WO2020188944A1 - 滑り軸受およびターボチャージャ - Google Patents
滑り軸受およびターボチャージャ Download PDFInfo
- Publication number
- WO2020188944A1 WO2020188944A1 PCT/JP2019/050830 JP2019050830W WO2020188944A1 WO 2020188944 A1 WO2020188944 A1 WO 2020188944A1 JP 2019050830 W JP2019050830 W JP 2019050830W WO 2020188944 A1 WO2020188944 A1 WO 2020188944A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- oil
- damper
- bearing body
- peripheral surface
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/10—Sliding-contact bearings for exclusively rotary movement for both radial and axial load
- F16C17/102—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
- F16C17/107—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/12—Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
- F16C17/18—Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C27/00—Elastic or yielding bearings or bearing supports, for exclusively rotary movement
- F16C27/02—Sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/103—Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/1045—Details of supply of the liquid to the bearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/1065—Grooves on a bearing surface for distributing or collecting the liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/1075—Wedges, e.g. ramps or lobes, for generating pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/1085—Channels or passages to recirculate the liquid in the bearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/23—Gas turbine engines
- F16C2360/24—Turbochargers
Definitions
- the present invention relates to a plain bearing and a turbocharger that support a radial load and a thrust load.
- Patent Document 1 discloses a turbocharger including a slide bearing.
- the slide bearing includes a radial bearing portion, a thrust bearing portion, and a pair of damper portions.
- the radial bearing portion is arranged on the inner peripheral surface of the slide bearing.
- the thrust bearing portion is arranged on the axial end face of the slide bearing.
- the pair of damper portions are arranged at both ends in the axial direction of the outer peripheral surface of the slide bearing.
- the slide bearing is provided with an oil hole extending in the radial direction. The inlet of the oil hole is opened at a position directly above the outer peripheral surface (between the pair of damper portions) of the slide bearing. The outlet of the oil hole opens on the inner peripheral surface of the slide bearing.
- the outlet of the oil hole of the housing is opened above the entrance of the oil hole.
- the lubricating oil that has flowed out from the outlet is diverted to the outer diameter side oil passage (oil passage that passes through the damper portion) and the inner diameter side oil passage (oil passage that passes through the oil hole of the slide bearing and the radial bearing portion) of the slide bearing.
- the centrifugal force of the turbocharger shaft acts on the thrust bearing. Therefore, in the thrust bearing portion, the lubricating oil tends to flow from the inside in the radial direction to the outside in the radial direction. Therefore, the lubricating oil via the oil passage on the outer diameter side does not easily flow into the thrust bearing portion. On the contrary, the lubricating oil via the inner diameter side oil passage tends to flow into the thrust bearing portion.
- the inlet of the oil hole of the slide bearing and the outlet of the oil hole of the housing are arranged so as to be displaced in the axial direction by the radius of the outlet. Therefore, the same amount of lubricating oil as the inner diameter side oil passage is distributed to the outer diameter side oil passage. Therefore, it is difficult to supply lubricating oil to the thrust bearing portion.
- an object of the present invention is to provide a slide bearing and a turbocharger in which lubricating oil is easily supplied to the thrust bearing portion.
- the sliding bearing of the present invention includes a tubular bearing body, a radial bearing portion arranged on the inner peripheral surface of the bearing body, and a thrust bearing arranged on the axial end surface of the bearing body.
- An oil hole having an outlet that opens on the inner peripheral surface of the bearing body is provided, and the inlet of the oil hole, at least a part of the dam portion, and the damper portion are from the inside in the axial direction.
- the turbocharger of the present invention is characterized by including the slide bearing.
- the entrance of the oil hole, at least a part of the weir part, and the damper part are lined up in this order from the inside in the axial direction to the outside in the axial direction.
- the axial outer end of the outlet of the upstream oil passage is arranged at the same axial position as the axial outer end of the weir portion.
- the axial outer end of the outlet of the upstream oil passage is arranged axially inside the axial outer end of the weir portion. Therefore, the lubricating oil that has flowed out from the outlet of the upstream oil passage can be preferentially introduced into the inlet of the oil hole. That is, the lubricating oil can be preferentially supplied to the thrust bearing portion from the inner diameter side of the bearing body. Therefore, according to the slide bearing and the turbocharger of the present invention, lubricating oil is likely to be supplied to the thrust bearing portion.
- FIG. 1 is an axial sectional view of a turbocharger according to an embodiment of the present invention.
- FIG. 2 is an enlarged view within the frame II of FIG.
- FIG. 3 is an enlarged view within the frame III of FIG.
- FIG. 4A is a cross-sectional view taken along the IVA-IVA direction of FIG.
- FIG. 4B is a sectional view taken in the IVB-IVB direction of FIG. 4A.
- FIG. 5 is a perspective view of a slide bearing included in the turbocharger.
- FIG. 6 is an axial sectional view of the slide bearing.
- FIG. 7 is a perspective view of the slide bearing of the other embodiment (No. 1).
- FIG. 8 is a perspective view of the slide bearing of the other embodiment (No. 2).
- FIG. 9 is a perspective view of the slide bearing of another embodiment (No. 3).
- FIG. 10 is an axial partial cross-sectional view of the slide bearing of another embodiment (No. 4).
- FIG. 1 shows an axial sectional view of the turbocharger of the present embodiment.
- FIG. 2 shows an enlarged view in the frame II of FIG.
- FIG. 3 shows an enlarged view in the frame III of FIG.
- FIG. 4A shows a cross-sectional view taken along the IVA-IVA direction of FIG.
- FIG. 4B shows a sectional view taken in the IVB-IVB direction of FIG. 4A.
- FIG. 5 shows a perspective view of the slide bearing of the present embodiment.
- FIG. 6 shows an axial sectional view of the slide bearing.
- the turbocharger 1 includes a slide bearing 2, a rotating portion 5, a bearing housing 90, a compressor housing 91, and a turbine housing 92.
- a bearing arrangement portion 900 and a housing-side oil passage 905 are formed inside the bearing housing 90.
- the housing side oil passage 905 is included in the concept of the "upstream side oil passage" of the present invention.
- Lubricating oil O is flowing through the oil passage 905 on the housing side.
- the bearing arrangement portion 900 is connected to the lower side of the oil passage 905 on the housing side.
- the bearing arrangement portion 900 extends in the front-rear direction.
- the rotating portion 5 is rotatable with respect to the bearing housing 90.
- the rotating portion 5 includes a rotating shaft 50, a compressor impeller 51, a turbine impeller 52, and a thrust collar 53.
- the rotating shaft 50 penetrates the bearing housing 90 in the front-rear direction.
- the rotating shaft 50 has a stepped columnar shape centered on the axis A.
- the rotary shaft 50 is rotatably supported from the outside in the radial direction by a slide bearing 2 described later. Further, the rotary shaft 50 is rotatably supported by the slide bearing 2 from the front-rear direction.
- the compressor impeller 51 is attached to the front end (one end in the axial direction) of the rotating shaft 50.
- the turbine impeller 52 is connected to the rear end (the other end in the axial direction) of the rotating shaft 50. That is, the rotating shaft 50 connects the compressor impeller 51 and the turbine impeller 52.
- the thrust collar 53 is fixed to the outer peripheral surface of the rotating shaft 50. The thrust collar 53 is rotatably supported from the rear side by the slide bearing 2.
- a thrust collar 53, a slide bearing 2, and a part of the rotating shaft 50 are arranged in the bearing arrangement portion 900.
- the rotating shaft 50 includes a small diameter portion 500, a medium diameter portion 501, and a large diameter portion 502 from the front side to the rear side.
- the medium diameter portion 501 has a larger diameter than the small diameter portion 500.
- An annular and forward-facing first step portion 503 is arranged between the small diameter portion 500 and the medium diameter portion 501.
- the large diameter portion 502 has a larger diameter than the medium diameter portion 501.
- An annular and forward-facing second step portion 504 is arranged between the medium diameter portion 501 and the large diameter portion 502.
- the thrust collar 53 is annular and is ring-mounted on the small diameter portion 500.
- the rear end surface (diameter inner portion) of the thrust collar 53 is in contact with the first step portion 503.
- the slide bearing 2 is ring-mounted on the medium diameter portion 501.
- the slide bearing 2 is arranged between the first step portion 503 (thrust collar 53) and the second step portion 504.
- the slide bearing 2 includes a bearing body 20, a pair of front and rear radial bearing portions 21F and 21R, a pair of front and rear thrust bearing portions 22F and 22R, a pair of front and rear first damper portions 23F and 23R, and a pair of front and rear second dampers.
- the first damper portions 23F and 23R and the second damper portions 24F and 24R are included in the concept of the "damper portion” of the present invention.
- the first groove portions 34F and 34R are included in the concept of the "groove portion" of the present invention.
- the bearing body 20 is arranged in the bearing arrangement portion 900.
- the bearing body 20 extends in the front-rear direction.
- the bearing body 20 has a cylindrical shape centered on the axis A.
- a pair of front and rear radial bearing portions 21F and 21R are arranged at both ends of the inner peripheral surface of the bearing body 20 in the front and rear direction.
