WO2020194016A1 - 異常状態通知方法及び異常状態通知装置 - Google Patents

異常状態通知方法及び異常状態通知装置 Download PDF

Info

Publication number
WO2020194016A1
WO2020194016A1 PCT/IB2019/000378 IB2019000378W WO2020194016A1 WO 2020194016 A1 WO2020194016 A1 WO 2020194016A1 IB 2019000378 W IB2019000378 W IB 2019000378W WO 2020194016 A1 WO2020194016 A1 WO 2020194016A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
abnormal state
driving
planned course
Prior art date
Application number
PCT/IB2019/000378
Other languages
English (en)
French (fr)
Inventor
サードタレック
高田裕史
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2019/000378 priority Critical patent/WO2020194016A1/ja
Priority to JP2021508334A priority patent/JP7222420B2/ja
Publication of WO2020194016A1 publication Critical patent/WO2020194016A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an abnormal state notification method and an abnormal state notification device.
  • Patent Document 1 when the own vehicle being automatically driven by the automatic driving system deviates from the planned driving course and changes lanes, the driving course of the lane change is indicated by an arrow in order to notify the occupants of the own vehicle in advance.
  • a technique for displaying a virtual vehicle of the own vehicle on a display screen of a display device by displaying a moving image of the virtual image by using a symbol image is described.
  • Patent Document 1 a change in the planned course of a vehicle during automatic driving can be notified to the occupants of this vehicle in an easy-to-understand manner.
  • changes in the course of the vehicle also affect other vehicles around this vehicle.
  • the autonomous driving vehicle when it is in an abnormal state, it may travel on a different course than usual, so that it becomes difficult to predict the course of the autonomous driving vehicle in other vehicles.
  • An object of the present invention is to facilitate predicting the course of an autonomous driving vehicle in an abnormal state in a vehicle other than the autonomous driving vehicle.
  • the state of the own vehicle during automatic driving is determined, the planned course of the own vehicle is determined, and the fact that the own vehicle is in an abnormal state and the planned course of the own vehicle are determined. , Notify other vehicles around your vehicle.
  • the abnormal state notification method receives the state information of the other vehicle during automatic driving and the information of the planned course of the other vehicle by the own vehicle, and determines whether or not the other vehicle is in the abnormal state. When the determination is made and it is determined that the other vehicle is in an abnormal state, the driver of the own vehicle is notified that the other vehicle is in an abnormal state and the planned course of the other vehicle.
  • FIG. 1 shows an example of the schematic structure of the driving support system of an embodiment. It is a figure which shows an example of the schematic structure of the 1st vehicle equipped with the 1st driving support device. It is a block diagram which shows an example of the functional structure of the 1st driving support device. It is a figure which shows an example of the schematic structure of the 2nd vehicle equipped with the 2nd driving support device. It is a block diagram which shows an example of the functional structure of the 2nd driving support device. It is a figure which shows an example of MRM information and planned course information of the 1st vehicle displayed on the display device of a 2nd vehicle.
  • the driving support system of the embodiment includes a first driving support device 10 mounted on the first vehicle 1 to support the driving of the first vehicle 1, and a second driving support device mounted on the second vehicle 2 to support the driving of the second vehicle 2.
  • a driving support device 20 is provided.
  • the driving support includes automatic driving control for automatically driving these vehicles without the involvement of the driver based on the driving environment around each of the first vehicle 1 and the second vehicle 2, and driving of these vehicles. Includes driving control to control at least one of braking and steering.
  • the travel control may be, for example, automatic steering, automatic braking, preceding vehicle follow-up control, constant speed travel control, lane keeping control, merging support control, and the like.
  • the driving support may include output of information (message) prompting the driver to perform steering operation, acceleration operation, and deceleration operation.
  • the first driving support device 10 and the second driving support device 20 have a communication function and can exchange information with each other.
  • the communication between the first driving support device 10 and the second driving support device 20 may be vehicle-to-vehicle communication, and is communication via infrastructure such as road-to-vehicle communication, public communication line 3, and cloud service. You may.
  • communication between the first driving support device 10 and the second driving support device 20 is realized by V2X (Vehicle-to-everaging) communication.
  • V2X Vehicle-to-everaging
  • the first driving support device 10 of the first vehicle 1 includes an ambient environment sensor 100, a vehicle sensor 101, a positioning device 102, a map database 103, a communication device 104, an occupant sensor 105, a user interface device 106, and the like. It includes a navigation system 107, a controller 108, an actuator 109, and an external display 110.
  • the map database is referred to as "map DB” and the user interface device is referred to as "user I / F device”.
  • the ambient environment sensor 100 detects various information (ambient environment information) about the ambient environment of the first vehicle 1, for example, an object around the first vehicle 1.
  • the ambient environment sensor 100 is a perimeter of the first vehicle such as an object existing around the first vehicle 1, a relative position between the first vehicle 1 and the object, a distance between the first vehicle 1 and the object, and a direction in which the object exists. Detect the environment.
  • the ambient environment sensor 100 may include a range finder such as a laser range finder (LRF) or a radar, or a camera.
  • LRF laser range finder
  • the camera may be, for example, a stereo camera.
  • the camera may be a monocular camera, or the same object may be photographed from a plurality of viewpoints by the monocular camera and the distance to the object may be calculated. Further, the distance to the object may be calculated based on the ground contact position of the object detected from the captured image.
  • the vehicle sensor 101 detects various information (vehicle information) obtained from the first vehicle 1.
  • vehicle sensor 101 includes, for example, a vehicle speed sensor that detects the traveling speed (vehicle speed) of the first vehicle 1, a wheel speed sensor that detects the rotation speed of each tire included in the first vehicle 1, and a three-axis direction of the first vehicle 1.
  • 3-axis acceleration sensor (G sensor) that detects acceleration (including deceleration), steering angle sensor that detects steering angle (including turning angle), gyro sensor that detects angular speed generated in the first vehicle 1, yaw rate
  • a yaw rate sensor for detecting the above, an accelerator sensor for detecting the accelerator opening degree of the first vehicle 1, and a brake sensor for detecting the amount of brake operation by the driver are included.
  • the positioning device 102 measures the current position of the first vehicle 1.
  • the positioning device 102 may include, for example, a global positioning system (GNSS) receiver.
  • GNSS global positioning system
  • the GNSS receiver is, for example, a Global Positioning System (GPS) receiver or the like, and receives radio waves from a plurality of navigation satellites to measure the current position of the first vehicle 1.
  • GPS Global Positioning System
  • the positioning device 102 may measure the current position of the first vehicle 1 by, for example, odometry.
  • the map database 103 may store high-precision map data (hereinafter, simply referred to as “high-precision map”) suitable as a map for automatic driving.
  • the high-precision map is map data with higher accuracy than the map data for navigation (hereinafter, simply referred to as "navigation map”), and includes lane-based information that is more detailed than road-based information.
  • lane-based information includes lane node information indicating a reference point on a lane reference line (for example, a central line in a lane) and lane link information indicating a lane section mode between lane nodes. including.
  • the lane node information includes the identification number of the lane node, the position coordinates, the number of connected lane links, and the identification number of the connected lane link.
  • the lane link information includes the lane link identification number, lane type, lane width, lane boundary type, lane shape, lane dividing line shape, and lane reference line shape.
  • High-precision maps also include types and position coordinates of features such as traffic lights, stop lines, signs, buildings, utility poles, curbs, and pedestrian crossings that exist on or near the lane, and lane nodes that correspond to the position coordinates of the features. Includes feature information such as lane identification numbers and lane link identification numbers.
  • the high-precision map includes node and link information for each lane, it is possible to identify the lane in which the first vehicle 1 travels on the traveling route.
  • the high-precision map has coordinates that can represent positions in the extending direction and the width direction of the lane.
  • High-precision maps have coordinates (eg, longitude, latitude and altitude) that can represent positions in three-dimensional space, and lanes and the features can be described as shapes in three-dimensional space.
  • the navigation map may be stored in the map database 103.
  • the navigation map contains information for each road.
  • a navigation map includes information on a road node indicating a reference point on a road reference line (for example, a central line of a road) and information on a road link indicating a section mode of a road between road nodes as information on a road basis. ..
  • the information of a road node includes the identification number of the road node, the position coordinates, the number of connected road links, and the identification number of the connected road links.
  • Road link information includes the road link's identification number, road standard, link length, number of lanes, road width, and speed limit.
  • the communication device 104 performs wireless communication with an external communication device of the first vehicle 1.
  • wireless communication is performed with the communication device 204 of the second vehicle 2 shown in FIG.
  • the communication method by the communication device 104 may be, for example, vehicle-to-vehicle communication, road-to-vehicle communication, public communication line 3, or communication via infrastructure such as a cloud service.
  • the communication by the communication device 104 may be V2X (Vehicle-to-everaging) communication.
  • the occupant sensor 105 detects the state of the occupant (particularly, the occupant who has the authority to instruct the operation of the first vehicle 1 such as the driver) on the first vehicle 1.
  • the occupant sensor 105 may be an in-vehicle camera that photographs the occupant on the first vehicle 1 and its surroundings. Further, for example, the occupant sensor 105 may be a pressure sensor that detects the weight of the occupant and the movement of the body surface. The image taken by the occupant sensor 105 and the information on the weight and body movement of the occupant are collectively referred to as "occupant sensor information".
  • the user interface device 106 includes an input device that receives operation input from the occupant to the navigation system 107 and the controller 108, and an output device that outputs information presented from the navigation system 107 and the controller 108 to the occupant.
  • the input device may be, for example, a button, a dial, a slider, or the like, or may be a touch panel provided on the display device.
  • the input device may be an input terminal (for example, a tablet device) separate from the navigation system 107 and the controller 108.
  • the output device may be a speaker or buzzer that outputs audio information from the navigation system 107 and the controller 108, or may be a display device, an instrument, or a lamp that outputs visual information from the navigation system 107 and the controller 108. Good.
  • the output device may also be an output terminal (for example, a tablet device) separate from the navigation system 107 and the controller 108.
  • the navigation system 107 recognizes the current position of the first vehicle 1 by the positioning device 102, and acquires the map information at the current position from the map database 103.
  • the navigation system 107 sets a travel route to the destination input by the occupant, and guides the occupant according to the travel route. Further, the navigation system 107 outputs the set travel route information to the controller 108.
  • the controller 108 automatically drives the first vehicle so as to travel along the traveling route set by the navigation system 107.
  • the controller 108 is an electronic control unit (ECU: Electronic Control Unit) that controls the driving support of the first vehicle 1.
  • the controller 108 includes a processor 111 and peripheral components such as a storage device 112.
  • the processor 111 may be, for example, a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit).
  • the storage device 112 may include a semiconductor storage device, a magnetic storage device, an optical storage device, and the like.
  • the storage device 112 may include a register, a cache memory, and a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory) used as the main storage device.
  • the function of the controller 108 described below is realized, for example, by the processor 111 executing a computer program stored in the storage device 112.
  • the controller 108 may be formed by dedicated hardware for executing each information processing described below.
  • the controller 108 may include a functional logic circuit set in a general-purpose semiconductor integrated circuit.
  • the controller 108 may have a programmable logic device (PLD: Programmable Logic Device) such as a field programmable gate array (FPGA: Field-Programmable Gate Array).
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the controller 108 estimates the current position of the first vehicle 1, the estimated current position, the road map data of the map database 103, the route information output from the navigation system 107, the surrounding environment, and the first vehicle 1. Based on the traveling state, the planned course on which the first vehicle 1 should travel is determined. For example, the controller 108 sets a target traveling track on which the first vehicle 1 should travel as a planned course. The controller 108 performs automatic driving control and driving support control of the first vehicle 1 based on the determined planned course, and drives the actuator 109 to control the traveling of the first vehicle 1.
  • the actuator 109 operates the steering wheel, accelerator opening degree, and braking device of the first vehicle 1 in response to the control signal from the controller 108 to generate the vehicle behavior of the first vehicle 1.
  • the actuator 109 includes a steering actuator, an accelerator opening actuator, and a brake control actuator.
  • the steering actuator controls the steering direction and steering amount of the steering of the first vehicle 1.
  • the accelerator opening actuator controls the accelerator opening of the first vehicle 1.
  • the brake control actuator controls the braking operation of the brake device of the first vehicle 1.
  • the external display 110 is provided on the outer surface (for example, roof, front and / or back) of the vehicle body of the first vehicle 1, and displays the visual information output by the controller 108 toward the outside of the first vehicle 1.
  • the external display 110 may be, for example, a display for displaying characters and image information output by the controller 108, or a lamp for indicating the state of the first vehicle 1.
  • the controller 108 determines the state of the first vehicle 1 and detects a predetermined abnormal state of the first vehicle 1. That is, the controller 108 determines whether or not the first vehicle 1 is in a predetermined abnormal state.
  • the predetermined abnormal state may be, for example, a decrease in the reliability of the first vehicle 1.
  • the decrease in reliability of the first vehicle 1 includes, for example, a decrease in reliability due to a failure or malfunction of the system of the first vehicle 1 (for example, the first driving support device 10), or an automatic driving function by the first driving support device 10. This may be due to a decrease in the driving environment of the first vehicle 1, adverse conditions (weather, road surface condition, accident, etc.), a failure or malfunction of the surrounding environment sensor 100 or the vehicle sensor.
  • a predetermined abnormal state is a request for a change of driving from the automatic driving of the first vehicle 1 by the first driving support device 10 to the manual driving by the occupant (that is, TOR (Take-Over Request) or RTI (Request To Intervene)). May be issued.
  • the first driving support device 10 recognizes a driving scene in which automatic driving is difficult, such as merging into a congested road, and determines that it is necessary to transfer the driving authority of the first vehicle 1 to an occupant. Issue a driving change request in advance. Further, for example, even when the reliability of the first vehicle 1 is lowered as described above, the first driving support device 10 may issue a driving change request.
  • the predetermined abnormal state may be the automatic execution of the minimum risk operation (MRM: Minimum Risk Machine) by the first driving support device 10.
  • MRM Minimum Risk Machine
  • the first driving support device 10 lanes the first vehicle 1 when, for example, the driver loses consciousness and does not perform a driving operation, or when the driver does not start manual driving even if a driving change request is issued.
  • the minimum risk operation of changing the vehicle to bring it closer to the shoulder and stopping it, or simply decelerating or stopping the first vehicle 1 is automatically executed. Even when the reliability of the first vehicle 1 is lowered as described above, the minimum risk operation may be automatically executed.
  • the controller 108 notifies other vehicles around the first vehicle 1 that the first vehicle 1 is in a predetermined abnormal state and the planned course of the first vehicle 1. For example, the controller 108 may notify other vehicles by transmitting the state information indicating that the first vehicle 1 is in a predetermined abnormal state and the planned course information of the first vehicle 1 by the communication device 104. For example, the controller 108 may notify other vehicles by displaying that the first vehicle 1 is in a predetermined abnormal state and the planned course of the first vehicle 1 on the external display 110.
  • the controller 108 includes an object recognition unit 120, a map generation unit 121, a driving behavior determination unit 122, a travel track generation unit 123, a travel control unit 124, a reliability reduction determination unit 125, a TOR determination unit 126, and the like. It includes an MRM determination unit 127, a state information generation unit 128, a shared information generation unit 129, and a shared information communication unit 130.
  • the object recognition unit 120 predicts the behavior of a moving body around the first vehicle 1 based on the surrounding environment information input from the surrounding environment sensor 100 and the high-precision map stored in the map database 103.
  • the map generation unit 121 includes a route space map expressing the route around the first vehicle 1 and the presence / absence of an object based on the surrounding environment information, a high-precision map, and the prediction result by the object recognition unit 120, and the travel yard. Generate a risk map that quantifies the degree of risk.
