WO2020191971A1 - 一种基于声场特征的反射体形貌提取系统和提取方法 - Google Patents

一种基于声场特征的反射体形貌提取系统和提取方法 Download PDF

Info

Publication number
WO2020191971A1
WO2020191971A1 PCT/CN2019/097808 CN2019097808W WO2020191971A1 WO 2020191971 A1 WO2020191971 A1 WO 2020191971A1 CN 2019097808 W CN2019097808 W CN 2019097808W WO 2020191971 A1 WO2020191971 A1 WO 2020191971A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
reflector
different
defect
module
Prior art date
Application number
PCT/CN2019/097808
Other languages
English (en)
French (fr)
Inventor
董凯
田国良
孙剑
任鹏
马殿忠
董红斌
Original Assignee
深圳中凯剑无损检测设备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳中凯剑无损检测设备科技有限公司 filed Critical 深圳中凯剑无损检测设备科技有限公司
Publication of WO2020191971A1 publication Critical patent/WO2020191971A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/06Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Definitions

  • the invention relates to the technical field of ultrasonic non-destructive testing, in particular to a system and method for extracting the shape of a reflector based on acoustic field characteristics.
  • Structural defects are one of the important indicators used to reflect and evaluate the overall condition of the object structure.
  • the structural defects have important reference significance for studying the physical properties of macroscopic objects and microscopic objects.
  • structural defects will affect the structural stability of macroscopic objects.
  • the distribution density, shape and size of structural defects will have an important impact on the structural stability of macroscopic objects.
  • Qualitative analysis can get good information about the internal structure of macroscopic objects, and such macroscopic objects especially include different forms of engineering structures such as bridges, tunnels or high-rise buildings.
  • Qualitative analysis of the internal structural defects of the above-mentioned engineering structures can help engineers Determine the corresponding maintenance and reinforcement measures to effectively extend the service life of the engineering structure; for microscopic objects, structural defects will affect the physical properties of the microscopic objects themselves. Similarly, the distribution density, shape and size of the structural defects will It has an impact on the mechanical, optical, thermal and other physical properties of microscopic objects.
  • the qualitative analysis of the structural defects of microscopic objects can determine the direction of the physical properties of microscopic objects due to the existence of structural defects.
  • Such microscopic substances are especially Including different types of basic substances such as crystals, qualitative analysis of the internal structural defects of microscopic objects can help researchers determine the synthesis and production processes and processes of microscopic substances to further improve the different physical properties of microscopic substances themselves.
  • the detection of object structure defects is mainly realized by ultrasonic detection method.
  • the theoretical basis of the implementation of the ultrasonic detection method is that if the object structure has a defect, the defect will affect the acoustic characteristics of the object in the vicinity of its location. After the ultrasonic wave passes through the defect, the corresponding reflected or transmitted ultrasonic wave propagation parameters will also change accordingly. By measuring the change of the reflected or transmitted ultrasonic wave transmission parameters, qualitative detection results about the defect can be obtained.
  • the existing ultrasonic detection method usually obtains the B-scan image by corresponding transformation according to the A-scan signal.
  • the actual ultrasonic wave is not an ideal straight line, it has a certain width fan-shaped distribution form, which makes the ultrasonic wave in the scanning process
  • the area corresponding to the non-ultrasonic scan line will also form ultrasonic echo signals.
  • This situation will cause the defects of the imaged image to be enlarged during the ultrasonic phased array imaging process, so that the imaging results of the ultrasonic phased array will be enlarged.
  • the existing ultrasonic scanning imaging display technology and ultrasonic phased array inspection technology have poor intuition of the shape imaging, imaging accuracy, unreliable recordability, and image defects will be enlarged at the same time, etc.
  • the existing ultrasonic detection methods for object shape extraction can only be based on the ultrasonic phased array technology to obtain the detailed image of the object shape, and then perform the detailed image of the object shape.
  • Subsequent image processing aims to remove the existing image defects, but because the image defects are magnified together with the morphological details of the object during the ultrasonic phased array imaging process, this makes the image defects and the shape of the object larger.
  • the present invention provides a reflector shape extraction system and extraction method based on sound field characteristics.
  • the reflector shape extraction system and extraction method project ultrasonic waves to a reflector and detect the reflection.
  • the body reflects the ultrasonic waves and forms the ultrasonic echoes of different receiving angles and different depths, and at the same time performs targeted signal processing operations on the ultrasonic echoes to extract the topographic features of the reflector and calculate the corresponding shape Appearance characteristic parameters; among them, the targeted signal processing operation of the ultrasonic echo can adaptively reduce the enlargement of the image defect caused by the sound beam width at the corresponding position according to the different position of the image defect, and also
  • the structural defects at different positions on the surface of the object can be optimized to obtain the defect contour parameters and defect trend parameters corresponding to the structural defects.
  • the present invention provides a reflector shape extraction system based on sound field characteristics, wherein the reflector shape extraction system includes:
  • An ultrasonic transmitter module for projecting ultrasonic waves to the reflector
  • the ultrasonic emission control module is used to control the ultrasonic emission parameters of the ultrasonic emission module, so as to realize the ultrasonic scanning operation on the reflector;
  • An ultrasonic receiving module configured to receive the ultrasonic echo formed after the ultrasonic wave reaches the reflector and is reflected by the reflector;
  • An ultrasonic receiving control module for controlling the ultrasonic receiving module so that the ultrasonic receiving module can obtain ultrasonic echoes with respect to different receiving angles and different depths;
  • the shape extraction module is used to obtain the shape characteristic parameters of the reflector according to the ultrasonic echoes with respect to different receiving angles and with respect to different depths;
  • the ultrasonic transmission module includes an array ultrasonic transmitter
  • the ultrasonic transmission control module includes a timing generator
  • the timing generator is used to send a timing signal to the array ultrasonic transmitter.
  • the array ultrasonic transmitter can drive each ultrasonic transmitter contained in it to project ultrasonic waves to the reflector in turn according to the timing signal; wherein, the array ultrasonic transmitter is a linear array ultrasonic transmitter, a rectangular array ultrasonic transmitter, and a circular ultrasonic transmitter.
  • the ultrasonic transmission control module includes an actuator array having a number of actuators, and each actuator corresponds to each ultrasonic transmitter in the ultrasonic transmission module to control accordingly The respective ultrasonic emission state of each of the ultrasonic transmitters, so that each of the ultrasonic transmitters can continuously change the direction and/or intensity of the ultrasonic waves it projects;
  • the shape extraction module includes a reflector determination sub-module and a shape feature determination sub-module, and the reflector determination sub-module can determine the presence in the current scene according to the ultrasonic echoes with respect to different receiving angles and different depths.
  • the topographic feature determination sub-module can extract the ultrasonic echo corresponding to each of the different reflectors according to the spatial distribution position information, and thereby obtain each reflector Corresponding morphological characteristic parameters;
  • the shape extraction module includes a reflector determination sub-module and a shape feature determination sub-module, and the reflector determination sub-module is capable of determining the presence in the current scene according to the ultrasound echoes with respect to different receiving angles and different depths.
  • the topographic feature determination sub-module can extract the ultrasonic echo corresponding to each of the different reflectors, and obtain each reflection The corresponding morphological characteristic parameters of the body.
  • the present invention also provides a method for extracting the shape of a reflector based on sound field characteristics, wherein the method for extracting the shape of a reflector includes the following steps:
  • Step (1) controlling the transmission parameters of the ultrasonic wave and projecting the ultrasonic wave onto the reflector, so as to realize the ultrasonic scanning operation on the reflector;
