WO2020186625A1 - 一种自动驾驶系统升级的方法、自动驾驶系统及车载设备 - Google Patents

一种自动驾驶系统升级的方法、自动驾驶系统及车载设备 Download PDF

Info

Publication number
WO2020186625A1
WO2020186625A1 PCT/CN2019/088822 CN2019088822W WO2020186625A1 WO 2020186625 A1 WO2020186625 A1 WO 2020186625A1 CN 2019088822 W CN2019088822 W CN 2019088822W WO 2020186625 A1 WO2020186625 A1 WO 2020186625A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic driving
driving
data
vehicle
sensor group
Prior art date
Application number
PCT/CN2019/088822
Other languages
English (en)
French (fr)
Inventor
吴甘沙
周鑫
张玉新
Original Assignee
驭势科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 驭势科技(北京)有限公司 filed Critical 驭势科技(北京)有限公司
Priority to EP19919753.4A priority Critical patent/EP3944046A4/en
Priority to US17/441,208 priority patent/US11685397B2/en
Priority to KR1020217032108A priority patent/KR102459736B1/ko
Priority to JP2021552210A priority patent/JP7121864B2/ja
Publication of WO2020186625A1 publication Critical patent/WO2020186625A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0013Planning or execution of driving tasks specially adapted for occupant comfort
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/18Distance travelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/30Driving style
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/55External transmission of data to or from the vehicle using telemetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models

