WO2011140911A1 - 探伤系统及探伤方法 - Google Patents
探伤系统及探伤方法 Download PDFInfo
- Publication number
- WO2011140911A1 WO2011140911A1 PCT/CN2011/073349 CN2011073349W WO2011140911A1 WO 2011140911 A1 WO2011140911 A1 WO 2011140911A1 CN 2011073349 W CN2011073349 W CN 2011073349W WO 2011140911 A1 WO2011140911 A1 WO 2011140911A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- flaw detection
- workpiece
- ultrasonic signal
- detection system
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2418—Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/0289—Internal structure, e.g. defects, grain size, texture
Definitions
- the present invention relates to the field of non-destructive testing, and more particularly to a flaw detection system and a flaw detection method using ultrasonic technology.
- ultrasonic flaw detection technology is a non-destructive testing technology widely used in the industry.
- the ultrasonic probe is used to generate ultrasonic waves to the flaw detecting surface of the workpiece, and the inner portion of the workpiece is determined based on the reflected echoes or diffracted waves of the ultrasonic waves.
- the existing ultrasonic flaw detection technology can be divided into various types.
- it includes a vertical flaw detection method in which a vertical probe transmits and receives ultrasonic waves perpendicularly to a flaw detection surface, a oblique angle flaw detection method in which an ultrasonic wave is incident on a flaw detection surface, and an echo is received, and a Time Of Flight Diffraction (TOF) diffraction method. and many more.
- a vertical flaw detection method in which a vertical probe transmits and receives ultrasonic waves perpendicularly to a flaw detection surface
- a oblique angle flaw detection method in which an ultrasonic wave is incident on a flaw detection surface, and an echo is received
- TOF Time Of Flight Diffraction
- ultrasonic flaw detection methods have their own advantages and disadvantages, and it is usually necessary to select an appropriate flaw detection method based on the detection environment. For example, the selection of the flaw detection method is performed based on the material and shape of the workpiece to be detected. Therefore, the above-described examples of ultrasonic flaw detection methods have respective limitations. Moreover, since the above-mentioned ultrasonic flaw detection method requires the probe for transmitting ultrasonic waves to be placed on the flaw detection surface of the workpiece for contact flaw detection, the flaw detection results of the ultrasonic flaw detection methods are easily susceptible to the probe for some workpieces having irregular surfaces or complicated shapes. The effect of contact conditions with the flaw detection surface. Summary of the invention
- the problem solved by the present invention is that the flaw detection result of the existing ultrasonic flaw detection method is susceptible to the influence of the probe and the contact surface condition of the flaw detection surface.
- the present invention provides a flaw detection system, comprising: a laser, generating a pulsed laser;
- the optical path adjusting device performs optical path adjustment on the pulsed laser light generated by the laser, and then projects the laser light onto the flaw detection surface of the workpiece, and performs laser scanning on the flaw detection surface;
- a signal receiving device for capturing a thermally excited ultrasonic signal generated by the laser scanning of the detected workpiece
- the imaging device generates a dynamic waveform image based on the thermally excited ultrasonic signal received by the signal receiving device.
- the present invention also provides a flaw detection method, comprising: applying a pulsed laser to scan a surface of a workpiece to be inspected;
- the above-mentioned flaw detection system and flaw detection method have the following advantages: the laser scanning is used instead of the prior art to transmit ultrasonic waves as a detection signal source, since the laser scanning does not need to be as existing Technically, the probe is in contact with the surface of the workpiece to be inspected, and the flaw detection result is not affected by the contact condition of the probe and the flaw detection surface, and thus is relatively accurate. At the same time, the non-contact scanning method also greatly improves the detection efficiency. In addition, non-destructive testing is also possible for complex shaped workpieces that are difficult to detect in the prior art.
- FIG. 1 is a schematic view of an embodiment of a flaw detection system of the present invention
- FIG. 2 is a schematic view of an embodiment of the flaw detection system of the present invention.
- FIG. 3 is a schematic view showing an alternative implementation of the electric scanning mirror in the flaw detection system shown in FIG. 2.
- FIG. 4 is a schematic view showing the projection of the laser of the flaw detection system shown in FIG. 2 on the flaw detection surface of the workpiece;
- FIG. 5 is a flaw detection system shown in FIG. A schematic diagram of spatial projection coordinates of the laser projected on the workpiece is obtained;
- FIG. 6 is a schematic diagram of the ultrasonic receiving probe composed of 2 probes for performing defect 3D positioning;
- FIG. 7 is a schematic diagram of an embodiment of the flaw detecting method of the present invention.
- an embodiment of the flaw detection system of the present invention includes: a laser 10 that generates a pulsed laser;
- the optical path adjusting device 20 performs optical path adjustment on the laser light generated by the laser 10, and then projects the laser light onto the workpiece detecting surface to perform laser scanning on the detecting surface;
- the signal receiving device 30 captures a thermally excited ultrasonic signal generated by the laser scanning of the detected workpiece;
- the imaging device 40 generates a dynamic waveform image based on the thermally excited ultrasonic signal received by the signal receiving device 30.
- the pulsed laser generated by the laser 10 serves as a source of the flaw detection signal, and the pulsed laser light is adjusted by the optical path of the optical path adjusting device 20, so that the projection position on the flaw detection surface can be changed, thereby realizing the flaw detection surface.
- Laser scanning It has been experimentally confirmed that an instantaneous intense thermal expansion occurs at the position of the pulsed laser projection, thereby generating thermally excited ultrasonic waves. And, the thermally excited ultrasonic wave propagates along the inside of the flaw detection workpiece along the flaw detection surface.