  • Step (2) receiving ultrasonic echoes at different receiving angles and at different depths after the ultrasonic wave reaches the reflector and is reflected by the reflector;
  • Step (3) according to the ultrasonic echoes at different receiving angles and at different depths, obtaining the topographic characteristic parameters of the reflector;
  • controlling the transmission parameters of the ultrasonic wave and projecting the ultrasonic wave onto the reflector specifically includes controlling each ultrasonic transmitter in the array ultrasonic transmitter to project to the reflector in turn according to a timing signal Ultrasound
  • controlling the transmission parameters of the ultrasonic wave and projecting the ultrasonic wave onto the reflector also specifically includes arranging a corresponding actuator for each ultrasonic transmitter, through which the actuator corresponds to Controlling the respective ultrasonic emission state of each of the ultrasonic transmitters, so that each of the ultrasonic transmitters can continuously change the direction and/or intensity of the ultrasonic waves it projects;
  • obtaining the topographic characteristic parameters of the reflector specifically includes according to the ultrasonic echoes with respect to different receiving angles and with respect to different depths.
  • the echo determines the spatial distribution position information of different reflectors existing in the current scene, and then extracts the ultrasonic echo corresponding to each of the different reflectors according to the spatial distribution position information, and obtains the corresponding The morphological characteristic parameters;
  • obtaining the topographic characteristic parameters of the reflector also specifically includes the ultrasonic echo corresponding to different positions in the current scene.
  • the width of the sound beam is used to restore the defects existing in the reflector to obtain the defect contour parameters and defect trend parameters corresponding to the defects;
  • the sound field feature-based reflector shape extraction system and extraction method of the present invention project ultrasonic waves to a reflector, and detect the reflection of the ultrasonic waves by the reflector to form different receiving angles and different angles.
  • Deep ultrasonic echo while performing targeted signal processing operations on the ultrasonic echo to extract the topographic features of the reflector and calculate the corresponding topographic feature parameters; among them, the ultrasound echo is targeted
  • the signal processing operation can adaptively reduce the enlargement of the image defect caused by the sound beam width at the corresponding position according to the different position of the image defect, and it can also optimize the structural defects at different positions on the surface of the object. Obtain the defect contour parameters and defect trend parameters corresponding to the structural defect.
  • Fig. 1 is a schematic structural diagram of a reflector shape extraction system based on sound field characteristics provided by the present invention.
  • FIG. 2 is a schematic flow chart of a method for extracting the shape of a reflector based on sound field characteristics provided by the present invention.
  • the reflector shape extraction system based on sound field features includes an ultrasonic transmitter module, an ultrasonic transmitter control module, an ultrasonic receiver module, an ultrasonic receiver control module, and a shape extraction module.
  • the reflector topography extraction system preferably extracts the surface topography characteristics of a reflector whose surface can reflect ultrasonic waves, that is, the reflector topography extraction system is based on the ultrasonic echo formed by the reflection of the reflector surface and analyzes and extracts The surface topography information carried by the ultrasonic echo can be calculated to obtain the surface topography characteristics.
  • the reflector shape extraction system based on the sound field characteristics of the present invention also uses an ultrasonic beam with a certain width to scan the surface of the reflector, so the reflector shape extraction system also has image defects in the prior art.
  • the reflector topography extraction system can be used in different receiving angles and different Receive ultrasonic echoes in the depth scene, and perform targeted calculation processing on the ultrasonic echoes obtained in different scenarios, so as to avoid obtaining the details of the reflector surface structure and topography while filtering image defects, so as to finally improve the reflector surface Accuracy of structure and topography feature extraction.
  • the ultrasonic transmitter module is used to project ultrasonic waves to the reflector.
  • the ultrasonic transmitter module may include an array ultrasonic transmitter for scanning and projecting an ultrasonic wave with a specific shape distribution to the reflector; wherein, the array ultrasonic transmitter includes several
  • the specific array arrangement may include, but is not limited to, a linear array, a two-dimensional rectangular array, a two-dimensional circular array or a two-dimensional circular array; the array
  • Each of the ultrasonic transmitters preferably works relatively independently, and can independently project ultrasonic waves to the reflector.
  • the ultrasonic scanning with different distribution shapes will generate different reflected ultrasonic waves after being projected on the reflector. Based on the above aspects Considering that, those skilled in the art can select an array ultrasonic reflector with a suitable distribution shape according to the actual shape and size of the reflector, so that the reflector can obtain a complete ultrasonic scan.
  • the linear array ultrasonic The transmitter is suitable for a reflector with an elongated shape
  • the ultrasonic transmitter in the form of a two-dimensional rectangular array or a two-dimensional circular array is suitable for a reflector with a flat shape
  • the ultrasonic transmitter in the form of a two-dimensional annular array is suitable for Three-dimensional reflectors with approximately similar dimensions in the three-dimensional direction.
  • the ultrasonic emission control module can be used to control the ultrasonic emission parameters of the ultrasonic emission module, so as to realize the ultrasonic scanning operation of the reflector.
  • the ultrasonic emission control module may include a timing generator for sending a timing signal to the array-type ultrasonic transmitter, and the array-type ultrasonic transmitter can drive each ultrasonic wave it contains according to the timing signal.
  • the transmitter projects ultrasonic waves to the reflector in turn; preferably, the timing signal may be a clock signal composed of a series of high and low levels, where the high and low level sets include a number of high and low level logic sequences, each of which is high and low level.
  • the logic sequence includes only one high level, and the only one high level is used to indicate that the ultrasonic transmitter corresponding to the ultrasonic wave needs to be driven at present, that is, the array ultrasonic transmitter will be based on each high and low level in the high and low level set.
  • the level logic sequence performs drive control of the corresponding ultrasonic transmitter to ensure that only one ultrasonic transmitter emits ultrasonic waves at the same time.
  • the ultrasonic transmission control module may further include an actuator array having a plurality of actuators, and each actuator corresponds to each ultrasonic transmitter in the ultrasonic transmission module to control each ultrasonic transmitter accordingly.
  • the actuator can be, but not limited to, a one-dimensional linear actuator or a two-dimensional planar actuator, wherein the one-dimensional linear actuator can change the ultrasonic transmitter to project ultrasonic waves in a single direction.
  • the two-dimensional planar actuator can change the angle at which the ultrasonic transmitter projects ultrasonic waves in two mutually perpendicular directions.
  • each actuator in the actuator array unit can work independently of each other at the same time, or work only during the period when its corresponding ultrasonic transmitter emits ultrasonic waves.
  • the ultrasonic receiving module is used for receiving the ultrasonic echo formed after the ultrasonic reaches the reflector and is reflected by the reflector.
  • the ultrasonic receiving module may include a plurality of ultrasonic sensors distributed in an array, and the plurality of ultrasonic sensors can cover the propagation range of the ultrasonic echo to the greatest extent, thereby improving the receiving of the ultrasonic echo by the ultrasonic receiving module. effectiveness.
  • the ultrasonic receiving control module is used to control the ultrasonic receiving module so that the ultrasonic receiving module can obtain ultrasonic echoes with respect to different receiving angles and different depths.
  • the ultrasonic receiving control module can control the different working states of the plurality of ultrasonic sensors to receive the ultrasonic echo, because the plurality of ultrasonic sensors are respectively distributed on different receiving azimuths and different propagation depths of the ultrasonic echo
  • the ultrasonic echo can be distinguished from different receiving angles and different depths during the receiving process, so as to facilitate the subsequent calculation and analysis of the shape extraction module.
  • the shape extraction module can be used to obtain the shape characteristic parameters of the reflector according to the ultrasonic echoes at different receiving angles and at different depths.