Definitions

  • the embodiments of the present disclosure relate to the field of automatic driving technology, and in particular to a method for upgrading an automatic driving system, an automatic driving system, and on-board equipment.
  • autonomous vehicles provide a variety of vehicle driving modes, including, for example, manual driving mode, assisted driving mode, and automatic driving mode.
  • the automatic driving level corresponding to the manual driving mode is L0
  • the automatic driving level corresponding to the assisted driving mode is L1
  • the automatic driving level corresponding to the automatic driving mode is L2 to L5.
  • the automatic driving mode is the automatic driving system of the automatic driving vehicle to realize the planning control of the automatic driving of the vehicle.
  • manual driving mode the automatic driving system is in a dormant state and does not work; in automatic driving mode, the automatic driving system is in an active state.
  • the automatic driving system should be upgraded based on the driver's driving habits on the premise of ensuring the reliability of automatic driving planning decision-making, so as to conform to the driver's driving habits and improve the driver's experience.
  • At least one embodiment of the present disclosure provides a method for upgrading an automatic driving system, an automatic driving system, and on-board equipment.
  • an embodiment of the present disclosure proposes a method for upgrading an automatic driving system.
  • the automatic driving system does not issue instructions to control the driving of a vehicle in a manual driving mode, and the method includes:
  • an automatic driving system is upgraded.
  • the first sensor group includes: camera, lidar, millimeter wave radar, GPS and/or IMU;
  • the second sensor group includes: a wheel speed sensor, a speed sensor, an acceleration sensor, and/or a steering angle sensor.
  • performing an automatic driving system upgrade based on the first travel path and the second travel path includes:
  • an automatic driving system upgrade is performed.
  • the determining the driving behavior level in the manual driving mode based on the data of the first driving path and at least one sensor in the second sensor group includes:
  • the upgrading the automatic driving system based on the deviation degree and the driving behavior level includes:
  • the corresponding relationship is the corresponding relationship between the environmental perception information, the positioning information, the data of the second sensor group and the first driving path, and the automatic driving system is based on the environmental perception information, According to the positioning information, the data of the second sensor group, and the corresponding relationship, the driving path of the vehicle in the automatic driving mode is planned to be the first driving path.
  • the method further includes:
  • the mileage of the first travel path is recorded as the test mileage of automatic driving.
  • the method further includes:
  • the embodiments of the present disclosure also propose an automatic driving system, the automatic driving system does not issue instructions to control the driving of the vehicle in the manual driving mode, and the automatic driving system includes:
  • the first acquiring unit is configured to acquire the first travel path of the vehicle in manual driving mode
  • the second acquiring unit is configured to acquire data of the first sensor group and data of the second sensor group;
  • a generating unit configured to generate environmental perception information and positioning information based on the data of the first sensor group
  • a planning unit configured to plan a second driving path of the vehicle in an automatic driving mode based on the environmental perception information, the positioning information, and the data of the second sensor group;
  • the upgrading unit is configured to upgrade the automatic driving system based on the first driving path and the second driving path.
  • the first sensor group includes: camera, lidar, millimeter wave radar, GPS and/or IMU;
  • the second sensor group includes: a wheel speed sensor, a speed sensor, an acceleration sensor, and/or a steering angle sensor.
  • the upgrading unit includes:
  • the first subunit is used to determine the degree of deviation between the first travel path and the second travel path;
  • the second subunit is configured to determine the driving behavior level in the manual driving mode based on the first driving path and the data of at least one sensor in the second sensor group;
  • the third subunit is used to upgrade the automatic driving system based on the deviation degree and the driving behavior level.
  • the second subunit is used for:
  • the third subunit is used for:
  • the corresponding relationship is the corresponding relationship between the environmental perception information, the positioning information, the data of the second sensor group and the first driving path, and the automatic driving system is based on the environmental perception information, According to the positioning information, the data of the second sensor group, and the corresponding relationship, the driving path of the vehicle in the automatic driving mode is planned to be the first driving path.
  • the automatic driving system further includes:
  • the recording unit is configured to record the mileage of the first driving path as a test mileage of automatic driving if the deviation degree is less than or equal to a preset second deviation degree threshold.
  • the autonomous driving system further includes a reverse analysis unit for:
  • the embodiments of the present disclosure also propose a vehicle-mounted device, including:
  • the processor, memory and communication interface are coupled together through a bus system
  • the processor is configured to execute the steps of the method described in the first aspect by calling the computer program stored in the memory.
  • the automatic driving system will also perform vehicle surrounding environment perception and vehicle positioning in manual driving mode, and plan the automatic driving of the vehicle based on environmental perception information, positioning information, and vehicle sensor data It does not issue instructions to control the vehicle's driving, but compares it with the driving path of the driver in the manual driving mode, and upgrades the planning control algorithm of the automatic driving system so that the upgraded automatic driving system can ensure automatic driving Under the premise of the reliability of planning and decision-making, the automatic driving of the vehicle is more in line with the driver's driving habits and improves the driver's experience.
  • FIG. 1 is an overall architecture diagram of an autonomous vehicle provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of a vehicle-mounted device provided by an embodiment of the disclosure.
  • FIG. 3 is a flowchart of a method for upgrading an automatic driving system provided by an embodiment of the disclosure
  • Fig. 4 is a block diagram of an automatic driving system provided by an embodiment of the disclosure.
  • FIG. 1 is an overall architecture diagram of an autonomous driving vehicle provided by an embodiment of the disclosure.
  • the data collected by the first sensor group includes, but is not limited to, data of the vehicle's external environment and position data of the detection vehicle.
  • the first sensor group For example, it includes but is not limited to at least one of a camera, a lidar, a millimeter wave radar, a GPS (Global Positioning System), and an IMU (Inertial Measurement Unit).
  • the autopilot system can obtain the data of the first sensor group.
  • the data collected by the second sensor group includes but is not limited to vehicle dynamics data.
  • the second sensor group includes, but is not limited to, for example, at least one of a wheel speed sensor, a speed sensor, an acceleration sensor, and a steering angle sensor.
  • the automatic driving system can obtain the data of the second sensor group.
  • the driver drives the vehicle by operating a device that controls the travel of the vehicle.
  • the devices that control the travel of the vehicle include, but are not limited to, a brake pedal, a steering wheel, and an accelerator pedal.
  • the device for controlling the driving of the vehicle can directly operate the execution system at the bottom of the vehicle to control the driving of the vehicle.
  • the bottom-level execution system of the vehicle controls the driving of the vehicle.
  • the bottom-level execution system of the vehicle includes: steering system, braking system and power system.
  • the autopilot system is a software system that runs on the operating system, and the on-board hardware system is a hardware system that supports the operation of the operating system.
  • the automatic driving system makes planning decisions for vehicle automatic driving based on planning control algorithms.
  • the autonomous driving system can wirelessly communicate with the cloud server to exchange various information.
  • the automatic driving system does not issue instructions to control the driving of the vehicle in the manual driving mode.
  • the automatic driving system can realize the steps of each embodiment of the method for upgrading the automatic driving system, for example, including the following steps 1 to 5:
  • Step 1 Obtain the first driving path of the vehicle in manual driving mode
  • Step 2 Obtain the data of the first sensor group and the data of the second sensor group;
  • Step 3 Generate environmental perception information and positioning information based on the data of the first sensor group
  • Step 4 Based on the environmental perception information, the positioning information, and the data of the second sensor group, plan a second driving path of the vehicle in the automatic driving mode;
  • Step 5 Perform an automatic driving system upgrade based on the first travel path and the second travel path.
  • the automatic driving system will also perceive the surrounding environment of the vehicle and locate the vehicle in the manual driving mode, and plan the automatic driving path of the vehicle based on the environmental perception information, positioning information and the data of the vehicle sensor, but will not issue instructions to control the vehicle driving. It is compared with the driving path of the vehicle driven by the driver in manual driving mode, and the planning control algorithm of the automatic driving system is upgraded, so that the upgraded automatic driving system can ensure the reliability of automatic driving planning and decision-making, and the automatic driving of the vehicle is more consistent.
  • the driver’s driving habits improve the driver’s experience.
  • Fig. 2 is a schematic structural diagram of a vehicle-mounted device provided by an embodiment of the present disclosure.
  • the vehicle-mounted device shown in FIG. 2 includes: at least one processor 201, at least one memory 202, and other user interfaces 203.
  • the various components in the vehicle-mounted device are coupled together through the bus system 204.
  • the bus system 204 is used to implement connection and communication between these components.
  • the bus system 204 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 204 in FIG. 2.
  • the user interface 203 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball) or a touch pad, etc.).
  • a pointing device for example, a mouse, a trackball (trackball) or a touch pad, etc.
  • the memory 202 in this embodiment may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-OnlyMemory, ROM), programmable read-only memory (ProgrammableROM, PROM), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable Programming read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM Double data rate synchronous dynamic random access memory
  • DoubleDataRate SDRAM DDRSDRAM
  • Enhanced SDRAM ESDRAM
  • SynchlinkDRAM SLDRAM
  • DirectRambusRAM DirectRambusRAM
  • DRRAM direct memory bus RAM Take memory
  • the memory 202 stores the following elements, executable units or data structures, or their subsets, or their extended sets: operating system 2021 and application programs 2022.
  • the operating system 2021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 2022 includes various application programs, such as a media player (MediaPlayer), a browser (Browser), etc., for implementing various application services.
  • the program for implementing the method of the embodiment of the present disclosure may be included in the application program 2022.
  • the processor 201 calls a program or instruction stored in the memory 202, specifically, it may be a program or instruction stored in the application program 2022, and the processor 201 is used to execute the method for upgrading the automatic driving system.
  • the steps provided include, for example, the following steps 1 to 5:
  • Step 1 Obtain the first driving path of the vehicle in manual driving mode
  • Step 2 Obtain the data of the first sensor group and the data of the second sensor group;
  • Step 3 Generate environmental perception information and positioning information based on the data of the first sensor group
  • Step 4 Based on the environmental perception information, the positioning information, and the data of the second sensor group, plan a second driving path of the vehicle in the automatic driving mode;
  • Step 5 Perform an automatic driving system upgrade based on the first travel path and the second travel path.
  • the methods disclosed in the above embodiments of the present disclosure may be applied to the processor 201 or implemented by the processor 201.
  • the processor 201 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 201 or instructions in the form of software.
  • the aforementioned processor 201 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates Or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software units in the decoding processor.
