸液調製装置は、
 前記密閉タンク内の圧力を計測するための圧力センサをさらに備え、
 前記第1バルブは、前記圧力センサの計測結果に基づいて開度調節されるように構成される。
 上記(4)の構成によれば、密閉タンク内の圧力の計測結果に基づいて第1バルブの開度を調節するようにしたので、密閉タンク内の圧力をより適切に調節することができる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
 前記パージ部は、
  前記密閉タンクから排出される前記ガスが流れるパージ管と、
  前記パージ管に設けられ、前記パージ管を介して前記密閉タンクから排出されるガスの流量を調節するための第2バルブと、を含む。
 上記(5)の構成によれば、密閉タンク内のガスを排出するためのパージ管に第2バルブを設けたので、第2バルブを適切に操作することにより、密閉タンク内の圧力や気相中のガス濃度を適切に調節しながら、密閉タンクからガスを排出することができる。
(6)幾つかの実施形態では、上記(5)の構成において、
 前記酸液調製装置は、
 前記密閉タンク内の気相中の酸素濃度を計測するための濃度センサをさらに備え、
 前記第2バルブは、前記濃度センサの計測結果に基づいて開度調節されるように構成される。
 上記(6)の構成によれば、密閉タンク内の酸素濃度の計測結果に基づいて第2バルブの開度を調節するようにしたので、密閉タンク内の酸素ガス濃度をより適切に調節しながら密閉タンクからガスを排出することができる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
 前記酸液調製装置は、
 空気よりも酸素濃度が高いガスを生成するための酸素ガス発生装置をさらに備え、
 前記ガス供給部は、前記酸素ガス発生装置で生成されたガスを前記酸素含有ガスとして前記密閉タンクに供給するように構成される。
 上記(7)の構成によれば、酸素ガス発生装置を用いて空気よりも酸素濃度が高い酸素含有ガスを生成し、該酸素含有ガスを密閉タンクに供給するようにしたので、密閉タンク内の酸素分圧を容易に増大させることができる。よって、密閉タンク内の酸液中の溶存酸素濃度の調節が容易となる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、
 前記酸液調製装置は、
 前記密閉タンクに供給される前記酸素含有ガスを昇圧させるための加圧部をさらに備える。
 上記(8)の構成によれば、密閉タンクに供給される酸素含有ガスを加圧部で昇圧することができるので、密閉タンク内の酸素分圧を容易に増大させることができる。よって、密閉タンク内の酸液中の溶存酸素濃度の調節が容易となる。
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、
 前記酸液調製装置は、
 前記密閉タンクに貯留された前記酸液の温度を調節するための温度調節部をさらに備える。
 上記(9)の構成によれば、温度調節部により密閉タンク内の酸液の温度を調節することができるので、密閉タンク内における鉄イオンの酸化還元反応を促進することができる。よって、密閉タンク内の酸液中のFe3+濃度をより効率的に調節することができる。
(10)幾つかの実施形態では、上記(1)乃至(9)の何れかの構成において、
 前記酸液調製装置は、
 前記密閉タンクに貯留された前記酸液を抜き出して、該酸液を循環させて前記密閉タンクに戻すための酸液循環路と、
 前記酸液循環路に設けられた循環ポンプと、
をさらに備える。
 上記(10)の構成によれば、酸液循環路及び循環ポンプを介して、密閉タンク内の酸液を循環させるようにしたので、密閉タンク内の溶液を撹拌することができる。これにより、密閉タンク内での酸素ガスの酸液への溶解を促進することができ、酸液中の溶存酸素濃度を増大させることができる。よって、密閉タンク内の酸液中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
(11)幾つかの実施形態では、上記(10)の構成において、
 前記酸液循環路は、前記酸液を循環させて前記密閉タンクの気相部に戻すように構成され、
 前記酸液循環路を介して前記気相部に戻された前記酸液を前記気相部内で噴射するように構成された噴射部をさらに備える。
 上記(11)の構成によれば、酸液循環路から密閉タンクに戻された酸液を、密閉タンクの気相部内で噴射することにより、気相部内で酸液の液滴を形成することができる。これにより、気相部における酸液と酸素含有ガスとの接触面積を増大させて、酸素ガスの酸液への溶解を促進させることができる。よって、酸液中の溶存酸素濃度を増大させることができるため、密閉タンク内の酸液中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