  • the topography extraction module may include a reflector determination submodule and a topography feature determination submodule, and the reflector determination submodule can determine the presence in the current scene based on the ultrasound echoes at different receiving angles and at different depths.
  • the topography feature determination sub-module can extract the ultrasonic echo corresponding to each of the different reflectors according to the spatial distribution position information, and obtain the corresponding shape of each reflector. Characteristic parameters.
  • the shape extraction module further includes a defect determination sub-module, which is used to restore the defects existing in the reflector according to the sound beam width of the ultrasonic echo corresponding to different positions in the current scene. Obtain the defect contour parameters and defect trend parameters corresponding to the defect.
  • FIG. 2 is a schematic flowchart of a method for extracting the shape of a reflector based on sound field characteristics according to an embodiment of the present invention.
  • the sound field feature-based reflector shape extraction method is implemented based on the sound field feature-based reflector shape extraction system shown in FIG. 1.
  • the method for extracting the shape of a reflector based on sound field characteristics may include the following steps:
  • Step (1) controlling the transmission parameters of the ultrasonic wave and projecting the ultrasonic wave onto the reflector, so as to realize the ultrasonic scanning operation on the reflector.
  • controlling the transmission parameters of the ultrasonic wave and projecting the ultrasonic wave onto the reflector specifically includes controlling each ultrasonic transmitter in the array ultrasonic transmitter to project the ultrasonic wave to the reflector in turn according to a timing signal.
  • controlling the transmission parameters of the ultrasonic wave and projecting the ultrasonic wave onto the reflector also specifically includes setting a corresponding actuator for each ultrasonic transmitter, and the actuator is used accordingly.
  • the respective ultrasonic emission state of each of the ultrasonic transmitters is controlled, so that each ultrasonic transmitter can continuously change the direction and/or intensity of the ultrasonic waves it projects.
  • Step (2) receiving the ultrasonic echoes at different receiving angles and at different depths after the ultrasonic wave reaches the reflector and is reflected by the reflector.
  • step (3) according to the ultrasonic echoes at different receiving angles and at different depths, the topography characteristic parameters of the reflector are obtained.
  • obtaining the topographic characteristic parameters of the reflector specifically includes according to the ultrasonic echoes with respect to different receiving angles and with respect to different depths. Determine the spatial distribution position information of different reflectors in the current scene, and then extract the ultrasonic echo corresponding to each of the different reflectors according to the spatial distribution position information, and obtain the corresponding appearance of each reflector Characteristic Parameters.
  • obtaining the topographic characteristic parameters of the reflector also specifically includes the ultrasonic echo corresponding to different positions in the current scene.
  • the width of the sound beam is used to restore the defect existing in the reflector to obtain the defect profile parameter and defect trend parameter corresponding to the defect.
  • M(n) is the sample value of the defect position obtained by the nth measurement
  • M 0 is the reference value of the defect position
  • k is the floating multiple of the sample value of the defect position obtained by measurement
  • N is the number of defect measurements
  • is the variance of parameter n after normal distribution fitting
  • is the expected value of parameter n after normal distribution fitting.
  • the corresponding confidence probability can reach 99.74%, and then the average value is obtained from the above range using the integral median theorem to minimize the error , And get the calculated value of the defect location by the following formula
  • the calculated value of the location of the defect It can be used to represent the true value of the location of the defect, so that the location of the defect can be located with the greatest probability for subsequent calculation and processing.
  • the sound field feature-based reflector shape extraction system and extraction method are based on the ultrasonic detection defect qualitative system and qualitative method.
  • the reflector shape extraction system and extraction method are based on the ultrasonic inspection defect qualitative system and qualitative method, and according to the important difference that the inspection object is the reflector, the ultrasonic inspection defect qualitative system and qualitative method are performed Adaptive technical adjustments.
  • the ultrasonic flaw detection qualitative system and qualitative method are realized based on the ultrasonic flaw qualitative technology.
  • the ultrasonic flaw qualitative technology can also be called the phased array ultrasonic inspection technology.
  • the phased array ultrasonic inspection technology is Control the delay time of the reception and emission of each element of the array probe to form the focus and scan of the synthesized sound beam, so as to achieve various scanning effects such as the polarization and focus of the ultrasonic beam, and finally achieve high-resolution ultrasound within the scanning range Defect imaging.
  • the specific implementation of the ultrasonic defect qualitative technology may include, but is not limited to, constructing an ultrasonic phased array inspection system based on raw data, or a reflector shape extraction system based on sound field characteristics And extraction methods.
  • the ultrasonic defect qualitative technology in the phased array ultrasonic emission state the array elements in the array transducer are excited in sequence according to a certain delay law, and the generated ultrasonic emission sub-beams are combined in space to form a corresponding
  • the focus point and directivity of each element can be changed by changing the delay law of the excitation of each element, and the beam direction of the focal position can be changed to form a scanning focus within a certain spatial range.
  • the ultrasonic phased array inspection system based on raw data
  • it is specifically based on the ultrasonic inspection defect qualitative technology.
  • the ultrasonic echo The wave signal directly performs analog-to-digital conversion processing and beam synthesis processing to generate original data information, and directly performs imaging processing based on the original data information and directly saves the original data information for subsequent analysis and calculation of the source data; in addition,
  • the reflector shape extraction system and extraction method based on acoustic field characteristics, it is specifically based on the ultrasonic flaw detection qualitative technology, projecting ultrasonic waves to a reflector, and detecting that the reflector reflects the ultrasonic waves.
  • a targeted signal processing operation is performed on the ultrasonic echoes to extract the topographic characteristics of the reflector and calculate the corresponding topographic feature parameters.
  • the detection objects of these two different forms of actual operations are also different, but these two actual operations are all ultrasonic detection
  • Defect qualitative technology is the basic detection technology, both of which are adaptive system adjustments on the basis of ultrasonic defect qualitative technology; it can be seen that the ultrasonic defect qualitative system and qualitative method of the present invention are essentially ultrasonic defect detection
  • the basic technology its purpose is to provide the ultrasonic defect detection principle and data processing basis based on the ultrasonic phased array P-scan method, and on this basis, in the case of specific defect detection objects or different detection data, the ultrasonic detection
  • the defect qualitative technology performs the conversion of different realization modes, so as to obtain the aforementioned ultrasonic phased array detection system based on the original data, or the reflector
  • the reflector shape extraction system and extraction method based on sound field characteristics project ultrasonic waves to a reflector, and detect the reflection of the ultrasonic waves by the reflector to form different receiving angles and different depths.
  • Ultrasonic echo and perform targeted signal processing operations on the ultrasonic echo at the same time to extract the topographic features of the reflector and calculate the corresponding topographic feature parameters; among them, the ultrasound echo is targeted
  • the signal processing operation can adaptively reduce the enlargement of the image defect caused by the sound beam width at the corresponding position according to the different position of the image defect, and it can also optimize the structural defects at different positions on the surface of the object.
  • the defect contour parameter and defect trend parameter corresponding to the structural defect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种基于声场特征的反射体形貌提取系统和提取方法,是向一反射体投射超声波(1),并采用检测反射体反射超声波而形成的关于不同接收角度和关于不同深度的超声回波(2),同时对超声回波进行针对性的信号处理操作,以提取关于反射体的形貌特征和计算出相应的形貌特征参数(3);其中,对超声回波进行针对性的信号处理操作,能够根据图像缺陷所处的不同位置,对相应位置处由声束宽度导致的图像缺陷放大现象进行适应性缩小,而且还能够对物体表面不同位置的结构缺陷进行优化,以此得到结构缺陷对应的缺陷轮廓参数和缺陷趋势参数。