- an embodiment of the flaw detection system of the present invention comprises: a laser 11 for generating a pulsed laser; and an electric scanning mirror 21 for adjusting a reflection angle of a pulsed laser generated by the pulsed laser generator 11 according to a scan control signal.
- the pulsed laser is projected onto the flaw detection surface of the workpiece 100, and the flaw detection surface is laser-scanned; the ultrasonic receiving probe 31 captures the thermally excited ultrasonic wave generated by the laser scanning by the workpiece 100.
- the amplifier 41 performs amplification processing on the thermally excited ultrasonic signal; the analog to digital converter 42 performs analog-to-digital conversion processing on the amplified thermally excited ultrasonic signal; and the central control computer 43 sends a scan to the electric scanning mirror 21.
- the control signal controls the optical path adjustment process, controls the switching of the laser 11, and transmits a synchronization signal to the analog-to-digital converter 42 when the laser 11 is turned on, and receives the digitized thermally excited ultrasonic signal output from the analog-to-digital converter 42 to generate a dynamic waveform image. And display.
- an alternative implementation of the electric scanning mirror 21 includes: a 2-axis scanning mirror controlled by a motor, which includes a first mirror 22 and a second mirror 23, The scan control signal control sent by the central control computer 43 is described.
- the pulsed laser generator 11 emits the pulsed laser light 110
- the pulsed laser light 110 first reaches the first mirror surface 22 of the electric scanning mirror 21, and the pulsed laser light 110 reaches the second mirror surface after being reflected by the first mirror surface 22. 23, and then reflected by the second mirror surface 23 and projected onto the flaw detection surface of the workpiece 100 described above.
- the operation of the electric scanning mirror 21 composed of the first mirror surface 22 and the second mirror surface 23 can be seen that the pulsed laser light 110 can be adjusted to the flaw detecting surface of the workpiece 100 by controlling the angles of the two mirror surfaces by the motor respectively.
- the position of the projection point 200 For example, referring to FIG. 3, the angle ⁇ of the normal ⁇ of the first mirror 22 relative to the horizontal axis can be controlled to control the horizontal position of the pulsed laser 110 on the flaw detection surface, and the second mirror 23 is controlled.
- the angle ⁇ of the line Ny with respect to the vertical axis can control the vertical position of the pulsed laser light 110 on the flaw detection surface, thereby determining the horizontal position and the vertical position of the pulsed laser 110 on the flaw detection surface.
- the position of the projection point 200 of the pulsed laser 110 on the flaw detection surface is merely an example and is not intended to be limiting.
- the laser scanning may be a raster scanning. Specifically, the initial angles of the two mirror surfaces in the electric scanning mirror 21 are set, and then the central control computer 43 sends a scan control signal to the motor in the electric scanning mirror 21 to control the first mirror 22 to move, and the second mirror surface 23 Rotate from bottom to top. And, each time the second mirror surface 23 is rotated by an angle (including the initial angle), the second mirror surface 23 is made to stand still for a certain time. At this time, the central control computer 43 turns on the laser 11 to generate a pulsed laser light 110 to be projected onto the flaw detection surface.
- the central control computer 43 again causes the second mirror surface 23 to rotate by an angle, and turns on the laser 11 again to generate a pulsed laser light 110 to be projected onto the flaw detection surface.
- the pulsed laser light 110 is sequentially projected from the bottom to the top at a certain horizontal position of the flaw detection surface.
- the central control computer 43 sends a scan control signal to the motor in the motor scanning mirror 21, controls the second mirror surface 23 to return to its initial angle, and controls the first mirror surface 22 relative to its initial angle.
- the angle is deflected such that the initial projected position of the pulsed laser 110 on the flaw detection surface is horizontally displaced relative to the initial projected position of the first scan, the displacement being in the direction of arrow 201 in FIG.
- the central control computer 43 sends a scan control signal to the motor in the electric scanning mirror 21 to control the first mirror surface 22 to move, and the second mirror surface 23 is sequentially rotated by an angle from the bottom to the top.
- the central control computer 43 turns on the laser 11 to generate a pulsed laser 110 to project onto the flaw detection surface.
- the pulsed laser light 110 is sequentially projected from the bottom to the top on the flaw detection surface.
- the raster scan on the flaw detection surface is finally achieved.
- the workpiece 100 can be captured by The laser scan produces a thermally excited ultrasonic signal.
- the ultrasonic receiving probe 31 receives the thermally excited ultrasonic signal.
- the ultrasonic receiving probe 31 is a single probe that can be attached to the inspection surface or to the side or back of the workpiece 100.
- the single probe can detect the thermally excited ultrasonic signal vertically or the thermally excited ultrasonic signal at an oblique angle.
- the ultrasonic receiving probe 31 is a probe set composed of a plurality of probes (two or more). The plurality of probes are respectively attached to different positions of the workpiece 100 to perform 3D positioning of the internal defects on the workpiece, particularly the workpiece having a large thickness. Not only can the position of the internal defect of the workpiece on the flaw detection surface be obtained, but also the depth of the internal defect inside the workpiece. Therefore, the detection of multiple probes facilitates more accurate defect localization.
- the ultrasonic receiving probe 31 transmits the thermally excited ultrasonic signal to the amplifier 41 after capturing the thermally excited ultrasonic signal.
- the amplifier 41 is configured to amplify the thermally excited ultrasonic signal so that the subsequently formed waveform image can more clearly reflect the internal condition of the workpiece 100.
- a filtering device may be integrated in the amplifier 41 to remove the interference wave and select a signal wave of interest. For example, by selecting the low pass, high pass, band pass mode of operation of the filter device, and the cutoff frequency or center frequency of the filter, a signal wave of a particular frequency component can be obtained.
- the amplifier 41 after amplifying the thermally excited ultrasonic signal, sends it to the analog to digital converter 42 for analog to digital conversion processing.