- the pair of front and rear radial bearing portions 21F and 21R are in sliding contact with the medium diameter portion 501 all around (however, except for the oil groove 270F and 270R portion described later) via an oil film.
- Thrust bearings 22F, 22R A pair of front and rear thrust bearing portions 22F and 22R are arranged on both front and rear end surfaces (axial end surfaces) of the bearing body 20.
- the thrust bearing portion 22F on the front side is in sliding contact with the rear end surface (diameter outer portion) of the thrust collar 53 over the entire circumference via the oil film f.
- the thrust bearing portion 22F on the front side includes four pad portions B.
- the four pad portions B are continuously provided in the circumferential direction.
- the pad portion B includes a taper portion C and a land portion D. 4 (A), 4 (B), and 5 show the flow direction of the lubricating oil O in the thrust bearing portion 22F by an arrow Y.
- the thrust collar 53 is shown by a alternate long and short dash line.
- the tapered portion C has an altitude (specifically, the front side in the rotation direction of the rotation shaft 50) from the upstream side (rear side in the rotation direction of the rotation shaft 50) to the downstream side (front side in the rotation direction of the rotation shaft 50). Altitude in the anterior-posterior direction. The same shall apply hereinafter.) It has a flat shape with higher h.
- the land portion D is connected to the downstream side of the tapered portion C.
- the land portion D has a flat surface having a constant altitude h.
- the thrust bearing portion 22R on the rear side is in sliding contact with the second step portion 504 over the entire circumference via an oil film.
- the rear thrust bearing portion 22R includes four pad portions as in the front thrust bearing portion 22F.
- the weir portion 33 is arranged on the outer peripheral surface of the bearing body 20. As will be described later, the inlet 300 of the oil hole 30 is provided at the center of the weir portion 33 in the front-rear direction. The outlet 906 of the oil passage 905 on the housing side is connected directly above the inlet 300 (outside in the radial direction).
- the front end (axial outer end) H of the outlet 906 is arranged on the rear side (axial inner side) of the front end (axial outer end) F of the weir portion 33.
- the rear end (axial outer end) of the outlet 906 is arranged on the front side (axial inner side) of the rear end (axial outer end) of the weir portion 33. That is, when viewed from directly above, the outlet 906 is arranged so as to be included in the weir portion 33.
- the weir portion 33 (excluding the opening portion of the inlet 300) is in contact with the bearing arrangement portion 900 all around through an oil film.
- a pair of front and rear first damper portions 23F and 23R are arranged on the outer peripheral surface of the bearing body 20.
- the first damper portion 23F on the front side is arranged on the front side of the weir portion 33 (axially outside (specifically, axially outside when the front-rear position of the hole axis of the oil hole 30 is set as the axial reference position)).
- the first damper portion 23R on the rear side is arranged on the rear side (outside in the axial direction) of the weir portion 33.
- the pair of front and rear first damper portions 23F and 23R are in contact with the bearing arrangement portion 900 all around through an oil film, respectively.
- a pair of front and rear second damper portions 24F and 24R are arranged on the outer peripheral surface of the bearing body 20.
- the second damper portion 24F on the front side is arranged on the front side of the first damper portion 23F.
- the second damper portion 24R on the rear side is arranged on the rear side of the first damper portion 23R.
- the pair of front and rear second damper portions 24F and 24R are in contact with the bearing arrangement portion 900 all around through an oil film, respectively.
- the first damper portions 23F and 23R and the second damper portions 24F and 24R have a function of suppressing the vibration of the rotating shaft 50 of the turbocharger 1 by the oil film.
- the inlet 300, a part of the weir portion 33 (the outer portion in the front-rear direction of the inlet 300), the first damper portions 23F and 23R, and the second damper portions 24F and 24R are axially oriented from the inside in the axial direction. They are lined up in this order toward the outside.
- a pair of front and rear first groove portions 34F and 34R are arranged on the outer peripheral surface of the bearing body 20.
- the first groove portion 34F on the front side has an endless annular shape and is arranged between the weir portion 33 and the first damper portion 23F.
- the first groove portion 34R on the rear side has an endless annular shape and is arranged between the weir portion 33 and the first damper portion 23R.
- the first groove portions 34F and 34R have a smaller diameter than the weir portion 33, the first damper portions 23F and 23R, and the second damper portions 24F and 24R.
- the pair of front and rear second groove portions 25F and 25R are arranged on the outer peripheral surface of the bearing body 20.
- the second groove portion 25F on the front side has an endless annular shape and is arranged between the first damper portion 23F and the second damper portion 24F.
- the second groove portion 25R on the rear side has an endless annular shape and is arranged between the first damper portion 23R and the second damper portion 24R.
- the second groove portions 25F and 25R have a smaller diameter than the weir portion 33, the first damper portions 23F and 23R, and the second damper portions 24F and 24R.
- the oil groove group 27F on the front side includes four oil grooves 270F.
- the four oil grooves 270F are arranged 90 ° apart from each other with the axis A as the center when viewed from the front side.
- the oil groove 270F penetrates the front radial bearing portion 21F in the front-rear direction.
- the rear oil groove group 27R includes four oil grooves 270R.
- the four oil grooves 270R are arranged 90 ° apart from each other with the axis A as the center when viewed from the front side.
- the oil groove 270R penetrates the radial bearing portion 21R on the rear side in the front-rear direction.
- the inner diameter side recess 29 is arranged all around the inner peripheral surface of the bearing body 20.
- the inner diameter side recess 29 is arranged between a pair of front and rear radial bearing portions 21F and 21R.
- the inner diameter side recess 29 has a larger diameter than the radial bearing portions 21F and 21R.
- the inner diameter side recess 29 is not in contact with the middle diameter portion 501. That is, a gap is partitioned between the inner diameter side recess 29 and the middle diameter portion 501.
- the oil hole 30 penetrates the bearing body 20 in the radial direction.
- the oil hole 30 includes an inlet 300 and an outlet 301. As described above, the inlet 300 is open to the weir portion 33.
- the outlet 301 is open to the inner diameter side recess 29.
- the front outer diameter side oil passage 31F is arranged between the outlet 906 of the housing side oil passage 905 and the front side thrust bearing portion 22F.
- the outer diameter side oil passage 31F includes a part of the weir portion 33 (the outer portion in the front direction of the inlet 300), the first groove portion 34F, the first damper portion 23F, the second groove portion 25F, and the second damper portion 24F. , Is equipped.
- the rear outer diameter side oil passage 31R is arranged between the outlet 906 of the housing side oil passage 905 and the rear thrust bearing portion 22R.
- the outer diameter side oil passage 31R on the rear side is the same as the outer diameter side oil passage 31F on the front side.
- the inner diameter side oil passage 32F on the front side is arranged between the outlet 906 of the oil passage 905 on the housing side and the thrust bearing portion 22F on the front side.
- the inner diameter side oil passage 32F includes an oil hole 30, an inner diameter side recess 29, and an oil groove 270F (radial bearing portion 21F).
- the rear inner diameter side oil passage 32R is arranged between the outlet 906 of the housing side oil passage 905 and the rear thrust bearing portion 22R.
- the inner diameter side oil passage 32R on the rear side is the same as the inner diameter side oil passage 32F on the front side.
- the lubricating oil O flows through the weir portion 33, the first groove portion 34F, the first damper portion 23F, the second groove portion 25F, and the second damper portion 24F.
- the flow of the lubricating oil O in the outer diameter side oil passage 31R on the rear side is the same as the flow of the lubricating oil O in the outer diameter side oil passage 31F on the front side.
- the lubricating oil O flows through the oil hole 30, the recess 29 on the inner diameter side, the radial bearing portion 21F (oil groove 270F), and the thrust bearing portion 22F.
- the lubricating oil O forms an oil film having a desired load capacity in the radial bearing portion 21F.
- the radial bearing portion 21F supports the radial load acting on the rotating shaft 50 by the oil film.
- the lubricating oil O forms an oil film f having a desired load capacity in the thrust bearing portion 22F. Specifically, the lubricating oil O is boosted when the tapered portion C flows, and an oil film f having a desired load capacity is formed in the land portion D.
- the thrust bearing portion 22F supports the thrust load acting on the rotating shaft 50 by the oil film f.
- the flow of the lubricating oil O in the inner diameter side oil passage 32R on the rear side is the same as the flow of the lubricating oil O in the inner diameter side oil passage 32F on the front side.
- the centrifugal force of the thrust collar 53 acts on the thrust bearing portion 22F. Therefore, in the thrust bearing portion 22F, the lubricating oil O tends to flow from the inner side in the radial direction to the outer side in the radial direction. Therefore, the lubricating oil O via the outer diameter side oil passage 31F is unlikely to flow into the thrust bearing portion 22F. On the contrary, the lubricating oil O via the inner diameter side oil passage 32F tends to flow into the thrust bearing portion 22F. Therefore, if the slide bearing 2 does not include the weir portion 33, it is difficult to supply the lubricating oil O to the thrust bearing portion 22F.