Description

一种基于声场特征的反射体形貌提取系统和提取方法 技术领域
本发明涉及超声无损检测的技术领域,特别涉及一种基于声场特征的反射体形貌提取系统和提取方法。
背景技术
结构的缺陷是用于反映和评定物体结构整体状况的其中一个重要指标。结构的缺陷对应研究宏观物体和微观物体的物理特性具有重要的参考意义。对于宏观物体而言,结构的缺陷会影响宏观物体的结构稳固性,特别是结构缺陷的分布密度、形状和尺寸均会对宏观物体的结构稳固性产生重要的影响,通过对宏观物体结构缺陷的定性分析能够很好地获得关于宏观物体的内部结构信息,而这类宏观物体尤其包括桥梁、隧道或者高层建筑等不同形式的工程结构,对上述工程结构的内部结构缺陷进行定性分析能够帮助工程人员确定相应的维修和加固措施从而有效地延长工程结构的使用寿命;对于微观物体而言,结构的缺陷会影响微观物体自身的物理特性,同样地,该结构缺陷的分布密度、形状和尺寸均会对微观物体的力学、光学和热学等不同方面的物理特性产生影响,通过对微观物体结构缺陷的定性分析能够判断微观物体因结构缺陷的存在而导致的物理特性改变方向,而这类微观物质尤其包括晶体等不同种类的基础物质,对于微观物体的内部结构缺陷进行定性分析能够帮助研究人员确定微观物质的合成制作工序和过程从而进一步改善微观物质自身的不同物理特性。
目前,针对物体结构缺陷的检测主要是通过超声波检测法来实现的,该超声波检测法的实施理论基础为若物体结构存在缺陷,该缺陷会影响其所处位置附近区域内物体的声学特性,当超声波经过该缺陷后,对应的反射或者透射超声波的传播参数也会相应地发生改变,通过测定该反射或者透射超声波传输参 数的改变情况,就能够获得关于该缺陷的定性检测结果。现有的超声波检测方法通常是按照A扫描信号进行相应的变换而得到B扫描图像,由于实际的超声波并不是理想的直线,其是具有一定宽度扇形分布形式,这就使得超声波在进行扫描的过程中,对于非超声波扫描线对应的区域也会形成超声回波信号,这种情况会导致在超声相控阵成像过程中成像图像的缺陷会被放大,从而使得超声相控阵的成像结果存在放大的失真问题,并最终不能根据通过超声相控阵技术形成的图像对物体缺陷进行准确的定性分析。
发明内容
在物体形貌的超声检测项目中,现有的超声波扫描成像显示技术和超声相控阵检测技术都存在形貌成像直观性差、成像准确性、可记录性不可靠以及图像缺陷会被同时放大等缺点,受制于上述存在的问题,现有的针对物体形貌提取的超声检测手段都只能在超声相控阵技术得到关于物体形貌细节图像的基础上,再对该物体形貌细节图像进行后续的图像处理以求去除其中存在的图像缺陷,但是由于该图像缺陷在超声相控阵技术成像的过程中是与物体的形貌细节一同被放大,这就使得该图像缺陷与该物体的形貌细节之间并不存在明显的边界,即使后续的图像处理操作能够在一定程度上去除部分图像缺陷,同时该图像处理操作也会去除部分物体的形貌细节从而导致物体形貌细节的缺失,因此仅仅依靠后续的图像处理操作并不能彻底去除图像缺陷,反而会引起物体形貌细节的丢失,这对物体进行高分辨率的形貌特征提取是一个不利的因素,同时也严重地制约超声波检测在高分辨成像方面的推广应用。
针对现有技术存在的缺陷,本发明提供一种基于声场特征的反射体形貌提取系统和提取方法,该反射体形貌提取系统和提取方法是向一反射体投射超声波,并采用检测该反射体反射该超声波而形成的关于不同接收角度和关于不同深度的超声回波,同时对该超声回波进行针对性的信号处理操作,以提取关于该反射体的形貌特征和计算出相应的形貌特征参数;其中,对该超声回波进行 针对性的信号处理操作,能够根据图像缺陷所处的不同位置,对相应位置处由声束宽度导致的图像缺陷放大现象进行适应性缩小,而且还能够对物体表面不同位置的结构缺陷进行优化,以此得到该结构缺陷对应的缺陷轮廓参数和缺陷趋势参数。
本发明提供一种基于声场特征的反射体形貌提取系统,其特征在于,所述反射体形貌提取系统包括:
超声波发射模块,用于向所述反射体投射超声波;
超声波发射控制模块,用于控制所述超声波发射模块的超声波发射参数,从而实现对所述反射体进行超声波扫描操作;
超声波接收模块,用于接收所述超声波到达所述反射体、并被所述反射体反射后所形成的超声回波;
超声波接收控制模块,用于控制所述超声波接收模块,以使所述超声波接收模块能够获得关于不同接收角度和关于不同深度的超声回波;
形貌提取模块,用于根据所述关于不同接收角度和关于不同深度的超声回波,得到所述反射体的形貌特征参数;
进一步,所述超声波发射模块包括阵列式超声发射器,所述超声波发射控制模块包括时序生成器,所述时序生成器用于向所述阵列式超声发射器发送一时序信号,所述阵列式超声发射器能够按照所述时序信号驱动其包含的每一个超声发射器依次向所述反射体投射超声波;其中,所述阵列式超声发射器为线状阵列超声发射器、矩形阵列超声发射器、圆形阵列超声发射器或者环形阵列超声发射器;
进一步,所述超声波发射控制模块包括致动器阵列,所述致动器阵列具有若干致动器,每一个致动器对应于所述超声波发射模块中的每一个超声发射器,以相应地控制每一个所述超声发射器各自的超声发射状态,从而使得每一个所述超声发射器能够连续地改变其投射超声波的方向和/或强度;
进一步,所述形貌提取模块包括反射体确定子模块和形貌特征确定子模块, 所述反射体确定子模块能够根据所述关于不同接收角度和关于不同深度的超声回波确定当前场景中存在的不同反射体的空间分布位置信息,所述形貌特征确定子模块能够根据所述空间分布位置信息,提取不同反射体中的每一个所对应的超声回波,并以此得到每一个反射体相应的形貌特征参数;
进一步,所述形貌提取模块包括反射体确定子模块和形貌特征确定子模块,所述反射体确定子模块能够根据所述关于不同接收角度和关于不同深度的超声回波确定当前场景中存在的不同反射体的空间分布位置信息,所述形貌特征确定子模块能够根据所述空间分布位置信息,提取不同反射体中的每一个所所对应的超声回波,并以此得到每一个反射体相应的形貌特征参数。
本发明还提供一种基于声场特征的反射体形貌提取方法,其特征在于,所述反射体形貌提取方法包括如下步骤:
步骤(1),控制超声波的发射参数并将所述超声波投射至反射体上,以实现对所述反射体进行超声波扫描操作;
步骤(2),接收所述超声波到达所述反射体、并被所述反射体反射后的关于不同接收角度和关于不同深度的超声回波;
步骤(3),根据所述关于不同接收角度和关于不同深度的超声回波,得到所述反射体的形貌特征参数;