(12)幾つかの実施形態では、上記(10)又は(11)の構成において、
 前記酸液調製装置は、
 前記酸液循環路を介して前記密閉タンクから抜き出された前記酸液が供給され、供給された該酸液に前記酸素含有ガスを混入させるためのガス混入部をさらに備え、
 前記ガス混入部からの前記酸液が前記密閉タンクに貯留されるように構成される。
 上記(12)の構成によれば、ガス混入部にて、酸液循環路からの酸液に酸素含有ガスを混入させるようにしたので、ガス混入部にて、酸液と酸素含有ガスとの接触が促進されて、酸素ガスの酸液への溶解が促進される。そして、ガス混入部の酸液を密閉タンクに戻すようにしたので、密閉タンク内の酸液中の溶存酸素濃度をより効果的に増大させることができる。よって、密閉タンク内の酸液中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
(13)幾つかの実施形態では、上記(12)の構成において、
 前記ガス混入部は、前記密閉タンクの外部に設けられる。
 上記(13)の構成によれば、ガス混入部を密閉タンクの外部に設けたので、ガス混入部のメンテナンスが容易となる。例えば、ガス混入部のパーツの取り外し等を、密閉タンクに手を加えることなく容易にすることができる。
(14)幾つかの実施形態では、上記(1)乃至(13)の何れかの構成において、
 前記酸液調製装置は、
 前記酸素含有ガスを前記密閉タンクに貯留された前記酸液の中に吹き込むためのガス吹込み部をさらに備える。
 上記(14)の構成によれば、ガス吹込み部により酸素含有ガスを密閉タンク内の酸液中に吹き込むようにしたので、酸液中に酸素含有ガスの気泡を形成することができる。これにより、酸液と酸素含有ガスとの接触面積を増大させて、酸素ガスの酸液への溶解を促進させることができる。よって、酸液中の溶存酸素濃度を増大させることができるため、密閉タンク内の酸液中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
(14’)幾つかの実施形態では、上記(1)乃至(14)の何れかの構成において、
 前記酸液調製装置は、
 前記密閉タンク内の前記酸液を循環させるための酸液循環路内の前記酸液に前記酸素含有ガスを混入させるためのガス混入部、または、前記酸素含有ガスを前記密閉タンクに貯留された前記酸液の中に吹き込むためのガス吹込み部の少なくとも一方を備え、
 前記ガス混入部又は前記ガス吹込み部の前記少なくとも一方は、前記酸液中に前記酸素含有ガスのマイクロバブルを生成するように構成される。
 上記(14’)の構成によれば、ガス混入部で酸液に酸素含有ガスを混入させることにより、又はガス吹込み部により酸液中に酸素含有ガスを吹き込むことにより、酸素ガスの酸液への溶解を促進させることができる。また、ガス混入部又はガス吹込み部により、酸液中に酸素含有ガスのマイクロバブルを生成するようにしたので、酸素ガスの酸液への溶解をより一層促進させることができる。よって、酸液中の溶存酸素濃度を増大させることができるため、密閉タンク内の酸液中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
(14’’)幾つかの実施形態では、上記(1)乃至(14)の何れかの構成において、
 前記酸液調製装置は、
 前記密閉タンク内の前記酸液を循環させるための酸液循環路内の前記酸液に前記酸素含有ガスを混入させるためのガス混入部、または、前記酸素含有ガスを前記密閉タンクに貯留された前記酸液の中に吹き込むためのガス吹込み部の少なくとも一方を備え、
 前記ガス供給部からの前記酸素含有ガスが、前記密閉タンク内の気相部を経由せずに前記ガス混入部又は前記ガス吹込み部の前記少なくとも一方に供給されるように構成される。
 上記(14’’)の構成によれば、ガス供給部からの比較的高濃度の酸素含有ガスを、比較的低濃度の密閉タンク内の気相部を経由せずにガス混入部又はガス吹込み部に供給することができる。よって、ガス混入部又はガス吹込み部にて、酸素ガスの酸液への溶解をより一層促進させることができる。これにより、酸液中の溶存酸素濃度を増大させることができるため、密閉タンク内の酸液中での鉄イオンの酸化還元反応速度、及び、Fe3+濃度を調節しやすくなる。
(15)幾つかの実施形態では、上記(1)乃至(14)の構成において、
 前記密閉タンク内の前記酸液を前記密閉タンクの外部に抜き出して、該酸液を循環させて前記密閉タンクに戻すための酸液循環路内の前記酸液に前記酸素含有ガスを混入させるためのガス混入部、または、前記酸素含有ガスを前記密閉タンクに貯留された前記酸液の中に吹き込むためのガス吹込み部の少なくとも一方と、