- the slide bearing 2 is provided with a weir portion 33. Therefore, the lubricating oil O flowing out from the outlet 906 of the housing side oil passage 905 can be preferentially introduced into the inlet 300 of the oil hole 30. In other words, the lubricating oil O can be preferentially distributed to the inner diameter side oil passage 32F with respect to the outer diameter side oil passage 31F. Therefore, the lubricating oil O can be preferentially supplied from the inner diameter side oil passage 32F to the thrust bearing portion 22F. Therefore, according to the slide bearing 2 and the turbocharger 1 of the present embodiment, the lubricating oil O is likely to be supplied to the thrust bearing portion 22F. Further, in order to increase the amount of oil in the inner diameter side oil passage 32F, it is not necessary to increase the amount of oil in the entire oil passage.
- the outer diameter side gap (the gap between the first damper portion 23F, the second damper portion 24F and the bearing arrangement portion 900) is larger than the inner diameter side gap (the radial bearing portion 21F). It may be larger than the gap between the rotating shaft 50).
- the flow rate of the lubricating oil O tends to be higher in the outer diameter side oil passage 31F than in the inner diameter side oil passage 32F.
- the lubricating oil O is less likely to flow into the thrust bearing portion 22F in the outer diameter side oil passage 31F than in the inner diameter side oil passage 32F.
- the slide bearing 2 is provided with a weir portion 33. Therefore, even if the turbocharger 1 is of a type in which the outer diameter side gap is larger than the inner diameter side gap, the lubricating oil O flowing out from the outlet 906 of the housing side oil passage 905 is preferentially introduced to the oil hole 30. It can be introduced in 300.
- the front end H of the outlet 906 of the housing side oil passage 905 shown in FIG. 3 is arranged on the front side of the front end F of the weir portion 33, at least a part of the lubricating oil O flowing out from the outlet 906 is , It flows directly into the first groove 34F without passing through the weir 33. Therefore, the amount of lubricating oil O distributed to the inner diameter side oil passage 32F is reduced.
- the front end H of the outlet 906 of the housing side oil passage 905 is arranged on the rear side of the front end F of the weir portion 33. Therefore, the lubricating oil O flowing out from the outlet 906 cannot flow into the first groove portion 34F unless it passes through the weir portion 33. Therefore, the lubricating oil O flowing out from the outlet 906 can be preferentially introduced into the inlet 300 of the oil hole 30. Therefore, it is difficult to reduce the amount of lubricating oil O distributed to the inner diameter side oil passage 32F.
- the flow path cross-sectional area of the oil hole 30 (cross-sectional area of the oil hole 30 in the direction orthogonal to the hole axial direction (vertical direction) (horizontal direction)) is between the dam portion 33 and the bearing arrangement portion 900. It is larger than the flow path cross-sectional area of the gap (cross-sectional area in the direction orthogonal to the extending direction (front-back direction) of the gap (vertical direction)). Also in this respect, the lubricating oil O flowing out from the outlet 906 of the housing side oil passage 905 can be preferentially introduced into the inlet 300 of the oil hole 30.
- the weir portion 33 has an annular shape centered on the axis A of the bearing body 20. Therefore, the weir portion 33 can be easily arranged on the slide bearing 2 by, for example, cutting.
- the first groove portion 34F is arranged between the first damper portion 23F and the weir portion 33. Further, the first groove portion 34F has a smaller diameter than the first damper portion 23F and the weir portion 33. Therefore, when the turbocharger 1 is stopped, the lubricating oil O can be stored in the first groove portion 34F. Therefore, the stored lubricating oil O can be quickly supplied to the first damper section 23F and the second damper section 24F when the turbocharger 1 is restarted.
- the first groove portion 34F has a function as an oil sump portion capable of storing the lubricating oil O.
- the second groove portion 25F and the inner diameter side recess 29 also have a function as an oil reservoir portion capable of storing the lubricating oil O.
- the outlet of the oil groove 270F is opened on the inside in the radial direction of the upstream end of the four tapered portions C. Therefore, when the lubricating oil O flows through the tapered portion C, the lubricating oil O is likely to be boosted. Further, the centrifugal force of the thrust collar 53 (rotating portion 5) shown in FIG. 3 makes it easy for the lubricating oil O to spread over the entire radial direction of the thrust bearing portion 22F.
- the side surface of the weir portion 33 (the side surface of the groove on the rear side of the first groove portion 34F) 330 extends in the radial direction of the slide bearing 2 (vertical direction in FIG. 3). Therefore, as shown by the arrow y, the flow of the lubricating oil O is likely to be disturbed. Therefore, the flow of the lubricating oil O in the first groove portion 34F, that is, the outer diameter side oil passage 31F can be suppressed. Further, the lubricating oil O tends to stay in the first groove portion 34F.
- the slide bearing 2 has both radial bearing portions 21F and 21R and thrust bearing portions 22F and 22R. Therefore, the number of parts of the turbocharger 1 can be reduced as compared with the case where the turbocharger 1 is provided with the radial bearing and the thrust bearing independently. Moreover, the configuration of the turbocharger 1 can be simplified. Moreover, the turbocharger 1 can be miniaturized.
- FIG. 7 shows a perspective view of the slide bearing of the other embodiment (No. 1).
- the inlet 300 of the oil hole 30 is provided in the annular third groove portion 36 (the outer peripheral surface of the bearing body 20).
- Weir portions 33F and 33R are arranged on both outer sides of the oil hole 30 in the front-rear direction.
- the inlet 300 may be provided in the third groove 36 having a diameter smaller than that of the weirs 33F and 33R.
- the third groove portion 36 functions as an oil sump portion for storing the lubricating oil O. Therefore, the stored lubricating oil O can be quickly supplied to the outer diameter side oil passage 31F and the inner diameter side oil passage 32F (see FIG. 3) when the turbocharger 1 is restarted.
- FIG. 8 shows a perspective view of the slide bearing of the other embodiment (No. 2).
- the weir portion 33 has a block shape (individual piece shape).
- the weir portion 33 is locally arranged only in the outer peripheral surface of the bearing body 20 including the inlet 300 of the oil hole 30.
- the weir portion 33 has a smaller diameter than the damper portions 35F and 35R (maximum outer diameter portion of the slide bearing 2) of the slide bearing 2 (the weir portion 33 may have the same diameter as the maximum outer diameter portion). Therefore, the slide bearing 2 can be easily inserted into the bearing arrangement portion 900 from the front-rear direction.
- the weir portion 33 does not have to exhibit an annular shape (endless annular shape) centered on the axis A. Further, the weir portion 33 may have an annular shape surrounding the inlet 300. Further, a pair of front and rear damper portions 35F and 35R may be arranged.
- FIG. 9 shows a perspective view of the slide bearing of another embodiment (No. 3).
- the parts corresponding to FIG. 8 are indicated by the same reference numerals.
- the inlet 300 of the oil hole 30 is provided in the recess 37 (the outer peripheral surface of the bearing body 20).
- An annular weir portion 33 is arranged around the recess 37.
- the weir portion 33 surrounds the inlet 300 of the oil hole 30 and the recess 37.
- the weir portion 33 has a smaller diameter than the damper portions 35F and 35R (maximum outer diameter portion of the slide bearing 2) of the slide bearing 2 (the weir portion 33 may have the same diameter as the maximum outer diameter portion).
- the slide bearing 2 can be easily inserted into the bearing arrangement portion 900 from the front-rear direction.
- the weir portion 33 may be locally arranged only around the inlet 300 (only in the minimum necessary range).
- the recess 37 may be arranged between the inlet 300 and the weir portion 33.
- the recess 37 functions as an oil reservoir for storing the lubricating oil O. Therefore, the stored lubricating oil O can be quickly supplied to the outer diameter side oil passage 31F and the inner diameter side oil passage 32F (see FIG. 3) when the turbocharger 1 is restarted.
- FIG. 10 shows an axial partial cross-sectional view of the slide bearing of another embodiment (No. 4).
- the parts corresponding to FIG. 3 are indicated by the same reference numerals.
- the front end H of the outlet 906 of the housing side oil passage 905 is arranged at the same position in the front-rear direction as the front end F of the weir portion 33. Even in this case, the lubricating oil O flowing out from the outlet 906 of the housing side oil passage 905 can be preferentially introduced into the inlet 300 of the oil hole 30.
- the number, shape, and position of the weirs 33 shown in FIG. 3 are not particularly limited.
- the weir portion 33 may be an endless ring or an endd ring. Further, the weir portion 33 may be used as a damper portion.
- the shapes of the tapered portion C and the land portion D shown in FIGS. 4A and 4B, the number of pad portions B arranged, and the like are not particularly limited. It is not necessary to dispose the pad portion B on at least one of the thrust bearing portions 22F and 22R.
- the number of oil grooves 270F shown in FIGS. 4 (A) and 5 is not particularly limited.
- the number of oil grooves 270F arranged and the number of pad portions B arranged may be the same or different.
- the longitudinal shape of the oil groove 270F is not particularly limited. It may be linear, curved, or a combination of these as appropriate.
- the cross-sectional shape of the oil groove 270F is not particularly limited. It may be a perfect circle, an ellipse, a polygon (triangle, quadrangle, hexagon, etc.). The exit may be shifted to the downstream side with respect to the inlet when viewed from the front side (axial direction).