进一步,在步骤(1)中,控制超声波的发射参数并将所述超声波投射至反射体上具体包括依据一时序信号控制阵列式超声发射器中的每一个超声发射器依次向所述反射体投射超声波;
进一步,在步骤(1)中,控制超声波的发射参数并将所述超声波投射至反射体上还具体包括对每一个超声发射器都分别设置相应的一个致动器,通过所述致动器相应地控制每一个所述超声发射器各自的超声发射状态,从而使得每一个所述超声发射器能够连续地改变其投射超声波的方向和/或强度;
进一步,在步骤(3)中,根据所述关于不同接收角度和关于不同深度的超声回波,得到所述反射体的形貌特征参数具体包括根据所述关于不同接收角 度和关于不同深度的超声回波确定当前场景中存在的不同反射体的空间分布位置信息,再根据所述空间分布位置信息,提取不同反射体中的每一个所对应的超声回波,并以此得到每一个反射体相应的形貌特征参数;
进一步,在步骤(3)中,根据所述关于不同接收角度和关于不同深度的超声回波,得到所述反射体的形貌特征参数还具体包括根据当前场景中不同位置对应的超声回波的声束宽度,对所述反射体存在的缺陷进行还原处理,以此得到所述缺陷对应的缺陷轮廓参数和缺陷趋势参数;
相比于现有技术,本发明的基于声场特征的反射体形貌提取系统和提取方法是向一反射体投射超声波,并采用检测该反射体反射该超声波而形成的关于不同接收角度和关于不同深度的超声回波,同时对该超声回波进行针对性的信号处理操作,以提取关于该反射体的形貌特征和计算出相应的形貌特征参数;其中,对该超声回波进行针对性的信号处理操作,能够根据图像缺陷所处的不同位置,对相应位置处由声束宽度导致的图像缺陷放大现象进行适应性缩小,而且还能够对物体表面不同位置的结构缺陷进行优化,以此得到该结构缺陷对应的缺陷轮廓参数和缺陷趋势参数。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种基于声场特征的反射体形貌提取系统的结构示意图。
图2为本发明提供的一种基于声场特征的反射体形貌提取方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅图1,为本发明实施例提供的一种基于声场特征的反射体形貌提取系统的结构示意图。该基于声场特征的反射体形貌提取系统包括超声波发射模块、超声波发射控制模块、超声波接收模块、超声波接收控制模块和形貌提取模块。其中,该反射体形貌提取系统优选是提取表面能够反射超声波的反射体对应的表面形貌特征,即该反射体形貌提取系统是基于该反射体表面反射形成的超声回波并分析和提取该超声回波所携带的表面形貌信息,从而计算得到该表面形貌特征。这是因为当超声波到达该反射体的表面后,该反射体表面的结构细节会对该超声波的波场分布进行调制,即从该反射体反射回来的超声回波自身就携带着关于该反射体表面结构形貌细节的关联信息,而通过对该超声回波进行相应的分析计算就可提取出其中的表面结构形貌细节信息以实现对该反射体表面形貌特征提取。实际上,本发明的基于声场特征的反射体形貌提取系统同样是采用具有一定宽度的超声波束对反射体的表面进行扫描,故该反射体形貌提取系统也会存在现有技术中图像缺陷与结构形貌细节被同时放大的潜在问题,但是该反射体形貌提取系统在接收超声回波的方式上明显有别于现有技术,该反射体形貌提取系统能够在不同接收角度和不同深度场景中接收超声回波,在对不同场景下获得的超声回波进行针对性的计算处理,从而避免在获得反射 体表面结构形貌细节的同时对图像缺陷进行过滤,以最终提高反射体表面结构形貌特征提取的准确性。
具体而言,该超声波发射模块是用于向该反射体投射超声波。优选地,该超声波发射模块可包括一阵列式超声发射器,该阵列式超声发射器用于向该反射体扫描投射一具有特定形状分布的超声波;其中,该阵列式超声发射器包括若干个以特定阵列排列形式组成的超声发射器,优选地,该特定阵列排布形式可包括但不限于是线型阵列形式,二维矩形阵列形式、二维圆形阵列形式或者二维环形阵列形式;该阵列式超声发射器中的每一个超声发射器之间优选相对独立地工作,其能够自主地向该反射体投射超声波。实际上,由于具有不同阵列排布形式阵列式超声反射器产生的超声波相应地具有不同分布形状,而具有不同分布形状的超声波扫描投射到反射体上后会生成不同的反射超声波,基于上述这方面的考虑,本领域的技术人员可根据该反射体的实际形状和尺寸选择合适分布形状的阵列式超声反射器,从而使得该反射体能够获得完整的超声扫描,优选地,该线型阵列形式超声发射器适用于具有细长形状的反射体,该二维矩形阵列形式或者二维圆形阵列形式的超声发射器适用于具有扁平形状的反射体,该二维环形阵列形式的超声发射器适用于在三维方向上尺寸大致相近的立体状反射体。
该超声波发射控制模块可用于控制超声波发射模块的超声波发射参数,从而实现对该反射体进行超声波扫描操作。优选地,该超声波发射控制模块可包括一时序生成器,该时序生成器用于向该阵列式超声发射器发送一时序信号,该阵列式超声发射器能够按照该时序信号驱动其包含的每一个超声发射器依次向该反射体投射超声波;优选地,该时序信号可为一系列高低电平集合共同组成的时钟信号,其中,该高低电平集合包括若干高低电平逻辑序列,每一个高低电平逻辑序列中只包括一个高电平,该唯一的一个高电平用于指示当前需要驱动发射超声波对应的超声波发射器,即该阵列式超声波发射器会根据该高低电平集合中的每一个高低电平逻辑序列进行对应超声波发射器的驱动控制, 以保证在同一时刻只有一个超声波发射器发射超声波。
进一步,该超声波发射控制模块还可包括一致动器阵列,该致动器阵列具有若干致动器,每一个致动器对应于该超声波发射模块中的每一个超声发射器,以相应地控制每一个该超声发射器各自的超声发射状态,从而使得每一个该超声发射器能够连续地改变其投射超声波的方向和/或强度。优选地,优选地,该致动器可为但不限于是一维线性致动器或者二维平面致动器,其中,该一维线性致动器能够沿单一方向改变该超声波发射器投射超声波的角度,该二维平面致动器能够沿相互垂直的两个方向改变该超声波发射器投射超声波的角度。优选地,该致动器阵列单元中的每一个致动器均可同时相互独立地工作、或者在其对应的超声波发射器发射超声波期间才工作。