  • the software unit may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 202, and the processor 201 reads the information in the memory 202 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application-specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPDevice, DSPD), programmable logic devices (PLD), field programmable gates Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, other electronic units for performing the functions described in this application, or a combination thereof.
  • ASIC application-specific integrated circuits
  • DSP digital signal processors
  • DSPDevice digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable gates Array
  • the technology described herein can be implemented by a unit that performs the functions described herein.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the execution sequence can be adjusted arbitrarily.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present disclosure essentially or contribute to the prior art or parts of the technical solutions can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • Fig. 3 is a flowchart of a method for upgrading an automatic driving system provided by an embodiment of the disclosure.
  • the main body of execution of this method is vehicle-mounted equipment.
  • the automatic driving system does not issue instructions to control the vehicle driving in the manual driving mode.
  • the method may include the following steps 301 to 305:
  • the driver drives the vehicle by operating a device that controls the traveling of the vehicle.
  • the devices that control the traveling of the vehicle include, but are not limited to, a brake pedal, a steering wheel, and an accelerator pedal, for example.
  • the device for controlling the driving of the vehicle can directly operate the execution system at the bottom of the vehicle to control the driving of the vehicle.
  • the bottom-level execution system of the vehicle controls the driving of the vehicle.
  • the bottom-level execution system of the vehicle includes: steering system, braking system and power system.
  • the automatic driving system can obtain the data of the first sensor group.
  • the data collected by the first sensor group includes, but is not limited to, data on the external environment of the vehicle and location data of the detection vehicle.
  • the first sensor group includes, but is not limited to, for example, cameras, lidar, millimeter wave radar, GPS (Global Positioning System, global positioning system). ) And at least one of IMU (Inertial Measurement Unit).
  • the autopilot system can obtain the data of the first sensor group.
  • the automatic driving system can generate environmental perception information and positioning information based on the data of the first sensor group. Specifically, the automatic driving system generates environmental perception information and positioning information based on the perception data and positioning data.
  • the automatic driving system can also obtain data from the second sensor group.
  • the data collected by the second sensor group includes but is not limited to vehicle dynamics data.
  • the second sensor group includes, but is not limited to, for example, at least one of a wheel speed sensor, a speed sensor, an acceleration sensor, and a steering angle sensor.
  • the automatic driving system can plan the second driving path of the vehicle in the automatic driving mode based on the environmental perception information, the positioning information and the data of the second sensor group. Specifically, the automatic driving system makes automatic driving planning decisions based on environmental perception information, positioning information and dynamic data, and obtains the second driving path of the vehicle in the automatic driving mode.
  • the automatic driving system will also perceive the surrounding environment of the vehicle and locate the vehicle in the manual driving mode, and plan the automatic driving path of the vehicle based on the environmental perception information, positioning information and the data of the vehicle sensor, but will not issue instructions to control the vehicle driving. It is compared with the driving path of the vehicle driven by the driver in manual driving mode, and the planning control algorithm of the automatic driving system is upgraded, so that the upgraded automatic driving system can ensure the reliability of automatic driving planning and decision-making, and the automatic driving of the vehicle is more consistent.
  • the driver’s driving habits improve the driver’s experience.
  • the upgrade of the automatic driving system based on the first driving path and the second driving path in step 303 may include the following steps (1) to (3):
  • the automatic driving system can determine the degree of deviation between the first travel path and the second travel path, and the determination of the degree of deviation between the two paths can follow the existing method, which will not be repeated here.
  • the data of the second sensor group includes vehicle dynamics data, which can reflect the driving state of the vehicle, it is based on the first driving path and at least one sensor in the second sensor group
  • the data can be used to determine whether the driver’s driving behavior is abnormal. For example, if the vehicle undergoes an abnormal event such as a sharp turn, emergency braking, or rapid overtaking, the driver’s behavior is abnormal.
  • the driving behavior level in the manual driving mode is used to evaluate whether the driver's behavior is abnormal.
  • the first level of driving behavior indicates no abnormality, and the second level of driving behavior indicates abnormality.
  • different levels can be used to indicate different levels of driver behavior.
  • driver's behavior If the driver's behavior is abnormal, it will not be upgraded; if the driver's behavior is not abnormal, it will be upgraded, so that the decision-making and planning of the automatic driving system based on the upgraded planning control algorithm is more in line with the driver's habits and improves the driver's experience.
  • determining the driving behavior level in the manual driving mode based on the first driving path and the data of at least one sensor in the second sensor group may include the following steps (1) and (2):
  • the automatic driving system communicates with the cloud server, and sends the data of the first driving path and the second sensor group to the cloud server, and the cloud server is responsible for determining the driving behavior level.
  • the cloud server determines the driving behavior level and then sends it to the automatic driving system to reduce the load on the automatic driving system.
  • processing power of the cloud server is far greater than the processing power of the on-board hardware equipment that the automatic driving system relies on, which can determine the driving behavior level faster and meet the real-time requirements of the automatic driving system.
  • the cloud server is based on the first driving path and the first driving path.
  • the data of at least one sensor in the two sensor groups can determine whether the driver's driving behavior is abnormal. For example, if the vehicle undergoes an abnormal event such as a sharp turn, emergency braking, or rapid overtaking, the driver's behavior is abnormal.
  • the cloud server determines that the driver's behavior is abnormal, it can generate a log file and store it for analysis by the driver or other professionals.
  • the automatic driving system upgrade based on the degree of deviation and the driving behavior level may include the following steps (1) and (2):
  • the corresponding relationship is the corresponding relationship between the environmental perception information, the positioning information, the data of the second sensor group and the first driving path, and the automatic driving system is based on the environmental perception information, According to the positioning information, the data of the second sensor group, and the corresponding relationship, the driving path of the vehicle in the automatic driving mode is planned to be the first driving path.
  • the first deviation threshold indicates that the second travel path planned by the automatic driving system is quite different from the first travel path of the vehicle controlled by the driver, which does not conform to the driver's operating habits.
  • the driving behavior level is the first level (that is, the driver’s behavior is not abnormal)
  • the planning control algorithm of the automatic driving system should be upgraded to ensure that the upgraded automatic driving system
  • the automatic driving of vehicles is more in line with the driver's driving habits and improves the driver's experience.
  • the deviation degree is less than or equal to the preset second deviation degree threshold, it means that the second travel path planned by the automatic driving system and the first travel path of the vehicle controlled by the driver are small, which conforms to the driver's operating habits and does not need to be upgraded. And the mileage of the first driving path can be recorded as the test mileage of automatic driving.
  • the second deviation degree threshold is less than or equal to the first deviation degree threshold.
  • the method for upgrading the automatic driving system may further include a reverse analysis process, specifically including the following steps (1) to (5):
  • the abnormal data can be understood as abnormal data corresponding to abnormal events such as a sharp turn, emergency braking, and rapid overtaking of the vehicle.
  • the control instructions of the vehicle underlying execution system corresponding to the dynamics calculation data and the historical environment perception information generated by the calculation time can be determined. Historical positioning information.
  • the automatic driving system determines that the environmental perception information is the historical environmental perception information and the positioning information is the historical positioning information .
  • the automatic driving system generates control instructions to avoid abnormal events.
  • this embodiment discloses an automatic driving system.
  • the automatic driving system does not issue instructions to control the driving of the vehicle in manual driving mode.
  • the automatic driving system may include the following units: a first acquisition unit 41, a second acquisition unit 42 , Generating unit 43, planning unit 44 and upgrading unit 45, the specific description is as follows:
  • the first obtaining unit 41 is configured to obtain the first travel path of the vehicle in the manual driving mode
  • the second acquiring unit 42 is configured to acquire data of the first sensor group and data of the second sensor group;
  • the generating unit 43 is configured to generate environmental perception information and positioning information based on the data of the first sensor group;
  • a planning unit 44 configured to plan a second driving path of the vehicle in an automatic driving mode based on the environmental perception information, the positioning information, and the data of the second sensor group;
  • the upgrading unit 45 is configured to upgrade the automatic driving system based on the first driving path and the second driving path.
  • the first sensor group includes: camera, lidar, millimeter wave radar, GPS and/or IMU;
  • the second sensor group includes: a wheel speed sensor, a speed sensor, an acceleration sensor, and/or a steering angle sensor.
  • the upgrading unit 45 includes:
  • the first subunit is used to determine the degree of deviation between the first travel path and the second travel path;
  • the second subunit is configured to determine the driving behavior level in the manual driving mode based on the first driving path and the data of at least one sensor in the second sensor group;
  • the third subunit is used to upgrade the automatic driving system based on the deviation degree and the driving behavior level.
  • the second subunit is used for:
  • the third subunit is used for:
  • the corresponding relationship is the corresponding relationship between the environmental perception information, the positioning information, the data of the second sensor group and the first driving path, and the automatic driving system is based on the environmental perception information, According to the positioning information, the data of the second sensor group, and the corresponding relationship, the driving path of the vehicle in the automatic driving mode is planned to be the first driving path.
  • the automatic driving system further includes:
  • the recording unit is configured to record the mileage of the first driving path as a test mileage of automatic driving if the deviation degree is less than or equal to a preset second deviation degree threshold.
  • the autonomous driving system further includes a reverse analysis unit for:
  • the automatic driving system disclosed in the above embodiments can implement the method procedures for upgrading the automatic driving system disclosed in the above method embodiments. To avoid repetition, details are not described herein again.
  • the method for upgrading the automatic driving system, the automatic driving system and the on-board equipment proposed by the embodiments of the present disclosure will also perform vehicle surrounding environment perception and vehicle positioning in manual driving mode, and data planning based on environmental perception information, positioning information, and vehicle sensors
  • the automatic driving path of the vehicle but it will not issue instructions to control the driving of the vehicle, but compare it with the driving path of the driver in the manual driving mode, and upgrade the planning control algorithm of the automatic driving system to make the upgraded automatic driving system
  • the automatic driving of vehicles is more in line with the driver's driving habits and improves the driver's experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)