- the lubricating oil O is likely to be drawn into the oil groove 270F by the centrifugal force of the thrust collar 53 (rotating portion 5). Further, the lubricating oil O is likely to be drawn into the thrust bearing portion 22F. Similar to the oil groove 270F, the number of oil holes 30 arranged, the shape in the longitudinal direction, and the cross-sectional shape are not particularly limited.
- the number, shape, and position of the damper portions (1st damper portion 23F, 2nd damper portion 24F, damper portions 35F, 35R) and groove portions (1st groove portion 34F, 2nd groove portion 25F) are not particularly limited.
- the damper portion and the groove portion may have an endless annular shape or an endless annular shape.
- the number, shape, and position of the third groove 36 shown in FIG. 7 and the recess 37 shown in FIG. 9 are not particularly limited.
- the inlet 300 of the oil hole 30 is opened over the weir portion 33 and the outer peripheral surface of the bearing body 20, regardless of whether the inlet 300 is provided only on the weir portion 33 or only on the outer peripheral surface of the bearing body 20. You may. That is, the inlet 300 may be open to at least one of the outer peripheral surface of the bearing body 20 (specifically, a portion of the outer peripheral surface of the bearing body 20 where the weir portion 33 is not arranged) and the weir portion 33. ..
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Combustion & Propulsion (AREA)
- Supercharger (AREA)
- Sliding-Contact Bearings (AREA)
- Support Of The Bearing (AREA)
Abstract
滑り軸受(2)は、軸受本体(20)と、軸受本体(20)の内周面に配置されるラジアル軸受部(21F)と、軸受本体(20)の軸方向端面に配置されるスラスト軸受部(22F)と、軸受本体(20)の外周面に配置されるダンパ部(23F、24F)と、軸受本体(20)の外周面に配置される堰部(33)と、軸受本体(20)の外周面および堰部(33)のうち少なくとも一方に開口する入口(300)と、軸受本体(20)の内周面に開口する出口(301)と、を有する油孔(30)と、を備える。入口(300)と、堰部(33)の少なくとも一部と、ダンパ部(23F、24F)と、は軸方向内側から軸方向外側に向かって、この順で並ぶ。入口(300)の径方向外側には、上流側油路(905)の出口(906)が連なる。出口(906)の軸方向外端(H)は、堰部(33)の軸方向外端(F)と軸方向同位置、または軸方向外端(F)よりも軸方向内側に配置される。
Description
本発明は、ラジアル荷重およびスラスト荷重を支持する滑り軸受およびターボチャージャに関する。
特許文献1には、滑り軸受を備えるターボチャージャが開示されている。滑り軸受は、ラジアル軸受部と、スラスト軸受部と、一対のダンパ部と、を備えている。ラジアル軸受部は、滑り軸受の内周面に配置されている。スラスト軸受部は、滑り軸受の軸方向端面に配置されている。一対のダンパ部は、滑り軸受の外周面の軸方向両端に配置されている。滑り軸受には、径方向に延在する油孔が穿設されている。油孔の入口は、滑り軸受の外周面(一対のダンパ部の間)の真上位置に開口している。油孔の出口は、滑り軸受の内周面に開口している。
油孔の入口の上側には、ハウジングの油孔の出口が開設されている。当該出口から流出した潤滑油は、滑り軸受の外径側油路(ダンパ部を経由する油路)、内径側油路(滑り軸受の油孔とラジアル軸受部とを経由する油路)に分流する。
ここで、スラスト軸受部には、ターボチャージャのシャフトの遠心力が作用する。このため、スラスト軸受部において、潤滑油は、径方向内側から径方向外側に向かって流動しやすい。したがって、外径側油路経由の潤滑油は、スラスト軸受部に流入しにくい。反対に、内径側油路経由の潤滑油は、スラスト軸受部に流入しやすい。
しかしながら、同文献記載の滑り軸受の場合、滑り軸受の油孔の入口とハウジングの油孔の出口とは、当該出口の半径分だけ、軸方向にずれて配置されている。このため、外径側油路にも、内径側油路と同量程度の潤滑油が分配されてしまう。したがって、スラスト軸受部に潤滑油が供給されにくい。
そこで、本発明は、スラスト軸受部に潤滑油が供給されやすい滑り軸受およびターボチャージャを提供することを目的とする。
上記課題を解決するため、本発明の滑り軸受は、筒状の軸受本体と、前記軸受本体の内周面に配置されるラジアル軸受部と、前記軸受本体の軸方向端面に配置されるスラスト軸受部と、前記軸受本体の外周面に配置されるダンパ部と、前記軸受本体の外周面に配置される堰部と、前記軸受本体の外周面および前記堰部のうち少なくとも一方に開口する入口と、前記軸受本体の内周面に開口する出口と、を有する油孔と、を備え、前記油孔の前記入口と、前記堰部の少なくとも一部と、前記ダンパ部と、は軸方向内側から軸方向外側に向かって、この順で並び、前記油孔の前記入口の径方向外側には、上流側油路の出口が連なり、前記上流側油路の前記出口の軸方向外端は、前記堰部の軸方向外端と軸方向同位置、または前記堰部の軸方向外端よりも軸方向内側に配置されることを特徴とする。また、上記課題を解決するため、本発明のターボチャージャは、前記滑り軸受を備えることを特徴とする。
油孔の入口と、堰部の少なくとも一部と、ダンパ部と、は軸方向内側から軸方向外側に向かって、この順で並んでいる。並びに、上流側油路の出口の軸方向外端は、堰部の軸方向外端と軸方向同位置に配置されている。または、上流側油路の出口の軸方向外端は、堰部の軸方向外端よりも軸方向内側に配置されている。このため、上流側油路の出口から流出した潤滑油を、優先的に油孔の入口に導入することができる。すなわち、軸受本体の内径側からスラスト軸受部に、優先的に潤滑油を供給することができる。よって、本発明の滑り軸受およびターボチャージャによると、スラスト軸受部に潤滑油が供給されやすい。
以下、本発明の滑り軸受およびターボチャージャの実施の形態について説明する。
<ターボチャージャの構成>
まず、本実施形態のターボチャージャの構成について説明する。なお、以降の図において、前後方向は本発明の「軸方向」に対応している。図1に、本実施形態のターボチャージャの軸方向断面図を示す。図2に、図1の枠II内の拡大図を示す。図3に、図2の枠III内の拡大図を示す。図4(A)に、図2のIVA-IVA方向断面図を示す。図4(B)に、図4(A)のIVB-IVB方向断面図を示す。図5に、本実施形態の滑り軸受の斜視図を示す。図6に、同滑り軸受の軸方向断面図を示す。
まず、本実施形態のターボチャージャの構成について説明する。なお、以降の図において、前後方向は本発明の「軸方向」に対応している。図1に、本実施形態のターボチャージャの軸方向断面図を示す。図2に、図1の枠II内の拡大図を示す。図3に、図2の枠III内の拡大図を示す。図4(A)に、図2のIVA-IVA方向断面図を示す。図4(B)に、図4(A)のIVB-IVB方向断面図を示す。図5に、本実施形態の滑り軸受の斜視図を示す。図6に、同滑り軸受の軸方向断面図を示す。
ターボチャージャ1は、滑り軸受2と、回転部5と、ベアリングハウジング90と、コンプレッサハウジング91と、タービンハウジング92と、を備えている。ベアリングハウジング90の内部には、軸受配置部900と、ハウジング側油路905と、が形成されている。ハウジング側油路905は、本発明の「上流側油路」の概念に含まれる。ハウジング側油路905には、潤滑油Oが流れている。軸受配置部900は、ハウジング側油路905の下側に連なっている。軸受配置部900は、前後方向に延在している。
回転部5は、ベアリングハウジング90に対して、回転可能である。回転部5は、回転軸50と、コンプレッサインペラ51と、タービンインペラ52と、スラストカラー53と、を備えている。回転軸50は、ベアリングハウジング90を前後方向に貫通している。回転軸50は、軸心Aを中心とする段付き円柱状を呈している。回転軸50は、後述する滑り軸受2により、径方向外側から、回転可能に支持されている。並びに、回転軸50は、滑り軸受2により、前後方向から、回転可能に支持されている。コンプレッサインペラ51は、回転軸50の前端(軸方向一端)に取り付けられている。タービンインペラ52は、回転軸50の後端(軸方向他端)に連なっている。すなわち、回転軸50は、コンプレッサインペラ51とタービンインペラ52とを連結している。スラストカラー53は、回転軸50の外周面に固定されている。スラストカラー53は、滑り軸受2により、後側から、回転可能に支持されている。