- the analog-to-digital converter 42 is controlled by the central control computer 43 and the laser 11 is turned on in the central control computer 43.
- a pulsed laser 110 is generated, a synchronization signal is simultaneously transmitted to the analog-to-digital converter 42, so that the analog-to-digital conversion processing of the analog-to-digital converter 42 is completely synchronized with the turn-on timing of the laser 11.
- the digitized thermally excited ultrasonic signal is sent to the central control computer 43 as waveform column data. Since the analog-to-digital conversion process of the analog-to-digital converter 42 is completely synchronized with the turn-on timing of the laser 11, the digitized thermally-excited ultrasonic signal also contains information on the moment of laser emission.
- the waveform image generating device in the central control computer 43 generates a dynamic waveform image based on the obtained digitized thermally excited ultrasonic signal. Specifically, the data columns of the digitized thermally excited ultrasonic signals are arranged in accordance with the spatial projection coordinates of the laser scanning the workpiece flaw detection surface. The luminance image at each time of the laser emission is modulated by luminance, and a luminance image at each time is obtained. Then, the luminance image is continuously displayed in time series to form a dynamic waveform image.
- the center point 120 of the scanning area of the workpiece flaw detection surface is taken as a reference point, and the coordinate of the reference point in the xy coordinate system is set as the reference coordinate, and the distance between the second mirror surface 23 and the center point 120 is set.
- the relative spatial projection coordinates of the laser projection point with respect to the center point are obtained by calculation.
- the reference coordinate of the center point 120 is (x0, yO)
- the distance between the second mirror surface 23 and the center point 120 is D
- other laser projection points in the scanning area 110 The relative spatial projection coordinates can be obtained based on the reference coordinates of the center point.
- the angle between the line connecting the coordinate point yl of the certain laser projection point in the y direction and the second mirror surface 23 and the line connecting the coordinate point yO of the center point in the y direction and the second mirror surface 23 is ⁇ ⁇ .
- an ultrasonic receiving probe composed of two probes is taken as an example, and the process of positioning the defect depth of the internal defect of the workpiece is further explained.
- the workpiece is projected by the laser to generate a thermally excited ultrasonic signal, and when the thermally excited ultrasonic signal propagates through the defect point F, the thermal excitation The ultrasonic signal will change accordingly.
- This change is captured by the receiving probes Sl, S2.
- the positional relationship between the probes S1 and S2 and the laser projection point and the probes S1 and S2 can obtain the thermal excitation propagated through the defect point F.
- the time of the ultrasonic signal to determine the depth of the defect.
- probe S1 from point F to the defect is D1
- distance from the transducer to the defect point F S2 is D2
- the probe S1 is obtained thermal excitation time of the ultrasonic signal propagating through the defective dot defect is obtained via F T l probe S2