 前記密閉タンク内の気相部のガスを抜き出して、該ガスを循環させて前記密閉タンクに戻すためのガス循環路と、を備え、
 前記ガス混入部又は前記ガス吹込み部の前記少なくとも一方には、前記ガス循環路からの前記ガスが供給される。
 上記(15)の構成によれば、密閉タンク内の気相部のガスを、ガス循環路を介して循環させながらガス混入部又はガス吹込み部に供給するようにしたので、密閉タンクの気相部内に存在する酸素ガスを利用して、酸液中へのガスの混入又は吹込みを連続的に行うことができる。よって、酸液中の溶存酸素濃度を効率的に増大させることができる。
(15’)幾つかの実施形態では、上記(15)の構成において、
 前記ガス供給部は、前記ガス循環路に接続されたガス供給管を含み、前記ガス循環路と前記ガス混入部又は前記ガス吹込み部の前記少なくとも一方とを介して前記密閉タンクに前記酸素含有ガスを供給するように構成される。
 上記(15’)の構成によれば、ガス供給管からの酸素含有ガスを、ガス循環路を介してガス混入部又はガス吹込み部に供給するようにしたので、ガス供給管からの酸素含有ガスを、ガス循環路とは別の経路でガス混入部又はガス吹込み部に供給する場合に比べて、装置構造を簡素化することができる。
(16)幾つかの実施形態では、上記(15)の構成において、
 前記パージ部は、前記ガス循環路に接続されたパージ管を含み、前記ガス循環路を介して、前記密閉タンク内の前記ガスを外部に排出するように構成される。
 上記(16)の構成によれば、パージ管をガス循環路に接続したので、パージ管を密閉タンクに接続する場合に比べて、密閉タンクと外部配管の接続箇所を減らすことができる。よって、密閉タンクのシール性が一層良好となり、密閉タンク内の酸素分圧をより確実に調節することができる。
(17)本発明の少なくとも一実施形態に係る酸液供給装置は、
 上記(1)乃至(16)の何れか一項に記載の酸液調製装置と、
 前記密閉タンクに貯留された前記酸液を前記酸洗装置に供給するための酸液供給ラインと、
 前記酸液供給ラインに設けられたガス回収容器と、
 前記酸液供給ラインにおいて前記ガス回収容器よりも上流側に設けられた減圧弁と、
を備える。
 上記(17)の構成によれば、密閉タンクから酸洗装置に酸液を供給するための酸液供給ラインにガス回収容器及び減圧弁を設けたので、減圧弁により酸液供給ラインの圧力を低下させて酸液中の溶存酸素濃度を低下させることができる。また、これにより酸液に溶解できなくなった酸素ガスをガス回収容器内に貯留させることができる。このようにして、酸液供給ラインの酸液中に含まれる残存酸素を回収して、有効利用することができる。
(18)本発明の少なくとも一実施形態に係る酸洗設備は、
 酸液を用いて鋼板の酸洗をするための酸洗装置と、
 前記酸洗装置に前記酸液を供給するように構成された上記(17)に記載の酸液供給装置と、
を備える。
 上記(18)の構成によれば、密閉タンクに酸素含有ガスを供給可能であるとともに、密閉タンク内の酸素含有ガスが消費されて酸素濃度が低下したら密閉タンク内のガスを外部に排出可能であるので、密閉タンク内の酸素ガス分圧を調節しやすい。すなわち、密閉タンク内における酸液中の溶存酸素濃度を調節できるので、密閉タンク内での酸液中での第一鉄イオン(Fe2+)から第二鉄イオン(Fe3+)への酸化反応速度を調整することができる。よって、密閉タンク内の酸液中のFe3+濃度を適切に調節することができ、これにより鋼板の酸洗を効率的に行うことができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1   酸洗設備
2   鋼板
3   酸液
10  酸洗装置
12,12A~12C 酸洗槽
16  搬送ロール
18  酸液供給部
19  酸液排出部
20  酸液供給装置
22  酸液調製装置
23  減圧弁
24  酸液供給ライン
26  酸液返送ライン
27  ガス回収容器
28  返送ライン
29  返送ポンプ
30  密閉タンク
31  ガス供給部
32  ガス供給管
33  パージ部
34  パージ管
35  第1バルブ
36  酸素ガス供給ライン
37  第2バルブ
38  酸素ガス発生装置
40  加圧部
42  酸液循環路
43  温度調節部
44  循環ポンプ
46  ガス混入部
46a ガス取り込み部
47  接続部
48  噴射部
50  ガス循環路
52  ガス吹込み部
52a 酸液取り込み部
90  コントローラ
92  圧力センサ
94  濃度センサ
101 液相部
102 気相部
104 気泡
106 液滴
107 液相部
108 酸素ガス