Abstract

本公开实施例涉及自动驾驶技术领域,具体涉及一种自动驾驶系统升级的方法、自动驾驶系统及车载设备。本公开实施例中,自动驾驶系统在人工驾驶模式下也会进行车辆周围环境感知和车辆定位,并基于环境感知信息、定位信息以及车辆传感器的数据规划车辆的自动行驶路径,但是不会下发指令控制车辆行驶,而是与人工驾驶模式下驾驶员驾驶车辆的行驶路径进行比较,升级自动驾驶系统的规划控制算法,以使升级后的自动驾驶系统在保证自动驾驶规划决策可靠性的前提下,车辆自动驾驶更加符合驾驶员的驾驶习惯,提高驾驶员的体验。

Description

一种自动驾驶系统升级的方法、自动驾驶系统及车载设备
本申请要求于2019年03月19日提交中国专利局、申请号为201910207290.X、发明名称为“一种自动驾驶系统升级的方法、自动驾驶系统及车载设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及自动驾驶技术领域,具体涉及一种自动驾驶系统升级的方法、自动驾驶系统及车载设备。
背景技术
目前,自动驾驶车辆提供可多种车辆驾驶模式,例如包括人工驾驶模式、辅助驾驶模式和自动驾驶模式。其中,人工驾驶模式对应的自动驾驶等级为L0,辅助驾驶模式对应的自动驾驶等级为L1,自动驾驶模式对应的自动驾驶级别为L2至L5。其中,自动驾驶模式是自动驾驶车辆的自动驾驶系统实现车辆自动驾驶的规划控制。在人工驾驶模式下,自动驾驶系统处于休眠状态,不进行工作;在自动驾驶模式下,自动驾驶系统处于激活状态。
由于不同驾驶员的驾驶习惯不同,自动驾驶系统在保证自动驾驶规划决策可靠性的前提下,应当基于驾驶员的驾驶习惯进行升级,以符合驾驶员的驾驶习惯,提高驾驶员的体验。
发明内容
为了解决现有技术存在的问题,本公开的至少一个实施例提供了一种自动驾驶系统升级的方法、自动驾驶系统及车载设备。
第一方面,本公开实施例提出一种自动驾驶系统升级的方法,所述自动驾驶系统在人工驾驶模式下不下发指令控制车辆行驶,所述方法包括:
获取人工驾驶模式下车辆的第一行驶路径;
获取第一传感器组的数据和第二传感器组的数据;
基于所述第一传感器组的数据,生成环境感知信息和定位信息;
基于所述环境感知信息、所述定位信息和所述第二传感器组的数据,规划自动驾驶模式下所述车辆的第二行驶路径;
基于所述第一行驶路径和所述第二行驶路径,进行自动驾驶系统升级。
在一些实施例中,所述第一传感器组包括:摄像头、激光雷达、毫米波雷达、GPS和/或IMU;
所述第二传感器组包括:车轮转速传感器、速度传感器、加速度传感器和/或转向角传感器。
在一些实施例中,基于所述第一行驶路径和所述第二行驶路径,进行自动驾驶系统升级,包括:
确定所述第一行驶路径和所述第二行驶路径的偏差度;
基于所述第一行驶路径和所述第二传感器组中至少一个传感器的数据,确定人工驾驶模式下的驾驶行为等级;
基于所述偏差度和所述驾驶行为等级,进行自动驾驶系统升级。
在一些实施例中,所述基于所述第一行驶路径和所述第二传感器组中至少一个传感器的数据,确定人工驾驶模式下的驾驶行为等级,包括:
向云端服务器发送所述第一行驶路径和所述第二传感器组的数据;
接收所述云端服务器发送的驾驶行为等级。
在一些实施例中,所述基于所述偏差度和所述驾驶行为等级,进行自动驾驶系统升级,包括:
若所述偏差度大于预设的第一偏差度阈值,且所述驾驶行为等级为第一等级,则确定对应关系;
基于所述对应关系,升级自动驾驶系统的规划控制算法;
其中,所述对应关系为所述环境感知信息、所述定位信息、所述 第二传感器组的数据与所述第一行驶路径的对应关系,且所述自动驾驶系统基于所述环境感知信息、所述定位信息、所述第二传感器组的数据以及所述对应关系,规划自动驾驶模式下所述车辆的行驶路径为所述第一行驶路径。
在一些实施例中,所述方法还包括:
若所述偏差度小于等于预设的第二偏差度阈值,则将所述第一行驶路径的里程记录为自动驾驶的测试里程。
在一些实施例中,所述方法还包括:
确定所述第二传感器组的数据中的异常数据;
确定避免所述异常数据的动力学推算数据以及所述动力学推算数据对应的推算时间;
基于所述动力学推算数据,确定车辆底层执行系统的控制指令;
基于所述推算时间,确定在所述推算时间生成的历史环境感知信息和历史定位信息;
建立所述历史环境感知信息、所述历史定位信息和所述控制指令之间的对应关系。
第二方面,本公开实施例还提出一种自动驾驶系统,所述自动驾驶系统在人工驾驶模式下不下发指令控制车辆行驶,所述自动驾驶系统包括:
第一获取单元,用于获取人工驾驶模式下车辆的第一行驶路径;
第二获取单元,用于获取第一传感器组的数据和第二传感器组的数据;
生成单元,用于基于所述第一传感器组的数据,生成环境感知信息和定位信息;
规划单元,用于基于所述环境感知信息、所述定位信息和所述第二传感器组的数据,规划自动驾驶模式下所述车辆的第二行驶路径;
升级单元,用于基于所述第一行驶路径和所述第二行驶路径,进行自动驾驶系统升级。
在一些实施例中,所述第一传感器组包括:摄像头、激光雷达、毫米波雷达、GPS和/或IMU;
所述第二传感器组包括:车轮转速传感器、速度传感器、加速度传感器和/或转向角传感器。
在一些实施例中,所述升级单元,包括:
第一子单元,用于确定所述第一行驶路径和所述第二行驶路径的偏差度;
第二子单元,用于基于所述第一行驶路径和所述第二传感器组中至少一个传感器的数据,确定人工驾驶模式下的驾驶行为等级;
第三子单元,用于基于所述偏差度和所述驾驶行为等级,进行自动驾驶系统升级。
在一些实施例中,所述第二子单元,用于:
向云端服务器发送所述第一行驶路径和所述第二传感器组的数据;
接收所述云端服务器发送的驾驶行为等级。
在一些实施例中,所述第三子单元,用于:
若所述偏差度大于预设的第一偏差度阈值,且所述驾驶行为等级为第一等级,则确定对应关系;
基于所述对应关系,升级自动驾驶系统的规划控制算法;
其中,所述对应关系为所述环境感知信息、所述定位信息、所述第二传感器组的数据与所述第一行驶路径的对应关系,且所述自动驾驶系统基于所述环境感知信息、所述定位信息、所述第二传感器组的数据以及所述对应关系,规划自动驾驶模式下所述车辆的行驶路径为所述第一行驶路径。
在一些实施例中,所述自动驾驶系统还包括:
记录单元,用于若所述偏差度小于等于预设的第二偏差度阈值,则将所述第一行驶路径的里程记录为自动驾驶的测试里程。
在一些实施例中,所述自动驾驶系统还包括逆向分析单元,用于:
确定所述第二传感器组的数据中的异常数据;
确定避免所述异常数据的动力学推算数据以及所述动力学推算数据对应的推算时间;
基于所述动力学推算数据,确定车辆底层执行系统的控制指令;
基于所述推算时间,确定在所述推算时间生成的历史环境感知信息和历史定位信息;
建立所述历史环境感知信息、所述历史定位信息和所述控制指令之间的对应关系。
第三方面,本公开实施例还提出一种车载设备,包括:
处理器、存储器和通信接口;
所述处理器、存储器和通信接口通过总线系统耦合在一起;
所述处理器通过调用所述存储器存储的计算机程序,用于执行如第一方面所述方法的步骤。
可见,本公开实施例的至少一个实施例中,自动驾驶系统在人工驾驶模式下也会进行车辆周围环境感知和车辆定位,并基于环境感知信息、定位信息以及车辆传感器的数据规划车辆的自动行驶路径,但是不会下发指令控制车辆行驶,而是与人工驾驶模式下驾驶员驾驶车辆的行驶路径进行比较,升级自动驾驶系统的规划控制算法,以使升级后的自动驾驶系统在保证自动驾驶规划决策可靠性的前提下,车辆自动驾驶更加符合驾驶员的驾驶习惯,提高驾驶员的体验。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种自动驾驶车辆的整体架构图;
图2为本公开实施例提供的一种车载设备的结构示意图;
图3为本公开实施例提供的自动驾驶系统升级的方法流程图;
图4为本公开实施例提供的一种自动驾驶系统的框图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。此处所描述的具体实施例仅仅用于解释本公开,而非对本公开的限定。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
图1为本公开实施例提供的一种自动驾驶车辆的整体架构图,图1中,第一传感器组采集的数据包括但不限于车辆外界环境的数据和探测车辆的位置数据,第一传感器组例如包括但不限于摄像头、激光雷达、毫米波雷达、GPS(Global Positioning System,全球定位系统)和IMU(Inertial Measurement Unit,惯性测量单元)中的至少一个。自动驾驶系统可获取第一传感器组的数据。
第二传感器组采集的数据包括但不限于车辆的动力学数据,第二传感器组例如包括但不限于车轮转速传感器、速度传感器、加速度传感器和转向角传感器中的至少一个。自动驾驶系统可获取第二传感器组的数据。
在人工驾驶模式下,驾驶员通过操作控制车辆行驶的装置驾驶车辆,控制车辆行驶的装置例如包括但不限于制动踏板、方向盘和油门踏板等。控制车辆行驶的装置可直接操作车辆底层执行系统控制车辆 行驶。车辆底层执行系统控制车辆行驶,车辆底层执行系统包括:转向系统、制动系统和动力系统。
自动驾驶系统是运行在操作系统上的软件系统,车载硬件系统是支持操作系统运行的硬件系统。自动驾驶系统基于规划控制算法对车辆自动驾驶进行规划决策。自动驾驶系统可与云端服务器无线通信,交互各种信息。
自动驾驶系统在人工驾驶模式下不下发指令控制车辆行驶,自动驾驶系统可实现自动驾驶系统升级的方法各实施例的步骤,例如包括以下步骤一至步骤五:
步骤一、获取人工驾驶模式下车辆的第一行驶路径;
步骤二、获取第一传感器组的数据和第二传感器组的数据;
步骤三、基于所述第一传感器组的数据,生成环境感知信息和定位信息;
步骤四、基于所述环境感知信息、所述定位信息和所述第二传感器组的数据,规划自动驾驶模式下所述车辆的第二行驶路径;
步骤五、基于所述第一行驶路径和所述第二行驶路径,进行自动驾驶系统升级。
自动驾驶系统在人工驾驶模式下也会进行车辆周围环境感知和车辆定位,并基于环境感知信息、定位信息以及车辆传感器的数据规划车辆的自动行驶路径,但是不会下发指令控制车辆行驶,而是与人工驾驶模式下驾驶员驾驶车辆的行驶路径进行比较,升级自动驾驶系统的规划控制算法,以使升级后的自动驾驶系统在保证自动驾驶规划决策可靠性的前提下,车辆自动驾驶更加符合驾驶员的驾驶习惯,提高驾驶员的体验。
图2是本公开实施例提供的一种车载设备的结构示意图。
图2所示的车载设备包括:至少一个处理器201、至少一个存储器202和其他的用户接口203。车载设备中的各个组件通过总线系统204耦合在一起。可理解,总线系统204用于实现这些组件之间的连接通 信。总线系统204除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图2中将各种总线都标为总线系统204。
其中,用户接口203可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)或者触感板等。
可以理解,本实施例中的存储器202可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(RandomAccessMemory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(StaticRAM,SRAM)、动态随机存取存储器(DynamicRAM,DRAM)、同步动态随机存取存储器(SynchronousDRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(DoubleDataRate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(DirectRambusRAM,DRRAM)。本文描述的存储器202旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器202存储了如下的元素,可执行单元或者数据结构,或者他们的子集,或者他们的扩展集:操作系统2021和应用程序2022。
其中,操作系统2021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序2022,包含各种应用程序,例如媒体播放器(MediaPlayer)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的 程序可以包含在应用程序2022中。
在本公开实施例中,处理器201通过调用存储器202存储的程序或指令,具体的,可以是应用程序2022中存储的程序或指令,处理器201用于执行自动驾驶系统升级的方法各实施例所提供的步骤,例如包括以下步骤一至步骤五:
步骤一、获取人工驾驶模式下车辆的第一行驶路径;
步骤二、获取第一传感器组的数据和第二传感器组的数据;
步骤三、基于所述第一传感器组的数据,生成环境感知信息和定位信息;