- the time of the thermal excitation ultrasonic signal propagated by the point F is T 2
- the propagation speed of the ultrasonic wave is V
- the distance from the probe S1 to the laser projection point G is L1
- the distance from the probe S2 to the laser projection point G is L2
- the depth of the defect is h.
- the present invention also provides a flaw detection method.
- the flaw detection method includes: step si, applying a laser scanning to detect a surface of the workpiece; and step s2, receiving a thermal excitation ultrasonic signal generated by the laser scanning of the detected workpiece; S3, generating a dynamic waveform image based on the thermally excited ultrasonic signal.
- step si applying a laser scanning to detect a surface of the workpiece
- step s2 receiving a thermal excitation ultrasonic signal generated by the laser scanning of the detected workpiece
- S3 generating a dynamic waveform image based on the thermally excited ultrasonic signal.
- the flaw detection system and the flaw detection method of the present invention use the laser scan instead of the prior art to transmit ultrasonic waves as a detection signal source, since the laser scanning does not require the probe and the surface of the workpiece to be inspected as in the prior art.
- Contact and flaw detection results are not affected by the contact conditions of the probe and the flaw detection surface, and thus are more accurate.
- the dynamic waveform image generated based on the thermally excited ultrasonic signal can also provide a more intuitive and real-time flaw detection result.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
探伤系统及探伤方法
本申请要求于 2010 年 5 月 14 日提交中国专利局、 申请号为 201010178619.3 、 发明名称为 "探伤系统及探伤方法"的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无损探伤领域,特别涉及应用超声波技术的探伤系统及探伤方 法。
背景技术
目前,在工业生产及应用过程中,对工件进行无损探伤以获知工件内部的 缺陷已成为一种常规化的检测手段。其中,超声波探伤技术是业界采用较为广 泛的一种无损探伤技术。 现有的超声波探伤技术,其筒单来说是通过超声波探头向工件的探伤面发 生超声波,并根据所述超声波经由工件缺陷的反射回波或衍射波来确定工件内 部的缺陷。 而依据超声波探头相对于探伤面的位置及探头控制方法的不同,现 有的超声波探伤技术可分为多种。例如, 包括有利用垂直探头对探伤面垂直收 发超声波的垂直探伤法、 对探伤面倾斜入射超声波并接收回波的斜角探伤法、 出射衍射波的飞行时间 (TOFD, Time Of Flight Diffraction )衍射法等等。
上述举例的超声波探伤方法各有利弊,通常还需要基于检测环境来选择适 当的探伤方法。 例如, 基于被探测工件的材料、 形状的不同来进行探伤方法的 选择。 因此, 上述举例的超声波探伤方法都有各自的局限范围。
并且,由于上述举例的超声波探伤方法都需要将发射超声波的探头置于工 件探伤面进行接触式探伤, 因而对于一些表面凹凸不平或形状复杂的工件, 这 些超声波探伤方法的探伤结果就很容易受到探头与探伤面接触条件的影响。 发明内容
本发明解决的问题是现有超声波探伤方法的探伤结果易受到探头与探伤 面接触条件的影响的问题。 为解决上述问题, 本发明提供一种探伤系统, 包括: 激光器, 产生脉沖激光;
光路调节装置,对激光器产生的脉沖激光进行光路调节后使所述激光投射 到工件探伤面, 对所述探伤面进行激光扫描;
信号接收装置, 捕获被探伤工件由所述激光扫描产生的热激励超声波信
成像装置,基于信号接收装置接收的热激励超声波信号, 生成动态波形影 像。
相应地, 本发明还提供一种探伤方法, 包括: 应用脉沖激光扫描被探伤工件表面;
接收被探伤工件由所述激光扫描产生的热激励超声波信号; 基于所述热激励超声波信号, 生成动态波形影像。 与现有技术相比, 上述探伤系统及探伤方法具有以下优点: 以所述激光扫 描代替现有技术发射超声波的方式作为探伤信号源,由于激光扫描无须如现有
技术般将探头与被探伤工件表面接触,探伤结果也不会受到所述探头与探伤面 接触条件的影响, 因而较为精确。 同时, 非接触的扫描方式也使得探伤效率大 大提高。 另外, 对于现有技术难于探伤的复杂形状工件也可无损检测。
并且,基于所述热激励超声波信号生成的动态波形影像,也能提供更为直 观且实时的探伤结果,相应地, 不同技术人员基于该实时波形影像进行分析获 得的探伤结果差异较小, 因此, 探伤结果受探伤技术人员水平的影响较小。 附图说明 图 1是本发明探伤系统的一种实施方式示意图;
图 2是本发明探伤系统的一种实施例示意图;
图 3是图 2所示探伤系统中电动扫描镜的一种可选实现方式示意图; 图 4是图 2所示探伤系统激光投射于工件探伤面的投影示意图; 图 5是图 2所示探伤系统获取激光投射于工件上的空间投影坐标示意图; 图 6是 2探头构成的超声波接收探头进行缺陷 3D定位的示意图; 图 7是本发明探伤方法的一种实施方式示意图。
具体实施方式
参照图 1所示, 本发明探伤系统的一种实施方式包括: 激光器 10, 产生脉沖激光;
光路调节装置 20, 对激光器 10产生的激光进行光路调节后使所述激光投 射到工件探伤面, 对所述探伤面进行激光扫描;
信号接收装置 30, 捕获被探伤工件由所述激光扫描产生的热激励超声波 信号;