<軸受配置部付近の構成>
次に、軸受配置部付近の構成について詳しく説明する。軸受配置部900には、スラストカラー53、滑り軸受2、回転軸50の一部が配置されている。回転軸50は、前側から後側に向かって、小径部500と、中径部501と、大径部502と、を備えている。中径部501は小径部500よりも大径である。小径部500と中径部501との間には、環状であって前向きの第1段差部503が配置されている。大径部502は中径部501よりも大径である。中径部501と大径部502との間には、環状であって前向きの第2段差部504が配置されている。スラストカラー53は、環状であって、小径部500に環装されている。スラストカラー53の後端面(径方向内側部分)は、第1段差部503に当接している。
次に、軸受配置部付近の構成について詳しく説明する。軸受配置部900には、スラストカラー53、滑り軸受2、回転軸50の一部が配置されている。回転軸50は、前側から後側に向かって、小径部500と、中径部501と、大径部502と、を備えている。中径部501は小径部500よりも大径である。小径部500と中径部501との間には、環状であって前向きの第1段差部503が配置されている。大径部502は中径部501よりも大径である。中径部501と大径部502との間には、環状であって前向きの第2段差部504が配置されている。スラストカラー53は、環状であって、小径部500に環装されている。スラストカラー53の後端面(径方向内側部分)は、第1段差部503に当接している。
(滑り軸受2)
滑り軸受2は、中径部501に環装されている。滑り軸受2は、第1段差部503(スラストカラー53)と、第2段差部504と、の間に配置されている。滑り軸受2は、軸受本体20と、前後一対のラジアル軸受部21F、21Rと、前後一対のスラスト軸受部22F、22Rと、前後一対の第1ダンパ部23F、23Rと、前後一対の第2ダンパ部24F、24Rと、前後一対の第1溝部34F、34Rと、前後一対の第2溝部25F、25Rと、前後一対の油溝群27F、27Rと、内径側凹部29と、油孔30と、堰部33と、前後一対の外径側油路31F、31Rと、前後一対の内径側油路32F、32Rと、を備えている。第1ダンパ部23F、23R、第2ダンパ部24F、24Rは、本発明の「ダンパ部」の概念に含まれる。第1溝部34F、34Rは、本発明の「溝部」の概念に含まれる。
滑り軸受2は、中径部501に環装されている。滑り軸受2は、第1段差部503(スラストカラー53)と、第2段差部504と、の間に配置されている。滑り軸受2は、軸受本体20と、前後一対のラジアル軸受部21F、21Rと、前後一対のスラスト軸受部22F、22Rと、前後一対の第1ダンパ部23F、23Rと、前後一対の第2ダンパ部24F、24Rと、前後一対の第1溝部34F、34Rと、前後一対の第2溝部25F、25Rと、前後一対の油溝群27F、27Rと、内径側凹部29と、油孔30と、堰部33と、前後一対の外径側油路31F、31Rと、前後一対の内径側油路32F、32Rと、を備えている。第1ダンパ部23F、23R、第2ダンパ部24F、24Rは、本発明の「ダンパ部」の概念に含まれる。第1溝部34F、34Rは、本発明の「溝部」の概念に含まれる。
(軸受本体20、ラジアル軸受部21F、21R)
軸受本体20は、軸受配置部900に配置されている。軸受本体20は、前後方向に延在している。軸受本体20は、軸心Aを中心とする円筒状を呈している。前後一対のラジアル軸受部21F、21Rは、軸受本体20の内周面の前後方向両端に配置されている。前後一対のラジアル軸受部21F、21Rは、各々、油膜を介して、中径部501に全周的(ただし、後述する油溝270F、270R部分を除く)に摺接している。
軸受本体20は、軸受配置部900に配置されている。軸受本体20は、前後方向に延在している。軸受本体20は、軸心Aを中心とする円筒状を呈している。前後一対のラジアル軸受部21F、21Rは、軸受本体20の内周面の前後方向両端に配置されている。前後一対のラジアル軸受部21F、21Rは、各々、油膜を介して、中径部501に全周的(ただし、後述する油溝270F、270R部分を除く)に摺接している。
(スラスト軸受部22F、22R)
前後一対のスラスト軸受部22F、22Rは、軸受本体20の前後方向両端面(軸方向両端面)に配置されている。前側のスラスト軸受部22Fは、油膜fを介して、スラストカラー53の後端面(径方向外側部分)に全周的に摺接している。前側のスラスト軸受部22Fは、4つのパッド部Bを備えている。4つのパッド部Bは、周方向に連設されている。パッド部Bは、テーパ部Cと、ランド部Dと、を備えている。図4(A)、図4(B)、図5に、スラスト軸受部22Fにおける潤滑油Oの流動方向を矢印Yで示す。図4(B)においては、スラストカラー53を一点鎖線で示す。図4(B)に誇張して示すように、テーパ部Cは、上流側(回転軸50の回転方向後側)から下流側(回転軸50の回転方向前側)に向かって高度(詳しくは、前後方向の高度。以下同じ。)hが高くなる、平面状を呈している。ランド部Dは、テーパ部Cの下流側に連なっている。ランド部Dは、高度hが一定の平面状を呈している。
前後一対のスラスト軸受部22F、22Rは、軸受本体20の前後方向両端面(軸方向両端面)に配置されている。前側のスラスト軸受部22Fは、油膜fを介して、スラストカラー53の後端面(径方向外側部分)に全周的に摺接している。前側のスラスト軸受部22Fは、4つのパッド部Bを備えている。4つのパッド部Bは、周方向に連設されている。パッド部Bは、テーパ部Cと、ランド部Dと、を備えている。図4(A)、図4(B)、図5に、スラスト軸受部22Fにおける潤滑油Oの流動方向を矢印Yで示す。図4(B)においては、スラストカラー53を一点鎖線で示す。図4(B)に誇張して示すように、テーパ部Cは、上流側(回転軸50の回転方向後側)から下流側(回転軸50の回転方向前側)に向かって高度(詳しくは、前後方向の高度。以下同じ。)hが高くなる、平面状を呈している。ランド部Dは、テーパ部Cの下流側に連なっている。ランド部Dは、高度hが一定の平面状を呈している。
後側のスラスト軸受部22Rは、油膜を介して、第2段差部504に全周的に摺接している。後側のスラスト軸受部22Rは、前側のスラスト軸受部22F同様に、4つのパッド部を備えている。
(堰部33、第1ダンパ部23F、23R、第2ダンパ部24F、24R)
堰部33は、軸受本体20の外周面に配置されている。後述するように、油孔30の入口300は、堰部33の前後方向中央に開設されている。入口300の真上(径方向外側)には、ハウジング側油路905の出口906が連なっている。
堰部33は、軸受本体20の外周面に配置されている。後述するように、油孔30の入口300は、堰部33の前後方向中央に開設されている。入口300の真上(径方向外側)には、ハウジング側油路905の出口906が連なっている。
出口906の前端(軸方向外端)Hは、堰部33の前端(軸方向外端)Fよりも、後側(軸方向内側)に配置されている。同様に、出口906の後端(軸方向外端)は、堰部33の後端(軸方向外端)よりも、前側(軸方向内側)に配置されている。すなわち、真上から見て、出口906は、堰部33に含まれるように配置されている。堰部33(入口300の開口部分を除く)は、油膜を介して、軸受配置部900に全周的に当接している。
前後一対の第1ダンパ部23F、23Rは、軸受本体20の外周面に配置されている。前側の第1ダンパ部23Fは、堰部33の前側(軸方向外側(詳しくは、油孔30の孔軸の前後方向位置を軸方向基準位置とした場合の軸方向外側))に配置されている。後側の第1ダンパ部23Rは、堰部33の後側(軸方向外側)に配置されている。前後一対の第1ダンパ部23F、23Rは、各々、油膜を介して、軸受配置部900に全周的に当接している。
前後一対の第2ダンパ部24F、24Rは、軸受本体20の外周面に配置されている。前側の第2ダンパ部24Fは、第1ダンパ部23Fの前側に配置されている。後側の第2ダンパ部24Rは、第1ダンパ部23Rの後側に配置されている。前後一対の第2ダンパ部24F、24Rは、各々、油膜を介して、軸受配置部900に全周的に当接している。第1ダンパ部23F、23R、第2ダンパ部24F、24Rは、油膜により、ターボチャージャ1の回転軸50の振動を抑制する機能を有している。
このように、入口300と、堰部33の一部(入口300の前後方向外側部分)と、第1ダンパ部23F、23Rと、第2ダンパ部24F、24Rと、は軸方向内側から軸方向外側に向かって、この順で並んでいる。
(第1溝部34F、34R、第2溝部25F、25R)
前後一対の第1溝部34F、34Rは、軸受本体20の外周面に配置されている。前側の第1溝部34Fは、無端環状であって、堰部33と第1ダンパ部23Fとの間に配置されている。後側の第1溝部34Rは、無端環状であって、堰部33と第1ダンパ部23Rとの間に配置されている。第1溝部34F、34Rは、堰部33、第1ダンパ部23F、23R、第2ダンパ部24F、24Rよりも小径である。
前後一対の第1溝部34F、34Rは、軸受本体20の外周面に配置されている。前側の第1溝部34Fは、無端環状であって、堰部33と第1ダンパ部23Fとの間に配置されている。後側の第1溝部34Rは、無端環状であって、堰部33と第1ダンパ部23Rとの間に配置されている。第1溝部34F、34Rは、堰部33、第1ダンパ部23F、23R、第2ダンパ部24F、24Rよりも小径である。
前後一対の第2溝部25F、25Rは、軸受本体20の外周面に配置されている。前側の第2溝部25Fは、無端環状であって、第1ダンパ部23Fと第2ダンパ部24Fとの間に配置されている。後側の第2溝部25Rは、無端環状であって、第1ダンパ部23Rと第2ダンパ部24Rとの間に配置されている。第2溝部25F、25Rは、堰部33、第1ダンパ部23F、23R、第2ダンパ部24F、24Rよりも小径である。
(油溝群27F、27R)