Claims (18)

  1.  鋼板の酸洗に用いられる酸液の調製装置であって、
     前記酸液を貯留するための密閉タンクと、
     前記密閉タンクに該密閉タンクの外部から酸素含有ガスを供給するためのガス供給部と、
     前記密閉タンク内のガスを外部に排出するためのパージ部と、
    を備える酸液調製装置。
  2.  前記ガス供給部は、酸素分圧が0.022MPaよりも大きい前記酸素含有ガスを前記密閉タンクに供給するように構成された
    請求項1に記載の酸液調製装置。
  3.  前記ガス供給部は、
      前記密閉タンクに供給される前記酸素含有ガスが流れるガス供給管と、
      前記ガス供給管に設けられ、該ガス供給管の圧力を調節するための第1バルブと、を含む
    請求項1又は2に記載の酸液調製装置。
  4.  前記密閉タンク内の圧力を計測するための圧力センサをさらに備え、
     前記第1バルブは、前記圧力センサの計測結果に基づいて開度調節されるように構成された
    請求項3に記載の酸液調製装置。
  5.  前記パージ部は、
      前記密閉タンクから排出される前記ガスが流れるパージ管と、
      前記パージ管に設けられ、前記パージ管を介して前記密閉タンクから排出されるガスの流量を調節するための第2バルブと、を含む
    請求項1乃至4の何れか一項に記載の酸液調製装置。
  6.  前記密閉タンク内の気相中の酸素濃度を計測するための濃度センサをさらに備え、
     前記第2バルブは、前記濃度センサの計測結果に基づいて開度調節されるように構成された
    請求項5に記載の酸液調製装置。
  7.  空気よりも酸素濃度が高いガスを生成するための酸素ガス発生装置をさらに備え、
     前記ガス供給部は、前記酸素ガス発生装置で生成されたガスを前記酸素含有ガスとして前記密閉タンクに供給するように構成された
    請求項1乃至6の何れか一項に記載の酸液調製装置。
  8.  前記密閉タンクに供給される前記酸素含有ガスを昇圧させるための加圧部をさらに備える
    請求項1乃至7の何れか一項に記載の酸液調製装置。
  9.  前記密閉タンクに貯留された前記酸液の温度を調節するための温度調節部をさらに備える
    請求項1乃至8の何れか一項に記載の酸液調製装置。
  10.  前記密閉タンクに貯留された前記酸液を抜き出して、該酸液を循環させて前記密閉タンクに戻すための酸液循環路と、
     前記酸液循環路に設けられた循環ポンプと、
    をさらに備える
    請求項1乃至9の何れか一項に記載の酸液調製装置。
  11.  前記酸液循環路は、前記酸液を循環させて前記密閉タンクの気相部に戻すように構成され、
     前記酸液循環路を介して前記気相部に戻された前記酸液を前記気相部内で噴射するように構成された噴射部をさらに備える
    請求項10に記載の酸液調製装置。
  12.  前記酸液循環路を介して前記密閉タンクから抜き出された前記酸液が供給され、供給された該酸液に前記酸素含有ガスを混入させるためのガス混入部をさらに備え、
     前記ガス混入部からの前記酸液が前記密閉タンクに貯留されるように構成された
    請求項10又は11に記載の酸液調製装置。
  13.  前記ガス混入部は、前記密閉タンクの外部に設けられた
    請求項12に記載の酸液調製装置。