  • the driving behavior determination unit 122 generates a driving behavior plan for automatically driving the first vehicle 1 on the traveling route based on the traveling route set by the navigation system 107, the route space map, and the risk map.
  • a driving behavior plan is a driving behavior plan at the lane level (lane level) in a medium- to long-distance range that defines the lane (lane) in which the vehicle is driven and the driving behavior required to drive this lane. Is.
  • the driving behavior determined by the driving behavior determining unit 122 may be, for example, a right turn, a left turn, a straight line, or a lane change when traveling in a plurality of lanes at an intersection existing on a traveling route.
  • the driving action plan may be, for example, a plan that defines driving actions such as how many meters before the intersection to change lanes to the right turn lane in a scene of turning right at an intersection existing in front of the intersection.
  • the driving action determination unit 122 when the driving action determination unit 122 recognizes a driving scene in which automatic driving is difficult, such as merging into a congested road, and determines that it is necessary to transfer the driving authority of the first vehicle 1 to the occupant, Decide to issue a driving change request. Further, the driving action determination unit 122 may decide to issue a driving change request when a decrease in reliability of the first vehicle 1 is detected.
  • the decrease in reliability of the first vehicle 1 includes, for example, a decrease in reliability due to a failure or malfunction of the system of the first vehicle 1 (for example, the first driving support device 10), or an automatic driving function by the first driving support device 10. This may occur due to a decrease in the driving environment of the first vehicle 1, adverse conditions in the driving environment of the first vehicle 1, failure of the ambient environment sensor 100 or the vehicle sensor, or malfunction.
  • the driving action determination unit 122 is based on the state of the occupant recognized by the occupant sensor 105, for example, even if the driver loses consciousness and does not perform the driving operation or issues a driving change request. Determines to perform a minimal risk operation if does not initiate manual operation. Further, the driving behavior determination unit 122 may decide to execute the minimum risk operation even when the reliability of the first vehicle 1 is lowered as described above.
  • the traveling track generation unit 123 generates candidates for a traveling track and a speed profile for driving the first vehicle 1 based on the driving action plan generated by the driving action determining unit 122, the motion characteristics of the first vehicle 1, and the route space map. ..
  • the traveling track generation unit 123 evaluates the future risk of each candidate based on the risk map, selects the optimum traveling track and speed profile, and sets it as the target traveling track and target speed profile to be traveled by the first vehicle 1. ..
  • the travel track generation unit 123 sets the first vehicle 1 as the lane as the target travel track and the target speed profile for the minimum risk operation.
  • a target traveling track and a target speed profile are generated, which are changed to bring the vehicle closer to the shoulder and stop, or simply decelerate or stop the first vehicle 1.
  • the travel control unit 124 drives the actuator 109 so that the first vehicle 1 travels on the target travel trajectory at a speed according to the target speed profile generated by the travel track generation unit 123.
  • the reliability reduction determination unit 125 determines whether or not the reliability of the first vehicle 1 is reduced. For example, the reliability deterioration determination unit 125 may cause a failure or malfunction of the system of the first vehicle 1 (for example, the first driving support device 10), a deterioration of the automatic driving function by the first driving support device 10, or a failure or operation of various sensors. It may be determined whether or not a decrease in reliability such as a defect has occurred.
  • the reliability reduction determination unit 125 may determine these events based on the diagnostic signals of various sensors, actuators, and electronic control units (ECUs: Electronic Control Units) mounted on the first vehicle 1 and the state signals. .. Further, for example, the reliability deterioration determination unit 125 causes a deterioration of the automatic driving function by the first driving support device 10 due to an adverse condition of the traveling environment of the first vehicle 1 based on the surrounding environment information of the surrounding environment sensor 100. It may be determined whether or not it is.
  • ECUs Electronic Control Units
  • the reliability lowering determination unit 125 determines the reason why the reliability of the first vehicle 1 is lowered.
  • the reason for the decrease in reliability may be, for example, a failure or malfunction of a specific sensor, actuator, or electronic control unit, or adverse conditions in the traveling environment.
  • the reliability reduction determination unit 125 determines the level of reliability reduction, that is, the degree of reliability reduction.
  • the reliability reduction determination unit 125 may determine a plurality of levels having different degrees such as a reduction level “large”, a reduction level “medium”, and a reduction level “small”.
  • the TOR determination unit 126 determines whether or not a driving change request from automatic driving to manual driving by the occupant has been issued.
  • the TOR determination unit 126 sets the scheduled time of the driving change, that is, the scheduled time when the driving mode of the first vehicle 1 is switched from the automatic driving to the manual driving, and information on the reason for the driving change request. , Obtained from the driving behavior determination unit 122.
  • the reason for requesting a change of driving may be, for example, a driving scene in which automatic driving is difficult, or a reason for a decrease in reliability or a decrease in reliability of the first vehicle 1.
  • the MRM determination unit 127 determines whether or not the minimum risk operation of the first vehicle 1 is executed. When the minimum risk operation is executed, the MRM determination unit 127 acquires information on the reason for the minimum risk operation and information on the scheduled time when the minimum risk operation is executed from the driving behavior determination unit 122.
  • the reason for the minimum risk operation may be, for example, a loss of consciousness of the driver, a lack of driving operation, a decrease in reliability or a decrease in reliability of the first vehicle 1.
  • the state information generation unit 128 generates state information indicating the state of the first vehicle 1. For example, when the reliability reduction determination unit 125 determines that the reliability of the first vehicle 1 is reduced, the state information generation unit 128 reduces the reliability of the first vehicle 1 as state information indicating an abnormal state. You may generate uncertainty information that indicates that you are doing so.
  • the uncertainty information includes the determination result information of the reliability decrease, the information of the reason of the reliability decrease, and the information of the reliability decrease level.
  • the driving change request information includes the determination result information of the driving change request issuance, the information of the reason for issuing the driving change request, and the information of the scheduled time of the driving change.
  • the state information generation unit 128 executes the minimum risk operation of the first vehicle 1 as state information indicating an abnormal state. MRM information indicating that this is done may be generated.
  • the MRM information includes the determination result information of the minimum risk operation execution, the information of the scheduled time when the minimum risk operation is executed, and the information of the reason for the minimum risk operation execution.
  • the state information generation unit 128 generates state information other than uncertainty information, driving change request information, and MRM information (for example, information indicating the normal state of the first vehicle 1) based on the vehicle information from the vehicle sensor 201. It may be generated.
  • the shared information generation unit 129 generates shared information shared between the other vehicle and the first vehicle 1 with respect to the first vehicle 1.
  • the shared information includes, for example, identification information of the first vehicle 1, position information of the first vehicle 1, speed information, movement direction information, and driving intention information of the first vehicle 1 (for example, driving action performed by the first vehicle 1 next).
  • Information ambient environment information detected by the ambient environment sensor 100 of the first vehicle 1 may be included.
  • the shared information may include state information generated by the state information generation unit 128, for example, uncertainty information, driving change request information, MRM information, and other state information. Further, the shared information may include the planned course information regarding the planned course of the first vehicle 1. The planned course information may be the target travel track and the target speed profile generated by the travel track generation unit 123.
  • the shared information generation unit 129 may generate simpler information indicating the planned course of the first vehicle 1 as the planned course information based on the target traveling track and the target speed profile.
  • the simpler planned course information may be, for example, information indicating the direction of the planned course of the first vehicle 1 or the acceleration / deceleration of the first vehicle 1.
  • the shared information communication unit 130 transmits the shared information generated by the state information generation unit 128 to the outside by the communication device 104.
  • the shared information communication unit 130 may always include the state information and the planned course information generated by the state information generation unit 128 in the shared information and transmit the information.
  • the shared information includes uncertainty information, driving change request information, and MRM information
  • the shared information including the planned course information of the first vehicle 1 in the abnormal state is transmitted.
  • the shared information includes MRM information
  • the shared information including the planned course information of the planned course for performing the minimum risk operation for example, the course target traveling track and the target speed profile for performing the minimum risk operation
  • the shared information communication unit 130 when the shared information communication unit 130 generates any of uncertainty information, driving change request information, and MRM information by the state information generation unit 128, that is, when it is determined that the first vehicle 1 is in an abnormal state.
  • the status information and the planned course information may be included in the shared information and transmitted.
  • the shared information communication unit 130 may include the state information and the scheduled course information in a communication frame of the same shared information and transmit them, and they are transmitted at substantially the same time (for example, continuously transmitted). It may be included in each communication frame and transmitted.
  • the shared information communication unit 130 may specify another vehicle to which the shared information including the state information and the shared information including the scheduled course information are transmitted. For example, the shared information communication unit 130 transmits shared information including state information and shared information including planned course information to other vehicles existing within a predetermined distance (for example, 50 m) from the first vehicle 1. Good.
  • the shared information communication unit 130 provides the shared information including the state information and the shared information including the planned course information to the other vehicle. May be sent to.
  • the shared information communication unit 130 transmits shared information including state information and shared information including planned course information to another vehicle traveling within a predetermined distance (for example, 50 m) behind the first vehicle 1. You can do it.
  • the shared information communication unit 130 may transmit the shared information including the state information and the shared information including the planned course information to the adjacent vehicles in the front, rear, left and right of the first vehicle 1.
  • the shared information communication unit 130 transmits shared information including state information and shared information including planned course information to other vehicles predicted to intersect the planned travel track of the first vehicle 1 that executes the minimum risk operation. You may send it.
  • the shared information communication unit 130 specifies another vehicle to which the shared information is transmitted, for example, by including the identification information of the other vehicle in the shared information to be transmitted.
  • the shared information communication unit 130 is based on the identification information and position information of the other vehicle included in the shared information transmitted from the other vehicle and the prediction result of the behavior of the moving body around the first vehicle 1 by the object recognition unit 120. , The other vehicle of the transmission destination and its identification information may be specified.
  • the shared information generation unit 129 displays the state information generated by the state information generation unit 128 and the planned course information of the first vehicle 1 on the external display 110.
  • the shared information generation unit 129 may display simpler planned course information generated based on the target traveling track and the target speed profile.
  • the shared information generation unit 129 displays arrows, symbols, and characters indicating the lane change direction of the first vehicle 1 and the approaching direction to the road shoulder, and symbols and characters indicating deceleration and stopping of the first vehicle 1 on the external display 110. May be displayed in.
  • the second driving support device 20 includes an ambient environment sensor 200, a vehicle sensor 201, a positioning device 202, a map database 203, a communication device 204, a user interface device 206, a navigation system 207, a controller 208, and an actuator. 209 is provided.
  • the ambient environment sensor 200, the vehicle sensor 201, the positioning device 202, the map database 203, the communication device 204, the user interface device 206, the navigation system 207, and the actuator 209 are the positioning device 102 and the map database described with reference to FIG. This is the same as the 103, the communication device 104, the user interface device 106, the navigation system 107, and the actuator 109.
  • the controller 208 is an electronic control unit (ECU) that controls the driving support of the second vehicle 2.
  • the controller 208 includes a processor 211 and peripheral components such as a storage device 212.
  • the processor 211 may be, for example, a CPU or an MPU.
  • the storage device 212 may include a semiconductor storage device, a magnetic storage device, an optical storage device, and the like.
  • the storage device 212 may include a memory such as a register, a cache memory, a ROM and a RAM used as a main storage device.
  • the function of the controller 208 described below is realized, for example, by the processor 211 executing a computer program stored in the storage device 212.
  • the controller 208 may be formed by dedicated hardware for executing each information processing described below.
  • the controller 208 may include a functional logic circuit set in a general purpose semiconductor integrated circuit.
  • the controller 208 may have a programmable logic device (PLD) such as a field programmable gate array (FPGA).
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the controller 208 estimates the current position of the second vehicle 2, the estimated current position, the road map data of the map database 203, the route information output from the navigation system 207, the surrounding environment, and the second vehicle 2. Based on the traveling state, the planned course on which the second vehicle 2 should travel is determined. For example, the controller 208 sets a target traveling track on which the second vehicle 2 should travel as a planned course. The controller 208 performs automatic driving control and driving support control of the second vehicle 2 based on the determined planned course, and drives the actuator 209 to control the running of the second vehicle 2.
  • the controller 208 uses the user interface device 206 to secondly obtain the uncertainty information, the driving change request information, or the MRM information included in the shared information received from the first vehicle 1 and the planned course information of the first vehicle 1. Notify the occupants of vehicle 2.
  • the functional configuration of the controller 208 will be described with reference to FIG.
  • the controller 208 includes an object recognition unit 220, a map generation unit 221, a driving behavior determination unit 222, a travel track generation unit 223, a travel control unit 224, a shared information communication unit 225, a state determination unit 226, and a course. It includes an acquisition unit 227 and a notification control unit 228.
  • the functions of the object recognition unit 220, the map generation unit 221 and the driving behavior determination unit 222, the travel trajectory generation unit 223, and the travel control unit 224 are the object recognition unit 120, the map generation unit 121, and the operation described with reference to FIG. The functions are the same as those of the action determination unit 122, the travel track generation unit 123, and the travel control unit 124.
  • the shared information communication unit 225 receives the shared information transmitted from the first vehicle 1 by the communication device 204.
  • the state determination unit 226 acquires the state information of the first vehicle 1 from the received shared information.
  • the state determination unit 226 may use any one of the uncertainty information, the driving change request information, and the MRM information. Is included in the shared information, and it is determined whether or not the first vehicle 1 is in an abnormal state. For example, when the uncertainty information is included in the shared information, the state determination unit 226 determines that the reliability of the first vehicle 1 has decreased.
  • the state determination unit 226 determines that the driving change request has been issued.
  • the MRM information is included in the shared information, the state determination unit 226 determines that the minimum risk operation is executed.
  • the state determination unit 226 acquires any of the uncertainty information, the driving change request information, and the MRM information included in the shared information, and the notification control unit Output to 228. Further, when it is determined that the first vehicle 1 is in an abnormal state, the course acquisition unit 227 acquires the planned course information of the first vehicle 1 included in the shared information, and the object recognition unit 220 and the notification control unit. Output to 228.
  • the state determination unit 226 is the first. 1 It is not necessary to determine whether or not the vehicle 1 is in an abnormal state.
  • the state determination unit 226 acquires any one of the uncertainty information, the driving change request information, and the MRM information included in the shared information, and outputs the information to the notification control unit 228.
  • the course acquisition unit 227 acquires the planned course information of the first vehicle 1 included in the shared information and outputs it to the object recognition unit 220 and the notification control unit 228.