前側の油溝群27Fは、4つの油溝270Fを備えている。4つの油溝270Fは、前側から見て、軸心Aを中心として90°ずつ離間して配置されている。油溝270Fは前側のラジアル軸受部21Fを前後方向に貫通している。後側の油溝群27Rは、4つの油溝270Rを備えている。4つの油溝270Rは、前側から見て、軸心Aを中心として90°ずつ離間して配置されている。油溝270Rは後側のラジアル軸受部21Rを前後方向に貫通している。
前側の油溝群27Fは、4つの油溝270Fを備えている。4つの油溝270Fは、前側から見て、軸心Aを中心として90°ずつ離間して配置されている。油溝270Fは前側のラジアル軸受部21Fを前後方向に貫通している。後側の油溝群27Rは、4つの油溝270Rを備えている。4つの油溝270Rは、前側から見て、軸心Aを中心として90°ずつ離間して配置されている。油溝270Rは後側のラジアル軸受部21Rを前後方向に貫通している。
(内径側凹部29、油孔30)
内径側凹部29は、軸受本体20の内周面に全周的に配置されている。内径側凹部29は、前後一対のラジアル軸受部21F、21R間に配置されている。内径側凹部29は、ラジアル軸受部21F、21Rよりも大径である。内径側凹部29は、中径部501に当接していない。すなわち、内径側凹部29と中径部501との間には、隙間が区画されている。
内径側凹部29は、軸受本体20の内周面に全周的に配置されている。内径側凹部29は、前後一対のラジアル軸受部21F、21R間に配置されている。内径側凹部29は、ラジアル軸受部21F、21Rよりも大径である。内径側凹部29は、中径部501に当接していない。すなわち、内径側凹部29と中径部501との間には、隙間が区画されている。
油孔30は、軸受本体20を径方向に貫通している。油孔30は、入口300と出口301とを備えている。前述したように、入口300は、堰部33に開口している。出口301は、内径側凹部29に開口している。
(外径側油路31F、31R)
前側の外径側油路31Fは、ハウジング側油路905の出口906と、前側のスラスト軸受部22Fと、の間に配置されている。外径側油路31Fは、堰部33の一部(入口300の前方向外側部分)と、第1溝部34Fと、第1ダンパ部23Fと、第2溝部25Fと、第2ダンパ部24Fと、を備えている。後側の外径側油路31Rは、ハウジング側油路905の出口906と、後側のスラスト軸受部22Rと、の間に配置されている。後側の外径側油路31Rは、前側の外径側油路31Fと同様である。
前側の外径側油路31Fは、ハウジング側油路905の出口906と、前側のスラスト軸受部22Fと、の間に配置されている。外径側油路31Fは、堰部33の一部(入口300の前方向外側部分)と、第1溝部34Fと、第1ダンパ部23Fと、第2溝部25Fと、第2ダンパ部24Fと、を備えている。後側の外径側油路31Rは、ハウジング側油路905の出口906と、後側のスラスト軸受部22Rと、の間に配置されている。後側の外径側油路31Rは、前側の外径側油路31Fと同様である。
(内径側油路32F、32R)
前側の内径側油路32Fは、ハウジング側油路905の出口906と、前側のスラスト軸受部22Fと、の間に配置されている。内径側油路32Fは、油孔30と、内径側凹部29と、油溝270F(ラジアル軸受部21F)と、を備えている。後側の内径側油路32Rは、ハウジング側油路905の出口906と、後側のスラスト軸受部22Rと、の間に配置されている。後側の内径側油路32Rは、前側の内径側油路32Fと同様である。
前側の内径側油路32Fは、ハウジング側油路905の出口906と、前側のスラスト軸受部22Fと、の間に配置されている。内径側油路32Fは、油孔30と、内径側凹部29と、油溝270F(ラジアル軸受部21F)と、を備えている。後側の内径側油路32Rは、ハウジング側油路905の出口906と、後側のスラスト軸受部22Rと、の間に配置されている。後側の内径側油路32Rは、前側の内径側油路32Fと同様である。
<潤滑油の流れ>
次に、本実施形態の滑り軸受における潤滑油の流れについて説明する。ターボチャージャ1の駆動時において、潤滑油Oは、ハウジング側油路905から、前後一対の外径側油路31F、31R、前後一対の内径側油路32F、32Rに分流する。
次に、本実施形態の滑り軸受における潤滑油の流れについて説明する。ターボチャージャ1の駆動時において、潤滑油Oは、ハウジング側油路905から、前後一対の外径側油路31F、31R、前後一対の内径側油路32F、32Rに分流する。
前側の外径側油路31Fにおいて、潤滑油Oは、堰部33、第1溝部34F、第1ダンパ部23F、第2溝部25F、第2ダンパ部24Fを流動する。後側の外径側油路31Rにおける潤滑油Oの流れ方は、前側の外径側油路31Fにおける潤滑油Oの流れ方と、同様である。
前側の内径側油路32Fにおいて、潤滑油Oは、油孔30、内径側凹部29、ラジアル軸受部21F(油溝270F)、スラスト軸受部22Fを流動する。潤滑油Oは、ラジアル軸受部21Fにおいて所望の負荷容量の油膜を形成する。当該油膜により、ラジアル軸受部21Fは、回転軸50に作用するラジアル荷重を支持する。また、潤滑油Oは、スラスト軸受部22Fにおいて、所望の負荷容量の油膜fを形成する。具体的には、潤滑油Oは、テーパ部C流動時に昇圧され、ランド部Dにおいて所望の負荷容量の油膜fを形成する。当該油膜fにより、スラスト軸受部22Fは、回転軸50に作用するスラスト荷重を支持する。後側の内径側油路32Rにおける潤滑油Oの流れ方は、前側の内径側油路32Fにおける潤滑油Oの流れ方と、同様である。
<作用効果>
次に、本実施形態の滑り軸受およびターボチャージャの作用効果について説明する。以下、滑り軸受2の軸方向基準位置(油孔30の孔軸位置)に対して、前側部分の作用効果について説明するが、後側部分についても同様である。
次に、本実施形態の滑り軸受およびターボチャージャの作用効果について説明する。以下、滑り軸受2の軸方向基準位置(油孔30の孔軸位置)に対して、前側部分の作用効果について説明するが、後側部分についても同様である。
図3に示すように、スラスト軸受部22Fには、スラストカラー53(回転部5)の遠心力が作用する。このため、スラスト軸受部22Fにおいて、潤滑油Oは、径方向内側から径方向外側に向かって流動しやすい。したがって、外径側油路31F経由の潤滑油Oは、スラスト軸受部22Fに流入しにくい。反対に、内径側油路32F経由の潤滑油Oは、スラスト軸受部22Fに流入しやすい。よって、仮に、滑り軸受2が堰部33を備えていない場合、スラスト軸受部22Fに潤滑油Oが供給されにくい。スラスト軸受部22Fつまり内径側油路32Fに所望の油量を確保するためには、油路全体(外径側油路31Fおよび内径側油路32F)の油量(油圧)を増やす必要がある。この場合、外径側油路31Fの油量が過剰になってしまう。
この点、滑り軸受2は、堰部33を備えている。このため、ハウジング側油路905の出口906から流出した潤滑油Oを、優先的に油孔30の入口300に導入することができる。言い換えると、外径側油路31Fに対して、内径側油路32Fに、優先的に潤滑油Oを分配することができる。したがって、内径側油路32Fからスラスト軸受部22Fに、優先的に潤滑油Oを供給することができる。よって、本実施形態の滑り軸受2およびターボチャージャ1によると、スラスト軸受部22Fに潤滑油Oが供給されやすい。また、内径側油路32Fの油量を増やすために、油路全体の油量を増やす必要がない。
また、ターボチャージャ1のタイプによっては、外径側隙間(第1ダンパ部23F、第2ダンパ部24Fと軸受配置部900との間の隙間)の方が、内径側隙間(ラジアル軸受部21Fと回転軸50との間の隙間)よりも、大きい場合がある。この場合、外径側油路31Fの方が、内径側油路32Fよりも、潤滑油Oの流量が多くなりやすい。しかしながら、スラストカラー53(回転部5)の遠心力の作用により、外径側油路31Fの方が、内径側油路32Fよりも、潤滑油Oがスラスト軸受部22Fに流入しにくい。
この点、滑り軸受2は、堰部33を備えている。このため、外径側隙間の方が内径側隙間よりも大きいタイプのターボチャージャ1であっても、ハウジング側油路905の出口906から流出した潤滑油Oを、優先的に油孔30の入口300に導入することができる。
また、仮に、図3に示すハウジング側油路905の出口906の前端Hが、堰部33の前端Fよりも前側に配置されている場合、出口906から流出した潤滑油Oの少なくとも一部は、堰部33を通過することなく、直接、第1溝部34Fに流入してしまう。このため、内径側油路32Fへの潤滑油Oの分配量が減ってしまう。
この点、ハウジング側油路905の出口906の前端Hは、堰部33の前端Fよりも後側に配置されている。このため、出口906から流出した潤滑油Oは、堰部33を通過しなければ、第1溝部34Fに流入することができない。したがって、出口906から流出した潤滑油Oを、優先的に油孔30の入口300に導入することができる。よって、内径側油路32Fへの潤滑油Oの分配量が減りにくい。
また、油孔30の流路断面積(油孔30の孔軸方向(上下方向)に対して直交する方向(水平方向)の断面積)は、堰部33と軸受配置部900との間の隙間の流路断面積(隙間の延在方向(前後方向)に対して直交する方向(垂直方向)の断面積)よりも、大きい。この点においても、ハウジング側油路905の出口906から流出した潤滑油Oを、優先的に油孔30の入口300に導入することができる。
図5に示すように、堰部33は、軸受本体20の軸心Aを中心とする環状を呈している。このため、例えば切削加工などにより、滑り軸受2に堰部33を簡単に配置することができる。
図3に示すように、第1溝部34Fは、第1ダンパ部23Fと堰部33との間に配置されている。並びに、第1溝部34Fは、第1ダンパ部23Fおよび堰部33よりも小径である。このため、ターボチャージャ1の停止時に、第1溝部34Fに潤滑油Oを貯留することができる。したがって、貯留された潤滑油Oを、ターボチャージャ1の再始動時に、第1ダンパ部23F、第2ダンパ部24Fに迅速に供給することができる。このように、第1溝部34Fは、潤滑油Oを貯留可能な油溜まり部としての機能を有している。同様に、第2溝部25F、内径側凹部29も、潤滑油Oを貯留可能な油溜まり部としての機能を有している。