步骤四、基于所述环境感知信息、所述定位信息和所述第二传感器组的数据,规划自动驾驶模式下所述车辆的第二行驶路径;
步骤五、基于所述第一行驶路径和所述第二行驶路径,进行自动驾驶系统升级。
上述本公开实施例揭示的方法可以应用于处理器201中,或者由处理器201实现。处理器201可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器201中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器201可以是通用处理器、数字信号处理器(DigitalSignalProcessor,DSP)、专用集成电路(ApplicationSpecific IntegratedCircuit,ASIC)、现成可编程门阵列(FieldProgrammableGateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器202,处理器201读取存储器202中的信息,结合其硬件 完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPDevice,DSPD)、可编程逻辑设备(PLD)、现场可编程门阵列(FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的单元来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,方法实施例的步骤之间除非存在明确的先后顺序,否则执行顺序可任意调整。所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图3为本公开实施例提供的一种自动驾驶系统升级的方法流程图。该方法的执行主体为车载设备。
如图3所示,本实施例公开的自动驾驶系统升级的方法,自动驾驶系统在人工驾驶模式下不下发指令控制车辆行驶,该方法可包括以下步骤301至305:
301、获取人工驾驶模式下车辆的第一行驶路径;
302、获取第一传感器组的数据和第二传感器组的数据;
303、基于第一传感器组的数据,生成环境感知信息和定位信息;
304、基于环境感知信息、定位信息和第二传感器组的数据,规划自动驾驶模式下车辆的第二行驶路径;
305、基于第一行驶路径和第二行驶路径,进行自动驾驶系统升级。
本实施例中,在人工驾驶模式下,驾驶员通过操作控制车辆行驶 的装置驾驶车辆,控制车辆行驶的装置例如包括但不限于制动踏板、方向盘和油门踏板等。控制车辆行驶的装置可直接操作车辆底层执行系统控制车辆行驶。车辆底层执行系统控制车辆行驶,车辆底层执行系统包括:转向系统、制动系统和动力系统。
驾驶员驾驶车辆的过程中,自动驾驶系统可获取第一传感器组的数据。第一传感器组采集的数据包括但不限于车辆外界环境的数据和探测车辆的位置数据,第一传感器组例如包括但不限于摄像头、激光雷达、毫米波雷达、GPS(Global Positioning System,全球定位系统)和IMU(Inertial Measurement Unit,惯性测量单元)中的至少一个。自动驾驶系统可获取第一传感器组的数据。
因此,自动驾驶系统基于第一传感器组的数据,可生成环境感知信息和定位信息,具体地,自动驾驶系统基于感知数据和定位数据,生成环境感知信息和定位信息。
驾驶员驾驶车辆的过程中,自动驾驶系统还可获取第二传感器组的数据。第二传感器组采集的数据包括但不限于车辆的动力学数据,第二传感器组例如包括但不限于车轮转速传感器、速度传感器、加速度传感器和转向角传感器中的至少一个。
因此,自动驾驶系统基于环境感知信息、定位信息和第二传感器组的数据,可规划自动驾驶模式下车辆的第二行驶路径。具体地,自动驾驶系统基于环境感知信息、定位信息和动力学数据,进行自动驾驶规划决策,得到自动驾驶模式下车辆的第二行驶路径。
自动驾驶系统在人工驾驶模式下也会进行车辆周围环境感知和车辆定位,并基于环境感知信息、定位信息以及车辆传感器的数据规划车辆的自动行驶路径,但是不会下发指令控制车辆行驶,而是与人工驾驶模式下驾驶员驾驶车辆的行驶路径进行比较,升级自动驾驶系统的规划控制算法,以使升级后的自动驾驶系统在保证自动驾驶规划决策可靠性的前提下,车辆自动驾驶更加符合驾驶员的驾驶习惯,提高驾驶员的体验。
在一些实施例中,步骤303所述基于第一行驶路径和第二行驶路径,进行自动驾驶系统升级,可包括以下步骤(1)至(3):
(1)确定所述第一行驶路径和所述第二行驶路径的偏差度;
(2)基于所述第一行驶路径和所述第二传感器组中至少一个传感器的数据,确定人工驾驶模式下的驾驶行为等级;
(3)基于所述偏差度和所述驾驶行为等级,进行自动驾驶系统升级。
本实施例中,自动驾驶系统可确定第一行驶路径和第二行驶路径的偏差度,两条路径之间的偏差度的确定可沿用现有方式,在此不再赘述。
由于第一行驶路径是驾驶员驾驶车辆的行驶路径,并且第二传感器组的数据包括车辆动力学数据,可反映车辆的行驶状态,因此,基于第一行驶路径和第二传感器组中至少一个传感器的数据,可确定驾驶员驾驶行为是否异常,例如若车辆发生急转弯、紧急刹车、快速超车等异常事件,说明驾驶员行为异常。
本实施例中,使用人工驾驶模式下的驾驶行为等级来评价驾驶员行为是否异常,驾驶行为等级为第一等级表示无异常,驾驶行为等级为第二等级表示异常。在具体应用中,可采用不同的等级表示驾驶员行为好坏的不同程度。
在确定第一行驶路径和第二行驶路径的偏差度以及驾驶行为等级后,可确定是否升级自动驾驶系统的规划控制算法。
若驾驶员行为异常,则不升级;若驾驶员行为无异常,则升级,以使自动驾驶系统基于升级后的规划控制算法进行决策规划更符合驾驶员的习惯,提升驾驶员的体验。
基于上一个实施例,基于第一行驶路径和第二传感器组中至少一个传感器的数据,确定人工驾驶模式下的驾驶行为等级,可包括以下步骤(1)和(2):
(1)向云端服务器发送所述第一行驶路径和所述第二传感器组的 数据;
(2)接收所述云端服务器发送的驾驶行为等级。
本实施例中,自动驾驶系统与云端服务器通信,将第一行驶路径和第二传感器组的数据发送给云端服务器,由云端服务器负责确定驾驶行为等级。云端服务器确定驾驶行为等级后再发送给自动驾驶系统,以减轻自动驾驶系统的负荷。
另外,云端服务器的处理能力远大于自动驾驶系统所依赖的车载硬件设备的处理能力,能够更快地确定驾驶行为等级,满足自动驾驶系统的实时性需求。
本实施例中,由于第一行驶路径是驾驶员驾驶车辆的行驶路径,并且第二传感器组的数据包括车辆动力学数据,可反映车辆的行驶状态,因此,云端服务器基于第一行驶路径和第二传感器组中至少一个传感器的数据,可确定驾驶员驾驶行为是否异常,例如若车辆发生急转弯、紧急刹车、快速超车等异常事件,说明驾驶员行为异常。
另外,若云端服务器确定驾驶员行为异常,可生成日志文件并存储,以供驾驶员或其他专业人员进行分析查阅。
在一些实施例中,基于偏差度和驾驶行为等级,进行自动驾驶系统升级,可包括以下步骤(1)和(2):
(1)若所述偏差度大于预设的第一偏差度阈值,且所述驾驶行为等级为第一等级,则确定对应关系;
(2)基于所述对应关系,升级自动驾驶系统的规划控制算法;
其中,所述对应关系为所述环境感知信息、所述定位信息、所述第二传感器组的数据与所述第一行驶路径的对应关系,且所述自动驾驶系统基于所述环境感知信息、所述定位信息、所述第二传感器组的数据以及所述对应关系,规划自动驾驶模式下所述车辆的行驶路径为所述第一行驶路径。
本实施例中,第一偏差度阈值表示自动驾驶系统规划的第二行驶路径与驾驶员控制车辆的第一行驶路径差异较大,不符合驾驶员的操 作习惯。
若所述偏差度大于第一偏差度阈值,且驾驶行为等级为第一等级(即驾驶员行为无异常),说明应当升级自动驾驶系统的规划控制算法,以使升级后的自动驾驶系统在保证自动驾驶规划决策可靠性的前提下,车辆自动驾驶更加符合驾驶员的驾驶习惯,提高驾驶员的体验。
若所述偏差度小于等于预设的第二偏差度阈值,表示自动驾驶系统规划的第二行驶路径与驾驶员控制车辆的第一行驶路径差异较小,符合驾驶员的操作习惯,无需升级。并且可以将第一行驶路径的里程记录为自动驾驶的测试里程。第二偏差度阈值小于或等于第一偏差度阈值。
在一些实施例中,自动驾驶系统升级的方法可还包括逆向分析过程,具体包括以下步骤(1)至(5):
(1)确定所述第二传感器组的数据中的异常数据;
(2)确定避免所述异常数据的动力学推算数据以及所述动力学推算数据对应的推算时间;
(3)基于所述动力学推算数据,确定车辆底层执行系统的控制指令;
(4)基于所述推算时间,确定在所述推算时间生成的历史环境感知信息和历史定位信息;
(5)建立所述历史环境感知信息、所述历史定位信息和所述控制指令之间的对应关系。
本实施例中,异常数据可理解为车辆发生急转弯、紧急刹车、快速超车等异常事件对应的异常数据。
通过确定避免所述异常数据的动力学推算数据以及所述动力学推算数据对应的推算时间,进而可确定动力学推算数据对应的车辆底层执行系统的控制指令以及推算时间生成的历史环境感知信息和历史定位信息。
通过建立历史环境感知信息、历史定位信息和控制指令之间的对 应关系,在自动驾驶车辆过程中,若自动驾驶系统确定环境感知信息为所述历史环境感知信息且定位信息为所述历史定位信息,则自动驾驶系统生成控制指令,以避免异常事件的发生。
如图4所示,本实施例公开一种自动驾驶系统,自动驾驶系统在人工驾驶模式下不下发指令控制车辆行驶,自动驾驶系统可包括以下单元:第一获取单元41、第二获取单元42、生成单元43、规划单元44和升级单元45,具体说明如下:
第一获取单元41,用于获取人工驾驶模式下车辆的第一行驶路径;
第二获取单元42,用于获取第一传感器组的数据和第二传感器组的数据;
生成单元43,用于基于所述第一传感器组的数据,生成环境感知信息和定位信息;
规划单元44,用于基于所述环境感知信息、所述定位信息和所述第二传感器组的数据,规划自动驾驶模式下所述车辆的第二行驶路径;
升级单元45,用于基于所述第一行驶路径和所述第二行驶路径,进行自动驾驶系统升级。
在一些实施例中,所述第一传感器组包括:摄像头、激光雷达、毫米波雷达、GPS和/或IMU;
所述第二传感器组包括:车轮转速传感器、速度传感器、加速度传感器和/或转向角传感器。
在一些实施例中,所述升级单元45,包括:
第一子单元,用于确定所述第一行驶路径和所述第二行驶路径的偏差度;
第二子单元,用于基于所述第一行驶路径和所述第二传感器组中至少一个传感器的数据,确定人工驾驶模式下的驾驶行为等级;
第三子单元,用于基于所述偏差度和所述驾驶行为等级,进行自动驾驶系统升级。
在一些实施例中,所述第二子单元,用于:
向云端服务器发送所述第一行驶路径和所述第二传感器组的数据;
接收所述云端服务器发送的驾驶行为等级。
在一些实施例中,所述第三子单元,用于:
若所述偏差度大于预设的第一偏差度阈值,且所述驾驶行为等级为第一等级,则确定对应关系;
基于所述对应关系,升级自动驾驶系统的规划控制算法;
其中,所述对应关系为所述环境感知信息、所述定位信息、所述第二传感器组的数据与所述第一行驶路径的对应关系,且所述自动驾驶系统基于所述环境感知信息、所述定位信息、所述第二传感器组的数据以及所述对应关系,规划自动驾驶模式下所述车辆的行驶路径为所述第一行驶路径。
在一些实施例中,所述自动驾驶系统还包括:
记录单元,用于若所述偏差度小于等于预设的第二偏差度阈值,则将所述第一行驶路径的里程记录为自动驾驶的测试里程。
在一些实施例中,所述自动驾驶系统还包括逆向分析单元,用于:
确定所述第二传感器组的数据中的异常数据;
确定避免所述异常数据的动力学推算数据以及所述动力学推算数据对应的推算时间;
基于所述动力学推算数据,确定车辆底层执行系统的控制指令;
基于所述推算时间,确定在所述推算时间生成的历史环境感知信息和历史定位信息;
建立所述历史环境感知信息、所述历史定位信息和所述控制指令之间的对应关系。
以上实施例公开的自动驾驶系统能够实现以上各方法实施例公开的自动驾驶系统升级的方法流程,为避免重复,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、 方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本公开的范围之内并且形成不同的实施例。
虽然结合附图描述了本公开的实施方式,但是本领域技术人员可以在不脱离本公开的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。
工业实用性
本公开实施例提出的自动驾驶系统升级的方法、自动驾驶系统及车载设备,在人工驾驶模式下也会进行车辆周围环境感知和车辆定位,并基于环境感知信息、定位信息以及车辆传感器的数据规划车辆的自动行驶路径,但是不会下发指令控制车辆行驶,而是与人工驾驶模式下驾驶员驾驶车辆的行驶路径进行比较,升级自动驾驶系统的规划控制算法,以使升级后的自动驾驶系统在保证自动驾驶规划决策可靠性的前提下,车辆自动驾驶更加符合驾驶员的驾驶习惯,提高驾驶员的体验。