该超声波接收模块用于接收所述超声波到达该反射体、并被该反射体反射后所形成的超声回波。优选地,该超声波接收模块可包括若干个呈阵列形式分布的超声波传感器,该若干个超声波传感器能够最大限度地覆盖该超声回波的传播范围,从而提高该超声波接收模块对于该超声回波的接收效率。该超声波接收控制模块用于控制该超声波接收模块,以使该超声波接收模块能够获得关于不同接收角度和关于不同深度的超声回波。相应地,该超声波接收控制模块能够控制该若干个超声波传感器接收该超声回波的不同工作状态,由于该若干个超声波传感器是分别分布在关于该超声回波的不同接收方位角和不同传播深度上,通过控制该若干个超声波传感器接收超声回波的工作状态,能够实现在接收过程中对超声回波进行不同接收角度和不同深度的区分,以便于后续该形貌提取模块的计算分析。
相应地,该形貌提取模块可用于根据该关于不同接收角度和关于不同深度的超声回波,得到该反射体的形貌特征参数。优选地,该形貌提取模块可包括反射体确定子模块和形貌特征确定子模块,该反射体确定子模块能够根据该关于不同接收角度和关于不同深度的超声回波确定当前场景中存在的不同反射体的空间分布位置信息,该形貌特征确定子模块能够根据该空间分布位置信息, 提取不同反射体中的每一个所对应的超声回波,并以此得到每一个反射体相应的形貌特征参数。
进一步,该形貌提取模块还包括缺陷确定子模块,该缺陷确定子模块用于根据当前场景中不同位置对应的超声回波的声束宽度,对该反射体存在的缺陷进行还原处理,以此得到该缺陷对应的缺陷轮廓参数和缺陷趋势参数。
相应地,参阅图2,为本发明实施例提供的一种基于声场特征的反射体形貌提取方法的流程示意图。优选地,该基于声场特征的反射体形貌提取方法是基于上述图1所示的基于声场特征的反射体形貌提取系统而实现的。具体而言,该基于声场特征的反射体形貌提取方法可包括如下步骤:
步骤(1),控制超声波的发射参数并将该超声波投射至反射体上,以实现对该反射体进行超声波扫描操作。
进一步,在该步骤(1)中,控制超声波的发射参数并将该超声波投射至反射体上具体包括依据一时序信号控制阵列式超声发射器中的每一个超声发射器依次向该反射体投射超声波。
进一步,在该步骤(1)中,控制超声波的发射参数并将该超声波投射至反射体上还具体包括对每一个超声发射器都分别设置相应的一个致动器,通过该致动器相应地控制每一个所述超声发射器各自的超声发射状态,从而使得每一个该超声发射器能够连续地改变其投射超声波的方向和/或强度。
步骤(2),接收该超声波到达所述反射体、并被该反射体反射后的关于不同接收角度和关于不同深度的超声回波。
步骤(3),根据该关于不同接收角度和关于不同深度的超声回波,得到该反射体的形貌特征参数。
进一步,在该步骤(3)中,根据该关于不同接收角度和关于不同深度的超声回波,得到该反射体的形貌特征参数具体包括根据该关于不同接收角度和关于不同深度的超声回波确定当前场景中存在的不同反射体的空间分布位置信息,再根据该空间分布位置信息,提取不同反射体中的每一个所对应的超声 回波,并以此得到每一个反射体相应的形貌特征参数。
进一步,在该步骤(3)中,根据所述关于不同接收角度和关于不同深度的超声回波,得到该反射体的形貌特征参数还具体包括根据当前场景中不同位置对应的超声回波的声束宽度,对该反射体存在的缺陷进行还原处理,以此得到该缺陷对应的缺陷轮廓参数和缺陷趋势参数。
还有,无论通过何种技术确定缺陷所处的位置,由于一些随机变量因素的存在,会导致该位置的确定结果存在一定的随机误差,为了消除上述随机误差,可通过多次测量得到大量该缺陷所处位置的样本值,在根据该样本值进行拟合。由于随机变量因素的分布可近似认定为服从正态分布,故对这些样本值进行正态分布拟合,其相应的正态分布拟合公式如下
Figure PCTCN2019097808-appb-000001
在上述公式中,M(n)为第n次测量得到的缺陷所处位置的样本值,M 0为缺陷所处位置的基准值,k为测量得到的缺陷所处位置的样本值的浮动倍数,n为缺陷测量次数,σ为正态分布拟合后参数n的方差,μ为正态分布拟合后参数n的期望值。
根据3σ准则可知,当n∈(μ-3σ,μ+3σ)时,其对应的置信概率可达到99.74%,再由上述范围内利用积分中值定理求取其平均值,以使误差达到最小,并且通过下面公式得到缺陷所处位置的计算值
Figure PCTCN2019097808-appb-000002
Figure PCTCN2019097808-appb-000003
其中,该缺陷所处位置的计算值
Figure PCTCN2019097808-appb-000004
可用于表示缺陷所处位置的真实值,这样能够最大概率地定位缺陷的位置,以便于后续的计算处理。
从上述关于该基于声场特征的反射体形貌提取系统和提取方法的内容介绍可知,该基于声场特征的反射体形貌提取系统和提取方法是以超声检测缺陷定性系统和定性方法为技术基础而实现的,该反射体形貌提取系统和提取方法是在超声检测缺陷定性系统和定性方法的基础上,根据检测对象为反射体这一 重要区别,来对该超声检测缺陷定性系统和定性方法进行适应性的技术调整。具体来说,该超声检测缺陷定性系统和定性方法是基于超声检测缺陷定性技术来实现的,该超声检测缺陷定性技术又可称作相控阵超声检测技术,该相控阵超声检测技术是通过控制阵列探头各个阵元的接收与发射的延迟时间,形成合成声束的聚焦、扫描等,从而实现超声波束的偏振、聚焦等各种扫描效果,并最终在扫描范围内实现高分辨率的超声缺陷成像。此外,该超声检测缺陷定性技术(或者相控阵超声检测技术)的具体实现方式可包括但不限于是构造基于原始数据的超声相控阵检测系统、或者基于声场特征的反射体形貌提取系统和提取方法等实际操作中。在上述列举的实际操作中,该超声检测缺陷定性技术在相控阵超声发射状态下,阵列换能器中各阵元按照一定延迟规律顺序激发,产生的超声发射子波束在空间合成,形成相应的聚焦点和指向性,并且通过改变各阵元激发的延迟规律,可以改变焦点位置的波束指向,形成在一定空间范围内的扫描聚焦。