成像装置 40, 基于信号接收装置 30接收的热激励超声波信号, 生成动态 波形影像。 上述探伤系统的实施方式中,激光器 10产生的脉沖激光作为探伤信号源, 所述脉沖激光经由所述光路调节装置 20的光路调节, 可以改变在探伤面上的 投射位置, 从而实现对探伤面的激光扫描。 经由实验证实, 所述脉沖激光投射 位置处会产生瞬间剧烈的热膨胀, 从而产生热激励超声波。 并且, 所述热激励 超声波会沿所述探伤面向被探伤工件内部传播。当所述热激励超声波经过工件 内部的缺陷时, 其波形就会发生异常变化。 因此, 通过信号接收装置 30捕获 所述热激励超声波信号, 并通过成像装置 40生成动态波形影像, 就可对于被 探伤工件的内部情况有一个直观且实时的了解。 以下通过一些具体实例对所述探伤系统的各组成部件及工作过程作进一 步说明。 参照图 2所示, 本发明探伤系统的一种实施例包括: 激光器 11 , 产生脉沖激光; 电动扫描镜 21 , 根据扫描控制信号对脉沖激光发生器 11产生的脉沖激光 进行反射角度调节后使所述脉沖激光投射到工件 100探伤面,对所述探伤面进 行激光扫描; 超声波接收探头 31 , 捕获工件 100由所述激光扫描产生的热激励超声波
信号;
放大器 41 , 对所述热激励超声波信号进行增幅处理; 模数转换器 42 , 对所述增幅后的热激励超声波信号进行模数转换处理; 中控电脑 43 ,向所述电动扫描镜 21发送扫描控制信号控制光路调节过程, 控制激光器 11的开关,并在开启激光器 11时向模数转换器 42发送同步信号, 以及接收模数转换器 42输出的数字化热激励超声波信号, 以此生成动态波形 影像并显示。
结合图 2和图 3所示, 所述电动扫描镜 21的一种可选实现方式包括: 经 由电机控制的 2轴扫描镜, 其包括第一镜面 22和第二镜面 23 , 所述电机由所 述中控电脑 43发送的扫描控制信号控制。当所述脉沖激光发生器 11发射脉沖 激光 110后, 所述脉沖激光 110首先到达所述电动扫描镜 21的第一镜面 22 , 所述脉沖激光 110经由第一镜面 22的反射后到达第二镜面 23 , 并再经由第二 镜面 23的反射后投射到前述的工件 100的探伤面。
由所述第一镜面 22、 第二镜面 23构成的电动扫描镜 21的工作过程可以 看到,通过电机分别控制所述两块镜面的角度可以调节所述脉沖激光 110投射 到工件 100的探伤面的投射点 200的位置。 例如, 继续参照图 3所示, 控制第 一镜面 22的法线 Νχ相对于水平轴的角度 α可以控制所述脉沖激光 110在所 述探伤面上的水平位置,而控制第二镜面 23的法线 Ny相对于竖直轴的角度 Θ 可以控制所述脉沖激光 110在所述探伤面上的竖直位置,从而经由所述脉沖激 光 110在所述探伤面上的水平位置和竖直位置的确定,所述脉沖激光 110在所 述探伤面上的投射点 200的位置。
此处仅为举例, 并非用以限定, 所述激光扫描的可以为光栅式扫描。 具体 地说, 设定电动扫描镜 21 中两块镜面各自的初始角度, 然后由中控电脑 43 向电动扫描镜 21中的电机发送扫描控制信号,控制第一镜面 22不动, 而第二 镜面 23从下向上转动。并且,每当第二镜面 23转动一个角度(包括初始角度) 后, 使得第二镜面 23静止一定时间。 此时, 中控电脑 43开启激光器 11产生 一个脉沖激光 110投射到所述探伤面上。 随后, 中控电脑 43再次使得第二镜 面 23转动一个角度,并再次开启激光器 11产生一个脉沖激光 110投射到所述 探伤面上。从而依此过程, 使得所述脉沖激光 110在所述探伤面的某一水平位 置从下向上依次进行激光投射。 当完成探伤面上的一列激光投射后,中控电脑 43向电动扫描镜 21中的电 机发送扫描控制信号, 控制第二镜面 23回复到其初始角度, 并且控制第一镜 面 22相对于其初始角度偏转一定角度, 以使得此后脉沖激光 110在所述探伤 面上的起始投射位置相对于第一次扫描的起始投射位置发生水平位移,所述位 移沿图 2中箭头 201方向。 此后, 中控电脑 43向电动扫描镜 21中的电机发送扫描控制信号,控制第 一镜面 22不动, 而第二镜面 23从下向上依次转动一个角度。 和之前相同地, 对应每一个转动角度(包括初始角度), 中控电脑 43开启激光器 11产生一个 脉沖激光 110投射到所述探伤面上。从而, 使得所述脉沖激光 110在所述探伤 面上再次从下向上依次进行激光投射。如此周而复始, 最终实现在所述探伤面 上的光栅式扫描。 而在上述激光扫描期间, 通过超声波接收探头 31 , 就可捕获工件 100由
所述激光扫描产生的热激励超声波信号。 根据超声波接收探头 31接收所述热 激励超声波信号的方式不同可以有多种可选的实现方式。
在一种可选方式中, 所述超声波接收探头 31为单个探头, 其可以贴附于 所述探伤面上或工件 100的侧面或背面。所述单个探头可以垂直探测所述热激 励超声波信号或以一定斜角探测所述热激励超声波信号。 在另一种可选方式中, 所述超声波接收探头 31为多个探头 (2个或 2个 以上)构成的探头组。 所述多个探头分别贴附于工件 100的不同位置上, 以对 工件, 特别是对厚度较大的工件, 进行内部缺陷的 3D定位。 不仅可以获得工 件内部缺陷在探伤面上的位置,还可以获得该内部缺陷在工件内部的深度。 因 此, 通过多个探头的探测有助于进行更精确的缺陷定位。
所述超声波接收探头 31在捕获所述热激励超声波信号后会将该热激励超 声波信号发送至放大器 41。 所述放大器 41用于将所述热激励超声波信号进行增幅, 以便于后续形成 的波形影像能够更清晰地反映工件 100的内部情况。 更进一步, 为获得更准确 的波形影像, 在所述放大器 41 中还可集成滤波装置, 以去除干扰波并选择感 兴趣的信号波。 例如, 通过选择滤波装置的低通、 高通、 带通工作模式以及滤 波器的截止频率或中心频率, 就可以得到特定频率成分的信号波。
所述放大器 41在对所述热激励超声波信号增幅后, 会将其发送至模数转 换器 42进行模数转换处理。
所述模数转换器 42由中控电脑 43控制,在中控电脑 43开启激光器 11产
生一个脉沖激光 110时, 同时向所述模数转换器 42发送同步信号, 从而使得 模数转换器 42的模数转换处理与激光器 11的开启时刻完全同步。所述模数转 换器 42完成模数转换处理后, 将数字化的热激励超声波信号以波形列数据的 方式发送至中控电脑 43。 由于模数转换器 42的模数转换处理与激光器 11的 开启时刻完全同步,因而所述数字化的热激励超声波信号也包含了激光发射时 刻的信息。
所述中控电脑 43中的波形影像生成装置就会基于所获得的数字化的热激 励超声波信号产生动态波形影像。具体地说, 就是将所述数字化的热激励超声 波信号的数据列按照激光对工件探伤面扫描时的空间投影坐标进行排列。并对 激光发射的各个时刻的振幅值进行辉度调制, 就可得到各个时刻的辉度图像。 然后, 对所述辉度图像按时间序列连续显示, 就可构成动态的波形影像。
参照图 4所示, 以激光在工件探伤面的扫描区域的中心点 120为基准点, 设置基准点在 xy坐标系中的坐标为基准坐标, 以第二镜面 23与所述中心点 120的距离为基准举例, 在已知激光投射点相对于基准点的角度时, 通过计算 来获得所述激光投射点相对于中心点的相对空间投影坐标。
结合图 4和图 5所示, 假定中心点 120的基准坐标为 (x0, yO ), 第二镜 面 23与所述中心点 120的距离为 D, 则所述扫描区域 110中的其他激光投射 点的相对空间投影坐标可基于中心点的基准坐标来获取。例如, 某一激光投射 点沿 y方向的坐标点 yl与第二镜面 23的连线与中心点沿 y方向的坐标点 yO 与第二镜面 23的连线的夹角为 θγ。 则, yl = yO + D x tan ( θγ )„ 同样地, 该激 光投射点沿 X方向的坐标点 xl与第二镜面 23的连线与中心点沿 X方向的坐标
点 xO与第二镜面 23的连线的夹角为 θχ。 则, xl = xO + D tan (θχ)„ 至此, 该激光投射点相对于中心点的相对空间投影坐标确定。
以下以 2探头构成的超声波接收探头为例,对定位工件内部缺陷的缺陷深 度的过程进一步说明。 参照图 6所示, 在激光投射到工件探伤面上的某一点 G时, 工件由所述 激光投射产生热激励超声波信号, 当所述热激励超声波信号传播经过缺陷点 F 时, 所述热激励超声波信号会产生相应变化。 而该变化会被接收探头 Sl、 S2 所捕获。 则在经由图 4、 5的举例获得激光投射点的空间投影坐标后, 即可通 过所述探头 Sl、 S2与激光投射点的位置关系, 以及探头 Sl、 S2获得经由缺 陷点 F传播的热激励超声波信号的时间来确定缺陷深度。