Claims (15)

  1. 一种自动驾驶系统升级的方法,所述自动驾驶系统在人工驾驶模式下不下发指令控制车辆行驶,其特征在于,所述方法包括:
    获取人工驾驶模式下车辆的第一行驶路径;
    获取第一传感器组的数据和第二传感器组的数据;
    基于所述第一传感器组的数据,生成环境感知信息和定位信息;
    基于所述环境感知信息、所述定位信息和所述第二传感器组的数据,规划自动驾驶模式下所述车辆的第二行驶路径;
    基于所述第一行驶路径和所述第二行驶路径,进行自动驾驶系统升级。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一传感器组包括:摄像头、激光雷达、毫米波雷达、GPS和/或IMU;
    所述第二传感器组包括:车轮转速传感器、速度传感器、加速度传感器和/或转向角传感器。
  3. 根据权利要求1或2所述的方法,其特征在于,基于所述第一行驶路径和所述第二行驶路径,进行自动驾驶系统升级,包括:
    确定所述第一行驶路径和所述第二行驶路径的偏差度;
    基于所述第一行驶路径和所述第二传感器组中至少一个传感器的数据,确定人工驾驶模式下的驾驶行为等级;
    基于所述偏差度和所述驾驶行为等级,进行自动驾驶系统升级。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述第一行驶路径和所述第二传感器组中至少一个传感器的数据,确定人工驾驶模式下的驾驶行为等级,包括:
    向云端服务器发送所述第一行驶路径和所述第二传感器组的数据;
    接收所述云端服务器发送的驾驶行为等级。
  5. 根据权利要求3所述的方法,其特征在于,所述基于所述偏差度和所述驾驶行为等级,进行自动驾驶系统升级,包括:
    若所述偏差度大于预设的第一偏差度阈值,且所述驾驶行为等级为第一等级,则确定对应关系;
    基于所述对应关系,升级自动驾驶系统的规划控制算法;
    其中,所述对应关系为所述环境感知信息、所述定位信息、所述第二传感器组的数据与所述第一行驶路径的对应关系,且所述自动驾驶系统基于所述环境感知信息、所述定位信息、所述第二传感器组的数据以及所述对应关系,规划自动驾驶模式下所述车辆的行驶路径为所述第一行驶路径。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若所述偏差度小于等于预设的第二偏差度阈值,则将所述第一行驶路径的里程记录为自动驾驶的测试里程。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述第二传感器组的数据中的异常数据;
    确定避免所述异常数据的动力学推算数据以及所述动力学推算数据对应的推算时间;
    基于所述动力学推算数据,确定车辆底层执行系统的控制指令;
    基于所述推算时间,确定在所述推算时间生成的历史环境感知信息和历史定位信息;
    建立所述历史环境感知信息、所述历史定位信息和所述控制指令之间的对应关系。
  8. 一种自动驾驶系统,所述自动驾驶系统在人工驾驶模式下不下发指令控制车辆行驶,其特征在于,所述自动驾驶系统包括:
    第一获取单元,用于获取人工驾驶模式下车辆的第一行驶路径;
    第二获取单元,用于获取第一传感器组的数据和第二传感器组的数据;
    生成单元,用于基于所述第一传感器组的数据,生成环境感知信 息和定位信息;
    规划单元,用于基于所述环境感知信息、所述定位信息和所述第二传感器组的数据,规划自动驾驶模式下所述车辆的第二行驶路径;
    升级单元,用于基于所述第一行驶路径和所述第二行驶路径,进行自动驾驶系统升级。
  9. 根据权利要求8所述的自动驾驶系统,其特征在于,
    所述第一传感器组包括:摄像头、激光雷达、毫米波雷达、GPS和/或IMU;
    所述第二传感器组包括:车轮转速传感器、速度传感器、加速度传感器和/或转向角传感器。
  10. 根据权利要求8或9所述的自动驾驶系统,其特征在于,所述升级单元,包括:
    第一子单元,用于确定所述第一行驶路径和所述第二行驶路径的偏差度;
    第二子单元,用于基于所述第一行驶路径和所述第二传感器组中至少一个传感器的数据,确定人工驾驶模式下的驾驶行为等级;
    第三子单元,用于基于所述偏差度和所述驾驶行为等级,进行自动驾驶系统升级。
  11. 根据权利要求10所述的自动驾驶系统,其特征在于,所述第二子单元,用于:
    向云端服务器发送所述第一行驶路径和所述第二传感器组的数据;
    接收所述云端服务器发送的驾驶行为等级。
  12. 根据权利要求10所述的自动驾驶系统,其特征在于,所述第三子单元,用于:
    若所述偏差度大于预设的第一偏差度阈值,且所述驾驶行为等级为第一等级,则确定对应关系;
    基于所述对应关系,升级自动驾驶系统的规划控制算法;
    其中,所述对应关系为所述环境感知信息、所述定位信息、所述第二传感器组的数据与所述第一行驶路径的对应关系,且所述自动驾驶系统基于所述环境感知信息、所述定位信息、所述第二传感器组的数据以及所述对应关系,规划自动驾驶模式下所述车辆的行驶路径为所述第一行驶路径。
  13. 根据权利要求12所述的自动驾驶系统,其特征在于,所述自动驾驶系统还包括:
    记录单元,用于若所述偏差度小于等于预设的第二偏差度阈值,则将所述第一行驶路径的里程记录为自动驾驶的测试里程。
  14. 根据权利要求8所述的自动驾驶系统,其特征在于,所述自动驾驶系统还包括逆向分析单元,用于:
    确定所述第二传感器组的数据中的异常数据;
    确定避免所述异常数据的动力学推算数据以及所述动力学推算数据对应的推算时间;
    基于所述动力学推算数据,确定车辆底层执行系统的控制指令;
    基于所述推算时间,确定在所述推算时间生成的历史环境感知信息和历史定位信息;
    建立所述历史环境感知信息、所述历史定位信息和所述控制指令之间的对应关系。
  15. 一种车载设备,其特征在于,包括:
    处理器、存储器和通信接口;
    所述处理器、存储器和通信接口通过总线系统耦合在一起;
    所述处理器通过调用所述存储器存储的计算机程序,用于执行如权利要求1至7任一项所述方法的步骤。
PCT/CN2019/088822 2019-03-19 2019-05-28 一种自动驾驶系统升级的方法、自动驾驶系统及车载设备 WO2020186625A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19919753.4A EP3944046A4 (en) 2019-03-19 2019-05-28 METHOD FOR UPGRADING AN AUTOMATIC DRIVING SYSTEM, AUTOMATIC DRIVING SYSTEM AND DEVICE MOUNTED ON A VEHICLE
US17/441,208 US11685397B2 (en) 2019-03-19 2019-05-28 Methods for updating autonomous driving system, autonomous driving systems, and on-board apparatuses
KR1020217032108A KR102459736B1 (ko) 2019-03-19 2019-05-28 자율 주행 시스템의 업그레이드 방법, 자율 주행 시스템 및 차량 탑재 장치
JP2021552210A JP7121864B2 (ja) 2019-03-19 2019-05-28 自動運転システムのアップグレード方法、自動運転システム及び車載機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910207290.X 2019-03-19
CN201910207290.XA CN110069064B (zh) 2019-03-19 2019-03-19 一种自动驾驶系统升级的方法、自动驾驶系统及车载设备

Publications (1)

Publication Number Publication Date
WO2020186625A1 true WO2020186625A1 (zh) 2020-09-24

Family

ID=67366394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088822 WO2020186625A1 (zh) 2019-03-19 2019-05-28 一种自动驾驶系统升级的方法、自动驾驶系统及车载设备

Country Status (6)