図4(A)に示すように、4つのテーパ部Cの上流端の径方向内側には、油溝270Fの出口が開口している。このため、潤滑油Oがテーパ部Cを流動する際、潤滑油Oを昇圧しやすい。また、図3に示すスラストカラー53(回転部5)の遠心力により、潤滑油Oがスラスト軸受部22Fの径方向全体に行き渡りやすい。
図3に示すように、堰部33の側面(第1溝部34Fの後側の溝側面)330は、滑り軸受2の径方向(図3における上下方向)に延在している。このため、矢印yで示すように、潤滑油Oの流れが乱れやすい。したがって、第1溝部34Fつまり外径側油路31Fにおける潤滑油Oの流動を抑制することができる。また、第1溝部34Fに潤滑油Oが滞留しやすくなる。
図2に示すように、滑り軸受2は、ラジアル軸受部21F、21Rと、スラスト軸受部22F、22Rと、を併有している。このため、ターボチャージャ1がラジアル軸受とスラスト軸受とを各々独立して備えている場合と比較して、ターボチャージャ1の部品点数を少なくすることができる。また、ターボチャージャ1の構成を簡単にすることができる。また、ターボチャージャ1を小型化することができる。
<その他>
以上、本発明の滑り軸受およびターボチャージャの実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。以下、滑り軸受の軸方向基準位置(油孔の孔軸位置)に対して、前側部分の実施形態について説明するが、後側部分についても同様である。
以上、本発明の滑り軸受およびターボチャージャの実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。以下、滑り軸受の軸方向基準位置(油孔の孔軸位置)に対して、前側部分の実施形態について説明するが、後側部分についても同様である。
図7に、その他の実施形態(その1)の滑り軸受の斜視図を示す。なお、図5と対応する部位については、同じ符号で示す。図7に示すように、油孔30の入口300は、環状の第3溝部36(軸受本体20の外周面)に開設されている。油孔30の前後方向両外側には、堰部33F、33Rが配置されている。本実施形態のように、堰部33F、33Rよりも小径の第3溝部36に、入口300を開設してもよい。ターボチャージャ1の停止時に、第3溝部36は、潤滑油Oを貯留する油溜まり部として機能する。したがって、貯留された潤滑油Oを、ターボチャージャ1の再始動時に外径側油路31F、内径側油路32F(図3参照)に迅速に供給することができる。
図8に、その他の実施形態(その2)の滑り軸受の斜視図を示す。なお、図5と対応する部位については、同じ符号で示す。図8に示すように、堰部33はブロック状(個片状)を呈している。堰部33は、軸受本体20の外周面のうち、油孔30の入口300を含む領域にだけ、局所的に配置されている。堰部33は、滑り軸受2のダンパ部35F、35R(滑り軸受2の最大外径部)よりも、小径である(堰部33が最大外径部と同径であってもよい)。このため、軸受配置部900に、滑り軸受2を、前後方向から挿入しやすい。本実施形態のように、堰部33が、軸心Aを中心とする環状(無端環状)を呈していなくてもよい。また、堰部33が、入口300を囲む環状を呈していてもよい。また、前後一対のダンパ部35F、35Rが配置されていてもよい。
図9に、その他の実施形態(その3)の滑り軸受の斜視図を示す。なお、図8と対応する部位については、同じ符号で示す。図9に示すように、油孔30の入口300は、凹部37(軸受本体20の外周面)に開設されている。凹部37の周囲には、円環状の堰部33が配置されている。堰部33は、油孔30の入口300、凹部37を囲んでいる。堰部33は、滑り軸受2のダンパ部35F、35R(滑り軸受2の最大外径部)よりも、小径である(堰部33が最大外径部と同径であってもよい)。このため、軸受配置部900に、滑り軸受2を、前後方向から挿入しやすい。本実施形態のように、入口300の周囲にだけ(必要最小限の範囲にだけ)、局所的に堰部33を配置してもよい。また、入口300と堰部33との間に凹部37を配置してもよい。ターボチャージャ1の停止時に、凹部37は、潤滑油Oを貯留する油溜まり部として機能する。したがって、貯留された潤滑油Oを、ターボチャージャ1の再始動時に外径側油路31F、内径側油路32F(図3参照)に迅速に供給することができる。
図10に、その他の実施形態(その4)の滑り軸受の軸方向部分断面図を示す。なお、図3と対応する部位については、同じ符号で示す。図10に示すように、ハウジング側油路905の出口906の前端Hは、堰部33の前端Fと前後方向同位置に配置されている。この場合であっても、ハウジング側油路905の出口906から流出した潤滑油Oを、優先的に油孔30の入口300に導入することができる。
図3に示す堰部33の配置数、形状、位置は特に限定しない。例えば、堰部33は、無端環状であっても、有端環状であってもよい。また、堰部33をダンパ部として用いてもよい。図4(A)、図4(B)に示すテーパ部C、ランド部Dの形状、パッド部Bの配置数等は特に限定しない。スラスト軸受部22F、22Rのうち少なくとも一方に、パッド部Bを配置しなくてもよい。
図4(A)、図5に示す油溝270Fの配置数は特に限定しない。油溝270Fの配置数とパッド部Bの配置数とは同じでも異なっていてもよい。油溝270Fの長手方向形状は特に限定しない。直線状であっても、曲線状であっても、これらを適宜組み合わせた形状であってもよい。油溝270Fの横断面形状は特に限定しない。真円形、楕円形、多角形(三角形、四角形、六角形など)などであってもよい。前側(軸方向)から見て、入口に対して、出口を、下流側にずらして配置してもよい。こうすると、スラストカラー53(回転部5)の遠心力により、油溝270Fに潤滑油Oが引き込まれやすい。また、スラスト軸受部22Fに潤滑油Oが引き込まれやすい。油溝270Fと同様に、油孔30の配置数、長手方向形状、横断面形状は特に限定しない。
ダンパ部(第1ダンパ部23F、第2ダンパ部24F、ダンパ部35F、35R)、溝部(第1溝部34F、第2溝部25F)の配置数、形状、位置は特に限定しない。ダンパ部、溝部は、無端環状であっても、有端環状であってもよい。同様に、図7に示す第3溝部36、図9に示す凹部37の配置数、形状、位置も特に限定しない。
油孔30の入口300は、堰部33だけに開設されていても、軸受本体20の外周面だけに開設されていても、堰部33と軸受本体20の外周面とに亘って開設されていてもよい。すなわち、入口300は、軸受本体20の外周面(詳しくは、軸受本体20の外周面のうち堰部33が配置されていない部分)および堰部33のうち、少なくとも一方に開口していればよい。
1:ターボチャージャ、2:滑り軸受、5:回転部、20:軸受本体、21F:ラジアル軸受部、21R:ラジアル軸受部、22F:スラスト軸受部、22R:スラスト軸受部、23F:第1ダンパ部(ダンパ部)、23R:第1ダンパ部(ダンパ部)、24F:第2ダンパ部(ダンパ部)、24R:第2ダンパ部(ダンパ部)、25F:第2溝部、25R:第2溝部、27F:油溝群、27R:油溝群、29:内径側凹部、30:油孔、31F:外径側油路、31R:外径側油路、32F:内径側油路、32R:内径側油路、33:堰部、33F:堰部、33R:堰部、34F:第1溝部(溝部)、34R:第1溝部(溝部)、35F:ダンパ部、35R:ダンパ部、36:第3溝部、37:凹部、50:回転軸、51:コンプレッサインペラ、52:タービンインペラ、53:スラストカラー、90:ベアリングハウジング、91:コンプレッサハウジング、92:タービンハウジング、270F:油溝、270R:油溝、300:入口、301:出口、500:小径部、501:中径部、502:大径部、503:段差部、504:段差部、900:軸受配置部、905:ハウジング側油路(上流側油路)、906:出口、A:軸心、B:パッド部、C:テーパ部、D:ランド部、F:前端(軸方向外端)、H:前端(軸方向外端)、O:潤滑油、f:油膜、h:高度
Claims (5)
- 筒状の軸受本体と、
前記軸受本体の内周面に配置されるラジアル軸受部と、
前記軸受本体の軸方向端面に配置されるスラスト軸受部と、
前記軸受本体の外周面に配置されるダンパ部と、
前記軸受本体の外周面に配置される堰部と、
前記軸受本体の外周面および前記堰部のうち少なくとも一方に開口する入口と、前記軸受本体の内周面に開口する出口と、を有する油孔と、
を備え、
前記油孔の前記入口と、前記堰部の少なくとも一部と、前記ダンパ部と、は軸方向内側から軸方向外側に向かって、この順で並び、
前記油孔の前記入口の径方向外側には、上流側油路の出口が連なり、
前記上流側油路の前記出口の軸方向外端は、前記堰部の軸方向外端と軸方向同位置、または前記堰部の軸方向外端よりも軸方向内側に配置される滑り軸受。 - 前記堰部は、前記軸受本体の軸を中心とする環状を呈する請求項1に記載の滑り軸受。
- 前記ダンパ部と前記堰部との間に配置され、前記ダンパ部および前記堰部よりも小径の溝部を備える請求項2に記載の滑り軸受。
- 前記堰部は、前記油孔の前記入口を囲む環状を呈する請求項1に記載の滑り軸受。
- 請求項1ないし請求項4のいずれかに記載の滑り軸受を備えるターボチャージャ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019007042.8T DE112019007042T5 (de) | 2019-03-18 | 2019-12-25 | Gleitlager und Turbolader |
US17/440,225 US20220154768A1 (en) | 2019-03-18 | 2019-12-25 | Plain bearing and turbocharger |
CN201980094320.9A CN113597507A (zh) | 2019-03-18 | 2019-12-25 | 滑动轴承及涡轮增压器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019050501A JP2020153396A (ja) | 2019-03-18 | 2019-03-18 | 滑り軸受およびターボチャージャ |
JP2019-050501 | 2019-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020188944A1 true WO2020188944A1 (ja) | 2020-09-24 |