  • the notification control unit 228 uses any of the uncertainty information, the driving change request information, and the MRM information acquired by the state determination unit 226 and the planned route information of the first vehicle 1 acquired by the route acquisition unit 227 as the user interface device 206. Notifies the occupants of the second vehicle 2 by For example, the notification control unit 228 may display any one of the uncertainty information, the driving change request information, and the MRM information and the planned course information of the first vehicle 1 on the display device of the user interface device 206.
  • FIG. 6 shows an image 30 showing MRM information and planned course information displayed on the display device of the user interface device 206.
  • the image 30 is a three-dimensional image of the road around the second vehicle 2 which is the own vehicle, an icon display 31 of the second vehicle 2 which is arranged on the three-dimensional image and represents the position of the second vehicle 2, and a second.
  • the icon display 32 of the first vehicle 1 indicating the position of the first vehicle 1 around the vehicle 2 and the MRM information 33 and 34 are included.
  • the MRM information includes a balloon and a warning symbol 33 for emphasizing the first vehicle 1 performing the minimum risk operation, and information indicating that the first vehicle 1 is performing the minimum risk operation. Includes 34.
  • the highlighting of the first vehicle 1 may be performed, for example, by changing the color of the icon display 32 and the clarity of the outline.
  • the time from the current time to the minimum risk operation and the reason for the minimum risk operation may be displayed.
  • the display mode of the MRM information may be changed according to the time until the minimum risk operation is performed.
  • the image 30 includes the planned course information 35 of the second vehicle 2 and the planned course information 36 and 37 of the first vehicle 1.
  • the planned course information of the first vehicle 1 includes the planned travel track 36 of the first vehicle 1 and the stop position display 37 by the minimum risk operation.
  • FIG. 6 shows an image 40 showing driving change request information and planned course information displayed on the display device of the user interface device 206.
  • the image 40 is a three-dimensional image of the road around the second vehicle 2, an icon display 41 of the second vehicle 2 arranged on the three-dimensional image and showing the position of the second vehicle 2, and the periphery of the second vehicle 2.
  • the icon display 42 of the first vehicle 1 indicating the position of the first vehicle 1 and the driving change request information 43, 44 and 45 are included.
  • the driving change request information includes a balloon 43 for emphasizing the first vehicle 1 for which the driving change request has been issued, information 44 indicating that the driving change request has been issued, and driving from the current time. Includes time information 45 until change.
  • the highlighting of the first vehicle 1 may be performed, for example, by changing the color or the clarity of the outline of the icon display 42.
  • the reason for issuing the driving change request may be displayed.
  • the display mode of the driving change request information may be changed according to the time until the driving change.
  • the color and size of the balloon 43 may be changed.
  • the image 40 includes the planned course information 46 of the second vehicle 2 and the planned course information 47 of the first vehicle 1.
  • FIG. 6 shows an image 50 showing uncertainty information and planned course information displayed on the display device of the user interface device 206.
  • the image 50 is a three-dimensional image of the road around the second vehicle 2, an icon display 51 of the second vehicle 2 arranged on the three-dimensional image and showing the position of the second vehicle 2, and the periphery of the second vehicle 2.
  • the icon display 52 of the first vehicle 1 indicating the position of the first vehicle 1 and the uncertainty information 53 and 54 are included.
  • the uncertainty information is a balloon and a warning symbol 53 for emphasizing the first vehicle 1 whose reliability is reduced, and that the reliability of the first vehicle 1 is reduced.
  • the highlighting of the first vehicle 1 may be performed, for example, by changing the color of the icon display 32 and the clarity of the outline.
  • the reason for the decrease in reliability and the level of decrease in reliability may be displayed.
  • the display mode of the uncertainty information may be changed according to the reason for the decrease in reliability and the level of decrease in reliability.
  • the color and size of the balloon 43 may be changed according to the level of decrease in reliability.
  • the image 50 includes the planned course information 55 of the second vehicle 2 and the planned course information 56 of the first vehicle 1.
  • the notification control unit 228 may notify the occupant of any one of the uncertainty information, the driving change request information, and the MRM information and the planned course information of the first vehicle 1 by a method other than the display device. For example, the notification control unit 228 may notify one of the uncertainty information, the driving change request information, and the MRM information by a voice message, and the scheduled course information of the first vehicle 1.
  • the notification control unit 228 is based on the position information of the first vehicle 1 received from the first vehicle 1 and the position information of the second vehicle 2 which is the own vehicle, and the relative position between the first vehicle 1 and the second vehicle 2. You may output a voice message that briefly describes the relationship. For example, the notification control unit 228 may output a voice message such as "the vehicle traveling in front of the left performs the minimum risk operation".
  • the notification control unit 228 may output a voice message of simple planned course information indicating the direction of the planned course of the first vehicle 1 and the acceleration / deceleration of the first vehicle 1.
  • the notification control unit 228 may output a voice message such as "a vehicle traveling in front of the left changes lanes to the right and stops near the shoulder” or "decelerates and stops”.
  • the user interface device 206 is arranged in front of the driver's seat of the second vehicle 2 and arranged along the vehicle width direction of the second vehicle 2 in order to notify the occupants of the position of the first vehicle 1 in the abnormal state.
  • a band-shaped illuminant may be provided. See FIG.
  • the band-shaped illuminant 60 is formed in a band shape on the dashboard 61 of the second vehicle 2 so as to extend in the vehicle width direction between the lower ends of the left and right front pillars 63a and 63b along the lower end of the front window 62. It may be arranged.
  • the band-shaped light emitter 60 may be composed of an array of light emitting diodes (LEDs), an organic electroluminescence (EL) panel, or the like.
  • the notification control unit 228 makes the azimuth angle at which the first vehicle 1 can be seen from the occupant sitting in the driver's seat by causing the occupant to emit light at an arbitrary one or a plurality of regions 64 in the band-shaped region of the band-shaped illuminant 60. You may notify.
  • the region 64 in the direction in which the first vehicle 1 can be seen may be made to emit light, and when the first vehicle 1 is present on the right front or the right side of the second vehicle 2, the right region is made to emit light and the left front is emitted. Or if it exists on the left side, the area on the right side may emit light.
  • the object recognition unit 220 receives the planned course information of the first vehicle 1 from the course acquisition unit 227.
  • the object recognition unit 220 predicts the behavior and behavior of the first vehicle 1 based on the planned course information of the first vehicle 1.
  • the driving behavior determination unit 222 determines the driving behavior of the second vehicle 2 according to the planned course information of the first vehicle 1. For example, the driving behavior determination unit 222 determines a driving behavior to avoid the first vehicle 1 or prevent excessive approach to the first vehicle 1.
  • the traveling track generation unit 223 generates a target traveling track and a target speed profile of the second vehicle 2 according to the planned course information of the first vehicle 1. For example, the traveling track generation unit 223 determines a target traveling track and a target speed profile for avoiding the first vehicle 1 and preventing excessive approach to the first vehicle 1. Therefore, steering control and deceleration control by the travel control unit 224 are performed according to the planned course information of the first vehicle 1. For example, the traveling track generation unit 223 drives the steering mechanism and the braking mechanism of the second vehicle 2 so as to avoid the first vehicle 1 and prevent excessive approach to the first vehicle 1.
  • FIG. 10 shows an example of an abnormal state notification method implemented in the first vehicle 1.
  • the reliability reduction determination unit 125, the TOR determination unit 126, and the MRM determination unit 127 determine the state of the first vehicle 1.
  • step S2: Y When the MRM determination unit 127 determines that the minimum risk operation of the first vehicle 1 is executed (step S2: Y), the process proceeds to step S3. When it is not determined that the minimum risk operation is executed (step S2: N), the process proceeds to step S4. In step S3, the state information generation unit 128 generates MRM information. After that, the process proceeds to step S8.
  • step S4: Y When the TOR determination unit 126 determines that the driving change request for the first vehicle 1 has been issued (step S4: Y), the process proceeds to step S5. If it is not determined that the operation change request has been issued (step S4: N), the process proceeds to step S6. In step S5, the state information generation unit 128 generates the operation change request information. After that, the process proceeds to step S8.
  • step S6: Y When the reliability reduction determination unit 125 determines that the reliability of the first vehicle 1 has decreased (step S6: Y), the process proceeds to step S7. If it is not determined that the reliability has deteriorated (step S6: N), any one of the uncertainty information, the driving change request information, and the MRM information and the planned course information are processed without being transmitted from the first vehicle 1. Is finished.
  • step S7 the state information generation unit 128 generates uncertainty information.
  • step S8 the shared information generation unit 129 acquires the planned course information of the first vehicle 1.
  • the shared information generation unit 129 generates shared information including any one of uncertainty information, driving change request information, and MRM information, and planned course information.
  • step S9 the shared information communication unit 130 transmits the shared information to the outside of the first vehicle 1.
  • the state information generation unit 128 may display any one of the uncertainty information, the driving change request information, and the MRM information and the planned course information on the external display 110. After that, the process ends.
  • FIG. 11 shows an example of an abnormal state notification method implemented in the second vehicle 2.
  • the shared information communication unit 225 receives the shared information transmitted from the first vehicle 1.
  • the state determination unit 226 determines whether or not the first vehicle 1 is in an abnormal state.
  • step S12: Y When it is determined that the minimum risk operation of the first vehicle 1 is executed (step S12: Y), the process proceeds to step S13. When it is not determined that the minimum risk operation is executed (step S12: N), the process proceeds to step S14. In step S13, the notification control unit 228 notifies the occupant of the MEM information via the user interface device 206. After that, the process proceeds to step S18.
  • step S14: Y When it is determined that the driving change request for the first vehicle 1 has been issued (step S14: Y), the process proceeds to step S15. If it is not determined that the operation change request has been issued (step S14: N), the process proceeds to step S16. In step S15, the notification control unit 228 notifies the occupant of the operation change request information via the user interface device 206. After that, the process proceeds to step S18.
  • step S16: Y When it is determined that the reliability of the first vehicle 1 is low (step S16: Y), the process proceeds to step S17. If it is not determined that the reliability of the first vehicle 1 has deteriorated (step S16: N), the process ends without notifying any of the uncertainty information, the driving change request information, and the MRM information and the planned course information. ..
  • step S17 the notification control unit 228 notifies the occupant of the uncertainty information via the user interface device 206. After that, the process proceeds to step S18.
  • step S18 the notification control unit 228 notifies the scheduled course information of the first vehicle 1 via the user interface device 206. After that, the process ends.
  • the reliability reduction determination unit 125, the TOR determination unit 126, and the MRM determination unit 127 of the first vehicle 1 determine the state of the first vehicle 1 during automatic driving.
  • the driving behavior determination unit 122 and the traveling track generation unit 123 determine the planned course of the first vehicle 1.
  • the shared information generation unit 129 and the shared information communication unit 130 notify other vehicles around the first vehicle 1 that the first vehicle 1 is in an abnormal state and the planned course of the first vehicle 1.
  • the first vehicle 1 can notify other vehicles around the first vehicle 1 that the first vehicle 1 is in an abnormal state and the planned course of the first vehicle 1. Therefore, for example, when the traveling mode of another vehicle around the first vehicle 1 is manual driving, the driver of the other vehicle anticipates the sudden behavior of the first vehicle 1 and collides with the first vehicle 1. And excessive approach can be avoided. Further, when the traveling mode of the other vehicle is automatic driving, the traveling track of the other vehicle can be made to correspond to the sudden behavior of the first vehicle 1. This makes it possible to prevent sudden acceleration / deceleration and steering operation of other vehicles during automatic driving.
  • the shared information generation unit 129 and the shared information communication unit 130 determine that the first vehicle 1 is in an abnormal state, the first vehicle 1 is in an abnormal state and the planned course of the first vehicle 1 is determined. May be notified to other vehicles. Since the first vehicle 1 during automatic driving can determine the abnormality of the first vehicle 1 itself, by notifying the other vehicles in the vicinity in advance, the attention of the occupants of the other vehicles in the vicinity of the first vehicle 1 can be noticed. Can be aroused.
  • the driving behavior determination unit 122 determines the automatic stop of the first vehicle 1 as the planned course of the first vehicle 1 in the abnormal state.
  • the shared information generation unit 129 and the shared information communication unit 130 may notify other vehicles of the time until the automatic stop of the first vehicle 1 is started. By notifying the time until the automatic stop of the first vehicle 1 is started, it is possible to call the attention of the occupants of other vehicles around the first vehicle 1.
  • the shared information generation unit 129 and the shared information communication unit 130 may notify other vehicles of what kind of abnormal state the first vehicle 1 is in. As a result, the occupants of the other vehicles around the first vehicle 1 can recognize the abnormal state of the first vehicle 1, and it becomes easier to predict the sudden behavior of the first vehicle 1.
  • the abnormal state of the first vehicle 1 may be a decrease in reliability of the first vehicle 1, an issuance of a driving change request from automatic driving to manual driving of the first vehicle 1, or automatic execution of the minimum risk operation. .. As a result, when these abnormal states occur, it is possible to notify other vehicles around the first vehicle 1 that the first vehicle 1 is in the abnormal state and the planned course of the first vehicle 1.
  • the shared information communication unit 225 of the second vehicle 2 receives the state information of the first vehicle 1 during automatic driving and the information of the planned course of the first vehicle 1.
  • the state determination unit 226 determines whether or not the first vehicle 1 is in an abnormal state. When it is determined that the first vehicle 1 is in an abnormal state, the notification control unit 228 notifies the occupants of the second vehicle 2 that the first vehicle 1 is in an abnormal state and the planned course of the first vehicle 1. ..
  • the traveling mode of the second vehicle 2 is manual driving
  • the driver of the second vehicle 2 anticipates the sudden behavior of the first vehicle 1 and collides with the first vehicle 1 or excessively. You can avoid approaching.
  • the traveling track of the second vehicle 2 can correspond to the sudden behavior of the first vehicle 1. As a result, it is possible to prevent sudden acceleration / deceleration and steering operation of the second vehicle 2 during automatic driving.
  • the notification control unit 228 may display on the display device included in the second vehicle 2 that the first vehicle 1 is in an abnormal state and the planned course of the first vehicle 1.
  • the occupant of the second vehicle 2 can recognize that the first vehicle 1 is in an abnormal state and the planned course of the first vehicle 1. Therefore, for example, when the traveling mode of the second vehicle 2 is manual driving, the driver of the second vehicle 2 anticipates the sudden behavior of the first vehicle 1 and collides with the first vehicle 1 or excessively. You can avoid approaching.
  • the traveling mode of the second vehicle 2 is automatic driving, the driver of the second vehicle 2 can predict that the traveling track of the second vehicle 2 will change due to the sudden behavior of the first vehicle 1. ..
  • the notification control unit 228 may indicate the position of the first vehicle 1 by the light emitting portion of the band-shaped light emitter 60 arranged in front of the driver's seat of the second vehicle along the vehicle width direction. As a result, the occupant of the second vehicle 2 can know which vehicle around the second vehicle 2 is in an abnormal state.
  • the notification control unit 228 notifies the occupants of the second vehicle 2 of the position of the first vehicle 1 by a voice message. As a result, the occupant of the second vehicle 2 can know which vehicle around the second vehicle 2 is in an abnormal state.
  • the traveling track generation unit 223 generates a traveling track of the second vehicle 2 by automatic driving according to the planned course of the first vehicle 1.
  • the traveling track of the second vehicle 2 can be made to correspond to the sudden behavior of the first vehicle 1, and sudden acceleration / deceleration and steering operation of the second vehicle 2 during automatic driving can be prevented.
  • travel control unit 125 ... reliability Deterioration judgment unit, 126 ... TOR judgment unit, 127 ... MRM judgment unit, 128 ... state information generation unit, 129 ... shared information generation unit, 130 ... shared information communication unit, 200 ... ambient environment sensor, 201 ... vehicle sensor, 202 ... Positioning device, 203 ... Map database, 204 ... Communication device, 206 ... User interface device, 207 ... Navigation system, 208 ... Controller, 209 ... Actuator, 211 ... Processor, 212 ... Storage device, 220 ... Object recognition unit, 221 ... Map generation unit, 222 ... Driving behavior determination unit, 223 ... Travel track generation unit, 224 ... Travel control unit, 225 ... Shared information communication unit, 226 ... Status determination unit, 227 ... Course acquisition unit, 228 ... Notification control unit