Country Link
US (1) US11685397B2 (zh)
EP (1) EP3944046A4 (zh)
JP (1) JP7121864B2 (zh)
KR (1) KR102459736B1 (zh)
CN (1) CN110069064B (zh)
WO (1) WO2020186625A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401139A (zh) * 2021-06-21 2021-09-17 安徽江淮汽车集团股份有限公司 串联式自动驾驶系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473310B (zh) * 2019-08-26 2022-04-12 爱驰汽车有限公司 汽车行驶数据记录方法、系统、设备及存储介质
CN113859246B (zh) * 2020-06-30 2023-09-08 广州汽车集团股份有限公司 一种车辆控制方法和装置
CN111880533B (zh) * 2020-07-16 2023-03-24 华人运通(上海)自动驾驶科技有限公司 驾驶场景重构方法、装置、系统、车辆、设备及存储介质
CN114661574A (zh) * 2020-12-23 2022-06-24 北京百度网讯科技有限公司 样本偏差数据的获取方法、装置和电子设备
CN112987761B (zh) * 2021-05-10 2021-09-24 北京三快在线科技有限公司 一种无人驾驶设备的控制系统、方法及装置
CN113362627A (zh) * 2021-05-25 2021-09-07 中国联合网络通信集团有限公司 自动驾驶方法及车载终端
CN113903102B (zh) * 2021-10-29 2023-11-17 广汽埃安新能源汽车有限公司 调整信息获取方法、调整方法、装置、电子设备及介质
CN114056351B (zh) * 2021-11-26 2024-02-02 文远苏行(江苏)科技有限公司 自动驾驶方法及装置
KR20230093834A (ko) * 2021-12-20 2023-06-27 현대자동차주식회사 자율 주행 차량, 그와 정보를 공유하는 관제 시스템 및 그 방법
CN114047003B (zh) * 2021-12-22 2023-07-14 吉林大学 一种基于动态时间规整算法的人车差异性数据触发记录控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527199B1 (en) * 2012-05-17 2013-09-03 Google Inc. Automatic collection of quality control statistics for maps used in autonomous driving
CN107368069A (zh) * 2014-11-25 2017-11-21 浙江吉利汽车研究院有限公司 基于车联网的自动驾驶控制策略的生成方法与生成装置
CN107458367A (zh) * 2017-07-07 2017-12-12 驭势科技(北京)有限公司 行驶控制方法及行驶控制装置
CN108776472A (zh) * 2018-05-17 2018-11-09 驭势(上海)汽车科技有限公司 智能驾驶控制方法及系统、车载控制设备和智能驾驶车辆
CN109059944A (zh) * 2018-06-06 2018-12-21 上海国际汽车城(集团)有限公司 基于驾驶习惯学习的运动规划方法
CN109263639A (zh) * 2018-08-24 2019-01-25 武汉理工大学 基于状态栅格法的驾驶路径规划方法