具体地说, 假定探头 S1至缺陷点 F的距离为 D1, 探头 S2至缺陷点 F的 距离为 D2, 探头 S1获得经由缺陷点 F传播的热激励超声波信号的时间为 Tl 探头 S2获得经由缺陷点 F传播的热激励超声波信号的时间为 T2, 超声波传播 速度为 V, 探头 S1至激光投射点 G的距离为 L1, 探头 S2至激光投射点 G的 距离为 L2, 缺陷深度为 h, 则有:
D2 = V X T2;
V2 =(L12-L22)÷(ri 2-T2 2) (2)
将式( 2 )代入式( 1 )可得缺陷深度: h =」U2 { l - (L2/ Ll)2 J÷ l - (T2 ΙΤλ )2 J- 1} ( 3 ) 由此, 就可获得工件内部缺陷的缺陷深度。
上述定位工件内部缺陷是以 2探头举例,但并非对此作出限定。 当探头数 量增加至 2个以上时, 仍可参照上述方法进行缺陷定位, 此处就不再赘述了。 对应上述探伤系统, 本发明还提供一种探伤方法。 参照图 7所示, 根据其 一种实施方式, 所述探伤方法包括: 步骤 si , 应用激光扫描被探伤工件表面; 步骤 s2, 接收被探伤工件由所述激光扫描产生的热激励超声波信号; 步骤 s3 , 基于所述热激励超声波信号, 生成动态波形影像。 对于探伤的详细过程, 可参考上述探伤系统相关的举例说明, 此处就不再 赘述了。
基于以上的举例说明可以看到,本发明探伤系统及探伤方法以所述激光扫 描代替现有技术发射超声波的方式作为探伤信号源,由于激光扫描无须如现有 技术般将探头与被探伤工件表面接触,探伤结果也不会受到所述探头与探伤面 接触条件的影响, 因而较为精确。 并且,基于所述热激励超声波信号生成的动态波形影像,也能提供更为直 观且实时的探伤结果。
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领 域技术人员, 在不脱离本发明的精神和范围内, 所做的各种更动与修改, 均包
含在本发明的保护范围之内。
Claims
1. 一种探伤系统, 其特征在于, 包括: 激光器, 产生脉沖激光;
光路调节装置,对激光器产生的脉沖激光进行光路调节后使所述激光投射 到工件探伤面, 对所述探伤面进行激光扫描; 信号接收装置, 捕获被探伤工件由所述激光扫描产生的热激励超声波信 成像装置,基于信号接收装置接收的热激励超声波信号, 生成动态波形影 像。
2. 如权利要求 1所述的探伤系统, 其特征在于, 所述光路调节装置为 2轴扫 描镜, 所述 2轴扫描镜包括第一镜面和第二镜面, 所述第一镜面经由其法线相 对于水平轴的角度确定所述激光在工件探伤面上的水平投射位置,所述第二镜 面经由其法线相对于竖直轴的角度确定所述激光在工件探伤面上的竖直投射 位置。
3. 如权利要求 1 所述的探伤系统, 其特征在于, 所述信号接收装置为单个或 多个超声波接收探头, 其置于工件探伤面上或工件的侧面或工件的背面。
4. 如权利要求 1所述的探伤系统, 其特征在于, 所述成像装置包括:
放大器, 对所述热激励超声波信号进行增幅处理;
模数转换器, 对增幅处理后的热激励超声波信号进行模数转换处理; 波形影像生成装置,对模数转换处理后的数字化的热激励超声波信号的各 个时刻的振幅值进行亮度调制获得图像化的波形图形,并对所述图像化的图形 按时间序列连续显示, 生成动态的波形影像。
5. 如权利要求 4所述的探伤系统, 其特征在于, 所述模数转换器的模数转换 处理与所述激光器的激光发射同步。
6. 一种探伤方法, 其特征在于, 包括: 应用脉沖激光扫描被探伤工件表面;
接收被探伤工件由所述激光扫描产生的热激励超声波信号;
基于所述热激励超声波信号, 生成动态波形影像。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11780132A EP2570805A1 (en) | 2010-05-14 | 2011-04-27 | Crack detection system and method |
US13/697,715 US20130061677A1 (en) | 2010-05-14 | 2011-04-27 | Defect detecting system and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010178619A CN101852774B (zh) | 2010-05-14 | 2010-05-14 | 探伤系统及探伤方法 |
CN201010178619.3 | 2010-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011140911A1 true WO2011140911A1 (zh) | 2011-11-17 |
Family
ID=42804359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/073349 WO2011140911A1 (zh) | 2010-05-14 | 2011-04-27 | 探伤系统及探伤方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130061677A1 (zh) |
EP (1) | EP2570805A1 (zh) |
CN (1) | CN101852774B (zh) |
WO (1) | WO2011140911A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI482943B (zh) * | 2012-11-15 | 2015-05-01 | ||
CN110824009A (zh) * | 2019-11-04 | 2020-02-21 | 中国人民解放军空军工程大学 | 针对复合材料筒体结构的激光超声可视化检测设备及方法 |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101369212B1 (ko) * | 2012-08-01 | 2014-03-27 | 한국과학기술원 | 회전 구조물의 레이저 초음파 영상화 방법 및 장치 |
CN103543162B (zh) * | 2013-11-05 | 2015-11-04 | 中国矿业大学 | 一种半导体片材的表面缺陷及厚度检测方法及装置 |
CN104634741B (zh) * | 2014-10-22 | 2017-12-08 | 南京航空航天大学 | 一种快速定位缺陷的激光超声检测方法及其系统 |
CN104807886B (zh) * | 2015-05-08 | 2018-01-30 | 北京新联铁集团股份有限公司 | 激光超声探伤方法 |
CN105277571B (zh) * | 2015-06-25 | 2018-06-26 | 浙江大学 | 一种旋转轴表面裂纹在线检测系统及检测方法 |
US10692204B2 (en) | 2016-08-01 | 2020-06-23 | The Boeing Company | System and method for high speed surface and subsurface FOD and defect detection |
US10728426B1 (en) | 2016-08-17 | 2020-07-28 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Contrast based imaging and analysis computer-implemented method to analyze pulse thermography data for nondestructive evaluation |