Abstract

異常状態である自動運転車両の進路を、この自動運転車両以外の他車両において予測す ることを容易にする。異常状態通知方法では、自動運転中の第1車両(1)の状態を判定 し(S1)、第1車両(1)が異常状態であることと第1車両(1)の予定進路とを、第 1車両(1)の周辺の他車両に通知する(S3、S5、S7~S9)。また、自動運転中 の第1車両(1)の状態情報と第1車両(2)の予定進路の情報とを第2車両(2)で受 信し(S11)、第1車両(1)が異常状態であることと第1車両(1)の予定進路とを 第2車両(2)の運転者に通知する(S13、S15、S17、S18)。

Description

異常状態通知方法及び異常状態通知装置
 本発明は、異常状態通知方法及び異常状態通知装置に関する。
 特許文献1には、自動運転システムによって自動運転中の自車両が予定走行コースから外れて車線変更する場合、それを事前に自車両の乗員に予告するために、車線変更の走行コースを矢印のシンボル画像により、自車両の仮想車両を仮想画像の動画表示により、ディスプレイ装置の表示画面に表示する技術が記載されている。
特開2016−182891号公報 米国特許出願公開第2013/0093618号明細書
 特許文献1によれば、自動運転中の車両の予定進路の変化をこの車両の乗員に分かり易く予告することができる。しかしながら、車両の進路の変化は、この車両の周辺の他車両にも影響を及ぼす。
 特に自動運転車両が異常状態である場合は、通常と異なる進路を走行する可能性があるため、他車両において自動運転車両の進路を予測することが難しくなる。
 本発明は、異常状態である自動運転車両の進路を、この自動運転車両以外の他車両において予測することを容易にすることを目的とする。
 本発明の一態様に係る異常状態通知方法では、自動運転中の自車両の状態を判定し、自車両の予定進路を決定し、自車両が異常状態であることと自車両の予定進路とを、自車両の周辺の他車両に通知する。
 本発明の他の態様に係る異常状態通知方法は、自動運転中の他車両の状態情報と他車両の予定進路の情報とを自車両で受信し、他車両が異常状態であるか否かを判定し、他車両が異常状態であると判定した場合に、他車両が異常状態であることと他車両の予定進路とを前記自車両の運転者に通知する。
 本発明の一態様によれば、異常状態である自動運転車両の進路を、この自動運転車両以外の他車両において予測することが容易になる。
 本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
実施形態の運転支援システムの概略構成の一例を示す図である。 第1運転支援装置が搭載される第1車両の概略構成の一例を示す図である。 第1運転支援装置の機能構成の一例を示すブロック図である。 第2運転支援装置が搭載される第2車両の概略構成の一例を示す図である。 第2運転支援装置の機能構成の一例を示すブロック図である。 第2車両の表示装置に表示される第1車両のMRM情報及び予定進路情報の一例を示す図である。 第2車両の表示装置に表示される第1車両の運転交代要請情報及び予定進路情報の一例を示す図である。 第2車両の表示装置に表示される第1車両の不確実性情報及び予定進路情報の一例を示す図である。 第2車両において第1車両の位置を示す帯状発光体の一例を示す図である。 第1車両にて実施される実施形態の異常状態通知方法の一例のフローチャートである。 第2車両にて実施される実施形態の異常状態通知方法の一例のフローチャートである。
 以下、本発明の実施形態について、図面を参照しつつ説明する。
 (構成)
 図1を参照する。実施形態の運転支援システムは、第1車両1に搭載され第1車両1の運転支援を行う第1運転支援装置10と、第2車両2に搭載され第2車両2の運転支援を行う第2運転支援装置20を備える。
 運転支援には、第1車両1及び第2車両2の周辺のそれぞれの走行環境に基づいて、運転者が関与せずにこれらの車両を自動で運転する自動運転制御や、これらの車両の駆動、制動及び操舵の少なくとも1つを制御する走行制御を含む。
 走行制御は、例えば自動操舵、自動ブレーキ、先行車追従制御、定速走行制御、車線維持制御、合流支援制御などであってよい。
 また、運転支援は、自動運転制御や走行制御のほか、運転者に操舵操作、加速操作、減速操作を促す情報(メッセージ)の出力を含んでよい。
 第1運転支援装置10及び第2運転支援装置20は、通信機能を備えており互いに情報を交換することができる。第1運転支援装置10と第2運転支援装置20との間の通信は、車車間通信であってもよく、路車間通信や公衆通信回線3、クラウドサービスなどのインフラストラクチャを経由する通信であってもよい。例えば、第1運転支援装置10と第2運転支援装置20との間の通信は、V2X(Vehicle−to−everything)通信によって実現される。
 第1運転支援装置10及び第2運転支援装置20は、特許請求の範囲に記載された異常状態通知装置の一例である。
 図2を参照する。第1車両1の第1運転支援装置10は、周囲環境センサ100と、車両センサ101と、測位装置102と、地図データベース103と、通信装置104と、乗員センサ105と、ユーザインタフェース装置106と、ナビゲーションシステム107と、コントローラ108と、アクチュエータ109と、外部表示器110を備える。
 図面において、地図データベースを「地図DB」と表記し、ユーザインタフェース装置を「ユーザI/F装置」と表記する。
 周囲環境センサ100は、第1車両1の周囲環境についての様々な情報(周囲環境情報)、例えば第1車両1の周辺の物体を検出する。周囲環境センサ100は、第1車両1の周辺に存在する物体、第1車両1と物体との相対位置、第1車両1と物体との距離、物体が存在する方向等の第1車両の周囲環境を検出する。
 周囲環境センサ100は、レーザレンジファインダ(LRF)やレーダなどの測距装置や、カメラを備えてよい。カメラは、例えばステレオカメラであってよい。カメラは、単眼カメラであってもよく、単眼カメラにより複数の視点で同一の物体を撮影して、物体までの距離を計算してもよい。また、撮像画像から検出された物体の接地位置に基づいて、物体までの距離を計算してもよい。
 車両センサ101は、第1車両1から得られる様々な情報(車両情報)を検出する。車両センサ101には、例えば、第1車両1の走行速度(車速)を検出する車速センサ、第1車両1が備える各タイヤの回転速度を検出する車輪速センサ、第1車両1の3軸方向の加速度(減速度を含む)を検出する3軸加速度センサ(Gセンサ)、操舵角(転舵角を含む)を検出する操舵角センサ、第1車両1に生じる角速度を検出するジャイロセンサ、ヨーレートを検出するヨーレートセンサ、第1車両1のアクセル開度を検出するアクセルセンサと、運転者によるブレーキ操作量を検出するブレーキセンサが含まれる。
 測位装置102は、第1車両1の現在位置を測定する。測位装置102は、例えば全地球型測位システム(GNSS)受信機を備えてよい。GNSS受信機は、例えば地球測位システム(GPS)受信機等であり、複数の航法衛星から電波を受信して第1車両1の現在位置を測定する。測位装置102は、例えばオドメトリにより第1車両1の現在位置を測定してもよい。
 地図データベース103は、自動運転用の地図として好適な高精度地図データ(以下、単に「高精度地図」という。)を記憶してよい。高精度地図は、ナビゲーション用の地図データ(以下、単に「ナビ地図」という。)よりも高精度の地図データであり、道路単位の情報よりも詳細な車線単位の情報を含む。
 例えば、高精度地図は車線単位の情報として、車線基準線(例えば車線内の中央の線)上の基準点を示す車線ノードの情報と、車線ノード間の車線の区間態様を示す車線リンクの情報を含む。
 車線ノードの情報は、その車線ノードの識別番号、位置座標、接続される車線リンク数、接続される車線リンクの識別番号を含む。車線リンクの情報は、その車線リンクの識別番号、車線の種類、車線の幅員、車線境界線の種類、車線の形状、車線区分線の形状、車線基準線の形状を含む。高精度地図は更に、車線上又はその近傍に存在する信号機、停止線、標識、建物、電柱、縁石、横断歩道等の地物の種類及び位置座標と、地物の位置座標に対応する車線ノードの識別番号及び車線リンクの識別番号等の、地物の情報を含む。
 高精度地図は、車線単位のノード及びリンク情報を含むため、走行ルートにおいて第1車両1が走行する車線を特定可能である。高精度地図は、車線の延伸方向及び幅方向における位置を表現可能な座標を有する。高精度地図は、3次元空間における位置を表現可能な座標(例えば経度、緯度及び高度)を有し、車線や上記地物は3次元空間における形状として記述され得る。
 また地図データベース103には、ナビ地図が記憶されていてもよい。ナビ地図は道路単位の情報を含む。例えば、ナビ地図は道路単位の情報として、道路基準線(例えば道路の中央の線)上の基準点を示す道路ノードの情報と、道路ノード間の道路の区間態様を示す道路リンクの情報を含む。道路ノードの情報は、その道路ノードの識別番号、位置座標、接続される道路リンク数、接続される道路リンクの識別番号を含む。
 道路リンクの情報は、その道路リンクの識別番号、道路規格、リンク長、車線数、道路の幅員、制限速度を含む。
 通信装置104は、第1車両1の外部の通信装置との間で無線通信を行う。例えば図4に示す第2車両2の通信装置204との間で無線通信を行う。通信装置104による通信方式は、例えば、車車間通信であってもよく、路車間通信や公衆通信回線3、クラウドサービスなどのインフラストラクチャを経由する通信であってもよい。例えば、通信装置104による通信は、V2X(Vehicle−to−everything)通信であってもよい。
 乗員センサ105は、第1車両1に乗っている乗員(特に、運転者等の第1車両1に対する操作指示の権限を有する乗員)の状態を検出する。乗員センサ105は、第1車両1に乗っている乗員やその周囲を撮影する車内カメラであってよい。また例えば、また、乗員センサ105は、乗員の体重や体表の動きを検出する圧力センサであってもよい。
 乗員センサ105が撮影した映像、乗員の体重や体動の情報を総称して「乗員センサ情報」と表記する。
 ユーザインタフェース装置106は、乗員からナビゲーションシステム107及びコントローラ108への操作入力を受け付ける入力装置と、ナビゲーションシステム107及びコントローラ108から乗員へ提示される情報を出力する出力装置を備える。
 入力装置は、例えばボタン、ダイヤル、スライダなどであってよく、表示装置に設けられたタッチパネルであってもよい。
 また、入力装置はナビゲーションシステム107及びコントローラ108と別体の入力端末(例えばタブレット装置)であってもよい。
 出力装置は、ナビゲーションシステム107及びコントローラ108からの音声情報を出力するスピーカやブザーであってもよく、ナビゲーションシステム107及びコントローラ108からの視覚的情報を出力する表示装置、計器、ランプであってもよい。
 出力装置もまた、ナビゲーションシステム107及びコントローラ108と別体の出力端末(例えばタブレット装置)であってもよい。
 ナビゲーションシステム107は、測位装置102により第1車両1の現在位置を認識し、その現在位置における地図情報を地図データベース103から取得する。ナビゲーションシステム107は、乗員が入力した目的地までの走行経路を設定し、この走行経路に従って乗員に経路案内を行う。
 またナビゲーションシステム107は、設定した走行経路の情報をコントローラ108へ出力する。自動運転制御時にコントローラ108は、ナビゲーションシステム107が設定した走行経路に沿って走行するように第1車両を自動で運転する。
 コントローラ108は、第1車両1の運転支援制御を行う電子制御ユニット(ECU:Electronic Control Unit)である。コントローラ108は、プロセッサ111と、記憶装置112等の周辺部品とを含む。プロセッサ111は、例えばCPU(Central Processing Unit)やMPU(Micro−Processing Unit)であってよい。
 記憶装置112は、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。記憶装置112は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
 以下に説明するコントローラ108の機能は、例えばプロセッサ111が、記憶装置112に格納されたコンピュータプログラムを実行することにより実現される。
 なお、コントローラ108を、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。