  14.  前記酸素含有ガスを前記密閉タンクに貯留された前記酸液の中に吹き込むためのガス吹込み部をさらに備える
    請求項1乃至13の何れか一項に記載の酸液調製装置。
  15.  前記密閉タンク内の前記酸液を前記密閉タンクの外部に抜き出して、該酸液を循環させて前記密閉タンクに戻すための酸液循環路内の前記酸液に前記酸素含有ガスを混入させるためのガス混入部、または、前記酸素含有ガスを前記密閉タンクに貯留された前記酸液の中に吹き込むためのガス吹込み部の少なくとも一方と、
     前記密閉タンク内の気相部のガスを抜き出して、該ガスを循環させて前記密閉タンクに戻すためのガス循環路と、を備え、
     前記ガス混入部又は前記ガス吹込み部の前記少なくとも一方には、前記ガス循環路からの前記ガスが供給されるように構成された
    請求項1乃至14の何れか一項に記載の酸液調製装置。
  16.  前記パージ部は、前記ガス循環路に接続されたパージ管を含み、前記ガス循環路を介して、前記密閉タンク内の前記ガスを外部に排出するように構成された
    請求項15に記載の酸液調製装置。
  17.  請求項1乃至16の何れか一項に記載の酸液調製装置と、
     前記密閉タンクに貯留された前記酸液を酸洗装置に供給するための酸液供給ラインと、
     前記酸液供給ラインに設けられたガス回収容器と、
     前記酸液供給ラインにおいて前記ガス回収容器よりも上流側に設けられた減圧弁と、
    を備える酸液供給装置。
  18.  酸液を用いて鋼板の酸洗をするための酸洗装置と、
     前記酸洗装置に前記酸液を供給するように構成された請求項17に記載の酸液供給装置と、
    を備える酸洗設備。
PCT/JP2019/012129 2019-03-22 2019-03-22 酸液調製装置及び酸液供給装置並びに酸洗設備 WO2020194384A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19921211.9A EP3926074B1 (en) 2019-03-22 2019-03-22 Acidic liquid preparation device, acidic liquid feeding device, and pickling facility
US17/439,720 US20220154351A1 (en) 2019-03-22 2019-03-22 Acid solution preparation device, acid solution supply apparatus, and pickling facility
PCT/JP2019/012129 WO2020194384A1 (ja) 2019-03-22 2019-03-22 酸液調製装置及び酸液供給装置並びに酸洗設備
JP2021508367A JP7155401B2 (ja) 2019-03-22 2019-03-22 酸液調製装置及び酸液供給装置並びに酸洗設備
CN201980089801.0A CN113330144A (zh) 2019-03-22 2019-03-22 酸液调制装置和酸液供给装置以及酸洗设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012129 WO2020194384A1 (ja) 2019-03-22 2019-03-22 酸液調製装置及び酸液供給装置並びに酸洗設備