US11079357B2 (en) * | 2018-03-26 | 2021-08-03 | The Boeing Company | Method and apparatus for enhanced visualization of anomalies in a structure |
CN108982666A (zh) * | 2018-07-24 | 2018-12-11 | 北京工业大学 | 一种对板结构反射/透射系数的水浸超声无损测量方法 |
TWI708041B (zh) * | 2018-10-17 | 2020-10-21 | 所羅門股份有限公司 | 檢測與標記瑕疵的方法 |
CN109612940B (zh) * | 2018-12-05 | 2021-07-27 | 东南大学 | 一种激光阵列对生成超声快速控制的无损检测系统及无损检测方法 |
CN110501424A (zh) * | 2019-08-19 | 2019-11-26 | 国家电网有限公司 | 一种激光超声的全光型耐张线夹无损检测装置 |
CN110849812A (zh) * | 2019-10-16 | 2020-02-28 | 东南大学 | 一种高效率激光超声扫描成像检测和超声数据处理的方法 |
CN111189863A (zh) * | 2020-01-10 | 2020-05-22 | 中国原子能科学研究院 | X射线探伤装置 |
CN112179849B (zh) * | 2020-09-17 | 2022-02-22 | 西安交通大学 | 一种五轴激光超声自动化检测设备及方法 |
CN112280968B (zh) * | 2020-09-18 | 2021-12-28 | 西安交通大学 | 一种高能脉冲激光加工测量一体化系统及方法 |
US11639914B2 (en) * | 2020-12-16 | 2023-05-02 | The Boeing Company | Non-destructive test systems with infrared thermography assemblies and ultrasonic test assemblies, and associated methods |
CN113075298B (zh) * | 2021-03-29 | 2024-03-29 | 重庆交通大学 | 一种基于激光超声技术的混凝土微裂缝检测方法 |
CN113324912A (zh) * | 2021-04-14 | 2021-08-31 | 航天科工防御技术研究试验中心 | 塑封结构内部缺陷检测设备、方法及存储介质 |
CN113588566B (zh) * | 2021-08-23 | 2022-06-21 | 南京大学 | 基于激光超声的激光点焊微焊点质量检测装置及方法 |
CN113640385A (zh) * | 2021-10-12 | 2021-11-12 | 宝宇(武汉)激光技术有限公司 | 一种衍射时差法激光超声焊缝无损检测设备及方法 |
CN113953659B (zh) * | 2021-11-09 | 2022-06-24 | 西安电子科技大学 | 一种基于脉冲交替法的激光加工实时成像装置及方法 |
CN114295731B (zh) * | 2021-12-28 | 2023-02-21 | 杭州电子科技大学 | 一种基于激光激励纵波测量亚表面缺陷深度的方法 |
CN116408575B (zh) * | 2021-12-31 | 2024-06-04 | 广东美的白色家电技术创新中心有限公司 | 局部扫描、消除工件反光干扰的方法、装置和系统 |
CN115932044B (zh) * | 2022-12-22 | 2024-02-20 | 江苏先进光源技术研究院有限公司 | 一种激光加工过程中工件缺陷实时检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09281085A (ja) * | 1996-04-17 | 1997-10-31 | Nippon Steel Corp | レーザー超音波検査装置及びレーザー超音波検査方法 |
JPH11304768A (ja) * | 1998-04-27 | 1999-11-05 | Mitsubishi Heavy Ind Ltd | 剥離検知装置及び方法 |
JP2006300634A (ja) * | 2005-04-19 | 2006-11-02 | National Institute Of Advanced Industrial & Technology | 超音波伝搬の映像化方法および装置 |
CN101490543A (zh) * | 2006-07-11 | 2009-07-22 | 财团法人电力中央研究所 | 超声波探伤装置和方法 |
CN100523802C (zh) * | 2006-01-06 | 2009-08-05 | 株式会社东芝 | 飞机机体的检查方法及装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5760904A (en) * | 1996-07-26 | 1998-06-02 | General Electric Company | Method and system for inspecting a surface of an object with laser ultrasound |
US6633384B1 (en) * | 1998-06-30 | 2003-10-14 | Lockheed Martin Corporation | Method and apparatus for ultrasonic laser testing |
US6382028B1 (en) * | 2000-02-23 | 2002-05-07 | Massachusetts Institute Of Technology | Ultrasonic defect detection system |
JP2004045111A (ja) * | 2002-07-10 | 2004-02-12 | Hitachi High-Technologies Corp | 照明光学機構装置、および、欠陥検査装置 |
US7150193B2 (en) * | 2003-12-29 | 2006-12-19 | General Electric Company | Method for detection of defects in anisotropic materials |
US7516662B2 (en) * | 2004-01-26 | 2009-04-14 | Force Technology | Detecting rail defects |
US7387027B2 (en) * | 2004-07-23 | 2008-06-17 | Massachusetts Institute Of Technology | Characterization of materials with optically shaped acoustic waveforms |
US7624640B2 (en) * | 2005-06-03 | 2009-12-01 | Brown University | Opto-acoustic methods and apparatus for performing high resolution acoustic imaging and other sample probing and modification operations |
US7810395B2 (en) * | 2005-12-22 | 2010-10-12 | Total Wire Corporation | Ultrasonic pressure sensor and method of operating the same |