 例えば、コントローラ108は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えばコントローラ108はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field−Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
 コントローラ108は、第1車両1の現在位置を推定し、推定した現在位置と、地図データベース103の道路地図データと、ナビゲーションシステム107から出力された経路情報と、周囲環境と、第1車両1の走行状態に基づいて、第1車両1が走行すべき予定進路を決定する。
 例えば、コントローラ108は、予定進路として第1車両1が走行すべき目標走行軌道を設定する。コントローラ108は、決定した予定進路に基づいて第1車両1の自動運転制御や運転支援制御を行い、アクチュエータ109を駆動して第1車両1の走行を制御する。
 アクチュエータ109は、コントローラ108からの制御信号に応じて、第1車両1のステアリングホイール、アクセル開度及びブレーキ装置を操作して、第1車両1の車両挙動を発生させる。アクチュエータ109は、ステアリングアクチュエータと、アクセル開度アクチュエータと、ブレーキ制御アクチュエータを備える。ステアリングアクチュエータは、第1車両1のステアリングの操舵方向及び操舵量を制御する。アクセル開度アクチュエータは、第1車両1のアクセル開度を制御する。ブレーキ制御アクチュエータは、第1車両1のブレーキ装置の制動動作を制御する。
 外部表示器110は、第1車両1の車体の外面(例えば、屋根、前面及び/又は背面)に設けられ、コントローラ108が出力する視覚的情報を第1車両1の車外へ向けて表示する。外部表示器110は、例えば、コントローラ108が出力する文字、画像情報を表示するディスプレイであってもよく、第1車両1の状態等を表すためのランプであってもよい。
 さらに、コントローラ108は、第1車両1の状態を判定し、第1車両1の所定の異常状態を検出する。すなわち、コントローラ108は、第1車両1が所定の異常状態であるか否かを判定する。
 所定の異常状態は、例えば、第1車両1の信頼性の低下であってよい。第1車両1の信頼性の低下は、例えば、第1車両1のシステム(例えば第1運転支援装置10)の故障や動作不良による信頼性の低下や、第1運転支援装置10による自動運転機能の低下、第1車両1の走行環境の悪条件(天候、路面状態、事故など)、周囲環境センサ100や車両センサの故障や動作不良であってよい。
 また例えば、所定の異常状態は、第1運転支援装置10による第1車両1の自動運転から乗員による手動運転への運転交代要請(すなわちTOR(Take−Over Request)やRTI(Request To Intervene))の発行であってもよい。第1運転支援装置10は、例えば渋滞している道路への合流など、自動運転が困難な運転シーンを認識して第1車両1の運転権限を乗員に移す必要があると判断した場合に、予め運転交代要請を発行する。
 また例えば、上記のような第1車両1の信頼性の低下が生じた場合にも、第1運転支援装置10は、運転交代要請を発行してよい。
 また例えば、所定の異常状態は、第1運転支援装置10による最小リスク操作(MRM:Minimum Risk Maneuver)の自動実行であってもよい。第1運転支援装置10は、例えば、運転者が意識を失い運転操作を行っていない状態や、運転交代要請を発行しても運転者が手動運転を開始しない場合に、第1車両1を車線変更させて路肩に寄せて停車させたり、あるいは単に第1車両1を減速又は停車させる最小リスク操作を自動実行する。
 上記のような第1車両1の信頼性の低下が生じた場合にも、最小リスク操作を自動実行してよい。
 コントローラ108は、第1車両1が所定の異常状態であること及び第1車両1の予定進路を第1車両1の周辺の他車両へ通知する。
 例えばコントローラ108は、第1車両1が所定の異常状態であること示す状態情報と第1車両1の予定進路情報を通信装置104により送信することにより他車両へ通知してもよい。
 例えばコントローラ108は、第1車両1が所定の異常状態であること及び第1車両1の予定進路を外部表示器110に表示することにより他車両に通知してもよい。
 次に図3を参照して、コントローラ108の機能構成を説明する。コントローラ108は、物体認識部120と、マップ生成部121と、運転行動決定部122と、走行軌道生成部123と、走行制御部124と、信頼性低下判定部125と、TOR判定部126と、MRM判定部127と、状態情報生成部128と、共有情報生成部129と、共有情報通信部130を備える。
 物体認識部120は、周囲環境センサ100から入力した周囲環境情報と、地図データベース103に記憶される高精度地図に基づいて、第1車両1の周辺の移動体の行動を予測する。
 マップ生成部121は、周囲環境情報と、高精度地図と、物体認識部120による予測結果に基づいて、第1車両1の周辺の経路や物体の有無を表現する経路空間マップと、走行場の危険度を数値化したリスクマップを生成する。
 運転行動決定部122は、ナビゲーションシステム107により設定された走行経路と、経路空間マップ及びリスクマップに基づいて、走行経路上を自動で第1車両1に走行させるための運転行動計画を生成する。
 運転行動計画とは、自車両を走行させるレーン(車線)と、このレーンを走行させるのに要する運転行動とを定めた、中長距離の範囲におけるレーンレベル(車線レベル)での運転行動の計画である。
 運転行動決定部122によって決定される運転行動は、例えば、走行経路上に存在する交差点の右折、左折、直進や、複数車線を走行する際の車線変更であってよい。
 運転行動計画は、例えば、前方に存在する交差点を右折するシーンにおいて、交差点の手前何m地点で右折レーンに車線変更するか等の運転行動を定めた計画であってよい。
 さらに運転行動決定部122は、例えば渋滞している道路への合流など、自動運転が困難な運転シーンを認識して第1車両1の運転権限を乗員に移す必要があると判断した場合に、運転交代要請を発行すると決定する。
 また運転行動決定部122は、第1車両1の信頼性の低下が検出された場合に運転交代要請を発行すると決定してもよい。第1車両1の信頼性の低下は、例えば、第1車両1のシステム(例えば第1運転支援装置10)の故障や動作不良による信頼性の低下や、第1運転支援装置10による自動運転機能の低下、第1車両1の走行環境の悪条件、周囲環境センサ100や車両センサの故障や動作不良によって生じてよい。
 さらに、運転行動決定部122は、乗員センサ105によって認識される乗員の状態に基づいて、例えば、運転者が意識を失い運転操作を行っていない状態や、運転交代要請を発行しても運転者が手動運転を開始しない場合に最小リスク操作を実行することを決定する。
 また運転行動決定部122は、上記のような第1車両1の信頼性の低下が生じた場合にも、最小リスク操作を実行すると決定してもよい。
 走行軌道生成部123は、運転行動決定部122が生成した運転行動計画、第1車両1の運動特性、経路空間マップに基づいて第1車両1を走行させる走行軌道及び速度プロファイルの候補を生成する。走行軌道生成部123は、リスクマップに基づいて各候補の将来リスクを評価して、最適な走行軌道及び速度プロファイルを選択し、第1車両1に走行させる目標走行軌道及び目標速度プロファイルとして設定する。
 また、運転行動決定部122が最小リスク操作を実行することを決定した場合には、走行軌道生成部123は、最小リスク操作のための目標走行軌道及び目標速度プロファイルとして、第1車両1を車線変更させて路肩に寄せて停車させたり、あるいは単に第1車両1を減速又は停車させる目標走行軌道及び目標速度プロファイルを生成する。
 走行制御部124は、走行軌道生成部123が生成した目標速度プロファイルに従う速度で第1車両1が目標走行軌道を走行するように、アクチュエータ109を駆動する。
 信頼性低下判定部125は、第1車両1の信頼性が低下しているか否かを判定する。
 例えば、信頼性低下判定部125は、第1車両1のシステム(例えば第1運転支援装置10)の故障や動作不良、第1運転支援装置10による自動運転機能の低下、各種センサの故障や動作不良等の信頼性低下が発生しているか否かを判定してよい。
 信頼性低下判定部125は、第1車両1に搭載されている各種センサ、アクチュエータ、電子制御ユニット(ECU:Electronic Control Unit)の診断信号や、状態信号に基づいてこれらの事象を判定してよい。
 また例えば、信頼性低下判定部125は、周囲環境センサ100の周囲環境情報に基づいて、第1車両1の走行環境の悪条件によって、第1運転支援装置10による自動運転機能の低下が発生しているか否かを判定してもよい。
 第1車両1の信頼性が低下していると判定した場合、信頼性低下判定部125は、第1車両1の信頼性が低下している理由を判定する。信頼性低下の理由は、例えば、特定のセンサ、アクチュエータ、電子制御ユニットの故障又は動作不良、走行環境の悪条件などであってよい。
 また、信頼性低下判定部125は、信頼性低下のレベル、すなわち信頼性低下の程度を判定する。例えば、信頼性低下判定部125は、低下レベル「大」、低下レベル「中」、低下レベル「小」など、程度の異なる複数のレベルを判定してよい。
 TOR判定部126は、自動運転から乗員による手動運転への運転交代要請が発行されたか否かを判定する。
 運転交代要請が発行された場合、TOR判定部126は、運転交代の予定時刻、すなわち、第1車両1の走行モードが自動運転から手動運転に切り替わる予定時刻と、運転交代要請の理由の情報を、運転行動決定部122から取得する。
 運転交代要請の理由は、例えば、自動運転が困難な運転シーンや、第1車両1の信頼性の低下又は信頼性低下の理由であってよい。
 MRM判定部127は、第1車両1の最小リスク操作が実行される否かを判定する。最小リスク操作が実行される場合、MRM判定部127は、最小リスク操作の理由の情報を、また、最小リスク操作が実行される予定時刻の情報を運転行動決定部122から取得する。
 最小リスク操作の理由は、例えば、運転者の意識喪失や、運転操作の欠如、第1車両1の信頼性の低下又は信頼性低下の理由であってよい。
 状態情報生成部128は、第1車両1の状態を示す状態情報を生成する。
 例えば、第1車両1の信頼性が低下していると信頼性低下判定部125が判定した場合、状態情報生成部128は、異常状態を示す状態情報として、第1車両1の信頼性が低下していることを示す不確実性情報を生成してよい。
 不確実性情報は、信頼性低下の判定結果情報、信頼性低下の理由の情報、及び信頼性低下レベルの情報を含む。
 例えば、運転交代要請が発行されたとTOR判定部126が判定した場合、状態情報生成部128は、異常状態を示す状態情報として、運転交代要請が発行されたことを示す運転交代要請情報を生成してよい。
 運転交代要請情報は、運転交代要請発行の判定結果情報、運転交代要請発行の理由の情報、及び運転交代の予定時刻の情報を含む。
 例えば、第1車両1の最小リスク操作が実行されているとMRM判定部127が判定した場合、状態情報生成部128は、異常状態を示す状態情報として、第1車両1の最小リスク操作が実行されていることを示すMRM情報を生成してよい。
 MRM情報は、最小リスク操作実行の判定結果情報、最小リスク操作が実行される予定時間の情報、及び最小リスク操作実行の理由の情報を含む。
 状態情報生成部128は、車両センサ201からの車両情報に基づいて、不確実性情報、運転交代要請情報、及びMRM情報以外の状態情報(例えば、第1車両1の正常状態を示す情報)を生成してもよい。
 共有情報生成部129は、第1車両1に関して他車両と第1車両1との間で共有される共有情報を生成する。共有情報は、例えば第1車両1の識別情報、第1車両1の位置情報、速度情報、移動方向情報、第1車両1の運転意図情報(例えば、第1車両1が次に行う運転行動の情報)、第1車両1の周囲環境センサ100によって検出した周囲環境情報を含んでよい。
 また、共有情報は、状態情報生成部128が生成した状態情報、例えば、不確実性情報、運転交代要請情報、MRM情報、及びその他の状態情報を含んでもよい。
 また、共有情報は、第1車両1の予定進路に関する予定進路情報を含んでもよい。予定進路情報は、走行軌道生成部123が生成した目標走行軌道及び目標速度プロファイルであってよい。
 また、共有情報生成部129は、目標走行軌道及び目標速度プロファイルに基づいて、第1車両1の予定進路を表すより簡易な情報を予定進路情報として生成してもよい。より簡易な予定進路情報は、例えば、第1車両1の予定進路の方向や、第1車両1の加減速を示す情報であってよい。