进一步而言,在该基于原始数据的超声相控阵检测系统的实际操作中,其具体是基于该超声检测缺陷定性技术,在接收到来自被测物体的超声回波信号后,对该超声回波信号直接进行模数转换处理和波束合成处理后生成一原始数据信息,并基于该原始数据信息直接进行成像处理以及将该原始数据信息直接进行保存以用于后续分析计算的源数据;另外,在该基于声场特征的反射体形貌提取系统和提取方法的实际操作中,其具体是基于该超声检测缺陷定性技术,向一反射体投射超声波,并采用检测该反射体反射该超声波而形成的关于不同接收角度和关于不同深度的超声回波,同时对该超声回波进行针对性的信号处理操作,以提取关于该反射体的形貌特征和计算出相应的形貌特征参数。上述这两种不同形式的实际操作虽然各自具有不同的超声波发射、接收和处理程序,这两种不同形式的实际操作所针对的检测对象也是不同的,但是这两种实际操作都是以超声检测缺陷定性技术为基础检测技术,这两者都是在超声检测缺陷定性技术的基础上进行适应性的系统调整;可见,本发明的超声检测缺陷定性 系统和定性方法本质上是属于超声缺陷检测的基础技术,其目的是用于提供基于超声相控阵P扫描方式的超声缺陷检测原理与数据处理基础,并以此为基础,在具体缺陷检测对象或者检测数据不同的情况下,对该超声检测缺陷定性技术进行不同实现模式的转换,从而得到上述提及的基于原始数据的超声相控阵检测系统、或者基于声场特征的反射体形貌提取系统和提取方法等不同实现方式。
从上述实施例可以看出,该基于声场特征的反射体形貌提取系统和提取方法是向一反射体投射超声波,并采用检测该反射体反射该超声波而形成的关于不同接收角度和关于不同深度的超声回波,同时对该超声回波进行针对性的信号处理操作,以提取关于该反射体的形貌特征和计算出相应的形貌特征参数;其中,对该超声回波进行针对性的信号处理操作,能够根据图像缺陷所处的不同位置,对相应位置处由声束宽度导致的图像缺陷放大现象进行适应性缩小,而且还能够对物体表面不同位置的结构缺陷进行优化,以此得到该结构缺陷对应的缺陷轮廓参数和缺陷趋势参数。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种基于声场特征的反射体形貌提取系统,其特征在于,所述反射体形貌提取系统包括:
    超声波发射模块,用于向所述反射体投射超声波;
    超声波发射控制模块,用于控制所述超声波发射模块的超声波发射参数,从而实现对所述反射体进行超声波扫描操作;
    超声波接收模块,用于接收所述超声波到达所述反射体、并被所述反射体反射后所形成的超声回波;
    超声波接收控制模块,用于控制所述超声波接收模块,以使所述超声波接收模块能够获得关于不同接收角度和关于不同深度的超声回波;
    形貌提取模块,用于根据所述关于不同接收角度和关于不同深度的超声回波,得到所述反射体的形貌特征参数。
  2. 如权利要求1所述的基于声场特征的反射体形貌提取系统,其特征在于:所述超声波发射模块包括阵列式超声发射器,所述超声波发射控制模块包括时序生成器,所述时序生成器用于向所述阵列式超声发射器发送一时序信号,所述阵列式超声发射器能够按照所述时序信号驱动其包含的每一个超声发射器依次向所述反射体投射超声波;其中,所述阵列式超声发射器为线状阵列超声发射器、矩形阵列超声发射器、圆形阵列超声发射器或者环形阵列超声发射器。
  3. 如权利要求1所述的基于声场特征的反射体形貌提取系统,其特征在于:所述超声波发射控制模块包括致动器阵列,所述致动器阵列具有若干致动器,每一个致动器对应于所述超声波发射模块中的每一个超声发射器,以相应地控制每一个所述超声发射器各自的超声发射状态,从而使得每一个所述超声发射器能够连续地改变其投射超声波的方向和/或强度。
  4. 如权利要求1所述的基于声场特征的反射体形貌提取系统,其特征在于:所述形貌提取模块包括反射体确定子模块和形貌特征确定子模块,所述反射体 确定子模块能够根据所述关于不同接收角度和关于不同深度的超声回波确定当前场景中存在的不同反射体的空间分布位置信息,所述形貌特征确定子模块能够根据所述空间分布位置信息,提取不同反射体中的每一个所对应的超声回波,并以此得到每一个反射体相应的形貌特征参数。
  5. 如权利要求1所述的基于声场特征的反射体形貌提取系统,其特征在于:所述形貌提取模块还包括缺陷确定子模块,所述缺陷确定子模块用于根据当前场景中不同位置对应的超声回波的声束宽度,对所述反射体存在的缺陷进行还原处理,以此得到所述缺陷对应的缺陷轮廓参数和缺陷趋势参数。
  6. 一种使用如权利要求1-5中任一项所述的基于声场特征的反射体形貌提取系统的反射体形貌提取方法,其特征在于,所述反射体形貌提取方法包括如下步骤:
    步骤(1),控制超声波的发射参数并将所述超声波投射至反射体上,以实现对所述反射体进行超声波扫描操作;
    步骤(2),接收所述超声波到达所述反射体、并被所述反射体反射后的关于不同接收角度和关于不同深度的超声回波;
    步骤(3),根据所述关于不同接收角度和关于不同深度的超声回波,得到所述反射体的形貌特征参数。
  7. 如权利要求6所述的反射体形貌提取方法,其特征在于:在步骤(1)中,控制超声波的发射参数并将所述超声波投射至反射体上具体包括依据一时序信号控制阵列式超声发射器中的每一个超声发射器依次向所述反射体投射超声波。
  8. 如权利要求7所述的反射体形貌提取方法,其特征在于:在步骤(1)中,控制超声波的发射参数并将所述超声波投射至反射体上还具体包括对每一个超声发射器都分别设置相应的一个致动器,通过所述致动器相应地控制每一个所述超声发射器各自的超声发射状态,从而使得每一个所述超声发射器能够连续地改变其投射超声波的方向和/或强度。
  9. 如权利要求6所述的反射体形貌提取方法,其特征在于:在步骤(3)中,根据所述关于不同接收角度和关于不同深度的超声回波,得到所述反射体的形貌特征参数具体包括根据所述关于不同接收角度和关于不同深度的超声回波确定当前场景中存在的不同反射体的空间分布位置信息,再根据所述空间分布位置信息,提取不同反射体中的每一个所对应的超声回波,并以此得到每一个反射体相应的形貌特征参数。
  10. 如权利要求9所述的反射体形貌提取方法,其特征在于:在步骤(3)中,根据所述关于不同接收角度和关于不同深度的超声回波,得到所述反射体的形貌特征参数还具体包括根据当前场景中不同位置对应的超声回波的声束宽度,对所述反射体存在的缺陷进行还原处理,以此得到所述缺陷对应的缺陷轮廓参数和缺陷趋势参数。
PCT/CN2019/097808 2019-03-28 2019-07-26 一种基于声场特征的反射体形貌提取系统和提取方法 WO2020191971A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910245518.4 2019-03-28
CN201910245518.4A CN109828030B (zh) 2019-03-28 2019-03-28 一种基于声场特征的反射体形貌提取系统和提取方法