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8509982B2 (en) * 2010-10-05 2013-08-13 Google Inc. Zone driving
US20160362118A1 (en) * 2011-08-31 2016-12-15 Pulsar Informatics, Inc. Driver performance metric
US9679258B2 (en) * 2013-10-08 2017-06-13 Google Inc. Methods and apparatus for reinforcement learning
JP2015089801A (ja) 2013-11-07 2015-05-11 株式会社デンソー 運転制御装置
DE112014006584B4 (de) * 2014-04-14 2022-09-22 Mitsubishi Electric Corporation Fahrassistenzvorrichtung und Fahrassistenzverfahren
EP3272611B1 (en) * 2015-04-21 2019-07-24 Panasonic Intellectual Property Management Co., Ltd. Information processing system, information processing method, and program
US10077056B1 (en) * 2015-04-24 2018-09-18 State Farm Mutual Automobile Insurance Company Managing self-driving behavior of autonomous or semi-autonomous vehicle based upon actual driving behavior of driver
US9555807B2 (en) * 2015-05-01 2017-01-31 Delphi Technologies, Inc. Automated vehicle parameter modification based on operator override
JP6330737B2 (ja) * 2015-06-15 2018-05-30 トヨタ自動車株式会社 情報収集システム、車載装置、及びサーバー
US20170294060A1 (en) * 2015-07-14 2017-10-12 Jonathan David Lanski Device for teaching a driver to drive in a fuel efficient manner
CN108137052B (zh) 2015-09-30 2021-09-07 索尼公司 驾驶控制装置、驾驶控制方法和计算机可读介质
DE102015219465A1 (de) * 2015-10-08 2017-04-13 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung der adaptiven Reaktionszeit des Fahrers eines Kraftfahrzeugs
CN106652378A (zh) * 2015-11-02 2017-05-10 比亚迪股份有限公司 用于车辆的驾驶提醒方法、系统、服务器和车辆
KR20170053799A (ko) * 2015-11-06 2017-05-17 고려대학교 산학협력단 자율 주행 차량의 안전성 제공 장치 및 방법
JP6641916B2 (ja) * 2015-11-20 2020-02-05 オムロン株式会社 自動運転支援装置、自動運転支援システム、自動運転支援方法および自動運転支援プログラム
CN107024927B (zh) * 2016-02-01 2021-02-12 上海无线通信研究中心 一种自动驾驶系统和方法
EP3445539A4 (en) * 2016-04-27 2020-02-19 Neurala Inc. METHODS AND APPARATUS FOR PRUNING EXPERIENCE MEMORIES FOR DEEP NEURONAL NETWORK-BASED Q-LEARNING
DE102016209984A1 (de) * 2016-06-07 2017-12-07 Lucas Automotive Gmbh Verfahren zur Schätzung einer Wahrscheinlichkeitsverteilung des maximalen Reibwerts an einem aktuellen und/oder zukünftigen Wegpunkt eines Fahrzeugs
US10146222B2 (en) * 2016-07-12 2018-12-04 Elwha Llc Driver training in an autonomous vehicle
JP6663822B2 (ja) 2016-08-08 2020-03-13 日立オートモティブシステムズ株式会社 自動運転装置
JP6731619B2 (ja) * 2016-10-26 2020-07-29 パナソニックIpマネジメント株式会社 情報処理システム、情報処理方法、およびプログラム
US10031523B2 (en) * 2016-11-07 2018-07-24 Nio Usa, Inc. Method and system for behavioral sharing in autonomous vehicles
US10802484B2 (en) * 2016-11-14 2020-10-13 Baidu Usa Llc Planning feedback based decision improvement system for autonomous driving vehicle
US10699305B2 (en) * 2016-11-21 2020-06-30 Nio Usa, Inc. Smart refill assistant for electric vehicles
US10065647B2 (en) * 2016-12-02 2018-09-04 Starsky Robotics, Inc. Vehicle control system and method of use
JP6895634B2 (ja) * 2016-12-16 2021-06-30 パナソニックIpマネジメント株式会社 情報処理システム、情報処理方法、およびプログラム
US20180170392A1 (en) * 2016-12-20 2018-06-21 Baidu Usa Llc Method and System to Recognize Individual Driving Preference for Autonomous Vehicles
US20190138907A1 (en) * 2017-02-23 2019-05-09 Harold Szu Unsupervised Deep Learning Biological Neural Networks
CN108508881B (zh) * 2017-02-27 2022-05-27 北京百度网讯科技有限公司 自动驾驶控制策略调整方法、装置、设备及存储介质
US10787173B2 (en) * 2017-03-07 2020-09-29 Nissan Motor Co., Ltd. Traveling assistance method and driving control device
EP3390189B1 (en) * 2017-03-10 2021-06-02 Baidu.com Times Technology (Beijing) Co., Ltd. Method and system for controlling autonomous driving vehicle reentering autonomous driving mode
US10710592B2 (en) * 2017-04-07 2020-07-14 Tusimple, Inc. System and method for path planning of autonomous vehicles based on gradient
US10134279B1 (en) * 2017-05-05 2018-11-20 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for visualizing potential risks
CN107200017A (zh) * 2017-05-22 2017-09-26 北京联合大学 一种基于深度学习的无人驾驶车辆控制系统
US10543853B2 (en) * 2017-07-05 2020-01-28 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for providing collaborative control of a vehicle
CN107491073B (zh) * 2017-09-05 2021-04-02 百度在线网络技术(北京)有限公司 无人驾驶车辆的数据训练方法和装置
US10782694B2 (en) * 2017-09-07 2020-09-22 Tusimple, Inc. Prediction-based system and method for trajectory planning of autonomous vehicles
US10782693B2 (en) * 2017-09-07 2020-09-22 Tusimple, Inc. Prediction-based system and method for trajectory planning of autonomous vehicles
US11093829B2 (en) * 2017-10-12 2021-08-17 Honda Motor Co., Ltd. Interaction-aware decision making
US10866588B2 (en) * 2017-10-16 2020-12-15 Toyota Research Institute, Inc. System and method for leveraging end-to-end driving models for improving driving task modules
US10503172B2 (en) * 2017-10-18 2019-12-10 Luminar Technologies, Inc. Controlling an autonomous vehicle based on independent driving decisions
US20190146493A1 (en) * 2017-11-14 2019-05-16 GM Global Technology Operations LLC Method And Apparatus For Autonomous System Performance And Benchmarking
US10677686B2 (en) * 2017-11-14 2020-06-09 GM Global Technology Operations LLC Method and apparatus for autonomous system performance and grading
US11461627B2 (en) * 2017-11-30 2022-10-04 Volkswagen Ag Systems and methods for training and controlling an artificial neural network with discrete vehicle driving commands
US10737717B2 (en) * 2018-02-14 2020-08-11 GM Global Technology Operations LLC Trajectory tracking for vehicle lateral control using neural network
US11086317B2 (en) * 2018-03-30 2021-08-10 Intel Corporation Emotional adaptive driving policies for automated driving vehicles
US11328219B2 (en) * 2018-04-12 2022-05-10 Baidu Usa Llc System and method for training a machine learning model deployed on a simulation platform
US10990096B2 (en) * 2018-04-27 2021-04-27 Honda Motor Co., Ltd. Reinforcement learning on autonomous vehicles
WO2019241612A1 (en) * 2018-06-15 2019-12-19 The Regents Of The University Of California Systems, apparatus and methods to improve plug-in hybrid electric vehicle energy performance by using v2c connectivity
CN108791372B (zh) * 2018-06-28 2020-07-07 湖南中车时代通信信号有限公司 基于自动驾驶的单一接口输入的分布式系统及其升级方法
US20200033869A1 (en) * 2018-07-27 2020-01-30 GM Global Technology Operations LLC Systems, methods and controllers that implement autonomous driver agents and a policy server for serving policies to autonomous driver agents for controlling an autonomous vehicle
CN109213499A (zh) * 2018-08-29 2019-01-15 百度在线网络技术(北京)有限公司 无人驾驶汽车升级包安装方法、装置、设备及存储介质
US11535262B2 (en) * 2018-09-10 2022-12-27 Here Global B.V. Method and apparatus for using a passenger-based driving profile
US10902279B2 (en) * 2018-09-25 2021-01-26 Honda Motor Co., Ltd. Training saliency
US11620494B2 (en) * 2018-09-26 2023-04-04 Allstate Insurance Company Adaptable on-deployment learning platform for driver analysis output generation
KR102528232B1 (ko) * 2018-10-08 2023-05-03 현대자동차주식회사 차량 및 그 제어 방법
CN109358627A (zh) * 2018-10-30 2019-02-19 百度在线网络技术(北京)有限公司 基于无人驾驶的驾驶辅助方法、装置、设备、介质和车辆
CN109377778B (zh) * 2018-11-15 2021-04-06 浪潮集团有限公司 一种基于多路rdma和v2x的协同自动驾驶系统及方法
US20200192393A1 (en) * 2018-12-12 2020-06-18 Allstate Insurance Company Self-Modification of an Autonomous Driving System
US20200209857A1 (en) * 2018-12-31 2020-07-02 Uber Technologies, Inc. Multimodal control system for self driving vehicle
US11364929B2 (en) * 2019-01-04 2022-06-21 Toyota Research Institute, Inc. Systems and methods for shared control of a vehicle
US11235776B2 (en) * 2019-01-31 2022-02-01 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for controlling a vehicle based on driver engagement
US11150664B2 (en) * 2019-02-01 2021-10-19 Tesla, Inc. Predicting three-dimensional features for autonomous driving
US20200249674A1 (en) * 2019-02-05 2020-08-06 Nvidia Corporation Combined prediction and path planning for autonomous objects using neural networks
CN110058588B (zh) * 2019-03-19 2021-07-02 驭势科技(北京)有限公司 一种自动驾驶系统升级的方法、自动驾驶系统及车载设备
KR20210134638A (ko) * 2019-03-29 2021-11-10 인텔 코포레이션 자율 차량 시스템
US11551030B2 (en) * 2019-10-11 2023-01-10 Perceptive Automata, Inc. Visualizing machine learning predictions of human interaction with vehicles
US11829150B2 (en) * 2020-06-10 2023-11-28 Toyota Research Institute, Inc. Systems and methods for using a joint feature space to identify driving behaviors
US20210398014A1 (en) * 2020-06-17 2021-12-23 Toyota Research Institute, Inc. Reinforcement learning based control of imitative policies for autonomous driving
US11577743B2 (en) * 2020-07-09 2023-02-14 Toyota Research Institute, Inc. Systems and methods for testing of driver inputs to improve automated driving
US11662214B2 (en) * 2020-07-30 2023-05-30 Ford Global Technologies, Llc Interactive vehicle navigation coaching system
US20220153314A1 (en) * 2020-11-17 2022-05-19 Uatc, Llc Systems and methods for generating synthetic motion predictions
US11480436B2 (en) * 2020-12-02 2022-10-25 Here Global B.V. Method and apparatus for requesting a map update based on an accident and/or damaged/malfunctioning sensors to allow a vehicle to continue driving
JP2024500672A (ja) * 2020-12-17 2024-01-10 メイ モビリティー,インコーポレイテッド 自律エージェントの環境表現を動的に更新するための方法およびシステム
US20210188306A1 (en) * 2020-12-23 2021-06-24 Nageen Himayat Distributed learning to learn context-specific driving patterns
US11834042B2 (en) * 2021-01-14 2023-12-05 GM Global Technology Operations LLC Methods, systems, and apparatuses for behavioral based adaptive cruise control (ACC) to driver's vehicle operation style
US20220274603A1 (en) * 2021-03-01 2022-09-01 Continental Automotive Systems, Inc. Method of Modeling Human Driving Behavior to Train Neural Network Based Motion Controllers
US20220314983A1 (en) * 2021-04-05 2022-10-06 Argo AI, LLC Counter-steering penalization during vehicle turns
KR20230001072A (ko) * 2021-06-25 2023-01-04 현대자동차주식회사 자율 주행 차량, 그를 원격 제어하는 관제 시스템 및 그 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527199B1 (en) * 2012-05-17 2013-09-03 Google Inc. Automatic collection of quality control statistics for maps used in autonomous driving
CN107368069A (zh) * 2014-11-25 2017-11-21 浙江吉利汽车研究院有限公司 基于车联网的自动驾驶控制策略的生成方法与生成装置
CN107458367A (zh) * 2017-07-07 2017-12-12 驭势科技(北京)有限公司 行驶控制方法及行驶控制装置
CN108776472A (zh) * 2018-05-17 2018-11-09 驭势(上海)汽车科技有限公司 智能驾驶控制方法及系统、车载控制设备和智能驾驶车辆
CN109059944A (zh) * 2018-06-06 2018-12-21 上海国际汽车城(集团)有限公司 基于驾驶习惯学习的运动规划方法
CN109263639A (zh) * 2018-08-24 2019-01-25 武汉理工大学 基于状态栅格法的驾驶路径规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944046A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401139A (zh) * 2021-06-21 2021-09-17 安徽江淮汽车集团股份有限公司 串联式自动驾驶系统
CN113401139B (zh) * 2021-06-21 2023-02-17 安徽江淮汽车集团股份有限公司 串联式自动驾驶系统

Also Published As

Publication number Publication date
JP7121864B2 (ja) 2022-08-18
US20220153294A1 (en) 2022-05-19
EP3944046A1 (en) 2022-01-26
CN110069064B (zh) 2021-01-29
EP3944046A4 (en) 2023-03-08
JP2022521808A (ja) 2022-04-12
CN110069064A (zh) 2019-07-30
KR102459736B1 (ko) 2022-10-27
US11685397B2 (en) 2023-06-27
KR20210137506A (ko) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2020186625A1 (zh) 一种自动驾驶系统升级的方法、自动驾驶系统及车载设备
WO2020186626A1 (zh) 一种自动驾驶系统升级的方法、自动驾驶系统及车载设备
JP6667686B2 (ja) 自動運転車両のための走行軌跡生成方法、システム及び機械可読媒体
CN107804321B (zh) 高级自主车辆教程
JP2020032998A (ja) 車両制御方法、装置、コンピュータ機器及び記憶媒体
JP6779326B2 (ja) 複数のスレッドを使用して自動運転車両に用いられる基準線を生成するための方法及びシステム
CN109213144B (zh) 人机接口(hmi)架构
JP7009490B2 (ja) 自動運転車両のための制御主導型の3ポイントターン計画
EP3623950B1 (en) System and method for verifying vehicle controller based on virtual machine
US20220185325A1 (en) Vehicle safety response control hierarchies and corresponding methods of automated vehicle safety control
JP2021501921A (ja) 自動運転車両のための螺旋経路に基づく3ポイントターン計画
JP2020035435A (ja) 車両運営制御方法、車両運営制御装置、コンピュータ機器、コンピュータ読み取り可能な記憶媒体及びコンピュータプログラム
CN109177983B (zh) 车辆运行状态监测方法、装置及设备
WO2022001708A1 (zh) 车辆控制方法、装置、车辆及存储介质
JP2021502915A (ja) 列挙に基づく自動運転車両の3ポイントターン計画
JP2021170016A (ja) 自動運転車のユーザプライバシー保護のための設計
US20230311909A1 (en) Automated vehicle safety response methods and corresponding vehicle safety systems with serialized computing architectures
CN112991751B (zh) 车辆安全转弯的方法、装置、电子设备及介质
CN111538322A (zh) 自动驾驶车辆的传感器数据选择方法、装置及车载设备
US20220185339A1 (en) Automated vehicle safety response methods and corresponding vehicle safety systems with serial-parallel computing architectures
CN112172819A (zh) 一种车辆变道方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032108

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019919753

Country of ref document: EP

Effective date: 20211019