 共有情報通信部130は、状態情報生成部128により生成された共有情報を、通信装置104により外部へ送信する。
 共有情報通信部130は、常に、状態情報生成部128が生成した状態情報と予定進路情報を常に共有情報に含めて送信してもよい。
 共有情報が、不確実性情報、運転交代要請情報、及びMRM情報を含む場合には、異常状態の第1車両1の予定進路情報を含んだ共有情報が送信される。例えば、共有情報が、MRM情報を含む場合には、最小リスク操作を行う予定進路(例えば、最小リスク操作を行う進路目標走行軌道及び目標速度プロファイル)の予定進路情報を含んだ共有情報が送信される。
 または、共有情報通信部130は、状態情報生成部128が不確実性情報、運転交代要請情報及びMRM情報のいずれかを生成した場合、すなわち第1車両1が異常状態であると判定された場合に、状態情報と予定進路情報を共有情報に含めて送信してもよい。
 共有情報通信部130は、状態情報と予定進路情報とを同一の共有情報の通信フレームに含めて送信してもよく、実質的に同時期に送信される(例えば連続して送信される)異なる通信フレームにそれぞれ含めて送信してもよい。
 共有情報通信部130は、状態情報を含んだ共有情報と予定進路情報を含んだ共有情報の送信先の他車両を指定してもよい。
 例えば、共有情報通信部130は、第1車両1から所定距離(例えば50m)の範囲内に存在する他車両に、状態情報を含んだ共有情報と予定進路情報を含んだ共有情報を送信してよい。
 例えば、共有情報通信部130は、第1車両1と他車両との相対位置関係が所定の関係にある場合に、状態情報を含んだ共有情報と予定進路情報を含んだ共有情報をこの他車両に送信してよい。例えば、共有情報通信部130は、第1車両1の後方の所定距離(例えば50m)の範囲内を走行する他車両へ、状態情報を含んだ共有情報と予定進路情報を含んだ共有情報を送信してよい。例えば、共有情報通信部130は、第1車両1の前後左右の隣接車両へ、状態情報を含んだ共有情報と予定進路情報を含んだ共有情報を送信してよい。
 また例えば共有情報通信部130は、最小リスク操作を実行する第1車両1の予定走行軌道と交差すると予測される他車両へ、状態情報を含んだ共有情報と予定進路情報を含んだ共有情報を送信してよい。
 共有情報通信部130は、例えば他車両の識別情報を送信する共有情報に含めることにより、共有情報の送信先の他車両を指定する。
 共有情報通信部130は、他車両から送信された共有情報に含まれる他車両の識別情報や位置情報と、物体認識部120による第1車両1の周辺の移動体の行動の予測結果に基づいて、送信先の他車両とその識別情報を特定してよい。
 また、共有情報生成部129は、状態情報生成部128が生成した状態情報と、第1車両1の予定進路情報を外部表示器110に表示する。
 外部表示器110へ予定進路情報を表示する場合、共有情報生成部129は、目標走行軌道及び目標速度プロファイルに基づいて生成した、より簡易な予定進路情報を表示してもよい。例えば、共有情報生成部129は、第1車両1の車線変更方向や路肩への接近方向を示す矢印、記号、文字や、第1車両1の減速や停車を示す記号、文字を外部表示器110へ表示してよい。
 次に、図4を参照して第1車両1から送信された共有情報を受信する第2車両2に搭載された第2運転支援装置20の構成を説明する。
 第2運転支援装置20は、周囲環境センサ200と、車両センサ201と、測位装置202と、地図データベース203と、通信装置204と、ユーザインタフェース装置206と、ナビゲーションシステム207と、コントローラ208と、アクチュエータ209を備える。
 周囲環境センサ200、車両センサ201、測位装置202、地図データベース203、通信装置204、ユーザインタフェース装置206、ナビゲーションシステム207と、及びアクチュエータ209は、図2を参照して説明した測位装置102、地図データベース103、通信装置104、ユーザインタフェース装置106、ナビゲーションシステム107と、及びアクチュエータ109と同様である。
 コントローラ208は、第2車両2の運転支援制御を行う電子制御ユニット(ECU)である。コントローラ208は、プロセッサ211と、記憶装置212等の周辺部品とを含む。プロセッサ211は、例えばCPUやMPUであってよい。
 記憶装置212は、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。記憶装置212は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM及びRAM等のメモリを含んでよい。
 以下に説明するコントローラ208の機能は、例えばプロセッサ211が、記憶装置212に格納されたコンピュータプログラムを実行することにより実現される。
 なお、コントローラ208を、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。
 例えば、コントローラ208は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えばコントローラ208はフィールド・プログラマブル・ゲート・アレイ(FPGA)等のプログラマブル・ロジック・デバイス(PLD)等を有していてもよい。
 コントローラ208は、第2車両2の現在位置を推定し、推定した現在位置と、地図データベース203の道路地図データと、ナビゲーションシステム207から出力された経路情報と、周囲環境と、第2車両2の走行状態に基づいて、第2車両2が走行すべき予定進路を決定する。
 例えば、コントローラ208は、予定進路として第2車両2が走行すべき目標走行軌道を設定する。コントローラ208は、決定した予定進路に基づいて第2車両2の自動運転制御や運転支援制御を行い、アクチュエータ209を駆動して第2車両2の走行を制御する。
 さらにコントローラ208は、第1車両1から受信した共有情報に含まれる、不確実性情報、運転交代要請情報、又はMRM情報と、第1車両1の予定進路情報を、ユーザインタフェース装置206により第2車両2の乗員に通知する。
 図5を参照して、コントローラ208の機能構成を説明する。コントローラ208は、物体認識部220と、マップ生成部221と、運転行動決定部222と、走行軌道生成部223と、走行制御部224と、共有情報通信部225と、状態判定部226と、進路取得部227と、通知制御部228を備える。
 物体認識部220、マップ生成部221、運転行動決定部222、走行軌道生成部223、及び走行制御部224の機能は、図3を参照して説明した物体認識部120、マップ生成部121、運転行動決定部122、走行軌道生成部123、及び走行制御部124の機能と同様である。
 共有情報通信部225は、第1車両1から送信された共有情報を、通信装置204により受信する。
 状態判定部226は、受信した共有情報から第1車両1の状態情報を取得する。
 第1車両1の共有情報通信部130が、状態情報と予定進路情報とを常に共有情報に含める場合には、状態判定部226は、不確実性情報、運転交代要請情報及びMRM情報のいずれかが共有情報に含まれているか否かに応じて、第1車両1が異常状態であるか否かを判定する。
 例えば、不確実性情報が共有情報に含まれている場合に、状態判定部226は、第1車両1の信頼性が低下したと判定する。運転交代要請情報が共有情報に含まれている場合に、状態判定部226は、運転交代要請が発行されたと判定する。MRM情報が共有情報に含まれている場合に、状態判定部226は、最小リスク操作が実行されると判定する。
 第1車両1が異常状態であると判定した場合に、状態判定部226は、共有情報に含まれている不確実性情報、運転交代要請情報及びMRM情報のいずれかを取得し、通知制御部228へ出力する。
 また、第1車両1が異常状態であると判定した場合に、進路取得部227は、共有情報に含まれている第1車両1の予定進路情報を取得し、物体認識部220と通知制御部228へ出力する。
 第1車両1の共有情報通信部130が、第1車両1が異常状態であると判定された場合に、状態情報と予定進路情報を共有情報に含める場合には、状態判定部226は、第1車両1が異常状態であるか否かを判定しなくてもよい。
 状態判定部226は、共有情報に含まれている不確実性情報、運転交代要請情報及びMRM情報のいずれかを取得し、通知制御部228へ出力する。進路取得部227は、共有情報に含まれている第1車両1の予定進路情報を取得し、物体認識部220と通知制御部228へ出力する。
 通知制御部228は、状態判定部226が取得した不確実性情報、運転交代要請情報及びMRM情報のいずれかと、進路取得部227が取得した第1車両1の予定進路情報を、ユーザインタフェース装置206により第2車両2の乗員に通知する。
 例えば通知制御部228は、不確実性情報、運転交代要請情報及びMRM情報のいずれかと、第1車両1の予定進路情報をユーザインタフェース装置206の表示装置上に表示してよい。
 図6は、ユーザインタフェース装置206の表示装置上に表示される、MRM情報及び予定進路情報を表す画像30を示す。
 画像30は、自車両である第2車両2の周辺の道路の3次元画像と、3次元画像上に配置され、第2車両2の位置を表す第2車両2のアイコン表示31と、第2車両2の周辺の第1車両1の位置を表す第1車両1のアイコン表示32と、MRM情報33及び34を含む。
 画像30の例では、MRM情報は、最小リスク操作を実行する第1車両1を強調するためのバルーン及び注意喚起記号33と、第1車両1が最小リスク操作を実行していることを示す情報34を含む。第1車両1の強調表示は、例えばアイコン表示32の色や輪郭の明りょうさを変更することによって行ってもよい。また、現在時刻から最小リスク操作を行うまでの時間や最小リスク操作の理由を表示してもよい。また、最小リスク操作を行うまでの時間に応じてMRM情報の表示態様を変化させてもよい。
 また画像30は、第2車両2の予定進路情報35と、第1車両1の予定進路情報36及び37を含んでいる。第1車両1の予定進路情報は、最小リスク操作による第1車両1の予定走行軌道36と停車位置表示37を含んでいる。
 図6は、ユーザインタフェース装置206の表示装置上に表示される、運転交代要請情報及び予定進路情報を表す画像40を示す。
 画像40は、第2車両2の周辺の道路の3次元画像と、3次元画像上に配置され、第2車両2の位置を表す第2車両2のアイコン表示41と、第2車両2の周辺の第1車両1の位置を表す第1車両1のアイコン表示42と、運転交代要請情報43、44及び45を含む。
 画像40の例では、運転交代要請情報は、運転交代要請が発行された第1車両1を強調するためのバルーン43と、運転交代要請が発行されたことを示す情報44と、現在時刻から運転交代までの時間情報45を含む。第1車両1の強調表示は、例えばアイコン表示42の色や輪郭の明瞭さを変更することによって行ってもよい。また、運転交代要請発行の理由を表示してもよい。
 また、運転交代までの時間に応じて運転交代要請情報の表示態様を変化させてもよい。例えば、バルーン43の色や大きさを変化させてもよい。
 また画像40は、第2車両2の予定進路情報46と、第1車両1の予定進路情報47を含んでいる。
 図6は、ユーザインタフェース装置206の表示装置上に表示される、不確実性情報及び予定進路情報を表す画像50を示す。
 画像50は、第2車両2の周辺の道路の3次元画像と、3次元画像上に配置され、第2車両2の位置を表す第2車両2のアイコン表示51と、第2車両2の周辺の第1車両1の位置を表す第1車両1のアイコン表示52と、不確実性情報53及び54を含む。
 画像50の例では、不確実性情報は、信頼性が低下している第1車両1を強調するためのバルーン及び注意喚起記号53と、第1車両1の信頼性が低下していることを示す情報54を含む。第1車両1の強調表示は、例えばアイコン表示32の色や輪郭の明りょうさを変更することによって行ってもよい。また、信頼性が低下している理由や、信頼性の低下レベルを表示してもよい。また、信頼性が低下している理由や、信頼性の低下レベルに応じて不確実性情報の表示態様を変化させてもよい。
 例えば、信頼性の低下レベルに応じてバルーン43の色や大きさを変化させてもよい。
 また画像50は、第2車両2の予定進路情報55と、第1車両1の予定進路情報56を含んでいる。
 図5を参照する。通知制御部228は、表示装置以外の方法で不確実性情報、運転交代要請情報及びMRM情報のいずれかと、第1車両1の予定進路情報を乗員に通知してもよい。
 例えば、通知制御部228は、音声メッセージにより不確実性情報、運転交代要請情報及びMRM情報のいずれかと、第1車両1の予定進路情報を通知してもよい。