Family
ID=72519792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/050830 WO2020188944A1 (ja) | 2019-03-18 | 2019-12-25 | 滑り軸受およびターボチャージャ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220154768A1 (ja) |
JP (1) | JP2020153396A (ja) |
CN (1) | CN113597507A (ja) |
DE (1) | DE112019007042T5 (ja) |
WO (1) | WO2020188944A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010223249A (ja) * | 2009-03-19 | 2010-10-07 | Toyota Motor Corp | 浮動式すべり軸受装置及びこれを備える内燃機関のターボチャージャ |
JP2013227892A (ja) * | 2012-04-25 | 2013-11-07 | Toyota Motor Corp | ターボチャージャ |
JP2014080890A (ja) * | 2012-10-15 | 2014-05-08 | Toyota Motor Corp | ターボチャージャ |
CN104747597A (zh) * | 2013-12-30 | 2015-07-01 | 常州环能涡轮动力股份有限公司 | 小型涡轮增压器的浮动轴承 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5169242A (en) * | 1990-11-27 | 1992-12-08 | General Motors Corporation | Turbocharger assembly and stabilizing journal bearing therefor |
JP3620815B2 (ja) * | 1997-09-11 | 2005-02-16 | 日立粉末冶金株式会社 | 多孔質軸受 |
DE10195937B4 (de) * | 2001-02-02 | 2013-09-26 | Ixetic Bad Homburg Gmbh | Wellenlagerung einer Hubkolbenmaschine |
DE20120266U1 (de) * | 2001-12-14 | 2003-04-24 | Igus Spritzgußteile für die Industrie GmbH, 51147 Köln | Gleitlagerkörper und Gleitlager mit Gleitlagerkörper |
JP2008175268A (ja) * | 2007-01-17 | 2008-07-31 | Sii Micro Precision Kk | 流体動圧軸受、モータおよび記録媒体駆動装置 |
WO2013018605A1 (ja) * | 2011-08-01 | 2013-02-07 | Ntn株式会社 | スラストフォイル軸受 |
JP5987476B2 (ja) * | 2012-05-29 | 2016-09-07 | 株式会社Ihi | 過給機 |
US9394941B2 (en) * | 2012-10-17 | 2016-07-19 | Borgwarner Inc. | Oil-free turbocharger bearing assembly having conical shaft supported on compliant gas bearings |
KR101408672B1 (ko) * | 2013-01-16 | 2014-06-17 | 한국기계연구원 | 메탈 메쉬 포일 쓰러스트 베어링 |
JP2014238009A (ja) * | 2013-06-06 | 2014-12-18 | 株式会社Ihi | 過給機 |
JP2017053398A (ja) * | 2015-09-08 | 2017-03-16 | Ntn株式会社 | 流体動圧軸受装置及びこれを備えるモータ |
WO2017042925A1 (ja) * | 2015-09-10 | 2017-03-16 | 三菱重工業株式会社 | ターボチャージャの軸受装置、及びターボチャージャ |
WO2017082166A1 (ja) * | 2015-11-13 | 2017-05-18 | 株式会社Ihi | 軸受構造、および、過給機 |
JP6294555B1 (ja) * | 2017-11-20 | 2018-03-14 | 株式会社中村製作所 | アルミニウム合金製フローティングメタルベアリング |
-
2019
- 2019-03-18 JP JP2019050501A patent/JP2020153396A/ja active Pending
- 2019-12-25 DE DE112019007042.8T patent/DE112019007042T5/de not_active Withdrawn
- 2019-12-25 WO PCT/JP2019/050830 patent/WO2020188944A1/ja active Application Filing
- 2019-12-25 CN CN201980094320.9A patent/CN113597507A/zh active Pending
- 2019-12-25 US US17/440,225 patent/US20220154768A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010223249A (ja) * | 2009-03-19 | 2010-10-07 | Toyota Motor Corp | 浮動式すべり軸受装置及びこれを備える内燃機関のターボチャージャ |
JP2013227892A (ja) * | 2012-04-25 | 2013-11-07 | Toyota Motor Corp | ターボチャージャ |
JP2014080890A (ja) * | 2012-10-15 | 2014-05-08 | Toyota Motor Corp | ターボチャージャ |
CN104747597A (zh) * | 2013-12-30 | 2015-07-01 | 常州环能涡轮动力股份有限公司 | 小型涡轮增压器的浮动轴承 |
Also Published As
Publication number | Publication date |
---|---|
DE112019007042T5 (de) | 2022-01-13 |
CN113597507A (zh) | 2021-11-02 |
JP2020153396A (ja) | 2020-09-24 |
US20220154768A1 (en) | 2022-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5333602B2 (ja) | 軸受装置 | |
US9790812B2 (en) | Fluid film conical or hemispherical floating ring bearings | |
US4997290A (en) | Rolling bearing arrangement | |
JP4251211B2 (ja) | ターボチャージャの軸受構造 | |
CN103842667A (zh) | 增压器的止推轴承装置 | |
US9797303B2 (en) | Turbocharger with thrust bearing providing combined journal and thrust bearing functions | |
JP2005076755A (ja) | すべり軸受 | |
CN104302890A (zh) | 轴向轴承安排 | |
CN102748390A (zh) | 流体动力轴向轴承 | |
KR20150074036A (ko) | 유연성 댐퍼를 구비한 유체막 유체 동압적 플랙셔 피벗 틸팅 패드 반부동식 링 저널 베어링 | |
WO2014208196A1 (ja) | ティルティングパッド型ジャーナル軸受 | |
US10094417B2 (en) | Tilting pad journal bearing | |
WO2018091629A1 (en) | Journal thrust bearing bush for supporting the shaft of an exhaust turbocharger | |
JPWO2017010450A1 (ja) | 多円弧軸受および過給機 | |
JP5510592B2 (ja) | 軸受装置 | |
WO2016063340A1 (ja) | スラスト軸受及び回転機械 | |
WO2020188944A1 (ja) | 滑り軸受およびターボチャージャ | |
JP6190116B2 (ja) | スラスト軸受 | |
JP7182498B2 (ja) | 滑り軸受およびターボチャージャ | |
JP5313096B2 (ja) | 軸受構造 | |
JP2019078364A (ja) | スラスト軸受およびターボチャージャ | |
JP5169954B2 (ja) | ティルティングパッド軸受 | |
WO2016199818A1 (ja) | 軸受ユニット | |
JPH11336753A (ja) | 自動調心ころ軸受 | |
JP2019078359A (ja) | スラスト軸受およびターボチャージャ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19920232 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 19920232 Country of ref document: EP Kind code of ref document: A1 |