Publications (1)

Publication Number Publication Date
WO2020191971A1 true WO2020191971A1 (zh) 2020-10-01

Family

ID=66873643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097808 WO2020191971A1 (zh) 2019-03-28 2019-07-26 一种基于声场特征的反射体形貌提取系统和提取方法

Country Status (2)

Country Link
CN (1) CN109828030B (zh)
WO (1) WO2020191971A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828030B (zh) * 2019-03-28 2021-07-27 烟台中凯检测科技有限公司 一种基于声场特征的反射体形貌提取系统和提取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122566A1 (en) * 2008-11-19 2010-05-20 Medison Co., Ltd. Testing An Acoustic Property Of An Ultrasound Probe
CN107688050A (zh) * 2017-08-15 2018-02-13 日探科技(苏州)有限公司 一种空气耦合超声相控阵检测装置
CN107747922A (zh) * 2017-09-30 2018-03-02 浙江大学 一种基于激光超声的亚表面缺埋藏深度的测量方法
CN207717707U (zh) * 2018-01-04 2018-08-10 常州市常超电子研究所有限公司 衍射反射联合法探头
CN108872387A (zh) * 2018-04-23 2018-11-23 江苏省特种设备安全监督检验研究院 超声相控阵检测成像系统
CN109828030A (zh) * 2019-03-28 2019-05-31 深圳中凯剑无损检测设备科技有限公司 一种基于声场特征的反射体形貌提取系统和提取方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2520120B1 (fr) * 1982-01-15 1986-04-11 Inst Razrabotke Nerazrushaj Transducteur magneto-acoustique pour defectoscope ultra-sonore
JPS6086460A (ja) * 1983-10-19 1985-05-16 Hitachi Ltd 2軸超音波探触子
CA2169307C (en) * 1994-12-12 2003-10-14 David A. Hutchins Non-contact characterization and inspection of materials using wideband air coupled ultrasound
JPH08248009A (ja) * 1995-03-13 1996-09-27 Sumitomo Light Metal Ind Ltd 金属薄板の超音波探傷装置
KR20010007201A (ko) * 1999-06-04 2001-01-26 로빈 엘. 포이에르바허 초음파 피유도파들을 이용하여 원자로 용기 배관 용접부를검사하기 위한 장치
DE102012108787A1 (de) * 2011-09-29 2013-04-04 Ge Sensing & Inspection Technologies Gmbh Verfahren zur Verarbeitung eines Ultraschallanalogsignals, digitale Signalverarbeitungseinheit und Ultraschalluntersuchungseinrichtung
JP6126497B2 (ja) * 2013-08-30 2017-05-10 川崎重工業株式会社 超音波探傷装置及び超音波探傷装置の運転方法
CN103913513B (zh) * 2014-03-26 2016-05-11 深圳大学 相控阵全局聚焦系统及其聚焦方法
CN103901109A (zh) * 2014-03-31 2014-07-02 华南理工大学 一种复合绝缘子内部缺陷的相控阵超声检测装置及方法
CN104122333B (zh) * 2014-04-12 2017-04-05 北京工业大学 阵列解析式超声波聚焦换能器
JP6206350B2 (ja) * 2014-07-10 2017-10-04 Jfeスチール株式会社 超音波探傷装置及び超音波探傷方法
CN104251881A (zh) * 2014-08-29 2014-12-31 内蒙古北方重工业集团有限公司 一种挤压成型厚壁无缝钢管超声检测缺陷分类及评定方法
CN104605891B (zh) * 2014-12-31 2017-05-31 中国科学院苏州生物医学工程技术研究所 检测剪切波在生物组织中传播速度的方法、检测生物组织弹性的方法及生物组织弹性成像方法
CN105987951B (zh) * 2015-01-28 2018-12-07 宝山钢铁股份有限公司 识别焊缝边部缺陷类型的探伤方法
JP2018514748A (ja) * 2015-02-06 2018-06-07 ザ ユニバーシティ オブ アクロンThe University of Akron 光学撮像システムおよびその方法
WO2016144709A1 (en) * 2015-03-06 2016-09-15 Gatekeeper Systems, Inc. Low-energy consumption location of movable objects
CN104698087A (zh) * 2015-03-30 2015-06-10 河海大学常州校区 基于递归奇异熵的预应力孔道浆体剥离度检测装置及方法
JPWO2017168795A1 (ja) * 2016-03-31 2018-08-02 株式会社Ihi 非破壊検査方法及び接触媒質押付用治具
CN205941459U (zh) * 2016-07-21 2017-02-08 西安理工大学 一种结合面接触状态超声检测的实验装置
JP6658603B2 (ja) * 2017-02-21 2020-03-04 トヨタ自動車株式会社 溶接部検査装置
CN114360727A (zh) * 2017-04-21 2022-04-15 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像装置及弹性成像结果评价方法
CN106996962A (zh) * 2017-04-26 2017-08-01 桂林电子科技大学 激光注入光纤与相干探测的激光超声无损检测系统
CN107091877A (zh) * 2017-04-26 2017-08-25 桂林电子科技大学 激光注入光纤与相干探测的激光超声无损检测方法
CN108956761B (zh) * 2017-05-23 2020-12-25 浙江工商职业技术学院 钢板全覆盖超声波检测装置及方法
CN107186342B (zh) * 2017-06-18 2023-04-07 西安优耐特容器制造有限公司 一种薄壁管件焊接成型控制系统及方法
CN108226007B (zh) * 2017-12-29 2020-05-19 大连理工大学 一种基于超声双参数的碳纤维增强树脂基复合材料孔隙率表征方法
CN108065964B (zh) * 2018-01-16 2021-04-20 中国科学院苏州生物医学工程技术研究所 一种超声成像方法、装置、设备及超声成像探头
CN108663296B (zh) * 2018-03-28 2020-06-12 北京理工大学 一种基于双频超声的粉尘浓度检测系统及检测方法
CN109410263A (zh) * 2018-09-30 2019-03-01 Oppo广东移动通信有限公司 一种数据采集方法、装置及计算机存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122566A1 (en) * 2008-11-19 2010-05-20 Medison Co., Ltd. Testing An Acoustic Property Of An Ultrasound Probe
CN107688050A (zh) * 2017-08-15 2018-02-13 日探科技(苏州)有限公司 一种空气耦合超声相控阵检测装置
CN107747922A (zh) * 2017-09-30 2018-03-02 浙江大学 一种基于激光超声的亚表面缺埋藏深度的测量方法
CN207717707U (zh) * 2018-01-04 2018-08-10 常州市常超电子研究所有限公司 衍射反射联合法探头
CN108872387A (zh) * 2018-04-23 2018-11-23 江苏省特种设备安全监督检验研究院 超声相控阵检测成像系统
CN109828030A (zh) * 2019-03-28 2019-05-31 深圳中凯剑无损检测设备科技有限公司 一种基于声场特征的反射体形貌提取系统和提取方法

Also Published As

Publication number Publication date
CN109828030B (zh) 2021-07-27
CN109828030A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN109828028B (zh) 一种超声检测缺陷定性系统和定性方法
CN110333293B (zh) 一种正方网格相控超声阵列激发与检测混凝土缺陷的方法
CN103901109A (zh) 一种复合绝缘子内部缺陷的相控阵超声检测装置及方法
JP2009524803A (ja) 少なくとも1つの音響異方性材料領域を有する被検体の非破壊検査方法
EP2546641B1 (en) Ultrasonic flaw detector and ultrasonic flaw detection method for objects having a complex surface shape
WO2011140911A1 (zh) 探伤系统及探伤方法
JP2010243227A (ja) 超音波検査装置及び超音波検査方法
JP4634336B2 (ja) 超音波探傷方法及び超音波探傷装置
CN203981638U (zh) 一种复合绝缘子内部缺陷的相控阵超声检测装置
CN109765295A (zh) 一种混凝土表面微裂缝的激光超声快速检测方法及装置
JP2005274557A (ja) 超音波探傷方法及び装置
CN104280459A (zh) 曲轴r处内部缺陷的超声波相控阵检测方法
JP2016217722A (ja) 計測装置
WO2020191970A1 (zh) 一种基于原始数据的超声相控阵检测系统和方法
US20160349217A1 (en) Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging
WO2020191971A1 (zh) 一种基于声场特征的反射体形貌提取系统和提取方法
JP2010266416A (ja) フェーズドアレイ開口合成処理方法並びにその適用効果評価方法
JP5910641B2 (ja) 超音波映像化方法及び超音波映像化装置
CN113534161B (zh) 一种用于远距离定位水下声源的波束镜像聚焦方法
WO2020184521A1 (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備、鋼材の製造方法、及び鋼材の品質管理方法
JP2009244234A (ja) 超音波アレイセンサおよび信号処理方法
CN117030856A (zh) 一种动态聚焦相控阵超声检测方法、装置、设备及介质
CN114047256A (zh) 基于动态阵元合成孔径聚焦的平板陶瓷膜缺陷超声成像方法
CN107144637B (zh) 一种识别裂纹方向的方法
Kachanov et al. Detection of reflecting planes in ultrasonic tomography of concrete building structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922076

Country of ref document: EP

Kind code of ref document: A1