 通知制御部228は、第1車両1から受信した第1車両1の位置情報と、自車両である第2車両2の位置情報とに基づき、第1車両1と第2車両2との相対位置関係を簡単に説明する音声メッセージを出力してよい。
 例えば通知制御部228は、「左前方を走行中の車両が最小リスク操作を行います」などの音声メッセージを出力してよい。
 また、通知制御部228は、第1車両1の予定進路の方向や、第1車両1の加減速を示す簡易な予定進路情報の音声メッセージを出力してよい。
 例えば、通知制御部228は「左前方を走行中の車両が右側に車線変更して路肩に寄せて停車します」や「減速して停車します」などの音声メッセージを出力してよい。
 また、ユーザインタフェース装置206は、異常状態の第1車両1の位置を乗員に知らせるために、第2車両2の運転席の前方に配置され、第2車両2の車幅方向に沿って配置された帯状発光体を備えてもよい。
 図9を参照する。帯状発光体60は、第2車両2のダッシュボード61上に、フロントウインドウ62の下端に沿って、左右のフロントピラー63a,63bの下端の間で車幅方向に延在するように、帯状に配置されていてよい。帯状発光体60は、発光ダイオード(LED)の配列や、有機エレクトロルミネッセンス(EL)パネル等で構成してよい。
 通知制御部228は、帯状発光体60の帯状の領域のうちの任意の1箇所又は複数箇所の領域64を発光させることで、運転席に座る乗員から第1車両1が見える方位角を乗員に通知してよい。
 例えば、第1車両1が見える方向の領域64を発光させてもよく、単に、第1車両1が第2車両2の右前方や右側方に存在する場合は右側の領域を発光させ、左前方や左側方に存在する場合は右側の領域を発光させてもよい。
 図5を参照する。物体認識部220は、第1車両1の予定進路情報を進路取得部227から受信する。
 物体認識部220は、第1車両1の予定進路情報に基づいて第1車両1の行動、挙動を予測する。
 これにより、第2車両2において運転支援が行われる場合、運転行動決定部222は、第1車両1の予定進路情報に応じて第2車両2の運転行動を決定する。例えば、運転行動決定部222は、第1車両1を回避したり、第1車両1への過度の接近を防止する運転行動を決定する。
 走行軌道生成部223は、第1車両1の予定進路情報に応じて第2車両2の目標走行軌道及び目標速度プロファイルを生成する。例えば、走行軌道生成部223は、第1車両1を回避したり、第1車両1への過度の接近を防止する目標走行軌道及び目標速度プロファイルを決定する。
 このため、走行制御部224による操舵制御や減速制御は、第1車両1の予定進路情報に応じて行われる。例えば、走行軌道生成部223は、第1車両1を回避したり、第1車両1への過度の接近を防止するように第2車両2の操舵機構、制動機構を駆動する。
 (動作)
 次に、実施形態における異常状態通知方法の一例を説明する。図10は、第1車両1にて実施される異常状態通知方法の一例を示す。
 ステップS1において、信頼性低下判定部125、TOR判定部126、及びMRM判定部127は、第1車両1の状態を判定する。
 第1車両1の最小リスク操作が実行されるとMRM判定部127が判定した場合(ステップS2:Y)処理はステップS3へ進む。最小リスク操作が実行されると判定されない場合(ステップS2:N)処理はステップS4へ進む。
 ステップS3において状態情報生成部128は、MRM情報を生成する。その後に処理はステップS8へ進む。
 第1車両1の運転交代要請が発行されたとTOR判定部126が判定した場合(ステップS4:Y)処理はステップS5へ進む。運転交代要請が発行されたと判定されない場合(ステップS4:N)処理はステップS6へ進む。
 ステップS5において状態情報生成部128は、運転交代要請情報を生成する。その後に処理はステップS8へ進む。
 第1車両1の信頼性が低下していると信頼性低下判定部125が判定した場合(ステップS6:Y)処理はステップS7へ進む。
 信頼性が低下していると判定されない場合(ステップS6:N)には、不確実性情報、運転交代要請情報及びMRM情報の何れかと予定進路情報は第1車両1から送信せずに、処理は終了する。
 ステップS7において状態情報生成部128は、不確実性情報を生成する。その後に処理はステップS8へ進む。
 ステップS8において共有情報生成部129は、第1車両1の予定進路情報を取得する。共有情報生成部129は、不確実性情報、運転交代要請情報及びMRM情報の何れかと予定進路情報を含んだ共有情報を生成する。
 ステップS9において共有情報通信部130は、共有情報を第1車両1の外部へ送信する。状態情報生成部128は、不確実性情報、運転交代要請情報及びMRM情報の何れかと予定進路情報を、外部表示器110に表示してもよい。その後に処理は終了する。
 図11は、第2車両2にて実施される異常状態通知方法の一例を示す。
 ステップS11において共有情報通信部225は、第1車両1から送信された共有情報を受信する。
 ステップS12において状態判定部226は、第1車両1が異常状態であるか否かを判定する。
 第1車両1の最小リスク操作が実行されると判定された場合(ステップS12:Y)処理はステップS13へ進む。最小リスク操作が実行されると判定されない場合(ステップS12:N)処理はステップS14へ進む。
 ステップS13において通知制御部228は、ユーザインタフェース装置206を介してMEM情報を乗員に通知する。その後に処理はステップS18へ進む。
 第1車両1の運転交代要請が発行されたと判定された場合(ステップS14:Y)処理はステップS15へ進む。運転交代要請が発行されたと判定ない場合(ステップS14:N)処理はステップS16へ進む。
 ステップS15において、通知制御部228は、ユーザインタフェース装置206を介して運転交代要請情報を乗員に通知する。その後に処理はステップS18へ進む。
 第1車両1の信頼性が低下していると判定された場合(ステップS16:Y)処理はステップS17へ進む。
 第1車両1の信頼性が低下していると判定されない場合(ステップS16:N)、不確実性情報、運転交代要請情報及びMRM情報の何れかと予定進路情報を通知せずに処理は終了する。
 ステップS17において、通知制御部228は、ユーザインタフェース装置206を介して不確実性情報を乗員に通知する。その後に処理はステップS18へ進む。
 ステップS18において、通知制御部228は、ユーザインタフェース装置206を介して第1車両1の予定進路情報を通知する。その後に処理は終了する。
 (実施形態の効果)
 (1)第1車両1の信頼性低下判定部125と、TOR判定部126と、MRM判定部127は、自動運転中の第1車両1の状態を判定する。運転行動決定部122と、走行軌道生成部123は、第1車両1の予定進路を決定する。共有情報生成部129、共有情報通信部130は、第1車両1が異常状態であることと、第1車両1の予定進路とを、第1車両1の周辺の他車両に通知する。
 これにより、第1車両1は、第1車両1が異常状態であることと、第1車両1の予定進路とを、第1車両1の周辺の他車両に通知できる。このため、例えば第1車両1の周辺の他車両の走行モードが手動運転である場合に、他車両の運転者が第1車両1の突然の挙動を予想して、第1車両1との衝突や過度な接近を回避することができる。
 また、他車両の走行モードが自動運転である場合に、他車両の走行軌道を第1車両1の突然の挙動に対応させることができる。これにより、自動運転中の他車両の急激な加減速や操舵操作を防止できる。
 (2)共有情報生成部129、共有情報通信部130は、第1車両1が異常状態であると判定した場合に、第1車両1が異常状態であることと第1車両1の予定進路とを、他車両に通知してよい。
 自動運転中の第1車両1は、第1車両1自身の異常を判定できるので、それを周辺の他車両へ事前に通知することで、第1車両1の周辺の他車両の乗員の注意を喚起できる。
 (3)運転行動決定部122は、異常状態の第1車両1の予定進路として、第1車両1の自動停止を決定する。共有情報生成部129、共有情報通信部130は、第1車両1の自動停止を開始するまでの時間を他車両に通知してよい。
 第1車両1の自動停止を開始するまでの時間を通知することで、第1車両1の周辺の他車両の乗員の注意を喚起できる。
 (4)共有情報生成部129、共有情報通信部130は、第1車両1がどのような異常状態であるかを他車両に通知してよい。
 これにより、第1車両1の周辺の他車両の乗員は、第1車両1の異常状態を認識できるので、第1車両1の急な挙動の発生を予期し易くなる。
 (5)第1車両1の異常状態は、第1車両1の信頼性低下、第1車両1の自動運転から手動運転への運転交代要請の発行、又は最小リスク操作の自動実行であってよい。
 これにより、これらの異常状態が発生した場合に、第1車両1が異常状態であることと、第1車両1の予定進路とを、第1車両1の周辺の他車両に通知できる。
 (6)第2車両2の共有情報通信部225は、自動運転中の第1車両1の状態情報と第1車両1の予定進路の情報を受信する。状態判定部226は、第1車両1が異常状態であるか否かを判定する。第1車両1が異常状態であると判定した場合に、通知制御部228は、第1車両1が異常状態であることと第1車両1の予定進路とを第2車両2の乗員に通知する。
 これにより、第2車両2において、第2車両2の周辺の第1車両1が異常状態であることと、第1車両1の予定進路とを認識できる。このため、例えば第2車両2の走行モードが手動運転である場合に、第2車両2の運転者が第1車両1の突然の挙動を予想して、第1車両1との衝突や過度な接近を回避することができる。
 また、第2車両2の走行モードが自動運転である場合に、第2車両2の走行軌道を第1車両1の突然の挙動に対応させることができる。これにより、自動運転中の第2車両2の急激な加減速や操舵操作を防止できる。
 (7)通知制御部228は、第2車両2が備える表示装置に、第1車両1が異常状態であることと、第1車両1の予定進路とを表示してよい。これにより第2車両2の乗員は、第1車両1が異常状態であることと、第1車両1の予定進路とを認識できる。このため、例えば第2車両2の走行モードが手動運転である場合に、第2車両2の運転者が第1車両1の突然の挙動を予想して、第1車両1との衝突や過度な接近を回避することができる。
 第2車両2の走行モードが自動運転である場合に、第2車両2の運転者は、第1車両1の突然の挙動により第2車両2の走行軌道が変化することを予想することができる。
 (8)通知制御部228は、第2車両の運転席の前方に車幅方向に沿って配置された帯状発光体60の発光箇所によって、第1車両1の位置を示してよい。これにより、第2車両2の乗員は、第2車両2の周辺のどの車両が異常状態であるかを知ることができる。
 (9)通知制御部228は、音声メッセージにより第1車両1の位置を第2車両2の乗員に通知する。
 これにより、第2車両2の乗員は、第2車両2の周辺のどの車両が異常状態であるかを知ることができる。
 (10)走行軌道生成部223は、自動運転による第2車両2の走行軌道を、第1車両1の予定進路に応じて生成する。
 これにより、第2車両2の走行軌道を第1車両1の突然の挙動に対応させることができ、自動運転中の第2車両2の急激な加減速や操舵操作を防止できる。
 ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。
 1…第1車両,2…第2車両,3…公衆通信回線,10…第1運転支援装置,20…第2運転支援装置,60…帯状発光体,61…ダッシュボード,62…フロントウインドウ,100…周囲環境センサ,101…車両センサ,102…測位装置,103…地図データベース,104…通信装置,105…乗員センサ,106…ユーザインタフェース装置,107…ナビゲーションシステム,108…コントローラ,109…アクチュエータ,110…外部表示器,111…プロセッサ,112…記憶装置,120…物体認識部,121…マップ生成部,122…運転行動決定部,123…走行軌道生成部,124…走行制御部,125…信頼性低下判定部,126…TOR判定部,127…MRM判定部,128…状態情報生成部,129…共有情報生成部,130…共有情報通信部,200…周囲環境センサ,201…車両センサ,202…測位装置,203…地図データベース,204…通信装置,206…ユーザインタフェース装置,207…ナビゲーションシステム,208…コントローラ,209…アクチュエータ,211…プロセッサ,212…記憶装置,220…物体認識部,221…マップ生成部,222…運転行動決定部,223…走行軌道生成部,224…走行制御部,225…共有情報通信部,226…状態判定部,227…進路取得部,228…通知制御部