Publications (1)

Publication Number Publication Date
WO2020194384A1 true WO2020194384A1 (ja) 2020-10-01

Family

ID=72610396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012129 WO2020194384A1 (ja) 2019-03-22 2019-03-22 酸液調製装置及び酸液供給装置並びに酸洗設備

Country Status (5)

Country Link
US (1) US20220154351A1 (ja)
EP (1) EP3926074B1 (ja)
JP (1) JP7155401B2 (ja)
CN (1) CN113330144A (ja)
WO (1) WO2020194384A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186131B2 (ja) 1996-02-27 2008-11-26 ユジヌ・ソシエテ・アノニム 鋼製品、特にステンレス鋼板ストリップの酸洗方法
JP2017197808A (ja) * 2016-04-27 2017-11-02 Primetals Technologies Japan株式会社 酸洗装置およびその酸洗一時停止時運転方法
JP2017197809A (ja) * 2016-04-27 2017-11-02 Primetals Technologies Japan株式会社 酸洗装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69612957T2 (de) * 1996-03-14 2001-09-06 Condoroil Impianti S R L Beizen von rostfreien Stahlen mit kontinuierliche katalytische Oxidation der Beizlösung
AT407755B (de) * 1998-07-15 2001-06-25 Andritz Patentverwaltung Verfahren zum beizen von edelstahl
JP3482132B2 (ja) * 1998-07-27 2003-12-22 株式会社杉田製線 ポリ硫酸第2鉄製造装置
US20030211031A1 (en) * 2001-01-18 2003-11-13 Temyanko Valery L. Ferrous chloride conversion
CN202212092U (zh) * 2011-09-08 2012-05-09 上海凯展环保科技有限公司 水气混合装置
CN205392201U (zh) * 2016-03-01 2016-07-27 湖南兴瑞新材料研究发展有限公司 原料溶解配制装置
CN205839139U (zh) * 2016-05-26 2016-12-28 中冶南方工程技术有限公司 不锈钢酸洗液供应机构及不锈钢带钢酸洗装置
CN106367766B (zh) * 2016-11-04 2018-08-10 昆明理工大学 一种能有效抑制酸雾产生的酸洗装置
CN109338388B (zh) * 2018-12-27 2020-11-27 首钢水城钢铁(集团)赛德建设有限公司 一种循环式管道酸洗装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186131B2 (ja) 1996-02-27 2008-11-26 ユジヌ・ソシエテ・アノニム 鋼製品、特にステンレス鋼板ストリップの酸洗方法
JP2017197808A (ja) * 2016-04-27 2017-11-02 Primetals Technologies Japan株式会社 酸洗装置およびその酸洗一時停止時運転方法
JP2017197809A (ja) * 2016-04-27 2017-11-02 Primetals Technologies Japan株式会社 酸洗装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926074A4

Also Published As

Publication number Publication date
JP7155401B2 (ja) 2022-10-18
EP3926074B1 (en) 2024-03-06
EP3926074A1 (en) 2021-12-22
US20220154351A1 (en) 2022-05-19
CN113330144A (zh) 2021-08-31
JPWO2020194384A1 (ja) 2020-10-01
EP3926074C0 (en) 2024-03-06
EP3926074A4 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP2011016130A (ja) 水処理システム及び方法
JP2006223995A (ja) 洗浄方法及び洗浄装置
PL355746A1 (en) Method fo and apparatus for aerating liquids
KR102102811B1 (ko) 오존수 공급 시스템
WO2020194384A1 (ja) 酸液調製装置及び酸液供給装置並びに酸洗設備
JP2004298840A (ja) 気体溶解量調整器
KR101286373B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101166457B1 (ko) 와류 발생부 및 와류 제거부의 2단 복합 구조를 갖는 미세기포 발생장치 및 이를 이용한 미세기포를 발생시키는 방법
US20050281731A1 (en) Concurrent low-pressure manufacture of hypochlorite
TW201240743A (en) Multiply-nozzle and substrate processing apparatus having the multiply-nozzle
JP2011072950A (ja) 処理装置
JP2010199124A (ja) オゾン水供給装置
KR920000537B1 (ko) 액체에 대한 기체용해법 및 그 장치
JP2005116944A (ja) 高圧処理装置および高圧処理方法
JP2015077570A (ja) ガス溶解液製造システムにおいて使用するノズルの構造
JP2011092893A (ja) ガス溶解液製造システム
JPH0810726A (ja) 洗浄方法及び洗浄装置
JP2008133534A (ja) 銅めっき液の組成制御装置および組成制御方法
CN216799410U (zh) 一种溶解臭氧投加系统
JP2019141771A (ja) 炭酸飲料の製造設備および製造方法
JP2019214764A (ja) 酸洗装置及び酸洗方法
KR102587567B1 (ko) 가스 용해 반응기
JPH09295695A (ja) ガス吸収設備
JPH10137774A (ja) 超臨界水酸化の反応器に流体を供給する方法、供給装置、及び超臨界水酸化装置
CN113893715A (zh) 一种采用溶解臭氧投加系统投加臭氧/富氧溶液的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019921211

Country of ref document: EP

Effective date: 20210916