US7605924B2 (en) * | 2006-12-06 | 2009-10-20 | Lockheed Martin Corporation | Laser-ultrasound inspection using infrared thermography |
US7966883B2 (en) * | 2006-12-06 | 2011-06-28 | Lockheed Martin Corporation | Non-destructive inspection using laser-ultrasound and infrared thermography |
US7816622B2 (en) * | 2007-09-28 | 2010-10-19 | General Electric Company | System and method for controlling laser shock peening |
CN100571626C (zh) * | 2008-07-03 | 2009-12-23 | 刘国栋 | 光声超声激发与传感一体化检测装置 |
JP5210087B2 (ja) * | 2008-08-14 | 2013-06-12 | 富士フイルム株式会社 | 光超音波断層画像化装置 |
-
2010
- 2010-05-14 CN CN201010178619A patent/CN101852774B/zh active Active
-
2011
- 2011-04-27 WO PCT/CN2011/073349 patent/WO2011140911A1/zh active Application Filing
- 2011-04-27 EP EP11780132A patent/EP2570805A1/en not_active Withdrawn
- 2011-04-27 US US13/697,715 patent/US20130061677A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09281085A (ja) * | 1996-04-17 | 1997-10-31 | Nippon Steel Corp | レーザー超音波検査装置及びレーザー超音波検査方法 |
JPH11304768A (ja) * | 1998-04-27 | 1999-11-05 | Mitsubishi Heavy Ind Ltd | 剥離検知装置及び方法 |
JP2006300634A (ja) * | 2005-04-19 | 2006-11-02 | National Institute Of Advanced Industrial & Technology | 超音波伝搬の映像化方法および装置 |
CN100523802C (zh) * | 2006-01-06 | 2009-08-05 | 株式会社东芝 | 飞机机体的检查方法及装置 |
CN101490543A (zh) * | 2006-07-11 | 2009-07-22 | 财团法人电力中央研究所 | 超声波探伤装置和方法 |
Non-Patent Citations (2)
Title |
---|
DU LITING ET AL.: "Research on laser ultrasonic exciting technology", NONDESTRUCTIVE TESTING, vol. 27, no. 6, June 2005 (2005-06-01), pages 286 - 287, XP008169638 * |
SU KUN ET AL.: "Research of micro-crack detection technology based on laser ultrasonic", OPTICAL TECHNIQUE, vol. 28, no. 6, November 2002 (2002-11-01), pages 518 - 519, XP008169635 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI482943B (zh) * | 2012-11-15 | 2015-05-01 | ||
CN110824009A (zh) * | 2019-11-04 | 2020-02-21 | 中国人民解放军空军工程大学 | 针对复合材料筒体结构的激光超声可视化检测设备及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101852774B (zh) | 2012-10-24 |
EP2570805A1 (en) | 2013-03-20 |
CN101852774A (zh) | 2010-10-06 |
US20130061677A1 (en) | 2013-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011140911A1 (zh) | 探伤系统及探伤方法 | |
JP6376980B2 (ja) | 構造物変状検出装置 | |
JP4634336B2 (ja) | 超音波探傷方法及び超音波探傷装置 | |
CN108169331B (zh) | 薄板栅格翼结构焊缝相控阵超声检测装置及检测方法 | |
JP2008122209A (ja) | 超音波探傷装置及び方法 | |
CN110118822B (zh) | 超声波探伤装置及超声波探伤方法 | |
US9157896B2 (en) | Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method | |
US20130151171A1 (en) | Ultrasonic Inspection Method, Ultrasonic Test Method and Ultrasonic Inspection Apparatus | |
JP6267659B2 (ja) | 構造物変状検出装置 | |
JP2009069077A (ja) | 配管溶接部検査装置 | |
KR101746922B1 (ko) | 전영역 펄스-에코 레이저 초음파전파영상화 장치 및 방법 | |
JP2013019715A (ja) | 超音波検査方法及び超音波検査装置 | |
JP4564183B2 (ja) | 超音波探傷方法 | |
CN108226292B (zh) | T型接管焊缝的缺陷检测方法、装置、存储介质和处理器 | |
JP5235028B2 (ja) | 超音波探傷方法及び超音波探傷装置 | |
JP4682921B2 (ja) | 超音波探傷方法及び超音波探傷装置 | |
JP4633268B2 (ja) | 超音波探傷装置 | |
JP2002243703A (ja) | 超音波探傷装置 | |
JP7341793B2 (ja) | 超音波探傷装置、方法及び炉内構造物保全方法 | |
JP2012137464A (ja) | 超音波探傷システム及び超音波探傷方法 | |
JPS6228869B2 (zh) | ||
JP2005098768A (ja) | 超音波探傷画像表示方法及び装置 | |
JPH0419558A (ja) | 超音波探傷試験における画像処理方法 | |
JP2003057214A (ja) | 隅肉溶接部の超音波探傷方法およびその装置 | |
JPH1114611A (ja) | 電子走査式超音波検査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11780132 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13697715 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011780132 Country of ref document: EP |