Claims (12)

  1.  自動運転中の自車両の状態を判定し、
     前記自車両の予定進路を決定し、
     前記自車両が異常状態であることと前記自車両の予定進路とを、前記自車両の周辺の他車両に通知する、
     ことを特徴とする異常状態通知方法。
  2.  前記自車両が異常状態であると判定した場合に、前記自車両が異常状態であることと前記自車両の予定進路とを、前記他車両に通知することを特徴とする請求項1に記載の異常状態通知方法。
  3.  異常状態の前記自車両の前記予定進路として、前記自車両の自動停止を決定し、
     前記自車両の自動停止を開始するまでの時間を前記他車両に通知する、
     ことを特徴とする請求項1又は2に記載の異常状態通知方法。
  4.  前記自車両がどのような異常状態であるかを前記他車両に通知することを特徴とする請求項1~3のいずれか一項に記載の異常状態通知方法。
  5.  前記自車両の異常状態は、前記自車両の信頼性低下、前記自車両の自動運転から手動運転への運転交代要請の発行、又は最小リスク操作の自動実行であることを特徴とする請求項1~4のいずれか一項に記載の異常状態通知方法。
  6.  自動運転中の他車両の状態情報と前記他車両の予定進路の情報とを自車両で受信し、
     前記他車両が異常状態であるか否かを判定し、
     前記他車両が異常状態であると判定した場合に、前記他車両が異常状態であることと前記他車両の予定進路とを前記自車両の乗員に通知する、
     ことを特徴とする異常状態通知方法。
  7.  前記自車両が備える表示装置に、前記他車両が異常状態であることと前記他車両の予定進路とを表示することを特徴とする請求項6に記載の異常状態通知方法。
  8.  前記自車両の運転席の前方に車幅方向に沿って配置された帯状発光体の発光箇所によって、前記他車両の位置を示すことを特徴とする請求項6又は7に記載の異常状態通知方法。
  9.  音声メッセージにより前記他車両の位置を前記自車両の乗員に通知することを特徴とする請求項6~8のいずれか一項に記載の異常状態通知方法。
  10.  自動運転による前記自車両の走行軌道を、前記他車両の予定進路に応じて生成することを特徴とする請求項6~9のいずれか一項に記載の異常状態通知方法。
  11.  自動運転中の自車両の状態を判定する処理と、
     前記自車両の予定進路を決定する処理と、
     前記自車両が異常状態であることと前記自車両の予定進路とを、前記自車両の周辺の他車両に通知する処理と、
     を実行するコントローラを備えることを特徴とする異常状態通知装置。
  12.  他車両の状態情報と前記他車両の予定進路の情報とを自車両で受信する処理と、
     前記他車両が異常状態であるか否かを判定する処理と、
     前記他車両が異常状態であると判定した場合に、前記他車両が異常状態であることと前記他車両の予定進路とを前記自車両の運転者に通知する処理と、
     を実行するコントローラを備えることを特徴とする異常状態通知装置。
PCT/IB2019/000378 2019-03-27 2019-03-27 異常状態通知方法及び異常状態通知装置 WO2020194016A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IB2019/000378 WO2020194016A1 (ja) 2019-03-27 2019-03-27 異常状態通知方法及び異常状態通知装置
JP2021508334A JP7222420B2 (ja) 2019-03-27 2019-03-27 異常状態通知方法及び異常状態通知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000378 WO2020194016A1 (ja) 2019-03-27 2019-03-27 異常状態通知方法及び異常状態通知装置

Publications (1)

Publication Number Publication Date
WO2020194016A1 true WO2020194016A1 (ja) 2020-10-01

Family

ID=72609793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000378 WO2020194016A1 (ja) 2019-03-27 2019-03-27 異常状態通知方法及び異常状態通知装置

Country Status (2)

Country Link
JP (1) JP7222420B2 (ja)
WO (1) WO2020194016A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114764978A (zh) * 2021-01-13 2022-07-19 丰田自动车株式会社 信号灯管理系统和信号灯管理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149167A (ja) * 1998-11-10 2000-05-30 Nissan Motor Co Ltd 警報装置
JP2007233965A (ja) * 2006-03-03 2007-09-13 Toyota Motor Corp 自動隊列走行制御装置および自動隊列走行制御システム
JP2008070998A (ja) * 2006-09-13 2008-03-27 Hitachi Ltd 車両周囲情報表示装置
JP2009042896A (ja) * 2007-08-07 2009-02-26 Yamaha Motor Co Ltd 注意情報提示システムおよび自動二輪車
JP2013143070A (ja) * 2012-01-12 2013-07-22 Suzuki Motor Corp 車両用情報共有システム
JP2016192028A (ja) * 2015-03-31 2016-11-10 株式会社デンソー 自動走行制御装置および自動走行制御システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030425A (ja) * 2016-08-24 2018-03-01 三菱電機株式会社 自動運転制御装置および自動運転制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149167A (ja) * 1998-11-10 2000-05-30 Nissan Motor Co Ltd 警報装置
JP2007233965A (ja) * 2006-03-03 2007-09-13 Toyota Motor Corp 自動隊列走行制御装置および自動隊列走行制御システム
JP2008070998A (ja) * 2006-09-13 2008-03-27 Hitachi Ltd 車両周囲情報表示装置
JP2009042896A (ja) * 2007-08-07 2009-02-26 Yamaha Motor Co Ltd 注意情報提示システムおよび自動二輪車
JP2013143070A (ja) * 2012-01-12 2013-07-22 Suzuki Motor Corp 車両用情報共有システム
JP2016192028A (ja) * 2015-03-31 2016-11-10 株式会社デンソー 自動走行制御装置および自動走行制御システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114764978A (zh) * 2021-01-13 2022-07-19 丰田自动车株式会社 信号灯管理系统和信号灯管理方法
CN114764978B (zh) * 2021-01-13 2024-04-23 丰田自动车株式会社 信号灯管理系统和信号灯管理方法

Also Published As

Publication number Publication date
JP7222420B2 (ja) 2023-02-15
JPWO2020194016A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
KR102479493B1 (ko) 자율 주행 차량을 보조하기 위한 방법 및 이를 위한 장치
US11269352B2 (en) System for building a vehicle-to-cloud real-time traffic map for autonomous driving vehicles (ADVS)
CN107943016B (zh) 用于自主车辆的群体驾驶风格学习框架
US10176715B2 (en) Navigation system with dynamic mapping mechanism and method of operation thereof
EP2915718B1 (en) Apparatus and method for continuously establishing a boundary for autonomous driving availability and an automotive vehicle comprising such an apparatus
US10821976B2 (en) Navigation system with dynamic speed setting mechanism and method of operation thereof
US20150153184A1 (en) System and method for dynamically focusing vehicle sensors
WO2022057645A1 (zh) 辅助驾驶提醒、地图辅助驾驶提醒方法、装置和地图
US20230245071A1 (en) Real-time visualization of autonomous vehicle behavior in mobile applications
KR102634073B1 (ko) 루트 정보를 사용한 차량의 궤적 계획
JP7409258B2 (ja) サーバ、車両、交通制御方法、及び、交通制御システム
US11662730B2 (en) Hierarchical path decision system for planning a path for an autonomous driving vehicle
WO2022009900A1 (ja) 自動運転装置、車両制御方法
CN111583697A (zh) 驾驶支持系统和服务器装置
JP6520687B2 (ja) 運転支援装置
CN114005300A (zh) 车辆管理系统、管理方法及计算机可读介质
JP2004258900A (ja) 周辺車両情報提供装置
US10482787B2 (en) Selective presentation of coasting coach indicator for consecutive learned deceleration areas in close proximity
WO2020194016A1 (ja) 異常状態通知方法及び異常状態通知装置
JP7382782B2 (ja) 物体認識方法及び物体認識システム
JP2015114931A (ja) 車両警告装置、サーバ装置および車両警告システム
JP2021152488A (ja) 追い越し支援装置、追い越し支援方法、追い越し支援プログラム
JP2020192824A (ja) 運転挙動制御方法及び運転挙動制御装置
US11926342B2 (en) Autonomous vehicle post-action explanation system
US20230398866A1 (en) Systems and methods for heads-up display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920653

Country of ref document: EP

Kind code of ref document: A1